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ABSTRACT 
 
 
 

MICROBIAL SUCCESSION IN HUMAN RIB SKELETAL REMAINS AND FLY-HUMAN 

MICROBIAL TRANSFER DURING DECOMPOSITION 

 

Human decomposition is a dynamic process partially driven by the actions of microbes. It can be 

defined by the fresh, early decomposition, advanced decomposition, and skeletonization stages. The 

microbial communities that facilitate decomposition change in a predictable, clock-like manner, which 

can be used as a forensic tool for estimating postmortem interval. Chapter 1 introduces this concept by 

describing the stages of decomposition in detail and how high-throughput sequencing methods can be 

used with microbes to develop models for predicting postmortem interval. Chapter 1 also describes which 

sample types are most useful for predicting postmortem interval based on the stage of decomposition, the 

knowledge gaps in the field, and the steps necessary for adoption of this tool into the justice system.  

During fresh and early decomposition, microbial succession of the skin and soil sample types are 

most predictive of postmortem interval. However, after approximately the first three weeks of 

decomposition, the changes in the microbial communities that are used for predictions begin to slow 

down and the skin and soil sample types become less useful for estimating postmortem interval. Chapter 2 

of this dissertation shows that microbial succession of the bone microbial decomposer communities can 

be used for estimating postmortem interval during the advanced and skeletonization stages of 

decomposition. First, the bone microbial decomposer community was characterized using 16S ribosomal 

RNA sequencing from six human donor subjects placed in the spring and summer seasons at the 

Southeast Texas Applied Forensic Science Facility. A core bone decomposer microbiome dominated by 

taxa within phylum Proteobacteria was discovered, as well as significant overall differences in the bone 

microbial community between the spring and summer seasons. These microbial community data were 

used to develop random forest models that predicted postmortem interval within +/- 34 days over a 1–9-

month time frame of decomposition. To gain a better understanding of where the microbes in the 
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decomposed bone were coming from, as healthy, living bone is typically sterile, SourceTracker2 was used 

with paired skin and soil samples taken from the same decedents. Results showed that the bone microbial 

decomposer community is likely sourced from the surrounding environment, particularly the skin and soil 

communities that occur during the advanced stage of decomposition.  

Chapter 3 of this dissertation focuses on the influence of the blow fly (Calliphoridae) microbiome 

on human cadaver microbial community assembly. In early decomposition, volatiles attract blow flies to 

the cadaver, which serves as a source of nutrients and a safe place to lay eggs. It is likely that during this 

interaction between hosts, there is a mechanical transfer of microbes that subsequently alters each of their 

microbial communities. While studies have shown that blow flies have their own microbiome, they were 

not conducted in a decomposition environment. First, Chapter 3 shows the characterization of the blow 

fly microbiome by organ and season in a terrestrial, human decomposition environment. This was 

performed by placing ten cadavers across the winter, spring, and summer seasons at the Southeast Texas 

Applied Forensic Science Facility, collecting the first wave of colonizing flies for each cadaver, and 

sequencing the 16S ribosomal RNA gene of the labellum (mouth parts), tarsi (leg parts), and oocytes. 

Results showed that the previously defined universal fly microbiome persists even in a decomposition 

environment, with notable differences still present between organs and seasons. Additionally, results from 

using the tool SourceTracker2 showed that the labellum and tarsi act as substantial bacterial sources of the 

human decomposer bacterial community, and this source contribution varies by season. 

In summary, this dissertation provides the first quantitative estimate of postmortem interval of 

terrestrially decomposed human skeletal remains using microbial abundance information. This is a 

significant contribution to the criminal justice system; anthropologists typically use visual evidence to 

provide postmortem interval estimates of skeletal remains with errors ranging from months to years, 

whereas our approach provides estimates with errors of approximately one month. Furthermore, this 

dissertation shows evidence that there is a mechanical transfer of microbes between blow flies and human 

cadavers during the early stage of decomposition, which provides ecological insight into human cadaver 

microbial community assembly.  
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CHAPTER 1: AN INTRODUCTION TO USING MICROBIOME TOOLS FOR ESTIMATING 

POSTMORTEM INTERVAL1 

 

Summary 

Estimating the postmortem interval (PMI) of human remains is important in criminal 

investigations. Microbes play an important role in the process of decomposition and can provide clues 

about the time elapsed since death. Host-associated and environmental microbial communities undergo 

succession in a predictable, clock-like manner during decomposition. High throughput DNA sequencing 

can be used to inexpensively and rapidly track these microbial community shifts, and machine learning 

techniques can use these data to develop predictive models. In this chapter, we discuss the development of 

a microbial clock for estimating PMI, as well as remaining knowledge gaps and hurdles to technology 

adoption.  

 

Introduction 

The postmortem interval (PMI), or the time elapsed since death, is critical to establish in forensic 

investigations. During death investigations, testimonies are often incomplete and inaccurate, and the use 

of physical evidence (such as microbes or insect activity) to estimate PMI is important. Narrowing down 

PMI can aid testimonial evidence by validating or refuting alibis, identifying suspects and witnesses, and 

reconstructing the death scene. Additionally, it can help with the issuing of death certificates and the 

distribution of assets defined in wills. However, PMI can be difficult to determine. Estimating PMI to the 

hour of death is often impossible. That level of precision is virtually nonexistent. Additionally, current 

methods for estimating PMI, such as gross postmortem changes, last communications, and visual 

sightings become limited in their accuracy as PMI increases. Forensic entomology, the study of insect 

 
1 This work has been previously published: Deel, H., Bucheli, S., Belk, A., Ogden, S., Lynne, A., Carter, D. O., 

Knight, R., & Metcalf, J. L. (2020). Chapter 12 - Using microbiome tools for estimating the postmortem interval. In 

B. Budowle, S. Schutzer, & S. Morse (Eds.), Microbial Forensics (Third Edition) (pp. 171–191). Academic Press. 
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activity in a death investigation, can be useful for PMI estimations of remains that have been 

decomposing for days to weeks, but these methods are not always consistent due to a lack of insect 

activity during the winter and the relative absence of insects indoors. Therefore, novel tools for estimating 

the PMI of remains over the timeline of decomposition are needed.  

Microbes play an important role in the process of decomposition, and host-associated and 

environmental microbial communities have been shown to change in a predictable, clock-like manner 

during decomposition. Therefore, the microbial communities associated with human remains may have 

the potential to be applied as a forensic tool by estimating PMI on longer or broader timescales than can 

be determined by traditional methods. The use of microbiome data (high throughput characterization of 

microbial communities) to profile microbial communities associated with decomposing remains and its 

development into a “microbial clock” to estimate PMI is a promising new method for which proof-of-

concept studies have been published by independent research groups over the last several years (e.g. (1–

3)).  

In this chapter, we will describe the potential use of microbes as predictors of PMI. We begin the 

chapter with a description of human decomposition, including the major stages of decomposition and how 

they are identified. We then describe benefits and limitations of current methodologies for estimating 

PMI. Next, we define how to create a model to predict PMI using microbial data, including different 

sequencing and computational approaches. To follow, we describe early studies that lead to the 

development of the microbial clock and its use in mammalian model systems, including human remains. 

An explanation for different sample types that can be collected during human decomposition studies and 

how that may affect the microbial clock will then be provided. Next, we describe environmental variables 

that could affect the microbial clock, followed by current knowledge gaps in creating a microbial clock 

for estimating PMI. Lastly, we conclude with how to integrate this tool into the justice system. 
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Decomposition and Estimation of the Postmortem Interval 

Human decomposition is a dynamic process that is dependent upon many factors from the 

condition of the remains in life, the circumstances under which death occurred, and the environment in 

which the remains are decomposing. During decomposition, a cadaver is returned to its elemental basics 

through chemical degradation and the action of organisms that can consume tissues. These organisms are 

active from the inside out (primarily microbes) and the outside in (microbes, vertebrate and invertebrate 

scavengers). Climate, weather, and geography also influence how decomposition progresses. Therefore, 

decomposition is a product of the larger habitat in which it occurs, and alteration of ecosystem 

components will have an impact on the tempo and mode of decomposition. It follows then that studies of 

biology and chemistry are the main ways in which scientists understand generalities and variances that 

may occur during decomposition (4–6). Accurate measurements of biotic and abiotic ecosystem 

components combined with qualitative assessments of the remains allow scientists to estimate PMI. There 

are several methods available to estimate the PMI, each with strengths and limitations. The robustness of 

a method depends on the extent to which decomposition is influenced by the habitat as well an 

investigator’s ability to assess these variables to accurately incorporate them into a model. Because 

investigators are working backwards through time, the conditions of death may never be known, but the 

more clock-like the method to estimate the PMI, the more reliable are the assessment and conclusion.  

 

Stages of Decomposition 

Decomposition can be classified into major stages, which progress one after the other. Each stage 

has taphonomic landmarks, but the overall process is that a wet environment, after purging of the fluids of 

decomposition, becomes a dryer one (4, 5, 7). The number of decomposition stages that exist is debated in 

forensic science. Megyesi et al. (7) defined 4 stages of decomposition, a modification of the Galloway (8) 

system: fresh, early decomposition, advanced decomposition, and skeletonization, although these stages 

can co-occur.  
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The first stage, fresh, shows few postmortem changes with little to no discoloration (7). However, 

at the cellular level, deprivation of oxygen results in a cascade of biochemical events. The body begins to 

equilibrate to ambient temperatures (algor mortis). Actin and myosin proteins (responsible for normal 

muscle contractions) lock due to limited adenosine triphosphate (ATP; necessary to unlock the proteins) 

in the cells, causing the entire body, from the face and shoulders to the larger muscle groups such as the 

trunk and limbs, to stiffen (rigor mortis).  Body areas in contact with surfaces will discolor from pooling 

of blood due to gravity (livor mortis). Eventually autolysis occurs, ending rigor; digestive enzymes, 

stored in cellular organelles called lysozymes, begin self-decomposition causing cellular membranes to 

lose integrity and cell-to-cell junctions to be destroyed (5, 9–14). Bacteria that are able to survive 

independent of the host or are no longer kept in check by the host’s immune system reach increased levels 

of activity (15, 16). Flies (Diptera) may lay eggs at this stage. Those in the family Calliphoridae, blow 

flies, are attracted to fresh remains, and females will lay their eggs in protected areas such as the eyes, 

nose, and ears. Eggs will also be laid at body-ground and body-body interfaces and sometimes in thicker 

hair. Egg-laying by a female is an attractant to other females to do the same, and egg masses may consist 

of hundreds or thousands of eggs. Occasionally beetles (Coleoptera), such as carrion beetles (Silphidae) 

and rove beetles (Staphylinidae), and ants and wasps (Hymenoptera) are attracted to the fly eggs (6, 17–

21); pers. obs. Bucheli Laboratory). 

Early decomposition is rapidly changing at the biochemical, microbial, scavenging, and 

taphonomic levels. Skin begins to slip off, sometimes in large sheets, and the hair falls, marking the 

transition from fresh to the first state of early decomposition (5, 7). The remains are engaged in active 

putrefaction with fermentation and proteolysis (13). Fatty acid decomposition is either aerobic or 

anaerobic, sometimes both occurring on the same subject (5, 13). The remains shift from a pink-white 

color to gray-green color and finally to black (7, 8). During this color shift, a marbling effect often occurs 

that Pinheiro (5) refers to as “posthumous circulation.” As the gut decomposes, bacteria are able to enter 

into and move through the circulatory system, metabolizing the blood and creating a blackish residue. 

Visible through the waxy skin, the effect is like marbled stone. The internal condition of the remains is 
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now anoxic and acidic, and the anaerobic bacteria proliferate and produce gases as a metabolic byproduct. 

The gases inflate the remains (bloat) and eventually force accumulated fluids from orifices of the head 

and trunk (purge) (5, 13, 22). Megyesi et al. (7) note that for the trunk, bloating with purge represents the 

third state of early decomposition, and for the head and neck, purge represents the fourth state of early 

decomposition. Insect activity intensifies during this stage, reaching its peak. Many adult flies are 

attracted to the remains to lay eggs and to feed from fluids. The eggs of the initial colonizing Diptera, 

now hatched, represent the oldest larvae; however, Diptera are attracted to the remains and lay eggs in 

waves and the potentially large “maggot mass” (conglomerate of actively feeding larval Diptera) consists 

of many species, even families, at variable ages. The maggot mass travels around the body, feeding as it 

goes and physically tearing at the flesh with modified mouthparts. This activity will greatly facilitate 

decomposition of wet tissues, as the maggots spread digestive enzymes and bacteria as they move. It is 

also common to encounter necrophagous beetles, especially larvae and adults of the family Silphidae, and 

predatory insects as observed in the fresh stage (6, 17–21); pers. obs. Bucheli Laboratory.) 

   Megyesi et al. (7) mark the onset of advanced decomposition, the third stage, with caving of the 

flesh of the eyes, throat, and abdominal cavity, though others have marked post-purge as the onset of 

advanced decomposition. Although the cadaver has now entered the drier stages of decomposition, 

putrefaction continues. For the limbs, Megyesi et al. (7) note that moist decomposition with bone 

exposure (less than 50% of the total area) is followed by mummification with bone exposure (less than 

50% of the total area). Galloway (8) adds the formation of adipocere as the end state of advanced 

decomposition in some cases. Diptera activity slows as tissues dehydrate, but Coleoptera that prefer drier 

remains can present variable levels of activity during decomposition, particularly taxa from families 

Silphidae, Cleridae, Scarabaeidae, Trogidae, and Dermestidae (6, 17–21); pers. obs. Bucheli Laboratory.) 

During the final stage, skeletonization, all soft tissues are eliminated from the remains so that 

only dry bone is left. Insect activity decreases from sparse to nonexistent (7) and scavenging activity is 

decreased (6, 17–21); pers. obs. Bucheli Laboratory.), excluding scavengers that are attracted to bones 

(some rodents, some birds (23), coyotes (pers. obs. Bucheli Laboratory,) snails (24), and occasionally 
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millipedes (pers. obs. Bucheli Laboratory.) This last stage may take an extended period of time, months to 

years.  

 

Estimating the Postmortem Interval  

Chronological time can be linked to stages of decomposition in a number of different ways, 

allowing for a variety of methods for estimating PMI, each of which has strengths and limitations. One 

main challenge is that the route taken to get to the final stage of skeletal remains can vary based on the 

conditions of the decedent in life, at death, and parameters of the ecosystem in which the remains 

decompose. Though predictable to a degree, alteration of temperature, humidity, rainfall, or soil 

conditions may change the tempo and mode of decomposition, allowing remains to indicate multiple 

stages of decomposition at once, bypass a stage, or prolong a stage, all of which could lead to inaccurate 

interpretation of the PMI. Decomposition is also greatly influenced by organisms adapted to consume 

putrefying tissues. Vertebrate scavengers are common outdoors and can greatly increase the rate of 

decomposition by removing flesh, but their attraction to and ability to consume remains is difficult to 

predict. Insects are highly successful necrophagous feeders. These organisms will colonize the remains at 

particular stages of decomposition. This resource partitioning results in ecological succession—a 

predictable change in the community structure that is driven by the cadaver ecosystem shifting from wet 

to dry. Using information extracted from the necrophagous insect fauna can also have challenges. The 

benefits and drawbacks of various methods are discussed below.  

Early landmark taphonomic events of decomposition occur during an established timeline. 

Although variable, rigor mortis, livor mortis, and algor mortis are well studied processes that may be 

useful to estimate the PMI during the first few days after death. Some general observations are that, under 

ambient temperatures of ~20oC (12), rigor mortis sets in at 2 - 6 hours after death, with rigidity 

established in all muscle groups by 6 hours postmortem, persisting for 24 - 84 hours postmortem until 

autolysis destroys cells (11–13). Rigor mortis onset and duration times can be altered by temperatures. 

Increased body temperatures just before death (through increased activity or fever) can shorten the onset 
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time (9, 11, 13). Colder ambient temperatures can shorten onset time and increase the duration of rigor, 

while warmer temperatures may delay the onset time and/or prevent full development of rigor (13). Livor 

mortis begins between 30 minutes and 3 hours after death and will continue to develop for the first 12 

hours postmortem, becoming fixed (with a reddened skin color that no longer turns white when pressure 

is applied) after 18 - 24 hours postmortem. Colors of lividity then change as a result of biochemical 

events with the initial red of oxygenated blood giving way to purple as oxygen unbinds from hemoglobin. 

Temperature can affect this color change, as colder temperatures may delay the release of oxygen from 

hemoglobin. Livor mortis persists until putrefactive changes dominate (9, 11). Estimates of the 

postmortem interval by analyzing algor mortis are based on the time it takes a cadaver to reach the 

ambient temperature. The average temperature of life for a human is 37.4oC. Postmortem, the remains 

cool at a rate dependent on time but can also be affected by activity just before death, body mass, 

clothing, and the ecosystem surrounding the remains at death. There is extensive literature on estimates of 

the time since death based on body cooling and all variables that must be considered. Hayman and 

Oxenham (9) provide a useful review.  

As decomposition advances past the first few days, methods to estimate the time since death 

become fraught with variables, making accurate estimates more difficult as the timeline progresses. To 

predict the time of death using the Megyesi et al. (7) system, state of decomposition for three major body 

regions (head/neck, limbs, and trunk) is assessed and a total body score (or TBS) is generated and used in 

a regression to calculate the accumulated degree day (ADD) (see Box 1.1 for more information).  

