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ABSTRACT 

 

RANDOM REGRESSION MODELS FOR THE PREDICTION OF DAYS TO FINISH 

IN BEEF CATTLE

 

The idea of reducing the number of days required for livestock to reach their 

desired endpoint is not new, with its economic importance first discussed in 1957.  Given 

this economic relevance, genetic evaluation research for reducing these required days has 

received very little attention throughout the pertinent literature with the exception of the 

swine industry.  Many different production systems exist in today’s beef industry, and a 

single prediction for the required number of days to reach a single finish endpoint does 

not lend itself well to this diversity.  Because of this point, random regression models are 

an attractive alternative to more traditional multiple trait or repeated measures best linear 

unbiased prediction models in the calculation of days to finish. 

Random regression models estimate regression lines for each animal in the 

pedigree, thereby resulting in the ability to calculate estimated breeding values (EBV) for 

any age or any number of days on feed.  This inherent property allows beef producers to 

calculate days to finish EBV for finish endpoints that fit individual production scenarios.   

The objective of this study was to develop a series of models using random 

regression techniques for the genetic prediction of the required number of days to reach 

the finish endpoints of weight, ultrasound back fat and ultrasound rib eye area.  This 
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study performed some basic tasks of describing data and the behavior of random 

regression models used for the prediction of days to finish. 

Genetic predictions for the traits days to weight (DTW), days to ultrasound back 

fat (DTUBF) and days to ultrasound ribeye area (DTUREA) were prototyped using data 

obtained from the Agriculture and Agri-Food Canada Research Centre, Lethbridge, 

Alberta.  This data consisted of pedigree, weight, ultrasound back fat and ultrasound 

ribeye area observations on 1,324 cattle spanning the years 1999 – 2007.  Individual 

animals averaged 5.77 weight observations with weights and ages ranging from 293 kg to 

863 kg and 276 to 519 days, respectively.  For the ultrasound traits individual animals 

averaged 5.57 observations.  Ultrasound back fat observations ranged from 1.53 mm to 

30.47 mm and ultrasound rib eye area observations ranged from 36.77 cm2 to 129.54 cm2. 

Fixed effects included in the model were determined through a series of 

regressions to identify those accounting for a significant amount of variation in the age 

response variable.  Results showed for the trait DTW the effects of year, pen and breed 

type should be included, and due to the confounding of year and breed type, all three 

were included in the contemporary group definition.  Similar results were obtained for 

both DTUREA and DTUBF.  Year of measure, pen and breed were included in the 

contemporary group definition for both traits.  Using these three effects to form 

contemporary groups resulted in average contemporary group sizes of 21.50 and 21.45 

for the days to weight and days to ultrasound traits, respectively.  All three models, 

contained the effects of contemporary group and a fixed regression of age on weight / 

ultrasound back fat / ultrasound rib eye area to account for the overall mean relationship 

between age and each of the three finish traits. 



 iv 

Random regression models were built for each of the days to finish traits.  Model 

building exercises for the three traits consisted of conducting likelihood ratio tests to 

determine the order of the random regression polynomial.  For DTW, a linear random 

regression polynomial was sufficient in describing the genetic variation in days.  

Depending on how residual variance was modeled, heritability estimates varied.  When 

observations were classified into four distinct residual variance sub-groups, heritability 

estimates for DTW ranged from 0.56 for the number of days to reach 293 kg all the way 

to 0.93 for the number of days to reach 863 kg.  If residual variance was modeled using a 

linear random regression, heritability estimates for DTW were more conservative ranging 

from 0.53 for the number of days to reach 293 kg to 0.76 for the number of days to reach 

863 kg. 

The significant random regression order for the ultrasound traits was dependent 

on how the residual variance was modeled.  For DTUREA, when residual variance was 

modeled using four distinct sub-groups, a quartic random polynomial was needed to 

model the genetic variation in days.  When a linear random regression was applied to the 

residuals, a linear polynomial was all that was needed.  The quartic polynomial tended to 

artificially inflate heritability estimates in the extremes of the data distribution for 

DTUREA ranging from 0.81 (36.77 cm2) then dropping to 0.15 around 110 cm2 and 

jumping back up to 0.91 at 129.54 cm2.  Heritability estimates obtained from the linear 

random regression using linear residual random regression were much more sensible, 

ranging from 0.53 at 36.77 cm2 to 0.49 at 129.54 cm2. 

For the trait DTUBF, when residual variance was modeled using four distinct sub-

groups, a quadratic random polynomial was all that was needed to describe the genetic 
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variation in days.  Similar to DTW and DTUREA, the linear residual random regression 

model only needed a linear polynomial.  Heritability estimates for DTUBF from the 

linear random regression model using linear residual random regression ranged from 0.54 

at 1.53 mm of ultrasound back fat to 0.35 at 30.47 mm of back fat.  Heritability estimates 

from the four residual sub-groups model became much more variable ranging from 0.58 

at 1.53 mm of back fat down to 0.08 at 26 mm of back fat then jumping back up to 0.54 

at 30.47 mm of back fat. 

For all three traits, modeling the residual variance using a linear random 

regression seemed to be the most ideal, as it required the lowest order polynomial for 

describing the genetic variation in days.  The linear residual random also yielded the most 

realistic heritability estimates for each of the endpoints.  Heritability estimates obtained 

in this study show the days to finish traits are moderately to highly heritable, depending 

on endpoint.  As such, sufficient genetic variation exists to make fairly rapid progress in 

reducing the number of days to reach finish endpoints, giving producers tools to increase 

the profitability of their operations. 
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CHAPTER I 

INTRODUCTION AND OBJECTIVE 

 

Introduction 

Traditionally, in feedlot situations, cattle have been fed to a time constant 

endpoint with price being determined by the live weight of the animal.  However, 

marketing cattle on the basis of their live weight may not be the most desirable or 

profitable for all cattle types. 

With the advent of marketing alliances, carcass premium grids and value-based 

marketing systems, more emphasis has been placed on the selection of carcass traits as a 

way to increase the selling price of finished animals.  Depending on the system, cattle 

producers can be paid a higher price if their cattle have less back fat and larger ribeye 

areas, resulting in a lower yield grade, or more intramuscular fat corresponding to higher 

quality grades.  With these systems, low yield grades and high quality grades result in 

cattle producers receiving premiums for their animals.  Additionally, high yield grades 

and low quality grades result in discounts for the price of their cattle; however, harvest 

weight is still an important trait since all prices are paid per unit of weight.  Over the past 

10 to 20 years, cattle producers wishing to retain ownership on their cattle through the 

feedlot have benefited from the increase in carcass merit selection tools produced by 

national cattle evaluation programs. 
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These marketing systems suggest to producers that cattle be fed to particular 

finish endpoints.  The choice of this endpoint is very dependent on the biological type of 

cattle being marketed as well as the marketing systems available to the owners (Amer et 

al., 1994; Williams and Bennett, 1995).   

Given a proper diet, all cattle will reach an appropriate finish endpoint at some 

point.  However, a large amount of variation exists in the time it takes individual animals 

to reach these endpoints.  Given the feed and yardage costs cattle owners incur each day 

an animal is in the feedlot, any shortening of the time it takes cattle to reach their desired 

economic endpoint would be beneficial. 

Reducing the number of days required for livestock to reach a specific weight or 

finish endpoint has received very little attention throughout literature.  With the exception 

of the swine industry this research has been almost non-existent.  Only a handful of 

studies pertaining to beef cattle having been published going back to 1957.  In summary, 

Lindholm and Stonaker (1957) found an average phenotypic correlation of -0.46 between 

the number of days to reach a perceived quality grade and net income per 45.4 kg of 

slaughter weight.  Thirty years later, McWhir and Wilton (1987) found the heritability for 

the number of days to reach a back fat depth of 7 mm to be 0.65, which increased to 0.90 

when the trait was adjusted to a constant market weight.  Then in 1992, Johnston et al., 

reported the heritability for the number of days to reach 8.9 mm of back fat to be 0.24.  

Both of these studies ignored the fact that animals will re-rank depending on the endpoint 

and marketing system chosen by cattle owners. 

Random regression models are a method of analyzing data with repeated 

observations, and were first used for genetic prediction in the early 1990’s (Schaeffer and 
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Dekkers, 1994).  These models are used to rank cattle on the basis of their genetic merit 

for the amount of time it would take to reach a specific endpoint.  This ranking is 

facilitated by regressing the number of days to a certain endpoint on the endpoint itself.  

Random regression models assume the regression coefficients for each individual’s 

additive genetic makeup are random, which allows for the genetic prediction of a 

regression line.  Breeding values (or EPD) for a specific endpoint can be calculated from 

this regression line as follows: 

 

Days = b0 + b1 backfat / weight / ribeye area( )  

 

In this equation, animals would be ranked based on their genetic merit for the number of 

days it takes to reach the preferred endpoint.  The term b0 in this equation is the animal’s 

breeding value for the intercept and the term b1 is the animal’s linear coefficient breeding 

value.  The producer’s desired backfat, weight or ribeye area endpoint could be plugged 

into the equation and the animals would then be ranked according to the number of days 

required to reach that endpoint. 

Random regression models have been traditionally used to analyze data with 

several records per animal, which is why their use in the beef industry has been very 

limited.  Typical feedlot data contain very few records of each animal’s backfat depth and 

ribeye area (via ultrasound or harvest measurement) and weight.  A field data set with a 

sufficient number of observations per individual animal would allow the parameterization 

of these models by obtaining accurate estimates of variance components.  Then, once the 

models were built and variance estimates obtained they could be extended to similar 
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situations more appropriate to beef cattle production scenarios (such as data sets with 

fewer observations per individual animal). 

 

Objective 

The objectives of this study were the development of an illustrative example of 

the equivalency between random regression and traditional multivariate models currently 

used in beef cattle genetic prediction as well as the development of a days to finish 

genetic prediction using three alternate endpoints.  Each of the specific objectives 

discussed in more detail below.   

 

1) Build an example evaluation that illustrates that the estimated breeding values 

obtained from a random regression model are equivalent, and in certain instances 

identical to those obtained from multivariate models. 

2) Develop a days to weight genetic prediction.  The model building exercise 

consisted of determining which predictor variables should be included in the fixed 

portion of the mixed model, and determining the number of parameters that need 

be included in the random portion of the model.  The order of the random 

regression, whether a random permanent environmental effect should be included 

as well as different approaches to model the residual variation was determined. 

3) Develop a days to ultrasound back fat and a days to ultrasound rib eye area 

genetic prediction.  Model building exercises similar to those presented above for 

the days to weight genetic prediction were used. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

Cattle growth and development 

Over the past 50 years, studies on the subject of growth and development have 

been published in both the scientific literature and in textbooks.  Growth has been given 

many different definitions.  Amongst researchers, growth is typically defined as the 

production of new cells, and in the livestock industry it is usually measured as the 

increase in mass of an individual over a given time frame (Owens et al., 1993).  The latter 

definition of growth seems to be pleasing to researchers and livestock producers alike, 

whereas definitions of development (the process of immature individuals emerging into 

adults) leave a little to be desired.  Cleveland (2006), differentiated between growth and 

development nicely by citing Brody (1945).  He referred to development as the 

combination of growth and environmental factors that lead to an adult individual whereas 

growth alone refers to the addition of new biochemical units.  Growth is the area of 

development concerned with an increase in living substance.  Growth has also been 

defined as “directed biosynthesis” consisting of two phases.  The first phase entails the 

production of new cells commonly referred to as hyperplasia while the second phase 

covers the increase in cell size referred to as hypertrophy (Brody, 1945, Owens et al., 

1993). 
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One of the first researchers to study the mathematical behavior of growth was 

Samuel Brody in 1945 through the development of his now famous growth and aging 

equations.  Brody described the growth of individuals by plotting weight versus age, 

which resulted in a sigmoidal or s-shaped curve.  He stated that a large number of 

differences in the shape of this curve can be seen between breeds of the same specie or 

between species. For example, certain species such as humans have a very long interval 

from weaning to puberty whereas this period is almost absent in laboratory and farm 

animal species.  However, when comparisons are made between the growth curves of 

individuals within a given population or breed, the shape of each individual curve is quite 

similar to other individuals in the population.   

This “growth age curve” can be broken into two segments.  The first segment 

which typically occurs prior to puberty consists of growth increasing as an increasing rate 

is aptly named the self-

accelerating phase of growth.  The 

second growth segment it typically 

a post-pubertal self-inhibiting 

phase of growth.   

Figure 2.1, which was 

adapted from Owens et al. (1993) 

illustrates the important points of 

this hypothetical curve of weight 

plotted against age.  As is shown, the shape of the curve resulted in the common s-shaped 

or sigmoidal curve.  The points a, b and c represent birth, the curve’s inflection point 

Figure 2.1.  Generalized growth curve. 
Adapted from Owens et al. (1993). 
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(puberty) and maturity, respectively.  The segment in which the most rapid growth rate, 

the self-accelerating phase, occurs is between the points a and b, or from birth to puberty.  

In farm animal species, the point of inflection typically occurs when approximately 30% 

of the animal’s mature weight is reached equating to approximately 6 months of age in 

cattle (Brody, 1945).  Beyond the inflection point is the self inhibiting phase, or the time 

period in which body mass is still increasing, but at a decreasing rate.  The causative 

factors for this post pubertal deceleration are not well understood despite many 

hypotheses on the subject (Owens et al., 2003).  Point c on the figure represents the 

animal’s mature weight or stage in life where the additional weight is no longer added 

when food is consumed at will (Marple, 2003). 

 

Mathematical representations of the growth curve 

The growth curve shown in Figure 2.1 above can be represented mathematically, 

as such, many different researchers have presented differing equations on how to do so. 

Of the many mathematical representations of this growth curve, five equations, ranging 

from 3 and 4 parameter non-linear models (Brody, Richards, Von Bertalanffy, Gompertz 

and Logistic) have seen a significant amount of use, with the Brody equation being by far 

the most used for beef cattle studies (Arango and Van Vleck, 2002).  These equations 

will be presented here, along with their unique features as well as their benefits and 

drawbacks as summarized by Brown et al. (1976).   

Brody (1945) developed the classical empirical equation used to predict body 

weight.  This equation, which is applicable to many different species from mice to farm 

animals, is represented by the following: 



 

 9 

W = A 1! Be!kt( )  

where body weight (W) at age (t) is a function of mature weight (A) a time scale 

parameter (B) and the rate at which a logarithmic function of weight changes per unit of 

time or rate of maturation parameter (k).  One of the drawbacks of using this curve is it 

provides for no inflection point, therefore it fails to denote the break point between the 

self-accelerating and self-inhibiting phases of growth.  As a result, it has been suggested 

that actual use of this equation be limited to animals who are more than 30% mature 

(Brody, 1945; DeNise and Brinks, 1985). 

Throughout the literature, a number of modifications have been made to this 

equation presented by Brody.  The Richards equation is one of these modified Brody 

equations that has seen extensive use (Richards, 1959).  Richard’s equation is represented 

by the formula: 

W = A 1! Be!kt( )M !
While this equation is quite similar to the Brody equation, the Richard’s equation 

includes an additional shape parameter (M), which allows the modeling of a variable 

inflection point that represents the age at which puberty occurs.  Remaining parameters 

included in the Richard’s equation, are as described during the presentation of the Brody 

equation above. 

The nonlinear growth equations developed by Brody and Richards appear to be 

the most popular equations used in the livestock industry.  Brown et. al, (1976) as well as 

Fitzhugh Jr. (1976), describe an additional 3 equations that deserve a brief mention here.  

These equations are referred to as the Von Bertalanffy (Von Bertalanffy, 1957), 

Gompertz (Winsor, 1932; Laird, 1966) and logistic equations (Nelder 1961, 1962), and 
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are only mentioned here by name with advantages and disadvantages to using all 5 

equations. 

Model Comparisons.  A number of studies have compared the advantages and 

disadvantages of using these growth equations in the analysis of beef cattle growth data 

(Brown et al., 1976; Fitzhugh Jr., 1976; DeNise and Brinks, 1985; Lopez de la Torre et 

al., 1992; Mezzadra and Miquel, 1994).  When comparing the parameters of each of the 

models, every equation provides for an estimate of mean mature weight (A) and growth 

rate (K).  Given the parameter K, larger values of K, indicate those individuals that are 

earlier maturing while smaller values are associated with later maturing animals.  As 

mentioned earlier, the Brody equation is the only model which does not provide for some 

sort of inflection point.  The Von Bertalanffy, Gompertz and Logistic models have fixed 

inflection points relative to mature size, limiting their biological interpretation (Brown et 

al., 1976).  The Richards equation is the only model which allows for a variable inflection 

point (Arango and Van Vleck, 2002). 

Brown et al., (1976) compared the goodness of fit, for the five different models.  

All five of the models tended to give a poorer description of growth early in live as 

opposed to later in life.  However, the Gompertz and Logistic models overestimated 

weights taken early in life most severely.  The Brody model tended to fit the observed 

data well after 6 months of age, while the Von Bertalanffy model seemed to overestimate 

weights at ages prior to 6 months of age.  Overall, the Richards model appeared to give 

an unbiased fit at all ages. 

DeNise and Brinks (1985) compared estimated parameters for both Brody and 

Richards growth curves applied to beef cow growth data.  They found that while both 
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curves modeled similar mature weights (A), Brody’s curve was especially dependent on 

input data.  If individuals had missing weight observations, i.e. missing birth or mature 

weights, Brody’s curve fit the data poorly beyond the range of this information.  The 

findings of DeNise and Brinks have been supported in other studies.  Both Beltran et al., 

(1992) and Lopez de la Torre et al., (1992) reported the Richards equation did a better job 

estimating individual growth curves than did the Brody equation.  Advantages and 

disadvantages of each of the five curves are summarized in Table 2.1 below. 

While each of these curves can estimate the growth of an individual animal at any 

given time, it is often desirable to change the shape of these curves to improve animal 

populations over time.  Fitzhugh Jr. (1976) identified a number of reasons for changing 

the shape of these curves; each one resulting in an impact on a beef cattle producer’s herd 

Table 2.1.  Advantages and disadvantages of the differing growth curves1. 
Model Advantage Disadvantage 

Brody Fit observed data well Difficulty in estimating weights 
before six months of age 

 Computationally Simple Difficulty estimating weights 
outside the range of observed data 

   

Richards Flexible and accurate due to 
additional parameters Computationally Complex 

 Generally provides an unbiased 
fit at all ages  

   
Von 
Bertalanffy 

Fit reasonably well over all 
ages 

Overestimated weights at early 
ages prior to 6 months 

   
Gompertz  Overestimated early weights 
   
Logistic  Overestimated early weights 
    Underestimated Mature Weights 
1Adapted from Cleveland (2006)  
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dynamics.  First, it was necessary to change the shape of the growth curve in order to 

produce animals that grow quickly to larger sizes while maintaining smaller breeding 

stock to reduce maintenance costs.  The second reason was to improve efficiency through 

increased maturation rates.  Third was reducing incidence of dystocia through decreasing 

birth weights while maintaining growth.  Finally, it was suggested that changing the 

growth curve was a way to decrease age at puberty thereby increasing fertility and 

reducing carcass fatness at preferred market weights.  Cleveland (2006) cautioned any 

changes made to the growth curve will result in consequences elsewhere, not just for 

weight and size.  Selection decisions which affect growth need to be weighed against the 

costs and benefits of altering body composition. 

 

Factors affecting cattle growth and composition 

Many different post-weaning measures are economically important to beef cattle 

producers in the growing and finishing phases of beef cattle production.  Given ever 

increasing feed costs, the main production concerns seem to be maximizing the amount 

of weight gain, thereby maximizing efficiency while producing a carcass which reaches 

an optimum harvest endpoint.  This section focuses on the growth weight change / 

carcass composition of post-weaning / finishing cattle.  The previous section presented 

mathematical equations to quantify the change in weight over time throughout the entire 

life cycle.  The following section discusses factors such as breed and biological type, 

environment, management and sex that can have an influence on the growth of individual 

animals. 
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Biological Type.  All breeds of cattle are typically classified into two taxonomic 

categories Bos Taurus and Bos Indicus.  Bos Taurus cattle are typical of Europe and 

North America and are typically adapted to temperate climates.  Bos Indicus cattle are 

better suited to hotter climates.  Separate biological types exist in both species of beef 

cattle.  The focus of this discussion will be of the differences between “types” and not 

necessarily between individual breeds. 

Swift growth has been a highly sought after trait in all aspects of the beef industry 

due to its economic importance in determining the number of days an individual animal 

will be on feed.  It has been suggested that the differences observed in growth rate 

between breed types during the normal growing periods (including the finishing period) 

will result in animals different in size (Berg and Butterfield, 1976).  These differences 

between breed types have been attributed to the shape of the growth curve which 

influences how quickly animals will grow.  Animals in the pre-inflection growth period 

will gain more weight as a proportion to an animal’s overall body weight than those in 

the post-inflection growth period (Brody, 1945); therefore animals in the pre-inflective 

growth period longer will appear to grow at a faster rate than animals that spend more 

time in the post-inflective growth period.   

Average daily gain (ADG) or the average weight gain per day on feed has been 

used as a predictor of an animal’s ability to grow swiftly during a given feeding period.  

Breed and type differences impacting ADG have been reported numerous times.  Smith 

and colleagues (1976) found calves resulting from a cross of Continental (Simmental, 

Charolais and Limousin) by British (Hereford and Angus) cattle had higher ADG, than 

British by British crosses during a fixed 180 day feeding period.  Calves produced by the 
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Continental x British cross were generally heavier and had ADG values approximately 

10% heavier than the British cross cattle.  Similarly, Smith and Rahnefeld (1988) 

reported similar results for British x Continental crosses fed to a constant number of days.  

Urick et al. (1991) found differences in ADG between British and Continental sired steers.  

Steers out of the Continental sires were heavier than their British counterparts with the 

exception of the calves out of Tarentaise sires.  In this study, the Tarentaise sired calves 

were intermediate to both the Continental and British steers and were not significantly 

different from either type. 

Other studies have come to alternative conclusions concerning ADG than those 

studies presented above.  Anderson et al. (1986) observed no differences between British 

and Continental sired steers out Hereford dams in post weaning ADG.  Conversely, 

Wyatt et al. (2002) found ADG to be higher in British (Angus) steers than both 

Continental and Brahman derivatives when fed to a constant fat thickness endpoint.  In 

this study, however, breed did significantly affect final weight.  In a separate study, Block 

and colleagues (2001) found similar results to Wyatt et al. (2002).  They determined 

Continental cross steers to have lower ADG than their British counterparts when fed to a 

constant back fat.  The common theme to the previous two studies was both sets of 

animals were fed to a constant back fat.  When the larger framed Continental animals are 

fed to an endpoint that takes a longer number of days to reach, they spend a longer period 

of time in the post-inflective segment of their growth curve where growth, while still 

increasing, is beginning to slow down (Brody, 1945).  Growth occurring during this 

phase will have the effect of decreasing ADG (Berg and Butterfield, 1976). 
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When analyzing gain, ADG in this discussion, an important consideration is how 

efficient the gain was achieved or more specifically how much input was necessary to 

achieve a certain amount of gain.  A breed or type effect does seem to exist for efficiency, 

but similar to ADG discussed above performance endpoint determines which type of 

cattle are deemed “more efficient”.  If performance is measured at a constant age, the 

larger Continental are more efficient than the smaller British type cattle at converting 

pounds of feed consumed to pounds of gain (Smith et al., 1976; Urick et al., 1991; Amer 

et al., 1992).  Conversely, when fed to a constant fat endpoint British type cattle are 

found to be more efficient simply due to the fact they are smaller framed, reach mature 

size quicker thus begin to deposit fat sooner (Smith et al., 1976; Urick et al., 1991).   

Under commercial feeding situations, cattle are penned in groups according to 

their target endpoint (weight, fat thickness, etc.).  ADG and efficiency of the different 

biological types of cattle are important considerations when marketing various groups on 

a specific target endpoint because each of the different types of cattle will need a 

different number of days to reach their target endpoint.   

Summarizing the above discussion, given a targeted fat endpoint, British cattle 

will typically need fewer days to reach a given level of fat thickness than Continental 

cattle (Block et al., 2001; Wyatt et al, 2002).  Similarly, British cattle need fewer days to 

reach a constant marbling endpoint than do Continental cattle (Wheeler et al., 2004; 

2005).  However, if the target is a constant age or weight endpoint, Continental cattle will 

need fewer days to reach this target than will British cattle (Smith et al., 1976; Smith and 

Rahnefeld, 1988; Urick et al., 1991). 

 



 

 16 

Frame Size.  Following closely the discussion of biological type and ADG, beef 

cattle frame size deserves some discussion given the relationship between the topics.  

Generally, smaller framed cattle such as Angus and Hereford are considered early 

maturing breeds meaning they reach puberty and mature size at earlier ages than do larger 

framed cattle such as Simmental, Charolais or even Brahman.  Many of the differences 

mentioned in the above discussion relative to the effects of breed and biological type on 

ADG and “efficiency” can be attributed to the differences in frame size of the breeds in 

the studies.  Owens et al. (1993, 1995) alludes to the fact that larger framed cattle will 

tend to consume greater amounts of feed and reach target endpoints later than smaller 

framed cattle even though, depending on the endpoint, they can grow more rapidly and 

efficiently (Smith et al., 1976; Urick et al., 1991; Amer et al., 1992).  Many different 

studies have specifically reported on the influence of cattle frame size on ADG (Cianzio 

et al., 1982, Tatum et al., 1986a), days on feed (Dolezal et al., 1993), weight (Tatum et al., 

1986b; Dolezal et al., 1993), and fat and carcass composition (Cianzio et al., 1982; Tatum 

et al., 1986c; Dolezal et al., 1993).  All studies appear to agree that while larger framed 

animals grow more quickly, they tend to need a longer time period to reach a constant fat 

thickness.    

 

Management.  Growth performance throughout the post-weaning / finishing 

phases is greatly influenced by management decisions made by cattle producers and 

feedlot operators.  Management has the ability to make a number of decisions which can 

either result in changes to the growth curves of individual animals through the use of 

hormonal implant strategies, different weaning / backgrounding strategies, nutrition, or 
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by properly matching animals to specific endpoints through the selection of breed and 

appropriate endpoints for each of the selected breeds (Urick et al., 1991; Wheeler et al., 

2004).   

Hormonal implants, often considered “metabolic modifiers”, are a group of 

compounds that change an animal’s metabolism by altering the manner in which nutrients 

are absorbed resulting in improved efficiency of production (NRC, 1994).  Researchers 

began studying the effects of hormonal implants in poultry in the 1930s and in cattle in 

the late 1940s and early 1950s (Hancock et al., 1991).  The reason for their use in the 

cattle industry is because they have been shown to improve growth rates by 10 to 30% 

and feed efficiency by 5 to 15% (Duckett et al., 1997; Preston, 1999; Montgomery et al., 

2001; Nichols et al., 2002).  Implants have also been shown to increase ribeye area and 

improve carcass yield and carcass leanness 5 to 8% (Johnson et al., 1996, Dolezal, 1997; 

Duckett et al., 1997; Preston 1999; Pritchard, 2000; Roeber et al., 2000; Schneider et al., 

2007).  The timing of the implant also appears to have an effect on final weight at harvest 

(Foutz et al., 1997) and on marbling score (Milton et al., 2000; Pritchard, 2000; Bruns et 

al., 2005), although the effects found by the 3 studies are a bit contradictory.  Implants do 

seem to have an overall negative impact on the ability of an animal to deposit fat.  

Perhaps this is because they have been shown to increase the mature body weight of 

steers, thereby causing an increase in the weight for an animal to reach a desired 

compositional endpoint (Guiroy et al., 2002). 

 

Environment.  There are a number of different environmental factors which will 

influence an animal’s production level.  Most beef cattle studies have generally looked at 
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season of the year and the resulting climatic conditions and their effects on ADG, feed 

intake and feed efficiency.  A few studies have also compared these seasonal climatic 

changes to incidence of sickness or more specifically Bovine Respiratory Disease 

Complex which will negatively impact any performance traits. 

Many studies have concluded the fact that climatic changes have an increase 

incidence of respiratory tract disease in feedlots.  Whether it is daily temperature change 

during the first 30 days on feed (Alexander et al., 1989), a decrease in mean daily 

temperature (Ribble et al., 1995), daily ambient temperature range (Cusack et al., 2007; 

Speidel et al., 2008) or mean daily wind speed (Speidel et al., 2008), as the ambient 

temperature drops the incidence of respiratory tract disease increases.  It has also been 

shown that a short lag of 2 to 3 days between the climatic event and spike in incidence of 

sickness could be expected.  However, when looking specifically at growth 

characteristics, Mader (2003) reported increased ADG and decreased dry matter intake 

and feed efficiency in winter versus summer months.  Similarly, Kreikemeier and Mader 

(2004) reported similar decreases in dry matter intake in heifers during the winter months.  

