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ABSTRACT 
 
 
 

IMPROVING HYDROLOGIC MODELING OF UNGAGED BASINS TO SUPPORT  
 

ENVIRONMENTAL FLOW MANAGEMENT IN A HETEROGENEOUS REGION 
 
 
 

Environmental streamflow management can sustain aquatic ecosystems and the services they 

provide by reestablishing elements of the natural flow regime that are necessary for ecological health. 

One of the more difficult challenges with developing environmental flow criteria is estimating 

streamflow at locations without gage data; however, this challenge is not unique to environmental 

flows. Streamflow prediction in ungaged basins is a very common problem in hydrology and engineering 

with no clear solution, but it is particularly difficult to model environmental streamflow metrics across 

heterogeneous regions with highly diverse land uses, geologic settings, and hydroclimatological 

processes. 

 In this dissertation, I create a new regionalization framework, “Streamflow Regionalization with 

Hydrologic Model-based Classification” (SR-HMC), for modeling challenging flow metrics in ungaged 

basins across a heterogeneous region. I also test the efficacy of the new framework for developing 

environmental streamflow criteria. In Chapter 2, I explore different approaches for classifying streams 

with similar flow regimes and develop a novel classification technique for prioritizing regional accuracy 

of hydrologic models. As the precursor to SR-HMC, this “Hydrologic Model-based Classification” (HMC) 

groups hydrologically similar streams by determining the degree of reciprocity of calibrated parameters 

between a regional catalog of rainfall-runoff models as quantified through jackknife resampling. Results 

show that HMC complements traditional classifications based on streamflow metrics and watershed 

characteristics, and offer advantages over these traditional classifications when used to regionalize 

ungaged basins. 
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 Next, Chapter 3 describes implementation of ensemble modeling to optimize HMC into a 

regionalization framework for producing time series of streamflow at ungaged sites. For gaged locations, 

hydrologic model parameters that cannot be calculated directly can be calibrated using observed flows; 

however, these same model parameters are much more uncertain and difficult to estimate at ungaged 

locations. SR-HMC uses geographically-weighted model output averaging with regionally-calibrated 

parameter sets to reduce parameter uncertainty in models of ungaged basins. This new framework is 

tested at five sites across a large and diverse region. Results were improved using SR-HMC over standard 

nearest-neighbor regionalization approaches. 

 Finally, I turn to management applications of these novel methods in ungaged basins by 

analyzing the statistical relationships between streamflow alteration and ecological integrity. In Chapter 

4, I compare the explanatory power of simple flow-ecology relationships produced by different methods 

for regionalizing ungaged basins and different metrics of flow alteration. Results highlight robust 

modeling practices amenable to management. Development of environmental streamflow 

recommendations based on prediction in ungaged basins is an ongoing challenge; however, this 

research demonstrates how novel approaches to classification and model extrapolation can improve 

streamflow estimation at ungaged locations in heterogeneous regions, and thereby bolster the scientific 

basis of environmental flow management.
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Chapter 1 
 
Introduction 
 
 
 
 Human activities and land use changes are altering streamflows and stressing freshwater 

ecosystems on a global scale (Allan, 2004; Bunn and Arthington, 2002; Richter et al., 1997). 

Environmental streamflow management can mitigate degradation of freshwater ecosystems by defining 

the key environmental flow elements that are necessary for sustaining these systems (Poff et al., 1997). 

Environmental flows describe magnitudes, frequencies, durations, timing, and rates of change needed 

to support aquatic ecosystems, and the economic, cultural, and human health services they provide to 

society (Arthington et al., 2018; Poff et al., 1997). Healthy ecosystems offer familiar and palpable 

services including recreation, water supply, and aesthetic value, but they also offer significant and 

quantifiable non-tangible benefits through conservation, stewardship, and responsible management 

(Wilson and Carpenter, 1999). When ecological degradation is caused by hydrologic modification, 

environmental streamflow management can be used as a tool to reestablish the natural flow regime for 

restoring ecological services. Specifically, the methods of the Ecological Limits of Flow Alteration 

(ELOHA) framework have been used to support regional environmental flow development via the 

natural flow regime (Poff et al., 2010). 

ELOHA is a consensus framework for determining the components of the natural flow regime 

most critical to ecological integrity across an entire region. ELOHA facilitates recovery of the natural flow 

regime by developing quantitative relationships between flow alterations and changes in biological 

conditions. It implements a variety of methods to support environmental flow management, which can 

be broken down into four steps: 1) develop a hydrologic foundation of the altered and “baseline” 

natural flow regimes; 2) classify streams from the region into groups with distinct flow regimes; 3) 
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quantify deviation of streamflow between baseline and altered conditions; and 4) develop flow-ecology 

relationships using estimates of flow alteration and ecological integrity. These flow-ecology relationships 

provide the tool for water managers to incorporate specific environmental flows into regional 

management. For a given site, paired streamflow and biological data are needed for pre- and post-

altered hydrological conditions to fully develop flow-ecology relationships describing how biological 

communities respond to streamflow changes (Poff et al., 2010; Poff and Zimmerman, 2010). 

Bioassessment sites often occur on small, wadable streams with insufficient gage data (Poff et 

al., 2006), which necessitates hydrologic modeling of ungaged basins. Estimating streamflow at ungaged 

locations is a challenge commonly encountered not only during ELOHA, but in many other analyses of 

streams and watersheds. Established techniques for modeling ungaged basins are recommended by 

ELOHA and have been studied extensively, yet there is no consensus approach and parameter 

uncertainty is a major challenge (Blӧschl et al., 2013). This uncertainty is increased when modeling 

ungaged basins across a heterogeneous region, where diverse land use, geological settings, and 

hydroclimatological processes contribute to a wide range of flow regimes among geographically nearby 

streams (Arsenault and Brissette, 2014; Arsenault et al., 2019; Blöschl et al., 2013). Furthermore, 

environmental flow metrics are often volatile and subsequently challenging to model (Blöschl et al., 

2013; Nathan and McMahon, 1992; Razavi and Coulibaly, 2017). As such, each of ELOHA’s four steps 

offer opportunities to develop, implement, and assess new methods for modeling ungaged basins within 

the context of environmental streamflows. My dissertation develops, applies, and tests new statistical 

and modeling approaches to reduce parameter uncertainty in hydrologic models of ungaged basins 

across a heterogeneous region, pertinent not only to ELOHA, but also other scientific, engineering, and 

management applications. 

ELOHA has been applied all over the world, from Australia (Mackay, 2014), to Spain (Solans and 

García de Jalón, 2016), to China (Zhang et al., 2012). In the United States, ELOHA has been explored to 
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address the effects of urbanization on stream biota across the country from the Pacific Northwest 

(Cassin et al., 2005), to the Atlantic coast (Buchanan et al., 2013; Kennen et al., 2013; McManamay et 

al., 2012; Pomeroy et al., 2008), and many other places. My dissertation studies coastal southern 

California (So. CA) where the ELOHA framework has also been implemented, and where water resources 

management has always been a tremendous challenge. Few regions of the country have experienced 

more rapid and extensive urbanization over the past few decades than So. CA, including the San Diego 

and Los Angeles metropolitan areas (Hawley and Bledsoe, 2011). In So. CA, the combination of a 

Mediterranean and semi-arid climate, explosive population growth, rapid land development, and 

tremendous agricultural production have strained water resources and significantly altered natural 

streamflows (Stein et al., 2012). Increases in impervious surfaces associated with urbanization are a 

particularly potent and widespread driver of flow alteration that decrease infiltration and amplify runoff 

(Arnold and Gibbons, 1996), increase hydrograph flashiness (Walsh et al., 2005), alter stream 

geomorphology (Paul and Meyer, 2001), decrease water quality (Allan, 2004), and increase sediment 

transport capacity (Hawley and Bledsoe, 2013). These effects of human development are exacerbated 

for freshwater systems in semi-arid regions like So. CA (Falkenmark et al., 1989). Previous work with 

ELOHA in So. CA has involved preliminary hydrologic foundations (Parker et al., 2019; Sengupta et al., 

2018) and flow-ecology relationships (Mazor et al., 2018; Parker et al., 2019), state-wide stream 

classification (Pyne et al., 2017), a recommendation of preliminary flow targets (Stein et al., 2017a), and 

an implementation of those targets in the San Diego River watershed (Stein et al., 2017b). These 

previous efforts have required hydrologic modeling of ungaged basins, which has been challenging in 

the highly heterogeneous region of So. CA characterized by broad gradients in land use, geologic 

settings, hydroclimatological processes, and streamflow regimes. 

This dissertation builds on previous work in environmental streamflows and modeling ungaged 

basins to bolster the scientific foundation of ELOHA. Ultimately, I develop a new method for modeling 
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ungaged basins that reduces parameter uncertainty. I achieve this by first grouping hydrologically-

similar streams in called “Hydrologic Model-based Classification” (HMC). I then expand HMC into a full 

framework for modeling ungaged basins in a heterogeneous region, named “Streamflow Regionalization 

with Hydrologic Model-based Classification” (SR-HMC). SR-HMC is applied to develop the hydrologic 

foundation of ELOHA in So. CA by estimating environmental streamflow metrics traditionally challenging 

to model. The hydrologic foundation produced by SR-HMC is compared to common nearest neighbor 

regionalization methods for modeling ungaged basins. This comparison of methods for regionalizing 

ungaged basins is carried throughout the entire ELOHA framework, as levels of further analyses are 

added to stream classification, quantifying hydrologic alteration, and formulating flow-ecology 

relationships. While the tools and ideas proposed in my dissertation have been developed through the 

lens of ELOHA and environmental streamflows, my novel methods to reduce parameter uncertainty in 

ungaged basins can be applied to any study of regional streamflows. Specific objectives within the 

dissertation are provided in each subsequent chapter. 

 In Chapter 2, I classify regional streams at gage locations in So. CA based on hydrologic and 

physical watershed similarity. Furthermore, I develop “Hydrologic Model-based Classification” to 

prioritize the accuracy of hydrologic models in ungaged basins. HMC is ideal when regional ungaged 

basins must be modeled, especially in a heterogeneous region, and it complements other methods of 

grouping streams with similar flow regimes.  

 In Chapter 3, I apply ensemble modeling to HMC to create “Streamflow Regionalization with 

Hydrologic Model-based Classification” for modeling ungaged basins. SR-HMC combines statistical, 

hydrologic, and ensemble modeling to quantify and reduce parameter uncertainty from a catalog of 

regional calibrated parameter sets. It is applicable to analyses of ungaged basins outside the 

development of environmental flows but is most appropriate for diverse regions where neighboring 

basins may differ hydrologically.  
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 In Chapter 4, I formulate flow-ecology relationships at five ungaged sites while comparing 

different methods for quantifying flow alteration and regionalizing ungaged basins. SR-HMC is assessed 

alongside nearest neighbor regionalization for estimating flow alteration and flow-ecology relationships 

in ungaged basins. This final chapter demonstrates how to improve the integrity of flow-ecology 

relationships and confidence in environmental streamflow management in ungaged basins. It ends with 

specific recommendations of modeling practices in ungaged basins that may assist environmental 

streamflow management. 
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Chapter 2 
 
Advancing stream classification and hydrologic modeling 
 

of ungaged basins for environmental flow management  
 

in coastal southern California 
 
 
 

Summary 

Environmental streamflow management can improve the ecological health of streams by 

returning modified flows to more natural conditions. The Ecological Limits of Hydrologic Alteration 

(ELOHA) framework for developing regional environmental flow criteria has been implemented to 

reverse hydromodification across the heterogenous region of coastal southern California (So. CA) by 

focusing on two elements of the flow regime: streamflow permanence and flashiness. Within ELOHA, 

classification groups streams by hydrologic and geomorphic similarity to stratify flow-ecology 

relationships. Analogous grouping techniques are used by hydrologic modelers to facilitate streamflow 

prediction in ungaged basins (PUB) through regionalization. Most watersheds, including those needed 

for stream classification and environmental flow development, are ungaged. Furthermore, So. CA is a 

highly heterogeneous region spanning a gradient of urbanization, which presents a challenge for 

regionalizing ungaged basins. In this study, I develop a novel classification technique for PUB modeling 

that uses an inductive approach to group regional streams by modeled hydrologic similarity followed by 

deductively determining class membership with hydrologic model errors and watershed metrics. As a 

new type of classification, this “Hydrologic Model-based Classification” (HMC) prioritizes modeling 

accuracy, which in turn provides a means to improve model predictions in ungaged basins, while 

complementing traditional classifications and improving environmental flow management. HMC is 
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developed by calibrating a regional catalog of process-based rainfall-runoff models, quantifying the 

hydrologic reciprocity of calibrated parameters that would be unknown in ungaged basins, and grouping 

sites according to hydrologic and physical similarity. HMC was applied to 25 USGS streamflow gages in 

the south coast region of California and was compared to other hybrid PUB approaches combining 

inductive and deductive classification. Using an Average Cluster Error metric, results show HMC 

provided the most hydrologically similar groups according to calibrated parameter reciprocity. 

Hydrologic Model-based Classification is relatively complex and time-consuming to implement, but it 

shows potential for advancing ungaged basin management. This study demonstrates the benefits of 

thorough stream classification using multiple approaches, and suggests that Hydrologic Model-based 

Classification has advantages for PUB and building the hydrologic foundation for environmental flow 

management.  

Keywords: environmental streamflows, ungaged basins, stream classification, hydrologic modeling, 

ELOHA, California water management 

 

2.1 Introduction 

The natural variability of streamflow regimes, including flow magnitude, duration, frequency, 

timing, and rate of change (Poff et al., 1997), is crucial for maintaining the ecological integrity of streams 

(Bunn and Arthington, 2002). Maintenance of aquatic and riparian ecosystem functions is a major 

priority for water managers; however, streamflow regimes have been altered globally as population 

growth and development lead to urbanization, dams, flow extraction, and other land use changes 

(Naiman et al., 1995; Richter et al., 1997). Environmental flow criteria frameworks, such as the 

Ecological Limits of Flow Alteration (ELOHA) (Poff et al., 2010), are methods for protecting the ecological 

health of streams from hydrologic alteration by reestablishing essential elements of streamflow and 

sediment regimes. The ELOHA framework is robust because it synthesizes many flow-ecology 
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relationships from a study area to provide a foundation for developing environmental flow 

recommendations within an entire municipality or management region (Poff et al., 2010). Such a 

regional approach has been recommended for the widespread implementation of environmental flows 

because it allows for effective and comprehensive estimation of environmental streamflow regimes at a 

wide variety of streams in a large and diverse study area (Arthington et al., 2006). The coastal area of 

southern California (So. CA) is experiencing substantial hydrologic alteration (Hawley and Bledsoe, 2011) 

and associated ecological decline (Stein et al., 2012), which has prompted application of ELOHA (Mazor 

et al., 2018; Parker et al., 2019; Pyne et al., 2017; Sengupta et al., 2018; Stein et al., 2017). The region is 

highly heterogenous, spanning an extensive range of geology, stream types, and land uses, which 

presents unique challenges for implementing ELOHA. 

Stream classification is one of four major steps within the scientific process of ELOHA used to 

group hydrologically, or otherwise similar, streams (Poff et al., 2010). Its primary role towards 

developing environmental flows is to stratify flow-ecology relationships by regional stream type, and to 

help determine where new bioassessment sites should be placed to strengthen the variety of sites 

within a region. Olden et al. (2012) outlined two overarching approaches to hydrologic classification—

those utilizing inductive reasoning (observed or modeled flows) and those utilizing deductive reasoning 

(watershed data characterizing flow). While the inductive approach benefits from actual measures of 

discharge, it is often plagued by insufficient gauging networks (Olden et al., 2012) and uncertainty 

modeling ungaged basins (Blöschl et al., 2013). Two mirroring state-wide stream classification studies 

utilizing both inductive and deductive approaches have recently been performed across California. Pyne 

et al. (2017) first clustered all stream reaches based on similarity of watershed characteristics, then used 

hydrologic metrics to determine cluster membership and separate reference reaches. Conversely, Lane 

et al. (2017) grouped the natural streamflow regime of all reaches before using watershed 

characteristics to determine flow type. A third state-wide classification study was performed by Lane et 
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al. (2018), which unified the classifications of Pyne et al. (2017) and Lane et al. (2017) by using daily-

scale hydrologic baseline archetypes based on dimensionless reference hydrographs. These three 

stream classification studies focused on characterizing natural flow regimes across California, which is a 

challenge in the heavily hydrologically modified and heterogeneous Southern Coast hydrologic region of 

CA (Waananen and Crippen, 1977). Sites from this region did not show strong separate from the rest of 

CA in previous classifications. While most South Coast streams were classified as “rain and seasonal 

groundwater” (Lane et al., 2017) or “rain and seasonal groundwater” and “flashy, ephemeral rain” (Lane 

et al., 2018), not one of the 91 reference gages used to drive the Lane et al. (2017) classification fell in 

the South Coast. Furthermore, streams in the Mohave Desert and Central Valley shared the same “rain 

and seasonal groundwater” classification and South Coast streams (Lane et al., 2017). Central Valley 

streams remained grouped with South Coast streams in the unified classification (Lane et al., 2018). 

Finally, none of the seven classes produced by Pyne et al. (2017) were dominated by South Coast 

streams. The results of these three state-wide classifications indicate developing environmental 

streamflow criteria for South Coast streams could benefit from a more targeted classification focused on 

the diverse regional landscape.  

Regionalization is a common framework for predicting streamflow in ungaged basins (PUB) that 

is performed by transferring hydrologic information from gaged systems to ungaged (Blöschl et al., 

2013; Razavi and Coulibaly, 2013). While regionalization often employs regression equations to compute 

singular streamflow metrics, such as peak flow, continuous hydrologic models offer process-based 

analyses with full hydrograph outputs that can be used to analyze past and future climate, land use, and 

management scenarios. The application of hydrologic models to these alternative scenarios makes them 

important for developing the hydrologic foundation within ELOHA (Poff et al., 2010). Additionally, a 

hydrologic foundation often necessitates modeling of ungaged basins because crucial bioassessment 

sites used to develop flow-ecology relationships often occur on small streams without available 
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representative streamflow data (Poff and Ward, 1989). Despite the clear importance of PUB to ELOHA 

and other stream management efforts, no superior method for regionalizing hydrologic models has 

emerged (Blöschl et al., 2013).  

In a typical flow regionalization effort with hydrologic models, a network of models is created 

and calibrated at gaged sites across a study area. For ungaged sites within the network, model 

parameters that cannot be calculated directly are estimated and/or transferred from the catalog of 

calibrated models, typically using a measure of spatial proximity, physical similarity, or parameter 

regression (Oudin et al., 2008; Razavi and Coulibaly, 2013; Samuel et al., 2011). While spatial proximity is 

generally the preferred regionalization approach (Razavi and Coulibaly, 2013), it is not always superior 

and is less applicable in highly heterogeneous regions, such as So. CA, where neighboring watersheds 

may have substantially different geology, land use, and/or climate. These challenges with applying a 

traditional regionalization approach in a highly heterogenous region provide opportunities for PUB 

innovations. Furthermore, the technique of grouping similar streams is shared by ELOHA and PUB, which 

provides an excellent opportunity to explore new approaches for classifying streams with the intention 

of modeling ungaged basins while developing environmental flow criteria in a highly heterogeneous 

region.  

This study was motivated by a desire to improve the science supporting environmental 

streamflows in So. CA where flow criteria are under development (Mazor et al., 2018; Parker et al., 

2019; Sengupta et al., 2018; Stein et al., 2017). In this study, I develop a new method of stream 

classification that quantifies hydrologic similarity for regionalizing ungaged basins in a heterogeneous 

region. I compare this new approach to traditional methods of stream classification using hydrologic and 

watershed characteristics. Towards this end, this study has three specific objectives: 

1) Classify streams in coastal southern California using the best current practices; 
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2) Develop and implement a new approach for stream classification that prioritizes the 

accuracy of regional hydrologic models; and 

3) Compare the accuracy of traditional classifications versus the new approach for 

estimating streamflow and flow-ecology relationships in heterogeneous ungaged basins. 

I hypothesize that directly incorporating regional model accuracy into a stream classification 

scheme will provide information complementary to existing deductive and inductive schemes and 

demonstrate greater ability to accurately model ungaged basins through regionalization, compared to 

the traditional classifications.   

2.2 Methods 

2.2.1 Study Area 

This study was focused within the large coastal region of southern California, which is roughly 

bounded by the transverse mountain ranges to the north, Mexico to the south, the peninsular mountain 

ranges to the east, and the Pacific Ocean to the west. Study watersheds lie within the coastal regions of 

San Diego, Riverside, Orange, San Bernardino, Los Angeles, Ventura, and Santa Barbara Counties, and 

are considered within the “South Coast” hydrologic region of CA according to the U.S. Geological Survey 

(USGS) (Waananen and Crippen, 1977). The climate is characterized as semi-arid and Mediterranean 

with hot, dry summers and mild, wet winters. Diverse regional topography, geology, and precipitation 

patterns allow for the natural existence of many stream types, spanning perennial, intermittent, and 

ephemeral. Land use varies dramatically across the region ranging from heavily urban and suburban 

sprawl, to significantly agricultural, to rural coastal and mountainous. These diverse land uses 

profoundly influence streamflows, with particular deviation from natural flow regimes occurring due to 

the urban centers of Los Angeles and San Diego concurrently with the California State Water Project.  

As a first step towards developing environmental flow criteria, only USGS stream gage sites were 

considered with neighboring bioassessment sites from the California Water Boards’ Perennial Streams 
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Assessment (PSA) within the Surface Water Ambient Monitoring Program (SWAMP). This provided 

gaged flow estimates at bioassessment sites. Hydrologic surrogacy between gage and bioassessment 

sites was assumed by ensuring a difference in watershed area of less than 15% with no intervening 

dams, diversions, reservoirs, or interbasin transfers. Gages from the region were selected to contain 

high-resolution hourly streamflow data for water years (WY) 2005-2007, which typify relatively wet, 

average, and dry years consecutively in So. CA (WRCC, 2015). Finally, watersheds of selected gages 

required sufficient meteorological and landscape data to build minimally calibrated rainfall-runoff 

models (see 2.2.3.1 Hydrologic Models). An exhaustive search for suitable streamflow records yielded 25 

USGS gage sites for classification (Figure 2.1; Table A1). 



13 

 

Figure 2.1: Locations of USGS streamflow gages used for classification. 

2.2.2 Traditional Classification 

 Three types of traditional classification were used in this study: an inductive approach with 

gaged flow data, a deductive approach utilizing watershed characteristics, and a combined inductive and 

deductive approach applying both types of data. 

2.2.2.1 Inductive Approach 

Previous research in So. CA has shown streamflow flashiness and drying have important 

influence on shaping local benthic macroinvertebrate assemblages (Gasith and Resh, 1999; Mazor et al., 

2018; Parker et al., 2019). This influence makes them strong metrics for developing flow-ecology 
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relationships to guide environmental flow recommendations. To this end, flashiness and drying have 

been extensively studied for developing regional flow criteria (Mazor et al., 2018; Parker et al., 2019; 

Pyne et al., 2017; Sengupta et al., 2018; Stein et al., 2017); however, additional elements of the natural 

flow regime are also important drivers of ecological health in CA (Yarnell et al., 2020). For this study, 

Richards-Baker Flashiness Index (RBI) (Baker et al., 2004) and a metric quantifying the frequency of 

extremely low flows indicative of drying were computed from the 25 hourly time series of discharge. RBI 

was calculated according to Equation 2.1, wherein Qt is the discharge at time t, Qt+1 is the discharge at 

time step after t, and T is the final time step.  

Equation 2.1: Richards-Baker Flashiness Index (RBI) (Baker et al., 2004). 

𝑅𝐵𝐼 =
∑ |𝑄𝑡+1 − 𝑄𝑡|𝑇

𝑡=1

∑ 𝑄𝑡
𝑇
𝑡=1

 

To quantify the frequency of extremely low flows indicative of drying, the fraction of flow record 

with flow less than 1 cfs was calculated according to Equation 2.2, wherein NQ<1cfs is the number of time 

steps containing streamflow less than 1 cfs and N is the total number of time steps containing flow data. 

Equation 2.2: Fraction of time with flow < 1 cfs. 

< 1 𝑐𝑓𝑠 =
𝑁𝑄<1𝑐𝑓𝑠

𝑁
 

Although flows less than 1 cfs are recorded by USGS, this threshold was chosen to indicate 

stream drying given the inherent measurement error associated with stream gage data at extreme low 

flows. Due to So. CA’s heterogeneous landscape, large variations in land use, topography, and 

precipitation shape flow permanence and flashiness across the region (Table A1). To better discern the 

effects of these heterogeneities on streamflow, and to more accurately capture time-sensitive 

environmental flow metrics on a scale relevant to benthic macroinvertebrates, hourly data were chosen 

over daily. Additionally, high resolution hourly data across So. CA provide an opportunity to complement 
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the previous state-wide classifications (Lane et al., 2017; Lane et al., 2018; Pyne et al., 2017), which used 

daily data, at finer temporal and spatial scales. 

 Inductive classification was performed to group sites based on similarity of streamflow 

flashiness (RBI) and permanence (< 1 cfs). To achieve this, a variety of exploratory ordination analyses 

were conducted to develop an initial understanding of how gages might classify. Weighted classical 

(metric) multidimensional scaling within the “vegan” package of R (Oksanen et al., 2019) complemented 

principal component analysis (PCA) and a scree plot from the “stats” package (R Core Team, 2019). 

Classification was ultimately determined using K-means clustering from the NbClust package in R 

(Charrad et al., 2014) after assessing the following indices: C-Index, Dunn, McClain, and Silhouette. 

2.2.2.2 Deductive Approach  

 For traditional deductive classification, watershed data describing USGS streamflow gages were 

retrieved from the USGS’s GAGES-II database (Falcone, 2011) and the U.S. Environmental Protection 

Agency’s (EPA) NHDPlusV2 database (McKay et al., 2012). Correlation was performed with the “stats” 

package in R (R Core Team, 2019) to remove highly correlated watershed metrics. Finally, the same 

exploratory ordination analyses and clustering process as the inductive approach provided results for 

traditional deductive classification.   

2.2.2.3 Combined Inductive and Deductive Approaches 

 Inductive and deductive methods of stream classification were combined in multiple ways. First, 

a single K-means clustering analysis was performed using the hydrologic metrics (RBI and < 1 cfs) and 

the best performing watershed variables from the deductive classification. Next, multinomial logistic 

regression within the “nnet” package of R (Venables and Ripley, 2002) was used to determine if flow 

metrics could predict deductively produced clusters, and likewise used to see if landscape metrics could 

predict inductively produced clusters. Finally, the USGS has categorized streamflow gages containing 

minimally disturbed watersheds without significant flow alteration as “reference” within the GAGES-II 
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database (Falcone, 2011). Multinomial logistic regression with flow and watershed metrics was again 

used to predict whether a gage was reference or non-reference. 

2.2.3 Hydrologic Model-based Classification  
 Hydrologic Model-based Classification (HMC) first requires the accurate creation and calibration 

of rainfall-runoff models across a region, exactly like regionalization for estimating streamflow in 

ungaged basins. Parsimonious and minimally-calibrated models are important to HMC so that physical 

relationships between regional watershed variables and highly uncertain model parameters might be 

established. Rather than using tradition inductive measures of streamflow to assess hydrologic similarity 

for classification, HMC quantifies the hydrologic similarity between two sites as the reciprocating model 

accuracy when calibrated parameters from one model are donated to the other and vice versa. 

