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ABSTRACT 

 

 

 

SUSTAINABILITY IN FORT COLLINS: EXPLORING THE DRIVERS OF URBAN TREE CANOPY  

 

AND HOUSEHOLD WATER CONSUMPTION IN A GROWING, SEMI-ARID CITY 

 

 

 

Urbanization is occurring rapidly worldwide, with two-thirds of the global population expected to 

live in cities by 2050. As cities densify, proper provisioning of ecosystem services will be increasingly 

important to ensure high-quality lives for urban residents. Urban ecological research can assist cities in 

achieving sustainable development goals by focusing on the complex ways in which urban characteristics, 

such as land cover, building configuration, demographic composition, and resident lifestyles interact and 

drive patterns on the landscape. Such patterns can include housing trends, patterns of water and energy 

consumption, residents’ health and lifestyle choices, or even urban wildlife distribution. Understanding 

the drivers of these patterns can aid in developing innovative policies that are specifically aligned to the 

needs of the city. We partnered with the local municipality of Fort Collins, CO to investigate the role of 

several urban characteristics on two variables of interest: urban tree canopy (UTC) distribution and 

household outdoor water consumption. Our stakeholder was interested in using our results to inform 

future tree planting and monitoring programs in the city, as well as raise awareness on outdoor water 

consumption and increase water literacy in the community. We compared our results to larger cities often 

studied in these contexts and found that 1) Fort Collins has undergone unique development patterns that 

have resulted in different UTC trends than we often expect to find in cities; 2) higher water use tends to 

be found in neighborhoods containing social characteristics associated with affluence; and 3) UTC may 

have the potential to mitigate outdoor water consumption in residential areas. These results are impactful 

because they provide relevant information that can support decisions for future sustainability action 

targeting trees and water in Fort Collins. 
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CHAPTER 1: DRIVERS OF THE URBAN TREE CANOPY 
 
 
 

1 Introduction 
 

Urbanization is occurring rapidly worldwide, with more than half of the current global population 

residing in cities (Grove et al., 2014). By 2050, this is expected to increase to two-thirds (United Nations, 

2018). As urban areas continue to grow, proper provisioning of ecosystem services will become 

increasingly important to ensure high quality lives for urban residents. 

One way to attain the proper provisioning of ecosystem services is by increasing urban green 

space, particularly urban tree canopy (UTC), which has been associated with a multitude of benefits. In 

fact, several cities have undertaken progressive urban forestry campaigns due to the well-documented 

ecosystem services granted by trees (Grove et al., 2014). Increasing the UTC is especially important in 

arid and semi-arid climates because trees provide direct shade that reduces the overall surface thermal 

energy absorption, therefore positively impacting human health, energy use and overall carbon footprint 

(Gomez-Muñoz et al., 2010).  

Despite the range of benefits associated with UTC, it is important to consider the potential 

disservices trees may also provide. Such disservices can include increased water demand, maintenance 

costs, allergies, and safety concerns (Schwarz et al., 2015). The matter of costs versus benefits must be 

framed within the context of a city’s respective circumstances, which will depend on individual climate, 

resource vulnerability and price of water supply, sociodemographic preferences, built environment 

characteristics, and financial feasibility to maintain the UTC (Schwarz et al., 2015). For example, semi-

arid systems must consider the trade-off between the benefit of canopy shade and the cost of increased 

water demand, whereas regions with ample rainfall may be more focused on the costs and benefits of 

planting trees in areas with poor drainage. Ultimately, the goals and priorities concerning the UTC will 
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vary between cities based on their assessment of costs and benefits, as these are unique environments in 

need of site-specific intervention.  

According to the literature, the primary drivers of UTC tend to be divided into three main themes: 

1) Urban morphological patterns (e.g. parcel area, building density, impervious surface area); 2) Social-

demographic characteristics (e.g. income, education, household size); and 3) Lifestyle preferences (e.g. 

individual and group behavior, motivations for conservation). Each theme contains associated individual 

drivers, and research has found these drivers to vary based on the city in question. Research is still needed 

to determine the relative influence of these overarching themes, along with their individual drivers, in a 

vast majority of cities.  

Urban morphological characteristics refer to city composition in terms of its physical constituents 

and development patterns. In many cases, the physical development of the city is innately connected to 

the underlying social-demographic patterns (Williams et al., 2000), yet it is still treated as its own theme 

focusing more on physical attributes such as impervious surface cover or housing density. The 

morphological characteristics of the city reflect planning and policy at the time of development, and this 

can have an interesting effect over time as populations continuously change. Some studies incorporate 

historical data on social-demographic characteristics to account for these changes over time (see Bigsby et 

al., 2014), especially given that many trees were planted at a time when the social and built environment 

was drastically different. 

Social-demographic characteristics can be analyzed to determine who is on the receiving end of 

the benefits and costs provided by trees and to what extent. Nestled within these characteristics is the 

widely-studied concept of social stratification, which has demonstrated its influence on both private and 

public UTC. For example, according to Locke & Grove (2016) private landowners with higher social and 

economic status are often associated with greener areas, while neighborhood power and income dynamics 

impact public investment in amenities such as green infrastructure.  
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Lifestyle preferences are a broad set of personal and group decisions and perceptions that have 

more recently been studied for their impact on UTC. For example, Ecology of Prestige is a theory stating 

that in addition to socioeconomic characteristics, UTC is also driven by reference group behavior at a 

community or neighborhood scale (Grove et al., 2014). People tend to possess a need to uphold a group 

identity or membership, often motivated by perceptions of social status. In this context, having more tree 

cover, or landscaping in general, may equate to higher social status. 

A number of studies have investigated the above themes to determine the drivers of UTC, but 

have primarily taken place in larger, highly developed cities such as New York, Philadelphia, Baltimore, 

and Raleigh (Schwarz et al., 2015; Bigsby et al., 2013). Research has not addressed the drivers of UTC in 

smaller and mid-size cities, nor has it addressed cities with diverse climates or in earlier stages of 

development. This need for expanded research is heightened by the tendency for growing cities to 

experience some of the most significant urbanization challenges, particularly with respect to meeting 

infrastructure and sustainability demands. Because sustainability demands are highly dependent on the 

underlying ecosystem and climate variables in addition to the social and morphological composition of 

the city, more analyses in diverse climates is crucial. A clearer understanding of the drivers in cities of 

different size, age, climate, and composition will also facilitate the previously mentioned need for 

establishing common drivers across different cities for the purpose of comparative analysis. 

By identifying UTC drivers, cities can discern which characteristics of the city are significantly 

impacting UTC patterns. That information can then be leveraged to explore prospective areas for future 

planting, since the city can identify locations that do or do not contain the driving characteristics. Previous 

studies have suggested planting should be based on city needs, resources and biophysical constraints, 

specifying the “Three P’s” framework: where planting is possible, preferable and has the most potential 

(see Grove et al., 2006; Locke et al., 2010).  Locke et al. (2010) defines possible locations as areas where 

it is biophysically feasible to plant trees (e.g. biome and existing land cover); preferable as the 

consideration for where it is socially desirable (e.g. prioritizing environmental justice); and potential as 
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the economic feasibility of increasing UTC (e.g. local funding and maintenance costs). Ideally, cities want 

to maximize the benefits of UTC and minimize any costs. 

We analyzed the city of Fort Collins, CO because it is a semi-arid, medium sized city projected to 

undergo significant population growth. Existing literature is often focused on UTC drivers in larger, 

temperate cities, and we are interested in whether we can expect the same trends from understudied, 

rapidly changing cities like Fort Collins. Our results will inform the City of Fort Collins of current trends 

relating to UTC distribution. We also discuss these trends in the context of possible and preferable 

planting opportunities, which may facilitate sustainable urban development as the city faces major 

population growth. Furthermore, the City of Fort Collins is known for its commitment to managing its 

community with support from robust, scientific data and methods. 

Our goal was to investigate the urban morphological, social-demographic, and lifestyle drivers of 

the Fort Collins UTC within Fort Collins neighborhoods (block groups). Considering that Fort Collins has 

undergone more recent urban development and has a relatively small urban population, we expect that 

Fort Collins UTC would be best described by morphological characteristics, rather than social-

demographic or lifestyle characteristics. Our findings contribute to the existing literature on UTC because 

previous studies have not addressed UTC drivers in a growing, semi-arid system. The results of our 

analysis will also allow for future comparative analyses in cities of similar size and composition. 

2 Methods 

2.1 Study Location 

Fort Collins, Colorado is a mid-size city with a population of roughly 165,080 according to the 

United States Census Bureau’s July 2017 estimates (U.S. Census Bureau Quickfacts, 2018). It is located 

at the base of the Rocky Mountains of the northern Front Range, founded along the Cache La Poudre 

River. Fort Collins lies approximately 5,000 ft above sea level, primarily dominated by semi-arid 

grassland east of the foothills. The high elevation exposes the city to ample sunshine approximately 300 
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days of the year. The region is semiarid, receiving an average of 14.92 inches of precipitation per year 

(NOAA, 2018). Summers can be mild or hot, with persistent low humidity. This environment allows for a 

variety of deciduous and coniferous tree types, with major species including cottonwood, Douglas-fir, 

Engelmann spruce and ponderosa pine. However, the UTC primarily consists of deciduous species, such 

as honey locust and bur oak (City of Fort Collins, n.d.). Fort Collins prides itself on an extensive UTC, 

even having a “Notable Tree Tour” to educate the public on almost 30 distinguished trees throughout the 

city that are related to a famous or historical person, place or event (City of Fort Collins, 2008). Fort 

Collins also takes highly proactive tree maintenance measures (City of Fort Collins, 2017) and maintains 

a rigorous public tree inventory, currently with over 300 species mapped (City of Fort Collins Forestry, 

2020). 

We considered a variety of social-demographic, morphological and lifestyle data in our analysis 

of Fort Collins UTC. After removing “No data” values, we summarized all variables below to n-104 U.S. 

Census block groups, as block groups are the smallest unit available for social-demographic and lifestyle 

information. One block group consist of several census blocks within the same census tract (U.S. Census 

Bureau, n.d.).  

2.2 Morphological and Social-Demographic Data 

The U.S. Census Bureau’s American Community 5-Year Survey program for 2017 contains a 

variety of morphological and social-demographic information. Based on previous studies, we chose 

predictor variables that illustrate features such as house density, building age, race and ethnicity, tenure, 

household size, median household income and educational attainment (Table 1.1).  
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Table 1.1. Social and morphological predictors tested. 