For organisms that are cold-blooded or for chemical reactions, the ambient temperature dictates the 
speed of physiological or chemical reactions (i.e. higher temperatures speed up reactions while lower 
temperatures slow them down or stop them completely). Therefore, the same physiological or chemical 
reaction taking place at two locations with varying temperatures may occur at different speeds. To 
account for this, decomposition scoring systems and models include a minimum threshold temperature, 
or base temperature, below which the reactions cease or are greatly slowed. Accumulated degree hours 
(ADH) measures total heat units spent above the base temperature and accumulated degree days (ADD) 
converts this measurement to calendar time. Including these parameters ensures more valid 
comparisons between subjects decomposing at different ambient temperatures. 

Box 1.1. ADH and ADD to estimate physiological time.  
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With this approach, a previously qualitative method is made quantitative. The Megyesi et al. (7) 

system seeks to diminish user error and standardize the degree of decomposition across seasons and 

geographic locations; it is unique in that it allows the user to assess and score the state of decomposition 

of the remains as three separate areas. This system, according to Megyesi et al. (7), hypothetically works 

at all time points postmortem until the recovery of skeletal remains. A valid concern of the Megyesi et al. 

(7) TBS system is user error. However, Dabbs et al. (25) demonstrated there was no difference in TBS 

scores produced by different observers, and that photographs of remains are as reliable for assessment as 

the cadaver itself, if it is no longer available (26, 27). Another concern of the Megyesi et al. (7) TBS 

system is the reliability of the regression models used to calculate the ADD, which Moffatt et al. (28) 

corrected by using a more appropriate regression model.  

Yet another challenge is the reliability of the equation in other climates, which may not be 

representative of how remains decompose in areas of high temperatures or high humidity where 

decomposition may be accelerated or stopped (29) via mummification and saponification (see below). 

Progressive color change is also plastic with remains experiencing nonlinear or composite color changes, 

with earlier mummification possible and then reversal of mummification at times of intense rain (29). 

Though Megyesi et al. (7) do not record bloat in the head, neck, and limbs, Bucheli et al. (30) recorded 

noticeable bloat in these areas using LiDAR. Bucheli et al. (30) also observed diurnal periods of bloating 

(inflation during the day and deflation at night) and that remains of similar PMIs even in close proximity 

may experience different trajectories of decomposition given slight variation of ecosystem components 

(31).  

A final valid concern for estimating PMI using TBS is the timing of saponification and 

mummification. Saponification (adipocere formation) and mummification are both processes that occur in 

opposition to decomposition; that is, they are preservation processes. While Galloway (8) and Megyesi et 

al. (7, 8) include mummification as later stages of advanced decomposition, and Galloway (8) includes 

saponification as the final stage of advanced decomposition, Pinheiro (5) records these processes as able 

to occur at any stage of decomposition. Saponification is the result of hydrolysis and hydrolyzation of 
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adipose tissue to form a waxy but brittle substance (5), facilitated by warm temperatures and water. It can 

begin immediately after death, with visible signs showing later. Mummification, caused by desiccation of 

tissues, is frequently seen in arid climates. The onset of desiccation can be immediate but not noticeable 

until weeks later. Pinheiro (5) notes that on a single cadaver, saponification and mummification can occur 

at the same time. Only a small amount of water is necessary for saponification, as little as what is 

naturally found in human tissues, and use of cellular water for saponification may result in dehydration of 

nearby tissues (5). 

Insect colonization, or the arrival time and duration of the insect on the cadaver, frequently 

correlates to the PMI and therefore can be used to estimate the time since death (17). Two methods are 

useful in this regard: the age of the maggot (shorter-term evaluation) and the succession pattern of an 

insect community (longer-term evaluation). If female flies arrive nearly immediately after death to lay 

their eggs, the age of the oldest maggot (sometimes the largest) should be indicative of PMI. Using 

information of the ambient temperature of the maggots during development compared to a standardized 

growth curve, the ADH (with the base temperature of insect metabolism figured) can be calculated. This 

ADH will correlate to the ADH of the cadaver and therefore the PMI. Maggot ADH models work best 

when the first colonizing maggots are used for estimates. Generally speaking, at 25oC and 60-70% 

humidity, it takes the eggs of the blow fly Lucilia coeruleiviridis approximately 24 hours until hatching 

and another 7-13 days of feeding until pupation (32). This time frame can be greatly altered by 

temperature (as temperatures increase, the rate of maggot development is accelerated). Noteworthy, 

however, is that each species of fly has its own unique developmental ADH and base temperature. A 

researcher must be familiar with these species-specific values to use the ADH approach. If those oldest 

maggots have completed their lifecycle and departed as adults, investigators may misinterpret the second 

oldest maggots as the first (21), greatly underestimating PMI.  

The second entomological method to estimate PMI uses long-term colonization patterns of insects 

that are tracking cadaver resources through time as dehydration of the body advances. Certain insects are 

attracted to the remains at particular stages of decomposition (see above for general patterns). These 
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insects will attend the remains as long as it is palatable, giving way to other insects as decomposition 

progresses so that certain combinations of insect colonizers found at the cadaver at certain states of 

decomposition can be indicative of a long term PMI, on the order of weeks or months. Insect successional 

patterns work best when they can be compared to a well-curated insect library generated through long-

term studies of biodiversity of necrophagous insects (21, 33). Insect models to estimate the PMI can also 

be problematic. Maggot ADH methods require laboratory equipment to rear insects. Successional patterns 

to estimate PMI require long-term studies of remains. Both of these methods are highly influenced by 

geography and season and therefore are a regionally specific science. One must also have extensive 

knowledge of insects of the area to be able estimate PMI based on insect data. Studies conducted in one 

area are not immediately applicable to other areas. Other pitfalls to using insects to estimate the PMI 

include instances when the maggot ADH and the time since death are not the same as in situations of 

extreme heat or extreme cold (may speed up or slow down insect development, respectively), delayed or 

expedited colonization by the insect (restriction of the insect by loose or semi-open physical barrier or 

antemortem access to wound sites), or complete restriction from the remains (burials, aquatic 

environment, tightly closed chambers) (21). Other unique circumstances of insect biology can alter the 

timing of egg laying by flies and slow insect successional patterns, greatly skewing PMI estimates 

(34).      

 

The Microbial Clock 

Similar to insects, the succession of different microbial communities can indicate PMI. This 

temporal succession of microbes during decomposition was first noted in early studies in the 1980s (35, 

36). After the advent of next generation high throughput sequencing, microbial succession patterns have 

been more accurately and comprehensively characterized by rapid and inexpensive profiling of thousands 

of microbial taxa per sample. For example, microbial community changes during decomposition have 

been shown to be relatively predictable and clock-like across individuals decomposing within the same 

environment (1, 2, 37). Due to the predictable nature of microbial succession associated with 
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decomposing bodies, researchers have been exploring the potential of building regression models from 

microbiome data that can predict the PMI of a cadaver-associated sample with unknown PMI (Figure 

1.1).  

 
Figure 1.1. Building and using a microbial clock model. Controlled experiments are conducted to observe 
and harness the patterns of microbial succession on human remains over a timeframe of PMI. The 
microbial community data resulting from these experiments can be used to build a machine learning 
model, which can then be used to predict the PMI of testing data and, eventually, microbiome samples of 
unknown PMI. 
 

Using Decomposition Studies to Build Regression Models for Predicting PMI 

Building a microbial model for estimating PMI requires data generated from a decomposition 

study of multiple decomposing individuals (Figure 1.1A). These decomposition studies can be 

accomplished with either nonhuman mammalian models in laboratories or outdoor facilities, or with 
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human donors at anthropological research facilities, which provide the infrastructure for research on 

decomposing human remains. Generally, in decomposition studies, sterile cotton swabs are used to collect 

a sample of microbes from a chosen site (e.g. skin of the cheek). To build a robust model with low error 

rates, a time series of samples is required to capture the microbial succession that occurs at the sample 

location during decomposition. Therefore, remains are often sampled daily or in 2-3 day intervals to build 

models with error rates in these time frames (since the error rate cannot be smaller than the sampling 

frequency). Swabs are then frozen to prevent continued microbial growth until further analysis can be 

conducted. To process the samples, DNA is extracted, and polymerase chain reaction (PCR) is used to 

amplify a taxonomically informative DNA region. For example, the 16S ribosomal RNA (rRNA) 

amplicon is commonly used to survey bacterial and archaeal populations present in a microbial 

community. The 18S rRNA amplicon is typically used for eukaryotic characterizations, and the internal 

transcribed spacer (ITS) gene region is used for fungi. Each of these amplicons are universal, 

taxonomically informative, and relatively cheap to sequence. 

Once sequence data are generated, they can be summarized into a count table representing the 

relative abundance of each microbial taxon for each sample (Figure 1.1A). With thousands of microbial 

taxa and potentially hundreds to thousands of samples, these datasets are big and complex. Machine 

learning is a powerful tool for discovering patterns in complex microbiome data (see Box 1.2) and can be 

used to build predictive models for estimating unknown PMIs by using a time series of samples from 

remains with known PMIs. The microbial abundance information is partitioned into training and testing 

datasets, and the abundance patterns in the training dataset are used to “program” the machine learning 

algorithm (Figure 1.1B). The testing dataset is then used to determine the accuracy of the model, which 

calculates error based on predicted versus known PMI. In addition to modeling based on microbiome 

data, environmental parameters (e.g. temperature) can be added to improve model accuracy. The 

modeling process is repeated until the lowest error for PMI estimations is achieved, which represents the 

best model (Figure 1.1B).  
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Once the best regression model is generated, microbiome swabs collected from remains with 

unknown PMIs can be processed in the same manner as those from the decomposition studies (Figure 

1.1C). The microbial abundance information obtained from sequencing can then be input into the best 

model, which uses the microbial clock to estimate PMI with error rates (e.g. 10 days +/- 3 days). 

Machine learning predictive tools for microbiome data 
 

Microbiome datasets are large and complex. Therefore, they are well-suited for modeling and 
classifying using machine learning approaches. Machine learning is the construction of systems that 
learn from data. Data are input into an algorithm, which uses these data to build a model. Then, the 
machine learning algorithm uses another set of data to test the model and refines it based on the error. 
In simple statistics this second step does not occur, which is what makes machine learning unique. 
Furthermore, when using machine learning the researcher is able to relax assumptions (i.e., that the data 
are normally distributed) and work with more general models than in basic statistics. 
 

There are numerous algorithms for building machine learning models, most of which follow similar 
constructions. The microbiome data are used to train a model for either classification or regression 
based on a metadata variable. Classification models are built to predict a categorical outcome. For 
example, microbiome data could be trained to classify patients into different disease states or risk 
groups. Regression models predict continuous variables. For example, microbiome data could be 
trained to predict sample pH, geolocation, or patient age. Both of these models have been applied to 
predict PMI, by creating a binary to predict whether the sample is from an early PMI or middle PMI as 
a categorical variable, or by using days since death as a continuous variable. 
 

Algorithms that have been used with some success in PMI prediction include Random Forest, K-nearest 
neighbors, and Linear Regression. These algorithms all work to generate predictive models, generally 
through subsetting the data into training and testing sets. The model is built on the training set, then 
applied to information from the testing set. The model will then have both the “true” response and the 
“predicted” response, and the difference between these two is used to calculate the model error rate. 
The main distinction between these three algorithms, then, is how they train the model. 

Box 1.2. Machine learning tools for building regression models with microbiome data sets.  
 

Early Studies of Microbial Ecosystems 

Before the advent of high throughput sequencing, studies of microbial succession relied on 

culture and microscopy methods. But, this did not prevent scientists from proposing the use of microbial 

change to model PMI. This concept was investigated by Melvin et al. as early as (35). In this study, 

researchers removed a portion of the small intestine from mice and suspended it in a beaker of saline. 

Using this model, they were able to monitor the movement of microbes, known as transmigration, from 
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the luminal contents to the surface of the intestine. Melvin et al. showed that the time required for this 

transmigration was dependent on the temperature but, using electron microscopy, the researchers 

identified specific organisms that translocate and the order in which they appear on the intestinal surface. 

These were, in order, Staphylococcus spp., coliforms and fungi, then coliforms and anaerobes. This was 

critical information to establish the concept of a microbial clock because it demonstrated that 

microorganisms appeared repeatedly at different time points, though this was only in an in vitro model.  

After the initial hypothesis of microbial succession patterns, several other studies were conducted 

to monitor the microbial changes during mammalian decomposition. Micozzi (36) published a study that 

compared the decomposition patterns of rat remains that were either freshly killed or frozen and thawed. 

In this investigation, Micozzi further demonstrated a succession of microbial taxa that was consistent 

across all remains sampled. As in Melvin et al., Staphylococcus appeared in the earliest stages of 

decomposition, day 0 in the frozen-thawed remains and day 2 in the fresh. However, he found other 

microorganisms as well, including Enterococcus, Streptococcus, Bacillus, and other non-identified gram-

negative rods. These microorganisms persisted for most days of decomposition, but by the final sampling 

point (day 6), only Enterococcus, Streptococcus, Bacillus, and Staphylococcus were still found in the 

samples, with the addition of Proteus and Clostridium. Though not as clear as in the previously described 

experiment, there was still evidence of a bacterial succession pattern. Micozzi did not culture for fungi, so 

it is unclear if fungal succession was also a part of the decomposition pattern in his experiment. In 

addition to the contributions to the body of evidence surrounding the microbial clock hypothesis, this 

study also helped to direct experimental methodology as investigation continued in this field. In the 

comparison of fresh versus frozen-thawed rat remains, Micozzi found that the postmortem changes were 

different. Specifically, Micozzi concluded that the frozen-thawed remains were more susceptible to 

external insects and microorganisms and aerobic decay. Due in part to this evidence, current research 

prioritizes the use of fresh (never frozen) cadavers. 
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The use of Mammalian Model Systems to Develop a Microbial Clock 

Model organisms are often used in all facets of biological and biomedical research. There are 

several advantages that smaller model systems have over using human hosts, including larger sample 

sizes, ease of manipulation, lower cost, greater accessibility, and more rapid growth and reproduction 

(38). This holds true for decomposition research, and as a result many of the experiments using next-

generation sequencing methods were conducted using nonhuman models, including rats, mice, fish, and 

swine. Another advantage to using these models in decomposition studies is that the experiments can be 

conducted in an animal facility, which many universities have, while human remains studies require a 

specialized facility. These mammalian model studies have been critical for demonstrating a proof of 

concept for the predictability of microbial succession during decomposition. For example, Metcalf et al. 

(2) published a proof-of-concept study in which mice decomposed over 48 days, and microbiomes of the 

skin, abdomen, and soils were characterized using amplicon sequencing for the 16S rRNA and 18S rRNA 

genes. They found that the microbial community composition changed significantly and consistently as 

decomposition progressed. Similar to the early studies, researchers identified bacterial taxa that changed 

in abundance during decomposition, but in this case these organisms were determined based on relative 

abundance of DNA sequences as opposed to presence in culture. To determine whether this observed 

succession could result in an accurate model of PMI, they generated regression models and discovered 

that PMI could be predicted within approximately 3 days over 48 days of decomposition, thus providing 

evidence for developing a novel tool for estimating PMI. 

Swine have also been used to build models for human decomposition, as they are similar to 

humans in their internal anatomy, fat distribution, lack of fur, and diet, which indicate a similar initial gut 

fauna (39). In another important proof-of-concept study, Pechal et al. (1) evaluated the bacterial 

succession during the decomposition of three swine carcasses and used these data to predict PMI. This 

study was conducted outdoors instead of in a laboratory, so the carcasses were exposed to weather 

conditions, though they were covered in cages to prevent scavenging. These carcasses were sampled at 1, 

3, and 5 days after placement, and the extracted DNA was sequenced using the 16S rRNA gene amplicon. 
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Similar to Metcalf et al. (2), researchers found that there were significant changes in bacterial community 

structure and diversity. In this experiment, models were also generated using Random Forest regression. 

This resulted in accurate predictions of PMI, further suggesting this method could be used as a forensic 

tool. 

  

Human Decomposition Studies  

The use of model organisms permitted controlled, repeatable experiments, which provided proof-

of-concept studies for microbial clock applications for predicting PMI. Before microbiome data can be 

used as a forensic tool, however, it is important to show that the microbial clock can also be used to 

estimate PMI of human remains. To evaluate this, decomposition studies tracking microbial succession 

using donated human remains have been conducted at specialized anthropological research facilities (3, 

37, 40–49). 

A challenge with many of these studies is the low sample size that results from the high cost and 

low availability of human cadavers. To remedy this, Pechal et al. (44) conducted a large-scale PMI 

experiment using 6 external skin swabs from 188 cases that were collected in death investigation cases. 

Due to the nature of the sample collection process, this study focused on the early decomposition period. 

Researchers analyzed the microbiome data using 16S rRNA amplicon sequencing, then inferred the gene 

pathways to investigate the potential ecological functions of these communities. Based on these results, 

investigators suggested that the microbiome is more stable in the first 48 hours, and after two days, the 

variability increases despite fewer taxa. They concluded that while there was bacterial succession 

throughout PMI, microbes may not be informative of PMI until after 48 hours postmortem. In another 

study underway by the authors of this chapter, 36 human cadavers were placed at three anthropological 

research facilities and microbial communities were sampled for the first 21 days of decomposition. 