Representing hydrologic similarity with model errors produced by a regional range of parameters is a 

new idea in regionalization that can be used to quantify and reduce parameter uncertainty. Calibrated 

parameters inherently have greater uncertainty than directly calculated parameters, and this 

uncertainty is substantially increased in ungaged basins where calibration cannot occur. HMC uses 

jackknife resampling of complete calibrated parameter sets for all models across the region to generate 

a model-error matrix of hydrologic similarity spanning the region. The regional error matrix can be 

interpreted as quantitatively describing parameter uncertainty for the most uncertain parameters across 

a region. In HMC, the error matrix is used as an inductive basis of hydrologic similarity and combined 

with a deductive approach to produce a new combined classification that directly incorporates 

regionalization and reduces parameter uncertainty in models of ungaged basins. Ultimately, classifying 

models with reciprocally low errors provides a subset of parameters from a calibrated regional catalog 

with reduced uncertainty. Figure 2.2 provides an overview of the process for HMC. 
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Figure 2.2: Flowchart overviewing novel Hydrologic Model-based Classification (HMC). 

2.2.3.1 Hydrologic Models 

Hydrological models were created in the US Army Corps of Engineers Hydrologic Engineering 

Center’s Hydrologic Modeling System (HEC-HMS) 4.1 at the 25 gages. Continuous simulations were 

performed on an hourly time step over WY 2005-2007 to capture a period spanning a wide range of 

typical hydrologic conditions (WRCC, 2015). Hourly precipitation data were input from the California 

Irrigation Management Information System (CIMIS), California Data Exchange Center (CDEC), Climate 

Data Online from the National Oceanic and Atmospheric Administration (NOAA), San Diego County 

Flood Control District (SDCFCD) and Ventura County Watershed Protection District (VCWPD). CIMIS 

gages also provided monthly average evapotranspiration data. Independent watershed delineations in 

ArcMap 10.1 using a 30m digital elevation model from The National Map (USGS, 2019), NHDPlus V2 

(McKay et al., 2012), and National Land Cover Database (NLCD) (Fry et al., 2011) were verified by USGS 

StreamStats data (USGS, 2019). Inverse distance was used to weight precipitation gages from each 

watershed’s centroid. Simple canopy (interception and transpiration) and surface (infiltration) 

parameters were estimated from delineated data. HEC-HMS model parameters associated with the 

deficit and constant loss element (infiltration) were calculated directly using soil and imperviousness 

data available from USGS GAGES-II (Falcone, 2011). Similarly, the time of concentration and Clark unit 

hydrograph storage coefficient used within the Clark unit hydrograph transform element were 

calculated directly using the Kirpich method (Kirpich, 1940) and standard approaches utilized by the 

Arizona Department of Transportation (ADOT, 2014). To produce minimally calibrated models, methods 
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were selected to balance simplicity and parameter parsimony with reliable and process-based 

hydrology. The Kirpich Method, for example, contains only two parameters, which facilitates 

straightforward calculations in data-scare areas. It is a long-trusted method for estimating time of 

concentration (USDA NRCS, 2007) that is highly effective across a wide range of conditions in a similar 

region (Roussel et al., 2005). 

After directly estimating and calculating parameters associated with precipitation losses and 

hydrograph transformation, only two linear reservoir baseflow parameters were calibrated for the 25 

modeled watersheds. Initial flow values were known using streamflow gage data, and a single linear 

reservoir was used for each of the two groundwater layers. These two layers were connected in parallel 

with the both groundwater layers combining to produce a total baseflow (USACE, 2000). As such, only 

the groundwater storage coefficient for each layer was altered during calibration.  

Flashy floods and periods of little precipitation have strongly influenced the evolution of healthy 

freshwater aquatic ecosystems in So. CA (Gasith and Resh, 1999). In continuing with this study’s focus 

on streamflow flashiness and permanence as ecologically-relevant management metrics, models were 

calibrated to optimize RBI and < 1 cfs. While the accuracy of a singular measure of overall fit is typically 

used for hydrologic model calibration (Bardossy, 2007; Beven, 2012), environmental flow studies have 

shown it is not ideal for modeling ecological flow metrics (Cassin et al., 2005; Murphy et al., 2013; Parker 

et al., 2019; Vis et al., 2015). As a result, calibration accuracy of flashiness and flow permanence were 

equally considered and combined into one “Ecologically-Focused Combined Calibration” (EFCC), which 

has been used to calibrate hydrologic models for ecological applications in So. CA (Parker et al., 2019). 

EFCC (Equation 2.4) equally weights the percent error (Equation 2.3) of RBI (Equation 2.1) and < 1 cfs 

(Equation 2.2). 

Equation 2.3: Percent Error. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 (%) =   (
|𝐺𝑎𝑔𝑒 𝑓𝑙𝑜𝑤 𝑚𝑒𝑡𝑟𝑖𝑐 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑓𝑙𝑜𝑤 𝑚𝑒𝑡𝑟𝑖𝑐|

𝐺𝑎𝑔𝑒 𝑓𝑙𝑜𝑤 𝑚𝑒𝑡𝑟𝑖𝑐
) ∗ 100 
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Equation 2.4: Ecologically-Focused Combined Calibration (EFCC). 

𝐸𝐹𝐶𝐶 (%) = [
(|𝐺𝑎𝑔𝑒 𝑅𝐵𝐼 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑅𝐵𝐼|

|𝐺𝑎𝑔𝑒 𝑅𝐵𝐼| ) ∗ 100 + (|𝐺𝑎𝑔𝑒 < 1 𝑐𝑓𝑠 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑 < 1 𝑐𝑓𝑠|
|𝐺𝑎𝑔𝑒 < 1 𝑐𝑓𝑠| ) ∗ 100

2
] 

2.2.3.2 Jackknife Resampling Error Matrix 

 To compute hydrologic similarity among the regional network of minimally calibrated hydrologic 

models, storage coefficients and initial discharges of both groundwater layers were donated from one 

model to all 24 remaining models. This was done for every model in the region in a process known as 

jackknife resampling (Efron, 1982; Friedl and Stampfer, 2014). Model parameters directly calculated or 

estimated from available landscape data were not jackknifed. Initial baseflow discharges were included 

in the jackknife analysis and are treated as calibrated parameters because they would be unknown in a 

PUB analysis. For each individual model’s calibrated parameters, jackknife resampling generated 24 time 

series characterizing streamflow across the region. The accuracy of each simulated hydrograph resulting 

from jackknifed parameters was assessed by comparing to the 24 observed USGS streamflow gages. The 

true gage streamflow data do not affect the jackknifing process because they are only used to determine 

the accuracy of the output flow data resulting from the jackknifed parameters. The accuracy of each 

jackknifed parameterization was calculated for the entire 25x24 matrix of time series data using the 

EFCC (Equation 2.4) scaled by minimum and maximum errors, resulting in a normalized 25x24 matrix 

quantifying the accuracy of each calibrated model when its calibrated parameters were directly input 

into all other models. Each sites’ original calibration error was added to the matrix such that a 

normalized 25x25 matrix was produced with very small calibration errors spanning the diagonal. 

2.2.3.3 Combined Inductive and Deductive Approach 

 Combining inductive and deductive approaches for Hydrologic Model-based Classification was 

very similar to the combined approach under traditional classification that implemented multinomial 
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logistic regression. Using the jackknife error matrix of hydrologic similarity, weighted classical (metric) 

multidimensional scaling, PCA, and a scree plot provided a sense of how sites might cluster. K-means 

clustering with C-Index, Dunn, McClain, and Silhouette indices was used to split sites into reciprocating 

low model-error clusters. This inductive approach produced groups of hydrologically similar gages, as 

measured by a site’s ability to accurately model all other sites within its group. A deductive approach 

was added to HMC by using multinomial logistic regression to determine if watershed variables could 

predict low-error cluster membership. 

2.2.4 Classification Assessment  
To better understand the utility of each classification towards estimating flow in ungaged basins, 

a performance metric dubbed “average cluster error” (ACE) was developed for this study. ACE 

characterizes the errors produced by donated parameters within a classification method and its classes. 

Low-error classifications and classes indicate greater certainty in donated calibrated parameters, which 

inherently contain high uncertainty in models of ungaged basins. Classifications and classes with low 

ACE values may provide the foundation for accurately modeling ungaged basins with regionalization. 

ACE was modeled after the cross-validation standard error (CVSE) statistic presented by Wortman 

(2005) and is displayed in Equation 2.5, wherein C is the total number of clusters produced by a specific 

classification, c represents each cluster, S is the total number of sites within the given cluster, s is each 

site from the cluster, Normalized Errors is taken directly from the jackknife error matrix, and P is the 

total number of sites (25 in this study).  

Equation 2.5: Average Cluster Error (ACE). 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐸𝑟𝑟𝑜𝑟 =
∑ ∑ (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑠𝑠)𝑆

𝑠=1
𝐶
𝑐=1

𝑃
 

The following example helps explain how Equation 2.5 was used: Say a specific classification 

divided the 25 sites into 5 equal groups split chronologically (Sites 1-5, 6-10, 11-15, etc.). Total error for 

the first group would be computed by summing all within cluster errors (when site 1 parameters were 
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applied to Sites 2, 3, 4, and 5; when site 2 parameters were applied to Sites 1, 3, 4, and 5; etc. for site 3, 

4, and 5 parameters). This same process would be repeated for the four remaining groups and summed 

to produce a final total error. The total error would be divided by 25 sites to yield a single metric 

quantifying the average model error across all sites, exclusive to a specific classification. Following this 

procedure, ACE values can also be computed for individual clusters unique to one classification, wherein 

the number of sites assigned to the specific group of interest would take the place of P (P = 5 when only 

considering one cluster from the example above), and the ∑ ()𝐶
𝑐=1  term would not be used because only 

one cluster from the classification is considered. Because all sites receiving each model’s parameters 

were treated as ungaged basins during jackknife resampling, the ACE statistic provides insight regarding 

how well different classifications, or different groups within one classification, might be incorporated 

into regionalization.  

Additionally, the adjusted Rand index (ARI) was computed between each traditional 

classification technique and Hydrologic Model-based Classification to compare the similarity of any two  

unique classification. ARI typically ranges from 0 to 1, wherein a value of 0 indicates no similarities 

between clusters and a value of 1 represents identical clusters; however, negative values can occur if 

class similarity is less than what would be expected during random clustering (Hubert and Arabie, 1985). 

Essentially, ARI values near 0 indicate a classification scheme provides unique groups that do not 

overlap. Specifically, the “clues” package in R (Chang et al., 2010) was implemented to compute an ARI 

among all suitable classifications.  

Between the two measures for assessing classifications in this study, ARI provides an 

understanding of each classification’s ability separate its data, while ACE reflects the ability of a 

classification, or cluster within a classification, to estimate streamflow in ungaged basins. ARI is a more 

general metric for insight into data clustering, while ACE is a specific metric focused on cluster 
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performance in ungaged basins. More generally, ARI quantifies between cluster variability while ACE 

quantifies within cluster variability. 

2.3 Results 

2.3.1 Traditional Classification 
2.3.1.1 Inductive Approach 

 Classification of hourly flashiness and flow permanence metrics in coastal southern CA resulted 

in three classes (Figure 2.3). Sites were essentially split according to flow permanence with intermittent 

streams containing below-average flashiness (Class 1 with 6 sites), perennial streams spanning the full 

range of flashiness (Class 2 with 10 sites), and ephemeral streams spanning the full range of flashiness 

(Class 3 with 9 sites). The intermittent class contained the smallest average cluster error with the least 

within cluster variability (0.2, Figure 2.3), indicating calibrated parameters from models of these streams 

possessed the least uncertainty. Likewise, the perennial class had the least utility towards ungaged 

basins because it contained the most within cluster variability (ACE = 0.9, Figure 2.3). When considering 

all three clusters produced by traditional inductive classification, the ACE was 0.6 (Figure 2.3). 

(a) 

Class RBI < 1 cfs 
Avg Cluster 

Error 
1 0.06 0.26 0.2 

2 0.10 0.04 0.9 

3 0.10 0.75 0.6 

All   0.6 
  
 
 
 
 

(b) 

 

 

Figure 2.3: Results of inductive approach to traditional classification. Specifically, (a) mean predictor metric values 
and ACE for the different classes and overall classification; (b) ordination plot illustrating metric values across 

clusters. 

 
 
 
 



23 

2.3.1.2 Deductive Approach 

 Classification of watershed characteristics yielded five classes with drainage area and soil 

content, specifically the percentage of Hydrologic Soil Group C (HGC), providing a parsimonious 

classification (Figure 2.4). These two watershed variables were log-transformed within the K-means 

algorithm to address the right skewed nature of drainage area caused by a few large basins. Sites were 

primarily divided by drainage area, and secondarily by HGC, to generate classes of small basins with low 

HGC (Class 3 with 3 sites), small basins with high HGC (Class 5 with 7 sites), medium-sized basins with 

low HGC (Class 1 with 5 sites), medium-sized basins with high HGC (Class 2 with 7 sites), and large basins 

with high HGC (Class 4 with 3 sites). The large basin with high HGC class contained the smallest ACE (0.2, 

Figure 2.4), while the medium-sized basin with low HGC provided the largest (0.6, Figure 2.4). An ACE of 

0.4 was computed after considering all five clusters produced by traditional deductive classification 

(Figure 2.4). 

(a) 

Class 
Drainage 

Area (km2) HGC % 
Avg Cluster 

Error 
1 143.9 17 0.6 

2 206.6 44 0.5 

3 24.0 10 0.3 

4 1220.6 34 0.2 

5 35.4 37 0.5 

All   0.4 
 

(b) 

 

Figure 2.4: Results of deductive approach to traditional classification. Specifically, (a) mean predictor metric values 
and ACE for the different classes and overall classification; (b) ordination plot illustrating metric values across 

clusters. 

2.3.1.3 Combined Inductive and Deductive Approaches 

 Results for combining inductive and deductive classification are provided in Appendix A (Figure 

A2, Figure A3, and Figure A4). Neither an expanded cluster analysis nor predicting inductively and 

deductively produced clusters with the selected watershed characteristics and flow metrics, 

respectively, improved classification over the individual inductive and deductive approaches. New 
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multinomial regression models were developed to accurately predict traditional inductive clusters with 

drainage area, % clay soil, minimum elevation, and annual minimum precipitation, and predict gage 

reference status with drainage area, % silt soil, baseflow index, and relative humidity. 

2.3.2 Hydrologic Model-based Classification 
2.3.2.1 Models 

Calibration results for the 25 HEC-HMS models at USGS gages are provided in Appendix A (Table 

A2)Table 3.3. Overall, the flashiness and flow permanence calibration criteria were modeled extremely 

accurately. Average percent errors of both RBI and < 1 cfs were well under 1%. 

2.3.2.2 Combined Inductive and Deductive Approach 

 Hydrologic Model-based Classification combined inductive and deductive classification to 

produce a multinomial logistic regression model (deductive classification) that uses landscape variables 

to predict membership of five hydrologically-similar groups of models (inductive classification) (Figure 

2.5). The inductive approach used in HMC does not group sites by the similarity of measured or modeled 

metrics, as is done traditionally, but instead groups sites to maximize model accuracy when calibrated 

models’ parameters are donated to all other sites within a group. Despite this important distinction, 

streamflow flashiness and permanence were well distributed across the five hydrologic model-based 

clusters (Figure 2.5). A multinomial logistic regression model was able to predict low-error class 

membership with 4% error (24 sites matched correctly) using drainage area, sandy soil content, mean 

annual precipitation, and mean annual minimum precipitation. The number of sites was distributed less 

evenly across classes for Hydrologic Model-based Classification than traditional methods, with the first 

two clusters containing two sites each, the third cluster containing three, the fourth containing five sites, 

and the final cluster containing over half the sites with 13. As such, it is no surprise that class five 

contained the largest within cluster variability (ACE = 0.5, Figure 2.5), and is subsequently its worst 

performing group in ungaged basins. However, no other class within HMC produced an ACE greater than 



25 

0.1, which contributes to HMC owning the lowest within cluster variability across all classifications (ACE 

= 0.3, Figure 2.5).  

Stream classes produced by HMC include medium-sized basins with flashiness on both the high 

(Class 1) and low (Class 4) end. Flashy Class 1 streams receive the least precipitation and are located in 

southern San Diego County. Non-flashy Class 4 streams comprise the two eastern-most sites. Medium-

small basins (Class 3) receive relatively little precipitation and are located near the coast, while large-

medium basins (Class 5) receive the most precipitation and are spread throughout the study area. The 

largest basins (Class 2) are slightly flashier and drier than the large-medium basins (Class 5). These Class 

2 streams are concentrated in the northern area of the study area. 

 

Class 
Drainage 

Area (km2) Sand % 
Annual Avg 
Precip (cm) 

Annual Min 
Precip (cm) RBI < 1 cfs 

Avg Cluster 
Error 

1 146.4 41 35 1.9 0.16 0.44 0.1 

2 463.8 38 51 1.0 0.10 0.33 0.1 

3 93.4 33 39 0.6 0.12 0.40 0.0 

4 151.9 59 40 1.6 0.05 0.58 0.1 

5 222.5 52 55 1.8 0.08 0.28 0.5 

All             0.3 
 

Logistic Regression 
Landscape Variable Definition Source 

DRAIN_SQKM Total upstream drainage area (km2) NHDPlus V2 (McKay et al., 2012) 

SANDAVE Percentage of sandy soil (%) GAGES-II (Falcone, 2011) 

PPTAVG_CAT 
Mean annual precipitation of NHD 

catchment (cm) 
GAGES-II (Falcone, 2011) 

CAT_AnnMinPrecip 
Mean annual minimum precipitation 

of NHD catchment (cm) 
GAGES-II (Falcone, 2011) 

Figure 2.5: Results of Hydrologic Model-based Classification (HMC). 
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2.3.3 Adjusted Rand Index (ARI) 
The geographical distribution of four unique classifications are displayed in Appendix A (Figure 

A1), including traditional inductive (flow metrics), traditional deductive (watershed characteristics), a 

hybrid inductive/deductive (GAGES-II reference sites), and hydrologic model-based as a hybrid 

inductive/deductive (model accuracy and watershed characteristics). Results of the ARI analysis show no 

major similarities and large variability between classifications, with the strongest relationship between 

GAGES-II reference sites and inductive classification (ARI = 0.12, Table 2.1). Inductive and Hydrologic 

Model-based Classifications were most different with an ARI of -0.04 (Table 2.1). 

Table 2.1: Adjusted Rand Index (ARI) among four unique classifications. 

 Inductive Deductive Reference Hydrologic model-based 
Inductive - -0.01 0.12 -0.04 

Deductive -0.01 - 0.004 0.09 

Reference 0.12 0.004 - 0.013 

Hydrologic model-based -0.04 0.09 0.013 - 

 

2.4 Discussion 

Hydrologic Model-based Classification introduces a new way to think about stream similarity, 

which can improve the accuracy of hydrologic modeling and environmental flow management in 

ungaged basins. For hydrologic modeling, HMC can be incorporated into iterative development of a 

hydrologic foundation and it supplies the foundation for an improved approach to regionalization of 

ungaged basins. As a management tool, HMC streamlines priority environmental flow metrics in 

ungaged basins. 

2.4.1 Hydrologic Model-based Classification and environmental flow management 
Using Hydrologic Model-based Classification to incorporate regionalization for modeling 

ungaged basins into stream classification provides an opportunity to improve environmental streamflow 

studies that require ungaged data. ELOHA is an iterative process with significant feedback loops; 

however, stream classification is recommended to occur second, after developing a hydrologic 
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foundation, and no guidance is provided on how classification might inform the hydrologic foundation or 

vice versa (Poff et al., 2010). Because the hydrologic foundation generates baseline and current 

hydrographs at sites with bioassessment data, many of which are ungaged, reciprocally low-error classes 

produced by HMC could be utilized in a modeling framework to increase the hydrologic foundation’s 

accuracy. Switching the order of the first two steps in ELOHA, and first classifying sites using HMC, could 

improve streamflow estimation in ungaged basins as a part of the hydrologic foundation. At the very 

least, developing the hydrologic foundation could be iterative with classification as key characteristics of 

the sites become better understood, especially if ungaged basins must be modeled.  

The primary role of stream classification, as one of the four major steps of ELOHA, is to 

strengthen and standardize regional flow-ecology relationships so that they may be better implemented 

for water management (Poff et al., 2010); however, it is the one step of ELOHA some studies have 

determined unnecessary and bypassed (Kendy et al., 2012). To this point, large-scale classifications in 

the Chesapeake Bay watershed (Buchanan et al., 2011) and Western US, including a separate 

classification in California, (Hawkins and Vinson, 2000) did not improve benthic macroinvertebrate 

explanatory power. While this study has demonstrated how the primary application of stream 

classification is useful in coastal southern California, it has also introduced HMC to extend classification 

beyond its traditional role to modeling ungaged basins for developing a hydrologic foundation in any 

region. It is likely that more accurate hydrologic foundation would create more accurate flow-ecology 

relationships and stronger environmental flow criteria, and it could also improve the utility of stream 

classification within ELOHA. This should be evaluated through additional analysis and application. 

Modeled streamflow data does not always classify streams the same as gage data for the same 

sites. Peñas et al. (2016) showed daily and monthly gage data clustered better than monthly modeled 

data in Spain. Similarly, modeled data provided different classes than gaged in North Carolina (Eddy et 

al., 2017). While model accuracy is always a high priority in hydrologic applications, stream classification 



28 

is very sensitive to this accuracy, which underscores the importance of accurate models within ELOHA. 

Poor model accuracy not only directly diminishes the utility of flow-ecology relationships, and 

subsequent environmental flow recommendations, but it can indirectly hamper management efforts by 

providing inconsistent stream classes. When ungaged basins are considered in ELOHA, model accuracy 

must be highly prioritized or else lingering and compounding errors might spoil otherwise legitimate 

efforts.   

 From an operational perspective, Hydrologic Model-based Classification is more time-consuming 

than traditional classifications and might become unwieldy when applied across an expansive 

geographic region with many sites to classify. This is because not only must hydrologic models be 

created and calibrated for every classified site, but each model must be analyzed with every other 

models’ calibrated parameters to produce the critical jackknife resampling error matrix. If ungaged 

basins are to be included, however, some extra time spent building models is recouped as they would 

have been built anyway under traditional classifications. This study has demonstrated that HMC is 

feasible for 25 sites spanning a fairly large and highly heterogeneous region in the south coast of 

California. If a significantly larger region or denser network was the focus of this study, HMC would likely 

provide even more precise classes and accurate streamflow estimates, but with a substantially greater 

time investment. Realistically, HMC becomes less feasible at a state-wide scale or for a large network 

(~50 sites). These issues make HMC most effective when used in concert with large-scale classification 

methods to enhance classification for relatively small-scale environmental flow development, which 

might range from basin-level to spanning multiple counties, or with expeditious hydrologic models. 

2.4.2 Stream classification for regionalizing ungaged basins 

 Hydrologic Model-based Classification not only provides new information characterizing regional 

streams complementary to traditional classifications, but it can also be used to accurately model 

ungaged basins across heterogenous area through regionalization, as evidenced through the average 
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cluster error metric describing within cluster variability. ACE unpacks important information buried 

inside the jackknife resampling matrix describing how accurately a set of calibrated parameters can be 

donated from its original model to all other models in the region, as if the other models were ungaged. 

Error values from the matrix can be assessed for each model in the region or, when performing stream 

classification, can be aggregated to quantify ACE for every class within a given classification. Further 

aggregation can provide an overall measure of ungaged modeling accuracy for an entire classification 

approach to compare to other classification schemes. A comparison of these overall ACE values shows 

Hydrologic Model-based Classification containing the least within cluster variability, which provides the 

most certainty regarding parameters in models of ungaged basins (ACE 0.3; Figure 2.5). HMC was 

followed by deductive classification with drainage area and HGC (ACE 0.4; Figure 2.4), inductive 

classification with < 1 cfs and RBI (ACE 0.6; Figure 2.3), and lastly GAGES-II reference status (ACE 1.4; 

Figure A4).  

By providing a method for reducing parameter uncertainty in models of ungaged basins, HMC 

has demonstrated utility beyond complementary classification. Modeling ungaged basins is fundamental 

to ELOHA (Poff et al., 2010) and many other hydrology applications, but different approaches vary 

significantly, contain uncertainty, and do not perform particularly well across a geologically and 

hydroclimatically diverse area (Arsenault et al., 2019; Blöschl et al., 2013). This study provides a 

foundation for directly incorporating the regional accuracy of a catalog of hydrologic models into a 

framework for improving ungaged modeling within a heterogeneous region. 

 This study has shown flow permanence and flashiness were more consistently modeled in 

ungaged basins containing intermittent streams than ephemeral or perennial streams. Extreme 

sensitivity to precipitation explains why ephemeral streams did not produce a low ACE, and, while 

initially, it may be surprising to see baseflow parameters more accurately interchanged between models 

of intermittent streams than perennial, the effluent nature of perennial streams, especially in a region 
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as rapidly urbanizing as So. CA, inconsistently augments the natural flow regime (Ponce and Lindquist, 

1990), and likely prevented accurate modeling in this study. Similarly, flows were modeled with more 

certainty at GAGES-II reference sites (ACE 0.4; Figure A4) than non-reference (ACE 1.9; Figure A4), 

wherein flow alteration restricts the ability to transform precipitation into streamflow. Based on the 

results of this study, intermittent reference streams are likely most accurately regionalized in the south 

coast.  

 While no combined classification in coastal southern CA was able to predict class membership of 

all 25 sites with 100% accuracy, HMC came the closest. This finding underscores the potential for using a 

measure of model accuracy across a region to define hydrologic similarity within stream classification. 

Olden et al. (2012) split deductive classification into three sub-approaches: “environmental 

regionalization” to provide a spatial representation of stream similarity, “hydrologic regionalization” 

using models to estimate flow in ungaged basins, and “environmental classification” for geographically 

independent classification; however, only one inductive approach, ideal for geographic independence, is 

described: “streamflow classification”. The new Hydrologic Model-based Classification developed in this 

study is based on inductive reasoning but is not “streamflow classification”. Instead HMC is a type of 

“streamflow regionalization” wherein each region is a reciprocally low-error class. Instead of defining 

geographic areas of assumed flow similarity using watershed characteristics, “streamflow 

regionalization” directly groups sites based on modeled flow similarity. This new approach essentially 

hybridizes “hydrologic regionalization” and “streamflow classification”. 

Deductive classification produced relatively low uncertainty of model parameters, with all five 

classes containing ACE values between 0.2 and 0.6 (Figure 2.4). The relatively tight spread coupled with 

a low overall ACE (0.4; Figure 2.4) implicate deductive classification as a worthy alternative to HMC for 

regionalization of ungaged basins. These results are consistent with the most common implementation 

of regionalization wherein models are typically grouped by spatial proximity, physical similarity, or 
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parameter regression (Oudin et al., 2008; Razavi and Coulibaly, 2013; Samuel et al., 2011). This study 

has shown how a new type of “streamflow regionalization”, akin to Hydrologic Model-based 

Classification, might edge out traditional “hydrologic regionalization” from deductive classification, at 

estimating streamflow in ungaged basins. “Hydrologic regionalization” and “streamflow regionalization” 

both implement watershed characteristics to separate sites for high utility in modeling ungaged basins; 

however, “streamflow regionalization” improves modeling by directly incorporating a quantifiable 

measure of ungaged model accuracy. This important addition to “streamflow regionalization” directly 

captures regional model uncertainty and strengthens the science supporting modeling ungaged basins. 