Variable Description Min Mean Max Variable Set 

Population 
Density (per 

hectare) 
Population per hectare 1.36 17.61 64.96 

Social-
Demographic 

% White Percent of population that is white 71.45 89.95 100.00 
Social-

Demographic 

% African 
American 

Percent of population that is African-
American 

0.00 1.28 8.12 
Social-

Demographic 

% Hispanic Percent of population that is Hispanic 0.00 12.52 66.12 
Social-

Demographic 

% College 
Graduates 

Population with at least a Bachelor’s 
degree 

6.98 35.06 60.70 
Social-

Demographic 

% Renter Percent of renter-occupied housing units 1.16 39.41 93.68 
Social-

Demographic 

% Owner Percent of owner-occupied housing units 0.00 55.93 98.84 
Social-

Demographic 

% Single Person 
Households 

Percentage of single-person occupied 
housing 

3.24 23.81 64.32 
Social-

Demographic 

% 3+ Person 
Households 

Percentage of households with three or 
more people (non-family) 

0.00 5.54 31.33 
Social-

Demographic 

% Family 
Households 

Percent of family households 9.63 59.36 88.12 
Social-

Demographic 

% Married 
Households 

Percent of married-couple family 
households 

3.52 47.77 81.17 
Social-

Demographic 

Median 
Household 
Income ($) 

Median household income of the block 
group adjusted for 2016 inflation 

18,550 65,156 130,139 
Social-

Demographic 

House Density 
(per hectare) 

Households per hectare 0.60 6.67 38.84 Morphological 

Median Building 
Age (years) 

Median age of buildings in block group 
in years 

13.00 38.33 81.00 Morphological 

Average Parcel 
Size (ft²) 

Average size for parcels in block group 7,221 47,307 364,781 Morphological 

 

2.3 Lifestyle Data 

Lifestyle predictors were obtained from ESRI’s 2018 Tapestry data, a demographic dataset that 

provides detailed descriptions of neighborhood block group residential areas based on purchasing 

preferences along with socioeconomic status and demographic characteristics (Tapestry Segmentation, 

2018). The dataset describes possible lifestyle behavior, such as financial decisions, favorite pastimes and 

preferred media platforms. This information is then used to sort block groups into various neighborhood 

classifications based on purchasing preferences (Table 1.2). Descriptions of each neighborhood 

classifications can be seen in Appendix I.  
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 Since our lifestyle predictors were categorical, we created dummy variables to be able to include 

them in our linear models. We used the dummy.data.frame function, part of the dummies package 

(Brown, 2012), in R (Version 3.6.3) (R Core Team, 2018) to create the dummy variables. 

Table 1.2. Neighborhood classifications used as lifestyle predictors. Descriptions of each class are in Appendix I. 

Neighborhood Class Block Group Count 

Affluent Estates (AffEst) 12 

Upscale Avenues (UpscaleAv) 4 

Uptown Individuals (UptownInd) 1 

Family Landscapes (FamLand) 9 

GenXurban (GenXUrb) 18 

Middle Ground (MidGround) 24 

Senior Styles (SeniorStyle) 1 

Rustic Outposts (RustOut) 2 

Midtown Singles (MidSing) 9 

Next Wave (NxtW) 1 

Scholars and Patriots (ScholarsPatriots) 23 

 

2.4 Land Cover Data 

We used high resolution raster 2016 land cover classification data (1 m²) derived from an object-

oriented classification utilizing aerial imagery and LiDAR (Beck et al., 2016). We applied a custom post-

processing model that uses ancillary building footprint and pavement vector data to distinguish between 

seven land cover classes: trees, grass and shrubs, bare soil, water, buildings, roads and railroads, and 

“other” paved surface cover (e.g. driveways) (Figure 1.1).We calculated the percentage of tree cover 

within each block group for our response variable. We also calculated the percentage of grass cover and 

included it in our models as a predictor variable. We integrated the buildings, roads and railroads, and 

other paved surface rasters to create a single predictor for the percentage of impervious cover (Table 1.3). 

We did not include water or bare soil in this analysis due to the minimal cover across all block groups.  
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Table 1.3. Descriptive statistics of land cover data across all block groups. 

 

 

 

Variable Description Min Mean Max 

Percent Tree Percentage of tree coverage 3.34 21.62 43.51 

Percent Grass Percentage of grass coverage 12.60 37.13 90.53 

Percent Building Percentage of building coverage 0.91 10.80 19.22 

Percent Other Paved Percentage of other paved surface coverage 1.80 15.49 40.76 

Percent Road/Railroad Percentage of road/railroad coverage 1.97 11.63 20.86 

Percent Impervious Cover Percentage of impervious cover 6.01 37.19 71.51 

Figure 1.1. Land cover in Fort Collins, CO.   
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 2.5 Correlations 

Pearson’s correlation coefficients were analyzed to identify the direction and strength of the 

relationship between each variable and tree cover. Positive correlations indicate that with an increase in 

the predictor, we expect an increase in tree cover. The opposite is true for negative correlations. To assess 

correlations to tree cover, we used the cor.test function from the stats package (Version 3.6.2) (R Core 

Team, 2018). 

2.6 Ordinary Least Squares Regression Model 

Only some of our variables exhibited a normal distribution, so we log-transformed several 

predictor variables before implementing linear models (Table 1.4). All transformations were performed 

using the log1p function, part of the SparkR package (Version 2.4.6) (Venkataraman et al., 2020) in R. 

The percent tree cover response variable was normally distributed and did not require any transformation. 

Table 1.4. Continuous variables along with their distribution and transformation. 

Variable Distribution Transformation 

% Tree Cover Symmetric None 

% Grass Cover Positive Log 

% Impervious Cover Symmetric None 

Population Density Positive Log 

% White Negative Log 

% African American Positive Log 

% Hispanic Positive Log 

% College Graduates Symmetric None 

% Renter Positive Log 

% Owner Negative Log 

% Single Person Households Positive Log 

% 3+ Person Households Positive Log 

% Family Households Symmetric None 

% Married Households Symmetric None 

Median Household Income Symmetric None 

Median Home Value Symmetric None 

House Density Positive Log 

Median Building Age Positive Log 

Average Parcel Size Positive Log 
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We incorporated all continuous and categorical variables into an Ordinary Least Squares multiple 

linear regression model (OLS) to determine the most significant predictors of cover. We first tested a full 

model that included all our predictors and then used a stepwise selection process for model parsimony 

(see Locke et al., 2016). We tested a forward and a backward model to see which had a better 

performance. We selected the best model as that which maximized the R² and minimized the Akaike 

Information Criterion (AIC) score. In R, the lm function from the stats package (Version 3.6.2) (R Core 

Team, 2018) was used for the general linear model, while the MASS package provided the stepAIC 

function to run the stepwise selection process (Venables & Ripley, 2002). 

We used the variance inflation factor (VIF) to test for multicollinearity in our OLS model with 

the lowest AIC. A VIF score of 10 is considered high correlation and would require us to adjust predictor 

variables. We used the vif function from the car package (Fox and Weisberg, 2019) to test the VIF in R, 

and we systematically removed variables until collinearity was no longer present in the OLS model.  

2.7 Spatial Autoregressive Model 

An important consideration when applying a general linear model to spatially explicit data is the 

issue of spatial autocorrelation. This phenomenon occurs when independent predictors are inherently 

correlated spatially, thus inflating the coefficients of the linear model. To account for spatial 

autocorrelation, a Moran’s I analysis was run on the OLS model residuals. A spatially random 

configuration would yield a Moran’s I estimate of approximately 0 and would not require a spatial model 

in place of a linear model. A clustered spatial configuration would yield closer to +1, and a dispersed 

spatial configuration would yield -1; in either of these latter cases, it is necessary to apply a spatial model 

to avoid biasing the coefficient estimates of our results.  

To run the Moran’s I test, we first applied the poly2nb function from the spdep package (Version 

1.1.3) (Bivand and Wong, 2018) to create spatial neighbors. Given the irregularity in block group 

configuration, we chose a queen contiguity matrix with row standardized weights. Then we used the 
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function lm.morantest, also part of the spdep package, to run the Moran’s I test on the residuals of the 

OLS regression model. The arguments for the Moran’s I test include the OLS regression model and the 

poly2nb object (as an input to the nb2listw function), with all other arguments left as defaults.  

We then created a Spatial Autoregressive (SAR) model to test how well our explanatory variables 

explained tree cover after adjusting for spatial autocorrelation. We used a spatial lag model, which 

assumes that the spatial structure impacts the dependent variable (Schwarz et al., 2015). We applied the 

lagsarlm function from the spdep package to control for spatial effects by adopting a lagged response 

variable (Browning et al., 2019).  

3 Results  

3.1 Correlations 

Analysis of the continuous variables indicated relatively strong positive relationships between 

tree cover and impervious cover, renters, and the percent of 3+ person households (Table 1.5). However, 

the strongest positive relationships were associated with house density, building age and population 

density. 

Comparatively, relatively strong negative relationships to tree cover were associated with the 

percent of homeowners, family households, married households and median household income, meaning 

these neighborhoods were associated with less tree cover. The strongest negative relationships were 

associated with grass, followed by average parcel size. Less tree cover was also associated with 

neighborhoods consisting of more minority populations (both Hispanic and African American), however 

these relationships are both statistically insignificant.  
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Table 1.5. Correlations between continuous variables and percent tree cover. 

 

 

 

 

 

 

 

 

 

Table 1.6. Correlations between categorical lifestyle variables and percent tree cover. 

 

 

 

 

 

 

 

 

 

 The correlations between our categorical lifestyle variables and tree cover were generally not 

strong relationships (Table 1.6). We found relatively stronger negative relationships associated with 

Affluent Estates and Upscale Avenues, while a relatively stronger positive relationship was associated 

Variable Pearson’s Correlation Coefficient P Value 

% Grass Cover -0.681 < 0.001 

% Impervious Cover 0.341 < 0.001 

Population Density 0.579 < 0.001 

% White 0.137 0.167 

% African American -0.083 0.404 

% Hispanic -0.147 0.137 

% College Graduates 0.038 0.703 

% Owner -0.271 0.005 

% Renter 0.282 0.003 

% Single Person Households 0.195 0.048 

% 3+ Person Households 0.299 0.002 

% Family Households -0.346 < 0.001 

% Married Households -0.323 < 0.001 

Median Household Income -0.261 0.007 

Median Home Value 0.043 0.666 

House Density 0.617 < 0.001 

Building age 0.713 < 0.001 

Average Parcel Size -0.429 < 0.001 

Variable Pearson’s Correlation Coefficient P Value 

Affluent Estates -0.252 0.009 

Upscale Avenues -0.299 0.002 

Uptown Individuals -0.035 0.721 

Family Landscapes -0.279 0.004 

GenXUrban 0.139 0.160 

Middle Ground 0.193 0.049 

Senior Styles -0.098 0.322 

Rustic Outposts -0.157 0.111 

Midtown Singles 0.121 0.219 

Next Wave -0.095 0.337 

Scholars and Patriots 0.223 0.023 
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with Scholars and Patriots. It is likely that due to the wide range of tree cover in several classes, coupled 

with few observations in other classes, that these relationships are moderate to negligible (Figure 1.2). 