Together, these two studies lay a foundation for building a microbial clock based on human samples.  
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The Microbial Clock of Different Sampling Environments 

 While generalized trends in the microbial processes that drive corpse decay are somewhat 

pervasive throughout each stage of decomposition, the precise pattern of community succession observed 

at various points in decay could be significantly impacted by the location from which samples are 

collected. It is also possible that some sample types may provide a more accurate clock for predicting 

PMI than others. Research examining microbial community change has been conducted on samples 

associated with mammalian cadaver skin (2, 43, 45, 50), gastrointestinal/rectal locations (41, 42, 44, 45, 

50), oral sites (44, 45, 50), nasal, eyes, and ear cavities (44, 48), internal organs (46), bones (40), and 

cadaver associated soils (43), each providing useful information regarding the impact of sample 

environment location on microbial succession. Each sample type harbors its own set of limitations and 

benefits that should be carefully considered when deciding what locations to use. For example, samples 

taken from organs may be accurate early in decay (46), whereas bone samples provide increased accuracy 

for longer decay time frames (40). Certain sampling locations may be more or less accessible, depending 

on the stage of decay and the nature of the death scene. Furthermore, some sampling locations may be 

less invasive during a death investigation. For example, skin samples may be more accessible and less 

invasive at a death investigation than a gastrointestinal sample.  All of these factors are important 

considerations to make when using microbial clocks as a forensic tool. Below, we discuss these 

considerations in more detail regarding each sample type. 

 

Human Body: Externally Accessible Locations 

External sample locations have been frequently chosen in decomposition studies, including skin, 

rectal, oral, nasal, eye, ear, and umbilicus sites. These locations are often beneficial because they are 

easily accessible, and only a simple, non-invasive swab is required to sample the microbiome. However, 

since there are numerous external sites from which to sample, it is important to consider whether 

microbes from different locations change similarly throughout decomposition. 
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 The skin is a common sample site in decomposition studies, and it has been chosen for model 

organisms including mice (2, 43), swine (50), and humans (43, 45, 51). Since the skin is a very large 

organ, there are multiple locations to consider when choosing from where to sample. In one experiment 

by Hyde et al. (45), two human subjects were sampled from the mouth, external left/right cheeks, external 

left/right biceps, torso, and rectal regions. Although the succession of microbes was not identical, both 

subjects exhibited similar changes in phyla abundance through time for all sites sampled. Other recent 

studies have investigated whether certain skin sites increase the accuracy of PMI estimations to allow for 

a better microbial clock. For example, in Johnson et al. (48), machine learning revealed lower error 

models from skin samples collected from the inner ear canals compared to the inner nasal surfaces. Belk 

et al. (51) compared models using samples collected from the skin of the torso and the head, revealing 

that both sites could accurately estimate PMI. While these promising results suggest that the skin can 

build an accurate microbial clock, it would be useful to compare a wider array of skin locations within 

one study to determine which site provides a more clock-like succession of microbes. 

In addition to the skin, other external sample sites have been studied for potential use as PMI 

estimators. Pechal et al. (44) used samples from a variety of locations, including the eyes, ears, nares, 

mouth, and rectum to determine if models generated for each sample type could be used to classify the 

PMIs within the temporal categories of less or greater than 48 hours. Each model except the one created 

using rectal samples was successfully able to accomplish this task, suggesting that a wide variety of 

externally accessible sample types can be used to achieve similar ends when estimating PMI.  

 

Human Body: Internally Accessible Locations 

In decomposition studies, researchers can also choose to sample the internal 

“thanatomicrobiome,” or the microbiome of the blood and internal organs (46, 52). These sites are not 

directly influenced by the same environmental factors (such as pH, temperature, insects, and scavengers) 

as external sites are. Furthermore, the internal thanatomicrobiome may not be affected by gut-associated 

microbes that flourish after death. While it was previously thought that internal organs were sterile, it was 
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demonstrated in the Human Microbiome Project that some internal organs may contain distinct microbial 

communities (52). Therefore, it is possible that microbial succession varies among organs during 

decomposition. Javan et al. (46) sampled the brain, heart, liver, spleen, buccal cavities, and/or blood from 

27 human corpses from criminal cases with known PMIs. Results demonstrated that there were 

statistically significant, organ-dependent differences in microbial succession.  

The gut microbiome has also been investigated as a potential source of clock-like microbial 

community change. For example, Hauther et al. (41) repeatedly sampled the gut microflora from 12 

human subjects by making an incision in the abdomen and inserting a sterile swab into the cecum. 

Sequencing of the 16S rRNA gene revealed that Bacteroides and Lactobacillus populations declined with 

increasing decomposition, indicating that these taxa could be used an indicators of PMI. To further study 

microbial decomposers in the gut, Debruyn and Hauther (42) allowed four more human subjects to 

decompose. They then sampled the gut and sequenced the 16S rRNA gene as in their previous study. 

Results showed that the bacterial community in the gut gradually changed towards a common decay 

community, with a decline in Bacteroidales (Bacteroides) and an increase in Clostridiales and 

Gammaproteobacteria. Studies investigating microbial succession of the gut with increasing PMI have 

some results in common (2, 41, 42), such as a decline in Bacteroides, but they have also revealed 

differences in microbial succession, such as the presence of Lactobacillus, Clostridiales, and 

Gammaproteobacteria in some gut communities but not detected in others. Thus, it would be useful to 

conduct more experiments of this nature to determine if these differences impact the microbial clock.  

While these sites can be informative for internal microbial succession and possibly PMI, it can be 

very destructive for the remains, and therefore difficult to study. During a decomposition study, it is 

important that sampling of remains does not have a major impact on the outcome of the experiment. For 

this reason, choosing a sampling site that allows for non-invasive sampling can be critical.  
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Bone 

As decomposition progresses into the skeletonization stage, our ability to estimate PMI becomes 

more difficult (40). This is partially due to the loss of soft tissue, which prevents the regeneration of 

maggot masses and subsequently causes a shift in the decomposer community. Recent work has mostly 

focused on characterizing the diversity of decomposer communities leading up to skeletonization, but 

there are few studies characterizing the communities associated with skeletal remains. 

Microbial invasion into bones is likely a slow process in that it potentially occurs for up to one 

year of decomposition, while the flesh can decompose within a few weeks. Therefore, the succession of 

microbes into bones after death could be tracked by collecting a time series of bone samples, providing a 

microbial clock of death for a longer time frame. Damann et al. (40), collected one rib bone from 12 

bodies that were allowed to decompose over a wide time range (approximately 500-19,000 ADD). This 

allowed for the characterization of microbial succession over a longer time frame of decomposition than 

would have been possible using another sample type, such as skin, which is processed by microbial 

decomposers at earlier ADDs. Results indicated an interstage taxonomic succession of Firmicutes, 

Bacteroidetes, then Actinobacteria and Acidobacteria from partially skeletonized remained to completely 

dry remains. Additionally, researchers were able to identify an apparent source; the microbial 

communities associated with partially skeletonized remains resembled the human gut, while those of dry 

remains resembled the soil. This study suggests that there is potential for using rib bones as an extension 

to the microbial clock. 

 

Soil 

Studies have revealed that there are approximately eight million bacterial species per gram of soil 

(53). Carcasses serve as a nutrient-dense source for soil microbial decomposer communities. The 

decomposition of a mammalian corpse selects for specialized soil microbial communities that appear in 

consistent patterns. Multiple studies have shown that Proteobacteria is the dominant phylum during 

decomposition (2, 3, 49), while Acidobacteria generally decrease (2); (3) and Firmicutes increase (49); (3) 
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as decomposition slows. Additionally, human-associated Bacteroides are highly concentrated in soils 

during decomposition (3). Finally, Metcalf et al. (2, 43) demonstrated that soils associated with 

decomposing carcasses (gravesoils) provided accurate estimates of PMI, with errors similar to skin sites 

(51). 

It is important to consider depth when sampling gravesoils in decomposition studies. Finley et al. 

(49) showed that in the decomposition soils of 18 human subjects (14 on the surface, 4 buried), there was 

a decrease in taxon richness (the number of species), evenness (the abundance of each species), and 

diversity of surface soils. In the soils associated with buried remains, there was an increase in taxon 

richness with decreasing evenness and consistent diversity. While Proteobacteria were dominant in all 

gravesoils, there was a decrease in Acidobacteria and an increase in Firmicutes only in the surface soil 

communities, which contrasts with the consistent community composition of the buried soil communities. 

Therefore, the sampled depth of gravesoils can affect the observed microbial composition and should be 

taken into consideration during sampling and PMI estimations. 

It is critical to consider sample location when studying microbial succession of decomposing 

remains. External sites, such as the skin, rectum, mouth, nose, eyes, and ears, are easily accessible and 

have shown to provide accurate microbial clocks, but these locations can be influenced by the 

environment in which the remains are located. Internal sites, including the blood and internal organs, are 

likely less impacted by the environment, but sampling requires invasive dissection and introduces 

unreliability into the microbial clock. For researchers who aim to estimate PMI on a longer time scale, 

bone may be a good choice, as collecting a time series of rib bones may be able to extend the microbial 

clock. Soil as a sample site also shows great potential, as gravesoil microbial succession plays an 

important role as a possible source of microbial decomposers and a sink for ammonia rich post-rupture 

fluids associated with decomposition (43). Researchers interested in conducting a study of this nature 

should carefully consider one or a combination of these sample types based on invasiveness and the 

decompositional time frame of interest. 
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The Effect of Environmental Variables on the Microbial Clock 

Although the proof of concept for the microbial clock has been demonstrated, the suite of 

variables that may affect the clock-like pattern of microbial decomposers is not well established. Some 

studies have investigated how some factors such as soil type, season, and insect activity affect the 

predictable succession of microbes during decomposition. Soil microbial community composition is 

partially driven by pH (54). Therefore, it is possible that different soil types will seed remains with 

different decomposer microbial communities. To test this hypothesis, Metcalf et al. decomposed mice on 

three soil types, including desert, shortgrass, and forest, which had different resident microbial 

communities (43). They showed that soil microbiomes from the different sources became more similar to 

each other as decomposition progressed. Importantly, when soil type was included as additional 

information (a feature) in regression models, it did not improve model accuracy. These results suggest 

that the microbial clock of decomposition ticks similarly across soil types, despite different endogenous 

soil communities - a promising result for developing a new forensic tool that is robust to environmental 

variation.  

Another environmental parameter of interest is season, which captures major changes in 

temperature, humidity, and UV intensity. Carter et. al. (55) tested whether the microbial communities are 

similar across different seasons. Within a sample type (summer control, winter control, summer gravesoil, 

winter gravesoil) the microbiomes were similar, which confirmed the idea of a reproducible microbial 

succession pattern. Interestingly, season did influence the microbial communities, as bacterial and 

eukaryotic diversity was higher in the summer. Furthermore, in Metcalf et al. (43), regression models 

were trained on two human donor bodies placed in spring season, and the resulting model was used to 

predict PMI for two bodies in the winter season. By using ADD (see Box 1.1) in the regression, they 

found predictions across seasons to be much better than random.   

Another variable that may impact the microbiome is carcass mass. Many studies in this area 

suggest that smaller carcasses decompose faster, though the mechanism is not well understood (56–59). 

Additionally, it has been demonstrated that larger carcasses release higher levels of total nitrogen, which 
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is an important nutrient for microbial growth, so release at differing levels could affect the microbial 

communities (56). This is an important research question, both because it is a critical variable in the 

construction of microbial clock models, and because it could influence whether small nonhuman models 

like rodents and pigs actually serve as valid model organisms. The effect of carcass size on the microbial 

community was investigated by Weiss and collaborators using swine as the model organism (60). 

Researchers found that the bacterial and eukaryotic signature changed similarly over decomposition, and 

carcass mass did not have a significant impact on the microbial clock. These findings support the use of 

model organisms to mimic human decomposition in the development of microbial models, though this 

study should be repeated with a larger sample size to support this more conclusively. 

Finally, Guo et al. (61) conducted a study to determine if specifically insect exclusion would 

change the pattern of microbial succession. Researchers noted that, for both insect and insect-exclusion 

groups, they were able to identify specific taxa that changed significantly and in a repeatable manner 

during decomposition, providing further evidence of a microbial clock. They found that insect-exclusion 

rates decomposed more slowly, however they were unable to find a significant difference in taxa between 

the two groups; the only differences were in very low-abundance organisms. There is still a need for more 

research before it is fully known whether insect activity impacts the microbial clock. 

These studies successfully demonstrate that environmental variables can influence microbial 

communities in some cases (e.g. soils, season), but do not necessarily affect the decomposer microbial 

community (e.g. soils). The evidence presented above clearly demonstrates that the microbial 

communities associated with decomposing mammalian tissue change and succeed each other in a 

significant and reproducible pattern. Furthermore, this pattern is sufficient to predict PMI in both early 

and advanced decomposition periods. By conducting these experiments, researchers were able to isolate 

variables to create an understanding of which factors impact the microbial clock. 
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Knowledge Gaps and Areas of Investigation 

Although research has shown that a microbial clock is useful for predicting PMI, there are still 

important knowledge gaps that remain. These include a complete understanding of whether nonhuman 

models are useful for the development of microbial clocks, the time frame(s) for which microbes are most 

informative for building a microbial clock, which environmental variables are most useful for model 

improvement, the effect of the initial condition of the remains on the microbial clock, the sample type that 

is most informative for estimating PMI, and robust methods and parameters for modeling. These 

knowledge gaps are outlined in a recent submission that is currently under review (62).  

 

Adoption of Technology 

Adopting new technologies into the justice system requires overcoming a number of hurdles, 

including both academic and legal. The process of introducing new technologies starts with a need in the 

forensic science community, a response by scientists with a proof of concept, followed by the 

development of a prototype, legal validation and acceptance, and finally technology adoption (Figure 

1.2). The need for improved methods for estimating PMI is well established in the forensic science 

community, and considered an achilles heel in the field (63). Although researchers have been working to 

improve these methods for decades, the advent of next generation sequencing technologies has provided 

new opportunities for methods development. Resulting from these new technologies, independent 

research laboratories have provided a proof of concept for estimating PMI. By publishing these findings 

(1–3, 37, 40–46, 48–51, 54, 55, 60, 61, 64, 65) and sharing results through conference presentations (66, 

67), workshops (68) and webinars (69), researches have connected with potential end users to overcome 

an important legal requirement of peer-reviewed publication (Figure 1.2). The next steps include 

developing a robust microbial PMI model with quantifiable error rates and creating a prototype kit and 

analysis pipeline. Once a prototype is developed, the technique needs to be validated and accepted into 

the legal system by having an attorney introduce the technology for acceptance to the court system 

(Figure 1.2). At this point, a judge will decide whether the microbial clock meets the Frye and/or Daubert 
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standards. The Daubert ruling (70) expanded on the earlier Frye ruling by allowing a judge to ask if the 

science and technology have been published in peer-reviewed journals, taught at colleges or universities, 

and has an established error rate, all of which contribute to its validity and reliability (71). Finally, efforts 

are required to support the adoption of this new type of DNA sequencing technology into the forensic 

community, and become used in accredited laboratories. This may be accomplished by sharing the new 

technology broadly at conferences, providing workshop and training opportunities, and working with 

accrediting organizations such as NACE (the National Association of Corrosion Engineers, a non-profit 

organization that publishes standard practices for industry use) and IACME (the International Association 

of Coroners and Medical Examiners, an organization committed to determining accurate causes of death 

through science, medicine, and the law).  
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Figure 1.2. Adoption of new technology into the justice system. The process begins with a need, which 
researchers then aim to address. After a proof of concept is established, a prototype should be developed 
and validated by the forensic science community before it can be accepted as a new tool for use in the 
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justice system. This graphic was developed by RTI International in operating the Forensic Technology 
Center of Excellence http://www.forensiccoe.org/, under Cooperative Agreement Award 2016-MU-BX-

K110 from the U.S. Department of Justice, National Institute of Justice.” 
 

Conclusions 

Establishing PMI is often critical to the success of death investigations, as it can be used to 

validate alibis, identify suspects and witnesses, and reconstruct the death scene. Current tools for 

estimating PMI, such as gross postmortem changes and entomological evidence, have limited accuracy 

with increasing decomposition and are sometimes unavailable or unreliable. However, microbes are 

consistently present throughout decomposition, and recent proof-of-concept studies have shown that 

microbial succession on remains is both predictable and clock-like. Researchers have begun to utilize this 

“microbial clock” to estimate PMI using newly developed technologies, including high throughput next-

generation sequencing to profile microbial communities and machine learning techniques that use this 

information to create models that are generalizable across different environments. However, it is 

becoming increasingly clearer that there are numerous samples types (externally and internally accessible, 

bone, and soil) to choose from and environmental variables (temperature, humidity, UV intensity, and 

insect exclusion) to consider that could affect the observed microbial succession in decomposition studies. 

It is critical to establish which sample types and parameters should be included in models to give the 

highest accuracy for estimating PMI. Additionally, these will give a better understanding of whether a 

single, generalizable model can be used for estimating PMI across different regions, or whether PMI 

estimates are more accurate using multiple models specified for each type of environment. Filling in these 

knowledge gaps will allow for the integration of this microbial clock as a forensic tool into the justice 

system, which will aid in death investigations. 