2.4.3 Stream classification in coastal southern California 

 As measured by ARI, traditional inductive classification and reference status classification were 

the two most similar, but still contained high variability (0.12, Table 2.1). This finding is consistent with 

how GAGES-II primarily uses flow alteration to classify reference streams (Falcone, 2011), and with how 

ELOHA recommends classifying by hydrologic similarity to develop flow-ecology relationships (Poff et al., 

2010). Furthermore, the reference status classification established a relationship, predominately with 

drainage area, but also silt content, baseflow index, and relative humidity, which could help water 

managers identify streams facing potential flow alteration.  

The two most different classifications in this study were traditional inductive and hydrologic 

model-based (ARI -0.04, Table 2.1). Hydrologic Model-based Classification is primarily based on an 

inductive approach; however, it quantifies hydrologic similarity completely differently than traditional 

inductive classification. The negative non-random relationship between these classifications is explained 

as the traditional approach considers gage data similarity and hydrologic model-based considers model 

data similarity of the same metrics. The differences in these two inductively-based classifications 

underscore the complexity in modeling streamflow permanence and flashiness in So. CA and suggest 

great effort must be taken when modeling ungaged basins in the south coast region. 
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Using ARI, this study has demonstrated how four unique stream classifications can each provide 

important, complementary information regarding how streams across a region may be grouped for 

management. While the two inductively-based classifications appear the most useful for separating 

gaged and ungaged sites, respectively, important relationships and management opportunities can be 

revealed through a robust regional stream classification using multiple approaches. 

2.5 Conclusions 

Accurately modeling ungaged basins is often necessary for quantification and management of 

environmental streamflows (Poff et al., 2010), but it is a difficult undertaking with no consensus 

approach among the hydrology community, especially in heterogenous regions (Arsenault et al., 2019; 

Blöschl et al., 2013). Furthermore, stream classification is one of the four major steps used to develop 

environmental flow criteria within ELOHA (Poff et al., 2010), but it is not always used in the framework 

(Kendy et al., 2012). This study sought to increase the utility of classification within ELOHA while 

simultaneously strengthening the science supporting modeling and management of ungaged basins in 

heterogeneous regions. To this end, Hydrologic Model-based Classification was developed to provide: 

complementary classification information, improved ungaged model accuracy, and new opportunities 

for stream management. Iterating between the first two steps of ELOHA (hydrologic foundation and 

classification) within HMC improves both steps and produces stronger environmental flow criteria.  

While this study focused on streamflow permanence and flashiness due to their known 

ecological importance in the study region (Gasith and Resh, 1999; Mazor et al., 2018; Parker et al., 

2019), additional flow metrics corresponding to other element of the flow regime are important in So. 

CA (Yarnell et al., 2020) and could be incorporated. To develop a better understanding of HMC in 

general, it could be extended to new regions and compared to the results of this study. This could 

produce general relationships between different classifications and provide insight into which 

classification approach might be most appropriate for specific applications and regions. Likewise, a type 
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of nested classification similarly implemented across many regions would help different stakeholders 

understand how management actions at multiple geographic scales might affect streams and would 

foster coordinated management relationships. As HMC is expanded to additional regions, a better 

understanding of the similarity of within-class management plans will be developed. These findings will 

be highly dependent on the management metrics and regions, but a general sense for management plan 

transferability within low-error classes will offer a clearer understanding of how Hydrologic Model-based 

Classification might assist in ungaged stream management without ever modeling the basin. 

 For coastal southern California, HMC results from this study should be further developed into a 

full framework for modeling time-series of discharge in new ungaged basin(s) from the heterogenous 

region. This would foster a better understanding of the modeling complexities within Hydrologic Model-

based Classification, and its associated new regionalization framework, and would provide the basis of a 

hydrologic foundation prioritizing ungaged basins, which is needed to develop robust regional 

environmental flow criteria in So. CA.
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Chapter 3 
 
Estimating streamflows in ungaged basins through  
 

regionalization: a new hybrid hydrologic and statistical  
 

ensemble modeling framework applied to environmental 
 

flow management in a heterogeneous region 
 
 
 

Summary 

Hydrologic modeling of streamflow regimes in ungaged basins is performed across a wide range 

of water management applications, including establishing a hydrologic foundation for the development 

of environmental flow criteria, and yet there is no favored method. Regionalization of rainfall-runoff 

models is a common approach that estimates unknown parameters for each model of an ungaged basin 

from a group of regional models. Parameters are often transferred from calibrated model(s) to models 

of ungaged basins using a measure of geographic proximity, hydroclimatic or landscape similarity, or 

linear regression. These approaches typically do not incorporate any quantitative data regarding the 

accuracy of donated parameters, and prove especially difficult in regions with heterogeneous land use, 

geological settings, and hydroclimatological processes. I address this problem by developing and testing 

a regionalization framework for estimating streamflow regimes in ungaged basins across heterogeneous 

landscapes. This new framework, called “Streamflow Regionalization with Hydrologic Model-based 

Classification” (SR-HMC), implements jackknife resampling and stream classification to directly quantify 

and reduce regional parameter uncertainty. SR-HMC utilizes a statistical procedure for extrapolating 

calibrated parameters of rainfall-runoff models from gaged sites to ungaged locations, followed by 



35 

ensemble modeling to appropriately weight extrapolated parameter sets. The novel framework was 

tested to predict ecological flow metrics in basins across coastal southern California, and the results 

were compared to commonly applied nearest neighbor regionalization. Results indicate SR-HMC 

predicted key flow metrics more accurately (combined median error 16%) than nearest neighbor 

(combined median errors 20% and 28%). When only nearest neighbor regionalization was considered, 

models calibrated to specific environmental flow metrics of ecological relevance (extreme low flow and 

flashiness) outperformed models calibrated using best overall fit. Of the two ecological metrics, low flow 

indicative of drying was more accurately modeled using the new framework (median 10% error) than 

streamflow flashiness (median 27% error). While sample size was limited for developing (25 sites) and 

testing (5 sites) the new framework, coupling jackknife resampling and stream classification technique 

with ensemble rainfall-runoff modeling was shown to reduce parameter uncertainty and improve the 

estimation of streamflow in ungaged basins. The time and effort invested into modeling ungaged 

streamflow with SR-HMC is particularly beneficial when prioritizing the accuracy of predetermined flow 

metrics across a heterogeneous region. 

Keywords: rainfall-runoff modeling, ungaged basins, regionalization, ensemble modeling, jackknife 

resampling, heterogeneous 

 

3.1 Introduction 

Watershed modeling of ungaged basins is used extensively by scientists and engineers to 

simulate streamflow conditions at locations without measured data for water resources planning and 

management. Modeling these streamflow predictions in ungaged basins (PUB) is ubiquitous across 

hydrologic applications (Blöschl et al., 2013), whether for annual events, low flows, large floods, 

environmental flow management, or anything in between. For environmental flows specifically, PUB is 

often critical for establishing a hydrologic foundation of currently impaired vs. natural flow conditions 
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for sites with detailed bioassessment data (Poff et al. 2010). These crucial bioassessment sites typically 

occur on wadeable lower order streams, which are inadequately gaged, yet include most of the total 

stream length in the US (Poff et al., 2006). Unfortunately, streamflow metrics often used for 

environmental flow studies, such as extremely low flows, can be volatile and have proven difficult to 

model (Carlisle et al., 2010; Blöschl et al., 2013; Kennard et al., 2010; Nathan and McMahon, 1992; 

Razavi and Coulibaly, 2017). 

  Modeling streamflow in ungaged basins involves a high level of uncertainty and has no 

consensus method (Arsenault and Brissette, 2014; Bardossy, 2007; Blöschl et al., 2013; Farmer and 

Vogel, 2013; Hrachowitz et al., 2013; Oudin et al., 2008; Peel and Blöschl, 2011; Razavi and Coulibaly, 

2013; Wagener and Montanari, 2011). Some of this uncertainty is unavoidable because watershed 

models only provide simplifications of reality through mathematical equations that will never 

completely represent nature. Parameters for these equations can be highly sensitive and contribute 

heavily to the uncertainty of modeled streamflow (McCuen, 1973). The lack of available discharge data 

for calibrating parameters in models of ungaged basins results in even more parameter uncertainty than  

models at gage locations (Blöschl et al., 2013). For best results, regardless of technique, watershed 

modelers should understand, quantify, and minimize uncertainty (Liu and Gupta, 2007). Understanding 

and reducing parameter uncertainty is practiced by many modelers through creating parsimonious 

models, carefully assessing input data, and using multi-objective functions (Wagener et al., 2001), but 

quantifying and minimizing it remains challenging. 

A common method for estimating unknown parameters in  models of ungaged basins is 

regionalization (Tasker, 1982). During typical regionalization, parameters of an existing model calibrated 

to gage are donated or extrapolated to a model at an ungaged location using one of three primary 

methods: 1) geographic proximity, wherein parameters from the spatially nearest calibrated model are 

donated (Kokkonen et al., 2003; Zvolensky et al., 2008); 2) similarity of hydrology, climate, or an ideal 
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landscape characteristic between a calibrated model and an ungaged site determines donated or 

extrapolated parameters (Li et al., 2009; Zhang and Chiew, 2009); or 3) regional regression to calculate 

ungaged parameters (Arsenault and Brissette, 2014; Oudin et al., 2008). These simple approaches are 

less accurate in geographically and hydrologically diverse regions compared to relatively homogeneous 

regions (Arsenault and Brissette, 2014; Arsenault et al., 2019; Blöschl et al., 2013). A region that spans 

diverse land uses, topography, geology, and/or micro-climatology will likely contain streams with very 

different flow regimes. Simple regionalization approaches are unlikely to consider such heterogeneity 

and may inaccurately model streamflow in ungaged basins of such a diverse region.  

 Within a regionalization framework, ensemble rainfall-runoff modeling, wherein parameters 

from multiple calibrated regional models are donated to a model of an ungaged basin (McIntyre et al., 

2005), can be used to reduce parameter uncertainty, as a form of model averaging, by incorporating 

important parameter features from each donor model within the ensemble (Refsgaard et al., 2006). 

Averaging with ensemble rainfall-runoff modeling typically results in one parameter set derived from 

the collection of each ensemble model’s calibrated parameter set (Burn and Boorman, 1993). Estimating 

this ungaged parameter set via ensemble modeling can involve two of the three regionalization 

approaches previously mentioned for a single model: 1) geographic proximity (Yankov et al., 2006) or 2) 

similarity of hydrology, climate, or an ideal landscape characteristic (McIntyre et al., 2005). In addition to 

these simple approaches, ensemble modeling has employed complicated non-linear methods for 

averaging output discharge, such as Bayesian model averaging (Duan et al., 2007) and artificial neural 

networks (Tokar and Markus, 2000). As such, no simple method has been developed for quantifying 

uncertainty across a regional network of models for making ensemble streamflow estimates in ungaged 

basins, without computationally intensive techniques such as Monte Carlo sampling.  

 Regionalization of ungaged basins is needed to establish a hydrologic foundation in coastal 

southern California (So. CA) (Ch. 2; Sengupta et al., 2018; Stein et al., 2017) under the Ecological Limits 
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of Flow Alteration (ELOHA) (Poff et al., 2010). Yet, the heterogeneity of flow regimes, land uses, and 

geology across southern CA present a great challenge to simple regionalization schemes, especially 

when modeling environmental flow metrics. To this end, a new method for classifying streams called 

“Hydrologic Model-based Classification” (HMC) was developed as a first step towards a more robust 

regionalization framework (Ch. 2). HMC addresses the challenges of regionalizing flow metrics that are 

difficult to model in ungaged basins across a highly heterogeneous region by implementing targeting 

model calibration and directly incorporating regional parameter uncertainty for grouping hydrologically 

similar streams. While HMC is a useful tool for grouping streams, it needs to be further developed into a 

full regionalization framework for modeling streamflow in ungaged basins. 

The science and methods supporting watershed modeling in ungaged basins have steadily 

improved but significant challenges remain, especially with estimating environmental streamflow 

metrics in heterogeneous regions. Accordingly, this research seeks to improve regionalization of 

streamflow in ungaged basins by quantifying and reducing parameter uncertainty through directly 

incorporating a measure of regional parameter accuracy and employing ensemble modeling. I 

hypothesize that these efforts to reduce parameter uncertainty will produce a robust regionalization 

framework that will outperform nearest neighbor regionalization at modeling environmental streamflow 

metrics in ungaged basins across a heterogeneous region.  Specifically, this study has two objectives: 

1) Expand streamflow classification with Hydrologic Model-based Classification (HMC) into 

a full regionalization framework for modeling time series of discharge in ungaged basins 

across a heterogeneous region; and  

2) Test the framework and compare its performance in modeling environmental flow 

metrics with common nearest neighbor regionalization approaches. 
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3.2 Methods 

3.2.1 Study Area 

Coastal southern California (is a highly heterogeneous region of the United States with some of 

the most complicated and significant water management issues in the world (State of California, 2019). 

Land uses span a wide range of urban/suburban, agricultural, and rural coastal and mountainous. 

Diverse topography, geology, and regional precipitation patterns typical of the semi-arid and 

Mediterranean climate characterize the area. Due to this substantial regional heterogeneity, streams of 

all types (perennial, intermittent, and ephemeral) can be found in So. CA. . Recent droughts and 

wildfires have increased management stress and public awareness of many regional water issues for 

streams spanning the full range of flow permanence (State of California, 2019). These climactic, 

hydrogeologic, and water user complexities demand accurate streamflow modeling in ungaged basins 

and make So. CA as an excellent region to develop and test a new regionalization framework. This 

research considered the area between the Transverse Mountains, Mexico, the Peninsular Mountains, 

and Pacific Ocean from coastal regions of counties including San Diego, Riverside, Orange, San 

Bernardino, Los Angeles, Ventura, and Santa Barbara Counties. The study area is described as the “South 

Coast” according to the U.S. Geological Survey’s (USGS) hydrologic regions of CA (Waananen and 

Crippen, 1977). 

3.2.2 Streamflow Regionalization with Hydrologic Model-based Classification (SR-HMC) 
3.2.2.1 Ensemble of rainfall-runoff models 

Given the environmental streamflow scope of this research, potential site locations were limited 

to USGS stream gages near bioassessment sites established by the California Water Boards’ Perennial 

Streams Assessment (PSA) within the Surface Water Ambient Monitoring Program (SWAMP). Locations 

were screened for dams, diversions, reservoirs, and interbasin transfers that may clearly alter flow 

conditions between gages and bioassessment sites. Only sub-daily streamflow data were considered for 

characterizing environmental flow metrics at a time scale relevant to ecological health (Zimmerman et 
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al., 2010). Gages without sufficient coverage of Water Years (WY) 2005-2007 were eliminated. These 

three years characterize a representative wet, normal, and dry year, respectively, in So. CA, (WRCC, 

2015). WY 2005-2007 provides the recommended reference climatic period for developing 

environmental flows (Poff et al., 2010) and captures an element of heterogeneity in So. CA. 

Furthermore, land development focused around metro-Los Angeles and San Diego, in concert with the 

State Water Plan, has led to many artificially augmented and depleted streams. Gages on streams 

receiving transbasin diversions or downstream of large control structures were omitted. Finally, 

streamflow gages required high-quality representative meteorological and landscape data to create 

accurate, yet parsimoniously calibrated models. After a comprehensive search, 30 USGS streamflow 

gages containing hourly flow data during WY 2005-2007 were selected for this study from the National 

Water Information System (NWIS) (USGS, 2019b).Of the 30 selected gages, calibrated rainfall-runoff 

models were developed for 25 to provide a regional ensemble of models, and 5 were withheld for 

model testing (Figure 3.1; Table 3.1).  
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Figure 3.1: Locations of study watershed outlets wherein 25 black squares represent USGS streamflow gage sites 

used to develop the regional ensemble of rainfall- runoff models; five red circles indicate gage sites used for model 
testing and validation; and three blue Xs denote the nearest neighbor ensemble model for each validation site 

(three validation sites have the same nearest neighbor ensemble model). 
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Table 3.1: Study sites details with ensemble sites indicated by “E” and validation sites by “V”. Drainage Area data 
are from the National Hydrography Dataset Plus Version 2 (NHDPlus V2) (McKay et al., 2012), Impervious data are 

from StreamStats (USGS, 2019c) and all other landscape metrics are from GAGES-II (Falcone, 2011). 

        Mean Annual 
Flowrate (cfs) 

Site Name USGS 
Gage 

Ensemble 
or 

Validation 

Drainage 
Area 
(km2) 

Imperv-
ious % 

Sand 
% 

Catchment 
Annual Avg 
Precip (cm) 

Catchment 
Annual Min 
Precip (cm) 

WY 
05 

WY 
06 

WY 
07 

Andreas 10259000 E 23.2 0.0 59.1 32.3 1.0 6.1 2.2 0.9 

Arroyo 
Seco 

11098000 E 42.5 0.5 34.1 62.5 1.0 52 8.6 0.9 

Arroyo 
Trabuco 

11047300 E 141.4 19.9 32.6 33.8 1.0 69 13 5.1 

Campo 11012500 E 222.3 7.0 69.6 41.6 2.0 2.0 0.4 0.1 

Carpinteria 11119500 E 45.4 0.1 34.3 44.2 0.0 18 3.7 0.0 

Deep Creek 10260500 E 354.0 2.4 63.9 23.4 2.0 171 63 7.8 

Devil 
Canyon 

11063680 E 14.7 0.7 53.5 80.3 3.0 2.7 4.9 2.1 

East Twin 11058500 E 23.1 0.7 55.6 60.5 2.2 2.7 5.4 1.6 

Jamul 11014000 E 182.9 0.5 42.5 36.4 2.0 23 0.1 0.0 

Lytle 11062000 E 119.8 0.4 57.5 90.7 2.0 37 32 3.1 

Matilija 11114495 E 128.5 0.0 35.6 72.2 0.0 156 37 4.3 

Plunge 11055500 E 44.2 1.3 55.4 44.9 2.4 14 7.9 2.1 

Poway 11023340 E 110.0 21.8 39.4 33.5 1.0 36 7.3 4.5 

Rainbow 11044250 E 27.0 4.3 53.8 45.4 1.0 16 1.4 0.4 

San Luis 
Rey 

11042000 E 1433.8 3.1 56.8 31.3 1.0 229 29 9.7 

San Mateo 11046300 E 210.2 0.1 47.0 45.5 1.7 90 3.3 0.1 

Sandia 11044350 E 51.1 1.3 41.5 45.2 1.0 30 6.1 4.0 

San Jose 11120500 E 15.8 0.4 35.2 48.3 0.7 14 3.0 0.2 

Santa 
Margarita 

Sump 
11044300 E 1576.9 4.6 54.8 43.4 1.0 82 18 9.4 

Santa 
Ysabel 

11025500 E 290.9 0.1 52.3 43.1 2.0 29 1.7 0.0 

Santa 
Maria 

11028500 E 147.7 2.6 51.4 43.9 2.0 16 0.4 0.1 

Santiago 11075800 E 32.9 0.1 31.1 49.3 1.0 20 1.8 0.0 

Sespe 
Fillmore 

11113000 E 651.0 0.1 36.3 52.4 0.0 515 211 15 

Sespe 
Wheeler 
Springs 

11111500 E 131.9 0.1 36.5 69.0 0.0 87 22 1.4 

Sweetwate
r Descanso 

11015000 E 126.0 0.3 61.8 61.9 3.0 21 3.7 1.0 

Chino 
Canyon 

10257720 V 12.9 0.2 61.4 40.7 1.0 1.9 0.9 0.0 

Los Coches 11022200 V 32.7 9.7 45.1 40.6 1.0 4.7 1.1 0.6 

Mission 11119750 V 30.1 4.3 38.7 48.0 0.0 14.0 2.7 0.0 
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Mission 
Rocky 

11119745 V 30.1 0.7 38.7 48.0 0.0 13.1 2.8 0.2 

Santa Cruz 11124500 V 192.3 0.0 34.9 59.4 0.0 60.9 22.4 1.4 

 

For each of the 25 ensemble gages, contributing watersheds were delineated in ArcMap 10.1 

with a 30m Digital Elevation Model from the National Map (USGS, 2019a), National Hydrography 

Dataset Plus Version 2 (NHDPlus V2) (McKay et al., 2012), and National Land Cover Database (NLCD) (Fry 

et al., 2011). These delineations set the foundation for each watershed model and were verified with 

delineations produced by USGS StreamStats (USGS, 2019c). The U.S. Army Corps of Engineers Hydrologic 

Engineering Center’s Hydrologic Modeling System (HEC-HMS) 4.1 was used to create rainfall-runoff 

models for each of the 25 ensemble sites. A lumped modeling structure with just one basin per model 

was used in this study to simplify regionalization through a parsimonious model structure that could still 

establish a physical understanding of how basin-scale calibrated parameters transfer regionally. 

Regionalization at the basin-scale is practical for management of entire watersheds and provides a 

foundation for higher resolution modeling. Hourly precipitation data from the California Irrigation 

Management Information System (CIMIS), California Data Exchange Center (CDEC), Climate Data Online 

from the National Oceanic and Atmospheric Administration (NOAA), San Diego County Flood Control 

District (SDCFCD), and Ventura County Watershed Protection District (VCWPD) were input to continuous 

simulations at the hourly time scale. 

Limiting the complexity and number of parameters in rainfall-runoff models is important to 

reduce uncertainty (Wagener et al., 2001). It is especially important for developing SR-HMC because 

only the most uncertain parameters, those that cannot be calculated or estimated from available data 

(i.e. calibrated parameters), are transferred from models of gages sites to models of ungaged sites. 

Minimizing the number of calibrated parameters creates a parsimonious framework capturing regional 

uncertainty associated with the calibrated parameters. For this study, only the Single Linear Reservoir 

Storage Coefficients for each of the two Groundwater layers were calibrated. These storage coefficients 
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are time constants for each layer’s single linear reservoir related to the stream’s response time 

(Hydrologic Engineering Center, 2015). Table 3.2 describes the modeling structure for the 25 HEC-HMS 

ensemble models. Parameters from the Deficit and Constant Loss method were directly calculated using 

soil and imperviousness data from USGS GAGES-II (Falcone, 2011). Results from these calculations were 

assessed against delineation data. The Kirpich Method (Kirpich, 1940) was used to calculate Time of 

Concentration (hr) from delineation data within the Clark Unit Hydrograph Transform method. Finally, a 

method used by the Arizona Department of Transportation was implemented to compute the Clark Unit 

Hydrograph Storage Coefficient (ADOT, 2014). 

Table 3.2: HEC-HMS model structure for 25 ensemble models. 

Model 
Element 

Element 
Method 

Physical 
Processes or 

Controls 
Parameters 

Calculated 
Estimated 
Calibrated 

or Gage 

Data 

Precip-
itation 

Inverse 
Distance 

Weighting 
Rainfall Basin Centroid Calc 

StreamStats (USGS, 2019c) 
National Map (USGS, 2019a) 

NHDPlus V2 (McKay et al., 
2012) 

ET 
Monthly 
Average 

ET 
Rate (in/month) 

Coefficient 
G 
E 

CIMIS 

Canopy Simple 
Interception 

and 
Transpiration 

Initial Storage (%) 
Max Storage (in) 
Crop Coefficient 
Uptake Method 

E 
E 
E 
E 

StreamStats (USGS, 2019c) 
National Map (USGS, 2019a) 
NLCD 2006 (Fry et al., 2011) 

Surface  Simple Infiltration 
Initial Storage (%) 
Max Storage (in) 

E 
E 

StreamStats (USGS, 2019c) 
National Map (USGS, 2019a) 
NLCD 2006 (Fry et al., 2011) 

Loss  
Deficit and 
Constant 

Infiltration 

Initial Deficit (in) 
Max Deficit (in) 

Constant Rate (in/hr) 
Impervious (%) 

E 
Calc  
Calc 
Calc 

GAGES-II (Falcone, 2011) 
StreamStats (USGS, 2019c) 

National Map (USGS, 2019a) 
NLCD 2006 (Fry et al., 2011) 

Transform  
Clark Unit 

Hydrograph 

Topography, 
Geology, and 

Land Use 

Time of Concentration (hr) 
Storage Coefficient (hr) 

Calc  
Calc 

StreamStats (USGS, 2019c) 
National Map (USGS, 2019a) 
NLCD 2006 (Fry et al., 2011) 
NHDPlus V2 (McKay et al., 

2012) 

Baseflow  
Linear 

Reservoir 
Subsurface 

Groundwater 1 Initial (cfs) 
Groundwater 1 Coefficient 
Groundwater 1 Reservoirs 
Groundwater 2 Initial (cfs) 
Groundwater 2 Coefficient 
Groundwater 2 Reservoirs 

G 
Calib 

E 
G  

Calib 
E 

NWIS (USGS, 2019b) 
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 While application of this new regionalization framework encompasses general watershed 

modeling of ungaged basins beyond environmental flows, the ensemble HEC-HMS models used to 

develop of SR-HMC were calibrated to prioritize ecologically-relevant elements of the flow regime. In 

the study region, streamflow flashiness and drying are two drivers of local benthic macroinvertebrate 

assemblage structures (Gasith and Resh, 1999; Mazor et al., 2018; Parker et al., 2019). Hydrologic 

alteration of other components of the flow regime affects benthic macroinvertebrates in the region 

(Yarnell et al., 2020). However, calibrating to flashiness and stream drying addresses challenges in 

modeling ungaged basins because they are difficult to model and are directly influenced by calibrated 

parameters (Groundwater Coefficients, Table 3.2). As such, a calibration metric (Ecologically-Focused 

Combined Calibration) (EFCC) (Equation 3.3) (Ch. 2; Parker et al., 2019) was implemented which equally 

weights the accuracy of Richards-Baker Flashiness Index (RBI) (Equation 3.1) (Baker et al., 2004) and 

fraction of discharge time series with flow less than 1 cfs (< 1 cfs) (Equation 3.2) between gage data and 

models. 1 cfs was chosen as a surrogate threshold indicating a dry stream due to measurement 

challenges associated with gages as extremely low flows.  

Equation 3.1: Richards-Baker Flashiness Index (RBI) (Baker et al., 2004), wherein Qt is the discharge at time t, Qt+1 is 
the discharge at time step after t, and T is the final time step at the hourly scale. 

𝑅𝐵𝐼 =
∑ |𝑄𝑡+1 − 𝑄𝑡|𝑇

𝑡=1

∑ 𝑄𝑡
𝑇
𝑡=1

 

Equation 3.2: Fraction of time with flow < 1 cfs, wherein NQ<1cfs is the number of time steps containing streamflow 
less than 1 cfs and N is the total number of time steps containing flow data. 

< 1 𝑐𝑓𝑠 =
𝑁𝑄<1𝑐𝑓𝑠

𝑁
 

Equation 3.3: Ecologically-Focused Combined Calibration Criteria (EFCC) as a percent error equally weighting the 
accuracy of RBI and < 1 cfs between each streamflow gage and HEC-HMS model. 

𝐸𝐹𝐶𝐶 (%)  = [
(|𝐺𝑎𝑔𝑒 𝑅𝐵𝐼 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑅𝐵𝐼|

|𝐺𝑎𝑔𝑒 𝑅𝐵𝐼| ) ∗ 100 + (|𝐺𝑎𝑔𝑒 < 1 𝑐𝑓𝑠 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑 < 1 𝑐𝑓𝑠|
|𝐺𝑎𝑔𝑒 < 1 𝑐𝑓𝑠| ) ∗ 100

2
] 
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A common best overall fit metric for hydrologic models, Nash-Sutcliffe Efficiency (NSE) (Nash 

and Sutcliffe, 1970), was calculated after calibration; however, it was not used as a calibration criterion. 

