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Table F-15 

Decline of Water Table at Centerline. 

\ID = l/3, Y/D" 0. 

lvater Table Height 

No Cap. n = 6 n = 6 n = 4 n = 6 n = 10 n = 6 
Time Flow Pb/pg 5 Pb/pg = 10 Pb/pg = 20 Pb/pg = 20 Pb/pg = 20 Pb/pg = 40 

X 10 1.00 l. 00 . 99 .98 .99 1.00 . 97 

1.8 1.00 1.00 . 99 .97 .99 .99 . 96 

3.2 1.00 . 99 . 99 . 96 .98 . 99 . 94 

5.6 .99 .98 . 98 . 92 .95 .96 . 86 

X 10
5 

.98 .95 . 92 .81 .87 .89 . 71 

1.8 .92 .86 . 82 .64 .72 . 76 .so 
3 . 2 .82 .73 .66 .43 .53 . 58 .29 

5.6 .69 .56 .47 .23 .33 .38 .12 

1 X 10
6 

.53 .38 . 29 .08 .16 . 21 .03 

1. 8 .38 .22 .15 .01 .06 .09 .00 

3.2 . 25 .11 .06 .00 . 01 .03 

5.6 .16 .OS .02 . 00 .01 

X 10
7 

.09 .01 .00 .00 

t. 8 x 10"4 
35.0 47.0 62 . 5 157 136 00 

L c 1000 1140 1340 2090 1940 

Table F-16 

Decline of 1\'ater Table at Centerline, 

Y/D" 2/3, Yd/0 " 0 . 

Nater Table Height 

No Cup. n = 6 n " 6 n • 4 n • 6 n " 10 n • 6 
Time Flow Pb/pg " 5 Pb/pg " 10 Pb/pg " 20 Pb/pg " 20 Pb/pg = 20 Pb/pg = 40 

l X 104 
1.00 1.00 1. 00 . 98 .99 1.00 .91 

1.8 1.00 1.00 .99 .98 .99 .99 .89 

3.2 .99 .99 . 98 .94 .96 .97 . 82 

5.6 .97 .95 . 93 .83 .88 .91 .67 

l X 10
5 

.90 .86 .83 .67 . 74 . 79 .47 

1.8 .80 .73 . 68 .46 .56 .62 .28 

3.2 .66 .56 . 50 .27 .37 .44 .14 

5.6 .so . 39 .33 .12 . 21 .27 .04 

X 106 
.35 . 24 . 18 . 03 .01 .14 .00 

1.8 . 23 .13 .09 .00 .03 . 06 

3.2 .14 .06 . 03 .01 .02 

5.6 .08 .02 .01 .00 . 00 

1 X 10
7 

.OS .01 .00 

t. 8 x 10"4 17.6 19.7 22 . 5 23.2 26.2 29 .0 44.5 

L 
e 

1000 1040 1120 1140 1210 1280 1590 

55 
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Table F-17 

Decline of Water Table at Center line, 

Y/D = 2/3, YiD = 1/3. 

Water Table Hei ght 

No Cap. n = 6 n = 6 Tl = 4 Tl = 6 Tl = 10 n = 6 
Time Flow Pb/pg = 5 Pb/pg = 10 Pb/pg = 20 Pb/pg = 20 Pb/pg = 20 Pb/j)g = 40 

X 104 1. 00 1.00 1.00 .97 .99 .99 . 83 

1.8 1.00 .99 .99 .96 . 98 .99 .80 

3.2 .99 .98 . 97 . 90 . 94 .96 . 70 

5.6 .95 . 92 .90 .76 . 82 .87 .so 
X 105 .86 . 80 . 76 . 55 .64 .71 .27 

1.8 .71 .62 .56 . 30 .41 .so .07 

3.2 .51 . 40 .34 .10 .21 .29 .00 
5 . 6 .31 . 21 .16 .00 .07 .12 

1 X 106 . 15 .08 .OS .01 .03 

1.8 .OS .02 .01 .00 .00 

3.2 . 01 .00 .00 

5.6 . 00 

t. 8 X 10-4 13.0 18.0 24.8 53.5 53.5 

L e 1000 1170 1360 2010 2010 "' 

Tabl e F-18 

Decline of Water Table at Centerline , 

\ID = 1, Y /D = 0 . 

