feature, peaking at 520 Å, due to interband transitions in the tin substrate.

Lifetime measurements made at 780 Å by deflecting the electron beam away from the specimen using a rapidly rising voltage pulse applied to the electron gun’s deflection plates gave an upper limit to the fluorescence lifetime at this wavelength of 10 ns.

Finally, estimates of the fluorescence efficiency of the process, obtained by comparing the He/Sn fluorescence with synchrotron radiation through the same monochromator and using the same detector yield a value between 0.01 and 1.0 fluorescent photons into 4π steradians per incident 2.5-keV electron.

With sufficiently high electron beam intensities (> 1 mA) this process appears to offer the possibility of a new solid state VUV photon source.24

We acknowledge helpful discussions with R. Madden, J. M. Gilles, R. Andrew, D. Ederer, T. Lucatorto, and J. P. Vigneron and the technical assistance of M. Renier and the SURF staff. This research has been supported in part by the Belgian Ministry for Science Policy and N.A.T.O. Grant No. 1970. One of us (S. E. D.) acknowledges the award of a fellowship from the Royal Society’s European Science Exchange Program.

1-W cw Zn ion laser

J. J. Rocca, J. D. Meyer, and G. J. Collins
Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523

(Received 28 March 1983; accepted for publication 19 April 1983)

We have obtained 1.2 W of cw laser power on the 4911.6- and 4924.0-Å transitions of Zn II by exciting a He-Zn gas mixture with a dc glow discharge electron beam. In addition, 0.25-W output power has been obtained on the 6149.9-Å line of Hg II using the same excitation scheme. The combination of electron beam ionization of rare gas atoms and subsequent charge transfer excitation to metal ion levels is shown to have the potential of significantly increasing the efficiency of ion lasers. cw multiwatt visible and ultraviolet ion lasers operating at efficiencies > 10−3 appear feasible using this excitation scheme.

PACS numbers: 42.55.Hq, 42.60.By

We have obtained 1.2 W of cw laser power on the 4911.6- and 4924.0-Å transitions of Zn II by exciting a He-Zn gas mixture with a dc glow discharge electron beam. With the same excitation scheme 0.25 W of cw laser radiation on the 6149.9-Å line of Hg II has also been obtained. This represents an order of magnitude increase in the output power previously obtained from these metal vapor laser transitions1-3 and is the first time that metal vapor ion lasers have operated cw in the visible region at a power of 1 W.

The laser designs used to obtain these results were similar to those employed previously,1-6 the main difference being the use of two glow discharge electron guns, one at each end of the plasma tube, as shown in Fig. 1. These glow discharge electron guns produce well collimated dc electron beams at energies between 1 and 6 keV and at currents up to 1 A. They have been described in a previous publication.3 The use of two electron guns doubles the available electron beam power and also increases the uniformity of the electron beam created plasma.

In the laser setup of Fig. 1(a), the two 50-cm-long elec-
tromagnets that help to confine the electron beams are separated from each other by approximately 2 cm to allow the introduction of both metal vapor and helium into the middle of the plasma tube. Both ends of the plasma tube are connected to a vacuum pump, allowing for continuous gas flow.

Using this experimental setup and internally mounted 2-m radius of curvature mirrors, we obtained 0.25 W of cw laser power on the 6149.9-Å transition of Hg II. The variation of laser output with electron beam discharge current and voltage is shown in Fig. 2. The laser output power increases linearly with current and no saturation was observed up to the maximum current investigated. The output coupler in this case had 94% reflectivity at 6150 Å. The optimum operating conditions were 1.5 Torr of He, a Hg source reservoir temperature of 130 °C, and a magnetic field of 3.2 kG.

Placing the metal vapor source reservoir in the middle of the plasma tube helped to provide a more uniform metal vapor distribution; however, the reduction of the magnetic field in this region, owing to the separation of the electromagnets, caused part of the electron beam to collide with the plasma tube walls. To reduce electron beam power loss in the Zn II laser experiment we used the setup shown in Fig. 1(b). In this scheme the metal vapor source reservoir was at one end of the plasma tube and the vacuum pump connection at the other end. High purity helium was introduced into the electron gun chamber at the reservoir side to assist in the distribution of Zn vapor. Helium was also introduced into the opposite gun chamber to permit the control of the pressure for optimum operation of the electron guns. The glow discharge electron guns used in this experiment had aluminum cathodes, just as the ones described in Ref. 3, but had an 8.5-mm-diam optical path through the axis to allow better use of the active volume and to diminish diffraction losses. The optical cavity consisted of two 4-m radius of curvature internally mounted mirrors. Reflectivities were $R_1 > 99.8\%$ and $R_2 = 93.5\%$ at 4920 Å. Using this laser setup we obtained 1.2 W of cw laser power on the 4911.6- and 4924.0-Å transitions of Zn II. This output power was obtained at a discharge current of 1.7 A and a total discharge input power of 3.5 kW. The optimum helium pressure in the plasma tube was 3 Torr and the magnetic field for maximum output was 2.9 kG. This output power is 30 times larger than the highest cw power obtained with hollow cathode devices\(^7\) and also represents a 18 fold improvement over our previously reported value obtained with electron beam excitation.\(^7\) The efficiency is 0.034% and is over eight times greater than that obtained in hollow cathode lasers.\(^7\)

We consider that even larger improvements in the output power and operating efficiency of electron beam pumped ion lasers is possible by optimizing the optical cavity to make

\[VOLTAGE (kV) \]

\begin{tabular}{cccc}
1.6 & 2.0 & 2.25 & 2.5 \\
\end{tabular}

\[LASER POWER (mW) \]

\begin{tabular}{cccc}
0 & 50 & 100 & 250 \\
\end{tabular}

\[ELECTRON BEAM DISCHARGE CURRENT (A) \]

\begin{tabular}{cccc}
0.5 & 1.0 & 1.5 & 2.0 \\
\end{tabular}

FIG. 1. Schematic diagram of the dual electron gun laser setup used in the (a) He-Hg and (b) He-Zn experiments, respectively.