NSE lends insight into how well the models developed using EFCC generally represent observed 

hydrographs, but, because it is biased towards high flows (Jain and Sudheer, 2008; Legates and McCabe, 

1999) and does not explicitly consider environmental streamflow elements, NSE was not considered 

during model calibration. 

3.2.2.2 Quantifying regional model accuracy and assigning ungaged sites to ensembles 

One novel aspect of this regionalization framework stems from its application of jackknife 

resampling (Efron, 1982; Friedl and Stampfer, 2014) to quantify regional accuracy and characterize 

parameter uncertainty. Jackknife resampling within Hydrologic Model-based Classification (Ch. 2) 

involves donating parameters calibrated to one model to all other models from the region. Using HMC, 

this regional accuracy was captured as an error matrix, which was applied to cluster reciprocally 

accurate models into groups for estimating streamflow in ungaged basins with reduced parameter 

uncertainty. To begin, calibrated Linear Reservoir Groundwater Coefficients and gaged Initial 

Groundwater Flowrates from one model were donated directly into each of the other 24 ensemble 

models, as if the 24 were models of ungaged basins. Initial Flowrates from gages were available to 

calibrate ensemble models but would be unknown for ungaged basins. They must be donated along 

with calibrated Groundwater Coefficients in this regionalization framework because they are essentially 

treated as calibrated parameters. For each of the 24 modeled time series, EFCC (Equation 3.3) was 

calculated to quantify the accuracy of each “ungaged” basin model. This produced 24 values quantifying 

the accuracy of each of the 24 models when using two parameters that contain high uncertainty in 

ungaged basins but are known to be accurately calibrated to the 25th model in the region. This process 

was repeated for all 25 models to create a 25x25 error matrix with each model’s own EFCC calibration 

error along the diagonal (Table 3.3). Using this error matrix, a series of ordination analyses including 
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principal component analysis (PCA) and a scree plot from the “stats” package of R (R Core Team, 2019), 

and weighted classical (metric) multidimensional scaling from the “vegan” package (Oksanen et al., 

2019), explored how reciprocally low-error sites might cluster. K-means clustering with the NbClust 

package (Charrad et al., 2015) was used to group reciprocally low-error models after assessing C-Index, 

Dunn, McClain, and Silhouette Indices. Finally, multinomial logistic regression from the “nnet” package 

in R (Venables and Ripley, 2002) using openly available landscape data from GAGES-II (Falcone, 2011) 

and NHDPlusV2 (McKay et al., 2012) identified which physical characteristics best distinguished low-

error cluster membership such that an ungaged site could be matched to a cluster.  

3.2.2.3 Model averaging 

At this stage in SR-HMC, a new ungaged site can be matched to a specific cluster, or ensemble, 

of models. The matched ensemble provides a group of model parameters that can be exchanged 

relatively accurately between models from the ensemble; however, there is no sense for how to best 

donate calibrated model parameters from an ensemble to a new model of an ungaged basin. To 

investigate this problem, six different model averaging techniques were explored to reduce parameter 

uncertainty. Half the model averaging techniques involved averaging model inputs (baseflow 

parameters) and the other half averaged model outputs (time series of discharge). Weighting baseflow 

parameters directly involved averaging all calibrated parameters from models in a selected cluster and 

transferring one, ensemble-averaged parameter set. This produced one time series of discharge and is 

similar to traditional regionalization or estimating parameters by regression. Weighting output discharge 

required donating intact calibrated parameter sets from each individual member of the cluster. This 

produced multiple time series of discharge, which were averaged as a form of model (output) averaging, 

like traditional ensemble modeling. Whether averaging model inputs or outputs, ensembles were each 

averaged using three approaches: equally weighted, weighted by geographic proximity, and weighted by 

similarity of the strongest landscape predictor from the multinomial regression equation. Weighting by 
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geographic proximity and landscape predictor involved calculating the Euclidean distance of either the 

basin centroid (geographic proximity) or strongest landscape predictor from multinomial logistic 

regression between a model of an ungaged site and each model from a matched cluster. Euclidean 

distances were used to weight model inputs or outputs such that models from the ensemble with 

smaller Euclidean distances were given proportionally greater weight. 

3.2.3 Testing SR-HMC against common nearest neighbor regionalization approaches 

HEC-HMS models for the five USGS streamflow gages withheld for validation were developed in 

the same manner as the 25 ensemble models (Table 3.2) with two major exceptions: Groundwater 

Coefficients were not calibrated and Initial Groundwater Flowrates were not included. Details regarding 

the five validation sites are provided in Table 3.1. The SR-HMC process outlined in Section 2.2 was 

implemented to generate six time series of discharge at the five validation sites, one time series for each 

model averaging technique. Environmental streamflow metrics RBI (Equation 3.1), < 1 cfs (Equation 3.2), 

and EFCC (Equation 3.3), and best overall fit metric NSE, were calculated using modeled and withheld 

gage data. 

Performance of the SR-HMC framework was assessed against two versions of the commonly 

applied nearest neighbor regionalization approach. First, Linear Reservoir Groundwater Coefficients 

calibrated to EFCC (Equation 3.3) and gaged Initial Groundwater Flowrates from the spatially nearest 

ensemble model, as measured by basin centroids, were directly donated to each validation site, 

respectively. By donating EFCC parameters, this approach prioritizes the accuracy of environmental flow 

metrics, but does not account for regional heterogeneity. Second, ensemble models geographically 

closest to validation sites were recalibrated to maximize overall fit according to NSE. These were the 

only models calibrated to best overall fit in this study. Parameters calibrated to best overall fit were 

transferred from the geographically nearest ensemble model to each respective model of a validation 

site. This is a very common PUB approach (Blöschl et al., 2013), but it does not prioritize environmental 
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flow metrics or regional heterogeneity. A general overview of the regionalization framework and 

assessment is provided in Figure 3.2. 



50 

 

Figure 3.2: Flowchart overviewing the SR-HMC framework (top panel) and application to ungaged sites (lower 
panel).  
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3.3 Results 

3.3.1 Streamflow Regionalization with Hydrologic Model-based Classification (SR-HMC) 
3.3.1.1 Ensemble of rainfall-runoff models 

Table 3.3 contains the calibration results for each of the 25 ensemble models. EFCC was very 

accurately modeled by the regional ensemble, with mean and median errors of 0.3%. Calibrating to 

environmental flow metrics did not reproduce overall fit or high flow events nearly as accurately, as 

demonstrated by the NSE values, but despite eschewing any calibration of peak flows in favor of the 

ecological criteria, nearly 40% of the ecologically-focused models (9/25) produced NSE values greater 

than 0.3. This relative tradeoff between the accuracy of overall fit and environmental flow metrics was 

expected. In a preceding environmental streamflow modeling study in So. CA, Sengupta et al. (2018) 

focused on NSE as a calibration criterion with success but was unable to calibrate RBI and < 1 cfs with 

the accuracy replicated in this study. Furthermore, Parker et al., (2019) demonstrated how focusing 

model calibration on flow metrics that drive ecological response is a more suitable approach for 

environmental flow applications in So. CA than traditional best overall fit calibration. As such, this study 

prioritized the accuracy of two important environmental flow metrics (flashiness and stream drying) 

over all other elements of the flow regime but included a calculation of best overall fit in order to better 

understand the ramifications of calibration criteria
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Table 3.3: Calibration results with model % errors of RBI and < 1 cfs describing model accuracy compared to gaged 
data. The calibration metric, EFCC (%), was computed using Equation 2.3 Flow records with high flashiness, “H”, 

had a gaged RBI greater than 0.125 during WY2005-2007; sites with low flashiness, “L”, had an RBI less than 0.075; 
sites with average flashiness, “A”, had an RBI between 0.075 and 0.125.For flow permanence, ephemeral streams 
are represented by “E” and had gaged streamflow < 1 cfs more than half the time during WY2005-2007; perennial 

streams, “P”, had flow < 1 cfs less than 10% of time; and intermittent streams, “I”, had streamflow < 1 cfs 10%-50% 
of time. NSE values are given for calibrated models, but overall fit was not considered in the EFCC. Cluster analysis 

results are included in the final column. 

Site Name 
Gage 
RBI Flashiness 

Model 
% Error 

RBI 

Gage 
< 1 
cfs 

Flow 
Permanence 

Model % 
Error < 1 

cfs 
EFCC 
(%) NSE Cluster 

Andreas 0.05 L 0.0 0.25 I 0.0 0.0 -0.56 4 

Arroyo Seco 0.06 L 0.3 0.26 I 0.1 0.2 0.38 2 

Arroyo Trabuco 0.16 H 0.1 0.07 P 0.6 0.4 -0.52 3 

Campo 0.04 L 0.1 0.89 E 0.1 0.1 
< -

2500 
4 

Carpinteria 0.08 A 0.1 0.72 E 0.0 0.1 0.53 5 

Deep Creek 0.12 A 0.9 0.04 P 0.5 0.7 0.28 3 

Devil Canyon 0.03 L 0.3 0.05 P 0.6 0.4 -0.52 4 

East Twin 0.08 A 0.4 0.16 I 0.2 0.3 -1.7 5 

Jamul 0.12 A 0.2 0.85 E 1.1 0.7 -5.9 5 

Lytle 0.05 L 0.3 0.30 I 0.1 0.2 -22 2 

Matilija 0.05 L 0.3 0.07 P 0.3 0.3 0.50 2 

Plunge 0.08 A 0.4 0.10 I 0.0 0.2 -5.6 5 

Poway 0.19 H 0.6 0.02 P 1.8 1.2 0.68 1 

Rainbow 0.20 H 0.6 0.69 E 0.2 0.4 0.34 5 

San Luis Rey 0.04 L 0.2 0.02 P 0.8 0.5 -1.7 1 

San Mateo 0.07 L 0.1 0.62 E 0.0 0.1 0.17 5 

Sandia 0.09 A 0.9 0.00 P 0.0 0.4 0.74 5 

San Jose 0.16 H 0.1 0.66 E 0.0 0.0 0.49 5 

Santa Margarita 
Sump 

0.13 H 1.1 0.00 P 0.0 0.6 -29 5 

Santa Ysabel 0.11 A 0.5 0.76 E 0.0 0.3 -9.5 5 

Santa Maria 0.09 A 0.1 0.85 E 0.0 0.1 -2.2 2 

Santiago 0.07 L 0.3 0.75 E 0.0 0.2 0.52 2 

Sespe Fillmore 0.09 A 0.3 0.00 P 0.0 0.1 0.31 5 

Sespe Wheeler 
Springs 

0.06 L 0.4 0.20 I 0.1 0.2 0.19 5 

Sweetwater 
Descanso 

0.07 L 0.6 0.37 I 0.9 0.7 -9.7 5 

Mean   0.4   0.3 0.3   

Median   0.3   0.1 0.3   
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3.3.1.2 Quantifying regional model accuracy and assigning ungaged sites to ensembles 

Hydrologic Model-based Classification (Ch. 2) split the 25 ensemble models into five reciprocally 

low-error clusters containing between two and 13 ensemble models (Table 3.3; Figure 3.3; Figure B1). 

HMC also produced a multinomial logistic regression model with four landscape variables predicting 

cluster membership with an accuracy of 96%, as determined by matching 24/25 models to their correct 

clusters. These landscape metrics include drainage area, minimum precipitation, average precipitation, 

and sand soil content, and are further described in Figure B1 and Ch. 2. Based on results of the 

multinomial logistic regression model, drainage area (DRAIN_SQKM) was the strongest predictor of 

cluster membership. 

 



54 

 
Figure 3.3: Map of HMC clusters with number indicating cluster membership. Smaller, black number represent 

ensemble sites and larger, red numbers indicate validation sites. 
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3.3.1.3 Model averaging  

The six different averaging techniques tested in the ensemble framework yielded fairly similar, 

yet appreciably different, results (Table 3.4). In general, each of the three averaging approaches using 

model output discharge (equal weighting, averaged by best predictor similarity, and averaged by 

geographic proximity) outperformed their model input averaging counterparts. The ensemble method 

that most accurately modeled environmental flow metrics across all five validation sites was averaging 

the output discharges according to geographic proximity (EFCC median error 16%); however, overall fit 

was poorest for this approach (median NSE 0.27). Conversely, overall fit was maximized when baseflow 

parameters were scaled by the similarity of DRAIN_SQKM between ensemble sites and ungaged sites 

(median NSE 0.36), but this improvement in overall fit came at the expense of the least accurate EFCC 

(median error 30%).    

Five of the six weighting schemes performed worst at Santa Cruz (not equal averaging of 

baseflow parameters). This site uniquely produced some very large errors (> 70%) of < 1 cfs (Equation 

3.2). As one of the two components of EFCC, large errors in < 1 cfs at Santa Cruz inflated mean EFCCs for 

some ensemble techniques. Specifically, one large < 1 cfs error at Santa Cruz (150%) severely skewed 

the results for averaging output discharge according to geographic proximity. This averaging method 

provided the smallest overall median EFCC error, but the second largest mean EFCC error (32%). The 

inflated mean is not truly representative of the accuracy of averaging output discharge by geographic 

proximity, which actually produced the lowest median error of < 1 cfs (10%) despite the one large error 

at Santa Cruz. This difference between mean and median highlights the problems using mean to 

describe small datasets containing an outlier (Ott and Longnecker, 2008), and is why median will be 

emphasized in this study. 
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Table 3.4 Results of the model averaging analysis within SR-HMC. Averaging model output (discharge) is presented 
above averaging model input (baseflow parameters). See Section 3.2.2.3 (Model averaging) for a description of the 

six different approaches. *indicates best performing averaging as determined by median EFCC % error (OUTPUT 
averaged by geographic proximity, 16%). 

 
3.3.2 Testing SR-HMC against common nearest neighbor regionalization approaches 

 Nearest neighbor regionalization performed as expected, with the approach calibrated to EFCC 

simulating environmental flows more accurately than the approach calibrated to NSE (Table 3.5; median 

EFCC 20% vs. 28%). Likewise, NSE calibrated ensembles regionalized validation sites with a better overall 

fit than EFCC ensembles (NSE 0.33 vs. 0.09).  

  OUTPUT  
equal averaging 

OUTPUT averaged by 
landscape similarity 

(DRAIN_SQKM) 

OUTPUT averaged by 
geographic proximity* 

Model Cluster 
RBI 
(%)  

< 1 cfs 
(%)  

EFCC 
(%) NSE 

RBI 
(%)  

< 1 cfs 
(%)  

EFCC 
(%) NSE 

RBI 
(%)  

< 1 cfs 
(%)  

EFCC 
(%) NSE 

Chino 
Canyon 

4 44 0.0 22 -13 53 27 40 -9.0 29 20 24 -12 

Los 
Coches 

5 19 18 18 -3.1 25 21 23 -3.3 18 5.9 12 -3.5 

Mission 5 24 29 26 0.40 12 32 22 0.36 27 4.8 16 0.40 

Mission 
Rocky 

5 15 23 19 0.60 4.2 26 15 0.56 20 10 15 0.60 

Santa 
Cruz 

5 50 21 36 0.30 47 55 51 0.30 34 150 93 0.27 

 Median 24 21 22 0.30 25 27 23 0.30 27 10 16* 0.27 
 Mean 30 18 24 -3.1 28 32 30 -2.2 26 39 32 -2.8 

              

  
INPUT 

equal averaging 

INPUT averaged by 
landscape similarity 

(DRAIN_SQKM) 

INPUT averaged by 
geographic proximity 

Model Cluster 
RBI 
(%)  

< 1 cfs 
(%)  

EFCC 
(%) NSE 

RBI 
(%)  

< 1 cfs 
(%)  

EFCC 
(%) NSE 

RBI 
(%)  

< 1 cfs 
(%)  

EFCC 
(%) NSE 

Chino 
Canyon 

4 53 16 34 -8.2 54 27 41 -8.7 36 20 28 -11 

Los 
Coches 

5 16 21 19 -2.7 17 26 22 -2.6 20 16 18 -2.8 

Mission 5 28 30 29 0.41 24 35 30 0.40 22 14 18 0.40 

Mission 
Rocky 

5 21 24 23 0.59 16 30 23 0.58 12 8.5 10 0.60 

Santa 
Cruz 

5 35 22 28 0.36 38 97 67 0.36 45 73 59 0.33 

 Median 28 22 28 0.36 24 30 30 0.36 22 16 18 0.33 

 Mean 31 22 27 -1.9 30 43 36 -2.0 27 26 27 -2.5 
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In comparing the novel framework to nearest neighbor regionalization, NSE calibrated nearest 

neighbor regionalization was outperformed in modeling environmental flow metrics by all three model 

output discharge averaging techniques tested in SR-HMC (Table 3.4; Table 3.5). Nearest neighbor 

regionalization calibrated to EFCC performed well, but did not model environmental flows more 

accurately than ensemble averaging by geographic proximity using SR-HMC.  The strong performance of 

EFCC calibrated nearest neighbor regionalization can largely be attributed  to its very accurate estimates 

of the low flow/drying metric, < 1 cfs (Table 3.5).  

As with all six model averaging techniques tested in the novel framework, both nearest neighbor 

approaches suffered from extremely poor performance at Santa Cruz (EFCCs > 120%), which impacted 

mean errors (Table 3.5). When large errors were given more significance by considering means, NSE 

calibrated nearest neighbor regionalization universally performed the worst at estimating 

environmental flow metrics (49% RBI error, 56% < 1 cfs error, and 52% EFCC); however, it produced the 

best, yet still negative, mean NSE value (NSE -1.3). 

Table 3.5: Results of the commonly applied nearest neighbor regionalization approach. The EFCC (Equation 3.3) 
used to calibrate models in this study was compared to traditional best overall fit calibration using models 

calibrated to the Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970). 

  NEAREST NEIGHBOR  
EFCC environmental flow calibration 

NEAREST NEIGHBOR  
NSE overall fit calibration 

Model Cluster RBI (%)  < 1 cfs (% ) EFCC (%) NSE RBI (%)  < 1 cfs (% ) EFCC (%) NSE 
Chino Canyon 4 28 20 24 -12 60 21 40 -7.0 

Los Coches 5 26 13 20 -4.6 29 9.3 19 0.33 

Mission 5 0.6 4.5 2.6 0.36 2.5 21 12 0.36 

Mission Rocky 5 25 0.8 13 0.58 29 27 28 0.51 

Santa Cruz 5 120 120 120 0.09 120 200 160 -0.52 

 Median 26 13 20 0.09 29 21 28 0.33 
 Mean 40 32 36 -3.1 49 56 52 -1.3 

 

3.4 Discussion 

While this overall research is focused on environmental streamflows, the regionalization 

framework developed in this study can be applied to many ungaged basin modeling scenario. SR-HMC 
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has the flexibility to adapt to any feasible calibration objective function of interest. It is intended for a 

modeler to choose calibration criteria specific to the models’ application(s). As such, calibrating to the 

EFCC in this study simultaneously applied the new regionalization framework and supported 

environmental flow development in coastal southern CA. Because SR-HMC was developed with d a 

calibration criterion designed for environmental flow management in So. CA, assessment of the 

framework in this study will focus on EFCC and its two components (streamflow flashiness and drying) in 

a regional context. Developing SR-HMC under these highly specific conditions restricted sample size. As 

such, this study is effective in demonstrating the SR-HMC framework, but is limited in its ability to reach 

broad regional conclusions about So. CA. 

3.4.1 Regionalization of environmental streamflows in ungaged basins across a 
heterogeneous area 

 So. CA is an extremely heterogeneous region of the United States with diverse natural terrain, 

such as mountains, deserts, and an ocean, and anthropogenic features, including agriculture, expansive 

urban centers, and complex water management networks, which contribute to a wide range of 

hydrologic responses and stream types. The challenges associated with estimating streamflow in 

ungaged basins, particularly through regionalization, in such a diverse region are two-fold: 1) dividing a 

group of dissimilar sites into relatively homogeneous classes intuitively becomes more difficult as the 

dissimilarities grow; and 2) accurately predicting streamflow for all three major stream types 

(ephemeral, intermittent, and perennial) is more difficult than for one, and becomes increasingly 

difficult for drier streams that are more dependent on rainfall events for flow.  

Despite these challenges, SR-HMC performed relatively well at estimating environmental 

streamflows in ungaged basins across a heterogeneous landscape. The top ensemble averaging method 

identified for SR-HMC utilized geographical proximity in a type of ensemble nearest neighbor modeling. 

This suggests two distinguishing elements of SR-HMC are likely responsible for its success: 1) the 

application of the jackknife error matrix; 2) ensemble modeling of output discharge. Results from this 
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study suggest SR-HMC has the ability to capture and separate much of the regional model and landscape 

heterogeneity necessary for accurate model predications. In very heterogeneous regions such as So. CA, 

more data are often required to accurately model environmental streamflow than what is used for 

nearest neighbor regionalization, likely because even geographically proximate streams have significant 

hydroclimatic, topographic, or geologic differences. However, even with added data from SR-HMC, 

geographic proximity was still an important variable for regionalizing ungaged basins. This suggests that 

in heterogeneous regions where nearby watersheds might differ substantially, they might also contain 

similarities that provide information to reduce parameter uncertainty and facilitate the accurate 

transfer of model parameters from gaged to ungaged sites. 

Explicitly calibrating rainfall-runoff models with EFCC to optimize environmental streamflow 

metrics (RBI and < 1 cfs) increased model accuracy of those flow metrics in ungaged basins, compared to 

best overall fit nearest neighbor regionalization. These results are consistent with findings of other 

environmental flow studies, such as in Kentucky where NSE was a poor predictor of the entire flow 

regime needed for management (Murphy et al., 2013) and in Washington (Cassin et al., 2005), the 

southeastern United States (Vis et al., 2015), and So. CA (Parker et al., 2019) where targeted calibration 

to ecologically-relevant flow metrics have been recommended. These findings support the practice of 

using a model’s intended application as a guide during calibration to improve model performance 

(Beven and Binley, 1992;), even when calibrated models are regionalized for ungaged basins. Within the 

scope of environmental flow management, the utility of models for simulating past, present, and future 

streamflows is increased when the accuracy of crucial elements of the natural flow regime are identified 

and prioritized from the beginning of the modeling process. 

 Estimating low flows in ungaged basins is difficult (Carlisle et al., 2010; Razavi and Coulibaly, 

2017), especially in semi-arid climates typical of So. CA (Kennard et al., 2010; Nathan and McMahon, 

1992). These challenges are largely due to the significant effects of urbanization and the relative 
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volatility of low flows (Blöschl et al., 2013). Streamflow flashiness is a newer management metric 

focused on ecological condition that is also volatile and difficult to regionalize, but the results of this 

study show that the low flow metric indicative of stream drying (< 1 cfs) was more accurately modeled, 

on average, than flashiness (RBI) regardless of regionalization approach. In the diverse landscape of So. 

CA, there are several likely reasons explaining the relative accuracy of extremely low flow over 

flashiness. Flashiness describes short-term alterations in streamflow, which are controlled very strongly 

by local, sub-watershed-scale factors and precipitation (Baker et al., 2004). These short-term alterations 

are much more dependent on land management and localized precipitation within each specific 

drainage basin than on regional-scale factors. The ensemble of lumped models used to develop SR-HMC 

provides a simple and straightforward application of regionalization with jackknife resampling of 

calibrated parameters which captures the broad sub-regional precipitation and land use trends that 

influence stream drying, but has more difficulty capturing hyper-localized features contributing to 

flashiness. 

Greater uncertainty in identifying localized landscape factors that contribute more to flashiness 

than stream drying is reflected in the landscape metrics selected for multinomial logistic regression 

within HMC (Figure B1; Ch. 2). The two precipitation parameters separating reciprocating low error 

clusters, mean annual precipitation and mean annual minimum precipitation, certainly affect 

streamflow flashiness, but are more strongly connected to baseflow and stream drying. Both 

parameters describe overall rainfall volume in a watershed and not local storm intensities, which would 

likely provide a better understanding of streamflow flashiness. Likewise, the abundance of sandy soil, in 

part, controls infiltration, which plays a large role in shaping streamflow flashiness and drying, but only 

soil and infiltration data at relatively coarse spatial scales is easily and widely available (GAGES-II, 

StreamStats, SSURGO, STATSGO2). At such broad scales, the relative presence of sandy soil may more 

strongly influence baseflow than flashiness. High-resolution soil and impervious area connectivity data 
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might provide a fuller understanding of how land use and soil type control streamflow flashiness in the 

study region. The final landscape metric used to distinguish between ensembles, drainage area, scales 

with streamflow volume (Gotvald et al., 2012), such that streams in smaller watersheds are typically at 

higher elevations in the mountains of So. CA where hillslopes and channels are steeper, resulting in 

flashier streams. However, many of these smaller streams are seasonal and dry up more frequently than 

those in larger watersheds near the coast. All four landscape variables used in the multinomial logistic 

regression control streamflow flashiness and drying in some capacity; however, they collectively appear 

to more strongly affect regional baseflow, which is likely the explanation for more accurate estimates of 

regional < 1 cfs over RBI. 

3.4.2 Jackknife resampling with ensemble regionalization of ungaged basins 

 SR-HMC implements jackknife resampling to create ensembles of reciprocally low-error models 

that perform well when regionalized. These clusters of hydrologically similar models contain powerful 

information for reducing parameter uncertainty in models of ungaged basins, which is accessed by 

multinomial logistic regression. In other regionalization studies, jackknife resampling has been mostly 

used to cross-validate rainfall-runoff model spatial transferability (Sengupta et al., 2018) or to cross-

validate statistical (mostly regression) models (Blume et al., 2007; Castellarin et al., 2004; Castiglioni et 

al., 2009; McCuen, 2005; Sefick et al., 2015; Wortman, 2005). As a cross-validation tool, “leave one 

parameter out” jackknife resampling has been most frequently applied to tune statistical model 

parameters (Blume et al., 2007; Castellarin et al., 2004; Castiglioni et al., 2009; McCuen, 2005; 

Wortman, 2005). More recently, withholding all parameters from a site as “leave one site out” jackknife 

resampling has been developed to assess the overall predictability of intact models (Sefick et al., 2015; 

Sengupta et al., 2018). Noori and Kalin (2016) used this concept of “leave one site out” jackknifing to 

create a regionalization framework that shares some characteristics with the framework developed in 

this study. Similar to the approach of SR-HMC, Noori and Kalin (2016) connected a rainfall-runoff model 
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(SWAT) to a statistical model (artificial neural network) trained on “leave one site out” jackknife 

resampling data.  

 SR-HMC is made more robust by ensemble streamflow modeling. Results from this study agree 

with findings of previous studies in southeast Australia (Zhang and Chiew, 2009), across Australia (Viney, 

2013), and in Ontario, Canada (Razavi and Coulibaly, 2016), wherein ensembles of multiple models 

outperformed individual models at estimating streamflow in ungaged basins. In many cases, ensemble 

modeling likely improves regionalization over an individual model due to the averaging of errors and 

dissimilarities between sites. While two streams within close proximity of each other are probably 

similar, they also exhibit differences that will probably reduce model accuracy when parameters are 

interchanged, especially in a region as hydrologically, topographically, and geologically diverse as So. CA. 

These differences are likely muted when multiple models are averaged together, generally resulting in 

more accurately modeled streamflow.  

In developing the ensemble averaging scheme for this framework, the three primary principles 

used to regionalize ungaged basins (geographic proximity to an existing model, similarity of an ideal 

hydroclimatic or landscape characteristic with an existing model, and regional regression of parameters) 

were further tested alongside the traditional ensemble approach of model output (discharge) averaging. 