 

 

3.2 Ordinary Least Squares Regression Model 

 Our results indicated the variables explaining the most variability in UTC were house density and 

building age (Table 1.7). The percent impervious cover, Hispanic population and grass cover both have a 

moderate effect on tree canopy. The percent white population and renters had the least effect of the top 

explanatory variables. None of the lifestyle variables contributed to UTC in our model. 

Figure 1.2. Percent tree cover within neighborhood classes. Each point represents a neighborhood, its location 

corresponding to its classification on the X-axis and the percent tree cover on the Y-axis. 
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Table 1.7. Summary of variables explaining Fort Collins UTC. 

Variable Coefficient Std. Error P value Cohen’s F 

Intercept 50.896 31.824 0.113 - 

House Density 7.832 0.964 <0.001 1.395 

% Renter -2.029 0.725 0.006 0.124 

% Hispanic -0.705 0.607 0.248 0.342 

% White -7.393 6.451 0.254 0.270 

Median Building Age 12.296 1.741 <0.001 1.303 

% Grass Cover -10.518 2.119 <0.001 0.316 

% Impervious Cover -0.256 0.066 <0.001 0.397 

 

3.3. Spatial Autoregressive Model 

The residuals of our OLS model were indicative of spatial autocorrelation and had statistically 

significant P values for Moran’s I (0.14, P value = 0.009). UTC also demonstrated statistically significant 

Moran’s I (0.56, P value < 0.001). We proceeded to address spatial autocorrelation by applying a SAR 

model using the spatial lag technique. 

 

Figure 1.3. Plotted residuals from the spatial lag model.  
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We again tested the residuals of our SAR model using Moran’s I and found it removed spatial 

autocorrelation (0.05, P value = 0.113). The relationships between each explanatory variable and UTC did 

not change when we applied the SAR model. We compared the OLS and SAR results based on their AIC 

score, and we found the AIC score improved by applying the SAR model (Table 1.8). 

 

Table 1.8. Comparing OLS and SAR regression models. 

Model AIC 

OLS Model 616.9 

SAR Model 601.5 

 

4 Discussion 

4.1 Drivers of Tree Cover 

 Our regression results indicate that the variables explaining the most tree cover in Fort Collins, 

CO are a combination of morphological and social characteristics, with the two main variables being 

morphological (house density and building age). These results support our hypothesis that morphology 

may play a major role in Fort Collins UTC. 

 We found that the older buildings in Fort Collins are associated with high tree cover. Opposite 

results were found in several studies such as Bigsby et al. (2014), which analyzed both Baltimore, 

Maryland and Raleigh, North Carolina and found that newer buildings were associated with more tree 

canopy. Conway (2009) analyzed vegetation in Toronto, Canada and found that older homes had less 

overall vegetation than newer homes. These contrasting results may be explained by the biome of Fort 

Collins; this is a semi-arid region where few natural tree species thrive, resulting in a heavily-managed 

UTC. Much of the vibrant UTC has long been planted and maintained throughout the oldest parts of the 

city, whereas the UTC in newer developments has been planted more recently as the city has undergone 

rapid population growth. 
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We also found that more tree cover is associated with high house density, while other studies 

have found that areas with higher house density contain less tree cover. These effects were seen in a study 

by Iverson and Cook (2000) that took place in Chicago, Illinois, where the authors found tree cover to be 

strongly and inversely related to house density. This opposite finding for Fort Collins could also be 

explained by the morphological development of the city, because higher house density is also found in the 

oldest parts of the city where the UTC has been created and maintained the longest. 

We saw an important relationship between UTC and impervious cover, but again this relationship 

does not follow the trends found in previous studies. Higher impervious cover is located in central Fort 

Collins (see Figure 1.1); although contradictory to the notion that impervious cover constrains the amount 

of area available for tree planting (Nowak and Greenfield, 2012; Coseo et al. 2019), Fort Collins has 

actively planted much of the UTC in this intensely developed portion of the city. 

Our results indicated that grass cover had a significant negative relationship to tree cover, and this 

is something we might expect given the location of the city. Nowak et al. (1996) assessed the distribution 

of UTC in 58 U.S. cities and found UTC to be lower in cities situated in grasslands, which also tend to 

have more agricultural land. Nowak and Greenfield (2020) stated that in drier grasslands, unmanaged land 

will also not naturally regenerate with trees and will have lower UTC unless tree planting and watering 

programs are established. These findings may explain the inverse relationship we see between grass and 

tree cover. Because Fort Collins is still in the process of urbanizing, areas in the outskirts of the city have 

yet to be transformed from grassland and agricultural land to a more urbanized landscape that can 

accommodate a larger population, and it may take years before trees are fully established (Figure 1.4).   
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When we analyzed the effects of social characteristics on tree cover in Fort Collins, we observed 

some trends that were in alignment with previous studies, while other trends were opposite of what we 

would expect. Often in large cities, we see higher UTC in areas with more homeowners, more white 

population, and higher income, while we tend to see lower UTC in areas with more renters, minority 

populations and lower income (see Grove et al., 2014; Schwarz et al., 2015; Heynen, 2003). 

The regression results revealed the social predictors contributing the most to UTC were the 

percent Hispanic population, percent white population and percent renters. The percent Hispanic 

population was associated with lower tree canopy in our correlation analyses, while the percent white 

population was associated with higher tree canopy. These results are similar to what several studies have 

found relating to the distribution of tree cover and race and ethnicity; previous studies have suggested that 

Figure 1.4. Percent grass cover per block group. 
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some disparities in UTC have reflected racial segregation (see Flocks et al., 2011, Schwarz et al., 2015, 

Riley and Gardiner, 2020), and this segregation represents one type of environmental injustice. Fort 

Collins currently has little racial and ethnic diversity (see Table 1.1), yet based on our results, we still see 

potential environmental injustices that may be developing within the city.  

Previous work has also suggested less UTC exists in areas with more disadvantaged populations, 

such as renters or areas with lower income (see Riley and Gardiner, 2020). However, in the correlation 

analysis we found that more renters are associated with higher UTC in Fort Collins. This could be due to 

the location of Colorado State University, one of the oldest establishments in the city, being close to Old 

Town which contains a large amount of UTC. 

4.2. Possibility and Potential for Tree Planting and Maintenance 

 Studies on the distribution of UTC can have the power to inform future management decisions, 

establishing areas where we may want to prioritize tree planting and maintenance. We discuss planting 

and maintenance in the context of the “Three P’s” framework introduced by Grove et al. (2006). This 

framework can assist in maximizing the benefits of UTC while minimizing the potential disservices, as it 

considers areas for Possible, Preferable and Potential UTC. We only focus on the first two “P’s” 

(Possible and Preferable) to highlight areas where it is biophysically feasible to plant and maintain trees 

in Fort Collins, and areas where it may be socially desirable to plant and maintain trees (Locke et al., 

2010). 

Possible UTC includes areas where it is biophysically feasible to create and maintain UTC, which 

is shaped by the type of existing land cover (e.g. impervious vs. pervious cover). In Fort Collins, most of 

the current UTC is already located in areas with high impervious cover. As the city continues to develop, 

more trees should be planted in areas dominated by grass, as these areas are currently associated with less 

UTC and pervious cover is the most biophysically feasible land cover for tree planting. Conversely, 

impervious cover limits space for additional planting (see Nowak and Greenfield, 2012; Coseo et al., 
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2019), and also limits the natural regeneration of trees (Nowak and Greenfield, 2020); therefore, 

maintenance will be preferred to ensure there is adequate UTC in areas with high impervious cover. 

Maintenance will be especially important in impervious areas because tree shade can help decrease the 

negative impacts associated with the Urban Heat Island (UHI) effect, a phenomenon that leads to higher 

temperatures in areas with more impervious cover (Zhou et al., 2011; Wang and Akbari, 2016). Proper 

maintenance of UTC in impervious areas may be critical to keep Fort Collins residents physiologically 

comfortable during the warmer months (see Gomez-Muñoz, 2010; Coseo et al., 2019). 

Extending beyond planting possibility, cities then should consider preferable UTC to reduce the 

number of communities that may be vulnerable to environmental injustices, such as social, physical and 

economic inequities relating to UTC (Flocks et al., 2011). In Fort Collins, our results indicate that less 

tree canopy is associated with minority communities, homeowners, family and married households, and 

households with higher income (see Table 1.5). We recommend these areas are a priority for planting to 

ensure distributional equity. We want to ensure that families, particularly children and the elderly, are 

able to experience the benefits of UTC as it has been shown to positively impact their mental and physical 

health (see Sivarajah et al., 2018; Browning et al., 2019),  

Many of the residents living in the areas with higher tree canopy tend to be low-income, renters 

and 3+ person households (non-family). If UTC is not adequately maintained, these communities may be 

vulnerable to future tree collapse from old age, or removal for pests and disease. For example, Fort 

Collins recently detected Emerald Ash Borer (EAB), an invasive pest that has decimated ash tree 

populations in other regions of the world (Herms and McCullough, 2014), and it is expected that many 

public trees will be removed to help contain EAB spread. Once those trees are removed, these 

communities will be underserved by the UTC, exposing them to distributional inequity.  

There are many different contexts as to why distributional inequities appears in our cities. We 

acknowledge that complex interactions take place between the social-demographic preferences of urban 

residents and the morphological development, as well as the unique biomes of cities, that can influence 
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UTC distribution. The results of our study can provide relevant information that can be used in future 

planning and development in numerous ways, such as establishing zoning codes that require planting 

trees in new developments, targeting planting in areas that are currently underserved by the UTC, and 

maintaining UTC in areas that will be susceptible to EAB. 

