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ABSTRACT

A COMPREHENSIVE COMPENDIUM OF ARABIDOPSIS RNA-SEQ DATA

In the last fifteen years, the amount of publicly available genomic sequencing data has doubled

every few months [1–3]. Analyzing large collections of RNA-seq datasets can provide insights

that are not available when analyzing data from single experiments. There are barriers towards

such analyses: combining processed data is challenging because varying methods for processing

data make it difficult to compare data across studies; combining data in raw form is challenging

because of the resources needed to process the data. Multiple RNA-seq compendiums, which are

curated sets of RNA-seq data that have been pre-processed in a uniform fashion, exist; however,

there is no such resource in plants.

We created a comprehensive compendium for Arabidopsis thaliana using a pipeline based

on Snakemake. We downloaded over 80 Arabidopsis studies from the Sequence Read Archive.

Through a strict set of criteria, we chose 35 studies containing a total of 700 biological replicates,

with a focus on the response of different Arabidopsis tissues to a variety of stresses. In order

to make the studies comparable, we hand-curated the metadata, pre-processed and analyzed each

sample using our pipeline.

We performed exploratory analysis on the samples in our compendium for quality control, and

to identify biologically distinct subgroups, using PCA and t-SNE. We discuss the differences be-

tween these two methods and show that the data separates primarily by tissue type, and to a lesser

extent, by the type of stress. We identified treatment conditions for each study and generated three

lists: differentially expressed genes, differentially expressed introns, and genes that were differ-

entially expressed under multiple conditions. We then visually analyzed these groups, looking

for overarching patterns within the data, finding around a thousand genes that participate in stress

response across tissues and stresses.
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Chapter 1

Biological Background

1.1 Motivation

Analyzing large collections of RNA-seq datasets can provide insights that are not available

when analyzing data from single experiments. Through aggregating datasets, new trends can be

quickly identified, as well as areas that have not been widely explored. There are barriers towards

aggregating large datasets:

• Combining processed data is challenging because varying methods for processing data make

it difficult to compare data across studies.

• Combining data in raw form is challenging because processing it is resource intensive.

Multiple RNA-seq compendiums, which are curated sets of RNA-seq data that have been pre-

processed in a uniform fashion, exist [4–8]; however, there is no such resource in plants. These

compendiums have improved the usability of the data and have helped facilitate the development

of new bioinformatic and statistical methods [6]. Datasets that may have only been used for one

publication suddenly provide additional value, and lead to opportunities for future publications

within the domain.

We created a comprehensive compendium for Arabidopsis thaliana using a pipeline based on

Snakemake. Over a three year period, starting in 2016, we downloaded over 80 Arabidopsis studies

from the Sequence Read Archive. Through a strict set of criteria, we chose 35 studies containing

a total of 700 biological replicates, with a focus on the response of different Arabidopsis tissues

to a variety of stresses. In order to make the studies comparable, we hand-curated the metadata,

pre-processed and analyzed each sample using our pipeline.

We performed exploratory analysis on our compendium using PCA and t-SNE. We discuss the

differences between these two methods and show that the data separates primarily by tissue type,
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and to a lesser extent, by the type of stress. We identified treatment conditions for each study and

generated three lists: differentially expressed genes, differentially expressed introns, and genes that

were differentially expressed under multiple conditions. We then visually analyzed these groups,

looking for overarching patterns within the data, finding around a thousand genes that participate

in stress response across tissues and stresses.

1.2 Nucleic Acids

Nucleic acids are found in abundance in all living things. They transmit and express the infor-

mation to the interior operations of the cell. Eventually this information is expressed through the

different levels of proteins in the cell. Enormous effort has gone into determining these sequences

and how the cell adapts to survive.

1.2.1 Deoxyribonucleic Acid

The first nucleic acid we will describe is deoxyribonucleic acid, DNA. DNA encodes heredi-

tary information and provides instructions for the development and functioning of all organisms.

A DNA molecule forms a double helix structure; this structure is comprised of two strands of

nucleotides that connect like a twisted ladder [9].

The nucleotide is the basic building block that forms the nucleic acid. The nucleotide is com-

prised of three parts: a sugar (deoxyribose), a phosphate group, and a nitrogenous base. There are

four types of nucleotides in DNA: Adenine (A), Cytosine (C) Guanine (G) and Thymine (T). These

types are differentiated by the structure of the nitrogenous base and can be further categorized as

pyrimidines and purines. Cytosine and Thymine are pyrimidines and their molecular structure is

comprised of a single carbon nitrogen ring. Adenine and Guanine are purines and their molecular

structure is comprised of two carbon nitrogen rings. This double ring makes them larger in size.

A single strand of DNA is composed of a sequence of these nucleotides. Two complementary

strands of DNA are joined together through hydrogen bonds. Cytosine always bonds with Guanine,

and Adenine always bonds with Thymine. The two strands of DNA run in opposite directions of
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each other. Each strand has a 5’ end and a 3’ end. These names come from the carbon numbers

within the sugar group that forms the bonds between nucleotides within the same strand.
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Figure 1.1: The structure of DNA. The four different types of bases can be grouped into pyrimidines and
purines. The pyrimidines (Cytosine (C) and Thymine (T)) are bases containing one carbon nitrogen ring.
The purines (Adenine (A) and Guanine (G)) contain two carbon nitrogen rings. These four bases pair
together through hydrogen bonds; Cytosine always bonds with Guanine, and Adenine always bonds with
Thymine.

1.2.2 Ribonucleic Acid

The second nucleic acid is ribonucleic acid, RNA, and it is usually single-stranded. RNA has a

very similar structure to DNA, but instead of having a deoxyribose, it has a a ribose sugar. RNAs
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nitrogenous bases are Cytosine (C), Uracil (U), Adenine (A), and Guanine (G). Unlike DNA,

the Thymine is replaced with Uracil but Uracil pairs with Adenine [10]. RNA carries the same

sequence information as the corresponding non-transcribed strand of DNA. RNA molecules play

many roles within the cell from catalyzing biological reactions, to controlling gene expression.

There are four major types of RNA: messenger RNA (mRNA), ribosomal RNA (rRNA), transfer

RNA (tRNA), and small nuclear RNA (snRNA). mRNA acts as a template from the DNA to the

protein, rRNA links the amino acids together to form proteins, tRNA delivers amino acids to the

ribosome during translation, and snRNA is confined to the nucleus and plays an important role in

the maturation of mRNAs.

1.3 The Flow of Genetic Information

The Central Dogma, proposed by Francis Crick, describes the flow of genetic information.

Genetic information, the sequence of bases, passes from nucleic acid to nucleic acid until the

unidirectional transfer to protein. Commonly, this process includes two key steps in expression,

transcription (DNA to RNA) and translation (RNA to protein) [11].

DNA

RNA Protein
Translation

Transcription

Figure 1.2: The Central Dogma of Biology.

1.3.1 Transcription

Transcription is the first step in this process where the information from the DNA transcribed

into mRNA. The stretch of DNA transcribed is called a transcription unit. Transcription starts with
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an RNA polymerase and other transcription factors binding to the promoter region of the DNA. The

double helix in the DNA is separated by breaking the hydrogen bonds between the complementary

nucleotides. Ribonucleotide triphosphates (NTPs) form base pairs with the complementary strand

of DNA (the anti-sense strand). These ribonucleotides then join together through an enzyme called

RNA polymerase to form the pre-messenger RNA.

In eukaryotes the pre-mRNA undergoes further co-transcriptional modifications to become a

mature messenger RNA, mRNA. These modifications include the addition of a 5’ cap at the be-

ginning of the mRNA, the addition of a poly-A tail (a string of A nucleotides) at the end of the

mRNA, and a process called splicing, where segments of the mRNA are removed. At the end of

these modifications, the mRNA molecule is transported out of the nucleus before being transcribed

into a polypeptide.

1.3.2 Translation

Translation is where the mRNA is used as a template to build a protein. The strand of mRNA

is translated one codon at a time. A codon is comprised of a group of three nucleotides. There are

61 codons, most of these codons translate to a particular amino acid. Some codons translate to the

same amino acid, because there are fewer amino acids than there are codons (20 common ones).