Results from this study showing model output averaging weighted by geographic proximity outperform 

regression-based regionalization (as parameter averaging) agree with a large study on over 900 

watersheds in France wherein regression-based regionalization performed the worst, and model output 

averaging using spatial proximity performed the best (Oudin et al., 2008). A study in Quebec, Canada 

similarly found that model averaging of spatial proximity and physical similarity outperformed 

regression-based regionalization on over 250 basins (Arsenault and Brissette, 2014). These findings 

support the ideas of Bardossy (2007) that non-linear relationships between model parameters limit the 

utility of linear regression for estimating individual model parameters in ungaged basins. Instead, it is 
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recommended that calibrated parameters be considered as one complete set, and not individual 

parameters, when transferred to an ungaged basin. Within ensemble rainfall-runoff regionalization, 

averaging the model output (discharge) and not inputs (donated parameters) allows for non-linear 

interactions of complete parameter sets, which has been shown to improve overall model accuracy.  

3.4.3 Limitations to regionalization of ungaged basins 

 Three ephemeral and one intermittent stream were included among the five validation sites in 

an effort to directly address the challenges with modeling regional environmental flow metrics in semi-

arid and heterogeneous ungaged basins. Only the intermittent stream, Santa Cruz, proved difficult for 

estimating RBI and < 1 cfs regardless of regionalization approach. Santa Cruz demonstrates some 

limitations with the regionalization framework, specifically in the heterogeneous landscape of So. CA. 

Santa Cruz is unique among other sites in this study in that it contains a large and rural watershed (192.3 

km2 and 0% imperviousness, Table 3.2). Low flow indicative of drying was modeled particularly 

inaccurately for Santa Cruz with < 1 cfs consistently being overestimated. While substantial effort was 

applied to filter out sites with artificially augmented or depleted flows, it is possible that Santa Cruz can 

experience a backwater effect from Lake Cachuma such that flow conditions are wetter and less flashy 

than natural conditions, despite existing in a largely undeveloped watershed. Furthermore, Santa Cruz is 

located near the edge of the “South Coast” hydrologic region where precipitation and associated 

hydrological patterns are slightly different than the majority of ensemble sites, which lie squarely in the 

“South Coast” region. The issues with modeling Santa Cruz indicate how regionalization of ungaged 

basins  is less accurate when pushed to its geographical boundaries, and demonstrate the risk associated 

with applying nearest neighbor parameter transfer to a site near the boundary of hydrological regions in 

a large, heterogeneous area. The combination of anthropogenic influence and landscape and climatic 

heterogeneity at Santa Cruz is poorly captured by the ensemble models, resulting in inaccurate 

regionalization.  
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This study focuses on RBI and < 1 cfs in order to address challenges with modeling ungaged 

basins while also advancing the science supporting regional environmental streamflow development. 

Flashiness and streamflow drying provide a limited assessment of hydrologic alteration in So. CA. A 

comprehensive assessment is outside the scope of this study but has been investigated extensively 

(Mazor et al., 2018; Parker et al., 2019; Sengupta et al., 2018; Stein et al., 2017; Yarnell et al., 2020; 

Zimmerman et al., 2017). 

 While the results of this study are encouraging for using SR-HMC to reduce parameter 

uncertainty in models of ungaged basins across a highly heterogenous region, more studies in different 

regions will further validate the method. The environmental flow focus of this study coupled with the 

heterogeneity and urban hydrology of So. CA limited the number of models that could be accurately 

calibrated to gages across the region. Despite an exhaustive search, major hydrologic alterations and 

gage proximity to bioassessment sites were issues that eliminated many potential stream gages. As 

such, this study and Ch. 2 provide a simple introduction and example application of HMC and the SR-

HMC framework. Reducing parameter uncertainty with jackknife resampling and grouping of regional 

calibrated parameters should be applied to a region with a larger sample size to further demonstrate 

their abilities. A simpler study in a less heterogeneous and developed region without an environmental 

flow focus could provide more sites for modeling and testing the method. Such a study might provide 

further clarity on the statistical limits of SR-HMC.  

 Some highlights of SR-HMC involve its adaptability and emphasis on physical accuracy across a 

heterogeneous region, balanced by an ease of understanding and limited computational intensity with 

lumped rainfall-runoff models. However, if a modeler desired a more spatially detailed regionalization 

with SR-HMC, semi-distributed rainfall-runoff models with subbasins, or even fully-distributed models 

on spatially discrete grids, could be used. These different model structures would complicate low-error 

clusters, which would no longer be simple ensembles of intact lumped parameters, but these 
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complicated clusters would still provide a more targeted and far less computationally intensive method 

for quantifying and reducing highly complicated regional parameter uncertainty than using a Bayesian 

(Beven and Binley, 1992; Thiemann et al. 2001) or Metropolis Algorithm (Kuczera and Parent, 1998; 

Vrugt et al., 2008) approach. While the high dimensional Monte Carlo resampling algorithms employed 

by these computationally intensive methods for reducing uncertainty can be constrained by estimated 

probabilities of parameter accuracy, they generally search for model parameters from each parameter’s 

full range of possible values. Instead of optimizing parameters from their full range of values for one 

model, SR-HMC optimizes parameters from a subset of parameters calibrated to other models in the 

region and can do this for any model. In this study, manual calibration of just two co-dependent 

parameters (Groundwater 1 and 2 Coefficients) provided highly accurate ensemble models (Table 3.3). If 

this framework was applied to a scenario with more uncertainty surrounding the calibrated parameters 

of ensemble models, a Monte Carlo approach for reducing parameter uncertainty at each ensemble site 

could precede SR-HMC. 

3.5 Conclusions 

Modeling streamflow in ungaged basins is difficult, and frequently inaccurate (Blöschl et al., 

2013), yet is often crucial for a wide range of hydrologic and engineering applications. This study sought 

to improve regional streamflow estimation in ungaged basins across a heterogeneous region by 

developing a framework incorporating a measure of regional model accuracy. To this end, SR-HMC 

combines HEC-HMS rainfall-runoff modeling with a statistical procedure of jackknife resampling, cluster 

analysis, multinomial logistic regression, and ensemble model averaging, to increase the accuracy of 

modeled streamflow in five ungaged basins over commonly applied nearest neighbor regionalization. 

SR-HMC was developed to prioritize the accuracy of environmental flow metrics, which are difficult to 

model, across the heterogeneous landscape of coastal southern CA. The initial development and testing 

of SR-HMC has been applied on a small scale to environmental streamflow management; however, the 
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practice of incorporating model error into regional flow estimations can be extended to any stream 

management application. While it certainly requires more time to develop this new regionalization than 

to build a single nearby calibrated model, it may be worth the effort to increase model accuracy in such 

heterogeneous regions as So. CA. Within the context of rainfall-runoff modeling, jackknife resampling 

offers a powerful tool for generating data describing how accurately parameters from one model can be 

transferred to another model. When jackknife resampling is incorporated into Hydrologic Model-based 

Classification and combined with ensemble modeling, models can be grouped across a region by how 

accurately their parameters can be interchanged, and then extrapolated as a group to an ungaged basin 

under the full Streamflow Regionalization with Hydrologic Model-based Classification framework.  

 This regionalization framework builds on stream classification efforts in So. CA (Ch. 2) to 

introduce new ideas to the watershed management and modeling communities, while also exploring the 

first two steps of the ELOHA framework (Poff et al., 2010). Future work in CA should continue within 

ELOHA by applying SR-HMC to estimate historical streamflow conditions, and their deviations from 

current conditions, before ultimately creating and assessing flow-ecology relationships. Extending the 

new framework to estimating flow-ecology relationships, and comparing those relationships to those 

produced by other common techniques for estimating streamflow in ungaged basins, would be 

beneficial in advancing the science supporting environmental flow management, and for developing 

environmental flow criteria in coastal southern CA. 

 More generally, future work with SR-HMC could dive deeper into its sensitivity to calibration and 

error matrix assessment criteria. This study demonstrated the framework using models calibrated to 

environmental flow metrics to predict the same metrics, but applying SR-HMC with less specialized 

calibration criteria to predict a wider range of flow metrics would provide valuable information. 

Application of SR-HMC outside the scope of environmental streamflows would likely reduce some 

restrictions for selecting sites, which would provide more sites for creating regional ensembles and fully 
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test the method. A variety of hydroclimatic regions could be analyzed and assessed in this manner to 

establish an even broader understanding of the framework. As it builds credibility through regional 

testing, SR-HMC, and especially jackknife resampling, could be automated within existing rainfall-runoff 

models. This would naturally facilitate expanding the regionalization framework to semi- or fully-

distributed models for more detailed applications. 
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Chapter 4 
 
Quantifying hydrologic alteration and flow-ecology  
 

relationships in ungaged basins for environmental  
 

streamflow management in heterogeneous regions 
 
 
 

Summary 

Managing water resources to incorporate environmental streamflows involves strategic 

manipulation of flow regimes to improve the ecological condition of streams. To facilitate environmental 

flow management, regional alterations of natural flow regimes are analyzed alongside changes in 

ecological benchmarks. This analysis typically begins by pairing bioassessment sites with flow alteration 

data. Unfortunately, most bioassessment sites are established on small, wadeable streams that lack 

representative gage data. In the absence of gage data, hydrologic models of ungaged basins are typically 

used to estimate flow alteration, often through regionalization of models at gaged locations. Modeling 

streamflow predictions in ungaged basins (PUB) is difficult and has substantial uncertainty. It is 

especially challenging to estimate environmental flow metrics at ungaged basins in complex regions with 

highly heterogeneous, land use, topography, geology, and/or hydroclimatology, where geographically 

nearby basins may have very different hydrologic signatures. Inaccurate models affect the integrity of 

flow-ecology relationships, yet simple methods for PUB and quantifying flow alteration are typically 

used to develop flow-ecology relationships. I address these problems by testing the sensitivity and 

relative accuracy of flow alteration and flow-ecology relationships across a group of five case study sites. 

Flow alteration and flow-ecology relationships produced by my novel regionalization framework for 

modeling environmental streamflows in ungaged basins across a heterogenous region, called 
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“Streamflow Regionalization with Hydrologic Model-based Classification” (SR-HMC) were compared to 

two versions of nearest neighbor regionalization, one calibrated to overall fit and the other to 

ecologically-relevant flow metrics. For the two environmental flow metrics analyzed (streamflow 

flashiness and drying/permanence) across five sites, flow permanence predictions were less sensitive to 

choice of regionalization method, flow alteration, metric, and precipitation. The two flow metrics differ 

appreciably in their sensitivities, and judicious application of them as management endpoints requires 

future research. Understanding the regional sensitivities of flow alteration and flow-ecology 

relationships to hydrologic modeling variables can help produce robust environment streamflow criteria. 

Keywords: environmental streamflow management, ungaged basins, hydrologic modeling, 

regionalization, ELOHA, flow-ecology relationships 

 

4.1 Introduction 

Environmental streamflow management can play an important role in the sustainable use of 

freshwater resources by reestablishing and maintaining key elements of natural flow regimes (Poff et al., 

1997). The Ecological Limits of Hydrologic Alteration (ELOHA) (Poff et al., 2010) framework for 

developing regional environmental flow criteria is used to establish relationships between streamflow 

alteration and ecological conditions that inform environmental streamflow standards. To generate these 

flow-ecology relationships, a hydrologic foundation of currently impaired vs. pre-altered or “baseline” 

flow conditions is created for locations containing bioassessment data. Data from stream gages can be 

used for the hydrologic foundation; however, hydrologic models are frequently needed to estimate both 

impaired and baseline flow conditions (Poff et al., 2010). 

When developing environmental flow criteria, hydrologic modeling most often occurs in 

ungaged basins where flow conditions at bioassessment sites are not collected. Regionalization of 

ungaged basins from a network of process-based models at gaged locations (Tasker, 1982) is a common 
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approach used to make streamflow predications in ungaged basins (PUB) across hydrologic applications 

(Blöschl et al., 2013), including for environmental flows (Ch. 2; Ch. 3; Buchanen et al. 2013; Kennen et 

al., 2008; Sengupta et al., 2018). Regionalization of ungaged basins is an expeditious approach when 

developing environmental streamflow criteria with ELOHA because it shares the regional approach (Ch. 

2). Regionalization typically involves the transfer of calibrated model parameters from models at gage 

locations to models at ungaged locations, where calibration data do not exist. This parameter transfer 

provides insight regarding dominant physical hydrologic processes, and most often occurs between the 

geographically nearest models (Arsenault and Brissette, 2014; Blöschl et al., 2013; Kokkonen et al., 

2003; Zvolensky et al., 2008), but this nearest neighbor approach can be challenging in regions 

containing streams with diverse flow regimes resulting from heterogenous land uses, topography, 

geology, and/or micro-climatology (Arsenault and Brissette, 2014; Arsenault et al., 2019; Blöschl et al., 

2013). 

To regionalize impaired streamflow in ungaged basins, models should first be developed at gage 

locations and calibrated to flow records from a time period that spans natural climactic conditions and 

includes alterations to the natural flow regime (Poff et al., 2010), often a period from the recent past. 

These parameters calibrated to impaired flow conditions are transferred from model(s) at gaged 

locations to ungaged locations through regionalization. Previous environmental flow studies 

recommend targeted calibration that specifically addresses physical elements of the flow regime 

important to ecological health, instead of best overall fit model calibration (Cassin et al., 2005; Murphy 

et al., 2013; Parker et al., 2019; Vis et al., 2015). For baseline streamflow, hydrologic models are needed 

not only when nearby stream gage data does not exist for a bioassessment site, but also if gage data 

exists but does not go back in time far enough to capture historical conditions representative of the 

natural flow regime. For this task, model parameters that control physical hydrologic processes to 

represent current streamflows conditions can be adjusted to characterize baseline streamflow 
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(Buchanen et al., 2013; Sengupta et al., 2018; State of Colorado, 2016). While this study focuses on 

regionalization with process-based hydrologic models that provide physical connections between model 

parameters and watershed characteristics, other studies considering very large geographic areas are less 

concerned with physical hydrologic processes and have used statistical models to simulate baseline 

streamflow (Zimmerman et al., 2017). 

After estimating baseline and altered streamflows, available software can quantify flow 

alteration of environmental flow metrics at each bioassessment site (Bledsoe et al., 2007; Henriksen et 

al., 2006; Richter et al., 1996), typically by computing the alteration of individual flow metrics as a 

percent deviation from baseline (Poff et al., 2010), or % Flow Alteration (Table 4.1). Another approach 

used in environmental streamflow studies for computing flow alteration measures an altered flow 

metric as a fraction of its baseline (Carlisle et al., 2010a; Carlisle et al., 2010b; Zimmerman et al., 2017) 

and can be thought of as an Alteration Ratio (Table 4.1). The most basic approach for quantifying flow 

alteration involves simply subtracting baseline conditions from altered without any normalization, as 

Simple Alteration (Table 4.1). These measures of flow alteration are crucial to environmental flow 

management, yet they are often applied without judicious consideration of their differences. 

Table 4.1: Methods for computing flow alteration from altered (or current) and baseline (or historic) streamflow 
data. 

Flow Alteration Metric Equation References 

% Flow Alteration 

(Altered − Baseline )
Baseline 

∗ 100% 

Or 

(Current − Historic )
Historic 

∗ 100% 

Buchanan et al., 2013 
Kennen et al., 2013 

McManamay et al., 2013 
Poff et al., 2010 

Poff and Zimmerman 2010 

Alteration Ratio 

Altered
Baseline 

 

Or 

Current
Historical 

 

Carlisle et al., 2010a 

Carlisle et al., 2010b 
Zimmerman et al., 2017 
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Alteration 

(Altered − Baseline) 

Or 

(Current − Historical) 

Mazor et al., 2017 

Stein et al., 2017b 

Sengupta et al., 2018 

 

 For any flow alteration metric, hydrologic modeling of ungaged bioassessment sites is often a 

critical component of developing flow-ecology relationships to inform environmental streamflow 

criteria; yet at best, these models are only simulated representations of natural systems useful for 

guiding water management decisions (Beven, 1989). No matter the level of detail included in hydrologic 

models, they will, by definition, never completely accurately simulate reality. Subsequently, any 

differences between models, methods, or changes to a model’s structure, such as calibration criteria, 

parameter estimation, input data, etc., will affect estimated streamflows, along with any derived metrics 

and ensuing estimates of flow alteration (Ch. 3; Duan et al., 2006; Franchini and Pacciani, 1991; Murphy 

et al., 2013; Parker et al., 2019; Reed et al., 2004; Vis et al., 2015. While regionalization of ungaged 

basins is a well-established approach that aligns with ELOHA, its traditional application is not well suited 

for highly heterogenous regions. The effects of modeling decisions on flow alteration metrics and flow-

ecology relationships, especially in ungaged basins modeled with regionalization, warrants further 

investigation. 

Coastal southern California (So. CA) is one such heterogeneous region where conflicts between 

human development and stream health has induced stream alteration (Stein et al., 2012) and facilitated 

ELOHA for restoring regional ecological conditions (Ch. 2; Ch. 3; Mazor et al., 2018; Parker et al., 2019; 

Pyne et al., 2017; Sengupta et al., 2018; Stein et al., 2017a; Stein et al., 2017b). Two elements of the 

natural flow regime in So. CA have been identified as important influencers of ecological condition, as 

determined by local benthic macroinvertebrate assemblages: streamflow flashiness and drying (Gasith 

and Resh, 1999; Mazor et al., 2018; Parker et al., 2019). As such, these two flow metrics have been used 

in ELOHA efforts across the region and will be the focus of this study; however, they are not the only 
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ecologically-relevant flow metrics. More recent research in So. CA used a functional flows approach to 

first identify elements of the annual hydrograph important for ecological processes, and subsequently 

quantify relevant flow metrics (Yarnell et al., 2020). New work in So. CA has led to the development of a 

novel approach for regionalizing environmental streamflow in ungaged basins across a heterogenous 

region, called “Streamflow Regionalization with Hydrologic Model-based Classification” (SR-HMC) (Ch. 

3). SR-HMC combines ensemble rainfall-runoff modeling with a unique stream classification scheme, 

Hydrologic Model-based Classification (HMC) (Ch. 2), to prioritize model accuracy across a region. Within 

ELOHA, this recent work generated impaired environmental streamflow conditions, setting the stage to 

advance ELOHA by computing baseline flow conditions, estimating deviations between current and 

baseline flows, and developing relationships between flow alteration and changes in ecologic condition. 

 Modeling streamflow predictions in ungaged basins often plays a crucial role in environmental 

streamflow management, but important modeling decisions are typically made without a clear 

understanding of their impacts on flow alteration and flow-ecology relationships. These issues are 

particularly pronounced when modeling environmental flow metrics in heterogenous regions. I address 

these challenges in this study with three objectives: 

1) Compute alteration of streamflow with SR-HMC and compare its accuracy and consistency 

to common nearest neighbor regionalization approaches;  

2) Analyze the sensitivity of flow-ecology relationships in ungaged basins to three modeling 

choices: method for regionalizing ungaged baseline streamflow, flow alteration metric, and 

modeling time period; and 

3) Provide management recommendations for robust flow-ecology relationships in ungaged 

basins. 
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4.2 Methods 

4.2.1 Study Area 

This study builds off previous environmental streamflow work in So. CA using many of the same 

paired bioassessment and USGS streamflow gage sites (Ch. 2; Ch. 3; Mazor et al., 2018; Parker et al., 

2019; Sengupta et al., 2018; Stein et al., 2017a). Specifically, the five validation gages used to test SR-

HMC (Ch. 3) are further analyzed for flow alteration and flow-ecology relationships in this study. Figure 

4.1 displays a map of the sites and Table 4.2 provides watershed, streamflow, and bioassessment data. 

Pairing bioassessment sites with minimally impacted stream gages limited the number of sites available. 

As such, the five validation gages analyzed in this study and Ch. 3 do not fully characterize regional flow 

alteration and flow-ecology relationships, but instead represent a series of case study sites from which 

general conclusions can be drawn about modeling flow alteration and flow-ecology relationships in 

ungaged basins across a heterogenous region. 

Geographically, the greater study area ranges approximately 230 miles from the Mexico border 

to the Transverse Mountains north of Santa Barbara. From the Pacific Ocean, the area lies roughly 

within a 60-mile coastal band constrained to the east by the Peninsular Mountain Ranges. Heavy 

development has occurred in this region of the United States with, the 2010 census recording over 

21,000,000 people (U.S. Census Bureau, 2012) living in regional counties (San Diego, Riverside, Orange, 

San Bernardino, Los Angeles, Ventura, and Santa Barbara). While urban land use is extensive in So. CA, 

significant agricultural and rural land, particularly at higher elevations, also exist. Over the decades, 

persistent population growth and land use change, combined with sub-regional topography, geology, 

and precipitation distributions, have created tremendous water management issues (State of California, 

2019). Due to these external pressures, streams of all types (ephemeral, intermittent, and perennial) 

have deviated substantially from their natural flow and sediment regimes, which has affected channel 



75 

form and stability (Stein et al., 2012) and led to a decline in overall ecological health (Mazor et al., 2017; 

Stein et al., 2017a).

 
Figure 4.1: Study region with five streamflow sites indicated by red circles (same as Validation Sites in Ch. 3, their 
associated bioassessment sites labeled with green plus signs, and each streamflow site’s nearest neighbor HEC-

HMS models labeled with blue square.
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Table 4.2: Study sites details. Drainage Area data are from the National Hydrography Dataset Plus Version 2 
(NHDPlus V2) (McKay et al., 2012). Flow data with high flashiness, “H”, had a gaged Richards-Baker Flashiness 

Index (RBI) (Baker et al., 2004) greater than 0.125 during WY2005-2007; sites with low flashiness, “L”, had an RBI 
less than 0.075; sites with average flashiness, “A”, had an RBI between 0.075 and 0.125. For flow permanence, 
ephemeral streams are represented by “E” and had gaged streamflow < 1 cfs more than half the time during 

WY2005-2007; and intermittent streams, “I”, had streamflow < 1 cfs 10%-50% of time. Bioassessment data are 
from the California Water Boards’ Perennial Streams Assessment (PSA) within the Surface Water Ambient 

Monitoring Program (SWAMP). Values of CSCI less than one indicate degraded ecological condition (Mazor et al., 
2016). 

Site Name USGS 
Gage 

Oldest Gage 
Record 

Drainage 
Area 
(km2) 

WY 2005-
2007 

Flashiness 

WY 2005-
2007 Flow 

Permanence 

Bioassessment 
Site(s) CSCI 

Chino Canyon 10257720 WY 1989-1991 12.9 L E 719TRMDSS 
1.09 
1.02 
0.91 

Los Coches 11022200 WY 1989-1991 32.7 H E 
907LCCHW8 0.94 

907S11430 0.85 

Mission 11119750 WY 1989-1991 30.1 H E 315MISxxx 

0.77 
0.61 
0.52 
0.52 

Mission Rocky 11119745 WY 1999-2001 30.1 A E 315MIU 
1.17 
1.09 
1.06 

Santa Cruz 11124500 WY 1993-1995 192.3 L I 314SCCNSY 0.78 

 

4.2.2 Altered streamflow at gage sites 

 When a stream gage lies close enough to a bioassessment site(s) such that their flows are highly 

similar, half of flow alteration can be quantified by simply pulling the record for a representative 

climactic period during altered, likely current, flow conditions. In part, the five gages chosen for this 

study were selected due to their proximity to bioassessment sites and accurate instantaneous flow 

record for a typical wet, average, and dry year in coastal southern CA (Water Years, WY, 2005-2007) 

(WRCC, 2015). For this study, hourly time series from WY 2005-2007 were used as altered streamflow at 

gage sites. Due to the significance of streamflow flashiness and permanence on determining the 

ecological health of coastal southern CA streams (Gasith and Resh, 1999; Mazor et al., 2018; Parker et 

al., 2019), and challenges associated with modeling them in ungaged basins (Blöschl et al., 2013; Carlisle 

et al., 2010a; Nathan and McMahon, 1992; Razavi and Coulibaly, 2017), flow metrics characterizing 
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these two elements were computed. Specifically, flashiness was quantified by the Richards-Baker 

Flashiness Index (RBI) (Equation 4.1) (Baker et al., 2004) and drying was quantified by the fraction of 

discharge less than 1 cfs (< 1 cfs) (Equation 4.2). A threshold of 1 cfs was chosen to indicate a dry stream 

due to the difficulties gaging extremely low flows. 

Equation 4.1: Richards-Baker Flashiness Index (RBI) (Baker et al., 2004), wherein Qt is the discharge at time t, Qt+1 is 
the discharge at time step after t, and T is the final time step at the hourly scale. 

𝑅𝐵𝐼 =
∑ |𝑄𝑡+1 − 𝑄𝑡|𝑇

𝑡=1

∑ 𝑄𝑡
𝑇
𝑡=1

 

Equation 4.2: Fraction of time with flow < 1 cfs, wherein NQ<1cfs is the number of time steps containing streamflow 
less than 1 cfs and N is the total number of time steps containing flow data. 

< 1 𝑐𝑓𝑠 =
𝑁𝑄<1𝑐𝑓𝑠

𝑁
 

4.2.3 Baseline streamflow at gage sites 

 Two estimates of historical baseline streamflow were generated at gage sites. First, the oldest 

three WY on record were selected for the five sites (Table 4.2), from which RBI and < 1 cfs were 

computed. For the second estimate, rainfall-runoff models were created for current flow conditions (WY 

2005-2007) and relevant parameters were adjusted to reflect baseline conditions. For this task, the U.S. 

Army Corps of Engineers Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) 4.1 

was used. Models were created and calibrated to optimize a metric combining RBI and < 1 cfs, the 

Ecologically-Focused Combined Calibration Criteria (EFCC) (Ch. 2; Ch. 3; Parker et al., 2019), as displayed 

in Equation 4.3: 

Equation 4.3: Ecologically-Focused Combined Calibration Criteria (EFCC), which equally weights the accuracy of RBI 
and < 1 cfs between each streamflow gage and HEC-HMS, as a percent error. 

𝐸𝐹𝐶𝐶 (%)  = [
(|𝐺𝑎𝑔𝑒 𝑅𝐵𝐼 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑅𝐵𝐼|

|𝐺𝑎𝑔𝑒 𝑅𝐵𝐼| ) ∗ 100 + (|𝐺𝑎𝑔𝑒 < 1 𝑐𝑓𝑠 − 𝑀𝑜𝑑𝑒𝑙𝑒𝑑 < 1 𝑐𝑓𝑠|
|𝐺𝑎𝑔𝑒 < 1 𝑐𝑓𝑠| ) ∗ 100

2
] 

Methods of model creation and calibration for WY 2005-2007 followed the approach outlined for 

“ensemble models” in Ch. 3, which should be referenced for additional detail. 



78 

 With individual models accurately calibrated to EFCC for the five sites, applicable land use 

parameters were adjusted to reflect historic conditions. Given the substantial regional landscape 

heterogeneity in So. CA, and the judgement required to reduce land use parameters to represent 

predeveloped hydrology, relatively simple but reliable approaches were taken to model historic 

conditions. Specifically, imperviousness was set to 0% to represent predeveloped conditions without 

paved surfaces. Additional loss parameters were not changed. Paving land was assumed to capture the 

most significant changes to post-development hydrology, while non-paved land use was assumed similar 

between pre- and post-development. Additionally, the longest flow path was increased to augment 

Time of Concentration (TOC) (Kirpich, 1940) and the Clark Unit Hydrograph Storage Coefficient (ADOT, 

2014). Adjusting the length of the longest flow path reflects the extra distance and slower speed 

traveled by runoff from the hydrologically most distant location without the effect of impervious 

surfaces, which significantly increase runoff compared to natural terrain. The amount by which the 

longest flow path was increased was iterated on to increase TOC by 15%, which is consistent with the 

literature (Chin, 2006; Iowa SUDAS, 2013; Masch, 1984; Schueler, 2000, and USDA, 2010). RBI and < 1 cfs 

were calculated from these models of baseline conditions at gage sites. 