4.3. Caveats and Future Research 

 We also acknowledge that with a block group scale, it is difficult to identify larger-scale trends 

that may contribute to UTC distribution, and we cannot accurately identify specific locations for planting 

and maintenance. 

Our future work will expand on UTC relationships by comparing various spatiotemporal scales, 

as we expect different patterns to emerge under differing spatial and temporal conditions (see Locke et al., 

2016). Our work would greatly benefit by gathering unique household level information on social 

information, which may require a more qualitative study using survey methods. We can otherwise 

perform the same analysis for disaggregated Census block group social statistics. 

In Fort Collins, it will be especially valuable to consider legacy effects (see Troy et al. 2006; 

Bigsby et al., 2014), since the city has experienced rapid morphological and social change in a relatively 

short amount of time. Our work is a steppingstone to understanding the function and distribution of UTC 

in young, semi-arid urban systems, and will serve as a basis for future sustainability planning in Fort 

Collins. We will also consider controlling for age in future analyses so we can isolate additional trends 

that may be temporally dependent. 

Our next step will be to separate public from private tree canopy to see if different patterns 

emerge based on zoning and development. This information can then be used as leverage when 

developing policies to support homeowners as they deal with EAB in Fort Collins, as it is a matter that 

will need strategic coordination between both public and private landowners. 
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5 Conclusion 

Our study has revealed that UTC in Fort Collins, a mid-size semi-arid city expected to undergo 

significant population growth, may currently be more impacted by urban morphological patterns than the 

social or lifestyle characteristics of its residents. We also note the importance of the grassland biome that 

does not naturally support many tree species, resulting in a UTC that has been heavily managed in areas 

where people have long been present.  

Fort Collins has already experienced rapid population growth, prompting the need to 

accommodate more residents. As the city continues to be subjected to population growth, the newly 

developed outskirts of the city will need to plant trees in order to gain UTC benefits in the natural 

grassland and agricultural system, but it takes time for trees to become established. Those living in these 

the outskirts are currently not receiving the benefits of UTC, and it will be a priority for Fort Collins to 

begin planting trees if it has not yet taken place.  

Individuals currently receiving UTC benefits in central Fort Collins will be vulnerable to 

disservices if trees need to be removed, whether it be from intentional tree removal or collapse. Many are 

not going to be able to plant and care for new trees themselves because they are often low-income and 

renter communities. To ensure an equitable distribution of UTC, they may need to closely monitor the 

areas with high UTC. 

We found several unexpected relationships to UTC that suggest cities of different size, 

composition and climate, such as Fort Collins, may exhibit UTC trends unlike those concluded in 

previous studies. We provide valuable information that can add to the sphere of research surrounding 

UTC, and our results can facilitate urban planning and development to maximize the benefits provided by 

the UTC and to minimize environmental injustices experienced by urban residents. 
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CHAPTER 2: FORT COLLINS WATER CONSUMPTION 
 
 
 

1 Introduction 

 
By the turn of the 20th century, Colorado began to experience a significantly warmer and drier 

climate compared to the early 20th century (Colorado Climate Plan, 2015). Climate change models project 

temperatures to increase 4°F by 2050, relative to the 1950 – 1999 baseline; these greater temperatures are 

expected to increase the severity of droughts and exacerbate their impacts throughout the state (Ray and 

Hoerling, 2008). Precipitation patterns remain relatively uncertain, while a reduction in snowpack and 

earlier snowmelt and runoff are already evident (Lukas et al., 2014). Such climatic changes pose a serious 

threat to Colorado’s water supply, yet water demand is expected to increase as a result of imminent 

population growth (Colorado Water Conservation Board, 2015). The pressures of climate change and 

urbanization demand innovative and sustainable water management solutions for Colorado cities.  

One way to sustainably manage urban water supply is by reducing or limiting outdoor water 

consumption (Hanak and Browne, 2006; Tinker et al., 2005). The 2002 drought crisis in Colorado 

demonstrated the effectiveness of this strategy by imposing temporary, mandatory water restrictions that 

curbed overall water consumption by 13 – 53% across several different municipalities (Kenney et al., 

2004). However, many local water managers are now focusing on long-term strategies to reduce water 

consumption that can more readily respond to climate change (House-Peters et al., 2010). Responsive and 

adaptive conservation efforts will need to include programs and policies for water efficiency that can 

become a regular part of residents’ lives (Balling Jr. et al., 2008). To help estimate the effects of policy 

changes on residential consumption patterns, it is imperative that cities have a firm understanding of the 

local drivers of urban water consumption (Wentz and Gober, 2007). 

Urban characteristics, including morphology (e.g. house density, lawn orientation), biophysical 

environment (e.g. lawns, trees and shrubs), social composition (e.g. income, tenure) and lifestyles (e.g. 
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conservation perceptions and motivations), play a significant role on outdoor water consumption patterns 

(see Harlan et al., 2009; Ghavidelfar et al., 2017). However, many studies have found disparities in the 

relative importance of these urban characteristics in predicting water consumption.  

Some studies have shown that the most important predictors of water consumption are 

morphological characteristics. Most of these findings indicate that parcel size, the presence of swimming 

pools, home age and building size are important variables, but the direction and degree of these 

relationships differ across studies (Stoker and Rothfeder, 2014; Jansen and Schulz, 2006; Chang et al., 

2010). For example, Stoker and Rothfeder (2014) found newer homes use more water in Salt Lake City, 

Utah, while Chang et al. (2010) found that older homes use more water in Portland, Oregon. Sanchez et 

al. (2018) tested several landscape metrics that describe spatial configuration of buildings, along with 

various biophysical and social characteristics, to determine the drivers of domestic water use in North and 

South Carolina. Their most important finding was that spatial patterns of morphological development 

drives water consumption, but they also suggested that biophysical characteristics were important. 

Biophysical characteristics of cities have been widely studied in the context of urban water 

consumption, primarily concerning the presence of urban tree canopy (UTC) and residential landscaping 

preferences. While urban trees are associated with several ecological, physical and social benefits, these 

benefits may be offset by their potential cost in water consumption, especially in arid landscapes where 

water is already scarce (Dwyer et al., 1992). If trees are associated with more water consumption in arid 

and semi-arid urban landscapes, cities will need to consider promoting alternative, water-efficient 

residential landscapes. Several studies have shown that residential landscaping can potentially impact 

outdoor water consumption; Olmost and Loge (2013) studied landscaping techniques in Davis, California 

and found that increasing the cover of drought-tolerant grass could reduce water use by up to 40%. 

Alternatively, Wentz and Gober (2007) found that xeric landscaping in Phoenix, Arizona was not as 

important for residential water consumption patterns as they expected, but they noted that this was more 
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because residents were not adjusting their water practices to coincide with different seasonal water 

requirements.  

Wentz and Gober’s (2007) findings exemplify the complex interplay between urban 

characteristics and the resulting effect it can have on water consumption. Despite testing for the effect of 

biophysical variables, they found social watering practices to significantly impact their results. Many 

studies have further investigated the role of social characteristics on water consumption, and often they 

find similar trends. One common trend is that affluent households tend to use water for maintaining lawns 

and gardens, and for amenities such as swimming pools, fountains, whirlpools, hot tubs, spas and misters 

(Harlan et al., 2009). Ghavidelfar et al. (2015) and Jorgensen et al. (2009) both found that households 

with higher income use more outdoor water. Jorgensen et al. (2009) also found tenure to be important, 

with homeowners using more water than renters. Age of household members and overall household size 

can also influence water consumption because families with young children or teenagers may be more 

likely to install swimming pools (Corbella and Pujol, 2009). 

Another important factor to consider when addressing water consumption and conservation 

efforts is the consumer’s lifestyle, or the characterization of their behavior. Lifestyles are a more complex 

facet of social characteristics, encompassing attitudes, opinion, values, feelings, intentions and habits 

(Newton and Meyer, 2013). According to Jorgensen et al. (2009), consumption behavior is influenced by 

the individual’s awareness and perception of water conservation, along with their personal motivation for 

it. Jorgensen et al. were able to reaffirm the idea, initially presented in Berk et al.’s (1993) study, that 

people with higher income, more education, and a higher job status were more likely to engage in water-

saving practices. They also found that consumer conservation motives were highly impacted by 

perceptions of how other people behaved, indicating social norms and “trust in others” play a significant 

role in conservation behavior. Bollinger et al., (2018) analyzed peer effects on water conservation in 

Phoenix and found that households are more likely to switch to water-efficient landscapes if their peers do 
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the same, supporting the notion that the perception of others’ behavior may be important for water 

consumption patterns. 

It is indisputable that a wide range of variables influence water consumption patterns, as 

identified by previous studies. The complex nature of these studies suggests that trends in water 

consumption will be dependent on the study region as well as the unique morphological, biophysical, 

social and resident lifestyle characteristics exhibited by households in that city. Furthermore, many of the 

studies investigating water consumption drivers have been conducted in highly developed urban systems 

such as Phoenix, Arizona (Yang and Wang, 2015) and Los Angeles, California (Renwick and Green, 

1999). Few studies have investigated water consumption drivers in growing, semi-arid cities where we 

expect increased population to exert substantial stress on local water supplies (see Ahmad, 2016). To 

better understand the drivers of water consumption and compare across cities, we must identify the unique 

characteristics that result from the urbanization process within more cities of different size and 

development stages. 

Our study will add to this expanding body of literature by investigating the relationships between 

single-family households and outdoor water consumption patterns in the growing, semi-arid city of Fort 

Collins, CO. The objectives of this study are to 1) determine which morphological, biophysical, social 

and lifestyle variables may be driving outdoor water consumption and compare their importance; and 2) 

discern relationships between vegetative patterns (trees vs. grass) and outdoor water consumption at a 

single-family residential parcel scale. We expect water consumption to be predominantly driven by 

biophysical characteristics, and that the presence of trees may increase overall outdoor consumption. This 

research will inform the Fort Collins and its residents of outdoor water consumption patterns, providing 

data that can be used to implement sustainable urban planning as well as further educate the community 

on efficient outdoor water practices.  
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2 Methods 

2.1. Study Location 

 

Fort Collins, Colorado is a healthy, vibrant community transitioning from a large, suburban town 

to a small urban city (City of Fort Collins, 2014). The city has been showered with various honors and 

awards, including the best American city for cycling, third best place for business and career, and the 

fourth happiest city in America (City of Fort Collins Visitor Awards, n.d.). Historic Old Town, as the 

name suggests, is one of the oldest areas in the city. Being a popular urban center filled with nature, 

tourist, cooking, retail and novelty and confectionery shops, it regularly attracts many residents and 

tourists alike. With over 84 restaurants, seasonal events and festivals, tours and a rich energy, Old Town 

is a unique and enriching Fort Collins experience (Visit Fort Collins, n.d.) and serves as an important 

place for community in the city. 