Both studies attributed the decrease in intake to daily temperature range, and not just 

daily minimum temperatures alone. 

 

Live animal and carcass evaluation 

Beef cattle carcass evaluation has undergone many changes since the advent of 

the first voluntary federal grading program in the United States in 1926 (Taylor and Field, 

1999) and subsequent establishment of a mandatory federal grading program in the late 

1930’s and early 1940’s (USDA AMS, 1996).  Berg and Butterfield (1976) gave a 
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definition of the ideal carcass as one with “a high proportion of muscle, and acceptable 

optimum amount of fat and a minimum amount of bone”, which is still appropriate in 

today’s market.  The only part of this definition which has changed over the years is the 

“acceptable optimum amount of fat”.  Recently, the beef industry has seen a shift from 

the “commodity beef” marketing systems in the past to the advent of value-based systems 

that place an emphasis on carcass quality and tenderness (Williams, 2002).  This change 

in marketing scheme has caused beef producers to change the way in which they select 

beef cattle.   

The seedstock sector of the beef industry was the first to adopt the use of 

ultrasound to measure carcass traits in the live animal (Robinson, et al., 1992).  Producers 

which sell bulls for commercial use found it difficult to obtain reliable estimates of their 

herd’s genetic merit for carcass traits given the small number of “cull” animals they have 

slaughtered.  The advent of ultrasound allowed these producers to use non-invasive live 

animal indicators of their herd’s genetic merit for carcass characteristics which enabled 

them to make more educated selection decisions for their customers.   

More recently, given the development of carcass genetic evaluations by breed 

associations, the importance of the use of ultrasound has shifted slightly.  Currently, 

ultrasound measurements of carcass traits have three uses in the beef industry.  First, they 

are used to add information to the carcass genetic evaluations published by the majority 

of the beef cattle breed associations.  The second and third are described by Lusk et al., 

(2003) where ultrasound can be used to effectively sort fed cattle into more homogeneous 

groups to sell at optimum times or to strategically market similar groups of cattle to 

maximize revenue.  The following sections will discuss the definition of the different 
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ultrasound traits, how they relate to their carcass counterparts and how they can be used 

to effectively manage groups of cattle. 

 

Ultrasound.  Briefly, ultrasound machines consist of a console unit and 

transducer composed of crystals that emit high frequency sound waves which penetrate 

the tissues being measured.  Once they have entered the tissues, the density of the tissue 

determines the rate at which the sound waves are bounced back to the transducer.  The 

ultrasound machine then interprets the returned sound waves and converts them into 

images that can be viewed on the 

screen of the machine.  Considering 

carcass characteristics of beef cattle, 

there are currently four traits which 

are routinely measured in the animal.  

These traits which include backfat 

thickness, longissimus muscle area, 

percentage intramuscular fat and 

rump fat (Williams, 2002) can be 

used to estimate the carcass merit of individual animals.  More importantly, these 

estimates of carcass merit can be used to predict characteristics  that have more direct 

economic significance such as yield grade, percent cutability, percent retail product and 

even the probability of whether or not a carcass will grade choice (Lusk et al., 2003; 

Walburger and Crews, 2004). 

Figure 2.2.  Live animal ultrasound image 
scanning locations.  Adapted from Guidelines for 
Uniform Beef Improvement (2002). 
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Each of the live animal traits mentioned above are measured differently and each 

has their own difficulty of measurement.  Figure 2.2 illustrates the three different 

locations in which ultrasound traits are measured in beef cattle which are well described 

by Williams (2002) and Perkins et al., (2008).  Backfat thickness measured at position 2, 

represents the amount of subcutaneous fat deposited between the 12th and 13th ribs over 

the longissimus muscle.  Of all the traits, this is perhaps the easiest and most accurate to 

measure due to the fact it is a linear measurement.  Longissimus muscle area, another 

common estimator used in the calculation of the animal’s yield grade, is also measured 

between the 12th and 13th ribs (Position 2).  It is a two-dimensional measurement; 

therefore it is slightly more difficult to measure than the backfat measurement.  Rump fat 

is measured over the rump between the animal’s hooks and pins and is used as an 

indicator of total carcass fat (Position 3).  Finally, percent intramuscular fat, an indicator 

of the animal’s marbling score is measured longitudinally over the 11th, 12th and 13th ribs 

(Position 1).  Percent intramuscular fat is probably the most difficult of all the live animal 

carcass indicators to translate to its carcass counterpart for two reasons.  First, it is not a 

direct measurement like the fat thicknesses and muscle areas of the carcass trait of 

interest.  Percent intramuscular fat is estimated by applying an algorithm to the 

“backscatter” and “attenuation” of the sound waves (Brethour, 1990, 1991). Second, an 

increase in live animal percent intramuscular fat is does not represent an equal increase in 

carcass marbling score (Wilson et al., 1998; Wall et al., 2004) as is evident with reported 

phenotypic correlations ranging from 0.35 to 0.87 (Wilson, 1992; Perkins et al., 1997).   
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Relationship to beef cattle carcass traits.  The ability of an animal’s ultrasound 

measurement to act as a predictor of its carcass characteristics varies depending on the 

trait.  Numerous studies have looked at the ability of ultrasound measurements to predict 

their carcass counterparts.  Ultrasound backfat seems to do the best job at predicting its 

carcass component.  Simple phenotypic correlation estimates between ultrasound and 

carcass backfat have been shown to range between 0.76 to 0.93 (Brethour, 1992; Perkins 

et al., 1992a,b; Perkins et al., 1997; Wall et al., 2004).  Even though ultrasound backfat 

measurements are strongly correlated with their corresponding carcass backfat 

measurements, ultrasound backfat tends to overestimate carcass backfat in leaner cattle 

while under estimating backfat in fatter cattle (Brethour, 1992; Robinson et al., 1992; 

Perkins et al., 1997).  Overall, Brethour (1992) found ultrasound backfat measurements to 

be 8% lower than carcass fat measurements. 

As previously mentioned, ultrasound loin muscle area is more difficult to measure 

than ultrasound backfat due to its two-dimensional nature (Williams, 2002), therefore it is 

not surprising the correlations between this ultrasonic measurement and carcass loin 

muscle area are more variable than backfat.  Phenotypic correlations between ultrasound 

and carcass loin muscle areas have been shown to range from 0.43 to 0.95 (Perkins et al., 

1992a; Robinson et al., 1992; Smith et al., 1992; Perkins et al., 1997; Wall et al., 2004).  

Ultrasound loin muscle measurements tend to underestimate carcass loin muscle 

measurements by an average of 1.7 cm2 (Perkins et al., 1992b).  

Phenotypic correlations between ultrasound percent intramuscular fat and 

marbling scores are even more variable ranging from 0.35 to 0.87 (Wilson, 1992; Perkins 

et al., 1997).  Perkins et al., (1997) found the correlation between ultrasound percent 
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intramuscular fat and carcass quality grade to be 0.69.  In a comparison of four different 

systems for measuring intramuscular fat, Herring et al. (1998) found marbling to be 

overestimated by an average of 1.6675 and 1.075 for percentage ether extractable fat and 

marbling score converted to percentage ether extractable fat, respectively. 

 

Beef cattle management and ultrasound 

Knowledge of live animal characteristics can assist producers in effectively 

marketing their cattle to increase per head revenues.  For example, Schroeder and Graff 

(2000) reported revenues could be increased by $15.14 / head to $34.74 / head if 

producers knew before hand the quality and yield grades of their cattle and marketed 

them appropriately as opposed to simply selling cattle on live-weight, dressed- weight or 

grid basis.  Ultrasound measurements can be used to predict carcass quality and yield 

grades prior to slaughter, providing a useful tool for sorting, placement, time on feed and 

marketing strategies (Bergen et al., 1996; Lusk et al., 2003; Walburger and Crews, Jr., 

2004). 

Two separate studies looked at improving producer marketing decisions (as 

measured by increased revenue) using ultrasound to predict carcass traits such as the 

probability of grading choice, yield grade, dressing percent (Lusk et al., 2003) and hot 

carcass weight, rib eye area, back fat thickness, marbling score and slaughter weight 

(Walburger and Crews Jr., 2004).  Both studies used predicted carcass traits in a 

simulation study to identify optimum market selection in an effort to increase revenue.  

Lusk et al. (2003) found ultrasound traits were able to correctly predict choice grade or 

better 74% of the time and were found to be significant predictors of yield grade and 
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dressing percent.  Using this information, they were able to determine that using 

ultrasound to strategically market cattle led to increased revenue of $25.07, $4.98 and 

$32.90 per animal over marketing all animals on live weight, dressed weight or grid basis, 

respectively.  Similarly, Walburger and Crews Jr., (2004) found revenue increases of 

$11.27 to $27.93 from using both sire and ultrasound data.  Lusk et al., (2003) goes on to 

state “The most attractive use of ultrasound is to predict when an animal should be 

slaughtered.  By optimally timing cattle, producers can cull low-grading cattle who likely 

will never grade Choice and can stop feeding higher grade cattle before the marginal 

benefit of an extra day’s feed is greater than the marginal cost”.  This is an important 

statement given that a large proportion of beef cattle are not fed for an appropriate 

number of days (Brethour, 2000).  Brethour (2000) cited a study which found that 

approximately 25% of beef carcasses had too much back fat for industry standards, an 

indication they were on feed too long. 

 

Genetic evaluation of longitudinal data 

In today’s beef industry, many different data types are collected by beef cattle 

breed associations for the purpose of genetic evaluation.  These data points are all 

biological characteristics of individual animals which can be measured a multitude of 

times over an animal’s lifetime.  The number of times a given trait is observed during an 

animal’s life is dictated by the nature of the trait.  For example, traits such as carcass 

characteristics, heifer calving ease, and heifer pregnancy can only be recorded one time 

on an individual animal.  However, traits which monitor the status of an animal as it 

grows such as weight traits and live animal indicators of carcass merit can be measured a 
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number of times over the lifespan of an animal.  Weight traits such as birth weight and 

weaning weight describe the same underlying trait, growth as measured by weight gain 

observed over time.  As such, perhaps they can be best described by some type of 

mathematical function rather than a finite set of data points (Kirkpatrick and Heckman, 

1989; Meyer and Kirkpatrick, 2005).  As a result, this unique data type has been referred 

to throughout the literature as “function valued” (Kirkpatrick and Heckman, 1989; Meyer 

and Kirkpatrick, 2005) or as “infinite-dimensional” or “longitudinal” data by Meyer and 

Hill (1997).   

 

Longitudinal data.  A number of traits currently collected for beef cattle genetic 

evaluation fall under the umbrella definition of longitudinal data.  They can range from 

commonly collected observations such as weight, height and body condition score 

measurements to more obscure measures such as feed intake, survival and sperm 

production and quality (Schaeffer, 2004).  Several different methods have been 

implemented by groups conducting national cattle evaluations to properly model these 

data types.  These methods include more traditional models such as the repeatability and 

multivariate models, to the more contemporary (and perhaps more appropriate) models 

such as the suite of random regression models using different base functions (Mrode, 

2005).  

The analysis of function valued traits is challenging, and each of the different 

methods has their respective benefits and limitations. Discussion of these benefits and 

limitations for each of the methods of analysis will be addressed individually beginning 

with the traditional repeatability model, then move on to the multivariate models and 
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finally finishing with random regression models that use covariance functions and splines 

as their base function.   

 

The Repeatability Model.  Perhaps the simplest method of analysis of 

longitudinal data is the “Repeatability Model”.  The idea behind this model is to treat 

each observation as a repeated record of the same trait on the same individual.  This 

model has been implemented in the past for traits such as litter size in successive 

pregnancies in swine and milk yield in successive lactations (Jamrozik et al., 1997b; 

Interbull, 2000). 

The repeatability model is most often described in matrix form by the following 

(Mrode 2005): 

y = Xb + Zu +Wpe + e  

where X, Z, and W are incidence matrices relating the repeated observations in y to fixed 

(b), random additive animal genetic (u), and random permanent environmental and non-

additive genetic effects (p), with e defining a vector of random residual errors.  The 

model makes the assumption that the mean of the random effects is zero with variances 

represented by: 

var
u
p
e

!

"

#
#
#

$

%

&
&
&
=

A' u
2 0 0

0 I' p
2 0

0 0 I' e
2

!

"

#
#
#
#

$

%

&
&
&
&

, 

where ! u
2 , ! p

2 , and ! e
2  are the variances of random additive animal genetic effect, 

random permanent environmental effect, and random residual error, respectively.  In the 

above A is Wright’s numerator relationship matrix (Wright, 1922) and I is an identity 



 

 27 

matrix with an order equal to the number of observations in y.  The observations in y are 

assumed to have the mean Xb and variance equal to var y( ) = ZA !Z ! a
2 +WI! p

2 !W + I! e
2 . 

As can be inferred from the model presented above, the repeatability model 

makes assumptions on the data structure that do not hold under all situations.  Under the 

assumptions of the repeatability model, observations from the same individual measured 

at different ages are assumed to have a constant variance and a common correlation with 

each other (Jennrick and Schluchter, 1986).  This assumption of constant variance does 

not hold where individual variance changes according to the amount of time that has 

passed between measurements (Meyer and Hill 1997).  In the situation where the 

repeated observations typically follow some type of curve (e.g. growth or lactation 

curves) correlations between observations taken close together in time are higher than 

those taken farther apart from one another.  In this situation, a more complex model that 

accounts for the differing correlation structure between successive observations is 

required. 

 

The Multiple Trait Model.  Multivariate genetic evaluation, introduced by 

Henderson and Quaas (1976), predicts genetic values for multiple traits through the 

incorporation of genetic and residual covariances among the traits (Mrode, 2005).  This 

property can be extended to the analysis of longitudinal data if differing measurements on 

an individual animal are treated as separate but genetically correlated traits.  It is under 

this assumption that the current national cattle genetic evaluations for growth are 

performed.  For example, birth weight and weaning weight are observations which are 

analyzed as separate but genetically correlated traits using a multivariate model even 

though both are observations of the growth of an individual. 
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This multivariate model as described by Mrode (2005) is shown in matrix form 

below. 
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In the above set of equations, yi is a vector of observations for the ith trait, bi  is a vector 

of fixed effects for the ith trait, ui  and ei  are vectors of random animal genetic and 

random residual effects for the ith trait, respectively. Xi  and Zi  are incidence matrices 

relating the observations in y to the fixed effects in b and random animal genetic effects 

in u.  As with the above repeatability model, the observations in y are assumed to have 

the mean Xb.  Random effects in the model are assumed to have means of zero and 

genetic variances equal to: 
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and residual variances equal to: 
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Above, ! g1
2 , ! g2

2 , ! g1,g2
, and ! g2 ,g1

are the additive genetic variance for y1, y2 and the 

additive genetic covariances between y1 and y2, respectively.  Likewise, ! e1
2 , ! e2

2 , ! e1,e2
, 

and ! e2 ,e1
are the residual error variances for y1 and y2 as well as the residual covariances 

between y1 and y2.  A is Wright’s numerator relationship matrix and I is an n ! n identity 

matrix. 
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Henderson and Quaas (1976) were the first to implement the multivariate BLUP 

model illustrated above in the analysis of a three trait beef cattle example (birth weight, 

weaning weight and post-weaning gain).  Following their work, Schaeffer and Jamrozik 

(1996) first suggested the use of a multivariate model for the analysis of test day records 

for milk volume, fat, and protein percentages in dairy cattle.  In each of these examples, 

the observations measured on individuals across time were treated as separate and unique 

traits that are genetically correlated to one another.   

The multivariate model is not without its inherent problems when analyzing 

longitudinal data.  Given the fact longitudinal data can be described using some type of 

function (Meyer and Kirkpatrick, 2005), they tend to have a large number of data points 

which are of interest to the individuals performing the data collection.  In the multivariate 

model, this can lead to equation systems which have very high dimension and 

computational requirements.  Considering the test day records discussed by Wiggans and 

Goddard (1996, 1997) three yield traits (milk volume, fat and protein percentages) over 

two parity groups (first parity versus later parities) and ten stages of lactation (ten 

different test days per lactation), analyzing this data using a multivariate model would 

result in an analysis with 60 different traits.     

Another issue with the multivariate model is the potential for high correlations 

between successive measurements.  In beef cattle evaluation, weaning weight and 

yearling weight are two traits of economic importance, with genetic and phenotypic 

correlations between these two measurements reported to be 0.78 and 0.72, respectively 

(Koots, 1994).  In the analysis of test day records, the correlations are even higher.  

Pander et al., (1992) reported milk yield correlations ranging from 0.97 (1 test day apart) 



 

 30 

to 0.73 (7 test days apart), with correlations between fat yield and protein yield test day 

records nearly as high.  These elevated correlations are undesirable for two main reasons.  

First, if two variables predict the same information, it doesn’t make sense to include both 

of the variables in the model.  Second, the correlation between the two variables has the 

effect of reducing the power of the tests of significance (Foster et al., 2006).     

The high correlations between traits such as weaning and yearling weights as well 

as between individual test days in dairy cattle evaluation have resulted in studies 

designed to determine how to specifically handle these elevated correlations.  One 

method, an extension of the multivariate model, allows higher correlations between 

observations measured close together than those measured farther apart.  This technique, 

referred to as autoregression or autocorrelation, has been documented in the literature 

numerous times (Harville, 1979; Kachman and Everett, 1993; Carvalheira et al., 1998).  

Another method to handle this data type is to model the data using a pre-determined 

function, or data mean.  Referred to as fixed regression (Mrode, 2005), these functions 

can be extended in such a manner where each individual will have its own random 

function. 

 

Random Regression.  Regression models have been used in the analysis of 

longitudinal data for many years.  The use of pre-determined functions as covariates was 

introduced as random regression or a random coefficients model during the early to mid 

1980’s (Henderson, 1982; Laird and Ware, 1982; Jennrich and Schluchter, 1986).  

However, the first study with application to livestock production data was conducted by 

Ptak and Schaeffer (1993) in the analysis of test day milk production records of dairy 
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cattle. This first attempt was not a random regression model, but it accounted for the 

general shape or mean lactation curve for cows within similar herd, year and season.  

Following this initial trial, Schaeffer and Dekkers (1994) extended the regression 

coefficients of this fixed regression model to random animal effects.  In doing so, they 

were able to account for the mean shape of the lactation curve within a given herd, year 

and season, as well as account for the deviation of each individual animal’s lactation 

curve from this mean shape.  They were also able to account for the change in correlation 

structure of repeated records on individuals over time.  This ability of the random 

regression model to properly account for the changing correlation structure has been 

shown to result in an increase in prediction accuracy of 5.9% when compared to the 

multivariate model (Meyer, 2004).  

The general form of a random regression model as described by Mrode (2005) 

can be shown in matrix form as: 

y = Xb +Qu + Zpe + e  

where y is a vector of repeated test day yields measured on individual animals, X is an 

incidence matrix relating observations in y to fixed effects and fixed regression 

coefficients, b is a vector of solutions for fixed effects and fixed regressions, Q is an 

incidence matrix of covariates relating observations in y to random additive genetic 

regression coefficients, u is a vector of random additive direct genetic effects, Z is an 

incidence matrix of covariates relating observations in y to permanent environmental 

random regression coefficients, pe is a vector of random permanent environmental 

regression coefficients for each animal, e is a vector of random residuals which includes 
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the temporary environmental effects for each observation. Variances assumed for this 

model are: 
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where A is Wright’s numerator relationship matrix, G is the (co)variance matrix of the 

additive genetic random regression coefficients, I is an identity matrix whose order is 

equal to the total number of observations, P is the (co)variance matrix of the permanent 

environmental random regression coefficients, and ! e
2  is the variance of random 

residuals.   

Worth mentioning is that in some studies, the random residual variance has been 

allowed to vary (between observations taken in multiple years, for example).  Jamrozik et 

al., (1997a) modified the residual variance structure I! e
2

 presented above to the 

following: 

var e[ ] = diag ! ek
2{ }  

where k is equal to the total number of differing residual variances.  In this example, the 

authors used k = 29 resulting in e having 29 different values depending on the number of 

days in milk which ranged from 1 to 305.  Perhaps, another more appropriate method for 

modeling heterogeneous residual variance is to allow the variance to follow a continuous 

function (Rekaya et al., 2000).  Both methods account for changing residual variance 

structures, and López et al. (2004) found the two methods to be equivalent.  It is 

important to note that if the assumption of homogeneous residual variance does not hold 

across all stages of production, a modification should then be made to the model which 
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allows the residual variance to change between those stages of production.  Olori et al. 

(1999) determined the assumption of homogeneity of residual variance will bias the 

residual variance estimates, leading to over- or under-estimation of heritability values.  

However, the assumption of homogeneous residual variance has no effect on permanent 

environmental variance (López-Romero et al., 2003). 

 

Covariance Functions.  At approximately the same time the techniques for 

random regression methodology was being introduced and subsequently implemented, 

covariance functions were introduced in a series of three papers (Kirkpatrick and 

Heckman, 1989; Kirkpatrick et al., 1990; Kirkpatrick et al., 1994) with the specific goal 

of how to account for the changes in the covariance structure between successive 

observations of longitudinal data.  Initial groundwork for the development of the 

covariance function was first reported by Kirkpatrick and Heckman (1989).  They 

defined the covariance function as the infinite-dimensional counterpart to covariance 

matrices used in standard multivariate analyses and offered three advantages over the 

conventional methods.  Their three advantages are as follows: 

1)  Covariance functions have the ability to describe the trait at all points, even if 

measurements were not taken on specific days, rather than at a finite number of 

data points; 

2) Covariance functions help to reduce errors in calculating the response to selection.  

Conventional methods only select on a specific age window (for example birth 

weight or weaning weight), however when selection on a part of the curve is 

performed, the entire trajectory is changed through the genetic correlation 
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(selecting on increasing birth weight has the correlated effect of increasing 

weaning weight).  Covariance functions help account for the correlated responses 

observed at other data points as well; 

3) Covariance functions estimate parameters more efficiently due simply to the fact 

that more data points are used in the analysis. 

 

Kirkpatrick et al. (1990, 1994) provided additional insight into the covariance 

function they introduced in 1989, with examples using a beef cattle growth data set.  

Calculating the covariance function begins with the standard classical quantitative genetic 

(co)variance matrix of the traits in question over different time periods, often referred to 

as G (see the multivariate model presented above).  Using a beef cattle growth analysis as 

an example, the genetic (co)variance matrix (G) could consist of the additive genetic 

variance for birth weight and weaning weight.  Using this G, covariance functions are 

built by using a smooth curve to interpolate the values of G between the measured ages 

(birth weight and weaning weight).  The process starts with the decision as to which 

smooth curve to use.  Kirkpatrick et al. (1990) suggests the use of Legendre polynomials, 

but states that any orthogonal function could in fact be used.  For longitudinal data such 

as growth, the authors favored polynomials because growth tends to be smooth similar to 

the curves created using polynomial functions. 

A number of sources illustrate the calculation of Legendre polynomial functions.  

The equations presented here were adapted from Schaeffer (2003).  To calculate 

Legendre polynomials, first we need to define the polynomials: 

P0 x( ) =1 , and P1 x( ) = x .!
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Then the additional polynomials can be calculated using the recursive formula: 

Pn+1 x( ) = 1
n +1

2n +1( )xPn x( )! nPn!1 x( )( ) .!

These values are then normalized using: 

!n x( ) = 2n +1
2
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"#

$
%&
0.5

Pn x( ) .!

Table 2.2 below illustrates how a fourth order polynomial would be calculated using the 

above equations for a normalized Legendre Polynomial. 

 

Table 2.2. Normalized Legendre polynomials for up to a fourth order polynomial. 

Order Legendre Polynomial Normalized Legendre Polynomial 
n = 0 P1 x( ) = x  !0 x( ) = 0.7071  
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This series of normalized polynomials !n x( )( ) shown in Table 2.2 are then put into a 
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0 #2.8062 0 4.6771 0

0.7955 0 #7.9550 0 9.2808

$

%

&
&
&
&
&

'

(

)
)
)
)
)

.!
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Legendre polynomials are defined over the interval of -1 to 1 (Kirkpatrick et al., 1990), 

therefore it is necessary to standardize the ages of the observations to the interval of -1 

and 1.  The formula used to standardize these ages was presented by Schaeffer (2003) and 

is defined as follows: 

ti
* = !1+ 2 ti ! tmin

tmax ! tmin

"
#$

%
&'  

where ti
*  is the standardized time, ti  is the time point being standardized, and tmin  and 

tmax  were the minimum and maximum time points or ages represented in the dataset, 

respectively.  Standardized time values are placed in to a matrix M such that an example 

standardized age vector ti
* = !1 !0.25 0.25 1"# $%

T
 would result in: 

M =

1 !1 1
1 !0.25 0.0625
1 0.25 0.0625
1 1 1

"

#

$
$
$
$

%

&

'
'
'
'

 

for a quadratic polynomial.  The first column of the matrix is a column of ones 

representing the intercept of the curve; the second column is the standardized age while 

the third column is the standardized age squared for the quadratic term.  Fitting higher 

order polynomials is done by the addition of columns for the additional parameters 

needed.  The next step is to combine the standardized ages and the polynomials into a 

matrix ! =M" .  Performing this step with the M defined above and the first three rows 

(quadratic) of !A  gives the matrix 

! =

0.7071 "1.2247 1.5811
0.7071 "0.30618 "0.64237
0.7071 0.30618 "0.64237
0.7071 1.2247 1.5811

#

$

%
%
%
%

&

'

(
(
(
(
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which when combined with the original genetic (co)variance matrix, using the formula  

ĈG = !"1Ĝ !T#$ %&
"1

 

results in an estimated coefficient matrix ĈG  from which the covariance function can be 

formed (Kirkpatrick et al., 1990). 

The estimated C matrix can be used in conjunction with the following covariance 

function to estimate the covariance between any two measurements taken at any two 

standardized times denoted t1 and t2 (Kirkpatrick and Heckman, 1989; Kirkpatrick et al., 

1990; Kirkpatrick et al., 1994): 

f a1,a2( ) = CG[ ]ij !i t1*( )! j t2
*( )

j=0

"

#
i=0

"

#
 

where CG[ ]ij  is the ith and jth element of the estimated matrix ĈG , and !i j( )  is the 

Legendre polynomial coefficient for the ith age and jth order.  The use of this equation is 

somewhat limited though given phenotypic measurements are typically measured at n 

ages.  Therefore, only an n ! n truncated version of CG  can be used (Kirkpatrick et al., 

1990). 

The preceding discussion details the formation of a covariance functions for a full 

order fit, meaning the number of orthogonal functions estimated (k) equals the number of 

ages measured (n) and is equivalent to the multivariate model (Mrode, 2005).  Given a 

situation where a large number of different ages were measured, meaning n becomes 

large; the problem becomes intractable rather quickly.  Kirkpatrick et al. (1990) 

determined it possible, and in some cases more attractive, to reduce the order of fit (k < 

n) such that the covariance matrix can be fitted with as few parameters as possible.  The 

reduced order covariance function was found using weighted least squares procedures to 
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identify the simplest orthogonal function in which the reduced (co)variance matrix was 

not significantly different from the full (co)variance matrix as determined from a "2 

goodness of fit test.  If the reduced (co)variance matrix differed significantly from the full 

order matrix, the order of the reduced matrix was increased by using higher order 

Legendre polynomials until the reduced and full matrices did not differ significantly.  

According to Kirkpatrick et al. (1990), the reduced estimate is the simplest polynomial 

that is “statistically consistent” with the data.  It also smoothes out the fluctuations caused 

by the sampling error in the initial measurements used to estimate G.  The authors do 

caution, however, that this method will exclude higher order terms even if they actually 

exist if the data is not powerful enough to show their existence. 

 

Random Regression versus Covariance Functions.  Meyer and Hill (1997) were 

the first to show the equivalence of the random regression model to the covariance 

function, and then Mrode (2005) illustrated this equivalence through the use of an 

example.  He compared the covariance between breeding values calculated from data 

recorded on an individual animal using both a parametric curve and a set of orthogonal 

polynomials fitted in a random regression model.  The equality of the covariance function 

to the random regression model allows the estimation of fewer regression coefficients for 

each source of variation.  When used in random regression models, the matrix !  

replaces the standard covariate incidence matrix. 

Recently, some issues have surfaced concerning random regression models which 

employ the use of Legendre polynomials as their basis function.  The estimated 

covariance matrices used to calculate genetic variances over the range of data (over the 
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range of lactation for instance) tend to result in genetic variances that are much higher at 

the beginning and end of the data range than in the middle (Schaeffer & Jamrozik, 2008).  

Perhaps this is due to the fact that polynomials place a large amount of emphasis on 

observations at the extremes, which compounds the problem with higher orders of fit 

(Meyer, 2005a).  Other reported problems with Legendre polynomials being used in 

random regressions are the poor modeling capabilities of asymmetrical functions, their 

lack of information to estimate a large number of parameters, and their sensitivity to each 

of the many different (co)variance parameters (Misztal, 2006). 