4.2.4 Altered streamflow in ungaged basins 

 In a preceding study, SR-HMC for regionalizing ungaged basin was developed and tested against 

“nearest neighbor” regionalization to estimate environmental streamflow (RBI and < 1 cfs) for current 

conditions at the five sites over the same representative WY 2005-2007 (Ch. 3). With regionalization of 

ungaged basins, parameters from nearby calibrated models are transferred to uncalibrated models 

(Tasker, 1982). For nearest neighbor regionalization, parameters from the geographically closest 

calibrated model are transferred (Blöschl et al., 2013; Kokkonen et al., 2003; Zvolensky et al., 2008). 

While typically applied to models of ungaged basins, this technique can be applied to sites with gage 

data for the assessment of methods for modeling ungaged basins. In doing this, gage data is withheld 
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until after modeling streamflow. In this study, the hydrologic modeling results of Ch. 3 will be used for 

the ungaged altered streamflow component of stream alteration. Nearest neighbor models were 

calibrated to two different criteria, EFCC (Equation 4.3), and best overall fit, as measured by the Nash-

Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) using USGS streamflow data. Only the best 

performing ensemble averaging approach of SR-HMC tested in Ch. 3 was considered (output discharge 

averaged by geographic proximity). This approach combines measures of geographic proximity, regional 

parameter uncertainty, and physical watershed similarity to average multiple output time series of 

modeled ungaged basins. Each time series of discharge corresponds to calibrated parameters donated 

from a model at a gage site within the region. See Ch. 3 for more detail on SR-HMC. 

4.2.5 Baseline streamflow in ungaged basins 

 Modeling ungaged basins is a very common problem across hydrologic applications, most often 

applied to solve current issues with current land uses. This study extends new developments in PUB to 

modeling historical conditions in ungaged basins, which is not such a common task. While still 

withholding gage data to consider the five sites as ungaged, this study modeled historical streamflow by 

decreasing imperviousness and increasing the length of the longest flow path by 20% within the SR-HMC 

and nearest neighbor regionalization approaches of Ch. 3. This was the same process used for models at 

gages (2.3 Baseline streamflow at gage sites). RBI and < 1 cfs were computed from the final averaged 

time series of discharge representative of historical baseline conditions for each of the five sites. 

4.2.6 Formulating flow alteration  
Five approaches for assessing flow alteration were analyzed among two different scenarios: 

gaged and ungaged (Table 4.3). For the gaged scenario, WY 2005-2007 gage data were paired with the 

two estimates of baseline streamflow (oldest gage record and historically adjusted rainfall-runoff 

models). These two gaged measures of flow alteration were computed to provide “reference” values for 

ultimately assessing the accuracy of ungaged flow alteration and flow-ecology relationships. For the 
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ungaged scenario, baseline and altered conditions were computed by SR-HMC, EFCC calibrated nearest 

neighbor, and NSE calibrated nearest neighbor regionalizations. For each of the five approaches to 

quantify flow alteration (Table 4.3), Alteration Ratio and Simple Alteration were estimated in accordance 

with the equations in Table 4.1. Additionally, the % Flow Alteration concept was applied as a fraction 

three ways, normalized by baseline, altered, and an average between altered and baseline flows, to 

produce five metrics of flow alteration per approach in Table 4.3. In total, 10 estimates of flow alteration 

were made for the gaged scenario, as five formulations of flow alteration (three % Flow Alterations, 

Alteration Ratio, and Alteration) x two baseline estimates (Oldest 3 WY on record and historical land use 

applied to WY 2005-2007 models). When sites were treated as ungaged basins, 15 values of flow 

alteration were produced, as the five formulations of flow alteration x three regionalization approaches 

(SR-HMC, nearest neighbor EFCC, nearest neighbor NSE). The 25 estimates of gaged and ungaged flow 

alteration were computed for the five sites (Table 4.2) to produce 125 unique quantities of flow 

alteration for analysis. These quantities of flow alteration were produced for two environmental 

streamflow metrics, RBI and < 1 cfs, resulting in 250 estimates of flow alteration for creating flow-

ecology relationships. 

Table 4.3: Methods for estimating altered and baseline streamflow conditions at the study sites under gaged and 
ungaged scenarios. 1Three consecutive Water Years typifying wet, average, and dry conditions in So. CA (WRCC, 

2015). 2Environmentall-Focused Calibration Criteria (Equation 4.3). 3from Ch. 3. 

Gaged 
 

Ungaged 

Current Altered Historical Baseline  Current Altered Historical Baseline 

1) WY 2005-
20071 

1) Oldest 3 WY on 
record 

 
1) Nearest neighbor 

regionalization calibrated to 
EFCC3 

1) Historical land use applied 
to nearest neighbor 

regionalization calibrated to 
EFCC 

2) Models of WY 
2005-2007 

calibrated to 
EFCC2 

2) Historical land 
use applied to WY 

2005-2007 
models 

 
2) Nearest neighbor 

regionalization calibrated to 
NSE3 

2) Historical land use applied 
to nearest neighbor 

regionalization calibrated to 
NSE 

  
 

3) SR-HMC 
3) Historical land use applied 

to SR-HMC 
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2.7 Quantifying flow-ecology relationships 

 For each of the five sites, bioassessment data were obtained from the California Water Boards’ 

Perennial Streams Assessment (PSA) within the Surface Water Ambient Monitoring Program (SWAMP). 

The locations of bioassessment sites can be found in Figure 4.1 with more information provided in Table 

4.2. A multimetric bioassessment index known as the California Stream Condition Index (CSCI) was 

correlated with each of the 10 gaged and 15 ungaged estimates of flow alteration for RBI and < 1 cfs. 

Multimetric indices are ideal measures of ecologic condition that combine multiple data from biological 

surveys, including both taxa- and trait-based metrics, into one unitless value that assesses the ecological 

health of a site against regionally estimated baseline conditions (Barbour et al., 1995). CSCI was 

developed to capture deviations from benchmark reference ecological condition for all streams 

regionalized across the state (Mazor et al., 2016; Rehn et al., 2015). Specifically, CSCI provides a 

normalized index to assess the degradation of ecological condition by combining a measure of 

taxonomic completeness, the ratio of observed-to-expected benthic macroinvertebrate taxa (O/E), with 

a measure of ecological structure using a predictive multimetric index (pMMI). In this study, when 

multiple bioassessment sites were paired to one of the five study gages, or multiple estimates of CSCI 

were made over time for the same bioassessment site, both mean and median values of CSCI were 

analyzed.  

4.3 Results 

4.3.1 Altered and baseline streamflow 

 Table C1 includes HEC-HMS land use parameters used to calibrate models to currently altered 

streamflow conditions, alongside modified parameters for historical baseline flows. Increasing the 

length of the longest flow path by 20% for pre-urban conditions increased Time of Concentration by 

15%, in accordance with the literature (Chin, 2006; Iowa SUDAS, 2013; Masch, 1984; Schueler, 2000, and 

USDA, 2010).   
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Table 4.4: Altered and baseline RBI and < 1 cfs generated by gaged and ungaged approaches. *Modeled in Ch. 3. 

 Gaged Altered  Gaged Baseline 

 
WY 2005-007 
from record 

Models calibrated to 
EFCC for WY 2005-2007 

 Oldest three WY 
from record 

Historical land use in EFCC 
WY 2005-2007 models 

 RBI < 1 cfs RBI < 1 cfs  RBI < 1 cfs RBI < 1 cfs 

Chino 
Canyon 

0.07 74.7 0.07 74.7 
 

0.04 95.5 0.06 74.8 

Los Coches 0.22 79.1 0.23 78.8  0.15 89.7 0.07 80.5 

Mission 0.17 77.7 0.17 77.7  0.27 97.0 0.13 80.0 

Mission 
Rocky 

0.11 75.4 0.12 75.4 
 

0.12 78.9 0.11 76.4 

Santa Cruz 0.06 32.2 0.06 32.2  0.06 31.6 0.06 32.2 

 

 Ungaged Altered*  Ungaged Baseline 

 

Nearest 
neighbor 

regionalization 
calibrated to 
EFCC for WY 
2005-2007 

Nearest 
neighbor 

regionalization 
calibrated to 
NSE for WY 
2005-2007 

SR-HMC for WY 
2005-2007 

 Historical land use 
in nearest 
neighbor 

regionalization 
calibrated to EFCC 
for WY 2005-2007 

Historical land use 
in nearest 
neighbor 

regionalization 
calibrated to NSE 
for WY 2005-2007 

Historical land use 
in SR-HMC for WY 

2005-2007 

 RBI < 1 cfs RBI < 1 cfs RBI < 1 cfs  RBI < 1 cfs RBI < 1 cfs RBI < 1 cfs 

Chino 
Canyon 

0.05 59.9 0.03 59.3 0.05 59.9 
 

0.04 60.7 0.02 60.1 0.04 61.9 

Los Coches 0.28 89.6 0.29 86.4 0.26 83.8  0.15 92.2 0.01 88.9 0.14 68.7 

Mission 0.17 74.2 0.17 93.8 0.12 81.4  0.14 76.4 0.14 97.0 0.10 69.4 

Mission 
Rocky 

0.14 76.0 0.15 95.8 0.09 83.2 
 

0.14 77.0 0.14 97.0 0.10 70.9 

Santa Cruz 0.14 71.6 0.14 96.6 0.09 81.2  0.14 71.6 0.14 96.6 0.10 43.7 
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4.3.1.1 Gaged sites: altered and baseline streamflow 

 For the hydrologically representative period of WY 2005-2007, altered streamflow flashiness 

and drying from the gage record were calibrated with high accuracy in hydrologic models (Table 4.4). 

Only at Los Coches did modeled RBI and < 1 cfs deviate from gage values (gage RBI and < 1 cfs = 0.22 and 

79.1; model RBI and < 1 cfs = 0.23 and 78.8; Table 4.4).  

Gaged baseline environmental flow metrics for the oldest three WY on record and the EFCC 

calibrated model parameterized with historical land use are dryer and less flashy than WY 2005-2007 

conditions (Table 4.4). Between the two estimates of gaged baseline conditions, the oldest three WY on 

record is much dryer for three of the five sites and is slightly wetter for one of the sites, compared to 

modeling with historical land use. For all five sites, baseline streamflow estimated by oldest three WY on 

record closely followed local climate trends that were not representative of the long term climate, as 

indicated in Figure C1. The three sites with WY 1989-1991 as the oldest on record were extremely dry, 

as was WY 1989-1991. Similarly, Mission Rocky was moderately dryer than average during WY 1999-

2001 and Santa Cruz was wetter during WY 1993-1995. This sensitivity of environmental streamflow to 

precipitation is expected and is why an emphasis was placed on a representative hydrologic period. As 

such, historically parameterized EFCC calibrated models for the representative climatic period (WY 

2005-2007) will be considered the most accurate “reference” gaged estimate of historical baseline 

environmental streamflow in this study. Accordingly, all errors associated with ungaged historical flow, 

flow alteration, and flow-ecology relationship will be in reference to the results produced by the 

historical EFCC model.
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Table 4.5: Percent errors for modeling ungaged historical environmental flow conditions with different regionalization approaches. Errors are in relation to 
historically parameterized EFCC calibrated models for the representative climatic period (WY 2005-2007). +Errors of the oldest three WY from the gage record 

also provided. 

 Ungaged baseline streamflow conditions  

 
Nearest neighbor 

regionalization (EFCC) 
Nearest neighbor 

regionalization (NSE) 
SR-HMC Oldest gage record+ 

 
RBI % 
error 

< 1 cfs 
% error 

EFCC 
RBI % 
error 

< 1 cfs 
% error 

EFCC 
RBI % 
error 

< 1 cfs % 
error 

EFCC 
RBI % 
error 

< 1 cfs 
% error 

EFCC 

Chino 
Canyon 

30.8 18.9 24.8 63.2 19.7 41.4 34.5 17.2 25.9 42.5 27.7 35.1 

Los 
Coches 

113.6 14.6 64.1 86.8 10.4 48.6 98.5 14.7 56.6 124.0 11.5 67.7 

Mission 4.8 4.5 4.6 8.6 21.2 14.9 20.4 13.3 16.8 108.5 21.3 64.9 

Mission 
Rocky 

26.0 0.8 13.4 30.5 26.9 28.7 5.2 7.3 6.2 11.2 3.2 7.2 

Santa 
Cruz 

121.5 122.2 121.8 123.4 200.1 
161.

7 
61.8 35.8 48.8 9.4 2.0 5.7 

Median 30.8 14.6 24.8 63.2 21.2 41.4 34.5 14.7 25.9 42.5 11.5 35.1 
Mean 59.3 32.2 45.8 62.5 55.7 59.1 44.1 17.7 30.9 59.1 13.1 36.1 
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4.3.1.2 Ungaged basins: altered and baseline streamflow 

 Model regionalization results for altered and baseline environmental streamflows in ungaged 

basins are displayed in Table 4.4, below the gaged results. Results for altered ungaged conditions are 

from Ch. 3.  

A more detailed comparison of the three ungaged regionalized baseline estimates of RBI and < 1 

cfs are included in Table 4.5, where it can be seen that nearest neighbor regionalization calibrated to 

EFCC slightly outperformed SR-HMC, as measured by median EFCC error (24.8% vs. 25.9%). However, 

nearest neighbor regionalization calibrated to EFCC performed extremely poorly at Santa Cruz, resulting 

in a much higher mean EFCC error (45.8% vs. 30.9%). Regardless, these two regionalization approaches 

explicitly calibrated to the environmental flow metrics selected for management were more accurate at 

modeling environmental flows than best overall fit regionalization. Overall, historical stream drying was 

consistently modeled more accurately than historical flashiness in ungaged basins (Table 4.5). 

4.3.2 Flow alteration formulation 

 Table C2 displays gaged and ungaged values of all 250 flow alteration metrics for streamflow 

flashiness and drying. For most metrics, ungaged modeling with SR-HMC and nearest neighbor 

regionalization calibrated to EFCC were similarly accurate to modeling historical land use with gage data. 

Nearest neighbor regionalization calibrated to best overall fit is clearly the worst performing 

regionalization approach for computing environmental flow alteration. Independent of gaged or 

ungaged approach, most flow alteration metrics produced in this study have values less than one and 

tend to be extremely small. Only values of Alteration Ratio are consistently near one, making them 

easier to interpret. 

4.3.3 Flow-ecology relationships 

 Flow-ecology relationships between CSCI and gaged and ungaged environmental flow alteration 

metrics are provided in Table 4.6. Flow alteration data in Table C2 were used to produce the correlation 
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relationships. Because only five sites were analyzed, major conclusions about regional flow-ecology 

relationships are limited and interpretation of the results will focus more on the direction of correlation 

coefficients than magnitude. Regardless of flow alteration metric, flow-ecology relationships resultant 

from modeling historical land use under the gaged scenario were starkly different than those produced 

from the oldest gage record.  

For streamflow flashiness, modeling historical land use showed a decrease in ecological 

condition associated with an increase in altered RBI. Essentially, as streamflow conditions become 

flashier following urbanization, ecological condition declines. For the ungaged scenario, these results 

were only reproduced by SR-HMC. When the oldest gage record was considered for baseline 

streamflow, strong correlation in the opposite direction was produced. Using nearest neighbor 

regionalization, correlations in this same opposite direction, albeit of smaller magnitude, were produced 

by all but one flashiness alteration metric (not Alteration computed by EFCC nearest neighbor; Table 

4.6). 

Results of streamflow drying in ungaged basins were consistent across regionalization 

approaches and were of similar magnitude and the same direction as modeling historical land use. This 

positive correlation between < 1 cfs alteration metrics and CSCI can be interpreted as a decrease in 

ecological condition associated with a decrease in stream drying after urbanization. Interestingly, no 

correlation was found between stream drying and CSCI using the oldest gage record for baseline 

conditions of flow alteration. 
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Table 4.6: Spearman correlation, ρ, flow-ecology relationships between CSCI and different RBI and < 1 cfs flow 
alteration metrics for gaged and ungaged modeling approaches. Red bold coefficients are the opposite direction as 
the relationships generated for the most accurate “reference” gaged scenario (modeling baseline conditions using 

historical land use parameters in a model calibrated to EFCC over a representative climactic period), which is 
indicated by *. 

 

Flow 
Alteration 

Metric 
Equation 

Gaged Ungaged 
 

*Modeled 
historical 
land use 

Oldest 
gage 

record 

Nearest 
neighbor 
regionaliz

ation 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

RBI 

Flow 
Alteration 
(Baseline) 

(Altered − Baseline)
Baseline

 -0.2 0.4 0.1 0.1 -0.2 

Flow 
Alteration 
(Altered) 

(Altered − Baseline)
Altered

 -0.2 0.4 0.1 0.1 -0.2 

Flow 
Alteration 
(Average) 

(Altered − Baseline)
Avg(Altered, Baseline)

 -0.2 0.4 0.1 0.1 -0.2 

Alteration 
Ratio 

Altered
Baseline

 -0.2 0.4 0.1 0.1 -0.2 

Alteration Altered − Baseline -0.1 0.3 -0.2 0.1 -0.2 

< 1 
cfs 

Flow 
Alteration 
(Baseline) 

(Altered − Baseline)
Baseline

 0.3 0 0.2 0.2 0.2 

Flow 
Alteration 
(Altered) 

(Altered − Baseline)
Altered

 0.3 0 0.2 0.2 0.2 

Flow 
Alteration 
(Average) 

(Altered − Baseline)
Avg(Altered, Baseline)

 0.3 0 0.2 0.2 0.2 

Alteration 
Ratio 

Altered
Baseline

 0.3 0 0.2 0.2 0.2 

Alteration Altered − Baseline 0.3 0 0.2 0.2 0.2 

 

4.4 Discussion 

4.4.1 Flow-ecology relationships in ungaged basins 

Hydrologic modeling of ungaged basins is a crucial component of the ELOHA framework for 

developing flow-ecology relationships (Poff et al., 2010), yet it involves significant uncertainty with no 

preferred method (Blӧschl et al., 2013). Neither streamflow flashiness nor drying are particularly easy 

environmental streamflow metrics to model (Carlisle et al., 2010a), especially in semi-arid urbanizing 
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ungaged basins typical of So. CA (Kennard et al., 2010; Nathan and McMahon, 1992; Razavi and 

Coulibaly, 2017). Despite these obstacles, this study produced accurate flow-ecology relationships in five 

ungaged basins across the heterogeneous region of So. CA. 

 The general effects of urbanization on streamflow flashiness and associated flow-ecology 

relationships are fairly straightforward, with an increase in flashiness causing a decline in ecological 

condition after urbanization (Paul and Meyer, 2001; Walsh et al., 2005; Walsh et al., 2001). This inverse 

flow-ecology relationship was not consistent across ungaged regionalization approaches. Only SR-HMC 

replicated the inverse relationship (most Spearman correlation coefficients = -0.2, Table 4.6). SR-HMC 

likely produced appropriate flashiness flow-ecology relationships when both nearest neighbor 

approaches did not due to its emphasis on regional environmental flow accuracy using statistical 

techniques including jackknife resampling, clustering, and ensemble averaging. While flow-ecology 

relationships were only developed at five sites, e complexity of watersheds in So. CA may inhibit spatial 

similarity of model parameters, alone, for estimating streamflow flashiness and associated flow-ecology 

relationships in ungaged basins. Developing SR-HMC for high accuracy in a heterogenous region (Ch. 3) 

may have played a role in its successful modeling of flashiness flow-ecology relationships in ungaged 

basins.  

Flow-ecology relationships between CSCI and different stream drying alteration metrics were 

similarly modeled in ungaged basins using all three of the regionalization approaches (Spearman 

correlation coefficient = 0.3 gaged vs. 0.2 ungaged, Table 4.6). Choice of regionalization did not majorly 

affect stream drying flow-ecology relationships. However, the decline in ecological condition associated 

with the collective increase in streamflow flashiness and permanence after urbanization found by Roy et 

al., (2005) was only modeled in ungaged basins using SR-HMC.  

The three ungaged estimates of flow alteration utilized representative precipitation data from 

WY 2005-2007. This and previous studies in So. CA have prioritized representative dry, average, and wet 
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years; however, these general regional climate trends do not capture the temporal and sub-regional 

precipitation patterns that strongly influence streamflow flashiness (Baker et al., 2004). As such, altered 

and baseline RBI, and their associated flashiness flow-ecology relationships, are more difficult to model 

than those for streamflow drying. Unlike with streamflow flashiness, the general regional climate trends 

captured during this period appear to be stronger drivers of streamflow drying than the differences in 

model parameters generated by different regionalization techniques. This overall control of 

precipitation on flow permanence likely led to the similar flow-ecology relationships between gaged and 

ungaged sites for representative climate conditions. The findings of this study wherein stabilization and 

augmentation of extremely low flows, created by urbanization, lend to wetter conditions that negatively 

affect ecological condition are consistent with the most frequently performed flow-ecology studies (Poff 

and Zimmerman, 2010); however, the relationship between urbanization and streamflow drying can 

vary, with some studies showing dryer conditions after urbanization (Konrad and Booth, 2005; Poff and 

Zimmerman, 2010; Walsh et al., 2005). This discrepancy in the effects of urbanization on flow 

permanence and ecology is controlled not only by natural factors, such as regional climate and 

topography, but also engineered water supply and treatment infrastructure and management practices. 

As such, local information regarding the effects of urbanization on flow permanence should be used to 

assess flow-ecology relationships. Two independent studies in So. CA have shown increases in 

permanent water after urbanization, and associated decreases in ecological condition (Riley et al., 2005; 

White and Greer, 2006), lending credibility to the flow-ecology relationships with < 1 cfs in this study.  

 Ultimately, modeling environmental streamflow, and associated flow-ecology relationships, in 

ungaged basins is difficult. Results from this study show how choice in regionalization approach can 

significantly affect the accuracy of ungaged flow-ecology relationships. Despite the strong performance 

of SR-HMC for flow-ecology relationships with RBI, it is a resource intensive approach to PUB, and not 

always necessary for accurate modeling. Statistical methods for regionalizing ungaged basins (Carlisle et 
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al., 2010a; Sanborn and Bledsoe, 2006) include USGS regional regression equations, and are useful in 

hydrologically homogeneous regions, especially when data are scarce. In general, SR-HMC could be used 

to estimate ungaged streamflows and flow-ecology relationships in highly complex regions with 

heterogeneous hydrogeology and/or flow regimes. Moderate to high data availability is needed for this 

approach. In contrast, nearest neighbor regionalization is best applied in dense, relatively homogeneous 

data networks. 

4.4.2 Quantifying flow alteration for flow-ecology relationships 

 Overall, flow-ecology relationships were not very sensitive to formulation of flow alteration, 

regardless of gaged or ungaged approach. For each modeling approach, streamflow drying produced 

identical flow-ecology relationships across all five flow alteration metrics (Table 4.6). For the five sites 

tested in this study, flow-ecology relationships with < 1 cfs were not sensitive to flow alteration metric 

or regionalization method, provided a period of regionally representative precipitation was modeled. In 

contrast, flashiness flow-ecology relationships were slightly more sensitive to flow alteration metric than 

stream drying, with four out of five metrics of flow alteration producing identical flow-ecology 

relationships (Table 4.6). These less consistent relationships can likely be attributed to the difficulty 

modeling RBI, whether historical or altered. Results from this study suggest formulation of flow 

alteration does not have a major impact on flow-ecology relationships. In general, flow-ecology 

relationships with RBI were slightly more sensitive to flow alteration metric than relationships with < 1 

cfs, and were much more sensitive to ungaged regionalization approach. 

 While the four metrics normalizing flow alteration produced consistent flow-ecology 

relationships, Alteration Ratio (as 
Current
Historic

, Table 4.1) contains some ideal properties not shared by the 

three variations of Flow Alteration. Whereas values of Alteration Ratio center around one, Flow 

Alteration can be extremely small or large if individual values or differences between baseline and 

altered conditions are small, even if it is applied as a percent. These sensitive quantities of flow 
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alteration are more difficult to interpret than those centered around one. Another major benefit of 

Alteration Ratio for generating flow-ecology relationships is its similarity with the 
Observed
Expected

, or 
O
E

, 

bioassessment metric (Hawkins, 2006). In essence, Alteration Ratio and 
O
E

 are the same metric applied to 

two different measures of alteration: environmental streamflow condition and taxonomic 

completeness. Paring 
O
E

 streamflow and bioassessment metrics has helped provide intuitive flow-ecology 

relationships across the contiguous United States (Carlisle et al., 2010a). Flow-ecology relationships in 

CA using CSCI, of which 
O
E

 is a component, can benefit from similarly intuitive relationships when 

Alteration Ratio is used.  

 While Alteration Ratio provides clear benefits as a measure of flow alteration, it is not ideal for 

every flow metric. Deviations between pre- and post-developed flow metrics may be better 

characterized by % Alteration and metrics characterizing timing, duration, and frequency may be easily 

analyzed using simple alteration. As such,% Flow Alteration has been used extensively in the 

environmental streamflow literature (Buchanan et al., 2013; Kennen et al., 2013; McManamay et al., 

2013; Poff and Zimmerman, 2010). The traditional application of % Flow Alteration has involved 

normalizing the difference between altered and baseline streamflow by baseline conditions (Table 4.1). 

From a modeling perspective, especially in ungaged basins, normalizing by baseline conditions 

introduces more uncertainty than normalizing by current conditions because fewer streamflow gages 

are available with accurate long-term records of pre-altered streamflow conditions than gages with 

more recent flows. With fewer gages, less data are available to build, calibrate, and regionalize models. 

Results from this study of five sites show the same flow-ecology relationships using Flow Alteration 

normalized by baseline, altered, and averaging baseline and altered conditions, regardless of gaged or 

ungaged approach for generating flow alteration (Table 4.6). Based on this finding, normalizing % Flow 
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Alteration by altered conditions is an option that should be explored further for improving the most 

commonly used metric of flow alteration from a modeling uncertainty perspective. 

4.4.3 Estimating pre-altered baseline streamflow for flow alteration 

 Estimating baseline streamflow is necessary for quantifying flow alteration and creating flow-

ecology relationships. In this study, estimating baseline streamflow at gage sites by adjusting model 

parameters to reflect historical conditions was considered more accurate than using the oldest available 

gage data. This method of changing rainfall-runoff model parameters associated with developed land 

use is consistent with other ELOHA studies. In the Potomac River Basin, historical land use and 

catchment data was used in conjunction with Hydrological Simulation Program—Fortran (HSPF) to alter 

calibrated parameters to represent historical conditions (Buchanan et al., 2013). A similar approach has 

been explored in CA relating curve number to a net initial loss parameter (Sengupta et al., 2018). In New 

Jersey, a combined approach was used in which baseline conditions were estimated using historical gage 

data and a state-wide hydrological model, while current flow conditions were estimated from current 

gage data (Kennen et al., 2013). Water accounting parameters for reservoir storage, diversions, and flow 

returns have been used to estimate historical conditions using the Colorado’s State Water Supply Model 

(State of Colorado, 2016).  