Fort Collins also prioritizes the well-being of the community through proactive and informed 

urban planning. For decades, the local municipality has led the way in innovative and sustainable water 

policies, promoting conservation and efficiency. Fort Collins recognizes the significant population growth 

and seeks to develop and promote water-efficient landscapes that will support long-term water availability 

for all residents, reflect its semi-arid climate, and encourage greater integration of water efficiency into 

land use planning and building codes (City of Fort Collins, 2014). Despite these efforts, residents are still 

relatively unaware of opportunities for sustainable living at the personal and community level; therefore, 

community education and programs are needed to foster this development. Consequently, Fort Collins 

hopes to leverage metered water use data to better communicate and increase awareness of consumption 

and to promote water literacy in the community.  

2.2. Water Consumption Data 

Water consumption data was provided by Fort Collins through metered information within single-

family residential parcels (households). Each parcel included combined indoor and outdoor water use for 

the year 2016 (n = 28,773). Water use was calculated by the total gallons of water usage divided by the 
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number of days of service (a range of 20 – 40 days within each billing cycle). Every parcel record 

contained a rate of use for the consumer’s billing cycle, but each parcel had a different billing date that 

did not align with the calendar month, requiring us to recalculate an accurate daily rate of use for each 

month. To identify seasonal trends and develop our response variable, we converted our corrected rate of 

use (gal/day) to monthly total gallons (Table 2.1, Figure 2.1), and then those values were averaged for the 

entire season. 

Table 2.1. Average monthly consumption across all parcels in total gallons and gallons / day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time Period Total Gallons Gallons / Day 

January 3,988.38 128.66 

February 3,735.87 128.83 

March 4,092.59 132.02 

April 4,316.85 143.90 

May 6,978.32 225.11 

June 13,253.98 441.80 

July 16,078.95 518.68 

August 14,205.85 458.25 

September 11,282.76 376.09 

October 7,141.87 230.38 

November 4,472.85 149.10 

December 4,177.59 134.76 

Figure 2.1. Average monthly consumption trends (gallons) across all parcels in comparison to the 

winter season average. 
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To distinguish between indoor and outdoor consumption, we took the summation of each 

household’s water use (total gallons) during the 2016 winter season (Dec – Feb) and subtracted it from 

their summer use (June – August), which was our timeframe of interest. The local municipality of Fort 

Collins recommended this method with the assumption that households are not irrigating outdoors during 

the winter months, leaving us with a proxy for outdoor water consumption. This approach was a critical 

step in developing our response variable. 

We were interested in the amount of water being used on irrigatable space, or pervious area 

within the parcel boundary. We used high resolution raster land cover classification data (1 m²) derived 

from an object-oriented classification utilizing aerial imagery and LiDAR (Beck et al., 2016) to 

distinguish irrigatable space from non-irrigatable space. This land cover dataset provided data for trees, 

grass and shrubs, bare soil, water, buildings, roads and railroads, and “other” paved surface cover (e.g. 

driveways). We used the ArcGIS Pro (Version 2.5.1) Erase tool to remove buildings and other paved 

surface cover (e.g. driveways) from each parcel, leaving only the area for irrigatable space (ft²). 

2.3. Response Variable 

 We took the summation of water consumption (total gallons) for the summer season and divided 

it by the amount of irrigatable space (ft²) on each parcel to obtain our response: summer outdoor 

consumption, ranging from approximately 0 - 390 gallons / ft². For privacy reasons, we were unable to 

share water consumption data for every parcel, so we created a Kernel Density map of summer outdoor 

water consumption (Figure 2.2). 
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Figure 2.2. Summer 2016 water consumption in Fort Collins. 
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2.4. Explanatory Variables 

Most of our social and morphological data were provided by the US Census Bureau’s American 

Community 5-Year Survey program for 2017. Based on previous studies (Harlan et al., 2009; Ghavidelfar 

et al., 2017; Stoker and Rothfeder, 2014; Jansen and Schulz, 2006; Chang et al., 2010), we chose 

predictor variables that illustrate features such as ethnicity, tenure, household size, income and 

educational attainment (Table 2.2). These data were provided at a block group scale, which consists of 

several census blocks within the same census tract. We were unable to attain parcel-scale social data for 

most of our social variables. Therefore, we disaggregated broader-scale Census block group data to 

represent the social characteristics of the household. In doing so, we made assumptions about the social 

structure of each household, which does not necessarily depict its true condition.  

Additional lifestyle predictors were obtained from ESRI’s Tapestry Segmentation data (Tapestry 

Segmentation, 2018), a demographic dataset that provides detailed descriptions of neighborhood block 

group residential areas based on socioeconomic and demographic composition (Table 2.3). These data are 

also disaggregated from the Census block group scale, making assumptions about lifestyles in each 

household. Descriptions of neighborhood class predictors can be viewed in Appendix I. These data are the 

first set of categorical variables in our model, so we created dummy variables in the R statistical 

environment using the dummy.data.frame function, part of the dummies package (Brown, 2012), to be 

able to employ them in our models. 

We used the land cover dataset to distinguish between vegetation type on each parcel. We 

calculated the percent cover of grass / shrub and trees within the remaining irrigatable space. Bare soil 

comprised an extremely small proportion of irrigatable space per parcel (0 – 1%), but since it is not 

considered a land cover class that requires water, it was not included in this analysis. We then created an 

interaction term by multiplying the percentage of grass / shrubs and percentage of trees in irrigatable 

space to obtain combined vegetation cover, and a second interaction term multiplying overall vegetation 

cover with the area of irrigatable space (Table 2.2).  
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We acquired assessor’s data on the age and value of each parcel from the City of Fort Collins 

(Authier, 2019) (Table 2.2). These data are unique for each parcel and exist at a finer spatial resolution 

than Census data. We also calculated the direction of the front lawn for each parcel with the Near tool 

(using roads) in ArcGIS Pro. Cardinal directions were determined as follows: an angle of 0° indicates 

East, 90° indicates North, -180° and 180° indicates West, and -90° indicates South. We allowed for 5° of 

angular freedom around each Cardinal direction (e.g. 3° or -3° still indicates East). We also calculated 

intercardinal directions of NE, NW, SE and SW as being any value that falls in between the cardinal 

directions (e.g. 22° indicates NE) (Table 2.4). We used visual validation to ensure these measurements 

were accurately representative. Direction of the front lawn comprised the second set of categorical 

variables in our dataset, therefore we created dummy variables using the same dummy.data.frame 

function in R (Brown, 2012) to account for lawn direction in our models. 

We utilized Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 

imagery to derive variables for land surface temperature (LST) and Normalized Difference Vegetation 

Index (NDVI) for six dates in 2016 (May 29, June 14, July 16, August 1, August 17 and September 18) 

(Table 2.2). In R, we created a cloud mask for May 29 and July 16. We then derived a mean composite 

image to calculate average LST, and a median composite image to calculate NDVI, both at a 30 m × 30 m 

spatial resolution. Both LST and NDVI were calculated in ArcGIS Pro using the Raster Calculator and 

the NDVI Raster Function, respectively. Both LST and NDVI were resampled to 10 m × 10 m rasters so 

the Zonal Statistics as Table tool in ArcGIS Pro could capture as much information as possible when 

applying the data to the smaller scale parcels. 
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Table 2.2. Descriptive statistics of continuous social, morphological and biophysical explanatory variables. 

 

Table 2.3. Categorical lifestyle explanatory variables. 

 

 

 

 

 

Variable Min Q1 Mean Q3 Max 

Population Density (per hectare) 1.36 13.50 17.06 21.34 64.96 

% White 71.45 88.57 90.42 93.74 100.00 

% African American 0.00 0.00 1.19 1.95 8.12 

% Hispanic 0.00 4.79 10.57 12.71 66.12 

% College Graduates 6.98 28.91 35.06 40.67 60.70 

House Density (per hectare) 0.60 4.87 7.04 8.96 28.95 

% Owner 3.62 48.02 62.16 79.73 98.34 

% Renter 1.16 20.27 34.69 45.74 93.68 

% Single Person Households 6.91 15.26 21.51 27.62 64.32 

% 3+ Person Households 0.00 0.00 5.50 7.62 31.33 

% Family Households 9.63 48.45 59.36 70.58 88.12 

% Married Households 3.52 37.38 47.77 58.25 81.17 

Median Household Income ($) 18,550 52,159 71,264 89,167 130,139 

Parcel Size (ft²) 1,066 6,917 9,515 9,766 840,118 

% Trees in Irrigatable Space 0.25 35.10 50.24 65.95 100.00 

% Grass in Irrigatable Space 0.39 34.29 50.26 64.93 100.00 

Age of Home 0.00 25.00 37.72 44.00 139 

Home Value ($) 153,600 363,275 433,041 480,125 1,974,200 

Grass x Trees 24.88 1,859.96 2,078.60 2,441.54 7,399.49 

Vegetation x Irrigatable Area 105,231 7,746,447 11,958,690 14,363,504 450,050,219 

LST (°F) 82.57 90.50 92.22 94.04 98.86 

NDVI 0.02 0.26 0.30 0.34 0.51 

Distance to Old Town (mi) 0.29 2.40 3.19 4.11 5.92 

Neighborhood Class Parcel Count 

Affluent Estates 1,834 

Upscale Avenues 1,870 

Uptown Individuals 49 

Family Landscapes 2,239 

GenXurban 5,006 

Middle Ground 8,125 

Senior Styles 88 

Rustic Outposts 8 

Midtown Singles 900 

Next Wave 18 

Scholars and Patriots 4,151 
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Table 2.4. Categorical lawn orientation explanatory variables. 

 

 

 

 

 

2.5. Bivariate Analyses 

We compared relationships between each explanatory variable and summer consumption using a 

simple linear regression model. By analyzing bivariate relationships, we were able to estimate the degree 

of increase or decrease in water consumption associated with each explanatory variable. We were 

interested in the context of these relationships when assessing the prediction model outputs. While some 

variables may be considered more important for predicting water consumption, we still need to consider 

the degree of influence they have on water consumption. We used the lm function from the stats package 

(Version 3.6.2) (R Core Team, 2018) to create the linear models. 