\~ater Table Height 

No Cap. n = 6 Tl = 6 Tl = 4 n = 6 Tl = 10 Tl = 6 
Time Flow Pb/pg = 5 Pb/pg = 10 Pb/pg = 20 Pb/pg = 20 Pb/pg = 20 Pb/pg = 40 

X 104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 .99 .99 .98 .98 .98 .98 

3.2 .98 .95 .94 .91 .91 .92 .89 

5 .6 .93 . 85 . 80 .73 . 74 .76 .67 

1 X 105 .83 . 72 .64 . 48 .51 . 54 .37 

1.8 . 70 .57 . 49 .23 .34 .40 .12 

3. 2 .54 .42 .35 .13 .22 .28 .01 

5.6 .39 . 28 . 22 .04 .12 .1 7 . 00 

X 106 
. 26 .17 .1 2 . 00 .06 .09 

1.8 .16 .09 . 06 . 02 .04 

3.2 .10 .04 .02 .00 .01 

5.6 . 06 . 02 .. 00 . 00 

1 X 10 7 
.03 .00 

t. 8 X l 0-4 11.6 9 . 30 8. 70 9 .00 8. 80 9 . 30 10.6 

Le 1000 880 850 870 860 880 940 

56 



Table F-19 

Decline of Water Table at Centerline, 

Y. / 0 = 
1 1' Y/D = 1/3 . 

Water Table Height 

No Cap . 11 = 6 11 = 6 11 ; 4 11 = 6 11 • 10 11 .. 6 
Time Flow Pb/pg = S Pb/pg = 10 p /p g ; 20 Pb/pg = 20 Pb/pg = 20 Pb/pg " 40 b 

X 10
4 

1. 00 1. 00 l. 00 l. 00 1. 00 1. 00 1. 00 

1. 8 .99 .98 .98 .97 . 97 .98 .97 

3.2 . 97 . 94 .92 . 89 . 89 . 90 . 87 

S.6 .91 . 80 .7S . 66 . 68 . 69 . 61 

1 X 10S . 78 . 62 .52 . 3S . 38 . 41 . 26 

1.8 . 61 .45 . 34 .10 .16 . 23 .00 

3 . 2 .42 .28 . 19 . 00 . 06 .12 

5 . 6 . 24 . 14 . 09 . 01 .OS 

X 106 . 11 . OS .02 . 00 . 01 

1. 8 .04 .01 . 00 .00 

3. 2 .00 .00 

t.s x 10-4 
9 . 2S 7 .65 7.9S 9 . 6S 8 . 90 8.90 14.8 

L e 1000 900 910 1005 960 960 12SO 

Table F-20 

Decl ine of Water Table at Cent e rl ine , 

\ID = 1' Y/D = 2/3 . 

Water Table lleight 

No Cap . 11 = 6 !) = 6 11 ; 4 Tl = 6 !) = 10 n = 6 
Time r:low Pb/pg • S Pb/pg = 10 Pb/pg • 20 Pb/og • 20 Pb/pg = 20 Pb/Pg • 40 

X 10
4 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 . 99 . 98 . 97 . 97 . 97 .97 .97 

3.2 .96 0 91 .89 .88 . 88 .88 .88 

5 . 6 . 88 . 74 .69 . 64 . 64 .64 . 63 

X 105 . 74 .49 .37 . 27 . 28 .~9 .26 

1.8 .53 .29 . 14 . 00 . 00 . 00 .oo 
3.2 . 32 .14 .03 

5.6 .15 . OS . 00 

X 106 .05 .01 

1.8 . 01 . 00 

3 . 2 . 00 

t. 8 x 10
4 

7 . 95 7 . 30 8 . 70 15.6 14.3 

L e 1000 950 1040 "' 1400 1340 "" 

57 
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Table F-21 

Dec line of Water Table at Centerline, 

Y/D = 2/3, Y/0 = 1/3, L = 500. 

l~ater Table Height 

No Cap. , .. 6 11 = 6 , = 4 l'l " 6 11 = 10 11 = 6 
Time Flow Pb/ pg .. 5 Pb/ pg = 10 Pb/pg " 20 Pb/pg = 20 Pb/pg = 20 Pb/pg = 40 

