Prospects for the Commercialization of Cellulosic Ethanol from Forest Biomass

Bill Schafer, Sr. Vice President – Business Development
Range Fuels, Inc.
Range Fuels Overview

- Formed in July 2006 by Khosla Ventures to commercialize cellulosic ethanol
 - Multi-sourced technology

- Supported by substantive federal, state and local incentives
 - DOE: $76MM in a competitive evaluation
 - Other state and local incentives

- Development Center and K2A Pilot Plant complete

- Broke ground in Soperton, GA, for first U.S. commercial-scale cellulosic ethanol plant utilizing woody biomass

- Additional sites and partnerships secured
Increasing Ethanol Demand and Support

- 60% growth in demand from 4 Bn GPY in 2005 to 6.6 Bn GPY in 2007
- Strong, bipartisan support for cellulosic biofuels
 - Recent passage of “Energy Independence and Security Act of 2007”
 - 36 Bn GPY by 2022 includes 21 Bn GPY of Advanced Biofuels
 - Increased cellulosic credits likely in new Farm Bill in 2008 ($0.64/gal)

Higher demand for E85 fuel as FFVs are more widely adopted
- By 2012 U.S. automakers have committed to% of production to FFVs

Source: Renewable Fuels Association
U.S. Cellulosic Ethanol Potential

- 140 Bn GPY – 2005 U.S. DOE/USDA Study
 - Agricultural 100 Bn gpy
 - Crop residues, perennial crops, animal manure, process residues and grains used for biofuels
 - Forestlands 40 Bn gpy
 - Wood and paper & pulp processing residues, logging and site clearing residues, fuel treatment thinnings

- Total U.S. Gasoline Consumption
 - 140 Bn gpy
 - President’s goal - 35 Bn gpy alternative fuels by 2017
Worldwide Cellulosic Ethanol Potential

- Total Worldwide Gasoline Consumption
 - 300 Bn gpy vs. 140 Bn gpy from U.S.

- Assessments Underway Globally
Range Fuels’ Business

- Focus
 - Green energy
 - Cellulosic ethanol

- Business Model
 - Design
 - Build
 - Own
 - Operate

- Global Presence
Key Highlights

- Thermo-chemical based technology with a developmental headstart
 - Economically competitive without subsidies from inception

- Low marginal cost of production

- Feedstock flexibility
 - Feedstock advantages of woody biomass

- Highly scalable business model; replicable plant modules

- Environmentally friendly production process

- Access to economic development funds and additional legislative measures that support development of cellulosic ethanol technologies

- Experienced management team and strategic investors and partners
Operational Facilities

- 4 generations of biomass conversion testing environments
- Catalyst testing facilities
 - CC10’s
 - CC100
- Pilot-scale
 - CC400
 - CC1000

K2A Optimization Plant
Management Team

 - Mitch Mandich, CEO – Apple Computer
 - Rick Winsor, President & COO – Horizon Wind Energy
 - Kevin Biehle, V.P. Production – VeraSun; BASF
 - Mike Cate, V.P. Procurement & Fabrication – Washington Group
 - Arie Geertsema, Sr. V.P. Technology – CAER; Sasol
 - Dan Hannon, CFO – Reliant Energy, Exxon
 - Bud Klepper, Chief Technical Specialist – Inventor
 - Larry Robinson, V.P. Projects - Bechtel
 - Bill Schafer, Sr. V.P. Business Development – NexGen
Limitations of Current Technology

- Current production technologies use corn or sugarcane
 - Limited max. capacity (corn 15 BGY); high cost
 - Import tax of $0.54/gallon

- Food versus fuel
 - Low land efficiency for fuel production
 - Sharp increase in feedstock prices
 - Depleting water tables
 - Wide price fluctuations due to weather
 - Resistance from animal feed lobby

- Low fossil energy ratios
 - Corn at 1 to 1.4 input to output
 - Sugarcane ethanol at 1 to 8
 - Cellulosic ethanol at 1 to 10

Corn Prices

$ / Bushel

Source: Bloomberg
Range Fuels’ Technology

- Cheaper than gasoline, unsubsidized
- Cheaper, less volatile feedstock
- Flexible “high volume” feedstock supply
 - Wood chips
 - Municipal waste
 - Industrial waste
 - Manure
 - Switchgrass
 - Corn stover
 - Olive pits
 - Coal
- Environmentally superior