FIG. 2. Laser output power of the 6149.9-Å Hg II transition as a function of electron beam discharge current and voltage. Average helium pressure in the active medium was 1.5 Torr. Magnetic field 3.2 kG. Hg reservoir temperature was 130 °C.
better use of the active volume, by improving the efficiency
with which the electron beam power is deposited into the
gas, and by using monoisotopic metal vapor. The simple cal-
culations presented below give an estimate of the maximum
possible efficiency of a cw electron beam pumped charge
transfer laser. To a first approximation, we can estimate the
laser efficiency E_L as shown in Eq. (1):

$$E_L = D_e q_e Br E_o,$$

(1)

where D_e is the efficiency with which we deposit the
discharge power into the upper laser level, q_e the quantum effi-
ciency, Br the branching ratio, and E_o the optical extraction
efficiency.

In an electron beam excited noble gas-metal vapor mix-
ture, the laser upper level is mainly populated by thermal
charge transfer collisions of noble gas ions with ground state
metal vapor atoms. The noble gas ions are created dominant-
ly by direct electron beam ionization of noble gas atoms. We
can generate electron beams with an efficiency g_e between
50% and 80% using glow discharge electron guns. An elec-
tron beam of energy > 0.5 keV impinging on a He gas target
deposits 60% of its power into the creation of ions. However,
only a portion of that power I_e will be deposited into
the production of helium ions when an electron beam im-
pinges on a helium-metal vapor mixture. In the case of a 10
to 1 partial pressure ratio of helium to metal vapor, we would
expect roughly half of the power to be deposited into helium
ions if the ionization cross-section ratio of metal atoms to
helium atoms was 10 to 1. Consequently, we expect that the
fraction I_e of the electron beam power to be used in the cre-
ation of helium ions will equal 30%. Only a fraction of these
ions will pump upper laser levels via charge transfer. The
noble gas ions are lost by diffusion to the walls, electron
recombination, and charge transfer collisions with ground
state metal vapor atoms. Thermal charge transfer collisions
have a large cross section (130 Å² in the case of He$^+$-Hg
collisions). Therefore, at metal vapor concentrations
$> 10^{15}$ cm$^{-2}$ and electron densities below 10^{14} cm$^{-3}$
the charge transfer loss channel dominates, and the fraction F of
noble gas ions lost by pumping upper laser levels can be
$F > 0.8$. In summary, the overall efficiency D_e with which
the discharge power is deposited in the laser upper level is then

$$D_e = g_e I_e F \approx 0.15.$$

(2)

The quantum efficiencies for visible metal vapor laser
transitions ($h\nu = 2.4$ eV) excited by He$^+$ ions are roughly
10%. Then, considering $q_e = 0.1$ and assuming $Br E_o = 0.2$
we estimate from Eq. (1) the maximum laser efficiency is

$$3 \times 10^{-3},$$

which is still considerably higher than the efficiencies
we have obtained up to date. For ultraviolet transitions ($h\nu = 5$ eV) in helium-metal vapor systems the quantum effi-
ciency q_e is 0.2 and in principle, according to Eq. (1), efficiencies
in the vicinity of 0.6% could be obtained in an electron beam
excited charge transfer system. Although the above calculations
are only a crude estimate, it is clear that the possibility of high efficiency is based on three important
points summarized below. The first point is that the majority
of the discharge power (50%-80%) goes into the creation
of beam electrons; secondly, helium ions are efficiently created
by these energetic beam electrons; finally, charge transfer
reactions can selectively and efficiently deposit the energy
stored in the rare gas ions into the laser upper level. For a
more accurate estimate of the maximum possible efficiency
of electron beam pumped charge transfer ion lasers, an
elaborate model of the electron beam created plasma is re-
quired. We are presently working on a computer model in
which the electron energy distribution is calculated by nu-
erically solving the Boltzmann equation for electrons. The
distribution is then used to calculate the excitation and ioni-
ization rates necessary to determine the population in the
laser levels and subsequently laser output power and operat-
ing efficiency.

In summary, we have obtained 1.2 W of cw laser power
on the blue lines of Zn II exciting a He-Zn mixture with an
electron beam. cw multiwatt visible and ultraviolet ion lasers
operating at efficiencies $> 10^{-3}$ seem feasible using this new
excitation scheme.

This work was supported by the National Science
Foundation.

QE-18, 1052 (1982).
Lett. 41, 811 (1982).
tron. QE-18, 326 (1982).
1979.
Gilbody, Electronic and Ionic Impact Phenomena (Oxford University, Ox-