One codon acts as a starting signal (AUG), and three act as termination signals (UAA, UAG, or

UGA). The cytoplasm contains two other molecules that play key roles in translation: ribosomal

RNA (rRNA) and transfer RNA (tRNA). Each tRNA molecule carries a single amino acid. At the

other end of the tRNA molecule, there is a trinucleotide sequence, called the anticodon, which

is complementary to the corresponding codon. The anticodon binds to a codon, and the tRNA

molecule deposits its amino acid with the help of the ribosome. The ribosome is divided into a

small and a large subunit, during translation these subunits join together on the mRNA strand to

help with the formation of the polypeptide.
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1.4 Splicing

The mRNA transcript undergoes several modifications. The transcript consists of coding re-

gions (exons) and non-coding regions (introns). One modification that the transcript goes through

is called splicing. Splicing is where the non-coding regions are removed, and the coding regions

are joined together, forming the final sequence. There are four loosely conserved core sequence

regions that contribute to accurate splicing in both plants and animals.

• A 5’ splice site at the beginning of the intron, called the donor splice site, which contains a

conserved GT.

• A 3’ splice site end of the intron, called the acceptor splice site, which contains a conserved

AG

• A branch point, with a conserved A located in the range of 18 to 40 nucleotides upstream of

the 3’ splice site.

• A polypyrimidine tract (’C’ and ’U’) following the branch point.

While there have been extensive studies into the spliceosomes for yeast and humans, the plant

spliceosome has yet to be isolated [12]. The first report on plant in vitro splicing, which is a

technique that helped characterize the assembly and composition of the spliceosome in mammals

and yeast, was published in 2018 [13].

Since this area is still in development for plants, we will describe the composition and pro-

cess for the major U2 spliceosome type in metazoans. Splicing occurs over several steps and is

catalyzed by small nuclear ribonucleoproteins (snRNPs): U1, U2, U4, U5 and U6. During the

first step U1 binds to a complementary sequence at the 5’ end of the intron and the pre-mRNA is

cleaved in this region. Through the pairing of adenine and guanine, the cleaved end attaches to a

conserved branching point downstream and forms a lariat. Next, the snRNPs U2, U4, and U6 help

position the 5’ end of the intron and U5 helps position the 3’ end of the intron so that the 3’ end

can be cut and joined to the 5’ end. The adjacent exons are covalently bound together and the lariat

is released.
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Figure 1.3: How pre-mRNA is spliced during transcription

1.4.1 Alternative Splicing

Shortly after RNA splicing was discovered, scientists learned that if the primary transcript had

multiple introns, the introns could be spliced in different ways to form multiple transcripts from a

single gene. This means that a single gene could result in multiple protein isoforms which increases

the functional capacity of a gene. These splicing patterns change in different tissues and different

stresses.

The four splicing features mentioned above are not enough for splice site recognition. There are

also cis-acting regulatory sequences and bind corresponding trans-acting factors. The cis-acting

regulatory sequences are anywhere between 4 to 18 nucleotides long and can be categorized as

splicing enhancers or as splicing silencers. Correspondingly the trans-acting factors that interact

with these sequences are regulate the recruitment of splice site proteins. Splicing activator proteins

bind to the splicing enhancer sites, increasing the probability of a nearby site to be part of a splice

junction while the repressor proteins bind to splicing silencer sites and reduce the probability.

During alternative splicing, cis-acting regulatory elements in the mRNA sequence determine

which portions of the transcript are retained and which are spliced out. These cis-acting regulatory

elements alter splicing by binding to different trans-acting protein factors, such as SR (Serine-

Arginine rich) proteins that function as splicing facilitators and heterogeneous nuclear ribonuleo-

proteins (hnRNPs) that suppress splicing. The introduction of high-throughput technologies has
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made the study of the alternative splicing more viable. The five forms of alternative splicing are

shown in Figure 1.4.

1.5 Differential Alternative Splicing and Differential

Gene Expression

After we start understanding the different processes that regulate the cell, the question becomes,

how can we examine what is happening in the cell with changes in the environment? One common

way is to measure the differences in alternative splicing and gene expression.

Differential alternative splicing is when alternative splicing occurs in response to a difference

in environment. Several studies have looked at differential alternative splicing due to various biotic

and abiotic stresses [14–17]. Some of these conditions include drought [18], heat [19], cold [20],

exposure to chemicals [21], nutrient deficiencies [22], and viral and bacterial pathogens.

Alternative splicing can influence gene expression in several ways. On way is by generat-

ing transcript isoforms that are targeted by the nonsense mediated decay pathway, thereby down-

regulating the gene expression. A second way is by generating protein variants with altered func-

tions, thus allowing for a more varied proteome [14, 23].

Similar to differential alternative splicing, differential gene expression is where a gene is up-

or down-regulated between two different biological conditions [24]. If, in two conditions, the

difference between the number of sequence fragments that map back to a gene is significantly

different (greater than the natural variation), then the gene is differentially expressed [25].

Studying these differences can help elucidate what is happening in the cell. We explore these

differences with various conditions to better understand how the cell adapts to stressful environ-

ments and survives.

1.5.1 RNA Sequencing Methods

The main goals of RNA-seq are to identify the sequence, structure, and abundance within

a sample. Sequencing techniques have been refined over time. Earlier transcriptomic methods,

8



3’5’

5’ 3’5’ 3’

3’5’

5’ 3’5’ 3’

3’5’

5’ 3’

3’5’

3’5’

5’ 3’5’ 3’

3’5’
5’ 3’

3’5’

A A A AG

A A A AGA A A AG

A A A AG

A A A AG
A A A AG

A A A AG

A A A AG

A A A AG

A A A AG

A A A AG
A A A AG

A A A AG

A A A AG

A A A AG

A)

B)

C )

D )

E )

Figure 1.4: Forms of Alternative Splicing. A) Exon Skipping is where an exon is spliced out instead of
being left in the final transcript. B) Mutually Exclusive Exons is where one of two consecutive exons is
included in the final transcript. C) Alternative Donor Sites is where an alternative 5’ splice site is selected,
changing the 3’ boundary of the upstream exon. This is the most prevalent form of AS in mammals and the
most extensively studied. D) Alternative Acceptor Sites is where an alternative 3’ splice site is selected,
changing the 5’ boundary of the downstream exon. E) Intron Retention is where an intron is retained
instead of being spliced out of the mature mRNA. This is the most frequent form in plants but less frequent
in mammals.
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including Sanger sequencing and microarray expression analysis, provided a strong basis for de-

ciphering genetic structure. High-throughput next generation sequencing, NGS, methods have

transformed the field of transcriptomics. Unlike microarrays, RNA-sequencing (RNA-seq) does

not depend on prior sequence knowledge. It provides a direct measure of RNA abundance, has

more success in quantifying transcripts found in low or high abundance, and is more cost effec-

tive [26]. The cost of sequencing the genome went from 100 million dollars in 2001, to less than

10,000 dollars in 2014 [27]. This influx of data has since transformed the field of genomics, al-

lowing a more comprehensive study of the genetic differences and similarities, within and across

species [28]. One of the fields that NGS has transformed is transcriptomics. The transcriptome

refers to the sum total of all the mRNA molecules expressed from the genes of an organism. Tran-

scriptomics aims to identify and quantify expression levels of individual transcripts. Knowledge of

the structure and abundance of the transcriptome helps researchers interpret expression in different

tissues under normal conditions, and how this changes under different stresses.

RNA-Seq is widely used to compare gene expression between different experimental condi-

tions, characterize alternative splicing, to look at mutations and to build co-expression networks.

This data can also be used to discover novel exon-intron boundaries and verify current gene anno-

tations.

Since RNA-seq opens up the possibility of studying gene expression in more depth, many re-

search techniques are transitioning towards using RNA-Seq for understanding alternative splicing

and differential expression.
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Chapter 2

Biological Reproducibility, Replicability, and Data

Reusability

Reproducibility, replicability and data reusability have recently gained a lot of attention in

the research community [29–35]. This attention is a result of changes in how we handle and

present data. One major change is that computers are more commonly used to perform scientific

analyses and have allowed for the analysis of increasingly large amounts of data. The second major

change is a positive shift within the scientific community towards sharing resources. The National

Institutes of Heath (NIH) states that “rapid and unrestricted sharing of data and research resources

is essential for advancing research on human heath and infectious diseases" [36]. In 2016, the NIH

mandated that data be shared from all trials that use NIH funding [37].

Several foundations have also started to require resource sharing [38]. The Gordon and Betty

Moor Foundation requires that all foundation-funded projects make data widely available [39].

Pediatric cancer foundations such as St. Baldrick’s Foundation and Alex’s Lemonade Stand Foun-

dation for Childhood Cancer have incorporated data sharing policies into their grant processes [40].