 

Splines.  Given the problems with the use of polynomials as a basis function in 

random regression models discussed by Misztal (2006) and Schaeffer & Jamrozik (2008), 

several different alternatives such as fractional polynomials (Robert-Granié et al., 2002), 

cubic smoothing splines (White et al., 1999), and B-splines (Torres & Quaas, 2001; 

Meyer, 2005b) have been proposed.  Spline functions are defined as piecewise 

polynomials which join together at “knots” and are continuous across the range of data 

(Wold, 1974).  As a result, they do not suffer from the same problems as polynomials 

where their behavior in one small area determines their behavior across the entire range 

of data.  Since splines are defined as “piecewise polynomials” they represent smooth 

curves between each knot. 

Ruppert et al. (2003) describes simple spline basis functions as an extension of the 

following standard simple linear regression model: 

yi = !0 + !1xi + ei  
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where yi  is the observed value of the ith trial, xi  is the predictor variable of the ith trial, 

!1  and !1  are regression coefficients corresponding to the y intercept and slope of the 

regression line, respectively, and ei  is the random error term with mean equal to 0 and 

variance equal to ! e
2 .  This model can be easily extended to higher order polynomials 

through the addition of one more regression coefficient and predictor variable squared 

such that: 

yi = !0 + !1xi + !2xi
2 + ei . 

The quadratic simple linear regression model presented above would result in an X 

incidence matrix for fitting the regression of: 

 

X =
1 x1 x1

2

! ! !
1 xn xn

2

!

"

#
#
#
#

$

%

&
&
&
& . 

Modification of these models for the inclusion of “knots” or points where the piecewise 

polynomials join together is a rather simple task accomplished by the addition of K 

columns of xi !!( )+  where !  is a specific knot point and “+” refers to the positive 

section of the function, meaning negatives values of xi !!( )  are included as zero.  These 

values are included in the general simple linear regression in such a manner where: 

f x( ) = !0 + !1x + x "# k( )+
k=1

K

$
, 

and in the quadratic version of this model as: 

f x( ) = !0 + !1x + !2x
2 + bk x "# k( )+

2

k=1

K

$
. 
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The X incidence matrix associated with the above quadratic spline equation would then 

be modified to be: 

 

X =

1 x1 x1
2 x1 !"1( )+

2
! x1 !" K( )+

2

" " " " # "

1 xn xn
2 xn !"1( )+

2
! xn !" K( )+

2

#

$

%
%
%
%

&

'

(
(
(
(

. 

These “modified” X matrices are then included in the Least Squares normal equations as 

a substitute for the standard simple linear regression X incidence matrices.  As a result, 

standard Least Squares regression statistical properties apply and fitted values can be 

found by solving the normal equations: 

ŷ = X XTX( )!1XTy . 

The spline basis functions presented above are referred to as truncated power 

bases of degree p, and useful for understanding the mechanics of spline based regression.  

They can be used in practice if knots are carefully chosen or a penalized fit (inclusion of 

a roughness penalty or a value which penalizes fits which are too rough, resulting in a 

smoother result) is used (Ruppert et al., 2003).  Truncated power base functions are at a 

disadvantage when it comes to orthogonality, meaning numerical instability can result if 

too many knots are used and the roughness penalty is too small.  It has been suggested 

that the use of equivalent bases such as B-splines or natural cubic smoothing splines with 

more stable numerical properties would be desirable (Eilers and Marx, 1996; Ruppert et 

al., 2003). 

Given the piecewise nature of spline bases, some of the problems associated with 

random regression using Legendre polynomials such as instability at the extremes, seem 

to be avoided.  In 1999, Hill and Brotherstone reported that splines can be included rather 
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easily in the standard mixed model framework and when compared to random regression 

models, they include more random effects but require fewer (co)variance parameters.  

Splines also have the advantage of quicker convergence over Legendre polynomials, 

which may be due to the fact that spline coefficients are more sparse than their 

polynomial counterparts (Misztal, 2006).  One of the most important questions when 

using spline bases seems to be related to the number of knots needed to accurately 

describe the data as well as where to place these knots.  The use of too many knots will 

increase the complexity of the model, while the use of too few will reduce accuracy.  

Misztal (2006) suggests the following guidelines for choosing proper knot placement: 

1) Choose knots in such a manner that they encompass the extremes observed in the 

data. 

2) Choose knots in a way that the correlations between knots is in the range of 0.6 to 

0.8. 

These two suggestions will result in knots being placed close together around areas that 

have the largest data density (i.e. birth weight, weaning weight, etc.), and will also result 

in a larger concentration of knots in areas where the data is changing more rapidly. 

Until very recently, use of spline based regression techniques by quantitative 

geneticists in the livestock industry had been almost non-existent.  Spline basis functions 

have been used in the analysis of a number of traits, and as with the random regression 

and covariance function models, they were first proposed for the analysis of dairy cattle 

test day records.  They have been incorporated into fixed regressions to model the 

lactation curve in the analysis of dairy cattle test day records (Druet et al., 2003), as well 

as the modeling of curves for estimated breeding values (White et al., 1999).   
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The use of splines for the analysis of beef cattle data seems, so far, limited to the 

analysis of growth traits.  Meyer (2005b) used quadratic B-splines to analyze Angus 

growth data from birth to 820 days of age with knots at 0, 200, 400, 600 and 821 days of 

age.  She found that the B-splines lend themselves well to the modeling of growth data, 

but they tend to be susceptible to irregularities in the distribution and sparseness of the 

data. Using simulated beef cattle growth data, Bohmanova et al. (2005) found that despite 

the fact that splines are simpler with fewer parameters than Legendre polynomials, they 

are just as accurate (within 0.2%).  A series of studies was conducted in 2005 and 2006 

investigating the feasibility of using spline basis functions in random regression models 

with the application to large scale genetic evaluations (Iwaisaki et al., 2005; Robbins et 

al., 2005; Bertrand et al., 2006).  In this set of studies, it was determined that random 

regression using spline bases is a feasible alternative to random regression with Legendre 

polynomial bases as well as the more contemporary multivariate model. 

 

Prediction of days to finish 

The idea of reducing the number of required days for livestock to reach their 

desired endpoint (which will differ depending on the species of interest) is not new.  In 

1957, Lindholm and Stonaker recognized the importance of reducing the number of days 

cattle are on feed and were able to quantify on a phenotypic level the value of reducing 

the number of days it takes to “finish” cattle in the feedlot.  They reported a phenotypic 

correlation of -0.46 between the number of days taken to reach a perceived quality grade 

and net income per 100 lbs of slaughter weight.  Jumping ahead in time nearly 50 years, a 

group beef cattle researchers coined the term “Economically Relevant Traits” (traits 
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which directly affect profitability by either increasing revenue or by reducing costs), 

identified three “days to” traits (days to target fat thickness, slaughter weight, and finish 

or carcass grade) as being economically relevant (Golden et al., 2000).   

From 1957 to present time, very little research has been conducted with regards to 

these “days to” traits for most species of livestock.  McWhir and Wilton (1987) analyzed 

beef cattle days to market finish (7 mm subcutaneous back fat depth, determined 

ultrasonically) and reported a heritability estimate for this trait of 0.65 ± 0.42.  When this 

trait was adjusted to a constant market weight, the authors found that the heritability 

increased to 0.90 ± 0.48.  Following McWhir and Wilton, Johnston et al., (1992) 

estimated heritability for the number of days to a constant backfat (8.9 mm) endpoint in 

Charolais cattle to be 0.24.  Surprisingly, they reported negative correlations between the 

days to finish trait and the growth traits, while the number of days to reach 8.9 mm of 

backfat was positively correlated with the carcass traits carcass weight, longissimus 

muscle area and marbling score. 

Contrary to this absence of “days to” research in the beef industry, the swine 

industry has embraced the concept, most notably as a way to reduce the number of days 

to finish weight ultimately improving economic efficiency (Faust et al., 1992).  Within 

herd evaluations of days to 105 kg were first reported in the swine industry in 1986 

(Stewart et al., 1991), and have been conducted since.  According to the Swine Testing 

and Genetic Evaluation System, the swine industry currently uses three genetic 

predictions for days to finish (STAGES, 2006).  The first of these predictions is the days 

to market weight EPD (currently 113 kg), which over the years has increased somewhat 

since 1986.  This days to weight is the only published genetic prediction.  The remaining 
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two, days to weaning (a linear combination of calculated genetic predictions) and days 

from weaning to breeding, are included in the economic selection indices sow 

productivity index and maternal line index (Harris and Newman, 1994; STAGES, 2006). 

Given the range of heritability estimates for the number of days required to reach 

a weight endpoint ranging from 0.26 to 0.69 (Table 2.3), sufficient genetic variation 

exists which has allowed swine producers to achieve a positive genetic trend in 

decreasing the number of days required to reach a weight constant endpoint.  According 

to STAGES (2006), who conducts the days to 250 lb (113 kg) genetic evaluation for the 

Duroc, Hampshire, Yorkshire and Landrace breeds, the average genetic trend for these 

four breeds from 1986 to 2008 has been -0.34, -0.18, -0.36, and -0.36 days per year for 

the Duroc, Hampshire, Yorkshire and Landrace breeds, respectively.  

 

Table 2.3.  Published heritability estimates for days to finish weight endpoints in 
swine1. 

Trait Breed Estimate2 Source 
Days to 90 kg Duroc 0.27 Kennedy et al., 1985 
 Hampshire 0.46  
 Yorkshire 0.36  
 Landrace 0.40  
Days to 91 kg Yorkshire and Duroc 0.18 ± 0.14 Bereskin, 1987 
Days to 100 kg Duroc 0.25 ± 0.01 Keele et al., 1988 
 Hampshire 0.11 ± 0.05  
 Yorkshire 0.22 ± 0.04  
 Pooled 0.22 ± 0.01  
Days to 110 kg Large White 0.26 Kaplon et al., 1991 
Days to 113 kg Duroc 0.69 ± 0.12 Newcom et al., 2005 
  All Breeds 0.25 NSIF (2002) 
1Adapted from Kuehn (2000) and Cleveland (2006) 
2h2 ± SE    
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More recent work on a days to finish endpoint genetic prediction has been 

conducted at Colorado State University.  Kuehn (2000) in a simulation study looked at 

the feasibility of using random regression models which only included intercept and 

linear coefficients for days to produce genetic evaluations for days to finish weight and 

days to finish backfat.  He determined an average of 2.5 observations per animal were 

required to successfully obtain accurate estimates of variance components, but if 

covariance  components are estimated as well, the use of a dataset with at least 5000 

records would be advised.  Jubileu (2003) compared differing methods of evaluation for a 

days to weight endpoint using a Simmental field dataset.  He looked at the differences 

between using more traditional approaches such as univariate and multivariate models 

versus random regression techniques to conduct a days to weight prediction.  He was able 

to conduct a days to finish weight genetic prediction using random regression 

methodologies. 

Calculating days to finish endpoint genetic predictions using random regression 

seems to have certain advantages over the traditional univariate and multivariate 

approaches.  Besides the statistical advantages mentioned earlier in this section, random 

regression produces EBV for the regression curves, meaning an EBV can be calculated 

for any age or any number of days on feed.  Kuehn (2000) presented an equation for 

calculation of any customized EBV as is shown below: 

EBV age or weight( ) = b0 + b1 * desired endpoint( )  

where b0  is the EBV for the intercept and b1  is the linear EBV for each individual sire.  

EBV resulting from a random regression model are not equivalent to the EBV from the 

more traditional models, and both Kuehn (2000) and Jubileu (2003) recognize the 
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possible confusion these predictions can cause, especially if higher order polynomials are 

used.  Therefore, it is necessary to publish these predictions using some sort of decision 

support system such as is proposed by Cleveland (2006).  
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CHAPTER III 

MULTIVARIATE VERSUS RANDOM REGRESSION MODELS:  AN EXAMPLE 

OF EQUIVALENCY

 

Overview 

Methods of evaluating beef cattle data for the purpose of genetic evaluation has 

been thoroughly reported throughout pertinent scientific literature as reported by Speidel 

et al., (2010).  Given that a majority of information (i.e. body weight observations) 

recorded in a typical beef cattle genetic evaluation scheme can be measured in many 

instances over time, this data has often been referred to as “infinite-dimensional” or 

“longitudinal” data (Meyer and Hill, 1997) due to the fact that one could theoretically 

record data points on the same trait an infinite number of times.  In the context of beef 

cattle genetic evaluation, this data has been analyzed using primarily three different 

approaches, which include the simplistic “repeatability” or “repeated measures” model, 

the multiple trait model (MTM) and, perhaps most appropriate, random regression 

models (RR).   

Of these three models named above, the repeated measures model is rarely used, 

except for the genetic evaluation of mature weights, while the latter two have received 

the most attention in recent genetic evaluation approaches.  Upon initial glimpses of both 

the MTM and RR, the two models seem quite different, where in fact the two models are 

very similar, even identical under certain situations (Meyer, 1998).  The object of this 
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section is to illustrate the process involved in executing both the RR and MTM models 

illustrating their equivalency to one another using a small example data set. 

 

Data description 

Data used in the example evaluations for this chapter are shown below in Table 

3.1.  This data set is a selected subset of the Colorado State University’s Beef 

Improvement Center bull test data collected between November 2009 and March 2010.  

Animals were carefully chosen to minimize the number of necessary fixed effects as well 

as minimizing the number of animals with missing data.  The animals were selected for 

inclusion based on the criteria that they were born on the same day therefore they are all 

the same age and no data was missing, thereby minimizing the number of fixed effects to 

fit.   

In order to conduct a genetic evaluation using this data set, a few key components 

such as the stacked pedigree (Table 3.2), numerator relationship matrix (Figure 3.1) and 

the genetic covariance matrices (Table 3.3) are needed.  Genetic variances for each 

weight measurement were estimated using the entire year’s worth of data in conjunction 

with five single trait models.  Genetic correlations were then estimated using all pairwise 

combinations between the five weights.  This method yields fairly accurate estimates of 

genetic variance and correlation to be used in this evaluation in a short time frame.  For 

the purposes of this example, residual variance was assumed to be constant across all 

ages at 1426 lb2, and was obtained by averaging the residual variance estimates across the 

five single trait models. 
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Table 3.1.  Sample bull test data for the illustration of the equivalence of calculating 
Estimated Breeding values from both multivariate and random regression models.  Data 
was obtained from Colorado State University’s Beef Improvement Center. 

Identification Sire Dam 
Test Day 

(Trait) Weight1 
Measurement 

Date 
9 1 3 1 627 11/3/2009 

10 1 4 1 712 11/3/2009 
11 2 5 1 632 11/3/2009 
12 2 6 1 605 11/3/2009 
13 1 7 1 630 11/3/2009 
14 2 8 1 731 11/3/2009 
9 1 3 27 732 11/30/2009 

10 1 4 27 855 11/30/2009 
11 2 5 27 728 11/30/2009 
12 2 6 27 731 11/30/2009 
13 1 7 27 758 11/30/2009 
14 2 8 27 861 11/30/2009 
9 1 3 62 828 1/4/2010 

10 1 4 62 952 1/4/2010 
11 2 5 62 861 1/4/2010 
12 2 6 62 869 1/4/2010 
13 1 7 62 869 1/4/2010 
14 2 8 62 972 1/4/2010 
9 1 3 90 927 2/1/2010 

10 1 4 90 1039 2/1/2010 
11 2 5 90 924 2/1/2010 
12 2 6 90 940 2/1/2010 
13 1 7 90 957 2/1/2010 
14 2 8 90 1058 2/1/2010 
9 1 3 119 969 3/2/2010 

10 1 4 119 1111 3/2/2010 
11 2 5 119 1007 3/2/2010 
12 2 6 119 1051 3/2/2010 
13 1 7 119 1042 3/2/2010 
14 2 8 119 1118 3/2/2010 

1Weights for the example are measured in pounds. 
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Table 3.2.  Stacked pedigree used in the calculation 
of estimated breeding values for both the 
multivariate and random regression models. 

ID Sire Dam 
1 . . 
2 . . 
3 . . 
4 . . 
5 . . 
6 . . 
7 . . 
8 . . 
9 1 3 
10 1 4 
11 2 5 
12 2 6 
13 1 7 
14 2 8 

 

 

 

Figure 3.1.  Inverse of the numerator relationship matrix built from the pedigree used in 
the calculation of estimated breeding values for both the multivariate and random 
regression models. 
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Table 3.3.  Genetic variance and covariance matrix used in the 
multivariate model / random regression model weight (lb2) 
equivalency example. 

 Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 
Weight 1 1709 1467 1939 1894 2185 
Weight 2 1467 1395 1809 1811 2045 
Weight 3 1939 1809 2599 2580 2855 
Weight 4 1894 1811 2580 2838 2883 
Weight 5 2185 2045 2855 2883 3960 

 

 
Example genetic evaluations 

To illustrate the application of each technique, the following presents examples of each. 

 

Multiple trait model.  The MTM, introduced by Henderson and Quaas (1976), 

predicts genetic values for multiple traits through the incorporation of genetic and 

residual covariances among the traits (Mrode, 2005).  The use of genetic and residual 

covariances, allows the modeling of changing relationships between observations, 

recorded at different times and distinguishes this model from the repeated measures 

model.  This MTM is shown below in matrix form (Equation 3.1) has been described 

with the notation presented here as used by Mrode (2005). 

 

Equation 3.1.  Multiple trait model for two traits presented in matrix form as described 
by Mrode (2005). 

 
 

In Equation 3.1, yi is a vector of observations for the ith trait (weight observation 1, 
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matrices consisting of zeroes and ones relating the observations in y to fixed effects in b 

and random animal genetic effects in u.  The observations in y are assumed to have the 

mean Xb, while the random effects (additive genetic and residual error) are assumed to 

have means of zero and genetic and residual variances shown in Equation 3.2 and 

Equation 3.3, respectively. 

 

Equation 3.2.  Variance of the random effects for a two trait multiple trait model 
dispersed by the numerator relationship matrix. 

 
 

Equation 3.3.  Variance and covariance matrix for a two trait multiple trait model 
dispersed by an identity matrix. 
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y2 and the additive genetic covariances between y1 and y2, respectively.  Likewise, ! e1
2 , 

! e2
2 , ! e1,e2

, and ! e2 ,e1
 are the residual error variances for y1 and y2 as well as the residual 

covariances between y1 and y2.  A is Wright’s numerator relationship matrix (Wright, 

1922) and I is an n x n identity matrix. 

Solutions  and  from the above model are obtained by solving Henderson’s 

mixed model equations shown in Equation 3.4 (Henderson et al., 1959). 
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Equation 3.4.  Mixed model equations to estimate fixed and random effects for a 
multiple trait model. 

 
 

In Equation 3.4, X and Z are incidence matrices that combine the both the Xi and Zi 

matrices illustrated above in Equation 3.1.  Similarly, y is a vector containing both yi 

matrices discussed earlier.  G is the additive genetic (co) variance matrix between 

random effects and R is the residual (co) variance matrix between traits. 

With the final dataset, pedigree, numerator relationship matrix, covariance 

matrices created, the next step is to begin building the fixed and random effect incidence 

matrices which are used to form the coefficient matrix and right hand side. Since all 

animals in the example dataset are born on the same day, are of the same sex and 

managed the same from birth through the end of the test, the only fixed effect needed is 

the overall mean (Figure 3.2).  The purpose of this exercise is to compare the EBV 

obtained from MTM to those obtained using a random regression model that influences 

the size of the X incidence matrix.  A typical five trait MTM would have five incidence 

matrices for the mean, each corresponding only to those observations in each of the five 

traits resulting in separate overall means for each of the five weigh days.  Since we are 

comparing the results here to a RR, in which all observations contribute to one overall 

mean we to will fit one overall mean so all observations are adjusted equally.  This has 

been shown in Figure 3.2, where each of the observations contributes to the calculation of 

the overall mean, even though in this instance they are associated with separate traits. 
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 Formation of the incidence matrices for 

the random animal genetic effects is more 

straightforward.  For the five trait MTM, each 

of the five weigh days (or test days) are treated 

as separate but genetically correlated traits.  

This assumption results in the formation of five 

separate Z matrices relating the trait specific 

observations in y to the random animal effects 

in the pedigree.  Formation of the matrices in 

this manner will result in five Z matrices, one 

for each age or test day.  In order for the X and 

Z matrices to conform to one another when 

multiplied together such as in X’R-1Z, they 

must have the same number of rows, meaning 

each Z matrix needs 30 rows.  However, unlike 

the formation of the X matrix, the Z matrix 

relates each trait or test day to each of the 

animal effects contained in the pedigree.  

Accordingly, each Z matrix must have 14 

columns. Figure 3.5 shows the form of matrix Z1.  Notice, there are only six ones 

corresponding to the six observations of each test day for animals 9, 10, 11, 12, 13, and 

14 in the first 6 rows corresponding to the first trait or test day.  Additional matrices will 

be formed in the same manner with this block of ones in rows 7-12, etc (see Appendix I). 

  

 
Figure 3.2.  Incidence matrix used to 
calculate the overall mean along with 
the vector of observations for both 
the multivariate and random 
regression model examples. 
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Figure 3.3.  Incidence matrix relating the traits for weight observations measured on 
test day 1 to the corresponding animals in the pedigree on which the observations were 
observed. 
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ID TD Weight

9 1 627
10 1 712
11 1 632
12 1 604
13 1 630
14 1 731
9 27 732
10 27 855
11 27 728
12 27 731
13 27 758
14 27 861
9 62 828
10 62 952
11 62 861
12 62 869
13 62 869
14 62 972
9 90 927
10 90 1039
11 90 924
12 90 940
13 90 957
14 90 1058
9 119 969
10 119 1111
11 119 1007
12 119 1051
13 119 1042
14 119 1118
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Given the inverse of the numerator relationship (Figure 3.1), the X incidence 

matrix corresponding to the overall mean and observation vector y (Figure 3.2), each of 

the five Z incidence matrices (Figure 3.3; Appendix I) along with the genetic covariance 

matrix (Table 3.3), the residual variance of 1426 lb2 and the mixed model equations 

(Equation 3.4) expanded in order to accommodate five separate but genetically correlated 

traits (Equation 3.5), the coefficient matrix (order of 71 rows by 71 columns) and right 

hand side (order of 71 rows by 1 column) can be built for the five trait example.  Figure 

3.4 illustrates the first few blocks of the coefficient matrix (X’R-1X, X’R-1Z1, Z1’R-1X 

and Z1’R-1Z1 + g11A-1) and right hand side (X’R-1y and Z1’R-1y) from the mixed model 

equations for the five-trait multivariate model example.  Once the entire equation set has 

been built, the solution vector can be solved for resulting in EBV for every trait and 

animal (Figure 3.5). 
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Random regression model.  Schaeffer and Dekkers (1994) introduced RR by 

extending the regression coefficients from the fixed portion of the standard mixed model 

evaluation to the random animal effects.  In doing so, they were not only able to account 

for the general average shape of the curve but they also were able to account for each 

animal’s individual deviation from that average curve.  In addition, since they were 

estimating regression parameters (intercept, slope, etc) for individual animals they found 

they were able to account for the changing correlation structure of repeated records 

measured on individuals over time.  So, rather than estimating breeding values for a 

particular age, RR estimates breeding values for the parameters of the regression of 

weight on age.  Since the resulting estimates are components of a regression line / curve, 

the prediction of an EBV for any age within the range of the independent variable is 

possible. 

Meyer (1998) spoke of the equivalency of RR and MTM.  She stated that 

traditional multivariate analyses are equivalent to ‘full fit’ random regression models 

where the order of the polynomial fit is equal to the number of ages measured.  While 

that might be statistically appropriate, experience showed that as higher order 

polynomials were fit or observations measured very near one another in time, 

complications result from extremely high correlations between successive ages.  As such, 

orthogonal base functions such as Legendre polynomials have been suggested to reduce 

these elevated correlations between successive ages (Kirkpatrick et al., 1990). 

Implementation of a RR is accomplished using the same model equations and 

assumptions of fixed and random effects as for MTM, the only difference between RR 

and MTM being the formation of the incidence matrix Z.  In a RR, the incidence matrix 
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Z is modified by replacing the ones normally present with a covariate consisting of the 

actual age, or transformed age as would be the case when using Legendre polynomials. 

In order to calculate the Legendre polynomials evaluated at each age point in the 

data set, a matrix ! is created by pre-multiplying the matrix of Legendre polynomial 

coefficients (") by a matrix containing standardized age values (M) such that ! = M".  

The first step in this process is to standardize the ages of the observations used in the 

evaluation.  Legendre polynomials are defined over the interval of -1 to 1 (Kirkpatrick et 

al., 1990, 1994) therefore it is necessary to standardize the ages of the observations to this 

interval. Equation 3.6 gives the formula presented by Schaeffer (2003) used to transform 

these ages. 

 

Equation 3.6.  Formula for standardizing ages of observations ranging from -1 to 1. 

 

 

In Equation 3.6, ti
*  is the standardized time, ti  represents the time point being 

standardized, and tmin  and tmax  were the minimum and maximum time points or ages 

represented in the dataset, respectively. 

Using the example data set above (Table 3.1), the ages of the animals at the time 

of measurement were standardized using Equation 3.6 and were placed into a matrix M 

(Figure 3.6), shown below.  The order of M is k (the order of fit) by t (the number of 

unique ages).  In this example (Figure 3.6), M is a five by five matrix with the first 

column of ones representing the intercept of the polynomial.  The second column 

represents the linear covariate and consists of the calculated standardized ages.  The third, 

ti
* = !1+ 2 ti ! tmin

tmax ! tmin

"

#$
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&'
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fourth and fifth columns represent the quadratic, cubic and quartic terms, respectively and 

consist of the standardized age squared, cubed and raised to the fourth power. 

 

 

Figure 3.6.  Matrix of standardized ages for a fourth order polynomial.  Values in M are 
used to calculate the Legendre polynomials in a random regression model. 

 

Next, the matrix " containing the Legendre polynomial coefficients are calculated.  

" has an order of k by k or order of fit by order of fit of the Legendre polynomials. To do 

this, the first two polynomials defined in Equation 3.7 are expanded upon using the 

recursive formula found in Equation 3.8 used for calculating additional n+1 Legendre 

polynomials. 

 

Equation 3.7.  The first two Legendre polynomials defined. 

 

 

Equation 3.8.  Recursive formula for calculating additional Legendre polynomials. 

Pn+1 t( ) =
1

n +1
2n +1( )tPn t( )! nPn!1 t( )( )

. 

 

 

Observed Ages
1
27
62
90

119

Int x x2 x3 x4

1.0000 !1.0000 1.0000 !1.0000 1.0000
1.0000 !0.5593 0.3128 !0.1750 0.0979
1.0000 0.0339 0.0011 0.0000 0.0000
1.0000 0.5085 0.2585 0.1315 0.0668
1.0000 1.0000 1.0000 1.0000 1.0000

M! "######### $#########

P0 t( ) =1,  and P1 t( ) = t



 

 75 

The Legendre polynomials calculated in the above two equations are then normalized 

using Equation 3.9 below.  According to Mrode (2005), this is equivalent to the 

integration of the polynomials from -1 to 1. 

 

Equation 3.9.  Equation used to normalize each Legendre polynomial. 

!n t( ) =
2n +1
2

!
"#

$
%&
0.5

Pn t( )
. 

 

Table 3.4 shows the results from the calculation of a fourth order normalized 

Legendre polynomial.  These normalized polynomials !n t( )( )  are then put into a matrix 

" (see Figure 3.7).   

 

Table 3.4.  Normalized Legendre polynomials for up to a fourth order polynomial. 

Order Legendre Polynomial Normalized Legendre Polynomial 
n = 0 P1 t( ) = t  !0 t( ) = 0.7071  
n = 1 P2 t( ) =

3
2
t2 ! 1

2  
!1 t( ) =1.2247t  

n = 2 P3 t( ) =
5
2
t3 ! 9

6
t
 

!2 t( ) = 2.3717t2 ! 0.7906  

n = 3 P4 t( ) =
35
8
t 4 ! 45

12
t2 + 3

8  
!3 t( ) = 4.6771t3 ! 2.8062t  

n = 4 P5 t( ) =
63
8
t5 ! 35

4
t3 + 15

8
t
 

!4 t( ) = 9.2808t 4 ! 7.9550t2 + 0.7955  
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!" =

0.7071 0 0 0 0
0 1.2247 0 0 0

#0.7906 0 2.3717 0 0
0 #2.8062 0 4.6771 0

0.7955 0 #7.9550 0 9.2808

$

%

&
&
&
&
&

'

(

)
)
)
)
)

 
Figure 3.7.  Table of normalized values for a fourth order Legendre polynomial. 