In this dissertation, this chapter provides important context for understanding the goals and 

approaches of Chapter 2 and Chapter 3. This chapter has explained in detail how microbial succession in 

decomposing remains may be used for developing PMI models. It also describes the reason that bone is 

the appropriate sample type for developing PMI models for remains found within late stages of 
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decomposition. These concepts are critical for understanding the motivation behind the experimental 

approaches in Chapter 2, “A Pilot Study of Microbial Succession in Human Rib Skeletal Remains During 

Terrestrial Decomposition”. Additionally, this chapter provides context surrounding the complex 

ecological dynamics of human cadaver microbial community assembly. We describe how the decomposer 

microbiome forms after 48 hours of decomposition, with interactions between cadavers and insects 

occurring during this time frame. This sheds light on the motivation for studying the influence of the fly 

microbiome on the human decomposer microbiome in Chapter 3, “The Microbiome of Blow Fly Organs 

and Fly-Human Microbial Transfer During Decomposition”.  
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CHAPTER 2: A PILOT STUDY OF MICROBIAL SUCCESSION IN HUMAN RIB SKELETAL 

REMAINS DURING TERRESTRIAL DECOMPOSITION2 

 

Summary 

The bones of decomposing vertebrates are colonized by a succession of diverse microbial 

communities. If this succession is similar across individuals, microbes may provide clues about the 

postmortem interval (PMI) during forensic investigations in which human skeletal remains are 

discovered. Here, we characterize the human bone microbial decomposer community to determine 

whether microbial succession is a marker for PMI. Six human donor subjects were placed outdoors to 

decompose on the soil surface at the Southeast Texas Applied Forensic Science facility. To also assess the 

effect of seasons, three decedents were placed each in the spring and summer. Once ribs were exposed 

through natural decomposition, a rib was collected from each body for eight time points at three weeks 

apart. We discovered a core bone decomposer microbiome dominated by taxa in the phylum 

Proteobacteria, and evidence that these bone-invading microbes are likely sourced from the surrounding 

decomposition environment, including skin of the cadaver and soils. Additionally, we found statistically 

significant overall differences in bone microbial community composition between seasons. Finally, we 

used the microbial community data to develop random forest models that predict PMI with an accuracy of 

approximately +/-34 days over a 1–9-month time frame of decomposition. Typically, anthropologists 

provide PMI estimates based on qualitative information, giving PMI errors ranging from several months 

to years. Previous work has focused on only the characterization of the bone microbiome decomposer 

community, and this is the first known data-driven, quantitative PMI estimate of terrestrially decomposed 

human skeletal remains using microbial abundance information.

 
2 This work has been previously published: Deel, H., Emmons, A. L., Kiely, J., Damann, F. E., Carter, D. O., Lynne, 

A., Knight, R., Xu, Z. Z., Bucheli, S., & Metcalf, J. L. (2021). A Pilot Study of Microbial Succession in Human Rib 

Skeletal Remains during Terrestrial Decomposition. mSphere, e0045521. 
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Introduction 

Terrestrial microbial decomposition of vertebrate remains includes a succession of communities 

of microbes from across the tree of life. Recent research has revealed that this succession can be 

repeatable and predictable enough that the composition of microbes can be used for estimating time since 

death, or postmortem interval (PMI) (1–6), which could be a useful tool for medicolegal investigations. 

Most microbial decomposition research has focused on timeframes immediately following death using 

sample types such as the skin or other organs of the decedent and/or the associated soil. However, at later 

time frames of decomposition, often the only sample types available from the decedent are bones and 

teeth. Research in this area has revealed a potential use of microbial succession in bone for predicting 

PMI (7, 8), but more information is needed about the accuracy of PMI estimates for determining whether 

this could be a useful tool in medicolegal investigations. Furthermore, a more in-depth study of the bone 

decomposer bacterial and microbial eukaryotic community would be useful for fields of forensic 

anthropology, archeology, paleontology, and ancient DNA because the role of the microbiome within 

these fields has been understudied.  

Although decomposition is a continuous process, a decomposing body goes through visible 

changes that can be categorized into stages based on taphonomic landmarks (e.g., bloating), but are also 

related to changes in microbial processes. In the fresh stage, there are few visible changes to the decedent, 

with a cascade of biochemical events occurring at the cellular level (9). These events lead to 

discoloration, bloating, and the purging of fluids in the active decay stage, in which microbial processes 

are at their peak activity and decomposition is rapid. When the availability of nutrients for microbes 

decreases and the rate of decomposition declines, the decedent enters the advanced decay stage in which 

most of the flesh is gone and there is some bone exposure. When at least 50% of the soft tissues are gone 

from the remains, the skeletonization stage is reached (10).  

To characterize the human bone decomposer microbial community during skeletonization, we 

placed six human donor subjects to decompose at the Southeast Texas Applied Forensic Science Facility 

(three in the spring and three in the summer) in Huntsville, TX. Our goals were to understand the source 
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of the microbial community, how it may differ across seasons, and determine whether microbial 

succession of decomposing bone could be used to estimate PMI. By placing decedents in two seasons, we 

sought to capture microbial succession within different environmental conditions, which could possibly 

affect the accuracy of PMI estimation models  (11). Once naturally exposed (at least partially, see 

methods), an entire rib was collected from each decedent at eight time points for approximately every 

three weeks of decomposition, and 16S rRNA and 18S rRNA amplicon sequencing from DNA extracted 

from a sectioned, pulverized piece of the rib was used to characterize succession of the bacterial and 

microbial eukaryotic communities. Bayesian source tracking was used to predict the source of the bone 

bacterial decomposer community, and a random forest regression was used for predicting PMI.  

 

Results and Discussion 

Progression of Decomposition and Rib Sampling 

 In this study, we use Megyesi’s system of total body scoring (10) based on the decomposition 

stages outlined by (12) to delineate between stages of decomposition. Photographs of the first 21 days of 

decomposition were used to calculate TBS and define fresh, active decay, and advanced decay stages. 

Each of the decedents reached the advanced decay stage within 8-11 days after placement. Since 

photographs were not available after the first 21 days, we use the first known occurrence of rib exposure 

as the beginning of skeletonization. Rib exposure, and sample initiation, began within approximately 4 

weeks for the spring placement subjects and within a range of approximately 4-6 weeks for the summer 

placement subjects (see Table S2.1). Sample initiation occurred within a range of 592-1151 Accumulated 

Degree Day (ADD), which is a temperature-based temporal scale (see methods). Total sample collection 

ranged within the time frame of around 1-9 months of decomposition. Generally, we defined each stage of 

decomposition as; fresh (0-6 TBS, ~<50 ADD), active decay (6-17 TBS, ~50-200 ADD), advanced decay 

(17-35 TBS, ~200-600 ADD), and skeletonization (>35 TBS, ~ >600 ADD). Decomposition stages often 

overlap, and are not always clearly defined, and this experiment was no exception. However, using the 
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TBS system and visual clues of skeletonization allowed us to place our sampling time frame of 

decomposition primarily within early skeletonization.  

Quality of Amplicon Sequence Data 

 In the 16S rRNA dataset, a total of 1,270,545 reads were generated. After filtering out ASVs 

(amplicon sequence variants) with taxonomy assignments to mitochondria or chloroplast, there were 

1,270,507 reads total with an average of 21,175 reads per sample, with sample sequence reads ranging 

from 712 to 39,169. We rarified 16S rRNA data at 17,098 reads as an optimal balance for retaining both 

reads and samples, as this number was the count of the lowest-count sample necessary to include all but 

three samples. For the 18S rRNA dataset, a total of 20,838,649 reads were generated. After filtering (see 

Materials and Methods), there were 18,178,587 reads total with an average of 288,549 reads per sample, 

with sample sequence reads ranging from 2,610 to 802,658. We rarified the 18S rRNA data at 214,940 

sequences per sample, again, to optimize retaining both reads and samples in the data set, resulting in a 

loss of 10 samples. The taxonomic composition of negative controls can be seen in Figure S2.1. 

 

What Microbes Invade the Bone, and Where are they Coming From? 

We suspected that the diversity of microbes invading bone would increase as decomposition 

progressed, as more microbes from the environment (e.g., including the decedent, the surrounding soil) 

could likely access the internal bone as its structural integrity eroded. Our hypothesis was supported; the 

linear mixed effects model (which incorporates repeated measures) showed that there was a significant 

difference across time (ADD) for both bacteria and microbial eukaryotes (p = 0.01, p = 0.002) (Figure 

2.1A; Figure 2.1B). Though, the positive trend in Faith’s PD in the 18S rRNA data set appeared to be 

largely driven by a single individual (064), which is shown in red in Figure 2.1B. We discovered two 

potential alpha diversity data point outliers via volatility plots and Q-Q normality plots, which were 

removed prior to linear mixed effects modeling of the 16S rRNA data (065.R11 and 011.L08). 

Additionally, a single potential outlier was removed from the 18S rRNA data (064.R12). Kruskal-Wallis 

effect size calculations between seasons, hosts, and the 1st and last ADDs showed that ADD had the 
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highest effect on alpha diversity in all cases but one for both 16S rRNA and 18S rRNA datasets (Table 

S2.3).   

 

Figure 2.1. A measure of alpha diversity using Faith’s Phylogenetic Diversity Index with increasing 
ADD for 16S rRNA (A) and 18S rRNA (B) datasets. Red values are for visualization purposes and 
represent a single individual (064). Shaded areas around the line represent 95% confidence intervals. 
Linear mixed effects p = 0.01 and p = 0.002 over ADD for 16S rRNA and 18S rRNA datasets, 
respectively.  
 

 Exploring the taxonomic composition of the bone microbial decomposer communities revealed 

many similar taxa that were widely represented across rib bone samples, regardless of ADD or season 

(Figure 2.2). Core-features analysis showed that the core bacterial phyla included Proteobacteria, 

Firmicutes, Actinobacteria, and Bacteroidetes. In the core microbiome, each phylum was represented by 

several features, with most of those features (22 out of 42 total core bacteria) being within phylum 

Proteobacteria. The top five most prevalent core features (at the lowest identifiable level) included 

Corynebacterium, Pseudomonadaceae, Trabulsiella farmeri, Sphingobacterium mizutaii, and 

Stenotrophomonas. Outside of our defined core bacterial community, there were dozens to hundreds of 

different bacterial species, most of which had very low relative abundances. There were 86 total core 

microbial eukaryotic features. The top five most prevalent represented phyla (or subdivisions) included 
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Ascomycota, Nematoda, Basidiomycota, Apicomplexa, and Ochrophyta. The top five most prevalent core 

features at the lowest identifiable level included two orders of Rhabditida, Debaryomycetaceae, 

Apiotrichum, and Candida bombi.  

 

Figure 2.2. Relative abundance taxa plots of the bacterial communities (A) and microbial eukaryotic 
communities (B). Rare taxa include those with a mean relative abundance of 0.005 or lower within the 
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entire dataset. Unclassified features generally include those that were only able to be classified as 
Eukaryota, with approximately 14% of all unclassified features identified as Opisthokonts.  
 

Many of these core bacterial and microbial eukaryotic taxa have been discovered in other 

decomposer bone (7, 13), skin (1, 4, 14), and vertebrate decomposition-associated soil (1, 4, 15–17) 

microbial communities, or have been found to decompose plant material and rotting wood (18, 19). There 

are likely many different processes occurring in this community, including the degradation and recycling 

of carcass derived nutrients (20) and symbiotic relationships between core organisms. For example, some 

members of the community could be degrading bone (21, 22), including Pseudomonas (23) and 

Clostridium organisms by releasing collagenases to break down bone collagen. Nematodes within the 

order Rhabditida are likely displaying their saprophagous characteristics, and feeding off bacterial 

biomass and the decaying organic matter provided by the decedent (24, 25). Ochrophyta is an algae that 

has shown evidence of a symbiotic relationship with wood- and leaf-litter decomposing fungi like 

Basidiomycota through acquiring carbon dioxide and protection from the sun, while providing the fungi a 

source of carbon and nitrogen (19). Additionally, some non-selected microbial processes known to occur 

in other environments such as the soil may also be occurring in the bone and contributing to the 

surrounding ecosystem. For example, decomposing bone taxa in the family Pseudomonadaceae likely 

contains phosphate solubilizing bacteria that are converting unavailable phosphorus into more accessible 

forms to be used by the surrounding soil and vegetation (26). Although this is not a comprehensive list of 

possible functional roles for these microbes within the bone decomposer community, it begins to 

represent the vast array of processes occurring that requires further investigation.  

 To better understand the source of rib decomposer microbes, we compared the rib microbial 

decomposer communities (~1-9 months after placement) to samples collected in earlier stages of 

decomposition for the same cadavers, including fresh (days 1 and 2 after placement) and advanced decay 

(days 19 - 21 after placement) skin and soil communities, as well as control soils that were not associated 

with a cadaver. The alpha diversity of decomposed rib bone bacterial communities was similar to those 

recovered from fresh skin and active decay skin and soil, which were all significantly lower than soils not 
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associated with decomposing cadavers (Figure S2.2A and S2.2B). The most prevalent taxa at the class 

level within the rib decomposer communities of both seasons were Gammaproteobacteria and 

Actinobacteria, with the most prevalent taxa comprising these classes being an unclassified 

Pseudomonadaceae, Pseudomonas, Acinetobacter, and two different Corynebacterium species. Of these 

common taxa, all were observed within the fresh and advanced decay cadaver skin and soil potential 

source communities (Figure S2.3), with Corynebacterium species being found primarily in the summer 

placement communities. However, the composition of bone communities appeared distinct from the skin 

and soil source communities, particularly if abundance was considered (Figure 2.3A and Figure 2.3B, 

Figure S2.2C and S2.2D).  

 

Figure 2.3. Principal Coordinates Analysis of 16S rRNA rib and source communities using the weighted 
UniFrac distance metric in the spring (A) and summer (B) placements. Spring pairwise PERMANOVA q 
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= 0.041 for Rib and Fresh Skin comparison, and q = 0.001 for all other spring comparisons. Summer 
pairwise PERMANOVA q = 0.002 for Rib and Fresh Skin comparison, and q = 0.001 for all other 
summer comparisons. There were 999 permutations for all comparisons. Succession of predicted portions 
of the fresh skin and soil (days 1 and 2) and advanced decay (days 19, 20, 21) communities of the 16S 
rRNA spring (C) and summer (D) placements. Samples are grouped into collection time points 1-8.  
 

Despite the unique composition of rib bone decomposer communities, Bayesian source tracking 

did predict a proportion of sources from the skin and soil advanced decay decomposer communities, and a 

small proportion of the source from the fresh skin communities (Figure 2.3C and Figure 2.3D). These 

results suggest that rib bone decomposer communities are distinct from skin and soil communities (fresh 

or decomposition-associated), but likely originate, at least to some extent, from the surrounding 

environment of decomposing skin as well as soil bacteria. The rib bone environment likely selects a 

subset of microbes from cadaver skin and soil communities that are able to invade the bone and extract 

nutrients (27). More investigation is needed to determine whether additional microbial source(s) (e.g., 

nearby vegetation, rainfall, scavengers, insects) of the bone decomposer community exist.  

 

Is there a Difference in the Microbial Community Assembly in Ribs from Cadavers Placed During 

Different Seasons? 

Although we discovered similar microbial taxa across all decomposed rib bones, regardless of 

seasonal placement (Figure 2.2), there were significant differences in overall composition of bacterial 

and microbial eukaryotic communities in rib bones by season of placement (Figure 2.4A, Figure S2.4).  
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Figure 2.4. (A) A measure of beta diversity of 16S rRNA data using the unweighted UniFrac distance 
metric in both seasonal placements (PERMANOVA between seasons p = 0.004, pseudo-F (effect size) = 
2.32, df = 1, with 999 permutations). (B) A measure of beta diversity of 16S rRNA data using the 
weighted UniFrac distance metric. Shaded areas around the line represent 95% confidence intervals. 
Linear mixed effects across ADD p = 0.012. 
 

We discovered differential abundance/presence of an unclassified Pseudomonadaceae at the genus level, 

Ochrobactrum intermedium at the species level, and an unclassified Stenotrophomonas at the ASV level, 

which were also confirmed as drivers of beta diversity patterns using robust Aitchison PCA (28) via 

Emperor biplots (Figure S2.5). In the microbial eukaryotic communities, differences between rib bone 

microbial communities for bodies placed during different seasons included Learamoeba and an 

unclassified Eumetazoa at level seven, and an unclassified Colpodea at level eight. These differences in 

assembly between seasons may be explained by multiple factors. Given that the soil decomposer 

community is a source of microbes within decomposed bone (Figure 2.3C and Figure 2.3D), we 

hypothesize that differences in soil composition between seasons may be a factor contributing to variation 

in microbial assembly within decomposed bone. We see evidence of this in our data when observing the 

beta diversity and taxonomic composition of soil control (not associated with decomposition) microbial 

communities collected within the first 21 days of decomposition (Figure S2.6). This is unsurprising, as 

there is a wealth of evidence indicating that seasonality impacts microbial community composition (29–

32). Variations in insect activity between seasons may also be affecting microbial assembly, as it is 

known that insects are less active in cooler seasons (9). Although ADDs were not very different between 

placements (Table S1), differences in temperature fluctuations over time between seasons may affect the 

relationship between insects and bacteria, fungi, protozoa, and nematodes (9), resulting in varied 

microbial community composition. Other differences in assembly between the spring and summer 

placements could be explained by variation in water content. While the amount of precipitation does not 

drastically differ between seasonal placements, the summer placement shows a higher accumulation of 

humidity (Figure S2.7). This may contribute to an increase in water content and subsequently the 

microbial composition (30) of the summer placement soil that is acting as a source of the bone microbes. 
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General differences in environmental stability may also be contributing to these differences. For example, 

there is greater diurnal temperature variation in spring and fall than in winter and summer, which would 

likely place constraints on bone microbial community assembly throughout our sampling time frame.  

 

Can we use Microbial Invasion in Bone to Estimate PMI? 

Bacterial community composition became increasingly different from the initial rib bone 

community as decomposition progressed (Figure 2.4A), with rate of change of community composition 

decreasing over ADD (Figure 2.4B), indicating a repeatable succession of invading microbes. 

Furthermore, effect size calculations showed that ADD had the highest effect on beta diversity in nearly 

every case (particularly for the 16S rRNA data, Table S3). Therefore, these data may be useful for 

predicting PMI of remains in an advanced stage of decomposition, in which the ribs have at least 

skeletonized. Microbial eukaryotic community composition also changed during decomposition, but with 

a less distinguishable pattern compared to 16S rRNA data (Figure S2.4). Because we detected microbial 

community differences for cadavers placed in different seasons (Figure 2.4A), we tested whether season-

specific PMI models performed better (i.e., produced a lower mean absolute error).  