The Bill and Melinda Gates foundation has adopted an open access policy on data that the founda-

tion financially supports. This policy requires that associated data from peer reviewed publications

be accessible to the public [41]. Because of policies like these and advances in technology, re-

search groups have put more effort into making data easily accessible and developing frameworks

to communicate the methods used to process and analyze this data. Even with these efforts, techni-

cal and descriptive barriers are still a major hurdle; we will introduce a few issues we encountered

during this research.

In 2016, Nature conducted an online survey about reproducibility in research. Out of 1,576

participants, 52% believed there is a significant crisis of reproducibility in research, 70% of those

surveyed had failed to reproduce results from another lab, and more than half admitted to failing
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to reproduce results from experiments within their own labs [34]. In 2015, a paper published in

PLOS Biology analyzed past studies and estimated that published irreproducible clinical research

exceeds 50%, resulting in roughly $28 billion dollars spent per year in the USA on irreproducible

research [35].

To address this issue, many journals, institutions and individual researchers are creating guide-

lines and recommendations for how to achieve reproducibility [30, 35]. First, we should define

what these terms mean:

• Reproducibility refers to the ability for fellow researchers to duplicate the findings of a

study using the same methods and the same data [29–31, 33].

• Replicability refers to the ability for fellow researchers to duplicate (within a measure of

standard error) the findings of a study using the same methods and new data [30, 33].

Several academic libraries, including Elsevier, Frontiers, Nature Research, and Springer Na-

ture, have signed the Transparency and Openness Promotion (TOP) Guidelines [42]. These guide-

lines were established in 2013 by the Center for Open Science to increase openness, integrity and

reproducibility in research [43].

Increasing the standards for reproducibility and replicability also helps encourage data reuse.

For results to be replicable, enough information must be provided for different labs to thoroughly

understand the sequence of steps used to prepare the data.

There are many factors that affect reevaluation and reuse of data and scientific results, in-

cluding: the initial design of experiments, careful recording of lab procedures, statistically sound

analyses, and data reporting and deposition. We will focus on the area of data reporting because

this greatly impacted our work.

2.0.1 Incomplete Metadata

For our research project, we downloaded and processed the raw data from over 80 studies,

ultimately using 35 of these studies. Please refer to the methods section of this paper to see how
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we chose this data. Even in the studies that we used, the most prevalent issue we encountered was

incomplete or poorly annotated metadata from the Sequence Read Archive (SRA). Well-annotated

metadata is essential for replication, reproducibility and integration of the data into other research

questions.

Figure 2.1: Inadequate annotation of studies in the SRA for A. thaliana

As illustrated in Figure 2.1, 18 out of the 35 studies did not reference an academic paper and 11

out of those 18 studies did not provide enough details within the metadata to adequately describe

the growth conditions and/or treatment of the plants. For further information, refer to Table 2.1.

Groups sharing data are doing so to benefit the scientific community and fulfill requirements for

funding and publishing. Because the global reuse of data is still a new concept, research groups are

unaware of the problems that other researchers will encounter when attempting to use their data.

Some of the most common fields missing in the metadata included:

• The age of the plants

• The growth protocols for the plants (e.g. soil composition, temperature, light, etc)

• The quantity and duration of treatments applied to the plants
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Sometimes, important sections of the data were missing and we did not have a complete picture of

the experiment until we read the corresponding paper. Often there was no link to the corresponding

paper. For example, one study applied multiple conditions to the plants. Because of this, there

were multiple control samples, which were labeled as control treatments or mock treatments. It

was impossible to pair these control samples with the treatment samples without a visual aid from

the paper that used the same language [44, 45]. Another study used time points instead of hours to

specify the progression of the experiment. The submitter specified that the time points were 3 hours

apart but did not clarify whether the first time point was taken 0 or 3 hours into the experiment.

This was clarified by a visual aid provided in the associated paper [14]. Without this information,

it is impossible to accurately identify and incorporate hidden sources of variability.

To compensate for incomplete metadata and missing links to academic papers, we spent a

substantial amount of time searching for the associated papers for each study and filling in the

metadata from the methods and materials sections.

Finding these papers was not a straight forward task. We searched for an associated academic

paper using the following information, when provided:

• Terminology provided by the abstract and from existing data

• The associated institution

• The contributor’s name/s

We then confirmed the paper by matching details such as authors, institution, year published,

and methods. We were able to find all but 2 of the 18 academic papers that were missing from

the associated studies. While not all data has published results, when possible, it is extremely

important to link the paper to promote replication and data reuse within the scientific community.

2.0.2 Inconsistent Terminology for Identification of Metadata

The second issue we faced was the identification of biological characteristics for each replicate

(or run) in the SRA database. When looking at a study or experiment in the SRA database, a
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Table 2.1: Additional information detailing if SRA experiments had sufficient metadata and if the data
linked to an associated academic paper. Column one provides the accession. Column two provides a true or
false value for whether there was sufficient data. Sufficient data includes details about growth conditions,
age of plants, tissue type, and the amount and length of the treatment stress. Column three provides a true
or false value for whether there was a link to an associated academic paper.

* indicates that an academic paper was linked to the study after research was finished.

SRA Accession Sufficient Data Associated Paper
DRP003686 F T
DRP004486 F F
ERP022071 F F
ERP111840 T T
SRP011128 F F
SRP026260 F T
SRP058527 F T
SRP060410 F T
SRP073212 F F
SRP073711 T T
SRP074485 T T
SRP074890 F T
SRP076862 T T
SRP081056 T T
SRP082177 F T
SRP090416 T T
SRP091014 F F
SRP091628 T F
SRP096554 T T
SRP097690 T F *
SRP101403 T T
SRP102893 F F
SRP107981 T T
SRP108611 T T
SRP124769 T T
SRP134263 T F
SRP136536 T F
SRP145580 T T
SRP148881 T F
SRP155798 T F
SRP156748 F F
SRP161785 F F
SRP162472 F F
SRP177951 F F *
SRP187477 F F
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researcher can download the RunTable which gives the researcher metadata associated with each

replicate.

Figure 2.2: Examples of RunTable identifiers from the Sequence Read Archive

Several examples of RunTables from the SRA database are shown in Figure 2.2. While ex-

ploring different studies stored in the SRA database we noticed that the identifiers used to describe

biological and technical replicates could be split into two categories. The first set of identifiers

appear to act as primary keys to the database and uniquely identify each biological and technical

replicate, examples of which include Run, BioSample, and Experiment. The second set of identi-

fiers are manually entered by the contributor of the data and describe the biological characteristics

of the replicate. Examples of these identifiers include genotype, ecotype, treatment, etc. This

second set of identifiers do not adhere to a controlled vocabulary. Instead the contributors of the

data use semi-structured textual descriptions to describe growth conditions, biological attributes,

and treatment protocols. Identifiers that are not globally unique and persistent create a source of

unnecessary complexity and ambiguity [46–50].

Inconsistent identifiers lead to several major issues:

• Inability to create reusable scripts to incorporate essential details from the experiment

• Difficulty in identifying relevant data to a particular experimental protocol or outcome

• Higher occurrence of incomplete metadata

• Increased chance of the metadata being misinterpreted
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Furthermore, this leads to an inability to replicate past experiments and causes uncertainty with

data reuse. Table 2.2 gives an example of database keys from the SRA metadata of several studies

that were used during this research.

Table 2.2: List of terms used by different research groups as identifiers to describe the metadata for A.

Thaliana in the SRA RunTable. Each column begins with the identifier we chose followed by a list of terms
that we encountered to represent the same element.

ecotype genotype age tissue treatment time

accession genotype age body_site co2_condition duration_of_treatment
cultivar genotype_type dev_stage organ exposure_time exposure_time
ecotype genome_variation developmental_stage source_name growth_condition time
ecotype_background source_name Stage tissue growth_conditions time_point
isolate infection
strain label
source_name light_treatment

sample_name
Sample_name
source_name
stress
treated_with
treatment
Title

2.0.3 Current Solutions

The ability to store and share data in public repositories is still a new part of the academic

landscape. We have highlighted that incomplete and non-standardized metadata is a prevalent

issue within the SRA database. This issue also touches other popular data archives, such as GEO,

GenBank, and ArrayExpress. [46, 51–54]. Researchers face challenges with sharing data such as

additional costs and time, risks that errors within published work will be exposed and that data

the research group produced will be used by other labs, causing a loss of future opportunities

or credit [38]. We believe that the benefits of sharing data in a reusable way outweigh these

risks. Sharing data makes previous work easier to evaluate through reproduction and strengthens

scientific conclusions through replication [30]. We will explore some of the current approaches

used to correct metadata.
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The first approach is educating researchers publishing data about data management plans and

best practices. Journals, foundations, and governmental agencies are requiring data management

and stewardship plans for data generated during research to help maximize investments [55]. In

2016, the FAIR Guiding Principles for scientific data management was published in Scientific Data

and has been endorsed by the G7, the European Commission, and the NIH [56]. FAIR stands for

Findability, Accessibility, Interoperability, and Reusability and gives a set of guidelines promoting

‘good data management’ [55]. The goal of this initiative is to create an environment where data

is easy to discover through computational methods. While FAIR guidelines are being accepted by

funding agencies worldwide, they have been slower to gain traction with individual labs [57, 58].