In this study, the historical modeling approach produced slightly less permanent and less flashy 

baseline conditions compared to altered conditions (Table 4.4). These historical flow conditions were 

consistently modeled by all five sites for both RBI and < 1 cfs. Less flashy baseline hydrographs can be 

attributed to the increase in Time of Concentration associated with a longer flow path and no 

imperviousness, while the increase in flow permanence is likely due to the increase of “urban slobber” 

(Wolch, 2007). The magnitude of the difference between pre- and post-altered streamflow flashiness 

and drying were heavily correlated with imperviousness (RBI Spearman ρ = -0.89; < 1 cfs Spearman ρ = 

0.69), indicating how watersheds undergoing the most urbanization show the largest increases in 
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streamflow flashiness and permanence for altered conditions. These findings of flashier and more 

permanent hydrographs with increasing urbanization are consistent with the relevant literature (Paul 

and Meyer, 2001; Poff and Zimmerman, 2010; Riley et al., 2005; Walsh et al. 2005; Walsh et al., 2001; 

White and Greer, 2006) and instill confidence in the methods of regionalizing historical streamflow.  

4.4.4 Environmental streamflow management in ungaged basins 

Bioassessment sites used for flow-ecology relationships are often located along streams with no 

reliable and/or representative streamflow gage data (Poff et al., 2010). Environmental flow 

management in these ungaged basins is a significant challenge because models must be used to 

estimate both altered and baseline streamflow conditions, without the aid of calibration data. Based on 

this study, and reinforced by previous work in ungaged So. CA basins (Ch. 2; Ch. 3), a variety of generally 

applicable recommendations are made for modeling and environmental flow management in ungaged 

watersheds.  

First, regardless of method for PUB, calibration criteria should focus on the elements of the 

environmental flow regime most amenable to management. Identifying elements of the flow regime for 

management is a useful initial step to help tighten model accuracies and streamline studies. Selecting 

environmental flow components can involve a literature review and/or an initial study of ecological 

sensitivity. Both were considered in So. CA before selecting streamflow flashiness and permanence 

(Gasith and Resh, 1999; Mazor et al., 2018; Parker et al., 2019)  

Second, because a variety of methods with varying complexities exist for regionalizing 

streamflow in ungaged basins, and all environmental streamflow studies are different, strong 

consideration should be made for a variety of modeling approaches.  

Third, multimetric bioassessment indices reduce some challenges with ungaged watershed 

modeling. Because multimetric indices compare observed ecological condition to regional reference 

expectations, they are not reliant on two sampling dates to quantify decline (or improvement) of 
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ecological condition. As such, ungaged watershed models can be created for representative 

precipitation conditions, preferably during a current time period representative of altered streamflow, 

instead of for two different time periods when ecological sampling might have occurred if a multimetric 

index was not used. This greatly reduces modeling uncertainty and increases confidence in the results of 

uncalibrated models.  

Fourth, Alteration Ratio (Table 4.1) is a good measure of flow alteration for many flow metrics. It 

is easy to interpret and robust against flow metrics with small values. Furthermore, Alteration Ratio 

provides continuity in flow-ecology relationships when paired with 
Observed
Expected

 ecological metrics, or a 

multimetric index containing 
O
E

.  

Fifth and finally, when choosing elements of the flow regime for developing environmental flow 

criteria, modeling judgement on the ability to accurately estimate specific baseline and altered metrics 

in ungaged basins should be heavily considered. Opportunities to produce poor estimates of ungaged 

streamflow conditions should be avoided to increase confidence in the results of regionalized models. 

Focusing on elements of the environmental flow regime most amenable to management requires not 

only considering their ecological significance and manageability, but also their propensity to be modeled 

accurately. 

For the five case study sites modeled as ungaged basins in So. CA, streamflow permanence (as < 

1 cfs) was significantly easier to model for altered, and historical conditions (Table 4.4; Table 4.5) than 

flashiness (as RBI). Subsequently, flow-ecology relationships were stronger and more robust when the 

multimetric bioassessment index, CSCI, was paired with measures of < 1 cfs alteration (Table 4.6). 

Flashiness flow-ecology relationships were inconsistent (Table 4.6). A potential benefit of focusing 

environmental flow management in So. CA on flow permanence is its relative annual resilience to 

precipitation. Because precipitation is the primary input of rainfall-runoff models commonly used to 

regionalize ungaged basins, modeling confidence of < 1 cfs can be relatively high across different 
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historical and current time periods. Finally, while Alteration Ratio is recommended as an initial measure 

of flow alteration, flow-ecology relationships with permanence were less sensitive to different metrics 

than those with flashiness (Table 4.6). As such, < 1 cfs flow-ecology relationships in So. CA are not 

sensitive to how flow alteration is quantified. 

4.5 Conclusions 

 Accurately quantifying flow alteration at ungaged sites is necessary to produce reliable flow-

ecology relationships for effective environmental streamflow management. Through this study, 

methods of regionalizing ungaged watersheds and formulating flow alteration were identified to 

produce effective flow-ecology relationships. While the specific results regarding flow permanence and 

flashiness are regional to So. CA and the series of five case study sites, this study produced general 

guidelines for improving environmental streamflow management in ungaged watersheds. Streamflow 

Regionalization with Hydrologic Model-based Classification (Ch. 3) has utility for modeling ungaged 

baseline and altered streamflow conditions in highly heterogeneous regions, but it is relatively resource 

intensive and may not always be required for certain model applications. However, linking this 

regionalization method with a series of recommended PUB practices can generally provide accurate and 

intuitive flow-ecology relationships. These modeling practices include using management-amenable 

environmental flow metrics, ecologically-relevant calibration of rainfall-runoff models, a multimetric 

bioassessment index, and Alteration Ratio for quantifying most metrics of flow alteration. 

 This study assessed the impacts of modeling and flow alteration choices on flow-ecology 

relationships in ungaged basins. As such, a full analysis of So. CA flow-ecology relationships was outside 

the scope. Future work with environmental flow management in So. CA should focus on developing 

complex flow-ecology relationships, starting with flow permanence, and using more sites. As done in 

previous studies around the country, quantile (Buchanan et al., 2013; Konrad et al., 2008) or linear 

regression (Kennen et al., 2010; McManamay et al., 2013; Pomeroy et al., 2008) can quantify ecological 
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condition for different values of flow alteration. As opposed to the general correlation relationships of 

this study, regression-based flow-ecology relationships can be used to directly produce practical 

environmental flow targets. As a part of this expanded analysis, new bioassessment sites could be 

developed near streamflow gages with data older than WY 1989. Ideally, selecting sites with data from 

at least 1965 would allow for further assessing baseline flow conditions in accordance with the timing of 

urbanization (White and Greer, 2006).  

 The methods supporting environmental flow development with ELOHA have steadily improved 

over the past ten years, but boundaries can always be pushed. The superiority of multimetric 

bioassessment indices suggests potential for a type of multimetric index of flow alteration. Like CSCI, a 

multimetric index of flow alteration would compare modeled or gaged data to regional standards of the 

flow regime. As it is refined, such a multimetric index would contain weighted components of different 

flow regime elements. These weights could be managed to provide one simple value of the most 

dynamically relevant environmental flow alteration to pair with one measure of ecological change. Such 

an approach might simplify environmental flow management and facilitate its continued 

implementation. The recommended ungaged environmental flow management techniques identified in 

So. CA, including SR-HMC, choosing environmental flow metrics amenable to management, calibrating 

rainfall-runoff models to ecologically-relevant criteria, using a multimetric bioassessment index, and 

quantifying flow alteration with Alteration Ratio when feasible, should be extended to other regions. 

Considering the ubiquity of bioassessment sites quantifying CSCI in California, another region of CA 

would be a natural place to extend the methods of this and previous studies (Ch. 2; Ch. 3). As 

improvements are made to the methods supporting environmental flow management, policies 

protecting streams from hydromodification will grow and help conserve the ecological integrity and 

designated uses of streams.
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Chapter 5 
 
Conclusions 
 
 
 
 Streamflow prediction in ungaged basins is a difficult task needed for a wide range of hydrologic 

and hydraulic analyses. These difficulties are amplified when developing environmental streamflow 

criteria due to the challenges with estimating environmental flow metrics. Modeling ungaged basins is 

further complicated in heterogeneous regions with diverse land use, geologic settings, 

hydroclimatological processes, and streamflow regimes, where neighboring watersheds may differ 

substantially. Scientists and engineers must look to address these issues by improving techniques for 

PUB. Doing so will strengthen the scientific integrity and confidence of analyses. This is especially 

important in the growing practice of environmental streamflow management, where critical 

bioassessment sites are typically located in ungaged basins. My dissertation is built around addressing 

some important questions affecting the management of water resources and environment streamflows 

in ungaged basins. Specifically, can uncertain parameters in models of ungaged basins be estimated with 

more confidence? And, does reducing uncertainty in these parameters produce more accurate and 

consistent estimates of streamflow, flow alteration, and flow-ecology relationships in ungaged basins 

from a heterogeneous region?  

These are the two primary questions of my dissertation, which I first address in Chapter 2 with a 

new method for classifying streams called “Hydrologic Model-based Classification” (HMC). Grouping 

hydrologically similar streams according to the regional accuracy of calibrated rainfall-runoff parameter 

is a new way of thinking about hydrologic similarity. Parallels between the regional nature of ELOHA and 

regionalization of ungaged basins facilitated the idea reevaluate hydrologic similarity from the 

perspectives of hydrologic modeling, ungaged basins, and reducing parameter uncertainty. . In water 
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resources management, modeling ungaged basins is often overshadowed by gage data but it becomes 

crucial when such data are unreliable or unavailable. The accuracy of hydrologic models should be 

considered as a component of stream classification when the analysis might facilitate regionalization of 

ungaged basins. In HMC, jackknife resampling is used to transfer intact calibrated parameter sets from 

each model to every other model from a regional catalog. This process creates an error matrix 

describing the regional transferability of calibrated parameters. After grouping models with reciprocally 

accurate parameter sets, multinomial logistic regression with watershed characteristics can assign a new 

ungaged site to a group of parameter sets likely to produce accurate results in a model of that ungaged 

basin. Reducing the pool of infinitely possible parameter sets, down to a small regionally-tested group 

likely to perform well in the model of an ungaged basin, greatly reduces parameter uncertainty. 

 In Chapter 3, I expand HMC with ensemble rainfall-runoff modeling of geographically weighted 

model output to produce a new regionalization framework for ungaged basins, called “Streamflow 

Regionalization with Hydrologic Model-based Classification” (SR-HMC). While typical nearest-neighbor 

regionalization reduces some parameter uncertainty in ungaged basins, this uncertainty is constrained 

by the hydrologic similarly between the ungaged location and nearest calibrated model. In general, 

geographic proximity is a good measure of hydrologic similarity, but it loses strength in diverse regions 

or sparse networks. My modeling framework combines the general accuracy of geographic proximity 

with the power of HMC and model output averaging to improve streamflow estimates at ungaged 

locations across a heterogeneous landscape by reducing parameter uncertainty, compared to nearest-

neighbor regionalization. This framework was developed for any regional analysis of ungaged basins, not 

just those related to environmental streamflow, but I demonstrate SR-HMC with environmental 

streamflow metrics in heterogeneous coastal southern California. 

 In Chapter 4, I focus on management endpoints of environmental flows in ungaged basins. I 

recommend modeling practices and decisions that can increase the accuracy and reliability of flow 
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alteration and flow-ecology relationships in ungaged basins. I further recommend how to identify ideal 

streamflow metrics robust against ungaged regionalization modeling method, flow alteration metric, 

and time period-specific precipitation inputs. My modeling innovations and recommendations have 

been demonstrated to increase the accuracy and reduce the uncertainty of streamflow, flow alteration, 

and flow-ecology relationships in ungaged basins across a heterogeneous region. 

While HMC shows tremendous potential for reducing parameter uncertainty in models of 

ungaged basins, the statistical analyses of my dissertation were performed with a relatively small sample 

size (5 validation sites and 25 ensemble sites). Studying environmental streamflow in a region as 

heterogenous and modified as So. CA greatly limited the number of sites. As such, results indicating the 

increased accuracy of HMC and SR-HMC over traditional classifications and nearest neighbor 

regionalization are not definitive and should be tested in other regions, ideally with larger sample sizes. 

A natural extension to regions further north of Santa Barbara would provide valuable information 

regarding environmental streamflow management and modeling ungaged basins in California. However, 

looking forward, HMC and SR-HMC should be expanded to brand new regions, not only for 

environmental flows but also other applications. New systems with limited hydrologic diversity and 

dense gage networks would provide a deeper understanding of regional parameter uncertainty and test 

the utility of the methods developed in my dissertation. Focusing modeling efforts on simple metrics in 

such regions, such as overall fit or peak flow, would provide a clearer assessment of HMC and SR-HMC. 

My dissertation builds on previous advances in modeling ungaged basins and environmental 

streamflow management to introduce and test new ideas. I develop a novel framework (SR-HMC) for 

modeling ungaged basins that reduces parameter uncertainty. In developing SR-HMC, I test new 

approaches within the ELOHA framework and advance the analysis of streamflow flashiness and drying 

as management endpoints in So. CA. Prioritizing the ecological integrity of streams by managing them in 
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harmony with their natural flow regimes provides a path towards sustainable freshwater resources. My 

dissertation provides technical tools to help facilitate this future.
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Appendix A 
 
 
 

A.1 Additional Background 

Stream classification is typically the second step of ELOHA, following a hydrologic foundation but 

prior to flow alteration and flow-ecology linkages. Streams can be classified at any scale (Poff et al., 

2010) ranging from global (Puckridge et al., 1998), to national (Poff, 1996), across multiple states 

(McManamay et al., 2012), an individual state (Liermann et al., 2012), or a singular river basin (Belmar et 

al., 2011). The Pyne et al. (2017) classification facilitates estimating flow alteration at minimally 

disturbed gage sties; however, ungaged basins are not considered. 

ELOHA requires a regional network of paired bioassessment and streamflow data, while 

regionalization of ungaged basins utilizes a network of hydrologic models. Different types of statistically-

based regionalization have been used within stream classification to model streamflow metrics in 

ungaged basins (Brown et al., 2014; Carlisle et al., 2010a; Lane et al., 2017; Santhi et al., 2008), but has 

not been used to model entire time series of discharge with rainfall-runoff models. 

A.2 Additional Results 

A.2.1 Combined Inductive and Deductive Approaches 

An expanded cluster analysis forcing drainage area, HGC, RBI, and < 1 cfs as predictors did not 

improve classification over individual inductive and deductive approaches (Figure A2). The combined 

cluster analysis was dominated by drainage area and produced the same clusters as the traditional 

deductive approach. Using RBI and < 1 cfs in multinomial logistic regression to predict deductively 

produced clusters of watershed characteristics was unsuccessful with prediction errors between 52% 

and 80% (between 5 and 12 sites correctly predicted). Similarly, drainage area and HGC were unable to 

predict inductively produced clusters of flow metrics with prediction errors between 52% and 60% 

(between 10 and 12 sites correctly predicted). A new multinomial regression model was able to predict 
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flow metric clusters with 16% error (21 sites correctly predicted) using drainage area, % clay soil, 

minimum elevation, and annual minimum precipitation (Figure A3). Drainage area was the strongest 

predictor for discerning flow permanence with intermittent streams containing the smallest basins, 

perennial having the biggest, and ephemeral in between. Intermittent streams were also generally 

found at higher elevations where soils contain less clay and annual minimum precipitation volumes are 

generally larger (Figure A3). A second successful multinomial regression model containing drainage area, 

% silt soil, baseflow index, and relative humidity was able to predict whether a gage was classified as 

reference by GAGES-II with 12% error (22 sites correctly predicted) (Figure A4). No combination of RBI, < 

1 cfs, drainage area, and HGC could predict a gage’s reference status, wherein all sites were classified as 

non-reference in multinomial logistic regression, with some minor exceptions. Drainage area provided 

the clearest distinction of reference status, with smaller basins tending to be less altered than larger 

ones. These smaller basins contain higher silt content and Baseflow Indices. Flashiness and flow 

permanence metrics were not different between reference and non-reference gages (Figure A4). The 

reference class provided a significantly smaller ACE (0.4, Figure A4) than the non-reference class (1.9, 

Figure A4). The ACE across both sites is much closer to the non-reference class (1.4, Figure A4). 

A.3 Additional Discussion 

A.3.1 Stream classification in coastal southern California 

 The classifications presented in this study each provide important complementary information 

characterizing streams in coastal southern CA. Three distinct classes of flow permanence (ephemeral, 

intermittent, and perennial) from the inductive approach provided the strongest individual classification, 

highlighting the heterogeneity of flow permanence in So. CA and its importance in management. Results 

showing inductive classification outperforming deductive agree with a study across New Zealand 

(Snelder and Booker, 2013) and support the idea put forth in ELOHA that stream classification should 

primarily be focused on hydrologic similarity, when feasible (Poff et al., 2010). This study has shown that 
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deductive classification with watershed area and percentage of relatively low infiltration high runoff 

soils, as HGC (USDA NRCS, 2007), can provide a reliable alternative classification to that of ecologically-

relevant flow metrics. Drainage area is an important watershed characteristic that appeared in all 

classifications utilizing watershed data. It has a complex spatial relationship with sub-regional 

topography and precipitation wherein bigger basins typically encompass lower, flatter elevations with 

less orographic influence and associated rainfall. Despite receiving less average rainfall, streams in these 

large watersheds typically have greater flow magnitude and permanence due to the slow accumulation 

of baseflow from large contributing areas. Soil metrics, such as HGC, play a role in this phenomenon by 

controlling how rainfall is partitioned into fast-acting overland flow or gradual baseflow. Many 

quantifiable watershed characteristics are fundamental to the hydrologic processes that control how 

rainfall becomes streamflow; however, drainage basin size and soil type certainly play important roles in 

controlling the magnitude, duration, frequency, timing, and rate of change of streamflow, and are 

shown to help accurately separate streams in So. CA into distinct classes as potential management units. 

Deductive classification is performed less frequently than inductive approaches and does not always 

characterize hydrologic similarity (Carlisle et al., 2010a; Snelder et al., 2005), but it still provides 

important information regarding spatial variation of streamflow (Olden et al., 2012), specifically in 

reference to drainage area and HGC in So. CA. While comparison of different stream classification 

approaches for the same sites has not been frequently performed in the literature, results from this 

study agree with the findings of Snelder and Booker (2013) wherein a variety of diverse classifications, 

including inductive and deductive approaches, can be accurately implemented across a region. 

 Inductive and deductive approaches to stream classification each have their merits and 

drawbacks (Olden et al., 2012), but joining them into one combined classification can provide synergistic 

information regarding regional streamflow. The two successful traditional combined classifications 

produced for So. CA in this study (Figure A3 and Figure A4) are similar to the state-wide classifications 
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produced by Lane et al. (2017) and Pyne et al. (2017), respectively. Like this study, Lane et al. (2017) 

used watershed characteristics to predict hydrologic classes generated by the k-means algorithm; 

however, they considered a suite of hydrologic metrics more relevant to the entire state, not just 

streamflow flashiness and permanence. This led them to produce a wide range of hydrologic regimes 

characterizing typical annual hydrographs. These general flow regimes are useful at a state-wide scale 

but provide no information regarding the heterogeneity of the south coast. According to Lane et al. 

(2017), the hydrologic regime for practically every stream in the coastal southern CA can be 

characterized as “rain and seasonal groundwater”, which occur at low coastal elevations with limited 

winter precipitation. These streams are abundant in the south coast, but streams with higher 

permanence also exist throughout the region (Devil Canyon, San Luis Rey, Sandia, and Santa Margarita 

Sump) and are more characteristic of Lane et al. (2017)’s “perennial groundwater and rain” regime 

containing more stable flows and little clay soil at low elevations. Still other streams in the south coast 

resemble the “flashy, ephemeral rain” hydrologic regime produced by Lane et al. (2017), including 

Carpinteria and Santiago, with its characteristic low elevation and high clay soil content. Some of the 

watershed characteristics used to predict flow permanence in this study were the same as those used to 

predict general hydrologic regime across the entire state. Drainage area, percent clay soil, basin 

elevation, and a measure of precipitation were common predictors of hydrologic regime between 

studies (Lane et al., 2017). This consistency across two different, but overlapping, geographic scales 

suggests the potential for a new type of nested classification, wherein similar watershed characteristics 

are used to differentiate general large-scale hydrologic regimes, and small-scale regimes specific to local 

management needs. This would help stratify stream management for different stakeholders who might 

consider management at different scales.  

 Essentially the inverse of Lane et al. (2017), Pyne et al. (2017) classified all California stream 

segments by watershed characteristics, and then predicted class membership with hydrologic metrics. 
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This process by Pyne et al. (2017) was inaccurately duplicated in So. CA using two flow metrics known to 

be ecologically-relevant in the south coast (Gasith and Resh, 1999; Mazor et al., 2018; Parker et al., 

2019); however, the traditional deductive classification produced in this study (Figure 2.4) had some 

similarities with the state-wide classification. Winter precipitation, geology, soil content, and mean 

elevation separated stream segments across the state (Pyne et al., 2017), while basin area and soil 

content provided distinct classes in the south coast. Furthermore, the multinomial logistic regression 

model predicting GAGES-II reference status in the south coast (Figure A4) provides information 

complementary to the Random Forest (RF) model produced by Pyne et al. (2017), wherein they 

considered a new set of watershed characteristics describing disturbance, and found the total volume of 

reservoirs, impervious cover, freshwater withdrawals, high-intensity developed land use, cropland, and 

population density were most significant at determining reference status for all stream segments across 

CA. Estimating flow alteration and its causes was outside the scope of this study; however, a logistic 

regression model containing typical watershed characteristics was able to accurately determine USGS 

streamflow gages’ reference status. The similarities between deductive classification and a combined 

approach for determining reference status in Pyne et al. (2017) and this study, while not as strong as 

similarities between inductive and combined classification in Lane et al. (2017), again suggest the 

potential behind a type of nested classification. It is not surprising that inductively-based combined 

classification, as was performed in Lane et al. (2017) and Figure A3, provides more similar results than 

deductively-based combined classification between state-wide and south coast regional scales. 

California is an extremely heterogeneous state, but the diversity of streamflow in the south coast is 

more representative of state-wide streamflow than the range of watershed characteristics is 

representative of the entire state. This finding provides more support behind primarily classifying 

streams using hydrologic similarity, especially in heterogeneous landscapes when different geographic 

scales may be important. 
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 A comparison between traditional combined classification approaches (Figure A2, Figure A3, and 

Figure A4) and Hydrologic Model-based Classification (Figure 2.5) shows similar and complementary 

information regarding south coast streams. Drainage area and soil content were the most consistent 

watershed characteristics used to classify streams from the region, regardless of approach. In addition 

to these important metrics, HMC classes were predicted by two measures of precipitation: annual 

minimum and annual average. Precipitation is the primary input to rainfall-runoff models, and so its 

importance for determining low-error classes is not surprising. A deeper look into the average values of 

watershed characteristics for each class shows wider spread and stronger cluster identity for HMC. 

Multinomial logistic regression provided clearer separation of HMC classes (Figure 2.5) than flow 

permanence (Figure A3) and reference status (Figure A4) classes, resulting in more accurate class 

prediction with an error of 4% compared to 16% and 12%, respectively.  

A.3.2 Stream classification for regionalizing ungaged basins 

Because the expanded cluster analysis forcing drainage area, HGC, RBI, and < 1 cfs as predictors 

produced the same classification as the deductive approach, it also contained an ACE of 0.4 (Figure A2). 

Similarly, combined classification predicting streamflow classes using multinomial logistic regression 

produced the same ACE as traditional inductive classification (ACE 0.6; Figure A3). 

 While Hydrologic Model-based Classification demonstrated the most overall potential in 

ungaged basins, it did not produce all the lowest error classes. The 0.5 ACE produced by HMC class five 

(Figure 2.5) was larger than a few traditional classes including the inductive intermittent class (ACE 0.2; 

Figure 2.3), the deductive small basin/low HGC and large basin/high HGC classes (ACE 0.3 and 0.2, 

respectively; Figure 2.4), and the combined classification reference class (ACE 0.4; Figure A4). 

Furthermore, deductive medium-sized basins/high HGC and small basins/high HGC produced the same 

ACE values of 0.5 (Figure 2.4). HMC class five contains a comparably larger ACE because it has many 

more sites than any other class, regardless of classification. The most sites belonging to one of the six 
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traditional classes with an ACE of 0.5 or below is 7, about half the 13 sites in hydrologic model-based 

class five. While ACE is normalized to the number of sites in a class, the diversity of a class increases with 

the number of sites because no two sites are alike, especially in the south coast. The increased 

heterogeneity associated with larger classes inherently reduces their predictive ability. The presence of 

one large class is unique to HMC and reflects the tremendous accuracy of the other four classes (ACE 0.0 

to 0.1, Figure 2.5), which more than compensate for class five to overall produce the most accurate 

classification for estimating flow in ungaged basins.  

A.4 Additional Tables and Figures 
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Table A1: Study sites details. Drainage area data are from the National Hydrography Dataset Plus Version 2 (NHDPlus V2) (McKay et al., 2012), impervious data 
are from StreamStats (USGS, 2019c), and all other watershed characteristics, including reference gage status, are from GAGES-II (Falcone, 2011). Mean Annual 

Flowrates were computed from gage data. 