 
 

Figure 3.7 contains the transpose of the matrix ".  Here there are five rows where 

each row represents one of the normalized polynomials (  to ) shown in Table 3.4 

above.  Columns in Figure 3.7, moving from left to right, represent the intercept, linear, 

quadratic, cubic and quartic terms for each of the normalized polynomials (  to ), 

respectively.  Row 1 corresponds to !0 t( )  from Table 3.4, which is why there is a 0.7071 

in row 1 column 1 and zeroes in the remainder of the row.  Row 2 corresponds to !1 t( )  

which is why there is a zero in row 2 column 1 and a 1.2247 in row 2 column 2.  The 

remainder of the matrix is filled in by placing the coefficients for each of the remaining 

normalized polynomials into the remaining three rows of the matrix. 

The matrix ! is then created by multiplying the standardized age matrix M and ", 

the Legendre polynomial matrix, such that ! = M".  This matrix is shown below in 

Figure 3.8 contains the Legendre polynomials evaluated at each of the observed ages 

present in the example data set (Table 3.1). 

!0 !4

!0 !4
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Figure 3.8.  Matrix of Legendre polynomials for a fourth order polynomial 
corresponding to each of the observed ages in the data set. 

 
 

The next step in the construction of a random regression model, is the creation of 

a random regression genetic covariance matrix from the standard multiple trait genetic 

covariance matrix in Table 3.3.  This conversion is performed using Equation 3.10 below.   

 

Equation 3.10.  Formula used to convert a traditional genetic (co-) variance matrix to a 
genetic (co-) variance matrix describing a polynomial base function used in a random 
regression model. 

ĈG =!"1Ĝ !T#$ %&
"1

 
 

In the equation above, ĈG  is the transformed genetic covariance matrix for the 

terms in a quartic Legendre polynomial matrix.  ! is the matrix of Legendre polynomial 

coefficients evaluated at the five differing ages in the example data set and Ĝ is the 

estimated genetic covariance matrix from the five trait multiple trait model (Table 3.3).  

Results from this transformation are shown below in Table 3.5.  This table contains the 

genetic variance and covariance estimates needed for performing a quartic random 

regression genetic evaluation for the example data set. 

 

 

Observed Ages
1
27
62
90

119

Int x x2 x3 x4

0.7071 !1.2247 1.5811 !1.8704 2.1213
0.7071 !0.6850 !0.0486 0.7515 !0.7848
0.7071 0.0415 !0.7879 !0.0950 0.7864
0.7071 0.6227 !0.1774 !0.8123 !0.6409
0.7071 1.2247 1.5811 1.8704 2.1213

"! "########## $##########
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Table 3.5.  Fourth order random regression genetic variance and 
covariance matrix ( ĈG ) used in the multivariate model / random 
regression model equivalency example. 

 Intercept Linear Quadratic Cubic Quartic 
Intercept 4225 638 -140 -89 167 

Linear 638 215 -7 -32 9 
Quadratic -140 -7 65 15 -22 

Cubic -89 -32 15 43 18 
Quartic 167 9 -22 18 43 

 

Finally, to finish the RR model the Z matrices must be modified to accommodate 

the Legendre polynomials shown in Figure 3.8.  These modified incidence matrices, 

shown below in Figure 3.9 through Figure 3.13 (one figure for each term in the 

polynomial), contain the modified Z matrices relating the specific Legendre polynomial 

covariate to their respective observation. 
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Figure 3.9.  Random regression incidence matrix relating to the intercept of each random 
regression equation. 
 
 

Z Int =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0.7071 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.7071 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.7071 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.7071 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.7071 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.7071
0 0 0 0 0 0 0 0 0.7071 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.7071 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.7071 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.7071 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.7071 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.7071
0 0 0 0 0 0 0 0 0.7071 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.7071 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.7071 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.7071 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.7071 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.7071
0 0 0 0 0 0 0 0 0.7071 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.7071 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.7071 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.7071 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.7071 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.7071
0 0 0 0 0 0 0 0 0.7071 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.7071 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.7071 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.7071 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.7071 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.7071
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ID TD Weight

9 1 627
10 1 712
11 1 632
12 1 604
13 1 630
14 1 731
9 27 732
10 27 855
11 27 728
12 27 731
13 27 758
14 27 861
9 62 828
10 62 952
11 62 861
12 62 869
13 62 869
14 62 972
9 90 927
10 90 1039
11 90 924
12 90 940
13 90 957
14 90 1058
9 119 969
10 119 1111
11 119 1007
12 119 1051
13 119 1042
14 119 1118
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Figure 3.10.  Random regression incidence matrix relating to the Legendre polynomial 
linear covariate to each corresponding observation measurement age per animal. 
 
 

Z Int =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 !1.2247 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !1.2247 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !1.2247 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !1.2247 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !1.2247 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !1.2247
0 0 0 0 0 0 0 0 !0.6850 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !0.6850 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !0.6850 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !0.6850 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !0.6850 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !0.6850
0 0 0 0 0 0 0 0 0.0415 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0415 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.0415 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.0415 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.0415 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.0415
0 0 0 0 0 0 0 0 0.6227 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.6227 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.6227 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.6227 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.6227 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.6227
0 0 0 0 0 0 0 0 1.2247 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.2247 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1.2247 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1.2247 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1.2247 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1.2247
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Figure 3.11.  Random regression incidence matrix relating to the Legendre polynomial 
quadratic covariate to each corresponding observation measurement age per animal. 
 
 

ZQuad =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 1.5811 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.5811 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1.5811 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1.5811 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1.5811 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1.5811
0 0 0 0 0 0 0 0 !0.0486 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !0.0486 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !0.0486 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !0.0486 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !0.0486 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !0.0486
0 0 0 0 0 0 0 0 !0.7879 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !0.7879 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !0.7879 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !0.7879 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !0.7879 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !0.7879
0 0 0 0 0 0 0 0 !0.1774 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !0.1774 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !0.1774 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !0.1774 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !0.1774 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !0.1774
0 0 0 0 0 0 0 0 1.5811 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.5811 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1.5811 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1.5811 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1.5811 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1.5811
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13 119 1042
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Figure 3.12.  Random regression incidence matrix relating to the Legendre polynomial 
cubic covariate term to each corresponding observation measurement age per animal. 
 

ZCubic =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 !1.8704 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !1.8704 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !1.8704 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !1.8704 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !1.8704 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !1.8704
0 0 0 0 0 0 0 0 0.7515 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.7515 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.7515 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.7515 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.7515 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.7515
0 0 0 0 0 0 0 0 !0.0950 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !0.0950 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !0.0950 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !0.0950 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !0.0950 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !0.0950
0 0 0 0 0 0 0 0 !0.8123 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !0.8123 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !0.8123 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !0.8123 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !0.8123 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !0.8123
0 0 0 0 0 0 0 0 1.8704 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.8704 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1.8704 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1.8704 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1.8704 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1.8704
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Figure 3.13.  Random regression incidence matrix relating to the Legendre polynomial 
quartic covariate term to each corresponding observation measurement age per animal. 
 
 

  

ZQuartic =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 2.1213 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2.1213 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2.1213 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2.1213 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2.1213 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !1.8704
0 0 0 0 0 0 0 0 !0.7848 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !0.7848 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !0.7848 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !0.7848 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !0.7848 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !0.7848
0 0 0 0 0 0 0 0 0.7864 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.7864 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.7864 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.7864 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.7864 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.7864
0 0 0 0 0 0 0 0 !0.6409 0 0 0 0 0
0 0 0 0 0 0 0 0 0 !0.6409 0 0 0 0
0 0 0 0 0 0 0 0 0 0 !0.6409 0 0 0
0 0 0 0 0 0 0 0 0 0 0 !0.6409 0 0
0 0 0 0 0 0 0 0 0 0 0 0 !0.6409 0
0 0 0 0 0 0 0 0 0 0 0 0 0 !0.6409
0 0 0 0 0 0 0 0 2.1213 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2.1213 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2.1213 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2.1213 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2.1213 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2.1213
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Illustrating in the same manner as was performed with the MTM, the first few 

blocks of the coefficient matrix ( !X R-1X , !X R-1Z1 , !Z1R
-1X , and !Z1R

-1Z1 + g
11A-1 ) and 

right hand side ( !X R-1y  and !Z1R
-1y ) are shown in Figure 3.14.  Here, the X incidence 

matrices were the same between the RR and MTM which resulted in the blocks of 

 and  being the same for both models.  The differences between the two 

models are from the differences in the creation of the Z matrices.  Again, once the entire 

set of equations were built, the solution vector of EBV for each term in the fourth order 

polynomial can be calculated for every animal in the pedigree (Figure 3.15).  Notice the 

differences between the EBV in this figure versus the EBV in Figure 3.5.  To make 

comparisons between the two sets of EBV, it is necessary to convert the EBV obtained 

from the random regression model back to EBV for each age in the data set.  Equation 

3.11 details the conversion of the EBV for the quartic Legendre polynomial regression 

back to age specific EBV.  

 

Equation 3.11.  Equation for converting transformed EBV obtained from a random 
regression model using Legendre polynomials as the base function to EBV for 
observed ages. 

 
 

Test day EBV are shown below in Figure 3.16.  When compared to the EBV 

obtained from a five trait MTM, presented earlier in Figure 3.5, they are identical.  

 

!X R-1X !X R-1y

EBVObserved = ! *EBVTransformed
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Summary 

The above example has illustrated the equivalence of RR vs MTM as explained 

by Meyer (1998).  In order for the model to be exactly equivalent, not only does the order 

of the RR need to be the same as the number of traits in the MTM, the fixed effect 

portion of the two must be equivalent as well.   

There are both advantages and disadvantages to fitting both types of models and 

these typically deal with the parameterization of the two models.  For example, if the 

number of observed ages is large the MTM can become very difficult to solve quickly 

(especially for very large pedigrees).  With a large number of ages measured, an 

equivalent RR can become large and intractable as well.  However, as Kirkpatrick et al. 

(1990) illustrated, it is possible and perhaps more ideal to fit a reduced order polynomial 

allowing the covariance matrix to contain a few parameters as possible.  Fitting a reduced 

model that is statistically consistent with the data reduces the fluctuations caused by the 

sampling error in the initial measurements used to estimate the genetic covariance matrix 

(Kirkpatrick et al., 1990).  This is important given the nature of these polynomials to 

become unwieldy at the extremes of the independent variable (Meyer, 1998) typically 

leading to heritability estimates being high at the beginning and ends of the data range 

and low in the middle.   



 

 89 

Literature cited 

Henderson, C. R. O. Kempthorne, S. R. Searle, C. M. von Krosigk.  1959.  The 
estimation of environmental and genetic trends from records subject to culling.  
Biometrics.  15:192-218. 

 
Henderson, C. R. and R. L. Quaas.  1976.  Multiple trait evaluation using relatives’ 

records.  J. Anim. Sci.  43:1188-1197. 
 
Kirkpatrick, M., D. Lofsvold, and M. Bulmer.  1990.  Analysis of the inheritance, 

selection and evolution of growth trajectories.  Genetics.  124:979-993. 
 
Meyer, K.  1998.  Estimating covariance functions for longitudinal data using a random 

regression model.  Genet. Sel. Evol.  30:221-240. 
 
Meyer, K. and W. G. Hill.  1997.  Estimation of genetic and phenotypic covariance 

functions for longitudinal or ‘repeated’ records by restricted maximum likelihood.  
Livest. Prod. Sci.  47:185-200. 

 
Mrode, R. A.  2005.  Linear models for the prediction of animal breeding values.  2nd ed.  

CABI Publishing Company.  Cambridge, MA. 
 
Schaeffer, L. R.  2003.  Random regression models.  ANSC6737 Course Notes – 

Quantitative genetics and animal models.  Available at:  
http://www.aps.uoguelph.ca~lrs/ANSC637/LRS14/LRS14.pdf.  Accessed Jan. 8, 
2009. 

 
Schaeffer, L. R. and J. C. M. Dekkers.  2994.  Random regressions in animal models for 

test-day production in dairy cattle.  In:  Proc. 5th World Congr. Appl. Livest. Prod. 
XVIII.  Pp. 443-446. 

 
Speidel, S. E., R. M. Enns and D. H. Crews Jr.  2010.  Genetic analysis of longitudinal 

data in beef cattle:  a review.  Genet. Mol. Res.  9:19-33. 
 
Wright, S.  1922.  Coefficients of inbreeding and relationship.  American Naturalist.  

56:330-338.



 

 90 

CHAPTER IV 

DATA PREPARATION 

 

Overview 

Data used in this project was obtained from a historical database therefore they 

were not subject to animal care and use committee approval.  In the current section a 

description of the data will be presented, containing an overview of all summary statistics, 

data distributions, and sifts performed to obtain the final data file used in the evaluations.  

In subsequent sections, the data will not be discussed other than pertinent preparation 

techniques specific to the given analyses. 

 

Data description 

The Lethbridge Research Centre located in Lethbridge, Alberta, a research station 

associated with Agriculture and Agri-Food Canada, provided data for this project.  The 

original data set consisted of pedigree, weight and ultrasound observations on 1,375 

individual animals spanning the years 1999 – 2007.  Each individual animal record 

contained animal identifier, feedlot pen, breed (Angus, Charolais and Charolais Cross), 

year of measurement (one feeding period per year), birth date, birth weight, weaning date, 

weaning weight as well as serial weight and ultrasound measurements taken over the 

feeding period.  Measurement dates also accompanied the serial weight and ultrasound 

measurements allowing for the calculation of age as measure.   
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Three separate ultrasound traits were recorded on each sequential measurement 

date and were recorded in a slightly different manner than is currently performed in the 

United States.  All ultrasound observations were measured between the 12th and 13th ribs 

of the animal.  Ultrasound rib eye area (UREA) was measured on each individual animal 

and was recorded in square centimeters (cm2).  Two ultrasound back fat measurements 

were recorded.  First was an average ultrasound back fat (UBFa) where back fat was 

measured at 3 equally spaced locations across the longissimus muscle and then averaged.  

The second measurement was an ultrasound back fat observation measured ! of the 

distance from the medial end of the longissimus dorsi muscle.  These two ultrasound 

back fat measures are slightly different than what is currently measured in the United 

States where ultrasound back fat is measured as the subcutaneous fat covering at a point 

of " of the total distance from the medial end of the longissimus dorsi (BIF, 2002; 

Williams, 2002).  Given these two measurements for ultrasound back fat, UBFa is 

considered to be most consistent with what is currently reported in the United States (D.H. 

Crews, Jr., Colorado State University, Fort Collins, CO, personal communication) 

therefore all subsequent uses of UBFa will be referred to singularly as ultrasound back fat 

(UBF). 

Eight years of data was compiled.  A breakdown of the number of animals per 

year is shown below in Table 4.1.  Animal breed is not represented across all years of 

data.  During the first two years, only Charolais and Charolais cross (calves sired by 

mating purebred Charolais bulls to un-recorded breeds of dam) individuals were on test.  

Then in subsequent years, only purebred Angus and Charolais animals were fed.  Such a 

stratification of breed type resulted in a confounding of breed and production year. 
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Table 4.1.  Number of animals reported per year divided into their respective 
individual breed types. 

Year N Angus Charolais Charolais Cross1 
1999 – 2000 122 0 22 100 
2000 – 2001 161 0 31 130 
2001 – 2002 172 79 93 0 
2002 – 2003 160 98 62 0 
2003 – 2004 178 90 88 0 
2004 – 2005 200 110 90 0 
2005 – 2006 198 100 98 0 
2006 – 2007 184 111 73 0 
1Sired by Charolais bulls mated to dams of unknown breed type. 

 

Not including the birth and weaning weight observations, the frequency of 

measurements differed depending on the year in which the measurements were recorded, 

ranging from approximately every two weeks to four weeks.  During the first two years 

(1999 to 2001), observations were recorded on the individual animal approximately every 

14 days.  In subsequent years, observations were recorded less frequently approaching 4 

weeks between each successive record.  The average number of weight observations and 

ultrasound observations per animal across all years is shown below in Table 4.2 and 

Table 4.3, respectively. 

 

Table 4.2.  Average number of weight observations1 per animal broken 
down by breed across the years 1999 to 2007. 
 All Animals Angus Charolais Charolais Cross 
Mean 9.39 7.66 8.35 16.35 
Min  1 1 2 3 
Max 19 11 19 19 
1Not including birth weight or weaning weight records. 
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Table 4.3.  Average number of ultrasound observations1 per animal 
broken down by breed across the years 1999 to 2007. 
 All Animals Angus Charolais Charolais Cross 
Mean 7.46 5.50 6.46 14.9 
Min  1 1 1 1 
Max 17 7 17 17 
1Includes both ultrasound rib eye area and ultrasound back fat. 

 

Fewer ultrasound observations exist than weight observations due to the fact that 

there were phases of the feeding period such as arrival, backgrounding and transition 

periods where no ultrasound observations were collected.  There were greater numbers of 

observations for Charolais cross animals in years from 1999 to 2001 as the animals were 

measured every two weeks during these years.  The average number of observations for 

Charolais animals is greater than the average number of observations for Angus due to 

the fact Charolais were represented in these first two years as well.  After the first two 

years of production, Angus and Charolais animals were treated in the same fashion. 

To create a “final” weight file for evaluation, all available weight records (birth 

and weaning weights included where available) were compiled into a single file.  Weight 

observations were then classified into two separate sub-categories of test-day (TD) and 

test-day on full feed (OFTD).  Those weight records classified into the TD category were 

all available observations excluding birth and weaning weight observations.  Weight 

records classified into the OFTD category were those weight observations taken after all 

backgrounding and transition periods were finished.  Individual dates that outlined when 

the animals were started on full feed were supplied by the data provider and were used to 

mark the beginning of the OFTD feeding period.  An important note is these categories 

are not mutually exclusive; rather they are inclusive of each other.  In other words, TD is 

a subset of all data and OFTD is a subset of TD.   
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Ultrasound observations were classified according to feeding periods in a similar 

manner as the weight records. However, given when the ultrasound observations were 

recorded, only the first two years of data (1999 to 2001) contained any records outside of 

the OFTD category.  During the years 2001 to 2007, all ultrasound observations were 

taken when the animals were in the OFTD category.  As a result, the decision was made 

to omit the ultrasound observations exclusively represented in the TD category.  

 

Fixed effects 

There are several important factors influencing observations of interest on beef 

cattle and most of these have been summarized in the Beef Improvement Federation’s 

guidelines for uniform beef improvement programs (2002), a set of guidelines for the 

standardized reporting of performance information developed by a committee of 

seedstock breeders and scientists.  Age of dam is one of these factors and has been shown 

to influence weaning weight records by as much as 27.3 kg (BIF, 2002).  Age of dam was 

an effect considered when building the days to finish regression models, however, out of 

the 1,375 individual animals, 553 (40 percent) were missing dam information.  These 553 

animals missing dam information represented 6,864 of the 14,325 (48 percent) weight 

records in the final weight data file.  Given the sheer number of animals with unknown 

dams, age of dam was not included in the analysis of fixed effects, as its inclusion would 

prohibit the use of 48 % of the data. 

Season of birth is another important contributing factor to the observations of an 

individual (BIF, 2002).  This data set is unique in the fact that only one test was 

conducted per year, therefore all animals must have been born in the same season 
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(spring).  Length of calving season was also considered, however only the animals in one 

year’s group (2000 – 2001) were born in a calving season whose length (113 days) was 

greater than 90 days.  Given the tight calving window across all years as a whole, it was 

felt unnecessary to include length of calving window in the contemporary group 

definition to minimize the dissection of contemporary groups, even though it has been 

documented in the literature that accounting for season of birth in contemporary grouping 

strategies has the effect of increasing the accuracy of selection (Crump et al., 1997).  A 

noteworthy point to make is that smallest season window described by Crump and his 

colleagues was 3 months or approximately 90 days not much smaller than the 113 days 

we see here.  

 When genetic evaluations are performed, it is common practice to place animals 

into groups of similarly managed individuals.  Comparisons are then made between 

animals within contemporary group, properly evaluating genetic differences between 

sires.  The dataset used in this project contained weight and ultrasound observations from 

3 differing breed types observed across 8 years, fed in 4 separate feedlot pens.  Therefore, 

the identification of proper fixed effect classifications is important to ensure animals are 

being compared fairly. 

In an effort to form the most complete and appropriate contemporary group 

preliminary analyses of variance was performed using the LMER procedure from the 

lme4 package in R (R Development Core Team, 2009) to identify significant fixed effects 

for both the weight and ultrasound traits.  A series of three linear mixed models were 

implemented to determine the significance for each of three predictors; feedlot pen, year 

of measure, and breed type (Angus, Charolais, and Charolais cross).  Each of the models 
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contained two of the fixed effects listed above, with the third fixed effect added last. The 

mixed factor regression model used for the preliminary analyses of variance as described 

by Ruppert et al. (2003) is shown below: 

y = Xb + Zu + !  

where y is a vector of age observations, X is an incidence matrix relating age 

observations in y to fixed effects (pen, breed and year) and fixed regression coefficients 

(weight, UBF or UREA) in b, Z is an incidence matrix relating age observations in y to 

random effects in u (individual animals), and !  is a vector of random residual error terms.  

The mixed factor regression model above makes the assumption that the mean of the 

random effects is zero with variances represented by: 

Cov u
e

!

"
#

$

%
& =

G 0
0 R

!

"
#

$

%
& , 

where 

G =! u
2I , and R =!"

2I . 

Given that the statistical package R, has no procedure for estimating denominator 

degrees of freedom from mixed factor regression models, F tests to determine regression 

relationships were unable to be performed.  As a result, likelihood ratio tests (Kutner et 

al., 2008, p. 580-582) were conducted to determine the significance of the nested fixed 

effect models using the anova procedure in R (R Development Core Team, 2009) as 

described by Baayen et al. (2008).  The likelihood ratio test statistic was calculated as 

follows 

D = 2 logLF - logLR( ) , 
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where D is twice the difference between full model REML log likelihood (logLF) and 

reduced model REML log likelihood (logLR).  The values of D are distributed 

approximately as Chi-square with degrees of freedom equal to the difference between the 

number of parameters of the two models. 

Table 4.4 and Table 4.5 below give the log likelihood estimates, likelihood ratio 

test statistics and associated p-values for the weight and ultrasound traits, respectively.  

For the days to weight regression (Table 4.4), all of the effects (year, pen and breed type) 

account for a significant amount of variation in the age response variable.  Therefore 

including all three effects in the contemporary group definition would be appropriate. 

Table 4.5 shows the effects of year and breed explain a significant proportion of 

the variation for both UREA and UBF (P < 0.001).  When looking at the effect of pen on 

the days to UREA and UBF, mixed results were observed.  Based on the estimated 

significance values, pen accounted for a significant proportion of variation of the days to 

UREA regression, however, when the regression of days to UBF are considered, the 

 

Table 4.4.  Log-likelihood estimates, likelihood ratio test statistics and associated 
significance values for each of the days to weight models.  
Effect1 Reduced Model2 LogLR

3 LogLF
3 TS4 DF5 P6 

Year Pen, Breed -63,722 -63,675 94.236 7 < 2.2e-16 
Pen Year, Breed -63,681 -63,675 12.26 3 0.0065 
Breed Pen, Year -63,705 -63,675 59.71 2 1.08e-13 
1Predictor added to the parameters of the reduced model resulting in the full model. 
2Predictors included in the reduced model. 
3Log-likelihood estimates for the reduced and full models, respectively. 
4Likelihood ratio test statistic calculated as two times the difference between the log 
likelihoods of the full and reduced models. 
5Difference in model degrees of freedom between the reduced and full models. 
6Probability of observing a test statistic greater than the one reported the table.  Based 
on a ! 2distribution with degrees of freedom equal to the difference in model degrees 
of freedom between the reduced and full models. 
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Table 4.5.  Log-likelihood estimates, likelihood ratio test statistics and associated 
significance values for each of the days to ultrasound rib eye area and ultrasound back 
fat models.  

Ultrasound Rib Eye Area 
Effect1 Reduced Model2 LogLR

3 LogLF
3 TS4 DF5 P6 

Year Pen, Breed -45,716 -45,532 368.99 7 < 2.0e-16 
Pen Year, Breed -45,540 -45,532 17.00 3 0.00071 
Breed Pen, Year -45,640 -45,532 216.03 2 < 2.2e-16 

 Ultrasound Back Fat 
Year Pen, Breed -48.050 -47,950 200.49 7 < 2.0e-16 
Pen Year, Breed -47,952 -47,950 4.11 3 0.2498 
Breed Pen, Year -48,548 -47,950 1196.83 2 < 2.2e-16 
1Predictor added to the parameters of the reduced model resulting in the full model. 
2Predictors included in the reduced model. 
3Log-likelihood estimates for the reduced and full models, respectively. 
4Likelihood ratio test statistic as calculated as two times the difference between the log 
likelihoods of the full and reduced models. 
5Difference in model degrees of freedom between the reduced and full models. 
6Probability of observing a test statistic greater than the one reported the table.  Based 
on a ! 2distribution with degrees of freedom equal to the difference in model degrees 
of freedom between the reduced and full models. 

 

amount of variation accounted for by the predictor of pen is not high (P = 0.2498) 

suggesting the effect of feedlot pen could be excluded from the definition of 

contemporary group. 

If the random animal effect is removed from the model for regression of age on 

UBF resulting in a simple linear regression of age on UBF, typical Type III tests of 

significance can be calculated using the Anova (found in the car package) and lm 

procedures in R (R Development Core Team, 2009).  When the effect of pen is added last 

to the regression of age on UBF, the resulting p-value for the Type III F test of adding 

pen to the regression containing breed type and year is equal to 0.022.  This p-value is an 
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indication that feedlot pen does influence age that is adjusted for UBF in the absence of a 

random animal effect. 

Given the overall goal of the study is the genetic evaluation of differences 

between sires for days to finish traits, the inclusion of pen in the contemporary group 

definition for UBF has the effect of dividing each year x breed groups into each of the 

four pens.  Including pen in the contemporary group definition has the effect of 

distributing sires more evenly across contemporary groups, with only two sires having 

progeny in a single contemporary group.  From a genetic evaluation perspective, large 

contemporary group sizes with large numbers of offspring from a given sire is ideal.  

However, for the sake of simplicity, the same contemporary group definition should be 

used across all the ultrasound traits. 

Results of these preliminary analysis of variance studies suggest contemporary 

groups for the weight and ultrasound traits should consist of year of feeding period (8 

total years), feedlot pen (a total of 4 different pens) and breed type (Angus, Charolais, 

and Charolais cross).  Using these three effects will give the most complete contemporary 

grouping strategy given the information provided in the data and be uniform across traits.  

Summary statistics for the number of animals represented per contemporary group are 

shown below in Table 4.6.  Forming contemporary groups in this manner resulted in 62 

unique contemporary groups for the final weight and ultrasound outcomes, averaging 

21.5 and 21.45 animals per contemporary group for weight and ultrasound, respectively. 
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Table 4.6.  Summary statistics outlining the number of animals 
represented per contemporary group definition. 
 Weight1 Ultrasound2 
N 62 62 
Mean 21.5 21.45 
SD 9.63 9.62 
Min 3 3 
Max 42 42 
1Summary statistics obtained from the weight data. 
2Summary statistics obtained from the ultrasound data. 

 

Data sifting 

Data sifting is typically performed when building genetic evaluations.  The goal 

of sifting is to reduce the size of the final data files by removing incorrect or nonsensical 

data as well as data that contributes no information to the genetic evaluation.  Such data 

can be obviously incorrect weights, or data coming from contemporary groups where 

there is no variation in observations within the group (single animal contemporary groups, 

or all animals have the same observation). 

The data set used in the evaluation was extremely complete, quite different than 

what would be expected from a field dataset.  Even so, various data sifting methods were 

implemented to create useable final data files for both ultrasound and weight traits.  

Individual animal records missing either the record itself or the date of recording were 

removed.  In order to form the most complete contemporary group possible, year of 

measurement, breed type and feedlot pen all must have been recorded.  Animals 

identified as being “sick” at the time of measure had that specific observation excluded.  

Additionally, there were 39 animals from the year 1999 – 2000 missing birth dates, 

resulting in unknown ages at measure, which were subsequently removed from the 

analysis. 
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These data sifts resulted in final weight and ultrasound data files of 14,325 weight 

observations representing 1,333 unique individual animals and 9,551 ultrasound 

observations representing 1,330 unique individual animals.  The difference between the 

number of unique animals for weight and ultrasound is due to 3 animals missing 

ultrasound observations in the raw data files. 

 

Summary Statistics 

Summary statistics based on each of the final, post-sifting data sets are shown in 

the tables below.  Table 4.7 gives summary statistics for the final weight data for all 

animals as well as summary statistics for weight divided by breed type. 