Over the last year there has been huge “organizational (International Data Week), technological

(Google), and policy driven strides (GO FAIR)” that are believed to further clarify the guidelines

and boost education [57].

The second approach involves manual curation efforts after the studies and data have been pub-

lished [59]. One example of manual curation is through crowd-sourcing. This is where groups of

people volunteer or are paid to quality assess and fix metadata. One example of crowd-sourcing

metadata includes a web portal called CRowd Extracted Expression of Differential signatures

(CREEDS) and Metacrowd. CREEDS provides annotated differential expression signatures and

was initiated via an online class through Coursera where 70 participants annotated 2460 single-

gene perturbation signatures, 839 disease signatures, and 906 drug perturbation signatures from

GEO [48]. Another example of crowd-sourcing project is called MetaCrowd. Metacrowd uses a

crowd-sourcing platform that connects companies with a distributed group of people who can an-

notate datasets, called CrowdFlower (Now called Figure-Eight). These annotators isolate metadata

from datasets in the GEO database. As an initial experiment, the annotators were provided six of

the most frequently occurring keys (age, cell line, disease, strain, tissue, and treatment) along with

variants of these keys, totalling up to 355 terms. These terms were separated into lexical, value,

and concept similarity groupings. These terms were also grouped computationally and then both

the crowd-sourcing and the computational groupings were compared to an answer key. The project

18



ultimately hopes to use a mix of crowd-sourcing and computational algorithms to help assess and

fix metadata. [60].

Another example of manual curation is the use of biocurators. Biocurators consist of people

with expertise in both biology and computational skills. Biocurators extract biological information

from scientific literature, integrate it into databases, and communicate with researchers to ensure

accuracy of metadata and promote data exchange [59,61]. Standardized labelling systems through

ontologies are gaining more attention as open data initiatives become more popular [62]. Some

examples include the Plant Ontology (PO), the Plant Trait Ontology (TO), and the Plant Experi-

mental Conditions Ontology (PECO) [63]. These classification systems have helped allow parts of

the curation to automated, but there is still a need for manual curation to help draw more complex

connections between studies [63–65].

Similar to manual curation, multi-experiment compendiums exist where different research labs

have gathered and processed raw data using the same computational pipeline. This creates a cen-

tralized location where other researchers can access ready to analyze summaries [5, 6, 66, 67].

Because these datasets are often limited to a small set of species, there is more of an opportunity

to standardize the metadata. For example the Expression Atlas is a multi-species compendium in

which there is a group of biocurators who extract information from the literature to ensure accuracy

and enrich the annotations [68]. Examples of these packages will be described in the next chapter.

Several computational packages have been developed that attempt to improve the curation of

metadata. These methods can be categorized into two approaches: automated natural language

processing (NLP) and inferring metadata from gene expression profiles [48]. The first method,

automated natural language processing uses computational algorithms to extract information from

existing metadata and related academic journals. Examples of this include: GEOMMTX [69],

MetaSRA [54] and GeoBoost [51]. The second method uses machine learning models to predict

metadata, such as tissue type, gender, and library type, via the analysis of expression data [48].

Examples include:
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• Tissue and cell type prediction using SHARQ [70], URSA [71], CIBERSORT [72], and

xCell [73]

• Gender prediction using MassiR [74]

• Age, gender and tissue type prediction using phenopredict [75] and the automated label

extraction [76]

Predicting more complex attributes such as growth protocols and treatment remain elusive and still

have to be manually curated [48].

As described earlier, we manually curated our metadata. This was extremely time intensive

and difficult due to lack of standardization between labs. With the amount of data being generated

and the initiatives towards data sharing, there is a growing need for scalable solutions.

While this section covered the biological reproducibility there are other aspects of reproducible

that we were able to control. The next chapter will cover technological concerns of reproducibility

like data processing and go into more depth about compendiums that already exist.
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Chapter 3

Computational Reproducibility

In the previous chapter, we highlighted the idea of a “reproducibility crisis”. One reason re-

search has been difficult to reproduce and replicate is due to incomplete and inconsistent experi-

mental descriptions [77]. Another facet of the crisis involves the technical aspects of experiments.

This relates to the incomplete or inaccurate descriptions of how the raw data was processed, and

an inability to download, run, or find corresponding software packages [3,29,78–80]. These issues

are being critically examined in what has recently been called a “software crisis” [81, 82].

In the last fifteen years, the amount of publicly available genomic sequencing data has doubled

every few months [1–3]. With more data being produced, many individualized pipelines are being

created to analyze different scientific questions. These pipelines are often poorly described and

irreproducible [83].

Computational reproducibility requires the following information:

• The code used to process the raw data

• The order of execution to run the code and packages

• A computing environment that includes software packages and dependencies

Each part has a corresponding tool or set of tools that aids the developer by compartmental-

ization and organization. This includes version control systems, workflow management tools, and

package management systems. We will go over what these are, how they support reproducibility

and replicability and examples that have gained favor in the bioinformatics community. At the end

of the chapter, we will summarize current online compendiums and the pipelines used to re-analyze

groups of expression data.
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3.1 Version Control

Version control helps the developer keep track of code being used in the research project. There

are many benefits to including a version control system in your research. The first benefit is that

these tools enable the researcher to document the evolution of the computational research project.

Version control keeps track of changes made to files and directories. This is similar to a laboratory

notebook for scientific computing, in that it keeps a lasting record of events [84]. Originally it was

developed to help programmers coordinate software projects, but these tools have spread to the

scientific domain for the following reasons:

• Changes made to source code, documentation, and academic papers are checked in and time

stamped allowing anyone to easily navigate to previous versions

• Promotes development by providing a backup of the project and the ability to coordinate

over multiple computers

• Allows multiple people to concurrently work on the same project

The second benefit of using version control is being able to easily communicate new research

with the scientific community. Version control helps scientists around the world collaborate to-

gether. One way version control encourages collaboration is by giving scientists who are working

in remote locations, without access to the internet, a way to work asynchronously and integrate

their work into the project at a later date [85]. Version control can also help new contributors

understand the progression of a research project. Because of these features, several groups have

suggested that version control facilitates scientific reproducibility and advances research trans-

parency [84, 86, 87].

We will discuss advantages of using one of the most widely used version control tools, Git [84,

85]. Git is a version control system that was created in 2005 by Linus Torvalds [88]. Since its

introduction, Git has been widely adopted [86]. One reason for the success is that this tool allows

each researcher to keep an individual copy of the project on their local machine. New updates can

be pulled into the project (keeping the local copy up to date) and new features or corrections can
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be shared (allowing other researchers to benefit from each others’ work). This is called distributed

version control, and it ensures that there is no single point of failure [85].

Another advantage is that Git is the backbone of GitHub. GitHub is a Git repository hosting

service that provides a website using a graphical interface. This is a space where the community

can contribute to a shared repository. GitHub also provides additional features like a linked wiki

for documentation and task management tools to enhance productivity [89].

As shown in figure 3.1 GitHub has been increasingly used and cited in academic papers.

Figure 3.1: The number of papers from Bioinformatics between 2009 and 2017 that reference a version
controlled repository name in the title or the abstract of the paper, from Russell et al [79].
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Another serious issue concerning scientific reproducibility is finding relevant software that

will be embraced and maintained within the scientific community. Finding relevant software can

be hindered by the rate of publication, dubbed software lag. Even when the paper is published and

the software is released, it is hard to identify software packages that will gain popularity within

the field [82, 84]. If the software is not maintained, then it goes through a process coined software

collapse. Software collapse is the idea that software, if not maintained, will get to the point that it

is no longer usable [90]. This makes reproducing the results of any published paper that depends

on that software onerous.