2.6. Random Forest 

 Random Forest (RF) (Breiman, 2001) is a nonparametric machine learning method used to 

develop regressive models through a series of regression trees. RF does not assume normal distribution of 

data or independence of samples, inherently considers interactions among covariates, and often performs 

better on ecological data than parametric models (Severson et al., 2017). Despite RF being insensitive to 

collinearity, variable importance, and overall variance explained, the regression models can still be 

deflated in the presence of collinearity and variable selection processes are recommended (Murphy et al., 

2010). 

 

Direction of Lawn Parcel Count 

East 3,171 

Northeast 2,887 

North 3,374 

Northwest 2,686 

West 3,403 

Southwest 2,929 

South 3,334 

Southeast 2,594 
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2.7. Variable Selection 

 One of the benefits of the machine learning RF algorithm is that it has several options for variable 

selection methods that reduce the number of explanatory variables needed in regression modeling. 

Ideally, the number of variables should be minimized to improve parsimony when developing regression 

models, and variable selection methods can identify the most important explanatory variables based on 

their contribution to variance explained (Speiser et al., 2019).   

 We applied the rf.modelSel function in the rfUtilities package (Murphy et al., 2010) for variable 

selection. This process ranks all variables in order of their explanatory power. We then created a 

correlation matrix of the top-ranking variables and removed those which yielded a Pearson’s correlation 

coefficient > | 0.75 |.  

2.8. Regression Modeling 

We implemented RF using the randomForest package (version 4.6-12) in R (Breiman, 2001). The 

two parameters we adjusted were: 1) mtry, which determines the number of input explanatory variables 

randomly chosen at each split; and 2) ntrees, which dictates the number of decision trees used (Genuer & 

Tuleau-Malot, 2010). We employed several iterations of the RF model with mtry ranging from 3 – 5 and 

ntrees ranging from 500 – 700. Although our models did not improve after approximately 300 decision 

trees, we tested our models with the ntrees parameter at or above the default value of 500 to achieve a 

more reliable output. We used the percentage of variance explained and the Root Mean Squared Error 

(RMSE) statistic to report the accuracy of our RF prediction models. 

We tested several different combinations of variables in the RF models. One of our goals was to 

compare which predictors best described water consumption, so we created five combinations of 

explanatory variables and compared their accuracy in explaining water consumption variance: 1) a model 

comprised of the top variables from the RF variable selection process; 2) a model comprised of only 

morphological variables; 3) a model comprised of only biophysical variables; 4) a model comprised of 
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only social variables; 5) a final model comprised of variables that are unique data for each parcel, as 

opposed to data disaggregated from the larger block groups. The five models were tested with an mtry = 4 

and ntrees = 500, as they all performed the best under these parameters. 

3 Results 

3.1 Bivariate Analyses 

 The strongest bivariate relationships in terms of the coefficient and R² include percent white 

population, percent college graduates, percent 3+ person households, percent owners and renters, percent 

family and married households, LST, NDVI, percent grass and percent trees, and the age of the home 

(Table 2.5). Of these variables, large increases in water consumption were associated with percent college 

graduates, percent family and married households, and LST. Affluent Estates and Upscale Avenues 

neighborhoods had the greatest increase in consumption (Table 2.6). The lawn orientation variables had 

marginal effects on water consumption. 

 Many variables were associated with significant decreases in water consumption, but the greatest 

magnitude occurred with percent white population, percent trees and NDVI (Table 2.5). None of the 

categorical variables resulted in large decreases for water consumption (Table 2.6). We expect this to be 

due to the spatial scale of the lifestyle variables coupled with the relatively few classes residents could be 

categorized in. However, Upscale Avenues did have a stronger relationship to water use when compared 

to the rest of the lifestyle variables (Table 2.6). 

Table 2.5. Bivariate relationships for summer consumption and continuous variables. 

Variable Log Transform Coefficient R² P value 

Population Density Yes -0.209 0.013 < 0.001 

% White Yes -0.859 0.004 < 0.001 

% African American Yes -0.014 -3.872e-05 0.813 

% Hispanic Yes -0.001 -4.075e-05 0.934 

% College Graduates No 1.177 0.028 < 0.001 

House Density Yes -0.273 0.030 < 0.001 

% Owner No 0.603 0.029 < 0.001 
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Table 2.6. Bivariate relationships for summer consumption and categorical variables. 

Variable Coefficient R² P value 

Neighborhood Class:    

Affluent Estates 0.319 0.013 < 0.001 

Upscale Avenues 0.707 0.065 < 0.001 

Uptown Individuals 0.036 -3.609e-05 0.728 

Family Landscapes 0.332 0.018 < 0.001 

GenXUrban  -0.083 0.002 < 0.001 

Middle Ground  -0.158 0.010 < 0.001 

Senior Styles  -0.042 -2.953e-05 0.593 

Rustic Outposts -0.467 9.077e-05 0.073 

Midtown Singles -0.077 0.0003 0.002 

Next Wave -0.357 0.0001 0.039 

Scholars and Patriots  -0.347 0.031 < 0.001 

Lawn Orientation:    

East -0.195 0.007 < 0.001 

Northeast 0.148 0.004 < 0.001 

North -0.071 0.0002 0.009 

Northwest 0.074 0.0009 < 0.001 

West -0.144 0.004 < 0.001 

Southwest 0.179 0.006 < 0.001 

South -0.038 0.0002 0.005 

Southeast 0.113 0.002 < 0.001 

% Renter No -0.644 0.031 < 0.001 

% Single-Person Households Yes 0.003 -3.891e-05 0.821 

% 3+ Person Households Yes -0.149 0.046 < 0.001 

% Family Households No 0.918 0.043 < 0.001 

% Married Households No 0.964 0.047 < 0.001 

Median Household Income No 0.001 0.047 < 0.001 

Parcel Size Yes -0.409 0.051 < 0.001 

% Trees in Irrigatable Space No -0.968 0.038 < 0.001 

% Grass in Irrigatable Space No 0.794 0.057 < 0.001 

Age of Home Yes -0.570 0.159 < 0.001 

Home Value No 0.0001 0.042 < 0.001 

Grass x Trees No -0.019 0.025 < 0.001 

Vegetation x Irrigatable Area Yes -0.088 0.094 < 0.001 

LST Yes 5.497 0.042 < 0.001 

NDVI Yes -2.298 0.019 < 0.001 

Distance to Old Town No 0.493 0.055 0.267 
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3.2. Variable Selection 

We included a total of 41 variables to the rf.modelSel function, of which 11 were considered most 

important for regression modeling. The variable with the most explanatory power was parcel size, 

followed by the distance to Old Town. Home value, LST, percent 3+ person households and the grass and 

tree interaction term followed. Percent tree and college graduates were the next most important. The 

percent of owners, single-person households and white population ranked the lowest of the top 

explanatory variables (Figure 2.3).  

 

 

 

 

Figure 2.3. Correlation matrix of the top variables ranked from most to least important in the 

variable selection process. Parcel size was the most important predictor and the percent white 

population was the least important. 
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3.3. Regression Modeling  

We created five models, each containing a different combination of explanatory variables. Model 

1 included the top variables listed in variable selection process; Model 2 included only morphological 

variables; Model 3 included only biophysical variables; Model 4 included only social and lifestyle 

variables; and Model 5 included only variables unique to each parcel, rather than those disaggregated 

from block group data. The best model explained approximately 34% variance, while the poorest model 

explained approximately 15% variance. Model summaries are displayed in Table 2.7, with their variance 

and RMSE specified.  

  

Table 2.7. Regression model summaries for summer water consumption. 

 

 

 

 

 

Model 1 included morphological, biophysical and social variables (Table 2.8). No lifestyle 

variables were included. Parcel size was the most important variables, while the distance to Old Town and 

home value followed and were similar in importance. Percent 3+ person households and percent owners 

were similar in importance. LST was slightly more important than percent trees. Single-person 

households, college graduates, the percent white population were ranked less important, and the grass and 

trees interaction term was the least important of all. Model 1 explained 34.33% variance with an RMSE 

of 7.81 (Table 2.7) (Figure 2.4).  

 

Model Variance Explained RMSE 

1. Variable Selection  34.33 % 7.81 

2. Morphological 32.61 % 7.92 

3. Biophysical  22.24 % 8.50 

4. Social  15.43 % 9.69 

5. Unique  34.69 % 7.79 
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Table 2.8. Variable importance for Model 1 – Variable selection model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rank Variable % Increase in MSE 

1 Parcel Size 24.57 

2 Distance to Old Town 23.60 

3 Home Value 21.37 

4 Percent 3+ Person Households 14.40 

5 Percent Owner 14.20 

6 LST 13.82 

7 Percent Tree 13.14 

8 Percent Single-Person Households 12.52 

9 Percent College Graduates 11.25 

10 Percent White Population 10.32 

11 Percent Grass x Percent Tree 7.92 

Figure 2.4. Predicted versus observed plot for Model 1 - Variable selection model. 
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Model 2 included only morphological variables (Table 2.9).  The most important variables were 

parcel size, age of the home, and distance to Old Town. House density was also a top variable. All the 

lawn orientation variables contributed less to overall variance explained. Model 2 explained 32.61% 

variance with an RMSE of 7.92 (Table 2.7) (Figure 2.5).  

Table 2.9. Variable importance for Model 2 – Morphological model. 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rank Variable % Increase in MSE 

1 Parcel Size 32.16 

2 Age of Home 31.87 

3 Distance to Old Town 30.52 

4 House Density 26.16 

5 Direction: NE 11.45 

6 Direction: E 9.79 

7 Direction: NW 9.44 

8 Direction: W 8.10 

9 Direction: SE 7.43 

10 Direction: S 7.08 

11 Direction: N 3.76 

12 Direction: SW 1.36 

Figure 2.5. Predicted versus observed plot for Model 2 – Morphological model. 
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Model 3 included only biophysical variables (Table 2.10). The biophysical model did not perform 

as strong as our previous variable selection and morphological models. The vegetation and irrigatable 

area interaction term, along with LST, were the two most important variables. Trees and grass in 

combination was more important than trees or grass on their own, and trees explained more than grass 

overall. The least important biophysical variable was NDVI, and it was the only variable with a negative 

percent increase in MSE, suggesting a random variable would perform better. Model 3 explained 22.24% 

variance with an RMSE of 8.50 (Table 2.7) (Figure 2.6).  