The differences between the mean weights across breeds are negligible.  Upon 

initial examination of the standard deviations, Angus and Charolais appear to have more 

variability in their weight data when compared to the Charolais cross animals.  Due to the 

fact the Charolais cross animals all have missing birth weight records, as evidenced by 

the minimum weight observation for the Charolais cross animals, explains the difference 

in the variability of the data.  

 

Table 4.7.  Weight observation1 summary statistics all animals, as well as 
divided into breed type. 
 All Animals Angus Charolais Charolais Cross2 
N 14,325 5,668 5,466 3,191 
Mean 404.16 389.22 405.25 428.83 
SD 153.00 163.86 162.17 106.54 
Min  27.22 27.22 32.66 161.03 
Max 863 712 772 863 
1Includes birth weight and weaning weight observations. 
2Steers with purebred Charolais sires and dams of unknown breed type. 
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Summary statistics for the ultrasound traits are shown below in Table 4.8.  

Looking at the ultrasound summary statistics, there are virtually no differences between 

the Angus, Charolais, and Charolais cross animals for UREA, averaging 69.59, 72.55, 

and 65.59 cm2, respectively.  With respect to UBF, Angus animals tended to carry 

approximately twice the fat cover with an average of 11.58 mm of fat when compared to 

the Charolais (5.94 mm) and the Charolais cross (5.32 mm) animals. 
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Scatter plots of the data points from the final data files are shown in the 

subsequent figures.  Figure 4.1 contains the scatter plot of weight versus age (days) for all 

animals in the final weight data set.  Birth weight observations are clustered on day one, 

and there appears to be two separate slopes within the data cluster.  The breakpoint 

between the two different slopes appears to be around 250 – 300 days of age, which can 

be explained by the changing of the rations from the backgrounding / transition ration to 

the finishing ration.  

 

Figure 4.1.  Plot of weight versus age (days) for all animals in the final weight data set. 
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Figure 4.2 and Figure 4.3 are scatter plots of the ultrasound traits versus day of 

age.  In Figure 4.2 UREA is plotted against age of measurement.  The figure shows an 

increasing trend for UREA over time, although it is neither as uniform nor as steep as the 

trend for increasing weight.  This slower growth rate of UREA compared to the weight 

traits has been previously documented throughout the literature (Butterfield and Berg, 

1966; Jones et al., 1980a; Cleveland, 2006). 

 

Figure 4.2.  Plot of Ultrasound Rib Eye Area versus age (days) for all animals in the final 
ultrasound data set 
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Figure 4.3 is the scatter plot of UBF versus day of age.  Greater variability 

appears to exist for UBF as opposed to both weight and UREA, confirming previously 

reported findings (Jones et al., 1980b).  Variability among UBF observations increases as 

animals increase in age.  This increase in variability can be explained by the fact that  

 

Figure 4.3.  Plot of Ultrasound Back Fat versus age (days) for all animals in the final 
ultrasound data set. 
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subcutaneous fat is late developing therefore at younger ages less variability would be 

expected rather than at earlier ages (Berg et al., 1979; Jones et al., 1980a), which can be 

inferred from this plot. 

 

Age.  Given the nature of the “Days to Finish” traits, the distribution of age at 

measurement is just as important as the typical phenotypic observations (weight and 

ultrasound traits) given that age is the observation of interest.  Age descriptive statistics 

discussed below are compiled from the final weight data file due to its completeness with 

respect to the number of individual animals and observations.  In Table 4.9 below, 

summary statistics describing the distribution of individual animal ages are shown.  The 

average age doesn’t seem to differ between individual breed types.  Again, the Charolais 

cross individuals appear to have less variability in their age distribution, but this can be 

explained by the absence of birth date and weight records for this breed category. 

 

Table 4.9.  Age1 summary statistics2 for all animals and divided into 
individual breed type. 
 All Animals Angus Charolais Charolais Cross3 
N 14,325 5,668 5,466 3,191 
Mean 310.23 298.33 302.32 344.93 
SD 121.73 133.30 127.32 75.10 
Min  1 1 1 150 
Max 519 498 504 519 
1Measured in day of age. 
2Includes birth weight and weaning weight observations. 
3Steers with purebred Charolais sires and dams of unknown breed type. 

 

In Figure 4.4, the frequency and distribution of the ages in the final weight data 

file are shown.  Looking at the histogram, three different distributions appear to exist.  

The first distribution is day 1, representing the birth weight observations present in the 
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data file.  The second distribution appears to be centered somewhere around 200 days of 

age, representing the weaning weight observations included in the data file.  The last 

remaining distribution is centered at about 350 days of age, the mean age of the 

observations with birth and weaning records removed.  The distribution of ages is an 

important consideration to make when analyzing days to finish traits.  

 

Figure 4.4.  Frequency and distribution of day of age from final weight data file. 
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Pedigree.  The complete pedigree was built using all animals in the data set; prior 

to performing any data sifts.  Beginning with a list of parents of the animals in the 

original dataset, the Animal Breeder’s Tool Kit (Golden et al., 1992) was used in 

conjunction with the complete pedigrees obtained from the Canadian Angus Association 

and Canadian Charolais Association to add ancestral animals generation by generation.  

The pedigree was deemed complete at the point where with no additional animals added 

given subsequent generations.  This point was reached after 16 and 22 generations for the 

Charolais and Angus animals, respectively. 

Building the pedigrees in this manner resulted in an Angus pedigree of 5,284 

individual animals representing 1,685 unique sires and 3,011 unique dams.  The 

Charolais pedigree consisted of 8,175 individual animals resulting in 2,402 unique sires 

and 4,986 unique dams.  The average inbreeding coefficients for both the Angus and 

Charolais pedigrees were 0.024 and 0.020, respectively.  On a side note, even though the 

Angus animals were slightly more inbred than the Charolais, the Charolais did have the 

highest inbred animal with an inbreeding coefficient of 0.344 (the maximum inbreeding 

coefficient for the Angus animals was 0.281).  After the individual breed pedigrees were 

built to completion, they were combined to form one large pedigree to be used in the 

genetic evaluation of days to finish.  Combining the two pedigrees resulted in 13,459 

individual animals representing 4,087 unique sires and 7,997 unique dams.  The average 

inbreeding coefficient for all animals in this combined pedigree was 0.022. 

The full pedigree was then used to form the individual pedigrees to be used in the 

genetic evaluation of days to finish. 
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CHAPTER V 

DAYS TO WEIGHT ENDPOINT

 

Introduction 

Reducing the number of required days for livestock to reach a specific weight 

endpoint has received very little attention throughout literature.  With the exception of the 

swine industry this research has been almost non-existent, with only a handful of studies 

pertaining to beef cattle having been published going back to 1957.  In summary, this 

research has shown a phenotypic correlation of -0.46 between the number of days to 

reach a perceived quality grade and net income per 45.4 kg of slaughter weight 

(Lindholm and Stonaker, 1957).  More recently, Kuehn (2000) determined it feasible to 

obtain accurate variance component estimates for a linear random regression of days to 

finish weight using simulated data while Jubileu (2003) looked at differences between 

more traditional approaches such as multivariate models versus random regression 

techniques using Simmental weight data.  Both Kuehn and Jublieu stressed the 

advantages of using random regression methodologies in the calculation of days to finish 

EPD.   

Random regression allows for the calculation of EPD along any given point of the 

polynomial which is attractive for days to finish because each individual producer’s 

“finish” endpoint can be different.  RR has been implemented in many instances in other 

livestock industries for the genetic evaluation of test day records in dairy cattle (Ptak and 
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Schaeffer, 1993; Guo and Swalve, 1997; Brotherstone et al., 2000) growth data in pigs 

(Andersen and Pedersen, 1996) and beef cattle (Meyer, 1999; Legarra et al. 2004) just to 

name a few. 

The lack of published research in this area of beef cattle genetic improvement is 

puzzling given the nature of “days to finish” as one of the economically relevant traits 

described by Golden et al. (2000).  The objective of this study was to explore the 

feasibility of creating a days to weight (DTW) genetic prediction from a field data set 

using random regression methodologies. 

 

Methodology 

A genetic prediction for DTW was built using the previously described data set 

(Chapter IV), which consisted of pedigree and multiple weight observations on 1,375 

animals.  Two separate models were used to evaluate DTW.  First, an evaluation was 

built using random regression methodology.  Second, a more traditional repeated 

measures model was used to make comparisons to the RR for the purposes of model 

validation. 

 

The Random Regression Model.  In constructing the RR for the genetic 

prediction of DTW, a model building exercise somewhat similar to that described by 

Brommer et al. (2008) was implemented beginning with the most basic model.  In this 

process, random effects were sequentially entered with their significance as a predictor of 

days to reach a weight endpoint being tested using a likelihood ratio test.  All models 

were implemented using the statistical package ASReml (Gilmour et al., 2009).   
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First, the general form of the RR used in the genetic evaluation of DTW is shown 

in matrix form (Equation 5.1) as described by Mrode (2005). 

 

Equation 5.1.  General form for a random regression model presented in matrix 
notation. 

y = Xb + Qu + Zpe + e  
 

In Equation 5.1, y represents a vector of age observations recorded on individual animals, 

X is an incidence matrix relating age observations in y to contemporary group and fixed 

regression coefficients containing weight observations for the regression of age on weight 

to their solutions in b, Q is an incidence matrix consisting of weight covariates 

(representing the random regression effects of the age on weight regression) relating the 

age observations in y to the random additive genetic regression coefficients in u, Z is a 

matrix of weight covariates relating the age observations in y to the permanent 

environmental random regression coefficients for each animal in pe,  and e is a vector of 

random residuals that includes the temporary environmental effects for each observation.  

As the order of the random regression increases, the columns of the incidence matrix Q 

increase by one.  Variances for the additive genetic, permanent environmental effects and 

random residuals in the model are: 
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where A is Wright’s numerator relationship matrix (Wright, 1922), G is the (co)-variance 

matrix of the random additive genetic regression coefficients whose order is equal to the 

order of the polynomial in the random regression, I is an identity matrix whose order is 

equal to the total number of observations in y, P is the (co)-variance matrix of the random 

permanent environmental regression coefficients, and  is the variance of random 

residuals.   

Following suggestions by Jamrozik et al. (1997) and Gilmour (2009) the structure 

of this residual variance was allowed to vary.  First, models were fit using a 

heterogeneous residual variance structure as mentioned by Jamrozik et al., (1997).  In that 

paper, the authors presented an equation, which allows for changing residual variance 

across time by enabling subsequent observations to be classified into alternate categories 

using Equation 5.2.  An important note about this equation is it ignores the error 

covariance between classification levels similar to a multiple trait analysis mentioned by 

Arnold et al. (1992) with zero covariance between error variances. 

 

Equation 5.2.  Equation used to classify observations in random regression models to 
predefined residual variance classifications. 

var e[ ] = diag ! ek
2{ }  

 

Above, k is equal to the number of differing residual variances. In a standard evaluation, 

such as the regression of weight on age, the values of k could have some biological basis 

such as the designations of important weight measurement times like birth weight, 

weaning weight, yearling weight, etc.  Here, the trait DTW is being analyzed using a 

regression of age on weight.  No longer can these observations be divided in such a 

! e
2
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manner because individual animal weights could be classified into separate levels of k.  

For example, one animal’s start weight could be heavier than the next animal’s second 

weight measured two weeks later.  Therefore, somewhat arbitrary cutoff points were used 

to determine its value.  For the regression of age on weight in the DTW evaluation, the 

cutoff points for the different values of k were determined by calculating the quartiles of 

the data set using the boxplot.stats package in R (R Development Core Team, 2009). 

Second, error covariance was added to the model through the inclusion of a 

random regression for residuals.  To implement this model in ASReml (Gilmour, 2009), a 

standard single residual variance is included in the evaluation; similar to a residual 

variance included in a repeated measures analysis.  Accounting for covariance at the error 

level is accomplished by including a linear random regression on permanent 

environmental effects.  Permanent environmental variance is included in genetic 

evaluations to account for the random non-genetic factors present between animals 

(Henderson, Jr., C. R., 1982) affected by multiple observations on an animal.  Allowing 

permanent environment effects to vary with increasing weight captures the non-genetic 

covariance between subsequent observations on individual animals, which is essentially 

residual covariance. 

While building up to a complete DTW genetic prediction model, the order of both 

the fixed and random regressions were taken into consideration.  Fixed regression 

coefficients contained in the matrix Xb are important to the overall random regression 

model.  As suggested by Schaeffer (2003), RR are intended to model deviations around 

the phenotypic trajectory and Gilmour (2009) suggests their order not be reduced below 

the order specified in the random terms.  The question in this study remained what the 
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proper order of the fixed regression should be, and how much would that actually 

influence the resulting heritability estimates. 

The proper order of the fixed regression of age on weight was determined by 

using methods similar to the forward stepwise regression procedures described by Kutner 

et al. (2005).  They describe this procedure as the incremental inclusion of several fixed 

effects, with the ultimate selection of the effect with the largest t* statistic.  Here, the 

order of the regression was chosen by a series of sequential models that fitted 

incrementally higher order polynomials for the fixed regression within a given random 

regression order.  Partial F-tests of significance, as described by Kutner et al. (2005) and 

Gilmour (2009), were used to determine the highest significant term or order of the fixed 

regression coefficients within a given order for the random regression polynomial.  

Beginning with a polynomial whose order is equal to the order of the random polynomial 

and working toward a more complex model, the highest coefficient was tested as to 

whether or not it was significantly different from zero.  F-statistics used in the partial F-

test were constructed by squaring the t-statistic calculated by taking the ratio of the 

estimate to its standard error, using Equation 5.3 (Gilmour, 2009). 

 

Equation 5.3.  Equation for constructing a t-distribution test statistic to test whether or 
not the regression coefficient bk is equal to zero. 

t* = bk
s bk{ }  

 

Above, t* is the test statistic for testing whether or not  is equal to 0,  is the solution 

for the highest order or kth term and  is the standard error for the highest order term 

obtained from the ASReml solution output files.  This t* was then converted to an F 

!k bk

s bk{ }
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statistic by squaring .  F* is the F-value for adding the last effect to the whole 

model and is distributed as .  Allowing ASReml to estimate the 

denominator degrees of freedom  using the Kenward & Roger approximation 

method (Kenward & Roger, 1997), this highest order polynomial term can be tested as to 

its difference from zero.  Using a pre-determined significance value of 0.05, if the highest 

order term was dropped, the reduced model was then refit testing the next lowest term.   

Once the proper fixed regression polynomial (within a given random regression order) 

was determined, incrementally higher orders of random regressions were fit until 

additional higher order polynomials no longer statistically accounted for additional 

variation in trait “days”.  Likelihood ratio tests (LRT) were used to conduct these tests of 

significance for each nested random effect or random polynomial term.  The LRT test 

statistic as described by Beckman et al. (2007) and Brommer et al. (2008) is shown below 

in Equation 5.4. 

 

Equation 5.4.  Likelihood ratio test statistic for testing differences between equivalent 
fixed effect models where there are differences in the number of parameters between 
the two models. 

 
 

In the LRT test statistic equation above, D is the absolute difference between the full 

model REML log-likelihood  and the reduced model REML log-likelihood 

.  Here, the null hypothesis stated the full model did not significantly fit better 

than the reduced or simpler model.  This test statistic is distributed approximately as  

F* = t*( )2( )
F* ~ F 1,n ! p( )

n ! p( )

D = 2 logLF ! logLR

logLF( )

logLR( )

! 2
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with degrees of freedom equal to the difference in the number of parameters fit between 

the full and reduced models. 

Likelihood ratio tests are only valid if, as mentioned above, the parameters of the 

full model fully encompass the parameters of the reduced model and if the fixed effects 

of both the full and reduced model are the same.  Therefore, comparisons pertaining to 

the order of random polynomials were only made within equivalent fixed effect models 

(within the same order of the fixed regression polynomials).  For example, if the 

quadratic term of the random regression polynomial was tested for significance, this was 

done within each significant fixed regression polynomial order. 

Orthogonal Legendre polynomials were used as the base random regression 

function.  Legendre polynomials were chosen because they help to reduce the correlation 

between successive observations (Kirkpatrick et al., 1990) with the realization that these 

polynomials tend to place a large emphasis on observations at the extreme ends of the 

data range (Meyer, 2005).  This detractor to the use of these polynomials, as discussed by 

Meyer (2005), is compounded with higher orders of fit.  Also, these polynomials tend to 

return estimates of genetic variance that are much higher at the beginning and ends of the 

data range than in the middle (Schaeffer & Jamrozik, 2008).   

Weight observations used in the regression of age on weight were standardized 

using Equation 3.6.  Standardization is a necessary restriction with the use of Legendre 

polynomials because these types of polynomials, specifically, are only defined over the 

interval of -1 to 1 (Kirkpatrick et al., 1990).  Normalized Legendre polynomials for each 

of the regression orders (linear through quartic) were calculated using the standardized 

weights in conjunction with Equations 3.7 though 3.9.  These polynomials are shown in 
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Table 3.4.  All calculations were performed internally within ASReml using the leg(v, n) 

model function.  This function forms n + 1 Legendre polynomials of order 0 (intercept), 1 

(linear), … to n from the values in v.  For instance, to model a linear regression using the 

predictor variable weight, the ASReml model function would be leg(weight, 1).  Example 

ASReml command files for calculating both linear and quadratic DTW are included in 

Appendix II. 

Estimates of variance obtained from a RR are not interpreted in the same manner 

as similar estimates obtained from a conventional multiple trait model. Estimating 

(co)variances for genetic evaluations using RR result in genetic and phenotypic variances 

for the shape of the polynomial.  This means, that for a linear random regression, the 

resulting variance estimates will be estimates for the intercept and slope of the random 

polynomial.  These estimates can be used to calculate heritabilities for the curve 

parameters and correlations between the shape parameters.  Through a simple conversion, 

observed variance estimates can be calculated for the range of data.  This conversion is 

done using the formula 

 

where G0 is the observed genetic (co)variance matrix between the orthogonalized weights 

in F.  Grr is the random regression genetic (co)variance matrix as described by Schaeffer 

(2003). 

 

The Repeated Measures Model.  In order to compare the results obtained from 

the RR evaluation of DTW, a repeated measures model was used to estimate heritability 

G0 =!Grr!
T
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and predict breeding values for the same weight data.  This model is presented in matrix 

form in Equation 5.5. 

 

Equation 5.5.  General form for a repeated measures model presented in matrix 
notation. 
 

 
 

In the equation for the repeated measures model above, X, Z, and W are incidence 

matrices relating the repeated age observations in y to fixed contemporary group effects 

(b), random additive genetic effects (u) and random permanent environmental and non-

additive genetic effects (p), with e defining a vector of random residual errors.  Age 

observations in y are assumed to have the mean Xb while random effects in u and p have 

means of zero with variances represented by: 

, 

where ! u
2 , ! p

2 , and ! e
2  are the variances of random additive animal genetic effect, 

random permanent environmental effect, and random residual error, respectively.  A is 

Wright’s numerator relationship matrix, and I is an identity matrix with an order equal to 

the number of observations in y. 

In order to obtain heritability estimates and resulting EBV for a DTW evaluation 

from the repeated measures model, and to make proper comparisons to a corresponding 

endpoint from the DTW RR, data used in the repeated measures model were adjusted to a 
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constant weight endpoint of 500 kg prior to evaluation.  This adjustment allows the direct 

comparison of the DTW from the RR and the repeated measures model. 

 

Results and Discussion 

For the evaluation of DTW, the final weight data set described in Chapter 4 was 

subset to allow the proper modeling of the random regression polynomials.  Depending 

on the order of random polynomial (linear through quadratic), individual animals were 

removed from the data set if they lacked the sufficient number of observations to fully fit 

the current line.  Animals were removed from the final data set if they had fewer than five, 

four, three or two observations for the quartic, cubic, quadratic and linear polynomials, 

respectively.  In order to make LRT comparisons, using forward stepwise regression 

procedures, the following algorithm was implemented. 

1) Animals with fewer than two observations were removed from the data set. 

a. A linear age on weight random regression model was implemented. 

2) Animals with fewer than three observations were removed from the data set. 

3) Random regressions were modeled using the data set containing those animals 

from step two. 

a. First, the quadratic random regression model was fit 

i.  Fixed regression orders were increased incrementally until the 

addition of higher order terms was found to be not significant. 

b. Second, the linear random regression model was fit using the fixed 

regression polynomial order chosen in step 3a. 
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c. LRT between the linear and quadratic random regression models were 

performed to determine whether the quadratic terms should be dropped 

from the regression.  Significance levels were set at P = 0.05. 

4) If the results from the LRT suggested the quadratic term should not be included in 

the model, the process was ended. 

5) If the results from the LRT suggested the quadratic random regression term 

should be included in the model, the algorithm was repeated back at step two 

removing animals with fewer than the four observations needed to fit a cubic 

polynomial and its significance was tested. 

a. A quartic random regression is the highest order polynomial considered 

for inclusion due to restrictions in the required number of observations 

needed by individual animals. 

 

Sub-setting the data in this manner resulted in four individual weight data sets 

whose summary statistics are shown below in Table 5.1. 

 

Table 5.1.  Summary statistics for the average number of observations for each of 
the individual regression data sets, ranging from all data to requiring individual 
animals to have five or more observations corresponding to that needed for a quartic 
regression. 
 All Data 5 or more  4 or more 3 or more 2 or more 
N animals 1,324 1,150 1,311 1,317 1,323 
N 7,633 6,958 7,602 7,620 7,632 
Mean 5.77 6.05 5.80 5.79 5.77 
Minimum 1 5 4 3 2 
Maximum 9 9 9 9 9 
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As a benchmark for illustrating relative sizes in the subsets of data, summary statistics for 

all available data was included in the table as well.  A quartic random regression requires 

individual animals to possess five or more observations.  This requirement results in 675 

fewer observations representing 174 animals (13% of the total number of animals) as 

compared to all data.  In fact, an entire year’s (2002 – 2003) worth of data is removed 

from the evaluation.  Reducing the random regression order to a cubic polynomial, the 

observation requirement can be lowered to four or more observations.  Here, only 31 

observations from 13 different animals are removed.  As random regression polynomial 

orders are reduced even further, the number of useable observations increases, and once 

the linear random regression is modeled, only one individual does not possess the 

minimum number of observations (two observations are required for a linear random 

regression).  

Grouping observations for the purpose of specifying differing residual variance 

structures by biological definition didn’t make sense for this evaluation.  Given the nature 

of the regression of age on weight, where age is the variable of interest, no obvious 

delineation points exist in order to classify individual animal records into residual 

variance sub-groups.  An initial attempt at classifying observations into residual variance 

categories was conducted by visual inspection.  If there were naturally occurring break 

points in the distribution of weight observations, these break points could be used to 

classify weight into their respective residual variance sub-groups.  A histogram of weight 

observations (Figure 5.1) was created to view the distribution of these weight 

observations.  As illustrated in Figure 5.1, the distribution of weight observations 

appeared to be continuous with no obvious breaks.   
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Figure 5.1.  Histogram of weight observations for the days to weight genetic prediction. 
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pounds.  These points resulted in 1,822; 1,662; 1,717 and 1,757 weight observations to be 

placed in the first, second, third and fourth residual categories, respectively.   

 

Linear Random Regression.  A linear RR was implemented using the weight data 

set sifted to contain only those individuals with two or more observations, described 

above in Table 5.1.  This data set contained 7,632 age and weight observations on 1,323 

individual animals that resulted in an average of 5.77 observations per animal.  Age and 

weight summary statistics for this data set are shown below in Table 5.2.   

 

Table 5.2.  Age and weight summary statistics for the data used in 
the linear random regression of age on weight for the calculation 
of the days to weight genetic prediction. 

 Age1 Weight 
N 7,632 7,632 
Average 395.9 513.0 
Variance 2,036.5 5,978.9 
Minimum 276 293 
Maximum 519 863 
1Age is reported in days. 

 

As mentioned in Chapter IV, contemporary groups were formed on the basis of 

feedlot pen, year of test and breed composition.  Formation of contemporary groups in 

this manner resulted in 62 unique groups containing an average of 21.3 animals per group.  

For the purpose of estimating variance components, a 4-generation pedigree was built 

from this final data file.  Formation of the pedigree in this manner resulted in a stacked 

pedigree that contained 5,414 individual animals, with 1,386 unique sires and 2,705 

unique dams.  The average inbreeding level for the animals in this pedigree was 1.5% 

with minimum and maximum inbreeding levels of 0% and 25%, respectively.   
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Direct genetic (co)variances were estimated for both the intercept and linear terms 

for the linear DTW random regression for two separate models.  First, DTW was 

modeled using a heterogeneous residual variance (HRV) structure as presented above in 

Equation 5.2.  Here, permanent environment was included in the model as a constant or 

intercept variance to account for the environmental effects that permanently influence the 

repeated observations on individual animals.  Second, DTW was modeled by including 

error covariance in the model through the implementation of a linear random regression 

on residuals (LRRR).  Here, a single error variance was included for the entire trait “days” 

and permanent environmental variance was estimated by including in the model a linear 

random regression on permanent environmental effects. 

Beginning with a linear fixed regression model, variance components from both 

the HRV and LRRR models were calculated for models containing increased fixed 

regression orders.  Test statistics and associated p-values corresponding to the fixed 

regression tests of significance are shown below in Table 5.3.  For both residual variance 

models, the linear fixed regression polynomial was sufficient and models containing 

higher order fixed regression polynomials did not significantly account for any additional 

variation in the trait as evidenced by the non-significant quadratic terms.  The linear fixed 

regression coefficients were very similar between the two models, only in the model 

containing the random regression on residuals was this value estimated more precisely as 

evidenced by the smaller standard error. 
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Table 5.3.  Best linear unbiased estimates and associated significance 
values for the different fixed regression polynomial orders obtained from 
the linear random regression of age on weight using both heterogeneous 
residual variance and linear residual random regression. 
Polynomial 

Order1 
Last 

Coefficient2 SE2 F3 P-value 
Heterogeneous Residual Variance 

1 157.1 1.54 10433.7 0.00 
2 -0.414 0.60 0.481 0.49 
     

Linear Residual Random Regression 
1 157.0 1.41 12415.8 0.00 
2 0.004 0.61 0.004 0.95 

1Order of the fixed regression polynomial 
2Best linear unbiased estimate and standard error of the highest order 
term from the fixed regression. 
3F distribution test statistic and associated P-value. 

 

 

Variance estimates obtained from both linear random regression models are 

shown below in Table 5.4 and Table 5.5.  There is very little difference between 

estimates obtained from the linear and quadratic fixed regressions for both the HRV 

model (Table 5.4) and LRRR model (Table 5.5), as was suggested by the significance 

tests shown above in Table 5.3.   

Comparing both residual variance models, more differences are apparent. First, 

estimates of residual variance (43.67 days2) obtained from the LRRR is very close to the 

average of the four residual variances (43.5 days2) obtained from the HRV model.  After 

the residual variances, the similarities between the two models end.  Estimates of genetic 

variance obtained from the model containing the random regression on residuals is 

smaller than those obtained from the HRV model by a magnitude of 200 days2, 140 days2 

and 100 days2 for the intercept, intercept and linear covariance and linear variance, 

respectively. 
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Table 5.4.  Variance estimates (SE) obtained from a linear random regression model 
for days to weight using heterogeneous residual variances. 

  11 21 
LogL2 -1520.23 -1520.56 
Intercept3 1323 (107.4) 1311 (108.1) 
Int, Lin4 605.1 (34.2) 595.9 (35.3) 
Linear3 406.6 (22.5) 400.9 (23.0) 
PE5 278.7 (65.8) 280.8 (66.2) 
R116 33.42 (1.46) 33.40 (1.46) 
R226 43.62 (1.78) 43.63 (1.78) 
R336 54.14 (2.16) 54.26 (2.17) 
R446 42.82 (1.83) 42.96 (1.84) 
1Order of the polynomial used as the mean regression of age on weight. 
2REML log-likelihood obtained from ASReml. 
3Direct genetic random regression variance estimates for the intercept and linear 
random regression terms. (SE) 
4Genetic covariance between the intercept and linear random regression terms. (SE) 
5Permanent environmental variance (SE) 
6Residual variance estimates corresponding to each of the four weight quartiles.  R11, 
R22, R33, and R44 are the residual variances for the first, second, third and fourth 
quartiles, respectively. (SE) 

 

In the model containing the LRRR, permanent environmental intercept variance was 

increased by approximately 151 days2, which suggests that much of the variation 

attributed to the additive genetic effects in the HRV model has been re-partitioned to 

permanent environment effects and ultimately to the error covariance between 

observations.  The model containing the HRV has a higher REML log-likelihood 

estimate (-1520.23 versus -1551.41) suggesting it is a more appropriate model given the 

data.  However, this HRV model may not be appropriately classifying observations to 

residual variance subsets, and it is definitely not accounting for the error covariance 

between observations. 
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Table 5.5.  Variance component estimates obtained from a linear random regression 
model for days to weight using linear residual random regression. 
  11 21 
LogL2 -1551.41 -1551.9 
Intercept3 1123 (172.7) 1124 (173.0) 
Int, Lin4 462.6 (80.1) 463.3 (80.5) 
Linear3 307.9 (49.3) 308.4 (49.5) 
PE Intercept5 429.8 (128.0) 429.9 (128.1) 
PE Int, Lin5 110.7 (60.0) 111.0 (60.1) 
PE Lin5 76.55 (38.4) 76.79 (38.45) 
Residual6 43.67 (0.88) 43.67 (0.88) 
1Order of the polynomial used as the mean regression of age on weight. 
2REML log-likelihood obtained from ASReml. 
3Direct genetic variance for the intercept and linear random regression terms (SE). 
4Genetic covariance between the intercept and linear random regression terms (SE). 
5Permanent environmental intercept variance, intercept and linear covariance, and 
linear variance (SE). 
6Residual variance (SE). 