The question then becomes how to identify software that will remain relevant and not undergo

software collapse. It has been shown that depending solely on a journal’s impact factor is a poor

predictor for a software tool’s longevity [91, 92]. Alternative metrics have been proposed as an

additional way to predict this [91–93]. Examples of these metrics include quantifying mentions

from forums like BioStars, social media platforms like Twitter, and community lists curated by

experts in the field [82, 91, 94]. Because GitHub has been so widely adopted, it provides metrics

about software popularity [82]. Here are examples of two sets of alternative metrics provided by

GitHub:

• The amount of stars, forks, and watchers [91]. The higher these metrics are, the more interest

the tool has elicited [82].

• The amount of commits, contributors and how recently the project has been worked on. This

can help identify how actively a tool is maintained [79].

Once a potential software package has been identified in GitHub, the interface provides addi-

tional insights. Through the issues section, the researcher is able to see types of issues encountered

and if the contributors actively deal with bugs and questions from the community. The insights

section presents graphs that give the researcher a better feeling about who has been contributing

and what has been changing within the project. This is important because a more accepted and

actively developed tool correlates to an easier installation and a larger community provides more
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support through documentation and forums. It is important to note that any metric that relies on

community support can be skewed. An example of this includes more popular researchers being

cited more frequently, telling us more about the researchers than the software. Because of this

researchers can target the metrics maximizing exposure and inflating the prestige of the research

or software [92].

As we discussed in section 2.0.3, journals and funding agencies are requiring that raw sequenc-

ing data be made publicly available. Similarly, more academic journals are requiring that software

be made publicly available. Two journals that currently include GitHub in their peer review process

are the Journal of Open Source Software and ReScience [95]. The Journal of Open Source soft-

ware was created to provide software developers a cost effective, streamlined platform to introduce

new software to the community [95]. ReScience is a peer-reviewed journal, launched in 2015, that

focuses on replication of computational research [96]. ReScience uses and publishes via GitHub

and harbors the philosophy that if software can be replicated (which in this situation means a newly

implemented algorithm achieving the same results) then there is enough information between the

two publications to confidently be able to replicate that algorithm in the future [82, 96].

eLife and Nature also require or strongly recommend the use of GitHub for making software

available. eLife launched a repository in 2017 and requires all papers introducing novel software

to copy the software to that account [97, 98]. Nature Research recommends depositing code on a

community repository like GitHub [99]. We believe that as software collapse gains more attention,

repositories like GitHub will become a standard for ensuring reproducibility within the scientific

community.

3.2 Workflow Management Tools

Part of advancing research transparency includes keeping precise records of each software

package used to process the data and what parameters were chosen. The sequence of programmatic

steps used to process the raw sequencing data is called a pipeline or a workflow [100]. Historically,

scientists have depended on collecting or creating multiple programmatic scripts that need to be
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run in a specific order to process the data [100]. Each of these steps can be done manually but

important details needed to retrace the analysis are often accidentally left out [101–103]. Workflow

management tools help record details needed to reproduce the analysis and quickly process new

sets of data.

It is desirable for these tools to accommodate other features like:

• The ability to parallelize tasks for efficient performance [104]

• The ability to easily integrate new tools [105]

• The ability to easily share workflows with the scientific community [104]

• Fault tolerance, enabling automatic or manual restarts if a workflow fails [106]

There are several styles of workflow management tools. Some systems such as: BioPipe [101],

Galaxy [102], GenePattern [107], GeneProf [108], Mobyle [109], PegaSys [110], and Taverna [111]

are graphical interfaces that use visual programming to coordinate pre-configured tools [100]. Vi-

sual programming is an approach where the developer drags and drops programmatic elements

onto a graphical interface creating a workflow [112]. These tools tend to be less flexible because

it is harder to integrate new tools or custom scripts but are easier to use for scientists that have

limited software engineering experience [102].

Other systems like Bpipe [113], GXP Make [114], Pwrake [115], Ruffus [116], and Snake-

make [117] use a text based workflow. Text based workflows are often more flexible and can be

easier for developers to collaborate through version control, but are more technically involved [100,

117].

We chose Snakemake for our workflow manager for the following reasons. The first reason

has to do with a strong community. Snakemake has been actively developed since 2011 with over

100 contributors. Johannes Köster, the creator, has been a part of the project since the beginning,

which has provided a clear direction. Snakemake has kept current with newer technologies like the

ability to modularize workflows for reuse, integration of the Common Workflow Language (CWL),

and integration with Docker and BioContainers [104]. It is extremely important that the software
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making the workflow tool does not break. It is inconvenient if one of the tools used in the analyses

undergoes software collapse but easier to trade out for a similar tool. If the software used for the

workflow breaks, the entire pipeline has to be rebuilt, which is a much larger investment in time.

The second reason has to do with how well it integrates in with our lab. Snakemake uses

Python, which is one of the primary languages our lab uses, so workflows can be easily shared

and extended. Snakemake is semantically familiar because it is based off of GNU Make. Make

is a build automation tool that allows the developer to create executables based on rules whose

execution is triggered by the absence or modification of dependencies [118].

In the last section, we discussed how alternative metrics can indicate if a tool has been accepted

within the scientific community. When we started our research we searched on the BioStar forums

for popular pipelines and found that Snakemake had a lot of positive feedback. Figure 3.2 provides

another example of alternative metrics. This graph shows two metrics that were aggregated by

Albert Vilella at the end of 2018. the first alternative metric quantifies a tools popularity on GitHub.

The score is calculated using the following formula watch + (star/5) + (fork ∗ 10). Dr. Vilella

amplified or decreased the value of each metric because they show a different level of commitment

to that repository. Watch is the number of people who have chosen to receive notifications about

the repository, star indicates the number of people who are interested in the repository, and fork

represents the number of people who have copied the repository. The second metric is a poll shared

on Twitter by Albert Vilella. The poll drew the participation of around 500 people. We believe

this is another indicator that Snakemake has remained popular since its release. Ultimately, the

decision in workflow management tools depends on the requirements of the research project and

existing skills within the lab. All of these tools strive to ensure reproducibility by automating data

processing and each tool has its own strengths and syntax.

3.3 Package Management and Continuous Analysis

Once you have created a workflow, the next step is to make sure that the workflow is re-

producible and shareable. As mentioned in the previous section, a developer can take measures
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Figure 3.2: This chart shows alternative metrics aggregated by Albert Vilella: 1) Quantifies popularity on
GitHub* by scaling the number of users who watch, fork, and star the repository 2) Results from an online
poll shared on Twitter in December 2018 asking participants about preferences in Bioinformatics tools.
Figure obtained from https://bit.ly/biowl
* Snakemake is not on GitHub, it is hosted by similar service, BitBucket. This is important to take into consideration
because BitBucket is not as widely used and might influence the metrics.

towards using packages that will remain updated, however there is no guarantee that the software

will be maintained.

Processing sequence data is complex and often depends on the use of multiple packages. Be-

cause of the complexity, there are several challenges to reproducing and sharing these workflows.

Keeping the versions of these packages and their dependencies is essential towards transparency

and reproducibility [94]. Two ways this can be accomplished are package management systems

and containers.

Package management systems keep track of software versions and dependencies of tools used

in a workflow [119]. Conda is a package management system that also serves as an environment

management system, and has been widely accepted in the Bioinformatics community. Conda

allows the user to define and build a group of software packages in a local environment. These

isolated environments prevent conflicts when different analyses require different versions of the
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same package. BioConda is a software repository for Conda that provides and maintains over

6,000 recipes for downloading and running bioinformatics packages [120, 121]. This has been a

valuable tool in alleviating some of the pain that comes from trying and managing new software.

Containers are another way to keep track of software versions and tool dependencies. Each

package added to Bioconda also has a corresponding Docker BioContainer automatically uploaded

to an image registry site called Quay [121]. Developers can create an images which represent a

software environment. An image is a self-contained, read-only snapshot of a group of applications,

packages, and whatever the software needs to run (operating system, dependencies, etc) [122].

Then anyone else can download that image and run it using a container program. There are several

container programs available, including Docker [122], Singularity [123], and Shifter [124]. We

will discuss Docker because it is one of the most widely adopted container technologies within the

scientific community [125]. Docker images can be several gigabytes in size but only have to be

downloaded once and can be started quickly and with minimal overhead [125]. This technology

integrates with cloud computing platforms such as Google, Amazon and Microsoft [125].

Docker has been suggested as a way to reproduce research by removing dependency manage-

ment and limiting the effects of software collapse [122, 125]. Similar to Git, Docker images can

be tagged so that older versions that correspond to academic papers can be easily accessed and

reproduced.

Biocontainers is a community based project that provides infrastructure and guidelines to cre-

ate, manage and distribute bioinformatics containers [121]. All Biocontainers are Docker based

and both Conda and Docker interface with Snakemake [126].