Random forest models using only the 16S rRNA ASV-level data from summer placement 

cadavers provided the most accurate models (i.e., lowest range of mean absolute errors (MAEs)). The 

most accurate model had MAEs ranging from 724 - 853 ADD over a total of 5201 ADD for the summer 

data, which roughly equates to an error of +/- 39 days. Models including both the spring and summer 

placement data (i.e., the “combined” models) gave a higher range of MAEs, while models with just the 

spring placement data provided the highest range of MAEs within the 16S rRNA dataset (Table 2.1). In 

the 18S rRNA dataset, this pattern was the same. The lower Mean Absolute Error (MAE, i.e., increased 

accuracy) of the summer placement over the spring placement in both 16S rRNA and 18S rRNA datasets 

may be explained by the wider sample collection time frame (Table S2.1). Perhaps the increased 

information gained from an extra 2-3 months of sampling for bodies placed in the summer allowed for the 

model to account for more variability. Despite relatively similar ADDs within each season, it is possible 
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that once skeletonization occurs, a longer time-frame of collection is more important than combined 

temperature and time (i.e., ADD). Another factor explaining this difference could be the placement of all 

spring subjects on the same day, whereas the placement of summer subjects ranged over approximately 

two weeks (Table S2.1). This unintended occurrence was due to the limited availability of decedents in 

the summer placement. This may have allowed the summer models to capture more variability than the 

spring models, giving more accurate predictions.  
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Table 2.1. Random Forest regression modeling of amplicon data using features collapsed at different 
taxonomic levels. Model accuracy is assessed using mean absolute error (MAE). The range of MAEs 
resulting from modeling at all taxonomic levels is reported. The top five most important features within 
each model are arranged from the most to least important, as determined by the random forest regression. 
Note that some important features were not able to be classified all the way down to the same taxonomic 
level at which the model was performed (e.g., Metazoa). Underlined features include those commonly 
important between model types. Note that there are no commonly important features in the 18S rRNA 
models due differences in the most accurate levels, whereas in the 16S rRNA models all of the most 
accurate models were at the ASV level. MAEs for all levels are reported in Table S2.  

 
Modeling results indicate that the 16S rRNA data are more accurate in estimating PMI than the 

18S rRNA data (Table 2.1). Nearly all ranges of MAEs obtained using 18S rRNA data were higher than 

those obtained using 16S rRNA data when comparing the same combination of seasons (e.g., the range of 

combined 18S rRNA MAEs was higher than the range of combined 16S rRNA MAEs). Modeling results 

for both datasets at each taxonomic level are provided in Tables S2.2 and S2.3. At the ASV level, there 

Amplicon Season(s) Most accurate 

level 

Range of 

MAEs 

Top five important 

feature 

Range of 

importances 

16S rRNA Spring and 

summer 
(“combined”) 

ASV 793.33 –  

851.41 
 

Phyllobacteriaceae, 

Defluvibacter, 
Corynebacterium, 

Shinella, Devosia 
 

0.040 to 0.023 

 

16S rRNA Spring ASV 872.02 - 

1074.76 
 

Gallicola, 

Cellulosimicrobium, 
Brachybacterium, 

Comamonas, 
Leucobacter 

 

0.075 to 0.042 

 

16S rRNA Summer ASV 723.98 –  
853.38 

 

Phyllobacteriaceae, 
Sphingopyxis, 

Alcaligenaceae, Devosia, 
Pseudaminobacter 

 

0.014 to 0.010 
 

18S rRNA Spring and 
summer 

(“combined”) 

8 941.22 – 
1128.13 

 

Eurotiomycetes, 
Sordariomycetes, 

Metazoa, 
Saccharomycetes, 

Tremellomycetes 
 

0.067 to 0.033 
 

18S rRNA Spring 5 1025.53 – 

1443.86 
 

Mucoromycota, Metazoa, 

Vannellida, Eumetazoa, 
Dikarya 

 

0.102 to 0.047 

 

18S rRNA Summer 7 820.67 – 
1083.95 

 

Nematoda, 
Saccharomycotina, 

BOLA868, Alveolata, 
Eumetazoa 

 

0.071 to 0.037 
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are over three times as many features in the 16S rRNA data than the 18S rRNA data (5,708 versus 1,696, 

respectively). The 16S rRNA model may have been able to effectively use an increased number of 

features to produce a lower MAE. This may also be explained by a less defined trend of dissimilarity with 

increasing ADD in the 18S rRNA data (Figure S2.4), indicating that the microbial eukaryotic community 

within decomposing bone is highly variable and less able to predict PMI. Further evidence of this is 

observed in the most accurate levels for 16S rRNA and 18S rRNA modeling (Table 2.1). Since the ASV 

level is the most accurate for all 16S rRNA models, this indicates that microbial succession within these 

data is defined well enough that the model is able to find patterns within these particular ASVs to predict 

PMI with some accuracy. This is also supported by effect size calculations in which host appears to have 

the highest effect on beta diversity in four cases (Table S2.3).  

Across models using 16S rRNA ASV data, there were two commonalities in the top five 

important features, Phyllobacteriaceae and Devosia (shown underlined in Table 2.1). These taxa are both 

within the order Hyphomicrobiales (also known as Rhizobiales) and were shown to increase in prevalence 

at higher ADDs, which likely contributes to their high importance in these models. For example, for 

summer-placed cadavers between ADDs 592 - 2414, Phyllobacteriaceae is only present in 3/11 samples 

with a total of 45 reads while Devosia is prevalent in only 2/11 samples with a total of 100 reads. As 

decomposition progresses between ADDs 2804 - 5201, Phyllobacteriaceae and Devosia are present in all 

12 samples with a total of 3303 and 2677 reads, respectively. This apparent trend across time suggests 

that these taxa may provide some useful information about the ecology of decomposed bone over time. 

For example, Phyllobacteriaceae consists of environmental (soil, water) and plant-associated bacteria that 

use oxygen as the terminal electron acceptor in respiratory metabolism (33). Perhaps increased porosity in 

the bone over decomposition contributes to higher levels of oxygen, allowing for this family to increase in 

prevalence. Devosia, a genus known for dominance in soil habitats, is known for encoding a large 

diversity of transporters that allow them to uptake short peptides for satisfying nutritional needs (34). This 

may facilitate their use of the variety of nutrients that are provided in the dynamic decomposition 

environment more efficiently that other bacteria, allowing for them to predictably thrive with increased 
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decomposition. The ability to fix nitrogen may also play a role in the importance of these organisms. 

Devosia is a nitrogen-fixing bacterium (35) and Phyllobacteriaceae is closely related to organisms known 

for nitrogen fixation (36). Perhaps they are using collagen of the bone as a source of nitrogen (37), and 

increasing in prevalence as more collagen becomes exposed with higher levels of porosity.  

In the 18S rRNA models, several important features were representative at a range of taxonomic 

levels that consist of broadly defined taxa, including fungi, metazoans such as nematodes, and amoebae, 

which can flourish in a wide variety of habitats (Table 2.1). Just in the combined model, features include 

yeasts and fungi that have been isolated from environments including humans (38), soil and freshwater 

(39), plant material (18), or a combination including several of these listed environments (40). Although 

this wide range of important features in the 18S rRNA models provides less defined information about the 

ecology of decomposed bone over time, it nevertheless provides a picture of the suite of microbial 

eukaryotes that inhabit decomposed bone. 

 

Conclusions and Limitations 

This research demonstrates the potential use of postmortem bone microbial communities to 

predict time since death in human remains with PMIs of nine months or less. In the 16S rRNA spring and 

summer placement model, the lowest MAE of 793.33 roughly approximates to an error of +/- 34 days. 

Although much additional research is needed, this model has the potential to generate probative PMI 

estimates and it certainly represents progress toward improving medicolegal death investigations. To put 

this into the context of investigations involving skeletal remains that have been decomposing within a 

similar time frame of this study (~1-9 months), without other evidence, anthropologists are typically able 

to give PMI estimations with errors of several months or even years (41). Anthropologists typically 

provide PMI estimates in relative time based on qualitative information gathered from the death scene and 

the body itself. Otherwise, very few methods exist for estimating PMI within this time frame.  

While these data represent an initial attempt to characterize the succession of postmortem bone 

microbial communities using a controlled research design at a decomposition research facility, there 
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remain limitations worth addressing. First, the sample size (48 rib bones from six human individuals) is 

small. Large numbers of willfully donated human decedents are difficult to obtain for the purposes of 

decomposition research despite the existence of decomposition research facilities, and not all decedents 

are available for destructive sampling, which is required for skeletal DNA analysis. This lack of 

biological replicates often pushes researchers toward the use of animal proxies, which do not often 

decompose in a similar manner to human remains (42). We opted to use human decedents to make this 

research more applicable to forensic contexts involving human remains. Although we did not see host 

having a larger effect than ADD or season in nearly every case (Table S2.3), we recognize that an 

increase in decedent sample size would mitigate any non-detectable host-host variations. The limited 

availability of human decedents also meant that some were frozen before placement. While there is some 

evidence that freeze-thawing affects the decay of soft tissues in rats (43), there is no known evidence that 

this affects the long-term microbial decomposition of human bone. Future studies should focus on a more 

consistent protocol (i.e., no individuals should ever be frozen). Second, there were some minor 

differences between the spring and summer seasons that contributed to our limitations. There was 

discordance in the placement protocol between spring and summer seasons such that in the spring, all 

decedents were placed on the same day, while in the summer, decedents were placed on different days. 

This may have resulted in a reduction in power for the spring season models by effectively making each 

placed decedent a pseudoreplicate. Furthermore, the spring placement cohort was uncaged whereas the 

summer cohort was caged to protect from scavengers. Lastly, the research design implemented here 

makes the assumption that all ribs have similar microbial communities at each time point.  Two ribs 

collected from the same donor on the same time point indicate that this may not be true, and others have 

shown bone microbial community differences related to spatial positioning and bone type (13). 

Regardless of the validity of this assumption, random forest models were able to overcome differences in 

microbial community composition related to rib positioning.   

To overcome these limitations, future research will attempt to increase sample sizes, stagger the 

placement of decedents, use only never-frozen individuals, and better characterize microbial differences 
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by bone location/type. Moreover, to better understand the ecological significance of predictive taxa and 

elucidate their potential role in skeletal degradation, future research will include other types of measured 

edaphic (e.g., soil moisture, phosphate, nitrate, and microbial biomass) and skeletal parameters (e.g., 

organic composition, histological indicators of microbial damage, and other indicators of skeletal 

degradation).  

Despite these limitations and the observed variation in diversity, taxonomic composition, and 

important taxa between seasons and within PMI models, the model using data from both placements can 

still estimate PMI at an accuracy that is better than the currently used methods for skeletonized remains. 

As noted in (15), and supported by findings in this study, seasonality is likely important for developing a 

robust microbial clock to estimate PMI. This key point can now be extended to studies using decomposed 

bone. With future studies, the microbial ecology of decomposed bone and the surrounding environment 

can be further elucidated, providing insight into this unique ecosystem as well as new potential means for 

more accurately estimating PMI. 

 

Materials and Methods 

Decedent Placement and Sampling 

         Research was conducted in collaboration with the Southeast Texas Applied Forensic Science 

Facility (STAFS), previously known as the Applied Anatomical Research Center, an anthropological 

research center in Huntsville, TX. Willfully donated human decedents were placed outdoors, unclothed, 

and in the supine position to decompose under natural conditions. Three decedents were placed on 

4/15/16, which are called our spring placement bodies. For our summer placement, decedents were placed 

outdoors as they became available to reduce time in cooled storage, during which time the decomposition 

process is slowed but not completely halted (44). As a result, two summer bodies were placed on 8/25/16, 

while the third was placed on 9/16/16. While some decedents were frozen, there is no known evidence 

that this affects the long-term microbial decomposition of human bone. Due to discordance between 

seasonal placements within the facility, the spring cohort was uncaged whereas the summer cohort was 
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caged and protected from scavengers. Sample collection was conducted in a similar manner as in Damann 

et al. (7). Collection of rib bones began once decomposition progressed sufficiently such that little 

dissection was needed. There was not a requirement for the rib to be fully exposed before collection. We 

were unable to calculate the percentage of rib exposure due to a lack of photos during sample collection, 

as per policy of the anthropological facility. It is important to note that sample collection of the spring 

placement decedents ranged from 5/16/16 - 10/11/16, and sample collection of the summer placement 

decedents ranged from 9/22/16 - 6/8/17. Therefore, while “spring” and “summer” both indicate certain 

times of the year, in this case it only refers to when the decedents were placed and not when samples were 

collected within other seasons of the year. Right and left lower ribs were selected by the field sampler 

based on ease of collection (i.e., ribs were collected based on the level of dissection required, with 

preference towards those requiring the least dissection). Samples were collected approximately every 

three weeks for a total of eight bones from each body (48 overall), with one exception, in which two ribs 

were mistakenly collected from the same decedent, resulting in one subject with nine time points and 

another subject with only seven time points. Each rib was individually bagged and immediately frozen at 

-10°C, then stored until shipping to Colorado State University for processing. Accumulated degree day 

(ADD) was estimated using weather data provided by the National Centers for Environmental 

Information (https://www.ncdc.noaa.gov/). Degree day on the day of placement was not included, and a 

base temperature of 0°C was used. ADD was calculated by adding together all average daily temperatures 

above 0°C for all prior days of decomposition, as in Megyesi et al. (10). A sampling summary is provided 

in Table S2.1. 

 

Rib Bone Processing 

         The rib bones were shipped on dry ice to Colorado State University, then stored at -20°C until 

processing. Spring collections were processed in December 2016, and summer collections were processed 

in August 2017. A fume hood was cleaned with 20% bleach solution before processing and between each 

bone sample. Each rib was mechanically abraded with a handheld DremelⓇ Drill to remove any tissue 
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and superficial layers of cortical bone. An approximate 40 mm x 15 mm section of bone was removed 

from the rib angle. The remainder of the samples were stored at -20°C. 

 To remove microbial DNA from the exterior of ribs, each sample was weighed and ultraviolet 

irradiated at 254 nm for 30 minutes on each side. Each sample was wiped down with 3% bleach, then 

abraded again with the DremelⓇ Drill to ensure removal of the outer layer of bone. The sample was then 

divided into three equal segments, each of which were weighed and placed into a tube. Two segments 

were stored at -20C for potential future use, while the remaining sample was pulverized in a sterile 

Waring MC2 blender cup. The cup was washed and soaked in bleach for three minutes between each 

sample. Each of the bone powders were placed into a clean tube for extraction. 

 

Extraction and Purification 

         DNA was extracted from 0.2-0.5 grams of pulverized bone. The samples were demineralized and 

lysed using 30 μl of 10% sodium dodecyl sulfate (SDS), 20 μl proteinase K, and 500 μl 0.5 M 

ethylenediaminetetraacetic acid (EDTA) (45). The samples were vortexed for two seconds and placed on 

a heating block at 55°C for one hour, with additional two-second vortexes every 15 minutes. The lysed 

samples were centrifuged at 10,000 x g for one minute at room temperature. The supernatant was 

removed, measured, and placed into a clean tube. The pellets were kept and frozen at -20°C. Fifteen 

extraction blanks were included to identify any potential contamination.  

         DNA was purified using the PowerSoil DNA Isolation Kit from MoBio (Carlsbad, CA) with a 

modified protocol. Solution C4 was added to the lysed supernatant at twice the volume of the supernatant. 

The addition of solution C5 and centrifugation was performed one extra time. Occasionally, additional 

centrifugation was used to pass the remaining supernatant through the filter when it became clogged with 

bone debris. All other steps were performed as per the manufacturer’s instructions.  
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Amplification and Sequencing 

         The bacterial communities of the samples and extraction negative controls were characterized 

using the 16S ribosomal RNA (rRNA) V4 and 18S rRNA gene regions. Standard primer pairs and 

protocols according to the Earth Microbiome Project were followed (46). Sequencing was performed on 

the MiSeq Illumina platform for the 16S rRNA gene region (2 x 150 bp reads) and the HiSeq Illumina 

platform for the 18S rRNA gene region (2 x 150 bp reads) using standard protocols (Illumina, San Diego, 

CA, USA) at the University of California San Diego IGM Genomics Center.  

 

Data Analysis 

Sequencing information was uploaded onto QIITA (study 11553), an open-source microbial study 

management platform (47). Due to poor reverse read quality, only the raw forward read sequencing files 

were downloaded and imported into QIIME2 software 2018.4 for analysis (48).  

 

16S rRNA Preprocessing 

Reads were demultiplexed using uniquely assigned barcodes. Sequences were quality filtered 

using Deblur with a trim length of 150 base pairs. Taxonomy was assigned using the Naive Bayes 

classifier, which was trained on Greengenes 13_8 99% OTUs (49). After removal of mitochondria and 

chloroplasts, a tree was generated by inserting fragment sequences using SEPP into the Greengenes 13_8 

reference phylogeny using the QIIME2 plugin. For core metrics phylogenetic analyses (50), the data were 

rarefied to 17,098 reads (see Quality of amplicon sequence data in Results), which removed all fifteen 

negative extraction controls and three samples with low numbers of reads (007.R11, 011.L09, and 

064.L12). These samples were removed from all analyses.  

 

18S rRNA Preprocessing 

Similar to 16S rRNA processing, reads were demultiplexed using uniquely assigned barcodes. 