 

In an effort to further verify the linear fixed regression is the appropriate order to 

be included in the evaluation, the observed DTW genetic variance was calculated for 

each 20 kg increment within the range of weight observations (293 kg to 863 kg).  These 

estimates are then plotted versus their corresponding weight endpoint.  Figure 5.2 

contains the estimates of genetic variance from the HRV model while Figure 5.3 contains 

those estimates from the LRRR model. Both plots show no difference between the 

observed estimates of resulting from each of the differing fixed regression models further 

indicating the linear fixed regression seems to be the most appropriate order for the 

random regression of days to weight endpoint. 
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Figure 5.2.  Plot of genetic variance obtained from the heterogeneous residual variance 
linear random regression of age on weight for the number of days to reach a specific 
weight endpoint for both linear and quadratic fixed regression orders. 

 

 

 

 
Figure 5.3.  Plot of genetic variance obtained from the linear residual random regression 
using a linear random regression of age on weight for the number of days to reach a 
specific weight endpoint for both linear and quadratic fixed regression orders. 
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In order to make comparisons between the HRV model and LRRR model 

observed genetic variance, permanent environmental variance, phenotypic variance and 

heritability were calculated, from the same weight observations as mentioned in the 

previous paragraph, and shown below in Figures 5.4, 5.5, 5.6 and 5.7, respectively. 

Figure 5.4 contains the plot of observed genetic variance for days with increasing 

weight.  Both models predicted similar genetic variances for the lighter weight endpoints, 

but as weight increased, particularly above 590 kg, the model containing the HRV 

estimated higher genetic variance than the model containing the random regression on 

residuals.  This is most likely due to the HRV model not properly accounting for the error 

covariance structure and attributing those differences to genetic variability. 

 

 
Figure 5.4.  Plot of observed days to weight genetic variance obtained from the linear 
random regression of age on weight using both heterogeneous residual variance and 
random regression on residuals. 
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Figure 5.5.  Plot of observed days to weight permanent environmental variance obtained 
from the linear random regression of age on weight using both heterogeneous residual 
variance and random regression on residuals. 
 

 

 

 

 
Figure 5.6.  Plot of observed days to weight phenotypic variance obtained from the linear 
random regression of age on weight using both heterogeneous residual variance and 
random regression on residuals. 
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Figure 5.7.  Plot of observed days to weight heritability obtained from the linear random 
regression of age on weight using both heterogeneous residual variance and random 
regression on residuals. 
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HRV model is doing.  Lastly, Figure 5.7 contains the plots of heritability estimates from 

the two models.  As can be seen here, heritability estimates are the same for the lighter 

weights, but as weights increase above approximately 500 kg, heritability estimates from 

the LRRR model are giving more sensible estimates as opposed to the HRV model.  At 

the extreme end of the range of weight observations, the LRRR model is estimating 

heritability to be 0.76 versus the 0.93 from the HRV model, a rather large difference.  

 

Quadratic Random Regression.  Following the linear RR, a quadratic RR was 

implemented using the data set sifted to require 3 or more observations on individual 

animals whose summary statistics are shown in Table 5.1.  This data set used in the 

quadratic random regression contained 7,620 age and weight observations on 1,317 

individual animals averaging 5.79 observations per individual.  Age and weight summary 

statistics for this data set are shown below in Table 5.6.  Comparing this more restrictive 

data set to that used in the linear random regression model, it contained 6 fewer animals 

resulting in 12 fewer observations.  Looking at contemporary groups (see Chapter IV for 

contemporary group formation), this data set contained the same number of unique 

contemporary groups (62 groups) with just a slight difference in the number of animals 

per group, 21.2 versus the 21.3 from the linear data set. 

For the purpose of estimating variance components, a 4-generation pedigree was 

built from this sifted, final data file.  The resulting pedigree contained 5,408 individual 

animals with 1,386 unique sires and 2,705 unique dams.  The average inbreeding 

coefficient in this pedigree was 1.5% with minimum and maximum inbreeding levels of 

0% and 25%, respectively. 
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Table 5.6.  Age and weight summary statistics for the data used in 
the quadratic random regression of age on weight for the 
calculation of the days to weight genetic prediction. 

 Age1 Weight 
N 7,620 7,620 
Average 396.0 513.1 
Variance 2,035.0 5,976.2 
Minimum 276 293 
Maximum 519 863 
1Age is reported in days. 

 

Similar to the linear model, direct genetic (co)variances were estimated for the 

quadratic random regression model, a model that included intercept, linear and quadratic 

terms as well as all covariances, for both the HRV and the LRRR models.  Beginning 

with the linear fixed regression model, incrementally higher orders of the fixed regression 

were included in the evaluation until the test statistics and associated p-values showed 

that increasing this regression an order higher did not significantly account for any 

additional variation.  These estimates are shown below in Table 5.7.  Again for the trait 

DTW, the linear fixed regression polynomial is sufficient in describing the mean 

relationship between age and weight.  The quadratic fixed regression accounts for slightly 

more variation in DTW for the model containing the HRV even though it is still non-

significant (P > 0.24).  As an additional comparison, genetic variance estimates on the 

observed scale showed no change as the order of the regression increases for both 

residual variance models meaning the linear fixed regression was sufficient.  However, 

following the suggestion of Gilmour (2009) that the order of the fixed regression not be 

reduced below the order of the random terms, further discussions of variance will be in 

regards to the model containing the quadratic fixed regression. 
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Table 5.7.  Best linear unbiased estimates and associated significance 
values for the different fixed regression polynomial orders obtained from 
the quadratic random regression of age on weight using both 
heterogeneous residual variance and linear residual random regression. 
Polynomial 

Order1 
Last 

Coefficient2 SE2 F3 P-value 
Heterogeneous Residual Variance 

1 156.6 1.52 10558.8 0.00 
2 -0.831 0.71 1.385 0.24 
     

Linear Residual Random Regression 
1 156.7 1.40 12599.9 0.00 
2 -0.004 0.68 0.003 0.96 

1Order of the fixed regression polynomial 
2Best linear unbiased estimate and standard error of the highest order 
term from the fixed regression. 
3F distribution test statistic and associated P-value. 

 

 

Estimates of variance from both these residual variance models for the quadratic 

random regression of DTW are shown below in Table 5.8 and Table 5.9.  Again, similar 

to the results seen with the linear random regression model, there were few differences 

between the estimates obtained from the alternate fixed regression orders within a given 

residual variance model.  Estimates of variance changed more for the HRV model when 

the fixed regression order was increased from a linear to a quadratic as opposed to the 

LRRR model where there were virtually no differences between the variance estimates as 

is indicated by the significance tests shown in Table 5.7. 
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Table 5.8  Variance estimates obtained from a quadratic random regression model for 
days to weight using heterogeneous residual variances. 

  11 21 
LogL2 -1477.53 -1477.39 
Intercept3 1217 (114.5) 1185 (115.7) 
Int, Lin4 539.7 (43.8) 516.1 (45.3) 
Linear3 380.6 (28.8) 365.8 (29.6) 
Int, Quad4 -35.22 (22.7) -41.00 (23.0) 
Lin, Quad4 -2.012 (12.9) -5.74 (13.2) 
Quadratic3 16.77 (11.0) 16.93 (11.2) 
PE5 268.3 (66.6) 271.2 (67.3) 
R116 32.77 (1.46) 32.68 (1.46) 
R226 43.55 (1.78) 43.58 (1.78) 
R336 54.05 (2.17) 54.24 (2.18) 
R446 42.36 (1.83) 42.56 (1.85) 
1Order of the polynomial used as the mean regression of age on weight. 
2REML log-likelihood obtained from ASReml. 
3Direct genetic random regression variance estimates for the intercept, linear and 
quadratic terms (SE). 
4Direct genetic covariance between the intercept / linear, intercept / quadratic and linear 
/ quadratic terms (SE) 
5Permanent environmental variance (SE) 
6Residual variance estimates corresponding to each of the four weight quartiles.  R11, 
R22, R33, and R44 are the residual variances for the first, second, third and fourth 
quartiles, respectively (SE) 

 

Comparisons between the two residual variance models (HRV versus the LRRR) 

show more differences.  The estimate of residual variance obtained from the LRRR 

model (43.46 days2) is very similar to the average of the estimates (43.18 days2) obtained 

from the HRV model.  Estimates of genetic variance for the quadratic random regression 

terms obtained from the HRV model are higher than those obtained from the LRRR 

model by 159 days2, 77.1 days2, and 7.33 days2 for the intercept, linear and quadratic 

variances, respectively.  In the model containing the LRRR variance structure,  
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Table 5.9.  Variance estimates obtained from a quadratic random regression model for 
days to weight using linear residual random regression. 

  11 21 
LogL2 -1510.55 -1510.94 
Intercept3 1058 (174.7) 1056 (175.4) 
Int, Lin4 426.4 (82.8) 425.6 (83.8) 
Linear3 303.5 (51.8) 303.2 (52.5) 
Int, Quad4 -27.01 (22.5) -26.94 (23.2) 
Lin, Quad4 3.60 (12.6) 3.98 (13.2) 
Quadratic3 9.44 (10.6) 10.47 (10.9) 
PE Intercept5 413.5 (127.9) 413.0 (127.8) 
PE Int, Lin5 108.5 (59.7) 108.1 (59.7) 
PE Lin5 75.47 (38.3) 75.04 (38.3) 
Residual6 43.46 (0.88) 43.46 (0.88) 
1Order of the polynomial used as the mean regression of age on weight. 
2REML log-likelihood obtained from ASReml. 
3Direct genetic variance for the intercept, linear and quadratic (SE). 
4Direct genetic covariance between the intercept / linear, intercept / quadratic and linear 
/ quadratic terms (SE) 
5Permanent environmental intercept variance, intercept / linear covariance, and linear 
variance (SE) 
6Residual variance (SE) 

 

the intercept variance for the permanent environmental effect was 413.5 days2 compared 

to the 268.3 days2 obtained from the HRV model.  The variance attributed to the additive 

genetic effect appears to again be re-partitioned to the error covariance between 

observations.  Much like the linear random regression model, the REML log-likelihood is 

higher for the HRV model (-1477.53) than it is for the LRRR model (-1510.55). 

Observed DTW estimates of genetic variance, phenotypic variance, permanent 

environmental variance and heritability were calculated for each 20 kg increment within 

the range of weight observations, and then plotted versus their corresponding weight 

endpoint.  These plots are shown in Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11.   
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Figure 5.8.  Plot of observed days to weight genetic variance obtained from the quadratic 
random regression of age on weight using both heterogeneous residual variance and 
linear residual random regression. 

 

 

 

 

 
Figure 5.9.  Plot of observed days to weight permanent environmental variance obtained 
from the quadratic random regression of age on weight using both heterogeneous residual 
variance and linear residual random regression. 
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Figure 5.10.  Plot of observed days to weight phenotypic variance obtained from the 
quadratic random regression of age on weight using both heterogeneous residual variance 
and linear residual random regression. 
 

 

 

 

 
Figure 5.11.  Plot of observed days to weight heritability obtained from the quadratic 
random regression of age on weight using both heterogeneous residual variance and 
linear residual random regression. 
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Plots of genetic and permanent environmental variance show the differences in 

genetic variance between the two residual variance models are due to a re-partitioning of 

variation from the genetic variance in the HRV model to permanent environmental 

variance in the LRRR model.  The differences between the plots in Figure 5.8 are the 

same magnitude as the differences seen in the permanent environmental variance in 

Figure 5.9.  Further evidence of this trend is shown in Figure 5.10 where the phenotypic 

variance estimates obtained from both residual variance models are the same.  This re-

partitioning has the effect of reducing the magnitude of the heritability estimates (Figure 

5.11) observed with increasing weight, where at the maximum weight observation of 863 

kg, heritability has been reduced from 0.92 in the HRV model to 0.76 in the LRRR model. 

 

Random Regression Model Selection. The above sections illustrate the point that 

a linear fixed regression was sufficient in accounting for the mean relationship between 

age and weight for both the linear and quadratic random regression models where 

residual variance is modeled as a random regression and as four distinct residual variance 

sub-classes.   

LRT were conducted to determine the statistically significant random regression 

order with results from these tests presented in Table 5.10.  Requirements of LRT state 

that models being tested have equivalent fixed effect specifications as well as no 

differences in data.  Given this requirement and the results presented earlier in this 

chapter, comparisons were made between the quadratic and linear random regression 

models using the data set requiring three or more observations (the necessary number of 

data points to fit a quadratic polynomial) per animal.  Since the linear fixed regression  
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Table 5.10.  REML log likelihood (logL) estimates and associated significance 
values used to determine the random regression order for the days to weight 
evaluation for both the heterogeneous residual variance and linear residual random 
regression models. 

  
Heterogeneous Residual 

Variance1 
Linear Residual Random 

Regression1 
Full Model logL2 -1477.53 -1510.55 
Reduced Model logL2 -1480.86 -1512.62 
DF3 3 3 
LRT Test Statistic3 6.66 4.14 
P-value3 0.0836 0.2467 
1Comparisons reported here are from the comparison between the linear and 
quadratic random regression models. 
2Full and reduced model correspond to the more complex versus simpler models, 
respectively. 
3Likelihood ratio test statistic and associated P-values obtained from a Chi-square 
distribution with degrees of freedom equal to the difference in the number of 
parameters between the two models. 

 

 

polynomial was the highest significant order for both the linear and quadratic random 

regressions, LRT comparisons between the linear and quadratic random regression 

models were made using this polynomial. 

Comparing the two random regression orders for the model containing HRV in 

Table 5.10, the addition of the quadratic term approached significance (p-value = 0.0836) 

at the 0.05 level.  The addition of the quadratic random regression term to the LRRR 

model was less significant with the p-value of 0.2467.  These results suggest that the 

addition of the linear random regression for permanent environment to the LRRR model 

is accounting for more of the variability in days than the HRV model is accounting for.  

As such, the additional variation that has been captured with this model is non-genetic 

resulting in the lack of ability of higher order random regression terms to significantly 

account for additional genetic variation in days.  Even examination of the scatter plot of  
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Figure 5.12.  Plot of age and weight observations that were analyzed in the days to 
weight genetic evaluation using a cubic random regression model. 
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approximately 360 kg to 660 kg, differences in genetic and phenotypic variance obtained 

from the two different residual variance models are small.  Outside of this range, 

particularly on the upper end of the weight range, weight observations become 

increasingly sparse resulting in the genetic and phenotypic variance estimates from the 

linear and quadratic random regressions becoming more variable.  This variability may 

be due to the nature of the higher order polynomials becoming unwieldy near the limits 

of the data as they have a tendency to place a large emphasis on observations at the tails 

of the polynomial (Meyer, 1997; 2005). 

Permanent environmental variance estimates for the HRV model (Figure 5.14) 

and the LRRR model (Figure 5.18) are nearly identical between the linear and quadratic 

random regressions.  Moving on to the plots of heritability (Figure 5.16 for the HRV 

model and Figure 5.20 for the LRRR model), virtually no differences are observed 

between the linear and quadratic random regressions.   

Given the lack of difference in heritability estimates and the results from the LRT 

presented above in Table 5.10, the linear random regression model is sufficient for the 

prediction of DTW for both the HRV model and the LRRR model. 
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Figure 5.13.  Plot of genetic variance (d2) versus weight obtained from the linear and 
quadratic random regressions using heterogeneous residual variance for the trait days to 
weight. 
 

 

Figure 5.14.  Plot of permanent environmental variance (d2) versus weight obtained from 
the linear and quadratic random regressions using heterogeneous residual variance for the 
trait days to weight. 
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Figure 5.15.  Plot of phenotypic variance (d2) versus weight obtained from the linear and 
quadratic random regressions using heterogeneous residual variance for the trait days to 
weight. 
 

 

. 

 
Figure 5.16.  Plot of heritability versus weight obtained from the linear and quadratic 
random regressions using heterogeneous residual variance for the trait days to weight. 
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.  
Figure 5.17.  Plot of genetic variance (d2) versus weight obtained from the linear and 
quadratic random regressions using linear residual random regression for the trait days to 
weight. 

 

 

 

 
Figure 5.18.  Plot of permanent environmental variance (d2) versus weight obtained from 
the linear and quadratic random regressions using linear residual random regression for 
the trait days to weight. 
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Figure 5.19.  Plot of phenotypic variance (d2) versus weight obtained from the linear and 
quadratic random regressions using linear residual random regression for the trait days to 
weight. 

 
 
 
 
 

 
Figure 5.20.  Plot of heritability versus weight obtained from the linear and quadratic 
random regressions using linear residual random regression for the trait days to weight. 
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The question that remains to be answered is which residual variance model is 

appropriate most appropriate for the evaluation of DTW.  Sire EBV for DTW were 

calculated from both residual variance models for each 20 kg increment in the range of 

weight observations (293 kg to 863 kg).  EBV corresponding to weight endpoints of 293, 

573 and 863 kg were correlated to one another with the results presented in Table 5.11 

below.  Correlation coefficients between both residual variance models were very high, 

ranging from 0.993 for the weight endpoint 863 kg to 0.996 for the 293 kg weight 

endpoint.  Spearman rank correlation coefficients are high as well, and looking at the 

coefficients for the 573 kg and 863 kg weight endpoints, no additional re-ranking is 

occurring between animal EBV.   

 

Table 5.11.  Correlation coefficients along with the EBV regression coefficient from 
the regression of EBV obtained from the heterogeneous residual variance model on 
those EBV obtained from the linear residual random regression model for each of 
three weight endpoints representing minimum, median and maximum observations. 
 293 kg 573 kg 863 kg 
Pearson Correlation 0.996 0.994 0.993 
Spearman Rank 0.992 0.990 0.990 
Regression 0.999 1.150 1.110 

 

Regression coefficients obtained from these EBV comparisons are interesting.  At 

the weight endpoint of 293 kg, the two sets of EBV are predicting one another nearly 

perfectly with a 1 unit increase in EBV obtained from the LRRR model corresponding to 

a 0.999 unit increase in EBV obtained from the HRV model.  As we increase weight 

endpoint, we can see that the EBV obtained from the LRRR model are under-predicting 

the EBV obtained from the HRV model.  This trend is most likely a function of the 

higher heritability estimates for the HRV model.  Increasing heritability results in an 
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increase in the spread of the resulting breeding values.  Referring back to Figure 5.7, we 

can see that beginning with the weight endpoint of approximately 490 kg, the HRV 

model predicts a higher heritability estimate than the LRRR model for corresponding 

endpoints.  This difference in heritability increases as weight increases, and at the weight 

endpoint of 863 kg, the maximum weight observation in this data set, the difference in 

heritability between the two models is 0.17.   

As another point of comparison between each of the residual variance models, 

DTW EBV were calculated from each model for 20 kg increments across the entire 

feeding period.  Figure 5.21 contains the plots for each of the 5 most used sires in the 

pedigree while Figure 5.22 contains the plots of DTW EBV for each of the 5 least used 

sires in the pedigree.  Looking at these plots, we can see that for the most heavily used 

sires in the data set (averaging 38.4 progeny per sire) the residual variance model has 

virtually no effect on the prediction of DTW EBV.  For animal CA974986, there looks to 

be a rather large difference, but this is a result of the scale of the graph with the largest 

difference being only 2 days.  For the least used sires in Figure 5.22 (averaging 2 progeny 

per sire), EBV obtained from the LRRR model are regressed more toward zero meaning 

that estimates of breeding value for sires with very few progeny are more conservative 

when they are obtained from the LRRR model than they are from the HRV model. 
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Comparison to Repeated Measures Model.  In an effort to compare the results for 

the genetic evaluation of DTW using random regression to a more traditional model, a 

repeated measures analysis was performed using the same weight data set that was used 

for the linear random regression model (see Table 5.1 for a description).   

Heritability estimates obtained from a repeated measures model are endpoint 

indifferent; meaning no matter the endpoint heritability remains constant.  However, 

depending on the endpoint of interest, variance estimates are scaled according to the 

magnitude of the observations.  These properties of the repeated measures model, 

resulted in the age observations being adjusted to a constant weight endpoint of 500 kg.  

This endpoint was chosen because it is in the middle of the distribution of weight 

observations (Figure 5.1), a location where these observations are most dense, resulting 

in the most stable predictions obtained from the random regression model. 

Repeated measures model estimates of genetic variance and heritability for the 

number of days to reach 500 kg were 460 ± 73.4 days2 and 0.66 ± 0.09, respectively.  

Genetic variance and heritability estimates from the HRV linear random regression 

model for the number of days to reach 500 kg were 420 ± 46.4 days2 and 0.68 ± 0.06, 

respectively.  Genetic variance and heritability estimates from the LRRR model for the 

number of days to reach 500 kg were 383 ± 61.37 days2 and 0.64 ± 0.08, respectively. 

Comparing all three sets of values, the estimates of genetic variance and 

heritability are well within the standard errors of one another which is evidence the 

random regression models are estimating the same trait as the repeated measures model.  

The HRV model is over-estimating the heritability for the number of days to reach 500 

kg in comparison to the repeated measures model.  Heritability estimated by the LRRR 
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model is lower than the repeated measures model.  When comparing all three values, 

there is virtually no difference between the estimates when the standard errors are 

considered. 

 

Summary 

This chapter has presented the results from the development of a DTW genetic 

evaluation using RR with Legendre polynomials as the base random regression 

polynomial function.  Two differing procedures were used to model the residual variation 

for DTW for both linear and quadratic random regression models.  The first residual 

variance sub-model, the HRV grouped observations into four groups based on their 

quartile tended to inflate estimates of heritability, particularly for the upper end of the 

weight range.  The LRRR, which modeled the changing residual covariance with 

increasing weight, resulted in more realistic heritability estimates.  The model containing 

the LRRR appears to be most appropriate for this data set given the resultant heritability 

estimates.  However, which is best?   

Several studies have illustrated the necessity of accounting for changing residual 

variance structure (Olori et al., 1999; Jamrozik et al., 1997; Rekaya et al., 2000).  Olori et 

al., 1999 determined the assumption of the homogeneity of residual variance would bias 

the resulting heritability estimates upward or downward.  Perhaps this is why the 

heritability estimates obtained from the HRV model are inflated when compared to the 

LRRR model.  The LRRR model accounts for the residual covariance within the estimate 

of permanent environmental variance.  Figure 5.5 illustrates the magnitude of these 

effects with the permanent environmental variance increasing approximately 400 days2 
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over the permanent environmental variance from the HRV model.  This shows that the 

assumption of homogeneous residual variance within each residual variance sub-group in 

the HRV model may not hold, and is likely causing the elevated heritability estimates.  

Therefore, I am recommending the linear random regression model containing the LRRR 

for use in a national cattle evaluation scheme because of the more realistic heritability 

estimates and more conservative breeding value estimates for low accuracy sires. 
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CHAPTER VI 

DAYS TO FINISH ENDPOINT

 

Introduction 

Very little research has been published related to reducing the number of days to 

reach a specific finish endpoint in the feedlot other than that related to increasing ADG.  

The term “finish endpoint” is a catch-all phrase and can refer to any point in the life cycle 

of livestock in which the farmer / rancher / producer has determined an animal to be 

ready for harvest, thereby hopefully maximizing profits for their operation and marketing 

program.  These endpoints can range from weight, back fat, marbling, rib eye area, to 

yield grade, etc.  The swine industry has been the leader in days to finish research with 

genetic evaluations for the number of days to reach harvest weight, weaning and breeding 

endpoints (Stewart et al., 1991; Harris and Newman, 1994; STAGES, 2006).  All three 

evaluations are for various weight endpoints.   

Contrary to days to finish research in the swine industry, research in the beef 

industry has been severely limited.  Even so, two studies were uncovered which looked at 

the number of days to reach a constant back fat.  McWhir and Wilton (1987) found the 

heritability for the number of days to reach a back fat depth of 7 mm to be 0.65, which 

increased to 0.90 when the trait was adjusted to a constant market weight.  Johnston et al. 

(1992) found the heritability for the number of days to reach 8.9 mm of back fat to be 

0.24.   
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This lack of previously published research for days to finish in beef cattle is 

puzzling given its economic relevance (Golden et al., 2000).  The objective of this study 

was to use random regression techniques in the creation of genetic predictions for both 

days to back fat and days to rib eye area using ultrasound measurements from a field data 

set.  

 

Methodology 

Genetic predictions for days to ultrasound rib eye area (DTUREA) and days to 

ultrasound back fat (DTUBF) were built using the ultrasound data set previously 

described in Chapter IV.  The initial raw data set consisted of pedigree and multiple 

ultrasound observations on 1,375 individual animals.   

Following the days to weight genetic prediction described in Chapter V two 

differing evaluations were implemented for the evaluation of DTUREA and DTUBF.  

First, random regression models were used to predict the genetic merit of individual 

animals for both traits.  Here, two model subsets were implemented using alternate 

approaches to account for residual variation.  Residual variance was modeled both 

heterogeneously by assigning observations to four different groups (HRV) and by using a 

linear random regression on residuals (LRRR) which allows for changing residual 

variance.  The advantage of LRRR models is that they allow for the residual variance to 

change with increases in the predictor variables, and they account for the changing error 

covariances as observations become farther apart from one another.  Second, in an effort 

to make comparisons to the random regression models, a more traditional repeated 

measures model was used to evaluate DTUREA and DTUBF.  Here, age observations 
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were used to adjust ultrasound rib eye area and ultrasound back fat observations to to 

age-constant measurements. 

Model building exercises used in the days to weight evaluation (Chapter V) were 

also implemented here for the ultrasound traits.  Descriptions of both random regression 

models as well as the repeated measures model along with associated significance tests 

are described in Chapter V and are omitted here to avoid duplication. 

 

Results and Discussion 

For the evaluation of both DTUREA and DTUBF, the final weight data set 

described in Chapter IV was subset, removing individual animals who did not possess the 

proper number of observations to fit the random regression line.  Depending on the order 

of the random regression, individual animals were removed from the data set if they had 

fewer than five, four, three or two observations for the quartic, cubic, quadratic and linear 

random polynomials, respectively.  In order to use likelihood ratio tests to make 

comparisons between the models, a forward stepwise regression algorithm was 

implemented.  This algorithm is the same as was performed for the days to weight 

chapter and is shown below. 

1) Animals with fewer than two observations were removed from the data set. 

a. A linear random regression of age on ultrasound observation was 

implemented. 

2) In subsequent analyses, animals with fewer than three observations were removed 

from the data set. 



 

 162 

3) Random regressions were modeled using the data set containing animals from 

step two. 

a. First, a quadratic random regression model was fit identifying the proper 

order of the fixed regression. 

b. Second, a linear random regression model was fit using the fixed 

regression polynomial order chosen in 3a. 

c. LRT between the linear and quadratic random regression models were 

performed to determine whether the quadratic terms should be dropped 

from the regression.  Significance levels were set at P = 0.05. 

4) If the results from the LRT suggested the quadratic random regression term 

should be included in the model, the algorithm was repeated beginning with step 

two removing animals with fewer than the four observations needed to fit a cubic 

polynomial. 

a. A quartic random regression is the highest order polynomial considered 

for inclusion due to restrictions on the required number of observations 

needed by individual animals.   

5) If the results from the LRT suggested the quadratic (or higher) term should not be 

included in the model, the process was ended. 

 

Sub-setting the data in this manner resulted in four individual ultrasound data sets 

whose summary statistics are shown in Table 6.1.  As a benchmark for making 

comparisons, summary statistics for the all ultrasound data are included in the table as 

well.  Realizing that higher order regressions require more observations per animal, with  
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Table 6.1.  Summary statistics for the average number of observations for each of the 
individual regression data sets, ranging from all data to requiring individual animals to 
possess five or more observations, the number needed for a quartic regression. 
  All Data 5+ 4+ 3+ 2+ 
N1 7,374 6,600 7,340 7,361 7,373 
N Animals2 1,324 1,125 1,310 1,317 1,323 
Mean3 5.57 5.87 5.6 5.59 5.57 
Minimum3 1 5 4 3 2 
Maximum3 9 9 9 9 9 
1Total number of records in the data set. 
2Number of unique animals in the data set. 
3Mean, minimum and maximum number of observations per animal. 