These tools all support reproducibility and replicability but the responsibility still remains with

the researcher. There are several other recommendations for enhancing reproducibility. The first

involves producing logs for each step in the analysis. Logging each step provides additional in-

formation for further assessment and way to help debug the workflow if an error is encountered.

The second recommendation is to include a file that logs the specific versions of packages used

along with the results. The last recommendation is include some type of automatic regression

29



testing whenever new tool versions are available. Continuous analysis involves rerunning all code

in a pipeline on a known dataset when there are changes to the code, new updates for existing

packages, or additions to the pipeline [125]. When paired with logging, the researcher is able to

quickly check and make sure that the additions did not cause anything to break and that there were

no significant changes to the results.

We used Git as a version control tool and Conda as both a package manager and a virtual

environment in our project. Git was used to backup our scripts and enabled us to easily work from

our home computers and the research computers at the university. Conda was used to download

bioinformatics packages and to create two virtual environments in order to accommodate tools that

used Python 2 versus tools that used Python 3.

3.4 Data Storage and Existing Compendiums

The rise of computational science with new technology, methodological advances, and in-

creased computing power has dramatically increased our ability to collect more complex and higher

dimensional data [127]. The Sequence Read Archive (SRA) and the Gene Expression Omnibus

(GEO) were established in response to a need of a public repository for high-throughput gene

expression data [128, 129].

The Gene Expression Omnibus (GEO) was established in 2000 as a worldwide resource for

gene expression studies [130]. GEO contains the gene expression profiles for microarray and

high throughput studies, with written descriptions of experimental design and associated metadata.

GEO requires the researcher to provide any raw data that was generated during the experiment,

and collaborates with the Sequence Read Archive to store these files [131]. GEO strives to make

the data accessible to the research community, allowing researchers who do not have the resources

or skills to analyze their own genomics experiments ready to use data [130]. While GEO is a

valuable resource, each study is processed distinctly which, as mentioned above, makes it difficult

to compare.
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The Sequence Read Archive (SRA) is the National Institutes of Health (NIH) primary archive

for high-throughput sequencing data and is a part of the International Nucleotide Sequence Database

Collaboration (INSDC). This collaboration includes: the Sequence Read Archive (SRA), the Eu-

ropean Bioinformatics Institute (EBI), and the DNA Database of Japan (DDBJ). Data submitted to

any of these three organizations is shared. Submission of raw data into the SRA is mandated by

most funding agencies and open access journals.

While massive amounts of of data are submitted to the Gene Expression Omnibus (GEO) and

the Sequence Read Archive (SRA), it is not processed using a uniform workflow. There has been a

focus on creating computational pipelines that connect various software tools and give a standard-

ized way to store versions and parameters. Focusing on reproducibility improves the quality of

published research, makes it easier to analyze multiple datasets from different labs, and speeds up

progress by promoting the reuse and repurposing of data. Because of these issues, several research

groups have collated and processed a subset of this raw data using a uniform pipeline. We will

mention existing pipelines and what they provide.

Gemma was established in 2012 by the Pavlidis Lab at the University of British Columbia.

Gemma provides a set of tools for meta-analysis of genomics data and currently hosts coexpression

and differential expression results from 10,542 studies [4]. Data can be submitted by registered

users or has been obtained from the GEO database. Each dataset undergoes automated [69] and

manual curation of the metadata using established ontologies to standardize the vocabulary and

make it easier to explore the datasets. After the metadata is curated, the data is analyzed by per-

forming sequence analysis and gene assignment with a current annotation to enable comparisons

across platforms [4].

The Expression Atlas is hosted by the European Molecular Biology Laboratory in the Eu-

ropean Bioinformatics Institute. Experiments are categorized as differential or baseline depend-

ing on what purpose the data was generated for. The expression data is processed by a pipeline

named iRAP [132]. Currently there are 3,564 datasets across 43 genomes. From these, 809 of the

datasets are RNA-Seq based. As stated on the website, each dataset is manually curated by PhD
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biologists who extract and structure information from the literature to accurately represent each

experiment [5, 7, 68].

The Recount Project processes publicly available human RNA-Seq data into expression data

for genes, exons, exon-exon splice junctions and base-level coverage using a pipeline named Rail-

RNA [66]. The data is available for bulk download through an R package as RangedSummarized-

Experiment objects or via the website [6, 133].

ARCHS4 is a web resource that is produced by the Ma’ayan Lab at the Icahn School of

Medicine at Mount Sinai. ARCHS4 gives access to the gene and transcript levels from published

studies on human and mouse RNA-seq data. The raw data is processed through a pipeline using a

web-service called Elysium [67] via AWS. ARCHS4 focuses on providing a pipeline that is pub-

licly available through AWS, and on cost effective processing of the data, to help accommodate

such a rapidly growing field [8].

These compendiums serve an important role in scientific discovery. They promote data reuse

and because multiple experiments are processed in the same way, the pipelines help ensure techni-

cal reproducibility. There are hardly any compendiums available that focus on plants, in compari-

son to mammals. In order to look at larger patterns in deferentially expressed genes and deferen-

tially retained introns, we created a pipeline and collected public sequencing data for Arabidopsis

thaliana.
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Chapter 4

Data Processing and Results

In this chapter we break down each step used to process the sequencing data. As mentioned in

Chapter 3, we used Snakemake to manage the acquisition and processing of each dataset. Figure

4.1 outlines the steps for gathering, processing and analyzing data.

4.1 Data Acquisition

We chose to collect data for Arabidopsis thaliana because it is one of the most widely studied

plants and consequently there is access to a large amount of high quality public sequencing data.

Arabidopsis is a small flowering plant in the mustard family and is a standard reference plant for

biology [134, 135]. Though, at first glace, it is not obvious why Arabidopsis was chosen as a

reference, it has several advantageous features. These include a short life cycle, a wide breadth

of natural variation in physiological traits and a compact genome [135, 136]. The Arabidopsis

genome is composed of 5 chromosomes and is around 135 mega base pairs. At a meeting held

by the Arabidopsis Genome Project in 1989 at the NSF, a goal was set to completely sequence

the Arabidopsis genome by the year 2000. This meeting brought together researchers from three

continents and led to Arabidopsis being the first plant and the third multi-cellular organism to be

completely sequenced [134–137].

We searched for Arabidopsis experiments on the SRA. As mentioned in Chapter 2, the meta-

data is not standardized so we used a combination of keywords to maximize the amount of data we

collected. These keywords included: Arabidopsis thaliana, A. thaliana, Arabidopsis, Col-0, WT

(and these keywords paired with different treatment stresses). Once a dataset was identified, the

RunInfo table was downloaded. The RunInfo table is a file provided by the SRA that holds the

treatment conditions and replicate structure of all of the samples in a specific study. We extracted

the metadata using a custom Python script and then manually standardized our results using tech-

niques discussed in Chapter 2. This script was manually adapted per experiment to correspond
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Figure 4.1: An outline of the major steps used to gather, process and analyze RNA-seq data. Chapter 4
shows technical details, software used, and decisions made for each step in the pipeline.
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with the specific language used by the research team that uploaded the data. Sequencing data was

then downloaded using the SRA toolkit, v2.9.6 [138].

Eighty-eight studies were downloaded, processed, and checked for quality and relevancy to the

project. Out of the 88 studies, 35 studies met our quality standards. We chose our data using the

following criteria:

• Organism: Arabidopsis thaliana, ecotype: Columbia (Col-0) with no genetic mutations.

• At least two biological replicates per condition.

• All biological replicates minimally required:

– ≥ 1 Gbases;

– read length ≥ 75 base pairs;

– 75% or more of the reads needed to align specifically to one location in the reference

genome, using the RNA-seq aligner, STAR.

Table 4.1 provides information about the datasets downloaded.

In our final set of studies, the most common tissue types were: leaf, seedling, and root; which

composed 89% of the biological replicates, as shown in Figure 4.3 B. The most common treatment

conditions were: abscisic acid (ABA), cold, drought, heat, and mineral deficiencies; which com-

posed 80% of the biological replicates, as shown in Figure 4.3 A. Other information that describes

experimental setup includes the type of platform used to process the samples, whether the data was

sequenced as single-end or paired-end reads, and the read length.

The following next-generation platforms were used in our data: Illumina Genome Analyzer

II, Illumina HiSeq 2000, Illumina HiSeq 2500, Illumina HiSeq 3000, Illumina HiSeq 4000, and

NextSeq 500. Figure 4.3 C shows the majority of the experiments used Illumina HiSeq 2500 or Il-

lumina HiSeq 2000 to sequence the samples. These platforms produce files that consist of millions

of short sequencing reads that represent fragments from the original RNA-molecules [139]. Each
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of these platforms are Illumina based. Illumina has dominated the sequencing industry and set the

standard for massively parallel sequencing [140].