Sequences were quality filtered using Deblur with a trim length of 150 base pairs. Reference sequences 
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were obtained from the SILVA database at https://www.arb-silva.de/download/archive/qiime 

(SILVA_132_QIIME_release/rep_set/rep_set_18S_only/99/silva_132_99_18S.fna), which was then 

imported as a QIIME2 artifact. Taxonomy was assigned using a classifier trained on the full-length 

SILVA 132 99% 18S database (51) using the feature-classifier QIIME2 plugin (52). Sequence data 

representing non-microbial taxa were filtered out, including Archaeplastida, Arthropoda, Chordata, 

Mollusca, Bacteria, and Unassigned taxa. While there were many unclassified eukaryotes (50 in total), 

BLAST (53) results of these features generally consisted of yeasts, other fungi and nematodes (i.e., there 

were no obvious non-microbial taxa). A phylogenetic tree using fasttree (54) and mafft alignment was 

generated using the phylogeny plugin for core metrics analysis. For core metrics phylogenetic analyses 

(50), the data were rarefied to 214,940 reads, resulting in a loss of 10 samples (067.R12, 067.L11.march, 

065.L11, 065.L09, 065.L10, 064.R09, 024.L10, 007.R10, 007.L09, 011.L09). 

 

Diversity Estimates 

A linear mixed effects model was used to consider alpha and beta diversity over time (fixed 

effect), and a random effect for subject was included to account for repeated measurements on the same 

subject across time.  Alpha diversity was assessed using the rarefied data with Faith’s Phylogenetic 

Diversity metric. The linear mixed effects, plot-feature-volatility, and volatility visualizers in the 

longitudinal plugin in QIIME2 were used to identify significant differences in community richness across 

ADD and between seasons. In addition to the linear mixed effects model, beta diversity was assessed 

using weighted and unweighted UniFrac distances (55), which were visualized using principal 

coordinates analysis (PCoA) and the data visualization tool Emperor (56, 57). Effect sizes between groups 

(season, hosts, and the first and last ADDs) were calculated using kruskal_effsize() in the rstatix() 

package (58) for alpha diversity and the pseudo-F output from the PERMANOVA (59) test in the beta-

group-significance visualizer in the diversity plugin in QIIME2 was used for beta diversity.  
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Identifying Core Features and Features Different Between Seasons 

Initial exploration of features within and between seasons was performed using taxa plots. 

Relative abundance taxa bar plots were generated using the taxonomically filtered and rarefied data (see 

below for software and packages used). To aid in interpretation of the taxa plots, taxa present at low 

relative abundances were lumped into rare taxa. These taxa were identified using mean relative 

abundances that ranged from 0.002 - 0.008 across the entire dataset (see each plot for the specific 

number). Core taxa within each season were identified using the core-features visualizer in the feature-

table plugin in QIIME2 with the default setting of 0.5 as the minimum fraction of samples that a feature 

must be observed in to be considered a core feature. Taxa between seasons were compared using the 

ANCOM (60) visualizer in the composition plugin in QIIME2. Significance between beta diversity of 

seasons was determined using a non-pairwise PERMANOVA test with the beta-group-significance 

visualizer in QIIME2.  

 

Source Tracking 

To predict the environmental source of internal rib bacteria, initial analysis in QIIME2 (60) as 

well as the SourceTracker2 package (61) were used. Although no skin and soil samples were collected for 

this study, the same subjects from both spring and summer placements were included in another study in 

which skin and soil samples were collected daily for the first 21 days of decomposition. Amplification 

and sequencing of the 16S rRNA gene were performed following protocols in the Earth Microbiome 

Project (61). Fresh sources, those representing the unique, non-decomposer microbiome of the subject, 

include decedent skin (of the hip and face) and decedent soil (near the hip and face) samples collected on 

the day of placement and the day after placement (days one and two), as well as all soil control (non-

decedent associated) samples. Note that previous studies have found that the human microbiome is stable 

up to two days after death (62). Samples of the advanced decay community similarly include skin and hip 

samples of the decedent skin and decedent soil collected on days 19, 20, and 21. Reference hit biom 

tables (trimmed at 150 bp) that included the samples to be used for source tracking were downloaded 



 59 

from QIITA study 11271. These biom files were imported as QIIME2 artifacts using the 

BIOMV210Format and merged into a single feature table with the rib samples. Similarly, the reference-

hit.seqs.fa files in QIITA study 11271 corresponding to source tracking samples were downloaded and 

imported as QIIME2 artifacts and merged into a single representative sequences file with the rib samples. 

Taxonomy was assigned similarly to the bone samples, using the Naive Bayes classifier, which was 

trained on Greengenes 13_8 99% OTUs (62). After filtering out mitochondria and chloroplasts, a 

fragment-insertion SEPP tree was generated for use in core metrics phylogenetic analyses. Diversity 

analyses of the rib and source communities were performed using the core metrics phylogenetic pipeline 

in the diversity plugin in QIIME2 at a sequencing depth of 17,321. This was to validate that the skin and 

soil sources were different from each other, and that the fresh and advanced decay communities were 

distinct. Alpha and beta diversity were assessed using the Shannon and unweighted UniFrac metrics, 

respectively. Significances between alpha diversity of sources and rib communities were calculated using 

the Wilcox test in the stat_compare_means() function in R (63), and significance between beta diversity 

of sources and the rib communities was determined using pairwise PERMANOVA in the beta-group-

significance visualizer in QIIME2. To use in SourceTracker2 (61), the rarefied feature table was exported 

as a BIOM 2.1.0 table, and source predictions were generated using the Gibbs function. For analysis of 

the soil control data only (see Figure S3), relative abundance taxa plots were generated using a feature 

table rarefied at 10,177 reads per sample. The DEICODE plugin (63) in QIIME2 and the Aitchison 

Distance metric were used to generate a biplot with features that influence the principal component axes 

to help identify taxa that were driving differences between seasonal placements.  

Note that SourceTracker2 analysis was not performed using the 18S rRNA data; this is due to 

exploration of diversity and modeling results indicating that the 16S rRNA communities were less noisy 

and more predictive of PMI, which directed the source tracking investigation to focus only on the 16S 

rRNA data.  

Final result plots were generated using the packages phyloseq (64), qiime2R (65), tidyverse (66), 

RColorBrewer (67), randomcoloR (68), and ggpubr (69) in R software (v3.5.1) (63).  
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Model Testing 

         Feature abundance data were used to generate postmortem interval (PMI) prediction models using 

random forest regressors. The same rarefied feature tables that were produced during diversity analyses 

were converted to BIOM 2.1.0 tables and used for modeling. K-fold cross validation (non-nested) was 

performed so that the data were separated by individual, and data from the same individual was used in 

either the training (model-fitting) or the testing (postmortem interval-predicting) set, but not both. The 

number of estimators used in each model was 1000, and hyperparameter tuning was used to refine the 

model. All bootstrapping was set to false in the hyperparameter tuning grid. Mean absolute error, the 

average deviation between predicted and observed values, was used to measure the accuracy of the 

model. These methods were applied using data from both seasonal placements (spring and summer, 

termed “combined”), as well as only spring or only summer to determine if separate models could more 

accurately predict PMI. For each model type, models were produced at each taxonomic level to determine 

which was the most predictive. This was done by collapsing the rarefied feature table at all taxonomic 

levels in QIIME2, and then performing the same modeling methods as described above for each level. 

Since random forest innately assigns importance to features used in modeling, these data were extracted 

from the models and used to determine which features were most important in predicting PMI. Modeling 

and the extraction of important features was done with Python machine learning package scikit-learn 

(v19.0) (70). 
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CHAPTER 3: THE MICROBIOME OF BLOW FLY ORGANS AND FLY-HUMAN MICROBIAL 

TRANSFER DURING DECOMPOSITION3 

 

Summary 

In the early stages of decomposition, blow flies lay eggs and acquire nutrients, and bring their 

microbes with them. While blow flies have a unique core microbiome, it is not known whether this is 

altered in a decomposition environment. Differences in the blow fly microbiome may influence the types 

of microbes transmitted from the flies to the cadaver, therefore potentially affecting assembly of the 

human decomposer microbiome. This is because fly interactions with cadavers vary by season, and 

because it is likely that external fly parts (i.e., the labellum and tarsi) make more direct contact and are 

likely involved in increased mechanical transmission with the cadaver than internal parts such as the 

oocyte. The second purpose of this study was to determine if the blow fly microbes contribute to the 

human decomposer microbiome. To accomplish these aims, ten human cadavers were placed outdoors 

across three seasons and allowed to decompose. The first waves of colonizing flies were collected and 

dissected by organ (labellum, tarsi, and oocyte). In addition to fly collections, samples from the cadavers 

were collected using a sterile swab at sites including the face, inner cheek, bicep, torso, and anus. Overall, 

blow flies associated with human cadavers have a similar microbiome to blow flies not associated with 

human cadavers. Furthermore, there were differences in the microbiome between seasons and blow fly 

organs. We also show evidence that blow flies act as a microbial source to the human decomposer 

microbiome, which is important for understanding the ecological mechanisms of human cadaver 

microbial community assembly. 

 

 

 
3 This work has been submitted for publication: Deel, H., Montoya, S., King, K., Emmons, A. L., Huhn, C., Lynne, 

A., Metcalf, J. L., Bucheli, S. (2021). The microbiome of blow fly organs and fly-human microbial transfer during 

decomposition. Submitted to Forensic Science International. 
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Introduction 

The decomposition of vertebrate remains is a dynamic process that is partially driven by the 

actions of microbes (1–5). As decomposition progresses through successive stages as defined by 

Galloway et al. (6), the microbial roles change as cadaver derived nutrients change (7). Immediately after 

death and in the fresh stage, enteric microbes are no longer influenced by the host immune system (7). 

Those that can survive with little oxygen flourish (7, 8), initiating a shift from the individual host 

microbiome (9) to a decomposer microbiome that is more consistent across cadavers (10). During this 

time frame, flies (primarily female) are also interacting with the cadaver, as they are attracted to the 

nutrients and volatile compounds produced by microbes (11). Flies will lay eggs in the eyes, nose, and 

ears, as well as in the hair and in body-body and body-ground interfaces (7). Typically, blow flies 

(Calliphoridae) are the first to colonize a cadaver and so they are of particular interest and importance for 

forensics (12).  

 Studies, a few of which have focused on blow flies (13, 14), have shown that flies have their own 

microbiome (13–15). This core blow fly microbiome is composed of the phyla Proteobacteria, Firmicutes, 

and Bacteroidetes (13, 14), with a small number of species identified within phylum Actinobacteria (16). 

Some of the more common bacterial genera associated with blow flies included Enterococcus, Proteus, 

Serratia, Wolbachia, Pseudomonas, Corynebacterium, Providencia, Lactobacillus, Lactococcus, 

Morganella, and Myroides, although this is not a comprehensive list of every genus found on blow flies. 

Additionally, body part specific analyses have been conducted, in which it was found that Providencia 

spp. were more abundant on the blow fly abdomen (13) and Lactobacillus, Proteus, Diaphorobacter, and 

Morganella were dominant in the salivary gland (14). Another experiment studying the bacterial profiles 

by organ showed that Pseudomonas was a key contributor to all bacterial profiles studied, with notable 

differences between the digestive tract, salivary gland, and reproductive organs (17). While these studies 

were useful for characterizing the blow fly bacterial microbiome and discovering bacterial differences 

between body parts, very few studies have been performed in a decomposition environment. Wohlfahrt et 

al. used decomposed beef liver as an attractant for blow fly species Lucilia sericata and Phormia regina 
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in order to characterize the bacterial communities associated with different life stages (18). In both blow 

fly species, Bacilli and Gammaproteobacteria (classes that are both common to other blow fly 

microbiome studies) comprised >95% of all bacterial classes across all life stages. In the same year, 

Maleki-Ravasan et al. published a study showing that blow flies collected using chicken liver baited traps 

contained bacteria within genera Enterococcus, Myroides, Proteus, Providencia, and Serratia, all of 

which are also common blow fly genera (16). However, more experiments studying the blow fly 

microbiome in the context of human decomposition are needed. 

         The interaction of blow flies with carrions and the potential transfer of microbes between hosts in 

the process makes characterization of the blow fly microbiome in a human decomposition setting of 

entomological and forensic importance. There are several studies showing evidence of a mechanical 

transfer of microbes between flies and carrions, including viruses (19) and bacteria (18, 20–22). This can 

occur through several ways, including physical contact between the fly and the cadaver (18, 20), fly 

defecation or regurgitation (22), and oviposition (16). These processes often begin to occur immediately 

after death, during which the human decomposer microbiome begins to assemble (10). Therefore, 

characterizing the microbiome of blow flies associated with human cadavers and understanding the 

mechanical transfer of microbes onto human cadavers is relevant to elucidating the ecological dynamics 

of the human decomposer microbiome assembly. 

The first purpose of this study was to characterize the blow fly microbiome in a human 

decomposition environment because to the authors’ knowledge, this has never been performed before. To 

do this, human cadavers were placed to decompose outdoors, unclothed, aboveground, and in the supine 

position at the Southeast Texas Applied Forensic Facility in Huntsville, TX. A total of 10 cadavers were 

placed across three seasons (two winter placements, two spring placements, and one summer placement 

represented by February, April, and July, respectively). Seasonal placements were conducted because fly 

colonization and the amount that flies interact with the cadavers can vary by season (23), which may in 

turn affect the decomposition fly microbiome. The first wave of colonizing flies was collected (ranging 

from immediately after placement to hours after placement), and the microbiomes of the labellum (mouth 
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parts), tarsi (leg parts), and oocytes were characterized using 16S ribosomal RNA gene sequencing 

following the Human Microbiome Project standard protocols (24). The labellum and tarsi were sampled 

because they make direct contact with the cadaver, while the oocytes were chosen to preliminarily screen 

for transovarial transmission (i.e., the transmission of microbes from parent to offspring via infection of 

the developing egg (25)). Since blow flies interact with human cadavers during the transitional stage from 

the individual host microbiome to the decomposer microbiome (26), the second purpose of this study was 

to determine if the blow fly microbes contribute as a source to the human decomposer microbiome, as 

well as to investigate if this source contribution differs between seasons. We predicted that organ-specific 

analyses would show that the labellum and tarsi, external fly organs which come into direct contact with 

the cadavers, would have more similar microbial compositions to each other compared to the oocyte. 

Furthermore, we also predicted that the labellum and tarsi, which are involved in a higher rate of 

mechanical transmission of microbes (26), would be shown to contribute to the human decomposer 

microbial community assembly using source tracking analysis. 

  

Results and Discussion 

Fly Occurrence      

The fly species that were collected across the five different placements (February, April, and July 

2014, and February and April 2015) are summarized in Figure 3.1 by month and year. These data are 

consistent with the collection times from other years for these species of fly for our geographic region 

(unpublished data available from Sam Houston State University entomological collection). 
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Figure 3.1. Summary of fly collections by month (A) and year (B). The “unidentified” fly species is a 
member of the family Muscidae, and the species of Hydrotaea could not be identified but is likely 
Hydrotaea aenescens.  
 

Quality of Amplicon Sequence Data 

 A total of 16,970,884 reads were generated. Filtering of reads assigned to chloroplast and 

mitochondria resulted in a total of 16,235,066 reads with a mean frequency per sample of 13,461 and a 

range of 2 - 55,152 reads. To normalize, the data were rarefied at 5,937 reads per sample as an optimal 

balance for retaining enough samples and observed features. This retained approximately 74% of all 

samples (890/1,206), with the percent of retained samples for each sample type as follows: 69% fly, 81% 

bicep, 82% face, 84% fecal, 81% inner cheek, and 84% torso. 
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The Core Fly Microbiome 

 The main phyla found in every organ type of every species included in the analyses  are 

Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria (Figure 3.2). This result agrees with several 

other studies that observed the fly microbiome (11, 13–15, 27). One notable exception is the relatively 

smaller abundance of Actinobacteria in February (Figure 3.2). In this dataset, the top three most 

relatively abundant taxa that comprise phylum Actinobacteria are within genus Corynebacterium 

(including an unclassified Corynebacterium, Corynebacterium urealyticum, and Corynebacterium 

propinquum, in decreasing order). Since this genus grows best within a temperature range of 30-37°C 

(86-98.6°F) (28), perhaps Corynebacterium can’t survive within the colder February temperatures. A 

temperature profile for each season can be seen in Figure S3.1. 

A total of seven core features were identified using the QIIME2 core-features plugin, and these 

were (in decreasing order of frequency) genera Tumebacillus, Vagococcus, Wolbachia, Providencia, 

Pseudomonas, Staphylococcus, and family Comamonadaceae. Although Wohlfahrtiimonas, a common 

fly-associated bacterium (29), was found in the fly microbiome (Figure 3.2), it was not identified as a 

core feature in this dataset. Tumebacillus, the most relatively abundant core feature, is not commonly 

associated with flies (11, 13–15, 27), but it is a gram-positive aerobic organism that has previously been 

found in non-rhizosphere soils (30) and was likely transferred onto the flies from the surrounding outdoor 

environment. Vagococcus, Providencia, Pseudomonas, and Staphylococcus are all known to be present on 

blow flies from previous studies (13–16, 18, 22, 26, 29). Wolbachia is known for its endosymbiotic 

relationships with arthropods, including reproductive manipulations as well as protection against 

pathogens (31). In blow flies in particular, Wolbachia is the most abundant and ubiquitous organism for 

all body parts (13). In our dataset, Wolbachia varied in its presence. For example, Wolbachia was present 

in all fly organs and represented the majority of features in nearly all samples for blow flies Lucilia 

coeruleiviridis, Lucilia eximia, and Lucilia mexicana, but for Phormia regina, Wolbachia presence ranged 

from dominating all samples from all organs (typically in the April placements) to being low in frequency 

or undetectable (typically in the February placements). There were also several other blow fly species 
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including Calliphora vicina, Cynomya cadaverina, Calliphora livida, Lucilia cuprina, and Lucilia 

sericata in which Wolbachia had little presence. However, it is important to note that many of these 

Wolbachia-lacking species were collected only in one seasonal placement, so it is difficult to determine 

whether this is a species or seasonal effect. The last core feature, family Comamonadaceae, is a diverse 

bacterial family that comprises over 100 species in at least 29 genera (32). To the authors’ knowledge, 

this family has not been well highlighted in fly microbiomes. 