 

the quartic random regression requiring individual animals to have five or more 

observations.  The data point requirement for a quartic random regression resulted in the 

removal of 199 individual animals representing a total of 774 observations when 

compared to the full data set.  With that restriction an entire year’s worth of data (2002 – 

2003) is removed from the evaluation.  Requiring four or more observations for the cubic 

random regression results in the removal of 34 observations from 14 animals.  A total of 

13 observations are removed in order to fit a quadratic random regression while only one 

animal is removed while fitting a linear random regression.  Similar trends were seen in 

the weight data set from Chapter V, although not as severe, meaning animals possessed 

more useable weight observations than they do useable ultrasound observations. 

One of the random regression sub-models, the HRV, used four residual variance 

classes of grouped observations.  Initial attempts at forming these classes were performed 

by visual inspection of the data distribution of both UREA and UBF observations.  

Histograms provided below show the distribution for UREA (Figure 6.1) and UBF 

(Figure 6.2).  These figures indicate UREA observations to be fairly normally distributed  
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Figure 6.1.  Histogram of ultrasound rib eye area observations used in the days to rib eye 
area genetic evaluation. 
 

 

while the UBF observations seem to be clustered around lower levels of back fat with a 

heavy tail extending all the way out to approximately 30 mm of back fat thickness.  

Neither figure indicates any sort of naturally occurring break point for the specification of 

residual variance groups; therefore, as was performed with the days to weight genetic 

prediction, data points were divided according to quartiles.  Quartiles for the UREA data 

were divided at the breakpoints of 64.55, 72.71 and 81.48 cm2.  These points resulted in 
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1,844, 1,844, 1,844 and 1,841 UREA observations to be placed in the first, second, third 

and fourth quartiles, respectively.   

UBF data was divided into each of the quartiles according to the breakpoints of 

5.61, 7.97, and 11.04 mm resulting in quartile sizes of 1,852, 1,839, 1,839 and 1,843 

observations in the first, second, third and fourth quartiles, respectively. 

 

 
Figure 6.1.  Histogram of ultrasound rib eye area observations used in the days to rib eye 
area genetic evaluation. 
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Linear Random Regression.  A linear random regression was implemented using 

the ultrasound data set that contained only those individuals possessing two or more 

observations described above in Table 6.1.  This data set included 7,373 age and 

ultrasound observations on 1,323 individual animals resulting in an average of 5.57 

observations per animal.  Summary statistics for this data set are shown below in Table 

6.2.  Similar to the days to weight genetic prediction, the range of ages is 276 days to 519 

days.   

 

Table 6.2.  Summary statistics for age, ultrasound rib eye area and 
ultrasound back fat used in the linear random regression for the days to 
"finish" genetic prediction 
  Age (d) UREA1 UBF2 
N 7,373 7,373 7,373 
Average 394.1 73.39 8.71 
Variance 1,960.5 135.64 16.40 
Minimum 276 36.77 1.53 
Maximum 519 129.54 30.47 
1Ultrasound rib eye area. 
2Ultrasound back fat. 

 

Ultrasound contemporary groups were formed on the basis of feedlot pen, year of 

test and breed composition (see Chapter IV for more detailed information on the 

formation of contemporary groups).  Formation of contemporary groups in this manner 

resulted in 62 unique groups averaging 21.3 animals per group.  For the purpose of 

estimating days to finish variance components, a 4-generation pedigree was built from 

the final ultrasound data set.  This final pedigree consisted of 5,414 individual animals, 

1,386 unique sires and 2,705 unique dams.  The average inbreeding for the animals in this 
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pedigree was 1.5% with minimum and maximum inbreeding levels of 0% and 25%, 

respectively. 

Beginning with the linear fixed regression model; genetic, permanent 

environmental and residual variance estimates were obtained from both the HRV and the 

LRRR models for each of the increasing fixed regression polynomial orders. 

 

Table 6.3.  Best linear unbiased estimates and associated significance values for the 
different fixed regression polynomial orders obtained from the linear random regression 
of age on ultrasound rib eye area using both heterogeneous residual variance and linear 
residual random regression. 

Polynomial Last 
   Order1 Coefficient2 SE2 F3 P-value 

Heterogeneous Residual Variance 
1 130.00 1.73 5672.90 0.00 
2 -25.13 1.50 290.32 0.00 
3 -17.40 1.60 118.11 0.00 
4 12.57 1.50 70.24 0.00 
5 -3.28 1.39 5.64 0.02 
6 -4.42 1.30 11.65 0.00 
7 -1.74 1.23 2.02 0.16 

     Linear Residual Random Regression 
1 131.50 1.71 5899.89 0.00 
2 -25.83 1.55 278.78 0.00 
3 -18.33 1.69 117.36 0.00 
4 13.19 1.59 69.08 0.00 
5 -3.09 1.47 4.44 0.04 
6 -4.57 1.37 11.07 0.00 
7 1.71 1.31 1.72 0.19 

1Order of the fixed regression polynomial 
2Best linear unbiased estimates and standard errors corresponding to the highest order 
term in the fixed regression. 
3Fdistribution test statistic and associated P-value 

 

Test statistics and associated p-values corresponding to each of these fixed regression 

polynomials are shown in Table 6.3 and Table 6.4 for DTUREA and DTUBF, 
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respectively.  Considering the results shown in Table 6.3 for DTUREA, the highest order 

fixed regression polynomial accounting for a significant amount of variation in days is a 

6th order polynomial.  This order is the same for both the heterogeneous residual variance 

model as well as the residual random regression model.  Between the two models, 

estimates were similar.  

 

Table 6.4.  Best linear unbiased estimates and associated significance values for the 
different fixed regression polynomial orders obtained from the linear random regression 
of age on ultrasound back fat using both heterogeneous residual variance and linear 
residual random regression. 

Polynomial Last 
   Order1 Coefficient2 SE2 F3 P-value 

Heterogeneous Residual Variance 
1 183.10 2.91 3969.95 0.00 
2 -37.25 1.32 792.74 0.00 
3 6.26 1.23 25.82 0.00 
4 -7.09 1.04 46.12 0.00 
5 8.04 0.97 68.79 0.00 
6 -1.07 1.09 0.96 0.33 

     Linear Residual Random Regression 
1 187.60 3.04 3803.18 0.00 
2 -44.12 1.60 765.16 0.00 
3 8.05 1.31 37.67 0.00 
4 -7.71 1.14 45.57 0.00 
5 7.99 1.06 56.94 0.00 
6 -0.48 1.19 0.16 0.69 

1Order of the fixed regression polynomial 
2Best linear unbiased estimates and standard errors corresponding to the highest order 
term in the fixed regression. 
3Fdistribution test statistic and associated P-value 

 

For the trait DTUBF (Table 6.4), a 5th order fixed regression polynomial was 

sufficient in accounting for variation of the mean relationship between age and back fat.  

This is lower than the order needed for ultrasound rib eye area, but not surprising given 
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that ultrasound back fat has less variability than ultrasound rib eye area as evidenced by 

their histograms shown above in Figure 6.1 and Figure 6.2.  Comparing the DTUBF 

models containing the heterogeneous residual variance structure and residual random 

regressions, the 5th order fixed regression order was sufficient for both models and 

estimates between the two models were very similar. 

Variance estimates obtained for the trait DTUREA from both the heterogeneous 

residual variance model and residual random regression model are shown below in Table 

6.5 and Table 6.6, respectively.  In both tables, estimates are presented for each of the 

seven polynomials discussed above (Table 6.3).  Estimates from the lower fixed 

polynomials (first and second orders) fluctuated wildly, but with further increasing order 

the variance estimates stabilized with increasing fixed regression order, with the genetic 

covariance between the intercept and linear random regression terms being the last to 

stabilize.  This was true for both residual variance models.  Once the fixed regression 

order was increased to a 6th order polynomial, very little changes were observed by 

increasing the order higher as was suggested by the significance testing results (Table 

6.3). 

Focusing on the estimates from the 6th order fixed regression model, additional 

differences can be observed between the heterogeneous residual variance model and the 

residual random regression model.  First, the average estimate of residual variance from 

the heterogeneous residual variance model (442.2 days2) is very similar to the estimate 

obtained from the residual random regression model (439.7 days2).  The residual random 

regression model contained a higher intercept genetic variance estimate than the 

heterogeneous residual variance model (643.3 days2 versus 578.9 days2) and a lower 
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estimate of linear genetic variance as well as the genetic covariance between the intercept 

and linear random regression terms.  An interesting observation is the estimate standard 

errors obtained from the residual random regression model are much smaller than those 

obtained from the heterogeneous residual variance model suggesting perhaps that the 

residual random regression model is doing a better job at estimating these variances. 
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Variance estimates obtained for the trait DTUBF are shown below in Table 6.7 

and Table 6.8.  Here, the estimates are presented in the same manner as for DTUREA for 

each of the fixed regression polynomials and for both the HRV and LRRR models.  For 

both residual variance sub-models, genetic variance estimates fluctuated greatly between 

the low fixed regression orders.  Then as the order of the fixed regression increased above 

a quadratic, this fluctuation subsided, and by a 5th order polynomial, the order suggested 

by the significance tests (Table 6.4), both variance and covariance estimates stabilized to 

the point where the addition of higher order terms changed very little. 

According to the significance testing shown above in Table 6.4, the highest order 

fixed regression term accounting for a significant amount of variation in DTUBF was the 

5th order polynomial.  Estimates for both the HRV model and the LRRR model show 

similar trends to those obtained in the DTUREA evaluation.  The average estimate from 

the four residual variance classes from the HRV model was 505.2 days2.  This is very 

similar to the residual variance estimate obtained from the LRRR model of 513.3 days2.  

The intercept for the permanent environmental variance from the LRRR model was much 

smaller than the estimate obtained from the HRV model (112.3 days2 versus 482.0 days2).  

Also, as was mentioned earlier, the estimate standard errors are much smaller from the 

LRRR model than from the HRV model, suggesting that the estimates from the residual 

random regression model were estimated more precisely 
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In order to make comparisons between the residual random regression model and 

heterogeneous residual variance models, observed genetic variance, phenotypic variance, 

permanent environmental variance and heritability were calculated.  These estimates 

were plotted versus their respective endpoint for DTUREA and DTUBF. For the trait 

DTUREA, both sub-models produced variance and heritability estimates very similar to 

one another.  Genetic variance (Figure 6.3) was nearly identical between the two models 

as was heritability (Figure 6.6).  Permanent environmental variance (Figure 6.4) was 

obviously different given the inherent differences between the two models, even though 

the scale of the graph tends to exaggerate these differences making them appear larger.  

Estimates of phenotypic variance (Figure 6.5) obtained from the LRRR model tended to 

be higher than those obtained from the heterogeneous residual variance model, by a 

magnitude of approximately 100 days2 across the entire range of observations. 

 

 
Figure 6.3.  Plot of observed days to ultrasound rib eye area genetic variance obtained 
from the linear random regression of age on ultrasound rib eye area using models 
containing both heterogeneous residual variances as well as linear residual random 
regression. 
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Figure 6.4.  Plot of observed days to ultrasound rib eye area permanent environmental 
variance obtained from the linear random regression of age on ultrasound rib eye area 
using both heterogeneous residual variance and linear residual random regression. 
 

 

 

 

 
Figure 6.5.  Plot of observed days to ultrasound rib eye area phenotypic variance 
obtained from the linear random regression of age on ultrasound rib eye area using both 
heterogeneous residual variance and linear residual random regression. 
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Figure 6.6.  Plot of observed days to ultrasound rib eye area heritability obtained from 
the linear random regression of age on ultrasound rib eye area using both heterogeneous 
residual variance and linear residual random regression. 
 

For DTUBF, estimates of observed genetic variance (Figure 6.7) differ more 

between the two sub-models.  For lower amounts of deposited fat, the LRRR model 

predicted higher genetic variance in days by about 200 days2 (at the endpoint of 1.53 

mm).  As the target amount of back fat increases, the two models re-rank resulting in the 

HRV model predicting higher genetic variation in days by 232 days2 for the upper end of 

fat deposition.  The models re-ranked at the endpoint 18 mm of back fat.  Estimates of 

permanent environmental variance (Figure 6.8) from the LRRR model were lower than 

those from the HRV model.  At the upper end of fat deposition in this data set, the 

permanent environmental decreases to nearly zero meaning there are no longer any 

permanent environmental influences in fat deposition.  Perhaps this is due to the nature in 

which the animals were deemed ready for harvest, mostly by visual appraisal.   
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Figure 6.7.  Plot of observed days to ultrasound back fat genetic variance obtained from 
the linear random regression of age on ultrasound back fat using both heterogeneous 
residual variances and linear residual random regression. 
 

 

 

 

 
Figure 6.8.  Plot of observed days to ultrasound back fat permanent environmental 
variance obtained from the linear random regression of age on ultrasound back fat using 
both heterogeneous residual variance and linear residual random regression. 
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Figure 6.9.  Plot of observed days to ultrasound back fat phenotypic variance obtained 
from the linear random regression of age on ultrasound back fat using both heterogeneous 
residual variance and linear residual random regression. 
 

 

 

 
Figure 6.10.  Plot of observed days to ultrasound back fat heritability obtained from the 
linear random regression of age on ultrasound back fat using both heterogeneous residual 
variance and linear residual random. 
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Given the differences in genetic and permanent environmental variance, estimates 

of phenotypic variance (Figure 6.9) obtained from the two models tend to agree with one 

another for the leaner cattle.  As the target UBF endpoint increases, the HRV model 

begins to result in higher estimates of phenotypic variation for cattle with more than 20 

mm of fat thickness.  For the UBF endpoint range of 12 to 22 mm, both residual variance 

sub-models resulted in approximately the same phenotypic variance estimate.  In the 

range of UBF observations where the data was most dense, the LRRR model gave higher 

heritability estimates.  As the UBF endpoint increases data density decreases, and it is in 

this range where the LRRR model resulted in lower heritability estimates than the HRV 

model. 

 

Quadratic Random Regression.  Following the linear random regression, a 

quadratic random regression was implemented using the data set sifted to require three or 

more observations on individual animals for both DTUREA and DTUBF (see Table 6.1).  

This data set contained 7,361 age and ultrasound observations on 1,317 individual 

animals averaging 5.59 observations per individual.  Age and ultrasound measurement 

summary statistics are shown below in Table 6.9.  Compared to the data set used in the 

linear random regression model, the requirement of three or more observations on 

individual animals reduced the total number of animals in the final data set by six 

resulting in 12 fewer observations.  Contemporary group numbers from this restricted 

data set are the same as observed with the data set used in the linear random regression 

containing 62 unique contemporary groups.  Here, the average number of animal per 

group is slightly  
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Table 6.9.  Summary statistics for age, ultrasound rib eye area and 
ultrasound back fat used in the quadratic random regression for the days to 
"finish" genetic prediction 
  Age (d) UREA1 UBF2 
N 7,361 7,361 7,361 
Average 394.2 73.41 8.71 
Variance 1,959.1 135.57 16.42 
Minimum 276 36.77 1.53 
Maximum 519 129.54 30.47 
1Ultrasound rib eye area. 
2Ultrasound back fat. 

 

smaller 21.2 animals per group, compared to the 21.3 animals per group in the linear 

random regression data set. 

For the purpose of estimating variance components, a 4-generation ancestral 

pedigree was built from this final data file.  The resulting pedigree contained 5,408 

individual animals with 1,386 unique sires and 2,706 unique dams.  The average 

inbreeding coefficient in this pedigree was 1.5% with minimum and maximum 

inbreeding levels of 0% and 25%, respectively. 

Similar to the linear model, direct genetic (co) variance estimates were obtained 

for the quadratic random regression model.  These estimates contained intercept, linear 

and quadratic genetic variances estimates as well as all associated covariances for both 

the HRV model as well as the LRRR model.  Here again, appropriate fixed regression 

orders were obtained for both DTUBF and DTUREA.  Since random regression models 

are intended to model deviations around the phenotypic trajectory (Schaeffer, 2003), 

Gilmour (2009) suggests their order not be less than the order specified in the random 

terms.  Starting with the quadratic fixed regression model, incrementally higher fixed 

regression orders were included in the evaluation until the test statistics and associated p- 
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Table 6.10.  Best linear unbiased estimates and associated significance values for the 
different fixed regression polynomial orders obtained from the quadratic random 
regression of age on ultrasound rib eye area using both heterogeneous residual variance 
and linear residual random regression. 

Polynomial Last 
   Order1 Coefficient2 SE2 F3 P-value 

Heterogeneous Residual Variance 
14     
2 -27.37 1.62 293.85 0.00 
3 -40.06 1.96 419.45 0.00 
4 12.99 1.93 45.11 0.00 
5 -2.33 1.74 1.66 0.19 

     Linear Residual Random Regression 
14 

    2 -29.38 1.19 608.43 0.00 
3 -41.52 2.02 422.49 0.00 
4 13.45 1.99 45.50 0.00 
5 -2.08 1.80 1.34 0.25 

1Order of the fixed regression polynomial 
2Best liner unbiased estimated and standard error corresponding to the highest order 
term in the fixed regression 
3Fdistribution test statistic and associated P-value 
4Fixed regression order omitted because it is lower than the order of the regression 
specified in the random terms. 

 

values show the increased order did not account for any additional variation.  The 

estimates for DTUREA are shown below in Table 6.10. 

For the trait DTUREA using the quadratic random regression model, the 4th order 

fixed regression polynomial was sufficient in describing the mean relationship between 

age and UREA for both the HRV model and the LRRR model.  This order is lower than 

that from the linear random regression model where a 6th order polynomial was needed to 

sufficiently describe the relationship between age and UREA.   

The estimates for DTUBF are shown below in Table 6.11.  Here, some strange 

behavior is observed as the fixed polynomial orders are increased.   
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Table 6.11.  Best linear unbiased estimates and associated significance values for the 
different fixed regression polynomial orders obtained from the quadratic random 
regression of age on ultrasound back fat using both heterogeneous residual variance and 
linear residual random regression. 

Polynomial Last 
   Order1 Coefficient2 SE2 F3 P-value 

Heterogeneous Residual Variance 
14 

    2 -44.57 1.67 715.71 0.00 
3 -1.26 1.45 0.76 0.38 
4 -7.62 1.14 44.49 0.00 
5 8.04 0.99 66.08 0.00 
6 -0.83 1.08 0.59 0.44 

     Linear Residual Random Regression 
14 

    2 -49.22 2.11 543.12 0.00 
3 0.34 1.77 0.03 0.85 
4 -9.46 1.32 51.47 0.00 
5 8.66 1.17 54.90 0.00 
6 -0.70 1.25 0.32 0.57 

1Order of the fixed regression polynomial 
2Best liner unbiased estimated and standard error corresponding to the highest order 
term in the fixed regression  
3Fdistribution test statistic and associated P-value 
4Fixed regression order omitted because it is lower than the order of the regression 
specified in the random terms. 

 

As the order of the polynomial is increased from a quadratic to a cubic, according to the 

significance tests, the cubic term does not significantly account for any additional 

variation in age over the previously fitted quadratic term.  A quick look shows Legendre 

polynomial genetic variance estimates are still changing.  Increasing the polynomial 

further shows the 4th and 5th order polynomials are accounting for variation in days, and 

once we reach the 6th order polynomial, higher order terms are no longer significant and 

the estimates of genetic variance have stabilized (see Table 6.14 and Table 6.15). 
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Variance estimates for DTUREA corresponding to the HRV model (Table 6.12) 

and LRRR model (Table 6.13) are shown below.  Both tables contain the estimates 

obtained from the fixed regression orders where significance values were reported above 

in Table 6.10.  Genetic variance estimates obtained from the HRV model appear to 

stabilize as the order of the fixed regression model increases.  Also, fixed regression 

orders above a quadratic polynomial sent the estimate of permanent environmental 

variance to zero suggesting the absence of any non-genetic permanent environmental 

effects influencing DTUREA. 

The effect of increasing fixed regression orders on DTUREA variance estimates 

using LRRR (Table 6.13) indicated more variable changes are observed with increasing 

orders of the fixed regression when compared to the linear DTUREA model.  Here, 

estimates of variance seem to fluctuate wildly, especially where the covariances are 

concerned.  Once the fixed regression order is increased to a 5th order polynomial, the 

first non-significant order, the genetic variance estimates for the linear, quadratic and 

linear-quadratic covariance, seem to be largely inflated.  For the LRRR model this erratic 

behavior is perhaps due to the fact that the quadratic random regression is not 

significantly accounting for any additional variation in days, a point that will be 

addressed in more detail later on in the chapter. 

Observed DTUREA genetic variance, permanent environmental variance, 

phenotypic variance and heritability were calculated for the range of UREA (35 cm2 to 

130 cm2) and are shown below in Figure 6.11, Figure 6.12, Figure 6.13, and Figure 6.14, 

respectively.  Here we see similar trends as were present in the linear random regression 

for DTUREA presented earlier.   
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Figure 6.11.  Plot of observed days to ultrasound rib eye area genetic variance obtained 
from the quadratic random regression of age on ultrasound rib eye area using models 
containing both heterogeneous residual variances as well as linear residual random 
regression. 
 

 

 

 
Figure 6.12.  Plot of observed days to ultrasound rib eye area permanent environmental 
variance obtained from the quadratic random regression of age on ultrasound rib eye area 
using models containing both heterogeneous residual variances as well as linear residual 
random regression. 
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Figure 6.13.  Plot of observed days to ultrasound rib eye area phenotypic variance 
obtained from the quadratic random regression of age on ultrasound rib eye area using 
models containing both heterogeneous residual variances as well as linear residual 
random regression. 
 

 

 

 
Figure 6.14.  Plot of observed days to ultrasound rib eye area heritability obtained from 
the quadratic random regression of age on ultrasound rib eye area using models 
containing both heterogeneous residual variances as well as linear residual random 
regression. 
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Variance estimates obtained from both the HRV and LRRR models are nearly 

identical.  The figure containing the observed estimates of permanent environmental 

variance, Figure 6.12, is the only figure that presents any sort of differences.  Permanent 

environmental variance estimated from the LRRR model begins at 37.7 days2 and 

approaches zero as UREA increases.  The magnitude of this variance is rather low, and 

accounts for very little of the overall phenotypic variation of DTUREA.  This chart 

suggests that while there is some additional non-genetic variation being accounted for in 

DTUREA by the LRRR model, in the overall scheme of things, the amount of variation is 

actually quite low.  The benefit of the residual random regression model is that it properly 

accounts for the changing error covariance structure as UREA increases.  Compared to 

the estimates of variance obtained from the linear random regression model on DTUREA, 

genetic variance obtained from this quadratic random regression typically tended to be 

higher, with a very large spike in variance as UREA increases. 

Variance estimates for DTUBF obtained from the HRV model and LRRR model 

are shown below in Table 6.14 and Table 6.15, respectively.  For both residual variance 

sub-models, variance estimates for the random polynomials tended to stabilize with 

increasing fixed regression orders.  Looking specifically at the variance estimates 

obtained from the HRV model in Table 6.14, an absence of standard errors for the genetic 

variance estimates was observed.  These standard errors were not estimated by the 

software package ASReml.  The estimates were flagged as being on the verge of 

changing from an estimate resulting in a positive definite genetic (co)variance matrix to a 

boundary estimate.  A boundary estimate in ASReml means the software will fix the 

estimate at a small value within the parameter space in an effort to keep the estimated 
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variance matrix positive definite.  It is hypothesized that as sufficient variation in the data 

becomes limiting, proper standard errors are unable to be estimated due to the restrictions 

put on the variance estimates.  Fixing these variance estimates allows ASReml to reach a 

log-likelihood convergence, and as such the estimates are the best point estimate given 

within the parameter space.  Also, similar to the trait DTUREA, the HRV model has the 

permanent environmental variance approaching zero. 

The DTUBF estimates obtained from the LRRR model (Table 6.15) show the 

presence of standard errors associated with each of the genetic variance estimates.  

Perhaps, the modeling of the error covariance with the LRRR model better allows 

ASReml to estimate genetic variance of the random regression within the parameter 

space.  Another difference between the two models is the estimates obtained from the 

LRRR model are much smaller in magnitude than those obtained from the HRV model 

suggesting that some of the variation attributed to genetics in the HRV model may have 

been partitioned to permanent environment in the LRRR model. 

Observed DTUBF genetic, permanent environmental and phenotypic variance 

estimates are presented below in Figures 6.15, 6.16, and 6.17, respectively.  Estimates of 

observed heritability are presented in Figure 6.18.  Here, the LRRR model tended to give 

lower estimates of genetic variance when compared to the heterogeneous residual 

variance model. 
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Figure 6.15.  Plot of observed days to ultrasound back fat genetic variance obtained from 
the quadratic random regression of age on ultrasound back fat using models containing 
both heterogeneous residual variances as well as linear residual random regression on 
residuals. 
 

 

 

 
Figure 6.16.  Plot of observed days to ultrasound back fat permanent environmental 
variance obtained from the quadratic random regression of age on ultrasound back fat 
using models containing both heterogeneous residual variances as well as linear residual 
random regression. 
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Figure 6.17.  Plot of observed days to ultrasound back fat phenotypic variance obtained 
from the quadratic random regression of age on ultrasound back fat using models 
containing both heterogeneous residual variances as well as linear residual random 
regression. 
 

 

 

 
Figure 6.18.  Plot of observed days to ultrasound back fat phenotypic variance obtained 
from the quadratic random regression of age on ultrasound back fat using models 
containing both heterogeneous residual variances as well as linear residual random 
regression. 
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Also, the permanent environmental variance tended to be much higher for the LRRR 

model as opposed to the HRV model.  Phenotypic variance between the two models was 

fairly equal, suggesting again that the inclusion of the error covariance between 

observations re-partitions some of the variation from the genetic component of DTUBF.  

Figure 6.18 contains the observed heritability estimates and shows the LRRR model 

gives more reasonable estimates, even though both models result in a spike in heritability 

as UBF increases.   

One thing interesting about these charts for DTUBF, is the drop in genetic and 

phenotypic variance as well as heritability that occurs between approximately 20 and 28 

mm of UBF.  The animals with UBF observations above 20 mm are all Angus animals.  

There were a total of 92 UBF observations with observations of 20 mm and greater, 

representing 71 individual animals averaging 1.2 observations per animal.  A total of 52 

animals have only one observation in this data range.  Also, the distribution of UBF 

Figure 6.2 seems to be heavily skewed toward the left or toward smaller observations.  

This is the only trait where this trend occurs, which may be a contributor to this dip in 

variance.  The lower observations are weighted fairly heavily while the higher 

observations are not and where this dip occurs, only Angus animals are represented. 

 

Cubic and Quartic Random Regressions.  Random regression models with an 

order higher than quadratic were only performed for the HRV model.  As will be 

discussed in a subsequent section of this chapter, the highest significant random 

regression order for the models performing the LRRR was a linear regression.  

Considering the HRV model here, the highest significant order for DTUREA was the 
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highest order considered in this study, a quartic random regression.  Therefore, discussion 

of DTUREA here will contain results from both the cubic and quartic random regressions.  

Cubic random regression models for both DTUREA and DTUBF were 

implemented using the data set sifted to remove those animals with fewer than four 

observations per individual (see Table 6.1).  This data set contained 7,340 age and 

ultrasound observations on 1,310 individual animals averaging 5.6 observations per 

individual. This data set contained 21 fewer observations on seven fewer animals than did 

that used for the quadratic random regressions.  Contemporary groups were formed in the 

same manner as the previously described analyses.  Here there are still 62 unique 

contemporary groups with the average number of animals per group of 21.1 being 

slightly smaller than that used in the quadratic random regression model.  A 4-generation 

pedigree was built from this sifted final data file resulting in 5,398 individual animals 

with 1,385 unique sires and 2,703 unique dams. 

A quartic random regression model was performed for DTUREA using the data 

set described in Table 6.1, which includes data from individual animals possessing five or 

more observations per animal.  This data set consisted of 6,600 age and ultrasound 

observations representing 1,125 individual animals.  This data set is much smaller than 

all of the previous data sets due to the observation requirement.  An entire year’s worth of 

data was removed because there are only four observations per animal. 

Many of the issues occurring with the quadratic random regression model were 

also observed here in both the cubic and quartic random regressions.  These issues 

include the inflated variance estimates at the upper end of the data for both DTUREA and 

DTUBF.  Now, with higher order random polynomials, the lower ends of the data range 
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are seeing these inflated variance estimates.  This problem is exacerbated with increasing 

the polynomial order to the quartic regression for DTUREA.  As such, only a brief 

discussion of these models will be presented here.  Results presented will be the observed 

variance and heritability estimates, with the actual random regression variance estimates 

excluded. 