RNA-seq samples can either be sequenced as:

• single-end, where the sequencer reads a fragment from one end to the other, generating the

sequence of bases.

• paired-end, where the fragment is sequenced from both ends.

Paired-end reads give slightly better alignments rates, however, if studying well-annotated organ-

ism, single-end reads are sufficient for gene expression analysis [141, 142]. Figure 4.3 D shows

that the majority of studies chose to sequence data using a paired-end protocol.

Longer sequencing reads can provide more reliable information by increasing the chance that

the read will be mapped uniquely to the genome. By filtering out studies with read lengths < 75

bp, we ended up with read lengths ranging between 75-300 bp, depending on the study. Once

the samples have been processed, they are stored in a FASTQ file [143], and this file is what is

uploaded to the SRA database [144].

4.2 Sequence Alignment

Once the sequence samples are downloaded from the SRA database, the technical replicates are

combined, and the biological replicates are mapped to a reference genome using the Spliced Tran-

scripts Alignment to a Reference (STAR) package, v2.7.0d. [174]. We used the TAIR10 reference

genome and gene annotations from The Arabidopsis Information Resource (TAIR) database [175,

176]. STAR outputs Sequence Alignment Map (SAM) files, or the binary equivalent, called a

BAM file [177].

4.3 Filtering

After STAR aligns the reads, the output is filtered for false-positive splice junctions using a

custom script that utilizes features from SpliceGrapher [178], 0.2.6v, and PySAM [179], v0.15.2.
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Table 4.1: Experiments from the Sequence Read Archive that fit our quality standards and additional re-
quirements. Column one provides the SRA accession and a citation to the corresponding academic paper.
Column two provides the number of treatment conditions associated with the experiment. Column three
provides the number of biological replicates associated with each treatment condition. Column four pro-
vides the tissue type of the biological replicates. Column five provides the age range when the biological
replicates were sampled. Column six categorizes the type of treatment exposed to the plant.

SRA Accession # Conditions # Replicates Tissue Age (days) Treatment
DRP003686 [145] 13 2 Root 28 Mineral Deficiency
DRP004486 [146] 3 3 Leaf 44 Mineral Deficiency
ERP022071 [14] 26 3 Leaf 35-39 Cold
ERP111840 [147] 3 3 Leaf 33 SA
SRP011128 [148] 2 3 Root 13 Mineral Deficiency
SRP026260 [149] 3 2 Leaf unknown Drought
SRP058527 [150] 3 2 Leaf 21 Heat
SRP060410 [15] 11 2 Seedling 6 Light
SRP073212 [44, 45] 56 2, 3 Leaf 36 Drought, B. Cinerea, P. Rapea
SRP073711 [151] 14 2 Seedling 3 ABA
SRP074485 [152] 18 2 Cotyledon, Hypocotyl 5 Light
SRP074890 [153] 2 3 Leaf 28 CysNO
SRP076862 [154] 4 2 Root, Shoot 3 Ethylene
SRP081056 [16] 4 3 Leaf 35 Heat
SRP082177 [155] 2 3 Leaf 35 Heat
SRP090416 [156] 4 3 Leaf 10 Carbon Starvation
SRP091014 [157] 2 2 Leaf, Root 13 Mineral Deficiency
SRP091628 [158] 3 2, 3 Root 7 Mineral Deficiency
SRP096554 [159] 6 2 Leaf 28 Drought, Light Deprivation
SRP097690 [160] 2 3 Flower Bud, Leaf stages 1-12 Heat
SRP101403 [161] 3 3 Seedling 10 MeJA
SRP102893 [162] 3 3 Root 30 Al3+ ion, nAl2O3
SRP107981 [163] 2 2 Root 10 Heat
SRP108611 [164] 2 3 Seedling 7 ABA
SRP124769 [165] 2 3 Seedling 12 ABA
SRP134263 [166] 2 3 Seedling 7 Heat
SRP136536 [167] 2 3 Seedling 11 Drought
SRP145580 [168] 3 3 Seedling 9 ABA, Mannitol
SRP148881 [169] 2 4 Aerial 28 Drought
SRP155798 [170] 7 3 Leaf 14-28 Drought
SRP156748 3 3 Leaf 30 Heat
SRP161785 6 2, 3 Seedling unknown Streptomyces AGN23
SRP162472 [171] 4 4 Root, Shoot 14 R. solani
SRP177951 [172] 3 3 Seedling 14 NaCl
SRP187477 [173] 3 3 Seedling 10 Cold

A splice junction is filtered out if it is not in the gene annotation, or if it does not show up in

the other biological replicates. Once filtered, the sequencing data is passed to the next steps in our

analysis, which includes: calculating gene expression, differential gene expression, and differential

intron retention [139].

4.4 Data Visualization

Identifying patterns present across multiple datasets remains challenging. The goal of dimen-

sionality reduction, or embedding, is to build a 2D or 3D map which represents the similarities
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in the higher dimensional dataset. Visualizing the data is valuable because it allows us to de-

tect dominant patterns in the genetic expression. It is important to note that the variation in data

from high-throughput sequencing technologies might not be due to biological differences. Batch

effects are differences in the data due to how the data was prepared and sequenced, instead of

biological reasons [180]. These include differences in laboratory conditions, equipment, and tech-

nicians [181].

Dimensionality reduction methods assume that the data has been normalized. We used DeSeq2

along with the variance-stabilizing transformation (VST) to normalize the data prior to analy-

sis. The goal of VST is to factor out the dependence of the variance on the mean (over disper-

sion) [182].

4.5 Principal Component Analysis

Principal component analysis (PCA) is a mathematical procedure takes a set of possibly corre-

lated variables and produces a set of directions, such that those directions are orthogonal (linearly

independent) and ranked according to the variance along those directions. The number of princi-

pal components produced is less than or equal to the number of original variables. Because PCA

creates a ranked list according to variance, it has been used as a linear feature extraction technique

and was one of the original dimensionality reduction approaches [183]. Often a large fraction of

the variance is captured within the first few components. These components can be plotted using a

scatter plot, making it possible to observe similarities, differences and common groupings [184].

A DESeq2 package, plotPCA was used to generate the images in Figures 4.4 and 4.5. We will

go into more detail about these images in Section 4.7.

4.6 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is one of the newest and most commonly

used dimensionality reduction techniques [185]. t-SNE was developed on the premise that keeping

similar data points close together is more important than preserving the distance of dissimilar data

40



points. The technique was introduced by Laurents van der Maaten and Geoffrey Hinton in 2008. t-

SNE builds off Stochastic Neighbor Embedding (SNE) which was introduced by Geoffrey Hinton

and Sam Roweis in 2002 [186].

Because this is a newer method, we will go into its mathematical details. The algorithm begins

by calculating the similarity between two points in a higher dimensional space using Equation

(4.1):

pj|i =
exp(−||xi − xj||

2/2σ2

i )∑
j′ 6=i′

exp(−||xi′ − xj′ ||2/2σ2

i )
. (4.1)

pj|i is calculated by centering a Gaussian over xi, then measuring the density of all other points

under this Gaussian and re-normalizing according to these points. This gives us a set of probabil-

ities pj|i, which measure the similarity between a pair of points i and j. If pj|i is large, it implies

that the points are close, or very similar, and if pj|i is small, it implies that the points are dissimilar.

The bandwidth of the Gaussian, with a given variance σ2

i , is set for each point such that there is

a fixed number of other points taken into consideration. This variance is different for every point,

allowing a fixed number of points to be considered within the Gaussian, even if the density of the

dataset varies. This fixed number is termed the perplexity, and can be thought of as the number of

nearest neighbors considered when calculating the probabilities of the high and low dimensional

representations for each point.

The final set of similarities in the high dimensional space is calculated by taking the joint

probabilities between a pair of points, as shown in Equation (4.2):

pij =
pj|i + pi|j

2N
. (4.2)

This averages the probability that point j will choose point i and the probability that point i will

pick point j. N is the number of input data points to the algorithm. Next, a corresponding set of

points is laid out in low dimensional space at random, and then the joint probabilities are calculated

in the lower dimensional space using Equation (4.3):
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qij =
(1 + ||yi − yj||

2)−1

∑
k

∑
l 6=k

(1 + ||yk − yl||2)−1
, (4.3)

Instead of using a Gaussian distribution, a Student-t distribution with 1 degree of freedom is used:

(1+||yk−yl||
2)−1. This distribution is used to increase optimization and to compensate for an issue

called ‘the crowding problem’. Due to the fact that the size or distance between points scales down

exponentially as the dimensions are decreased, the points end up being compressed or ‘crowded’

together when the data is embedded into the lower dimension. The Student t-distribution is heavier

tailed than the Gaussian distribution, which allows dissimilar points to be modelled farther apart.