              Mean Annual 
Flowrate (cfs) 

Site Name USGS 
Gage 

Ref-
erence 

Area 
(km2) 

Imper
vious 

% 

HGC 
% 

Clay 
% 

Silt 
% 

Sand 
% 

Basin Min 
Elevation 

(m) 

Catchmen
t Annual 

Min 
Precip 
(cm) 

Catchmen
t Annual 

Avg 
Precip 
(cm) 

BFI 
% 

RH 
% 

WY 
2005 

WY 
2006 

WY 
2007 

Andreas 10259000 Ref 23.2 0.0 12 10 30 59 177 1.0 32 49 42 6.1 2.2 0.9 

Arroyo 
Seco 

11098000 Ref 42.5 0.5 43 18 48 34 398 1.0 63 38 54 52 8.6 0.9 

Arroyo 
Trabuco 

11047300 Non-ref 141.4 19.9 16 25 43 33 18 1.0 34 24 62 69 13 5.1 

Campo 11012500 Non-ref 222.3 7.0 7.4 10 20 70 623 2.0 42 41 47 2.0 0.4 0.1 

Carpinteria 11119500 Non-ref 45.4 0.1 23 23 42 34 6.6 0.0 44 30 54 18 3.7 0.0 

Deep Creek 10260500 Non-ref 354.0 2.4 52 12 24 64 915 2.0 23 33 40 171 63 7.8 

Devil 
Canyon 

11063680 Non-ref 14.7 0.7 49 14 32 54 598 3.0 80 40 47 2.7 4.9 2.1 

East Twin 11058500 Non-ref 23.1 0.7 41 14 31 56 483 2.2 61 34 45 2.7 5.4 1.6 

Jamul 11014000 Non-ref 182.9 0.5 33 19 39 43 153 2.0 36 34 56 23 0.1 0.0 

Lytle 11062000 Non-ref 119.8 0.4 16 11 31 58 725 2.0 91 54 48 37 32 3.1 

Matilija 11114495 Ref 128.5 0.0 37 22 42 36 348 0.0 72 39 50 156 37 4.3 

Plunge 11055500 Non-ref 44.2 1.3 40 13 31 55 485 2.4 45 29 43 14 7.9 2.1 

Poway 11023340 Non-ref 110.0 21.8 18 23 38 39 75 1.0 34 24 60 36 7.3 4.5 

Rainbow 11044250 Non-ref 27.0 4.3 29 15 31 54 161 1.0 45 30 59 16 1.4 0.4 

San Luis 
Rey 

11042000 Non-ref 
1433.

8 
3.1 32 15 28 57 1.2 1.0 31 35 53 229 29 9.7 

San Mateo 11046300 Ref 210.2 0.1 50 17 35 47 120 1.7 46 26 56 90 3.3 0.1 

Sandia 11044350 Non-ref 51.1 1.3 37 19 39 42 124 1.0 45 28 59 30 6.1 4.0 

San Jose 11120500 Ref 15.8 0.4 9.5 20 45 35 26 0.7 48 19 61 14 3.0 0.2 
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Santa 
Margarita 

Sump 
11044300 Non-ref 

1576.
9 

4.6 29 15 30 55 99 1.0 43 29 51 82 18 9.4 

Santa 
Ysabel 

11025500 Non-ref 290.9 0.1 52 16 31 52 247 2.0 43 32 49 29 1.7 0.0 

Santa 
Maria 

11028500 Non-ref 147.7 2.6 38 17 32 51 397 2.0 44 27 53 16 0.4 0.1 

Santiago 11075800 Non-ref 32.9 0.1 7.8 23 46 31 374 1.0 49 25 59 20 1.8 0.0 

Sespe 
Fillmore 

11113000 Non-ref 651.0 0.1 41 22 42 36 168 0.0 52 45 45 515 211 15 

Sespe 
Wheeler 
Springs 

11111500 Ref 131.9 0.1 48 22 41 37 1028 0.0 69 40 45 87 22 1.4 

Sweetwate
r Descanso 

11015000 Ref 126.0 0.3 26 13 25 62 754 3.0 62 40 46 21 3.7 1.0 
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Figure A1: Geographical distribution of classes, specifically for (a) traditional inductive approach; (b) traditional deductive approach; (c) GAGES-II reference 
sites; (d) new hydrologic model-based method.
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Class 

Drainage 
Area 
(km2) 

HGC 
% RBI < 1 cfs 

Avg 
Cluster 
Error 

1 143.9 17 0.09 0.48 0.6 

2 206.6 44 0.08 0.006 0.5 

3 24.0 10 0.09 0.55 0.3 

4 1220.6 34 0.10 0.33 0.2 

5 35.4 37 0.09 0.28 0.5 

All     0.4 

 

Figure A2: Results for expanded clustering as a combined inductive and deductive approach to traditional 
classification
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Class 

Drainage 
Area 
(km2) 

Clay 
% 

Min 
Elevation (m) 

Annual 
Min Precip 

(cm) 

Avg 
Cluster 
Error 

1 77.8 15 594 1.5 0.2 

2 450.5 18 283 1.2 0.9 

3 130.6 18 234 1.4 0.6 

All     0.6 
 

Logistic Regression 
Landscape Variable Definition Source 

DRAIN_SQKM Total upstream drainage area (km2) NHDPlus V2 (McKay et al., 2012) 

CLAYAVE Percentage of clay soil (%) GAGES-II (Falcone, 2011) 

ELEV_MIN_M_BASIN Minimum basin elevation (m) GAGES-II (Falcone, 2011) 

CAT_AnnMinPrecip 
Mean annual minimum precipitation 

of NHD catchment (cm) 
GAGES-II (Falcone, 2011) 

 
Figure A3: Results for predicting inductively produced streamflow classes, as a combined inductive and deductive 

approach to traditional classification. 

 

Class 

Drainage 
Area 
(km2) 

Silt 
% 

BFI 
% 

RH 
% RBI < 1 cfs 

Avg 
Cluster 
Error 

Ref 96.9 38 36 51 0.08 0.35 0.4 

Non-ref 303.8 34 33 52 0.10 0.35 1.9 

All       1.4 
 

Logistic 
Regression 
Landscape 
Variable Definition Source 

DRAIN_SQKM Total upstream drainage area (km2) 
NHDPlus V2 (McKay et al., 

2012) 

SILTAVE Percentage of clay soil (%) GAGES-II (Falcone, 2011) 

BFI_AVE Baseflow Index (% as baseflow/total flow) GAGES-II (Falcone, 2011) 

RH_BASIN Mean basin relative humidity (%) GAGES-II (Falcone, 2011) 

 
Figure A4: Results for predicting reference site status, as a combined inductive and deductive approach to 

traditional classification. 
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Table A2: Calibration results with model % errors of RBI and < 1 cfs relating model accuracy to gaged data. EFCC 
(%) refers to Equation 2.3. Sites with high flashiness, “H”, contained a gaged RBI greater than 0.125 during 

WY2005-2007; sites with low flashiness, “L”, had an RBI less than 0.075; sites with average flashiness, “A”, had an 
RBI between 0.075 and 0.125.For flow permanence, ephemeral streams are represented by “E” and contained 

gaged streamflow < 1 cfs more than half the time during WY2005-2007; perennial streams, “P”, had flow < 1 cfs 
less than 10% of time; and intermittent streams, “I”, had streamflow < 1 cfs 10%-50% of time. 

Site Name 
Gage 
RBI Flashiness 

Model 
% Error 

RBI 

Gage 
< 1 
cfs 

Flow 
Permanence 

Model % 
Error < 1 

cfs 
EFCC 
(%) 

Andreas 0.05 L 0.0 0.25 I 0.0 0.0 

Arroyo Seco 0.06 L 0.3 0.26 I 0.1 0.2 

Arroyo Trabuco 0.16 H 0.1 0.07 P 0.6 0.4 

Campo 0.04 L 0.1 0.89 E 0.1 0.1 

Carpinteria 0.08 A 0.1 0.72 E 0.0 0.1 

Deep Creek 0.12 A 0.9 0.04 P 0.5 0.7 

Devil Canyon 0.03 L 0.3 0.05 P 0.6 0.4 

East Twin 0.08 A 0.4 0.16 I 0.2 0.3 

Jamul 0.12 A 0.2 0.85 E 1.1 0.7 

Lytle 0.05 L 0.3 0.30 I 0.1 0.2 

Matilija 0.05 L 0.3 0.07 P 0.3 0.3 

Plunge 0.08 A 0.4 0.10 I 0.0 0.2 

Poway 0.19 H 0.6 0.02 P 1.8 1.2 

Rainbow 0.20 H 0.6 0.69 E 0.2 0.4 

San Luis Rey 0.04 L 0.2 0.02 P 0.8 0.5 

San Mateo 0.07 L 0.1 0.62 E 0.0 0.1 

Sandia 0.09 A 0.9 0.00 P 0.0 0.4 

San Jose 0.16 H 0.1 0.66 E 0.0 0.0 

Santa Margarita 
Sump 

0.13 H 1.1 0.00 P 0.0 0.6 

Santa Ysabel 0.11 A 0.5 0.76 E 0.0 0.3 

Santa Maria 0.09 A 0.1 0.85 E 0.0 0.1 

Santiago 0.07 L 0.3 0.75 E 0.0 0.2 

Sespe Fillmore 0.09 A 0.3 0.00 P 0.0 0.1 

Sespe Wheeler 
Springs 

0.06 L 0.4 0.20 I 0.1 0.2 

Sweetwater 
Descanso 

0.07 L 0.6 0.37 I 0.9 0.7 

Mean   0.4   0.3 0.3 
Median   0.3   0.1 0.3 
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Appendix B 
 
 
 

B.1 Additional Background 

By definition, watershed models can never fully represent reality, but they have improved 

significantly since their laboratory origins as scaled-down physical representations of watershed 

processes (Chery Jr., 1966). Complex modern watershed modeling methods can be divided into three 

general groups: empirically-based statistical models, physically-based models conserving mass, 

momentum, and energy, and process-based conceptual models with simpler physics (Sitterson et al., 

2017). Conceptual and physically-based watershed models, beginning with the Stanford Watershed 

Model (Crawford and Linsley, 1966), are often referred to as rainfall-runoff models and use mathematic 

equations to simulate processes controlling streamflow, which grounds them in theoretical physics and 

enables them to produce entire time series of discharge from which any flow metric can be computed 

(Vaze et al., 2011). Conversely, statistical models can typically only estimate specific flow metrics for 

which they have been conditioned (Helsel and Hirsch, 2002). Conceptual models offer greater flexibility 

than their physically-based counterparts by providing varying levels of physical complexity (Duan et al., 

1992), which becomes important when data are too scarce or unreliable for a full physically-based 

model. 

 The physical complexity of conceptual models can be separated into three modeling structures: 

lumped, distributed, and semi-distributed (Sitterson et al., 2017). The simplest type, lumped, utilizes 

basin-scale data with basic physics. More complicated distributed structures are required for physically-

based models and can be use in conceptual models. These structures implement high-resolution 

spatially-variable data across a user-generated grid (Sitterson et al., 2017), and can produce more 

accurate results when operated by an experienced modeler (Carpenter and Georgakakos, 2006), but 

model complexity is not always correlated with accuracy (Beven, 1989; Grayson et al., 1992; Reed et al., 
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2004). A semi-distributed conceptual watershed model aggregates multiple sub-basin lumped models to 

provide finer detail of a watershed than a singular lumped conceptual model, without the input and 

computational burdens of fully-distributed physically-based models (Sitterson et al., 2017). Even though 

they are not fully physically-based, lumped and semi-distributed conceptual models are process-

oriented and can still provide a physical understanding of the mechanisms that transform rainfall into 

streamflow, especially those related to losses (Vaze et al., 2011) and baseflow (Skaugen and Lawrence, 

2017).  

 Conceptual models further benefit from manual or automatic calibration to increase their 

accuracy through adjusting non-calculated parameter(s) such that modeled hydrographs better match 

observed data (Vaze et al., 2011). These parameter(s) are used in the simplified conservation of mass, 

momentum, and energy equations, but cannot be calculated directly with available watershed data. 

Guided by measured streamflow, calibration of rainfall-runoff models optimizes some performance 

metric(s), typically a singular measure of overall hydrograph fit (Bardossy, 2007; Beven, 2012) such as 

the Nash-Sutcliffe Efficiency (NSE) (Jain and Sudheer, 2008; Nash and Sutcliffe, 1970). NSE has a long 

history as a commonly applied model assessment criterion, but it and other similar overall-fit metrics 

based on mean flow are biased towards high flow accuracy (Jain and Sudheer, 2008; Legates and 

McCabe, 1999). Prioritizing the accuracy of high flows is ideal for managing large quantities of water, 

such as for flood control, but is not preferred for many other model applications, such as managing 

environmental flows, wherein the accuracies of ecologically-relevant metrics, often describing low flows 

and streamflow variability, are most important (Parker et al., 2019). Flow regime elements most crucial 

to environmental flow studies are typically not specifically considered in best overall-fit metrics. 

Unfortunately, gaged streamflow is not always available to calibrate rainfall-runoff models and 

so models must be used to make streamflow predictions in ungaged basins (PUB). Statistical, 

conceptual, and physically-based modeling techniques are used to make PUBs (Blöschl et al., 2013; 
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Carlisle et al., 2010a; Kennen et al., 2008; Peel and Blöschl, 2011; Razavi and Coulibaly, 2013; Sanborn 

and Bledsoe, 2005; State of Colorado, 2016); however, conceptual models typically offer flexibility 

without the confounding effects of too many parameters. As such, they are more commonly used than 

statistical or physically-based models, respectively (Vaze et al., 2011). Some of this flexibility involves 

easily changing parameters to estimate historical or future conditions, adjusting time scales, producing 

time series data, and assessing management scenarios (Blöschl et al., 2013; Buchanan et al., 2013; 

Hydrologic Engineering Center, 2015; Kendy et al., 2012; Pomeroy et al., 2008; Razavi and Coulibaly, 

2013; State of Colorado, 2016). To this point, a calibrated conceptual model outperformed empirical 

statistical models in estimating ungaged streamflow across New Zealand (Booker and Woods, 2014). 

The physically-based elements of conceptual models, which allow them to accurately integrate 

landscape data into parameter estimates, reduce parameter uncertainty compared to statistical models 

during regionalization (Vaze et al., 2011). Physically-based models have the potential for the same 

benefits during regionalization, but usually contain too many parameters for sensical donation to a 

model of an ungaged basin (Vaze et al., 2011).  

To quantify and reduce parameter uncertainty, Bayesian statistics are commonly applied to 

iteratively update parameter values based on the probability of their accuracy, given some prior 

knowledge of their values (Gelman et al., 2013). The Generalized Likelihood Uncertainty Estimation 

(GLUE) methodology (Beven and Binley, 1992) and the Bayesian Recursive Estimation (BaRE) framework 

(Thiemann et al. 2001) estimate parameter uncertainty using Bayesian statistics, and can be used to 

reduce modeled flow inaccuracies caused by parameter uncertainty. These two approaches for 

quantifying and reducing uncertainty are typically applied to individual models and not across a region. 

Knowledge of parameters from other models within a region may be used to inform a prior likelihood of 

estimated parameter accuracy, but GLUE and BaRE are not designed explicitly for regionalization. 

Furthermore, as with other methods for quantifying uncertainty, such as the Metropolis algorithm 
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(Kuczera and Parent, 1998) or the differential evolution adaptive Metropolis (DREAM) (Vrugt et al., 

2008), GLUE and BaRE rely on high-dimensional automated Monte Carlo sampling to assess the 

likelihood a certain parameter or parameter set fits a model. This approach for quantifying uncertainty is 

computationally intensive, especially in heterogeneous regions where a modeler might have a poor 

understanding of prior parameter likelihoods and is not incorporated well into many rainfall-runoff 

modeling software.  

B.2 Additional Tables and Figures 

Logistic Regression 
Landscape 
Variable Definition Source 

DRAIN_SQKM Total upstream drainage area (km2) NHDPlus V2 (McKay et al., 2012) 

SANDAVE Percentage of sandy soil (%) GAGES-II (Falcone, 2011) 

PPTAVG_CAT 
Mean annual precipitation of NHD 

catchment (cm) 
GAGES-II (Falcone, 2011) 

CAT_AnnMinPrecip 
Mean annual minimum precipitation 

of NHD catchment (cm) 
GAGES-II (Falcone, 2011) 

 

Cluster 

Drainage 
Area 
(km2) 

Sand 
% 

Annual Avg 
Precip (cm) 

Annual 
Min Precip 

(cm) 
1 146.4 41 35 1.9 

2 463.8 38 51 1.0 

3 93.4 33 39 0.6 

4 151.9 59 40 1.6 

5 222.5 52 55 1.8 

Table B1: HMC results for creating ensembles with landscape variables to place ungaged sites into reciprocally low 
error clusters. 
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Appendix C 
 
 
 

C.1 Additional Background 

The ELOHA framework provides a consensus methodology for developing environmental flow 

standards across an entire region. The framework can be broken down into four major components: 1) 

Hydrologic foundation; 2) River classification; 3) Flow alteration; 4) Flow-ecology linkages (Poff et al., 

2010). 

Flow-ecology relationships provide important management insight, grounded in a scientific 

approach, to connections between streamflow and ecological integrity, for modified and natural rivers 

(Poff et al., 2010). Flow metrics comprising all elements of the flow regime have been used to develop 

both quantitative and qualitative flow-ecology relationships with many types of bioassessment 

endpoints, including macroinvertebrates, fish, and vegetation (Poff and Zimmerman, 2010). When 

available, existing literature of regional flow-ecology relationships is recommended as a foundation for 

developing environmental flows (Davies et al., 2014). To produce flow-ecology relationships, two pieces 

of data are needed for the same stream site: a measure of flow alteration and a measure of ecological 

change. With these two data for multiple stream sites in a region, relationships can be quantified with a 

variety of statistical techniques (Poff and Zimmerman, 2010). The most common approach uses 

correlation between flow alteration and ecological change (Booth et al., 2004), sometimes in concert 

with a type of regression (Buchanan et al., 2013; Kennen et al., 2010; Konrad et al., 2008; McManamay 

et al., 2013; Pomeroy et al., 2008). 

 Developing flow-ecology relationships begins with establishing bioassessment sites for 

measuring ecological change. Rapid Bioassessment Protocols (Barbour et al., 1999) provide a framework 

of standardized methods for determining the degradation of ecological integrity from reference 

conditions by deriving ecological metrics from biological surveys. Ideally, ecological metrics calculated 
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from biological surveys quantify not just taxonomy, but also trait-based functional attributes, which can 

provide more generalized flow-ecology relationships that are transferable across spatial and temporal 

scales (Poff, 1997). Nonetheless, results from taxonomic biological surveys may be comparable across 

regions when taxonomic completeness is considered, as measured by the proportion of expected taxa to 

observed taxa (Observed
Expected

, O
E

) (Hawkins, 2006).  

Competing statistical and rainfall-runoff modeling approaches have produced different 

estimates of the environmental flow regime within studies spanning the entirety of New Zealand 

(Booker and Woods, 2014) and the United States (Carlisle et al., 2010a), Kentucky (Murphy et al., 2013), 

and coastal southern CA (Ch. 2). 

C.2 Additional Discussion 

C.2.1 Flow-ecology relationships in ungaged basins 

Creating flow-ecology relationships in ungaged basins is made easier with a multimetric 

bioassessment index. When normalized by benchmark ecological conditions, multimetric indices such as 

CSCI, reduce uncertainty regarding which ecological metrics and formulations of those metrics should be 

prioritized over others to create flow-ecology relationships. Without the multimetric index in this study, 

a full analysis of ecological alteration would complicate results significantly. Despite these advantages of 

multimetric indices over simple taxonomic abundance or richness, many previous environmental flow 

studies quantifying flow-ecology relationships have not considered metrics describing function 

attributes and habitat characterizations. This can be seen for cottonwood trees in Colorado (Wilding et 

al., 2014), for fish in Michigan (Zorn et al., 2008) and the Central Valley of California (Marchetti and 

Moyle, 2001), for fish and riparian cover in the Upper Tennessee River basin (McManamay et al., 2013), 

and for both periphyton and invertebrates in New Zealand (Clausen and Biggs, 1997). To take advantage 

of more generalized flow-ecology relationships, some studies have incorporated flow or habitat guilds 

and life history strategies of fishes, such as in the SW US (Chen and Olden, 2017), North Carolina (Phelan 
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et al., 2017), Massachusetts (Armstrong et al., 2011), Georgia (Freeman and Marcinek, 2006). Similarly, 

abundance and richness data of invertebrates belonging to Ephemeroptera, Plecoptera, and Trichoptera 

(EPT) taxa, and other characteristic functional, behavioral, or habitat groups, are often used as indicators 

of water quality (Barbour et al., 1999), and have been used extensively in generalized flow-ecology 

studies, such as in the Piedmont (Pomeroy et al., 2008) and entire state of North Carolina (Phelan et al., 

2017), across the Western US (Konrad et al., 2008), within the Potomac River basin (Buchanan et al., 

2013), and across New Jersey (Kennen et al., 2013; Kennen et al., 2010). While these ecological metrics 

generally provide more robust relationships than metrics of individual taxonomy, they still require 

estimates of ecological condition for both baseline and altered flows. As such, multimetric indices 

eliminate the need for two distinct measures of ecological condition per site. Examples of multimetric 

indices include the Great-River Macroinvertebrate Indices of Condition (GRMINs) (Angradi et al., 2009), 

Canadian Ecological Flow Index (CEFI) (Armanini et al., 2011), New Jersey Impairment Score (NJIS) 

(Kennen et al., 2013), and Regional Biological/Invertebrate Indices of Biotic Integrity (IBI) spanning the 

US from the Tennessee Valley (Kerans and Karr, 1994) to the Chesapeake Bay (Weisberg et al., 1997), to 

Northern (Rehn et al., 2005) and Southern coastal California (Ode et al., 2005), to the southeast (Van 

Dolah et al., 1999), and all regions in between. The CSCI has been applied across California from the 

Sierra Nevada Mountains (Carlisle et al., 2016) to So. CA (Mazor et al., 2018; Stein et al., 2017a; Stein et 

al., 2017b). 
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C.3 Additional Tables and Figures 

 

Figure C1: Regional average annual precipitation compared to the 11-year running average. The first box captures 
WY 1989-1991, which is characterized by below average precipitation. The second box displays WY 1993-1995 with 

above average precipitation. The third surrounds WY 1999-2001 and another dryer than average period, but less 
dry than WY 1989-1991. The final box captures WY 2005-2007 with its representative dry, average, and wet 

precipitation. 

 

Table C1: Land use parameters in HEC-HMS models of altered and baseline condition: impervious data from basin 
delineations and verified with StreamStats (USGS, 2019c), Time of Concentration computed from basin delineations 

and the Kirpich Method (Kirpich, 1940), and Clark Unit Hydrograph Storage Coefficient estimated with basin 
delineations and according to ADOT (2014). 

 
Land use parameters for EFCC calibrated 

WY 2005-2007 models 
 Historical land use parameters 

 
Impervious 

% 

Time of 
Concentration 

(hr) 

Clark Unit 
Hydrograph 

Storage 
Coefficient (hr) 

 
Impervious 

% 

Time of 
Concentration 

(hr) 

Clark Unit 
Hydrograph 

Storage 
Coefficient (hr) 
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Chino 
Canyon 

0.2 0.4 0.2  0 0.5 0.2 

Los 
Coches 

9.7 1.4 0.6  0 1.6 0.8 

Mission 4.3 1.0 0.5  0 1.2 0.7 

Mission 
Rocky 

0.7 0.7 0.3  0 0.8 0.4 

Santa 
Cruz 

0.0 3.3 1.4  0 3.8 1.9 

 

 

Table C2: Gaged and ungaged flashiness and drying flow alteration metrics. “Gaged Modeled historical land use” is 
considered the most accurate, or “reference” measure of flow alteration for comparing to ungaged estimates, and 

is indicated by *. 

Flashiness Alteration Ratio 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon RBI 1.0573 1.8397 1.5281 2.8708 1.6134 

Los 
Coches RBI 3.2817 1.4648 1.5364 24.8440 1.6536 

Mission RBI 1.2959 0.6214 1.2369 1.1935 1.6279 

Mission 
Rocky 

RBI 1.0511 0.9448 0.8339 0.8057 1.1092 

Santa 
Cruz RBI 1.0026 1.1065 0.4527 0.4488 0.6196 

 
Flashiness Alteration 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon RBI 0.0037 0.0313 0.0237 0.0447 0.0261 

Los 
Coches RBI 3.2817 1.4648 1.5364 24.8440 1.6536 

Mission RBI 0.0387 -0.1033 0.0325 0.0275 0.0654 
Mission 
Rocky 

RBI 0.0056 -0.0067 -0.0228 -0.0276 0.0113 

Santa 
Cruz RBI 0.0002 0.0061 -0.0769 -0.0781 -0.0390 

 
Flashiness Flow Alteration (Baseline normalized) 

Site Gaged Ungaged 
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Environmental 
Flow Metric 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon RBI 0.0573 0.8397 0.5281 1.8708 0.6134 

Los 
Coches RBI 2.2817 0.4648 0.5364 23.8440 0.6536 

Mission RBI 0.2959 -0.3786 0.2369 0.1935 0.6279 

Mission 
Rocky 

RBI 0.0511 -0.0552 -0.1661 -0.1943 0.1092 

Santa 
Cruz RBI 0.0026 0.1065 -0.5473 -0.5512 -0.3804 

 
Flashiness Flow Alteration (Altered normalized) 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon RBI 0.0542 0.4564 0.3456 0.6517 0.3802 

Los 
Coches RBI 0.6953 0.3173 0.3491 0.9597 0.3953 

Mission RBI 0.2283 -0.6092 0.1915 0.1621 0.3857 
Mission 
Rocky 

RBI 0.0486 -0.0584 -0.1992 -0.2411 0.0985 

Santa 
Cruz RBI 0.0026 0.0963 -1.2090 -1.2280 -0.6140 

 

Flashiness Flow Alteration (Average normalized) 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon RBI 0.0557 0.5914 0.4178 0.9666 0.4694 

Los 
Coches RBI 1.0658 0.3771 0.4230 1.8452 0.4926 

Mission RBI 0.2578 -0.4669 0.2118 0.1764 0.4779 
Mission 
Rocky 

RBI 0.0498 -0.0567 -0.1812 -0.2152 0.1036 

Santa 
Cruz RBI 0.0026 0.1011 -0.7535 -0.7608 -0.4698 

 

Drying Alteration Ratio 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 
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Chino 
Canyon < 1 cfs 0.9978 0.7816 1.2298 1.2427 1.2058 

Los 
Coches < 1 cfs 0.9826 0.8816 0.8576 0.8903 1.1523 

Mission < 1 cfs 0.9709 0.8007 1.0167 0.8011 1.1196 
Mission 
Rocky 

< 1 cfs 0.9870 0.9561 0.9794 0.7775 1.0642 

Santa 
Cruz < 1 cfs 1.0002 1.0203 0.4502 0.3333 0.7369 

 

Drying Alteration 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon < 1 cfs -0.1624 -

20.8611 13.9505 14.5783 12.7405 

Los 
Coches < 1 cfs -1.3990 

-
10.6225 

-13.1337 -9.7510 10.4537 

Mission < 1 cfs -2.3239 
-

19.3356 
1.2794 -19.2829 8.2959 

Mission 
Rocky 

< 1 cfs -0.9920 -3.4663 -1.5894 -21.5810 4.5520 

Santa 
Cruz < 1 cfs 0.0062 0.6410 -39.3454 -64.4244 -11.5078 

 

Drying Flow Alteration (Baseline normalized) 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon < 1 cfs -0.0022 -0.2184 0.2298 0.2427 0.2058 

Los 
Coches < 1 cfs -0.0174 -0.1184 -0.1424 -0.1097 0.1523 

Mission < 1 cfs -0.0291 -0.1993 0.0167 -0.1989 0.1196 
Mission 
Rocky 

< 1 cfs -0.0130 -0.0439 -0.0206 -0.2225 0.0642 

Santa 
Cruz < 1 cfs 0.0002 0.0203 -0.5498 -0.6667 -0.2632 

 

Drying Flow Alteration (Altered normalized) 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon < 1 cfs -0.0022 -0.2794 0.1869 0.1953 0.1707 

Los 
Coches < 1 cfs -0.0177 -0.1343 -0.1660 -0.1233 0.1321 
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Mission < 1 cfs -0.0299 -0.2489 0.0165 -0.2483 0.1068 
Mission 
Rocky 

< 1 cfs -0.0132 -0.0460 -0.0211 -0.2861 0.0604 

Santa 
Cruz < 1 cfs 0.0002 0.0199 -1.2215 -2.0000 -0.3573 

 

Drying Flow Alteration (Average normalized) 

Site Environmental 
Flow Metric 

Gaged Ungaged 

*Modeled 
historical 
land use 

Oldest 
three 
WY 

Nearest 
neighbor 

regionalization 
(EFCC) 

Nearest 
neighbor 

regionalization 
(NSE) 

SR-HMC 

Chino 
Canyon < 1 cfs -0.0022 -0.2452 0.2061 0.2164 0.1866 

Los 
Coches < 1 cfs -0.0175 -0.1258 -0.1533 -0.1161 0.1415 

Mission < 1 cfs -0.0295 -0.2214 0.0166 -0.2208 0.1128 
Mission 
Rocky 

< 1 cfs -0.131 -0.0449 -0.0209 -0.2503 0.0622 

Santa 
Cruz < 1 cfs 0.0002 0.0201 -0.7583 -1.0000 -0.3031 

 

 

 

 