 

Table 2.10. Variable importance for Model 3 – Biophysical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rank Variable % Increase in MSE 

1 Vegetation x Irrigatable Area 27.34 

2 LST 25.02 

3 Percent Grass x Percent Tree 20.01 

4 Percent Tree 9.54 

5 Percent Grass 7.98 

6 NDVI -6.61 

Figure 2.6. Predicted versus observed plot for Model 3 – Biophysical model. 
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Model 4 included only social variables and explained the least variance at 15.43% with an RMSE 

of 9.69 (Table 2.7). The most important variables were home value, percent white population, and percent 

3+ person households. The only lifestyle class ranked highly in importance was Upscale Avenues. All 

other variables steadily decreased in importance, with all other lifestyle classes being consistently the 

least important.  

 

Table 2.11. Variable importance for Model 4 – Social / Lifestyle model. 

 

 

 

 

 

 

 

 

Rank Variable % Increase in MSE 

1 Home Value 22.99 

2 Percent White Population 22.77 

3 Percent 3+ Person Households 21.87 

4 Neighborhood Class: Upscale Avenues 20.34 

5 Percent Hispanic Population 16.69 

6 Percent African American Population 16.57 

7 Income 15.84 

8 Percent Single-Person Households 15.77 

9 Percent Owner 14.99 

10 Percent College Graduates 14.46 

11 Neighborhood Class: Scholars & Patriots 12.54 

12 Neighborhood Class: Affluent Estates 10.78 

13 Neighborhood Class: Middle Ground 10.36 

14 Neighborhood Class: GenXUrban 10.14 

15 Neighborhood Class: Family Landscapes 7.23 

16 Neighborhood Class: Midtown Singles 5.86 

17 Neighborhood Class: Senior Styles 4.26 

18 Neighborhood Class: Next Wave 2.55 

19 Neighborhood Class: Uptown Individuals 0.62 

20 Neighborhood Class: Rustic Outposts -1.97 
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Model 5 explained the most variance at 34.69% with an RMSE of 7.79. (Table 2.7). It included 

only variables that had unique data for every parcel, rather than disaggregated data from block groups; 

therefore, the only social variable that was included was home value. The distance to Old Town was the 

most important variable, followed by parcel area, LST and home value. We noticed that the distance to 

Old Town became more important than parcel size, unlike our other models. The biophysical variables 

followed, and the lowest ranked variables were the age of the home, orientation of the lawn, and NDVI.  

 

Table 2.12. Variable importance for Model 5 – Unique model. 

Rank Variable % Increase in MSE 

1 Distance to Old Town 18.98 

2 Parcel Size 17.18 

3 LST 10.96 

4 Home Value 10.22 

5 Vegetation x Irrigatable Area 9.32 

Figure 2.7. Predicted versus observed plot for Model 4 – Social / Lifestyle model. 
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4 Discussion 

4.1 Important Variables for Water Consumption 

Both the variable selection and unique models performed the best and contained a combination of 

morphological, biophysical and social predictors, suggesting there are likely interaction effects between 

6 Percent Grass x Percent Tree 8.88 

7 Percent Grass 7.08 

8 Percent Tree 6.40 

9 Age of Home 5.49 

10 Direction: NE 3.34 

11 NDVI 3.16 

12 Direction: SE 2.50 

13 Direction: E 1.75 

14 Direction: W 1.59 

15 Direction: NW 0.66 

16 Direction: N 0.55 

17 Direction: S 0.50 

18 Direction: SW -0.78 

Figure 2.8. Predicted versus observed plot for Model 5 – Unique model. 
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different categories of urban characteristics that are important for explaining water consumption. Both of 

these models were comprised of several morphological variables, but differed the most in the number of 

social and biophysical variables. 

Of all the variables we tested, our RF models suggest urban morphology explains most of the 

variance of water consumption in Fort Collins. The top variables in both the variable selection model and 

the unique model were morphological (parcel size, distance to Old Town), and the morphological model 

performed almost as well as the variable selection and unique models (Table 2.7). The bivariate model 

shows that larger parcels are associated with less water use, which is often the opposite of what is found 

in the literature (Stoker and Rothfeder, 2014; Jansen and Schulz, 2006; Chang et al., 2010). Increased 

water use in parcels of smaller size may be partially driven by social conformity (see Burkhardt and Chan, 

2018) among close, neighboring homeowners. The desire to conform to neighborhood aesthetics may 

prompt households to maintain green lawns in a space where, due to its smaller size, it is already more 

viable to irrigate compared to a larger parcel. Jorgensen et al. (2009) stated that conservation motivations 

may be dictated by social norms, and we may be witnessing some social and landscaping conformity in 

Fort Collins where people have long strived to create a lush, green landscape in an ecosystem that is 

naturally semi-arid. 

The biophysical model indicated that biophysical characteristics alone were not as important for 

explaining water consumption (Table 2.7). LST was consistently a top biophysical variable, exemplifying 

the importance of temperature on water consumption (Tables 2.8, 2.10 and 2.13).  

Parcels located farther from Old Town are associated with higher water use; some of these newer 

areas are generally still being transformed from the natural, semi-arid grassland and agricultural land to a 

more irrigated, green landscape, which may explain their higher water use. Conversely, central Fort 

Collins contains higher UTC and established green space compared to the outskirts of the city, and is 

generally associated with less water use. 
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Social and lifestyle characteristics explained little variance on their own, but they were important 

in the variable selection model. The top social variables in the variable selection model were home value, 

the percent of 3+ person households and percent owners. The bivariate models indicated that owners, 

college graduates, and households with higher home value and income tend to use more water. In both the 

social and the bivariate models, neighborhoods classified as Upscale Avenues were relatively more 

important and were associated with more water use than any of the other neighborhoods (Tables 2.6 and 

2.11). Many of these social variables, along with the Upscale Avenues lifestyle, are associated with 

Figure 2.9. Parcel sizes in Fort Collins. Parcel size was consistently one of the top 

variables explaining water consumption, with smaller parcels using more water. 
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higher socioeconomic status, which is often uses more water in the literature (see Harlan et al., 2009). 

Despite the social RF model’s poor performance relative to our other RF models, our results indicate that 

Fort Collins may be experiencing the same water consumption trends relating to higher socioeconomic 

status that are often seen in the larger cities previously studied. 

We note that home value was consistently the most important social variable and it is the only 

social variable that is unique to every parcel. In the unique model, it demonstrated more importance than 

all the biophysical variables. This finding raised an important caveat in our study: the misalignment in the 

spatial scale of social and lifestyle variables. Other than home value, all the social and lifestyle variables 

were disaggregated from a larger block group scale and they do not accurately depict the unique situation 

on the ground. This inflates our models with duplicate social and lifestyle values for every home located 

within the same block group. If we were able to attain accurate parcel-level social and lifestyle data, we 

might be able to isolate more trends that are currently undetectable due to coarse spatial resolution, and 

ideally be able to explain more of the interactions between morphological, biophysical and social 

characteristics. 

 

Figure 2.10. Home value and median household income. Home value the only social variable with 

unique values for every household. In comparison, median household income is disaggregated from 

a larger block group scale and demonstrates the coarser spatial resolution. 
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4.2 Vegetation 

We wanted to compare between grass and trees in residential parcels to understand the relative 

influence of vegetation types on outdoor water consumption in Fort Collins. It is well established that 

trees provide benefits in urban regions, particularly in arid and semi-arid climates due to shade trees 

creating a significantly more comfortable urban environment (see Wang et al., 2016), yet many studies 

have suggested trees are disservices in these regions because they are associated with higher water 

consumption costs (see McPherson & Dougherty, 1989; Harlan et al., 2009; Cariños et al., 2017). 

Irrigated grass is also associated with more comfortable urban environments because its high rate of 

evapotranspiration can aid in microclimate regulation (Wang et al., 2016). Therefore, many cities prone to 

drought must consider tradeoffs between maintaining a vegetated landscape and preserving critical water 

resources.  

We found that grass is the only vegetation variable that was associated with higher water 

consumption. Trees, however, were associated with a decrease in water consumption (Table 2.5). This is a 

crucial finding, and it is reinforced when we compare linear models between each interaction term and 

water consumption. Both interaction terms (vegetation and irrigatable space, trees and grass), contain a 

combination of grass and trees, and both were associated with a decrease in water consumption. These 

results suggest trees are associated with less water consumption in Fort Collins. However, areas with low 

UTC outside central Fort Collins also tend to use more water, and it is unclear if this water is being used 

for lawn irrigation, planting trees or both. In the initial planting stages, trees do require large amounts of 

water. However, once tree roots are established, the frequency of watering decreases, and the total water 

requirement may be offset by the additional benefits an established tree can provide. Based on these our 

results, we expect that once trees are established, they may help mitigate outdoor irrigation. 

Central Fort Collins contains most of the green space, including UTC and many irrigated lawns. 

Urban trees in this region are typically large and aged, and they provide critical shade that aids in 

controlling the microclimate. It is possible this shade may impact lawn irrigation by delaying 
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evapotranspiration of grass. A study conducted by Qaiser et al., (2011) found that a large portion of water 

used for outdoor lawn irrigation evapotranspires, and evapotranspiration is a function of solar radiation 

(Yang and Wang, 2015). During the summer, tree shade may be blocking direct radiation and slowing the 

rate at which lawns dry out, decreasing the need for frequent irrigation to maintain them. 

 Based on our bivariate analysis, we estimate that by increasing the UTC on parcels, households 

could save water used for outdoor irrigation during the summer. For every 1% increase in tree cover, we 

would expect a 0.968% decrease in water consumption (gal/ft²), a nearly one-to-one relationship. As an 

example, we applied this relationship to a household with about 80% grass cover and 20% tree cover that 

dramatically increased water consumption during the summer months. During the winter, this household 

used approximately 8,500 gallons of water (~ 3,000 gallons / month); during the summer, they 

skyrocketed to approximately 226,000 gallons of water (~ 75,000 gallons / month). With irrigatable space 

at 4,448 ft², they were using about 48 gal / ft² from June - August. If we were to increase tree cover on 

this parcel by 50%, from 20% to 30% cover, we would expect a decrease in water consumption by 48.4%, 

reducing their usage to 24.77 gal / ft² during the summer. If we take this same example and increase grass 

cover by only 10%, from 80% to 88%, we would expect an increase of 7.94% in water consumption, 

resulting in 51.76 gal / ft² during the summer. 

 This example demonstrates the importance of vegetation type within irrigatable space in Fort 

Collins households. However, biophysical variables were not the most important predictors in our RF 

models, and we have not accounted for additional morphological and social interactions that are likely 

contributing to water consumption patterns in this example. 