Sources: Bloomberg and Pöyry
Differentiated Technology

- Proven two-step thermo-chemical process
- Highest yield of ethanol per ton of feedstock

K2 System Configuration

```
Feedstock Storage → Feedstock Handling → Biomass Converter
  |               |                 |
  | Step 1       | Step 2          |
  | Devolatilization | Catalytic Converter |
  | Reforming     | Syngas          |
  | Conditioning  |                |
  |               | Catalysis       |
  |               | Distillation / Fractionation |
  |               | “Self-Sustaining” Tailgas |
```

Product Storage

Process Time <30 min

Ethanol & Methanol

Shipment to Market
Environmentally Friendly Production Process

- Soperton: minor emissions source permit
 - Only one waste stream: saleable char

- Lower water use
 - 25% of typical corn-ethanol plant
 - Reduces purification costs and impact

- Material land use benefits
 - Polyculture “compatible”
 - Better yields, biodiversity, low inputs
World’s First Commercial Cellulosic Plant
Soperton, GA: World’s First Commercial Cellulosic Plant

1. **Wetlands:**
 Will be protected and left undisturbed

2. **Range Fuels Drive:**
 Specially created road that separates plant operations from the wetlands

3. **Feedstock Receiving and Storage:**
 Receipt and storage of wood chips

4. **Conveyor System:**
 Moves feedstock from receiving and storage area to modular converters

5. **Biomass Converters:**
 Convert wood chips to syngas

6. **Catalytic Converters:**
 Transform the syngas into alcohols, which are then separated and processed

7. **Product Storage:**
 Collection and storage of liquids (ethanol and methanol)

8. **Loading and Delivery:**
 Transportation by either truck or rail
Soperton Plant – Site Work
Soperton Plant – Artist’s Rendering
Soperton Plant – Groundbreaking
Soperton Plant – Groundbreaking
Soperton Plant – Site Clearing
Soperton Plant – Woody Biomass Feedstock
Stable Pricing, Large Availability Using Woody Biomass

- Over 400 MM tons of “low cost” woody biomass available annually
- High land efficiency for cellulosic crops; low water and fertilizer inputs
- Cellulosic availability fits demand; fewer transportation issues
- Little competition for feedstock as paper mills decline

U.S. Ethanol Biorefinery Locations

- Biorefineries in Production
- Corn-Ethanol Production
- Biorefineries under Construction
- Major Gasoline Consumption

Non-Federal Forest Land Density, 1997

- 25,000 acres of Forest Land per dot
- 95% or more Federal area

Source: Renewable Fuels Association
Source: U.S. Department of Agriculture
Why Georgia?

- “In the southeastern U.S., trees are agriculture. In the western U.S., they’re parks”
- Sustainability is key!
 - Plants cannot be economically relocated
 - Woody biomass must be sustainably and economically available with a proven silviculture, harvesting and transportation infrastructure
 - Competing biomes
 - Growing season
 - Rainfall
 - Soils
 - Competing tree farmers or state and federal agencies?

- Renewable Biomass is:
 - **Planted trees and tree residue from actively managed tree plantations on non-federal land cleared at any time prior to enactment of this sentence.**
 - Does this include "commercial thinnings"?
 - How is "actively managed" defined?
 - If it has been cleared at any time in the past is it eligible? Is forestland cleared 100 years ago eligible, or is that not considered actively managed?
 - **Slash and pre-commercial thinnings that are from non-federal forestlands.**
 - How are slash and pre-commercial thinnings defined?
 - Non-federal forestland exclusion will discourage any siting in regions dominated by federally managed forestlands, i.e. the western U.S.
We need a package that competes with other options

- **Economically**
 - Delivered cost of woody biomass
 - Cost of infrastructure and operations
 - Tax rates
 - Power and natgas rates
 - Labor rates
 - Rail and truck access for feedstock deliveries and product shipments
 - Value of cellulosic ethanol

- **Environmentally**
 - Impact of plant operations
 - Rural communities
 - Impact of feedstock growing, harvesting and transportation operations