Five different amplicon sequence variants (ASVs) assigned to genus Dysgonomonas were 

identified (Figure 3.2). This taxon has been isolated from environments like the human gallbladder (33), 

abdominal drains (34), and wounds (35). While it has also been isolated from the gut of a termite (36), it 

seems more likely that the flies acquired Dysgonomonas through their continued interaction with 

decomposing humans rather than termites, which are not common and have not been recorded in 

association with decomposing human remains at STAFS. However, it is also possible that Dysgonomonas 

is naturally occurring in the fly microbiome. It is interesting to note that Dysgonomonas had a noticeably 

higher relative abundance in April compared to other seasonal placements, the reason for which requires 

further investigation. Although this was not a deep investigation, it indicates that blow flies likely can 

pick up human-derived bacteria from cadavers after only a few hours of decomposition.  
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Figure 3.2. A bubble chart of the relative abundance of the top 50 fly taxa colored by organ and separated 
by placement season. Taxa are sorted by phylum, and each taxon name contains the phylum and the 
taxonomically lowest identifiable name. Each column represents the community of a single fly organ 
within the indicated season. Taxa with number assignments represent different amplicon sequence 
variants that were assigned to the same taxon.  
 

How Does the Fly Microbiome Compare Between Organs (Tarsi, Oocyte, Labellum)? 

 Pairwise comparisons between the beta diversity of fly organs (Figure 3.3A) were all significant 

for all beta group unweighted UniFrac and beta group weighted UniFrac tests (PERMANOVA q = 0.001 

for all comparisons, 999 permutations). Comparisons including the oocyte had higher pseudo-F values for 

both unweighted UniFrac (pseudo-F = 11.89 and pseudo-F = 15.07 compared to the labellum and tarsi, 

respectively) and weighted UniFrac (pseudo-F = 11.05 and pseudo-F = 11.33 compared to the labellum 

and tarsi, respectively) metrics compared to labellum versus tarsi comparisons (pseudo-F = 3.05 and 
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pseudo-F = 4.24 for unweighted UniFrac and weighted UniFrac, respectively). These statistics indicate 

that the bacterial composition of the oocyte is significantly different from the tarsi and labellum. Pairwise 

comparisons using the ANCOM plugin in QIIME2 identified 14 differentially abundant features between 

fly organs (Table 3.1). Notable features included Chishuiella wautersiella, which was more frequent in 

labellum compared to the tarsi and oocyte, Ignatzschineria, which was more abundant in the tarsi 

compared to the labellum, Suttonella, which was more abundant in the tarsi and oocyte compared to the 

labellum, and several other features that were more abundant in the labellum and tarsi compared to the 

oocyte such as Tumebacillus, Psychrobacter pulmonis, and Pseudomonas (Table 3.1). Genus Chishuiella 

is a gram-negative, strictly aerobic bacterium that has been isolated from freshwater (37). STAFS is 

located at the Center for Biological Field Studies, a 250-acre land designation. There are two main 

watersheds in the area, Wynne and Harmon, with smaller tributaries which cross throughout the area, 

including within the STAFS facility (38). Ignatzschineria is a bacterium that is commonly associated with 

myiasis, or infection by fly larvae of human tissue though it’s exact role in maggot biology is not 

understood (14, 39–47). While we expected to find this common fly bacterium on both the tarsi and the 

labellum, it is more common on the tarsi. This may be simply because the surface of the tarsi are in 

contact with cadaver tissues for longer than the labellum and allows for increased transfer of bacteria. 

Interestingly, Suttonella has been found to be associated with human respiratory disease (48). This may 

be further evidence of two things. First, blow flies can pick up human-derived bacteria from cadavers 

during decomposition. While it has been known for several decades that flies can pick up bacteria from 

other sources, this knowledge can potentially be extended to include blow flies picking up bacteria in a 

human decomposition environment. Second, not only do flies pick up bacteria, but these bacteria then 

may become integrated into the fly microbiome. Even when a new bacterium is introduced into an 

environment, it is possible that the ecological dynamics of the microbiome in the environment do not 

support the integration of the new bacterium into the microbial community structure (citation for this). 

Therefore, it is interesting that the blow fly microbial community dynamics support integration of bacteria 

from human cadavers into their microbiome. Our prediction that several features would be differentially 
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abundant in the labellum and tarsi was confirmed. This is likely due to the increased interaction of these 

surface organs with the surrounding environment compared to the internal oocytes, which has a larger 

physical barrier that probably prevents it from participating in microbial transfer and the fact that bacteria 

present in the oocytes are there most likely due to transovarial transmission (49). While contamination of 

oocytes during dissection is possible, steps were taken to minimize the possibility (flies were washed and 

sterile dissection techniques were employed). 

Table 3.1. The top five differentially abundant taxa that were identified using the ANCOM plugin in 
QIIME2. The W-value represents the number of ANCOM sub-hypotheses that have passed for each 
individual taxon. Note that the labellum vs. tarsi comparison only contained four total differentially 
abundant taxon. A full table is available in the supplementary files. 

Comparison Taxon Group taxon is 
higher in 

W-value 

  
 
labellum vs. tarsi 

Chishuiella wautersiella labellum 1274 

Vagococcus tarsi 1266 

Ignatzschineria tarsi 1264 

Suttonella tarsi 1202 

  
  
 
labellum vs. 
oocyte 

Suttonella oocyte 746 

Tumebacillus labellum 744 

Psychrobacter pulmonis labellum 744 

Chishuiella wautersiella labellum 725 

Pseudomonas labellum 713 

  
  
 
tarsi vs. oocyte 

Enterobacterales oocyte 935 

Psychrobacter pulmonis tarsi 932 

Tumebacillus tarsi 924 

Pseudomonas tarsi 916 

Corynebacterium urealyticum tarsi 899 

  
  
April vs. 
February 

Providencia April 1093 

Ignatzschineria February 1092 

Vagococcus April 1091 
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Wolbachia April 1091 

Tumebacillus April 1091 

  
  
 
April vs. July 

Pseudomonas July 1163 

Wolbachia April 1161 

Psychrobacter pulmonis July 1160 

Actinomycetospora July 1155 

Corynebacterium July 1154 

  
  
 
February vs. July 

Actinetobacter February 624 

Ignatzschineria February 624 

Tumebacillus July 624 

Providencia stuartii July 620 

Comamonadaceae July 619 

 

How Does the Fly Microbiome Compare Between Seasons? 

 Beta diversity analyses show clustering by the season of fly collection, in which February is 

distinct from both April and July, the latter of which overlap (Figure 3.3B). All seasons were 

significantly different from each other (q = 0.001 for all pairwise PERMANOVA comparisons for 

unweighted and weighted UniFrac metrics). The pseudo-F value (effect size) was higher for season than 

organ for both unweighted (9.15 and 17.59 for organ and season, respectively) and weighted (8.36 and 

27.09 for organ and season, respectively) UniFrac metrics, indicating that season has a larger effect on the 

fly microbiome than the type of organ. This seasonal effect may be due to less fly activity during cooler 

months (50), as the average April and July placement temperatures (20.21°C and 27.71°C, respectively) 

are closer together than they are to the average February placement temperature of 10.23°C. Furthermore, 

it is possible that variation in species occurrence between seasons (Figure 3.1A) may play a role in 

seasonal differences. However, to the authors’ knowledge, the microbiomes of individual blow fly species 

have not been studied and thus the influence of blow fly species occurrence on seasonal microbiome 

variation would require more investigation. Pairwise analysis using the ANCOM plugin in QIIME2 
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identified a total of 135 differentially abundant features between flies collected in different seasons. 

Notable differentially abundant features include Ignatzschineria, which was more frequent in February, 

Wolbachia, which was more abundant in April, along with Tumebacillus and two features belonging to 

genus Providencia, which were more abundant in the warmer months April and July. While literature on 

the seasonal fly microbiome is lacking, one study by Wei et al. (40) did observe that the Lucilia sericata 

microbiome differs between seasons, in which Staphylococcus increased in the spring, Ignatzschineria 

increased in the summer, and Vagococcus, Dysgonomonas, and an unclassified Acetobacteraceae 

increased in the fall. These results do not agree with those of our dataset (e.g., our results instead showed 

a differential increase of Ignatzschineria in the winter as opposed to the summer). There may be several 

reasons for this, including differences in geographic location, local animals and vegetation, solar 

irradiation, or that Wei et al. (40) did not conduct their study in a decomposition environment.  

 

Figure 3.3. Unweighted UniFrac beta diversity of fly microbiomes by organ and season. For all 
unweighted PERMANOVA pairwise comparisons (i.e., all organs compared to all organs and all seasons 
compared to all seasons, see methods), q = 0.001 (999 permutations). The weighted UniFrac version of 
this can be seen in Figure S3.2. 
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Do Fly-Associated Bacteria Appear in the Human Decomposition Microbiome, and How Does this Differ 

Between Placement Seasons? 

 

Figure 3.4. A bubble chart of the relative abundance of the top 50 human-associated microbial taxa 
colored by sample type and separated by placement season. Taxa are sorted by phylum, and each taxon 
name contains the phylum and the taxonomically lowest identifiable name. Each column represents the 
microbial community of a single human sample within the indicated season. Taxa with number 
assignments represent different amplicon sequence variants that were assigned to the same taxon.  
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Figure 3.5. Unweighted UniFrac beta diversity of human vs. fly samples (A) and the different sample 
types within the human data (B). PERMANOVA comparisons showed that the fly samples were 
significantly different from human samples (p = 0.001, 999 permutations, pseudo-F = 58.10), and 
pairwise PERMANOVA comparisons showed that some human sample types were significantly different 
from each other (fecal and inner cheek samples were different from each other as well as all other sample 
types  q = 0.001 for all unweighted comparisons, 999 permutations). Other human sample types (bicep, 
face, torso), were not significantly different from each other (0.11 < q < 0.75 for all comparisons, 999 
permutations). The weighted UniFrac version of this can be seen in Figure S3.3. 
 

 Many of the same phyla found in the fly data were also found in the human sample types, 

including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Figure 3.4). An exception is the 

presence of one ASV classified as taxon Fusobacterium within phylum Fusobacteria. This is 

unsurprising, as Fusobacterium is typically a human pathogen (51). At a lower taxonomic level, many of 

the fly genera were similarly found in the human samples, including common fly associated bacteria like 

Wolbachia, Ignatzschineria, and Wohlfahrtiimonas (Figure 3.4). Beta diversity analyses using the 

unweighted UniFrac metric showed that fly sample types clustered away from human sample types 

(Figure 3.5A, PERMANOVA p = 0.001 for both unweighted and weighted UniFrac). Fecal and inner 

cheek sample types were significantly different from each other and from all other sample types for both 

unweighted UniFrac and weighted UniFrac for all pairwise PERMANOVA comparisons (q = 0.001, 999 

permutations) except for one case, in which the fecal and inner cheek samples were not significantly 

different when compared using the weighted UniFrac metric (q = 0.126). In all comparisons for both 
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metrics, the bicep, face, and torso samples were not significantly different from each other (0.11 < q < 

0.75 for all comparisons, 999 permutations). This indicates that the area of skin in which blow flies 

interact with may not affect the microbes they acquire, but that their interaction with other more distinct 

sample types such as feces and the inner mouth may have greater influence. Furthermore, flies are more 

likely to oviposit in moist, protected areas like the mouth and anus (52). To track the transfer of fly 

microbes more accurately onto humans during decomposition, SourceTracker2 was used. Source tracking 

analyses showed that in February, the tarsi microbiome is a higher contributor to the human 

decomposition microbiome, with the labellum microbiome acting as a smaller source and the oocyte 

microbiome a relatively nonexistent source (Figure 3.6A). As the months become warmer, the labellum 

source proportion increases, the tarsi source proportion decreases, and the oocyte microbiome begins to 

contribute to the human decomposition microbiome, albeit minimally (Figure 3.6B and 3.6C). Therefore, 

blow flies are likely a source of microbes during human decomposition, and the fly source organ varies 

between seasons. In general, these seasonal trends held regardless of the human sample type, with one 

notable exception being that tarsi appeared to contribute a higher source proportion of the inner cheek 

community in July (Figure 3.6C).  

 

Figure 3.6. The predicted source proportions of fly organ microbes on human sample types, separated by 
placement season.  
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Conclusions 

The core fly microbiome observed in our dataset had several commonalities with other fly 

microbiome studies, indicating a “universal” fly microbiome that persists even in a decomposition 

environment. Despite this, there were still notable differences between fly organs and seasons. While 

there was a statistically significant signal in beta diversity between the labellum, tarsi, and oocyte, 

seasonal placement had a stronger effect on the fly bacterial communities. Fly species occurrence may 

play a role in seasonal differences, which would require further investigation. Furthermore, blow flies can 

pick up human-derived bacteria from the cadaver within only a few hours after placement, and they likely 

act as substantial bacterial sources of the human decomposer bacterial community, with the source 

contribution per fly organ varying based on the time of year. This study has characterized the blow fly 

microbiome by organ during different seasons, and it has provided evidence that the fly microbiome 

contributes to the human decomposer microbial community assembly.  

 

Materials and Methods 

Study Site 

The Southeast Texas Applied Forensic Science Facility (STAFS, formerly the Applied 

Anatomical Research Center, AARC) is a willed-body donation facility housed at the Center for 

Biological Field Studies (CBFS), Sam Houston State University, Huntsville, Texas. It is a research 

facility with a focus on the study of applications of forensic science of the human body. The facility lies 

in the Pineywoods ecoregion of Southeast Texas and has a subtropical, humid environment with a 

moderate covering of pine trees and herbaceous underbrush. The soil is acidic, well-draining, and sandy 

(53). 

 

Cadaver Placement and Monthly Temperature Calculations 

As part of a larger 3-year study looking at the ecology of decomposition, ten human cadavers 

were placed outdoors over five seasons and allowed to decompose under natural conditions with no 
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clothing (5, 39). Cadavers were not autopsied and were either cooled, frozen, or underwent both before 

placement. A summary of cadaver information including age, sex, storage conditions, height, weight, 

ancestry, and medical history is provided in Table S3.1. The average monthly temperatures for seasonal 

placements were calculated by collecting monthly summary data from Weather Underground, and 

averaging both February placement months (2014 and 2015) together to get the overall February average, 

and averaging both April placement months (2014 and 2015) together to get the overall April average. 

There was only one July placement (2014), and the monthly average for this one month was used. A 

breakdown of the average monthly weather data is provided in Figure S3.1, including average monthly 

temperatures, average monthly precipitation, and average dew points.  

 

Fly Collections 

Once the bodies were placed, the goal was to collect the first wave of colonizing flies that were in 

contact with the cadaver as this would target those flies associated with the earliest stage of 

decomposition and would represent possible sources of bacteria.  The time for collection ranged from 

immediately after placement to hours after placement. The wide range in time was mainly dependent on 

time necessary for the body to thaw (affecting fly attraction to the remains), and the outside temperature 

(affecting fly availability and fly activity). To collect the flies, three different methods were used: 

collection by hand, collection by aerial sweep nets, and collection directly into conical tubes. Upon 

collection, flies were kept in separate sterilized conical tubes, placed in a bag labeled with the body 

accession number, and frozen until dissection. 

 

Human Sampling 

Samples from cadavers were collected at the same time as fly collection using sterile dual-tipped 

BD SWUBE Applicator (REF 281130) swabs by rubbing the sample site lightly for approximately 30 

seconds over an area of approximately 2 cm square. Cadaver sample sites were: bicep, face, fecal through 

anus, inner cheek, and torso. 
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Identification of Flies 

Flies were identified to family, genus, and species using the Whitworth key to the genera and 

species of blow flies (Diptera: Calliphordiae) of America North of Mexico (54) and Field Guide to the 

Insects of America: North of Mexico (55). Specimens were cross-checked against a reference collection 

housed at the Sam Houston State University Museum. 

 

Dissections 

Flies were dissected to obtain all tarsi from one side of their body (the right), the labellum, and 

the oocytes (if female). All dissections were conducted under sterile conditions using a laminar flow 

hood. After the tarsi and labellum were isolated but before the oocytes were dissected, the flies were 

washed in soapy water and rinsed in EtOH. All fly organs were placed separately in sterile cryotubes and 

labeled with fly accession number, fly organ, dissection date, and dissector identification. Samples were 

stored at -80° C until they were sent to the Alkek Center for Metagenomics and Microbiome Research at 

Baylor College of Medicine for sequencing. 