1 X 104 0.98 0.96 0.95 0. 86 0.90 0.93 0 .64 

1.8 . 92 .88 .85 .68 . 76 .81 . 41 

3. 2 .81 . 73 .68 .44 .55 .63 . 18 

5.6 . 63 . 53 .47 . 21 .32 .41 .02 

1 X 105 .43 . 32 .26 . 04 .14 . 21 .00 

1. 8 . 24 .15 .10 . 00 .03 .08 

3.2 .10 .OS .02 .00 .02 

5. 6 .03 . 01 .00 .00 

X 106 .01 .oo 
1.8 .oo 

t. 8 x 10-4 3. 25 4.50 7. 10 13.2 6.6 

L e 500 590 750 1020 720 .. 

Table F- 22 

Decline of Nater Table at Centerline , 

y i/0 = 2/ 3, Y/D = 1/3, L = 1500. 

Water Table Height 

No Cap . 11 = 6 11 = 6 , z 4 , = 6 11 = 10 11 = 6 
Time Flow Pb/Pg • 5 Pb/pg • 10 Pb/pg • 20 l"b/pg • 20 Pb/pg • 20 Pb/pg = 40 

1 X 10 1.00 1. 00 1. 00 0. 97 0.99 0.99 0.83 

1.8 1. 00 1.00 1. 00 . 97 .99 .99 . 82 

3.2 1.00 1.00 . 99 . 96 .98 .99 .80 

5. 6 . 99 . 99 . 98 . 93 . 96 . 97 . 74 

X 105 .97 .95 .93 .83 .88 .91 .58 

1. 8 .91 .86 . 82 . 64 . 72 . 78 . 36 

3.2 .78 .70 .64 .40 .51 . 59 . 15 

5.6 .60 .49 .43 .17 . 28 .37 .08 

X 106 . 39 .28 .22 . 02 .11 .18 .oo 
1.8 . 21 .12 .08 . 00 . 02 . 06 

3.2 .08 .03 .02 .00 .01 

5.6 .02 .00 . 00 .00 

X 107 
.00 

t.B X 10 
-5 

3.00 4.00 5 . 35 12.0 6 . 0 

L e 1500 1750 2000 ... 2900 2130 (I> 

58 



Table F-23 

Decline of Water Table at Centerline 

Y/D = 1/3, YiD = 0, H s 
.. 0. 

l~ater Table lleight 

n = 6 n = 6 
Time Pb/pg = 20 Pb/pg = 40 

1 X 104 1.00 1.00 

1.8 1.00 1.00 

3.2 .99 .98 

5.6 .97 . 94 

X 105 . 91 . 83 

1.8 . 79 . 67 

3.2 .62 .47 

5. 6 .42 . 28 

1 X 106 . 25 .14 

1.8 .12 .06 

3.2 .OS .02 

5 .6 .01 .01 

X 107 .00 .00 

59 
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ABSTRACT : The effects of soil aeration requirements on 
permissible drain spacing were analyzed for both equilibrium 
and transient drainage problem. The presence of a zone of 
insufficient aeration above the water tabl e required that 
drain spacing must be narrower than is cal culated by classi
cal techniques if the plant root zone is maintained adequate
ly aerated. A one-di mensional model was developed to 
simulate drainage in soils where the f l ow and storage in the 
capillary region are significant. The contribution of the 
capil.lary region was described analytically in terms of the 
measureable soil properties and the rate of percolation to 
the water t able. Drainage tests conducted in a sand-filled 
flume confirmed t hat the numerical model adequately describ-
ed the total flow system. Further analyses were 
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conducted using the numerical model to determine the effect s 
of bubbl ing pressure head pore-size distribution on the po
sition of the water table. These analyses showed that the 
water table is always lower than predicted by methods that 
ignore the capillary region. The lowering of the water ta
ble by the presence of the capillary region is increased 
by a higher bubbling presure, a wider distribution of pore 
sizes , and a larger percolation rate . It was shown t hat 
the region of inadequate aeration is always thicker than the 
amount by which capillary flow lowers the water table. As 
a result, the depth of aerated soil is always less than pre
dicted by the classical drainage equations. 

Drai nage Design Bas.ed Upon Aeration 
Harold Duke 
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