Beginning with DTUREA, observed genetic, phenotypic variance estimates along 

with heritabilities are shown below in Figure 6.19, Figure 6.20, and Figure 6.21 for both 

the cubic and quartic random regressions, respectively. The shape of the curve of 

observed genetic variance is nearly identical for both cubic and quartic random regression 

models.  Differences between these two curves are observed in the tails of the data range 

with the quartic random regression model being more inflated than the cubic random 

regression model. Comparing these estimates to the quadratic random regression (Figure 

6.11), all estimated variances are nearly identical where the observation density is at its 

greatest, with the only differences being the magnitude of variance inflation in the data 

extremes.  As such, phenotypic variance (Figure 6.20) and heritability (Figure 6.21) are 

nearly identical in the two models as well suggesting that the cubic and quartic models 

are essentially predicting the same observed estimates of variance.  Plots of observed 

permanent environmental variance were not included here because as with the quadratic 

random regression, these were estimated as essentially zero. 
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Figure 6.19.  Plot of observed days to ultrasound rib eye area genetic variance obtained 
from both cubic and quartic random regressions of age on ultrasound rib eye area. 
 

 

 

 

 
Figure 6.20.  Plot of observed days to ultrasound rib eye area phenotypic variance 
obtained from both cubic and quartic random regressions of age on ultrasound rib eye 
area. 
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Figure 6.21.  Plot of observed days to ultrasound rib eye area heritability obtained from 
both cubic and quartic random regressions of age on ultrasound rib eye area. 
 

Plots of observed genetic, phenotypic variance as well as heritability for DTUBF 

are shown below in Figure 6.22, Figure 6.23 and Figure 6.24, respectively.  Genetic 

variance is very similar to that estimated by the quadratic random regression model, with 

the exception of the inflation which occurred at the upper end of the UBF data range.  

The dip in genetic variance, which occurred at approximately 20 – 28 mm of UBF for the 

quadratic random regression model, is not present in the cubic random regression model.  

Permanent environmental variance was again estimated to be near zero, which is why the 

plot of observed variance is omitted from this discussion, and why the plot of observed 

phenotypic variance is a mirror of the genetic variance plot. 
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Figure 6.22.  Plot of observed days to ultrasound back fat genetic variance obtained from 
a cubic random regression of age on ultrasound back fat. 
 

 

 

 

 

 
Figure 6.23.  Plot of observed days to ultrasound back fat phenotypic variance obtained 
from a cubic random regression of age on ultrasound back fat. 
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Figure 6.24.  Plot of observed days to ultrasound back fat heritability obtained from a 
cubic random regression of age on ultrasound back fat. 
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Table 6.16.  REML log likelihood (logL) estimates and associated significance values 
used to determine the random regression order for the days to ultrasound rib eye area 
evaluation for both the heterogeneous residual variance and linear residual random 
regression models. 

 
Quad v Linear Cubic vs Quad 

Quartic vs 
Cubic 

  

Heterogeneous 
Residual 
Variance 

Residual 
Random 

Regression 

Heterogeneous 
Residual 
Variance 

Heterogeneous 
Residual 
Variance 

Full Model logL1 -7053.09 -7043.30 -6931.31 -4183.24 
Reduced Model 
logL1 -7087.86 -7041.00 -6941.21 -4194.74 
DF2 3 3 4 5 
LRT Test Statistic2 113.56 -4.52 19.80 23.00 
P-value2 <0.0001 N/A4 0.0005 0.0003 
Fixed Regression 
Order3 4 4 6 5 
1Full and reduced models correspond to the more complex versus simpler models, 
respectively. 
2Likelihood ratio test statistic and associated P-values obtained from a Chi-square 
distribution with degrees of freedom equal to the difference in the number of 
parameters between the two models. 
3Highest significant fixed regression order of the full model, resulting in LRT 
comparisons to be made with the same reduced fixed regression order. 
4Log likelihood of the full model is lower than the reduced model resulting in a 
negative LRT test statistic. 

 

Likelihood test results for DTUREA shown above in Table 6.16 indicate some 

differing results.  First, with comparison between the quadratic and linear random 

regressions, the inclusion of the quadratic random term resulted in a significantly better 

fit over the model containing the linear term for the HRV model.  This term was no 

longer significant once the error covariance was added to the model in the LRRR.  In the 

LRRR model, the REML logL estimate obtained from ASReml is actually lower for the 

quadratic model than it is for the linear model suggesting that the addition of the 

quadratic random regression term actually makes the model poorer.  Continuing to higher 

random regression orders containing HRV estimates, all of the higher order random 
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regression models were significant, suggesting that the higher order random regressions 

are picking up additional variation in days most likely resulting from the covariance 

between residuals that is not being accounted for.  Another problem with these higher 

order random regressions is they tend to become uncontrollable at the extremes resulting 

in inflated variance estimates as suggested by Meyer (2005).  This behavior of random 

regressions was also observed here, and was illustrated in Figure 6.19 through Figure 

6.21.  Additionally, as the order of the random regression model is increased above the 

cubic polynomial to the quartic, the data point requirement results in an entire year’s 

worth of data to be removed from the evaluation.  This caused the removal of 174 

individual animals from the test year 2002 to 2003 because there were only four 

observations per animal. 

Likelihood ratio test results for DTUBF are given below in Table 6.17.  Here, 

similar results to those presented above for DTUREA were observed. Considering the 

quadratic versus linear random regressions, the HRV model shows the quadratic term 

accounted for significantly more variation in days than the linear random regression.  

When error covariance was added to the LRRR model, the linear random regression was 

sufficient in describing the variation in days.  One difference in DTUBF observed here, in 

comparison to the DTUREA model is for DTUBF, the quadratic random regression was 

the highest significant order.  The addition of the cubic term to the quadratic 

heterogeneous residual variance model did not significantly account for any additional 

variation in days. 
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Table 6.17.  REML log likelihood (logL) estimates and associated significance values 
used to determine the random regression order for the days to ultrasound back fat 
evaluation for both the heterogeneous residual variance and linear residual random 
regression. 

 
Quadratic vs. Linear Cubic vs Quadratic 

  

Heterogeneous 
Residual 
Variance 

Residual 
Random 

Regression 
Heterogeneous 

Residual Variance 
Full Model logL1 -7787.05 -7874.15 -7707.00 
Reduced Model logL1 -7798.07 -7877.29 -7706.77 
DF2 3 3 4 
LRT Test Statistic2 22.04 6.28 -0.46 
P-value2 0.0002 0.18 N/A4 
Fixed Regression Order3 5 5 5 
1Full and reduced models correspond to the more complex versus simpler models, 
respectively. 
2Likelihood ratio test statistic and associated P-values obtained from a Chi-square 
distribution with degrees of freedom equal to the difference in the number of 
parameters between the two models. 
3Highest significant fixed regression order of the full model, resulting in LRT 
comparisons to be made with the same reduced fixed regression order. 
4Log likelihood of the full model is lower than the reduced model resulting in a 
negative LRT test statistic. 

 

Given the significance of the higher random regression orders observed in the 

HRV models for both DTUREA and DTUBF, observed variance estimates from each of 

the significant random regression orders was plotted versus increasing target endpoint.  

Figure 6.26, Figure 6.26 and Figure 6.27 contain the genetic variance, phenotypic 

variance and heritability estimates from the linear, quadratic, cubic and quartic DTUREA 

random regressions.  The observed differences resulting from increasing the order of the 

random regression appears to be in the tails of the data distribution.  Where UREA 

observations are most dense, genetic and phenotypic variances estimates were very 

similar across all random regression orders.  As random regression order was increased, 

variance estimates became inflated in the tails of the data distribution.  The linear random 
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regression is the order least susceptible to these Legendre polynomial estimation 

problems therefore the linear random regression is probably sufficient in describing the 

data using the HRV sub-classes.  Differences in heritability estimates appear to exist, but 

they are more due to the scaling of the charts than any thing else. 

 

 
Figure 6.25.  Plot of observed days to ultrasound rib eye area genetic variance obtained 
from the linear, quadratic, cubic and quartic random regressions of age on ultrasound rib 
eye area using heterogeneous residual variance sub-classes. 
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Figure 6.26.  Plot of observed days to ultrasound rib eye area phenotypic variance 
obtained from the linear, quadratic, cubic and quartic random regressions of age on 
ultrasound rib eye area using heterogeneous residual variance sub-classes. 
 

 

 

 
Figure 6.27.  Plot of observed days to ultrasound rib eye area heritability obtained from 
the linear, quadratic, cubic and quartic random regressions of age on ultrasound rib eye 
area using heterogeneous residual variance sub-classes. 
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Figure 6.28, Figure 6.29 and Figure 6.30 contain the plots of observed genetic 

variance, residual variance and heritability obtained from the linear, quadratic and cubic 

random regressions for DTUBF.  Here, trends similar to DTUREA are observed.  

Variance estimates for the linear random regression tend to be more conservative than 

those obtained from higher orders.  The estimates obtained from the cubic and quadratic 

regressions are very similar to one another with the cubic random regression inflating the 

estimates of variance in the upper end of the range of UBF observations.  An important 

observation to make is that the heritability estimated from the linear random regression 

does not trend toward zero in the range of 20 to 30 mm of UBF as the estimates from the 

quadratic and cubic do.  Also, the heritability estimates from the linear random regression 

look to be more conservative, in the 0.40 to 0.50 range, than those from the higher order 

random regressions.  They are also much less variable being more constant across the 

entire range of UBF observations. 
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Figure 6.28.  Plot of observed days to ultrasound back fat genetic variance obtained from 
the linear, quadratic and cubic random regressions of age on ultrasound back fat using 
heterogeneous residual variance sub-classes. 
 

 

 

 

 
Figure 6.29.  Plot of observed days to ultrasound back fat phenotypic variance obtained 
from the linear, quadratic and cubic random regressions of age on ultrasound back fat 
using heterogeneous residual variance sub-classes. 
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Figure 6.30.  Plot of observed days to ultrasound back fat heritability obtained from the 
linear, quadratic and cubic random regressions of age on ultrasound back fat using 
heterogeneous residual variance sub-classes. 
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UREA endpoints of 36.77, 71.77 and 129.54 cm2 representing minimum, median and 

maximum UREA endpoints, respectively, were correlated to one another with the results 

presented in Table 6.18.  Likewise, sire EBV for DTUBF were calculated from both 

residual variance models for each 2 mm increment in the range of UBF observations 

(1.53 mm to 30.47 mm).  EBV corresponding to UBF endpoints of 1.53, 7.53 and 30.47 

mm representing minimum, median and maximum UBF endpoints, respectively, were 

correlated to one another with results presented in Table 6.18 below.  For DTUREA, 

correlations remained high (> 0.992) across the entire range of UREA observations.  

Regression coefficients representing the regression of HRV EBV on LRRR EBV are 

nearly one, indicating that for each unit increase in residual random regression EBV, a 

corresponding unit increase in heterogeneous residual variance EBV is observed. 

 

 

 

Table 6.18.  Correlation coefficients along with the EBV regression coefficient from the 
regression of EBV obtained from the heterogeneous residual variance model on those 
EBV obtained from the residual random regression model for each of three weight 
endpoints representing minimum, median and maximum observations. 

 
Days to Ultrasound Rib Eye Area 

Endpoint 36.77 71.77 129.54 
Pearson Correlation 0.997 0.998 0.992 
Spearman Rank 0.994 0.995 0.988 
Regression 0.951 1.03 1.001 

    
 

Days to Ultrasound Back Fat 
Endpoint 1.53 7.97 30.47 
Pearson Correlation 0.995 0.997 0.935 
Spearman Rank 0.99 0.993 0.906 
Regression 1.143 1.133 0.885 
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For the trait DTUBF, the results are more puzzling.  At UBF endpoints of 1.53 mm and 

7.97 mm, correlations are high, and nearly unity (> 0.993).  Also, the regression 

coefficients are slightly higher than one meaning that for every increase in LRRR EBV, 

the corresponding change in HRV EBV is around 1.13 to 1.14.  As the upper end of the 

range of UBF EBV is approached, the correlations fall off and the regression coefficient 

is much lower (0.885).  Perhaps this is a result of the severe lack of data density in this 

upper region (see Figure 6.2), or it may be a result of the nature of the UBF data where 

only Angus animals are represented in the upper end of the UBF range of observations.  

The data density of UBF tends to be skewed to the left, meaning the majority of the UBF 

observations are located at the lower end of the range of observations.  The differences 

seen here are the result of how the different residual variance sub-models handle the lack 

of data density in the upper range of UBF. 

Days to ultrasound rib eye area sire EBV were calculated from both the HRV 

model and the LRRR model for every 5 cm2 UREA increment across the entire range of 

observations.  Figure 6.31 contains the EBV plots for each of the five most used sires in 

the pedigree while Figure 6.32 contains the plots for each of the five least used sires in 

the pedigree.  The most heavily used sires averaged 38.4 progeny per individual.  

Looking at the plots of their corresponding EBV, the type of residual variance model has 

virtually no effect on the prediction of their DTUREA EBV.  Looking at the five least 

used sires’ EBV in Figure 6.32, small differences between the residual variance sub-

models are observed here as well.  Here, the range of EBV is not as large as observed for 

the five most used sires, mostly due to the fact that sires with very few progeny have 

EBV that are more conservatively estimated than from sires with larger amounts of data. 
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Sire EBV for DTUBF were calculated for every 2 mm increment within the range 

of UBF data.  For the five most heavily used sires (Figure 6.33), the LRRR model did just 

as good as the HRV model in predicting sire EBV for three of the sires.  For two of the 

sires (CA1067185 and CA1066957), the EBV from both models tend to spread apart as 

UBF increases.  In each instance, EBV from the residual random regression models 

predicted fewer days to finish than the heterogeneous residual variance model.  Perhaps 

this is a function of the disproportionate number of observations in each of the four 

residual variance sub-classes from these sires.  CA1067185 has 171 UBF observations in 

this data set, with only four in the leaner UBF residual variance category and 139 in the 

latter two categories.  Sire CA1066957 has 153 UBF observations in this evaluation, and 

all but 8 fall in the latter half of the four residual variance categories.  This sire in 

particular has 107 observations in the fattest category.  The residual random regression 

model is appearing to handle breeding value predictions more appropriately in this 

instance, by accounting for the covariance between residuals than the heterogeneous 

residual variance model does.  For the five least used sires in the data set, both residual 

variance models estimated sire EBV similarly. 

 

Comparison to Repeated Measures Model.  In an effort to compare the results for 

the genetic evaluation of both DTUREA and DTUBF using random regression 

methodologies to more traditional models, repeated measures analyses were performed 

using the same ultrasound data set that was used for the linear random regression model. 

Age observations for DTUREA and DTUBF were adjusted to a constant 66 cm2 

and 7 mm, respectively.  These endpoints were chosen because they represented 
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approximately the middle of the UREA and UBF distributions (see Figure 6.1 and Figure 

6.2).  These points represent the points in the distribution of observations where data 

density was highest. 

Beginning with DTUREA, genetic variance and heritability obtained from the 

linear random regression model using HRV were 372 days2 and 0.40, respectively.  

Similarly, genetic variance and heritability from the linear random regression model 

using LRRR were 392 days2 and 0.44, respectively.  The same estimates obtained from 

the repeated measures model were 369 days2 and 0.36.  Genetic variance estimates across 

all three models were very similar.  Heritability obtained from the repeated measures 

model was slightly lower than the same obtained from the random regression models.  

This reduced heritability estimate can be attributed to the fact that both residual and 

permanent environmental variance obtained from the repeated measures models were 

slightly higher than those from the random regression models, resulting in slightly larger 

estimates of phenotypic variance. 

For DTUBF, genetic variance and heritability obtained from the HRV model were 

570 days2 and 0.41.  From the LRRR model they were 706 days2 and 0.51.  

Corresponding estimates obtained from the repeated measures model were 2543 days2 

and 0.36, a much larger difference. There appears to be a rather large scaling issue for the 

repeated measures evaluation.  This may be a function of the nature of the UBF data.  

Data used in the DTUBF evaluation have a rather small scale and range of the predictor 

variables (UBF observations) and a much larger scale and range of the response variable 

(age).  This seems to be inflating the estimate of genetic variance obtained from the 

DTUBF evaluation.  Heritability estimates from the repeated measures model seem to be 
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in range, and appear to have similar relationships as the repeated measures estimates of 

heritability did to those obtained for the traits DTUREA and days to weight (Chapter V). 

 

Summary 

This chapter presented the results from the development of both a DTUREA and a 

DTUBF genetic evaluation using random regression methodology with Legendre 

polynomials as the base random polynomial function.  The required order of the random 

polynomials was tested using likelihood ratio tests to determine whether or not the 

addition of higher order polynomials accounted for significantly more variation in the 

trait days than did the more simple model.  These likelihood ratio tests were performed 

within each residual variance sub-model (LRRR versus HRV). 

In the models that used the LRRR, the highest random polynomial order 

statistically significant in terms of the likelihood ratio test was the linear random 

polynomial.  This was the case for both DTUREA and DTUBF.  In the models that used 

the HRV, higher order random polynomials were required to account for the variation in 

the trait days.  For the trait DTUREA, the highest significant random order was the 

quartic random polynomial.  For the trait DTUBF, the quadratic random polynomial was 

the highest significant order. 

As was observed in the days to weight genetic prediction presented in the 

previous chapter, as the order of the random polynomial was increased above a linear 

polynomial, the estimates of genetic and phenotypic variance as well as heritability 

appear to have become artificially inflated, particularly for the tails of both the UREA 

and UBF distributions  (See Figures 6.15 through 6.24). 
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In this data set, the models containing the LRRR are most attractive for many 

reasons.  First, they allow for simplicity, as the linear polynomial was the highest order 

required for accounting for the genetic variation in days.  Linear random regressions are 

not only simpler to understand they also have the smallest data requirement (two data 

points per animal).  In an industry where data density continues to be a problem, the 

fewer data points needed the better.  Second, given the apparent data stratification 

between the Charolais and Angus animals in this data set, particularly for UBF, the 

LRRR models handle the residual covariance more appropriately.  It is for this reason I 

am recommending the linear random regression model using linear residual random 

regression for implementation in a national evaluation. 
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CHAPTER VII 

CONCLUSIONS AND IMPLICATIONS

 

Results from the development of the three “days to” genetic predictions (days to 

weight, days to ultrasound back fat and days to ultrasound rib eye area) show the 

existence of genetic and phenotypic variability, and that genetic progress in reducing the 

number of days to reach a finish endpoint can me made selection.   

First, random regression models were shown to be equivalent to their multivariate 

counterparts in situations where the order of the random polynomial was equal to the 

number of traits in the multivariate model.  In situations where the number of 

observations prohibits the use of multiple trait models, random regressions can be used to 

reduce the overall size of the equation set.  Also, the predictions resulting from the use of 

these models allow the calculation of EBV for any given point along the regression line, 

where as with multiple trait models, resulting EBV are limited to trait specific endpoints. 

The trait days to weight was estimated using both a random regression model and 

a more traditional repeated measures model.  Two different methods were used to 

account for the residual variation in the random regression model, the first of which 

divided the weight observations into four groups based on their quartiles.  The second 

method used a linear regression on the residuals, to allow for a changing covariance 

structure as observations became farther apart from one another.   



 

 223 

Results from this model building exercise suggested that a linear random 

polynomial was sufficient for describing the genetic variation in days.  When the 

different methods for modeling the residual variance were considered, the model 

containing the linear regression on residuals provided more realistic heritability estimates 

than the model dividing the observations into four distinct residual variance sub-groups.  

This is mostly due to the ability of the linear residual random regression model to 

appropriately handle the changing residual covariance structure, which in turn resulted in 

larger phenotypic variance estimates.  Genetic variance and heritability estimates from 

both residual variance sub-models were compared to those obtained from a repeated 

measures model.  The results from those comparisons yield similar estimates of 

heritability and genetic variance. 

Following the days to weight genetic evaluation, evaluations for days to 

ultrasound back fat and days to ultrasound rib eye area were also conducted.  Considering 

the random regression models for both traits, the model containing the linear residual 

random regression accounted for enough of the variation in days to allow a linear random 

polynomial to be sufficient.  When the observations were broken into their residual 

variance sub-groups, higher order random polynomials were needed to fully describe the 

genetic variation in days.  For days to ultrasound back fat, a quadratic polynomial was 

needed to fully describe the genetic variation in days, while for the trait days to 

ultrasound rib eye area a quartic polynomial was needed.   

A detractor to the use of random regression models, especially those using 

Legendre polynomials are the inflated estimates of variance obtained with higher order 

random polynomials.  This trend was observed with these higher order models, 
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particularly in the tails of the data distribution where the variance and heritability 

estimates appeared to be artificially inflated.  The linear random polynomial did not result 

in these inflated estimates. 

For all three traits, a linear random regression was deemed sufficient in describing 

the genetic variation in days.  The linear random regression allows for simplicity in the 

calculation of EBV with respect to a particular endpoint as well as reducing the order of 

the equation sets needing to be solved.  Given these simplifications of the linear random 

polynomial over some of the higher order polynomials, considerable re-ranking among 

the ten most used sires and the ten least used sires in the data set was observed for all 

three days to traits.   

These predictions for the three days to finish traits are only a beginning.  Further 

research is needed, particularly with larger single breed data sets to determine if these 

linear random regression models will still be sufficient.  The data set used in the 

evaluation consisted of Angus, Charolais, and Charolais cross cattle.  Angus and 

Charolais are are two different types of cattle.  Stratification in the data was observed 

between these two breeds and was largely evident in the ultrasound back fat data where 

the Angus animals had greater fat deposition than the Charolais animals.  How will the 

days to ultrasound back fat evaluation change if the same biological type of animals were 

evaluated?  Further analysis also needs to be performed using a data set containing intra-

muscular fat observations.  Evaluations using this data could result in a days to marbling 

score or days to quality grade genetic prediction. 
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APPENDIX I 

INCIDENCE MATRICES USED IN THE MULTIVARIATE VERSUS RANDOM 

REGRESSION EQUIVALENCY EXAMPLE 
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Below is the incidence matrix that relates the traits for weight observations measured 
on test day two to the corresponding animals in the pedigree on which the data were 
observed. 
 

Z2 =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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ID TD Weight

9 1 627
10 1 712
11 1 632
12 1 604
13 1 630
14 1 731
9 27 732
10 27 855
11 27 728
12 27 731
13 27 758
14 27 861
9 62 828
10 62 952
11 62 861
12 62 869
13 62 869
14 62 972
9 90 927
10 90 1039
11 90 924
12 90 940
13 90 957
14 90 1058
9 119 969
10 119 1111
11 119 1007
12 119 1051
13 119 1042
14 119 1118
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Below is the incidence matrix that relates the traits for weight observations measured 
on test day three to the corresponding animals in the pedigree on which the data were 
observed. 
 

Z3 =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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ID TD Weight

9 1 627
10 1 712
11 1 632
12 1 604
13 1 630
14 1 731
9 27 732
10 27 855
11 27 728
12 27 731
13 27 758
14 27 861
9 62 828
10 62 952
11 62 861
12 62 869
13 62 869
14 62 972
9 90 927
10 90 1039
11 90 924
12 90 940
13 90 957
14 90 1058
9 119 969
10 119 1111
11 119 1007
12 119 1051
13 119 1042
14 119 1118
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Below is the incidence matrix that relates the traits for weight observations measured 
on test day four to the corresponding animals in the pedigree on which the data were 
observed. 
 

Z4 =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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ID TD Weight

9 1 627
10 1 712
11 1 632
12 1 604
13 1 630
14 1 731
9 27 732
10 27 855
11 27 728
12 27 731
13 27 758
14 27 861
9 62 828
10 62 952
11 62 861
12 62 869
13 62 869
14 62 972
9 90 927
10 90 1039
11 90 924
12 90 940
13 90 957
14 90 1058
9 119 969
10 119 1111
11 119 1007
12 119 1051
13 119 1042
14 119 1118
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Below is the incidence matrix that relates the traits for weight observations measured 
on test day five to the corresponding animals in the pedigree on which the data were 
observed. 
 

Z5 =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

!

"

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

ID TD Weight

9 1 627
10 1 712
11 1 632
12 1 604
13 1 630
14 1 731
9 27 732
10 27 855
11 27 728
12 27 731
13 27 758
14 27 861
9 62 828
10 62 952
11 62 861
12 62 869
13 62 869
14 62 972
9 90 927
10 90 1039
11 90 924
12 90 940
13 90 957
14 90 1058
9 119 969
10 119 1111
11 119 1007
12 119 1051
13 119 1042
14 119 1118
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APPENDIX II 

ASREML COMMAND FILES FOR RUNNING LINEAR AND QUADRATIC 

RANDOM REGRESSION MODELS FOR DAYS TO WEIGHT 
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Below is the ASReml Command file for running a linear random regression model for the 
prediction of days to weight. 
 
Lethbridge Weight Data  
 anim   !P #1 
 sire   !A #2 
 dam   !A #3 
 year   *  !A #4 
 pen  * !A #5 
 breed  * !A #6 
 bdate   !A #7 
 sbdate    #8 
 strt_date   #9 
 weigh_date   #10 
 td    #11 
 on_feed_date   #12 
 on_feed_td   #13 
 weight    #14 
 aod    #15 
 age    #16 
 cg  * !A #17 
 assess    #18 
 
ped.stk !make !alpha 
fin2 !maxit 1000 !mvremove !DDF !dopart $1 
 
!part 1     #Model for a linear random regression with four separate residual variances 
 
age ~ cg leg(weight,1) !r leg(weight,1).anim leg(weight,0).ide(anim) 
 
4 1 2 !STEP 0.01 
1822 0 0 !S2=29.1021  #Starting value for the first quartile (1822 records) 
1662 0 0 !S2=43.5097  #Starting value for the second quartile (1662 records) 
1717 0 0 !S2=55.6037  #Starting value for the third quartile (1717 records) 
1757 0 0 !S2=43.1105  #Starting value for the fourth quartile (1757 records) 
 
leg(weight,1).anim 2 
2 0 US !GP 
 1407.87 
 618.216 417.918 
anim 0 AINV 
 
leg(weight,0).ide(anim) 2 
1 0 US !GP 
 243.695 
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ide(anim) 
!end 
 
 
!part 2     #Model for a linear random regression accounting for residual covariance. 
 
age ~ cg leg(weight,1) !r leg(weight,1).ide(anim) leg(weight,1).anim 
 
1 1 2 !STEP 0.01 
7632  #Number of records in the final data file. 
 
leg(weight,1).ide(anim) 2 
2 0 US !GP 
  3.1212 
 -0.1778  0.1326 
ide(anim) 
 
leg(weight,1).anim 2 
2 0 US !GP 
 23.7477   
  7.5948  7.5215  
anim 0 AINV 
!end 
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Below is the ASReml Command file for running a quadratic random regression model for 
the prediction of days to weight. 
 
 
Lethbridge Weight Data 
 anim   !P #1 
 sire   !A #2 
 dam   !A #3 
 year  * !A #4 
 pen  * !A #5 
 breed  * !A #6 
 bdate   !A #7 
 sbdate    #8 
 strt_date   #9 
 weigh_date   #10 
 td    #11 
 on_feed_date   #12 
 on_feed_td   #13 
 weight    #14 
 aod    #15 
 age    #16 
 cg  * !A #17 
 assess    #18 
 
ped.stk !make !alpha 
fin2 !maxit 1000 !mvremove !DDF !dopart $1 
 
!part 1 
age ~ cg leg(weight,1) !r leg(weight,2).anim leg(weight,0).ide(anim) 
 
4 1 2 !STEP 0.01 
1822 0 0 !S2=28.6053  #Starting value for the first quartile (1822 records) 
1662 0 0 !S2=43.2429  #Starting value for the second quartile (1662 records) 
1717 0 0 !S2=55.4351  #Starting value for the third quartile (1717 records) 
1757 0 0 !S2=42.6780  #Starting value for the fourth quartile (1757 records) 
 
leg(weight,2).anim 2 
3 0 US !GP 
 1294.03 
 540.983 387.251 
-34.0863 6.99767 27.6220 
anim 0 AINV 
 
leg(weight,0).ide(anim) 2 
1 0 US !GP 
 223.659 
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ide(anim) 
!end 
 
!part 2     #Model for a quadratic random regression accounting for residual covariance. 
 
age ~ cg leg(weight,1) !r leg(weight,1).ide(anim) leg(weight,2).anim 
 
1 1 2 !STEP 0.01 
7632  #Number of records in the final data file. 
 
leg(weight,1).ide(anim) 2 
2 0 US !GP 
  3.1212 
 -0.1778  0.1326 
ide(anim) 
 
leg(weight,2).anim 2 
3 0 US !GP 
 29.5797   
  6.3392  6.7089 
  3.7282  0.8356  4.8659 
anim 0 AINV 
!end 
 