 

Sample Processing and Sequencing 

The bacterial communities for all fly parts and human swab samples were assessed by genetic 

identification employing next-generation techniques. Amplification of 16S ribosomal RNA (rRNA) gene 

amplification, and Illumina sequencing were conducted at the Alkek Center for Metagenomics and 

Microbiome Research at Baylor College of Medicine following protocols benchmarked as part of the 

Human Microbiome Project (24). DNA was extracted from the fly organs or human swabs using the 

MoBio PowerSoil DNA isolation kit following manufacturer’s instructions. Negative controls that were 

included in the extraction process did not show evidence of amplification following gel electrophoresis, 

and were thus not included in sequencing. 16S rRNA gene sequencing was performed using Illumina 

MiSeq with barcoded primers targeting the V4 region: GGACTACHVGGGTWTCTAAT and 

GTGCCAGCMGCCGCGGTAA. 
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Data Cleaning and Analysis 

 Data cleaning and most analyses were performed using the microbiome analysis package, 

QIIME2 (56). All raw data files were imported into QIIME2 version 2021.4 using 

EMPPairedEndSequences file types, except for one sequencing pool in which only the already merged 

reads were available and thus the EMPSingleEndSequences file type was used. Each pool was 

demultiplexed using the demux plugin, and all forward and reverse reads were merged using VSEARCH 

(57). Quality filtering using the q-score was performed using the quality-filter plugin (58) and the default 

parameters. Denoising to create amplicon sequence variants (ASVs) was performed using the denoise-

16S method in the deblur (59) plugin with a left trim length of 0 and a right trim length of 250 (i.e., the 

entire sequences were kept for all pools due to high quality). All feature tables and representative 

sequence files were merged using the feature-table merge and merge-seqs methods, and all subsequent 

analyses were performed on merged data.  

Taxonomy was assigned using a Naive Bayes classifier trained on SILVA 138 99% OTUs from 

the 515F/806R region of sequences (60–62). Taxa assigned to chloroplasts and mitochondria were filtered 

from the dataset. To visualize the observed taxa, the barplot visualizer in the taxa plugin was used. These 

data were exported to a .csv file and imported into R software 4.0.3 (63) for bubble chart visualization 

(see below for packages used). To create the bubble chart, taxa relative abundances were first calculated 

within the entire dataset, and the top 50 taxa from this table were visualized. A phylogenetic tree was 

created using the fragment-insertion plugin (64–67) and the SEPP (68) method using the SILVA 128 

SEPP reference database. For simplicity, duplicate seasonal placements (i.e., both winter and both spring 

placements) were combined for group analyses. Core metric phylogenetic analyses were performed using 

the insertion tree and with a rarefying depth of 5,937 reads per sample as an optimal balance for retaining 

observed features and samples. From this pipeline, the unweighted UniFrac (69) and weighted UniFrac 

metrics were used for assessing beta diversity. To compare groups, the permutational multivariate 

analysis of variance (PERMANOVA) (70) test output from the beta-group-significance visualizer in the 

diversity plugin was used, with the pseudo-F value used to estimate effect size and the p-value used to 
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assess significance (or q-value for pairwise comparisons). Core taxa within fly and human samples were 

identified using the core-features visualizer in the feature-table plugin with the default setting of 0.5 as the 

minimum fraction of samples that a feature must be observed in to be considered a core feature. 

Differentially abundant taxa between groups were identified using analysis of composition of 

microbiomes (ANCOM) (71) in the composition plugin. To do pairwise ANCOM analyses, feature tables 

containing only two categories within a group (e.g., tarsi and labellum, tarsi and oocyte, labellum and 

oocyte) were created. ANCOM was applied to each table, and the results between tables were compared. 

This method was also used for pairwise ANCOM analyses between seasonal placements.  

For source tracking, separate feature tables were created for each seasonal placement and each 

table was exported from QIIME2 as a BIOM 2.1.0 table. These tables were used to generate per season 

source predictions with the Gibbs function in SourceTracker2 (72) in which fly organs were used as 

sources and human sample types were used as sinks. Since rarefied BIOM tables were used, source 

rarefaction depth and sink rarefaction depth were 0 in all cases.  

All visualizations were made in R software 4.0.3 (63) using the following packages: ggplot2 (73), 

reshape and reshape2 (74), ggpubr, qiime2R (75), tidyverse (76), ggpattern, plyr (77), and sf (78).  

 

Data Availability 

 All data are available in QIITA study 13301 and all analysis and visualization code files are 

provided at https://github.com/Metcalf-Lab/fly_human_2021_Deel. 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

 

Human decomposition is a complex process that is subject to many environmental influences. 

The progression of decomposition through the fresh, early decomposition, advanced decomposition, and 

skeletonization stages is partially driven by the actions of microbes. Chapter 1 provides background 

information about this succession of microbes as well as how high throughput sequencing may be used to 

develop microbial-based models for estimating postmortem interval. Importantly, it describes how these 

techniques are used with bone microbiome data for developing PMI models in the advanced 

decomposition and skeletonization stages of decomposition.  

In Chapter 2, some of the methods described in Chapter 1 are implemented. Using microbial 

succession data in bone, postmortem interval was estimated within +/- 34 days over a 1-9-month time 

frame of decomposition. Typically, anthropologists can estimate postmortem interval of skeletal remains 

with errors ranging from months to years. Therefore, the approximate error of one month as described in 

this dissertation seems like a promising start to contributing new PMI estimation methods to the forensic 

sciences. There are several ways that this model may be refined to increase accuracy in the future. First, it 

is important to test the optimal sampling frequency for obtaining the lowest mean absolute error (i.e., 

would sampling more frequently than every three weeks more accurately estimate PMI?). Second, 

developing a model using samples collected within all seasons of the year is critical for understanding if 

PMI models need to be seasonally specific. Finally, future work should include testing which time frame 

of decomposition that bone is most useful for when developing PMI models (e.g., is bone most predictive 

of PMI between 1-9 months or 12-24 months of decomposition?). These are all ongoing questions that 

will be critical to investigate before incorporating this method into the criminal justice system.  

Chapter 3 builds upon some of the concepts described in Chapter 1 by investigating the influence 

of the fly microbiome on the human cadaver decomposer microbiome assembly. During the first 48 hours 

of decomposition, the individual human microbiome transitions to a decomposer microbiome that is 

consistent between human remains. When flies interact with the remains during this time frame, it is 
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likely that there is a mechanical transfer of microbes onto the cadaver. Results of this study showed that 

the fly labellum and tarsi act as substantial microbial sources of the human decomposer microbiome, with 

source contributions varying between seasons. This conclusion provides insight into the ecological 

dynamics of human cadaver microbial community assembly. In the future, it may be interesting to 

investigate whether flies have a similar influence on the human decomposer microbiome within different 

geographies. Additionally, it would be useful to conduct another source tracking experiment that 

investigates the source of the fly microbiome. This may provide insight into whether microbes found on 

the flies are due to natural infections or if the flies acquire them from the surrounding environment (i.e., 

bodies of water, vegetation, soil, etc.).  

Overall, this dissertation contributes to the field of forensic sciences by furthering methods for 

estimating postmortem interval and providing insight into the influence of flies on human cadaver 

microbial community assembly.  
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Figure S2.1. Taxonomic composition of negative controls of 16S rRNA (A) and 18S rRNA (B) datasets. 
Rare taxa include those with a mean relative abundance of 0.005 or lower in both plots. We included 15 
negative extraction controls, of which 12 had enough detectable signal to be included in the sequencing 
pool of the 16S rRNA data. These 12 samples (A) averaged 387 reads, ranging from 4 - 2,232 reads. In 
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the 18S rRNA data (B), there was an average of 12,187 reads per sample, ranging from 1,189 - 39,663 
reads.  
 
 

 
Figure S2.2. 16S rRNA alpha diversity of the rib and source communities in the spring (A) and summer 
(B) placements, measured by Shannon index. Principal Coordinates Analysis of rib and potential source 
community 16S rRNA data using the unweighted UniFrac distance metric in the spring (C) and summer 
(D) placements. 
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Figure S2.3. Taxa plots of the 16S rRNA spring (A) and summer (B) placement source data collected 
from days 1, 2, 19, 20, and 21 of decomposition (not including soil controls, see Figure S5 for these data). 
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Rare taxa include those with a mean relative abundance of 0.002 or lower in the spring and 0.003 or lower 
in the summer.  
 

 
Figure S2.4. (A) A measure of beta diversity of 18S rRNA data using the unweighted UniFrac distance 
metric (PERMANOVA between seasons p = 0.004, pseudo-F (effect size) = 3.07, df = 1 with 999 
permutations). (B) A measure of beta diversity of 18S rRNA data using the weighted UniFrac distance 
metric. Shaded areas around the line represent 95% confidence intervals. Linear mixed effects across 
ADD p = 0.109. 
 

 
Figure S2.5. Principal Coordinates Analysis of the rib sample 16S rRNA data using the Aitchison 
distance metric from bodies placed in spring and summer. 
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Figure S2.6. (A) Principal Coordinates Analysis of the 16S rRNA spring and summer placement soil 
control communities using the Aitchison distance metric. Features driving clustering differences between 
seasons are labeled, PERMANOVA between seasons p = 0.001, pseudo-F (effect size) = 68.72, df = 1 
with 999 permutations. (B) Taxa plots of the 16S rRNA data of soil controls collected within the first 21 
days of decomposition in the spring and summer placements. Rare taxa include those with a mean relative 
abundance of 0.008 or lower.  
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Figure S2.7. Accumulated precipitation (A) and humidity (B) data between day of placement and last day 
of collection for the spring and summer placements. Accumulated precipitation was calculated by adding 
average inches of precipitation per day, while accumulated humidity was calculated by adding average 
percent humidity per day. Weather data were collected from the Easterwood Airport Station using 
Weather Underground (https://www.wunderground.com/).  
 
Table S2.1. Summary of rib bones collected from human cadavers placed at STAFS. The beginning date 
of the range of collection indicates the first known occurrence of rib exposure.  
 

Season Body ID Day of 

placement 

Advanced 

decay reached 

Date range 

of collection 

Ribs 

collected 

ADD range 

 

 

 

Spring 

007 4/15/16 4/25/16 5/16/16 – 

10/11/16 

L9-12, 

R9-12 

708-4821 

011 4/15/16 4/25/16 5/16/16 – 

10/11/16 

L8-12, 

R8-10, 

R12 

708-4821 

024 4/15/16 4/25/16 5/16/16 – 

10/11/16 

L9-12, 

R9, R11-

12 

708-4821 

 

 

 

Summer 

064 8/25/16 9/02/16 9/22/16 – 

5/05/17 

L9-12, 

R9-12 

592-4756 

065 8/25/16 9/02/16 10/4/16 – 

5/05/17 

L9-12, 

R8-11 

877-4756 

067 9/16/16 9/23/16 11/01/16 – 

6/08/17 

L9-12, 

R9-12 

1151-5201 
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Table S2.2. Random forests regression modeling of 16S rRNA and 18S rRNA data using features 
collapsed at different taxonomic levels. Model accuracy is assessed using mean absolute error (MAE). 
The model with the lowest error within each season (spring and summer together, spring only, summer 
only) is in bold.  

Data type Season Level MAE 

 
 
 
 
 
 
 
 
 
 
16S rRNA 

 
 
 
Spring and summer 

ASV 793.33 
L7 822.28 

L6 822.37 

L5 851.41 
L4 839.88 

L3 842.20 

L2 807.77 
 
 
 
Spring 

ASV 872.02 

L7 904.18 

L6 884.32 

L5 941.63 
L4 1025.01 

L3 987.59 

L2 1074.76 
 
 
 
Summer 

ASV 723.98 

L7 729.09 

L6 746.90 
L5 788.10 

L4 834.82 

L3 853.38 
L2 778.17 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Spring and summer 

ASV 1013.78 

L12 952.92 

L11 963.61 
L10 964.84 

L9 966.57 

L8 956.64 
L7 941.22 

L6 1095.19 

L5 1040.01 
L4 1125.68 

L3 1128.13 

L2 1042.47 
 
 
 
 
 

ASV 1128.14 

L12 1044.26 

L11 1074.59 

L10 1084.54 
L9 1110.03 
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18S rRNA 

 
Spring 

L8 1113.28 

L7 1187.64 
L6 1202.75 

L5 1025.53 

L4 1168.03 

L3 1181.39 
L2 1443.86 

 
 
 
 
 
 
Summer 

ASV 990.91 

L12 877.59 
L11 864.45 

L10 858.58 

L9 870.40 
L8 886.16 

L7 820.67 

L6 867.09 
L5 942.52 

L4 904.18 

L3 958.75 

L2 1083.95 
 
Table S2.3. Effect size calculations for alpha (Faith’s PD and Shannon Index) and beta (weighted and 
unweighted UniFrac) diversity of the 16S rRNA and 18S rRNA data. The effect sizes (eta squared) of 
alpha diversity metrics were calculated using the H-value output of the Kruskal-Wallis test and the 
equation given by kruskal_effsize() in R. Effect sizes of beta diversity metrics are reported as pseudo-F 
values, which were provided in the beta-group-significance PERMANOVA outputs in QIIME2. Effect 
sizes were calculated for between seasons, hosts, and the first and last ADDs. Results are reported for 
calculations including both seasons as well as within season. Note that since effect size calculations were 
different between alpha and beta diversity metrics, results should only be compared within alpha or within 
beta diversity, but not between. 

Data Type Season(s) Diversity Metric Grouped by Effect Size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
16S rRNA 

 
 
 
 
 
Spring and 
Summer 

 
Faith’s PD 

Season 0.02 
Host 0.12 
1st and last ADD 0.31 

 
Shannon 

Season 0.05 
Host 0.08 
1st and last ADD 0.44 

Unweighted 
UniFrac 

Season 2.32 
Host 1.73 
1st and last ADD 4.22 

Weighted UniFrac Season 2.42 
Host 1.78 
1st and last ADD 5.20 

 
 
 
Spring 

Faith’s PD Host 0.24 
1st and last ADD 0.13 

Shannon Host 0.07 
1st and last ADD 0.37 
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Unweighted 
UniFrac 

Host 1.46 
1st and last ADD 2.12 

Weighted UniFrac Host 1.77 
1st and last ADD 1.41 

 
 
 
Summer 

Faith’s PD Host 0.10 
1st and last ADD 0.79 

Shannon Host 0.15 
1st and last ADD 0.50 

Unweighted 
UniFrac 

Host 1.66 
1st and last ADD 3.45 

Weighted UniFrac Host 1.40 
1st and last ADD 6.24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
18S rRNA 

 
 
 
 
 
Spring and 
Summer 

 
Faith’s PD 

Season 0.04 
Host 0.22 
1st and last ADD 0.73 

 
Shannon 

Season 0.04 
Host 0.09 
1st and last ADD 0.73 

Unweighted 
UniFrac 

Season 2.90 
Host 2.44 
1st and last ADD 2.53 

Weighted UniFrac Season 0.85 
Host 2.32 
1st and last ADD 0.60 

 
 
 
Spring 

Faith’s PD Host 0.07 
1st and last ADD 0.80 

Shannon Host 0 
1st and last ADD 0.80 

Unweighted 
UniFrac 

Host 1.56 
1st and last ADD 1.67 

Weighted UniFrac Host 0.80 
1st and last ADD 0.20 

 
 
 
Summer 

Faith’s PD Host 0.41 
1st and last ADD 0.60 

Shannon Host 0.33 
1st and last ADD 0.60 

Unweighted 
UniFrac 

Host 2.38 
1st and last ADD 1.28 

Weighted UniFrac Host 6.10 
1st and last ADD 4.24 
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Figure S3.1. Weather data for each seasonal placement, including average monthly temperatures 

(A), average monthly precipitation (B), and average monthly dew point (C). No precipitation was 

recorded in February 2014.  

 

 

Figure S3.2. Weighted UniFrac beta diversity of fly microbiomes by organ and season. For all 

weighted PERMANOVA pairwise comparisons (i.e., all organs compared to all organs and all 

seasons compared to all seasons), q = 0.001 (999 permutations).  
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Figure S3.3. Weighted UniFrac beta diversity of human vs. fly samples (A) and the different 

sample types within the human data (B). PERMANOVA comparisons showed that the fly 

samples were significantly different from human samples (p = 0.001, 999 permutations, pseudo-

F = 41.95), and pairwise PERMANOVA comparisons showed that some human sample types 

were significantly different from each other while others were not. Fecal samples were different 

from all other sample types (0.005 < q < 0.006, 999 permutations) except the inner cheek (q = 

0.13, 999 permutations). The inner cheek was significantly different from the bicep, face, and 

torso (q = Other human sample types (bicep, face, torso) were not significantly different from 

each other (q = 0.006 for all comparisons, 999 permutations). The bicep, face, and torso were not 

significantly different from each other (0.19 < q < 0.52 for all comparisons, 999 permutations). 
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Table S3.1. Summary of cadavers included in this study. For storage condition, c = days in the 

cooler and f = days in the freezer.  

Accession 

Number 

Age Sex Storage 

Condition 

Height (m) 

/Weight (kg) 

Ancestry Medical 

History 

STAFS2014.006 47 M c=26/f=21 1.78/81.64 European 

descent 

Unknown 

STAFS2014.009 71 M c=29/f=11 unknown European 

descent 

Unknown 

STAFS2014.004 62 M c=2/f=98 1.9/99.79 European 

descent 

Unknown 

STAFS2014.028 58 M c=6/f=14 ?/158.75 European 

descent 

Unknown 

STAFS2014.052 62 M c=35 1.73/72.57 

  

European 

descent 

Hypertension; 

cardiovascular 

STAFS2014.053 68 M c=19 1.88/40.82 European 

descent 

failure to 

thrive; severe 

malnutrition; 

STAFS2015.015 66 M c=25 1.83/108.86 European 

descent 

Unknown 

STAFS2015.017 55 M c=26 1.78/? European 

descent 

Unknown 

STAFS2014.042 80 F f=327 1.73/83.65 Unknown 

  

congestive 

heart failure; 

coronary heart 
STAFS2014.066 87 F c=2/f=244 1.52/36.28 European 

descent 

Unknown 

 