4.3. Policy Implications 

 As we previously mentioned, the 2002 drought in Colorado resulted in mandatory regulations on 

outdoor water use by strictly controlling the amount of water that can be used for outdoor irrigation, and it 

was found to be one of the most effective methods for water conservation (Kenney et al., 2004). 
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However, a study by Olmstead and Stavins (2009) found mixed results on the effectiveness of mandatory 

restrictions, and instead suggested that a combination of conservation approaches (landscape education 

programs and watering restrictions) had small but significant reductions in total water use. This suggests 

that, in addition to regulatory action, outreach can invoke behavioral change. Therefore, it may be 

valuable for Fort Collins to consider more programs to induce voluntary forms of water conservation, as 

they target lifestyle change (Balling Jr. et al., 2008). Lifestyle changes are typically more long-term and 

require less transition should droughts become more prevalent. Examples of conservation programs might 

include greater incentives for lawn management, and continued xeriscaping and tree planting programs. 

A xeriscaping program already exists in Fort Collins and it may be beneficial to increase 

awareness of it. Fort Collins may consider expanding or increasing incentives to xeriscape along with 

establishing partnerships with landscapists to make water reduction approaches more appealing and easier 

for residents. Currently, residents need to invest a fair amount of time and creativity in designing their 

own property, and this may deter people from participating. 

We recognize the importance of lawns in sustaining personal well-being through their ability to 

provide a space for individual activities and social gatherings, so we suggest ensuring there is enough 

access to public open spaces to fulfill these personal and group needs. Areas for prospective infill 

development, underused parking lots, or vacant properties could be leveraged to expand open spaces. Fort 

Collins could begin developing community-empowered programs to decrease pavement and increase 

public greenspace, therefore reducing the amount of irrigation needed on private land and allotting it for 

public use. 

 4.4. Caveats and Future Work 

We have acknowledged several caveats in our study. One of the most important caveats is that 

our values for outdoor water consumption are only representative, as we do not have separate water 

meters for indoor and outdoor consumption. However, our approach of subtracting winter use from 
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summer use to obtain outdoor consumption is the standard method recommended by the City of Fort 

Collins Utilities.   

There are additional explanatory variables that are important but were not considered, including 

the presence of swimming pools, precipitation, and landscape metrics such as patch size and density, 

connectivity, and spatial aggregation. In developing our variables for the direction of the front lawn, we 

assumed people would be watering their front lawn more than their back lawn, which may not accurately 

reflect outdoor irrigation practices in households. We also have coarse-resolution lifestyle characteristics, 

and more unique information for every household would also help us understand household values, 

perceptions and motivations for water conservation. Incorporating these variables could give more 

meaningful insight to water consumption patterns and should be considered in future studies. 

We performed a RF analysis because our variables are not linear, and we expect there are 

inherent interactions occurring between our morphological, biophysical, social and lifestyle variables. 

There may be spatially-dependent interactions occurring as well, and we did not consider any spatial 

modeling in this study. Future studies should consider the spatial configuration of the landscape because 

several studies have found it to have important implications for outdoor water consumption (see 

Ghavidedelfar et al., 2017; Wentz and Gober, 2007; House-Peters et al., 2010; Balling et al., 2008; 

Sanchez et al., 2018; Chang et al., 2010; Hwang et al., 2015). 

 We recommend that a further analysis to confirm the relationship between shade and grass on 

private residences in Fort Collins should also be conducted to see if this relationship is as important for 

water consumption as we expect. If residences that irrigate are consistently exposed to more direct solar 

radiation, they could be using considerably more water to maintain a green lawn. This further analysis 

could also give additional insight into the relative importance of morphological and biophysical 

characteristics in the household because shade is produced by both trees and by tall building structures. 

We could compare the height and spatial configuration of buildings and vegetation to determine if tree 

shade or building shade has a greater impact on water consumption. 
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5 Conclusion 

 It is generally understood that a wide array of urban characteristics within cities can have 

important impacts on outdoor water consumption patterns. However, the main driving characteristics and 

their degree of influence is debated and inconsistent in the literature. These characteristics may include 

morphological patterns, biophysical patterns, social patterns, or lifestyle behavior.  

In the semi-arid city of Fort Collins, CO, we found the most important characteristics for 

explaining 2016 summer outdoor residential water use were morphological variables, including parcel 

size and the distance to Old Town. Biophysical characteristics were also important, but we found them to 

be more important when combined with other urban characteristics in our RF predictive models. Social 

and lifestyle characteristics explained the least amount of water consumption trends, however most of 

these characteristics were limited by a coarser spatial resolution and may not contain an accurate 

depiction of social composition in the city. 

Older parts of Fort Collins have long been managed to sustain a green landscape, despite the 

natural ecosystem not being suitable for UTC and lawns. Semi-arid ecosystems need intensive human 

management in order to achieve the level of green space that exists in these older parts of Fort Collins. 

More research will be needed with unique, parcel-scale social data to explore the importance of human 

management of urban green space and its relationship to water consumption. 

There may be also social conformity effects, where neighboring households tend to uphold a 

community aesthetic of green space, prompting more water use in the relatively newer, developing 

outskirts of Fort Collins. We cannot tell if more irrigation on the outskirts of the city are due to tree 

planting or lawn irrigation. High UTC was associated with decreased water consumption, possibly 

because UTC provides critical shade that keeps the region cooler and delays evapotranspiration of lawns. 

The additional microclimate regulation by trees will become especially important as temperatures 

continue to increase in the region, as many climate models project by mid-century. 
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These findings can assist city officials in conservation endeavors by providing results that can be 

implemented in designing water-efficient landscapes, and provides supporting information that can be 

leveraged by programs to increase awareness for water conservation.  
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APPENDIX 
 
 
 

Appendix I: Neighborhood classifications derived from Tapestry Segmentation (2018). 

Variable Description 

Affluent 
Estates 

• Established wealth-educated, well-traveled married couples 

• Homeowners with mortgages 

• Expect quality; invest in time-saving services 

• Participate actively in communities 

• Active in sports and travel 

Upscale 
Avenues 

• Prosperous married couples living in older suburban enclaves 

• Ambitious and hard-working 

• More diverse population with many older children 

• Homeowners prefer denser, urban settings with older homes 

• Serious shoppers that appreciate quality and bargains 

• Active in fitness pursuits and premium movie channel subscriptions 

Uptown 
Individuals 

• Young, successful singles in the city 

• Intelligent (best-educated market), hard-working and averse to traditional commitments of 
marriage and home ownership 

• Prefer credit cards over debit cards, while paying down student loans 

• Green and generous to environmental, cultural and political organizations 

• Internet dependent and adventurous 

Family 
Landscapes 

• Successful young families in their first home 

• Non-diverse, prosperous married-couple families, residing in suburban or semirural areas 
with low vacancy rate 

• Homeowners with mortgages living in single-family homes with median home value slightly 
higher than the U.S. 

• Do-it-yourselfers, who work on home improvement projects 

• Sports enthusiasts, owning newer sedans or SUVs, dogs, and savings accounts/plans, 
comfortable with latest technology 
Eat out frequently at fast food or restaurants to accommodate busy lifestyle 

GenXurban 

• Gen X in middle age; families with fewer kids and a mortgage 

• About a fifth of residents are 65 or older; about a fourth have retirement income 

• Own older single-family homes in urban areas with 1 or 2 vehicles 

• Live and work in the same county, creating shorter commute times 

• Invest wisely, well-insured, comfortable banking online or in person 

• News junkies 

• Enjoy reading, renting movies, playing board games and cards crossword puzzles, museums 
and rock concerts, dining out 

Middle 
Ground 

• Lifestyles of thirtysomethings 

• Millennials in the middle: single/married, renters/homeowners, middle class/working class 

• Majority attended college or attained a college degree 

• Households have ditched their landlines for cell phones 

• Online all the time: use Internet for entertainment, social media, and to search for 
employment 
Leisure include night life, some travel and hiking 

Senior 
Styles 

• Households are commonly married empty nesters or singles living alone; homes are single-
family, retirement communities, or high-rise apartments 

• More affluent seniors travel and relocate to warmer climates; less affluent settled seniors are 
still working toward retirement 

• Cell phones popular, but so are landlines 
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• Many prefer print to digital media: avid newspaper readers 

• Subscribe to cable TV 
Prefer vitamins to increase mileage and a regular exercise regiment 

Rustic 
Outposts 

• Country life with older families in older homes 

• Depend on manufacturing, retail and healthcare, with pockets of mining and agricultural jobs 

• Low labor force participation in skilled and service occupations 

• Own affordable, older single-family or mobile homes 

• Live within their means, shop at discount stores and maintain their own vehicles (purchased 
used) and homes 

• Outdoor enthusiasts who grow their own vegetables, love their pets and enjoy hunting and 
fishing 

• Technology is cost prohibitive and complicated. Pay bills in person, use the yellow pages, 
read newspapers, magazines, and mail-order 

Midtown 
Singles 

• Millennials on the move- single, diverse, urban 

• Seeking affordable rents in apartment buildings 

• Work in service and unskilled positions, usually close to home or public transportation 

• Single parents depend on their paycheck to buy supplies for their very young children 

• Embrace the Internet for social networking and downloading content 

• From music and movies to soaps and sports, radio and television fill their lives 

• Brand savvy shoppers select budget friendly stores 

Next Wave 

• Urban denizens, young, diverse, hard-working families 

• Extremely diverse with a Hispanic majority 

• Large share are foreign born and speak only their native language 

• Most are renters in older multi-unit structures built in 1960s or earlier 

• Hard-working with long commutes to jobs, often utilizing public transit to commute 

• Spending reflects youth of these consumers, focus on children and personal appearance 

• Partial to soccer and basketball 

Scholars and 
Patriots 

• College and military populations that share many traits due to transitional nature of this group 

• Highly mobile, recently moved to attend school or serve in the military 

• Youngest market group with majority in the 15 to 24-year-old range 

• Renters with roommates in nonfamily households 

• For many, no vehicle is necessary as they live close to campus, military base or jobs 

• Millennials are tethered to their phones and electronic devices, typically spending over 5 
hours online everyday tweeting, blogging, and consuming media 

• Purchases aimed at fitness, fashion, technology, and necessities of moving 

• Highly social, free time is spent enjoying music, out with friends, seeing movies 

• Try to eat healthy but often succumb to fast food 

 

 

 