Once these probabilities have been calculated, if the mapping points yi and yj correctly model

the similarity between the high-dimensional data points xi and xj , the conditional probabilities

between corresponding points in the higher and lower dimension will be the same. The discrepancy

between pij and qij is measured using the Kullback-Leibler divergence, shown in Equation (4.4):

KL(P ||Q) =
∑

i

∑

j

pijlog
pij
qij

. (4.4)

P represents the joint probability distribution in the high dimensional space and Q represents the

joint probability distribution in the low dimensional space. The KL cost function preserves local

structure by assigning a large penalty to points that are close in higher dimensional space (pij) but

modelled far away in the low dimension space (qij). If the pij is small (the points xi and xj are

very dissimilar in high dimensional space), hence preserving the distance in the low dimensional

space is not as important to the cost function.

t-SNE minimizes the KL divergence by using gradient descent. There is a performance limiting

factor in using the KL cost function in the gradient descent algorithm. All pair-wise interactions

within the dataset have to be considered in order to move a point to lower the KL divergence

measure. This does not scale well for genomics research because there is a major slowdown for

datasets that are larger than five to ten thousand points. The Barnes-Hut approximation combines
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similar points into a single interaction and uses this interaction as an approximation for that set of

similar points [187].

Rtsne, v0.15, was used to generate the images in Figures 4.4 and 4.5. Default parameters were

used for learning rate and number of iterations. The perplexity was manually adjusted depending

on the size of the data set. Table 4.2 compares major differences between PCA and tSNE. In the

next section we will discuss these comparisons in regards to our data.

4.7 Comparison of PCA and t-SNE using Expression Data

Table 4.2: Major differences between PCA and t-SNE

PCA t-SNE

Type of algorithm deterministic stochastic
Projection onto a low dimensional space linear non-linear
Global or local approach global local and global
Unique solution yes no

We ran PCA and t-SNE on multiple subsets of the data. We started by looking at samples that

contained the three most sampled tissues: leaf, seedling and root. Out of all of our samples, 89%

were classified as one of these three tissues. A breakdown of the tissue types and the treatment

conditions can be seen in Figure 4.3.

We found that both t-SNE and PCA primarily grouped the data by tissue type. Which supported

conclusions previously published in, “Large-scale atlas of microarray data reveals the distinct ex-

pression landscape of different tissues in Arabidopsis” [46]. The researchers in this study collected

and re-annotated 6,057 microarray expression profiles of Arabidopsis from GEO and used PCA to

show that samples of the same tissue tended to cluster together, even if the plants were exposed to

different treatment conditions. We similarly demonstrate this in Figure 4.4, plots A and B.

PCA was not originally created for the purposes of dimensionality reduction and visualization.

Instead, it is focused on finding orthogonal projections that contain the highest variance. Because

of this property, it has a hard time modelling data that is not linearly correlated, e.g. a spiral. t-SNE

43



is better able to model shapes because it emphasizes preserving local structure. Interestingly, in

Figure 4.4 plot C and D we use the same data points that are in plots A and B, but color these points

to show treatment conditions rather than tissue types. t-SNE was able to further cluster some of

the samples by condition, while PCA did not separate the conditions out as well.

Since tissue type predominated, we further analyzed the separate tissues in Figure 4.5. Plots A

and B show clustering with leaf samples. While PCA does show trends, the following conditions:

cold, drought, P. Rapea (a small butterfly), and B. Cinerea (a fungus) all cluster around the same

location. t-SNE does a much better job showing distinct clusters. On reason for this is because

t-SNE uses a probability distribution; it naturally expands dense clusters and contracts sparse ones,

to even out the cluster densities. This allows t-SNE to show each cluster more distinctly, but in

turn, the density of the clusters can not be used as part of the interpretation.

Plots C and D cluster seedling samples. It is interesting that both plots seem to separate out

light (the seedlings were exposed to red, blue, and white lights) and ABA samples, while the other

treatment conditions do not show distinct differences. It is also interesting to note that the location

of the clusters are not similar between PCA and t-SNE. PCA is deterministic: every time you run

the algorithm on the same dataset, you get the same plot. t-SNE is stochastic and cares more about

preserving the probability distribution between points than where the points are projected onto the

lower dimension. As a result, it is good practice to run the t-SNE multiple times and with multiple

parameters to understand the relationships between points in the dataset.

A final observation corresponds to plots E and F which cluster root samples. t-SNE seems to

work better with larger sample sizes. When the sample sizes were too small, like the number of

samples for roots (45), there were not enough samples to form interesting relationships between

the data points.

After observing patterns within the data, we analyzed each treatment condition for differen-

tially expressed genes and differentially expressed introns. We will briefly describe the packages

and process used to generate this data, and observe differences in expression over the different

treatment conditions.
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C D

A B

Figure 4.4: Figures A and C represent t-SNE plots created using an R package, Rtsne, with a perplexity
of 13. Figures B and D are PCA plots created using a DeSeq2 package called plotPCA. Figures A and B
correspond to tissue types for each biological sample. Figures C and D correspond to condition types for
each biological sample.
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Figure 4.5: Figures A, C, and E represent t-SNE plots created using an R package, Rtsne, with the corre-
sponding perplexity parameters: 10, 4, and 13. Figures B, D, and F are PCA plots created using a DeSeq2
package called plotPCA. Figure A and B are leaf samples, Figure C and D are seeding samples, and Figures
E and F are root samples.
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4.8 Differential Gene Expression

Read counts per gene were quantified using featureCounts, v1.6.4 [188], using the TAIR10 ref-

erence genome and gene annotations. Multi-mapping reads and reads with ambiguous assignments

were excluded.

We used the R package DESeq2 [189, 190], v1.24.0, to identify deferentially expressed genes.

As shown in Table 4.1, the majority of publicly available genomic data for plants contains a low

number of biological replicates, (n ≤ 3). DESeq, edgeR [191], and limma [192] are packages that

have methods that compensate for lower numbers of biological replicates. While normalization

methods focus on normalizing library size, DESeq and edgeR also adjust for differences in library

composition. Adjusting for library composition is modelled by assuming that genes with huge

differences will generally be rare and should be given less influence. These packages incorporate

information about a gene’s expression across each biological replicate to shrink the variance, giving

more influence to moderate differences (or “house-keeping” genes) [191, 193–195].

For each experiment, we identified control and treatment conditions used within the publica-

tions. We ran differential gene expression analysis and obtained a list of genes with an absolute

log fold change ≥ 2 and a false discovery rate (FDR) ≤ 0.01.

4.9 Differential Intron Retention

iDiffIR [196] is a package that specializes in identifying differential intron retention (DIR)

events using RNA-Seq data. iDiffIR searches for DIR events by applying a log fold change statistic,

shown in Equation (4.6), to every intron identified within a particular gene annotation (GTF or

GFF) file. The mean read depth across an intron is quantified using Equation (4.5):

µr(I) =
1

|I|

∑

i∈I

r(i). (4.5)

Where r(i) is the number of reads at a particular genomic index, i.
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To account for the fact that introns have low expression levels, the read coverage is normalized

separately for the introns and the exons. The read coverage is also normalized across experimental

conditions; this helps avoid the false detection of differentially retained introns as a result of dif-

ferential gene expression. Differential expression between introns in two conditions is quantified

by the following log-fold change statistic:

logF̂C(I) = log2(
a+ µ̂r(I1)

a+ µ̂r(I2)
). (4.6)

Where µ̂r(I1) and µ̂r(I2) denote the adjusted mean read depth from the introns in conditions 1 and

2. a is a pseudo-count parameter that controls for large fold-change values that occur in regions

of low expression and is necessary to avoid filtering genomic regions that are not expressed in one

of the conditions. Genes that exhibit DIR events were detected and quantified for each condition

in our studies, as shown in Figure 4.6 B. We further combined genes that exhibited DIR across

different studies based on treatment conditions, as shown in Figure 4.7 B

4.10 Differential Gene Expression and Differential

Intron Retention

The heat, drought, and carbon starvation stresses triggered significant up-regulation and down-

regulation of differential gene expression. The chart shows that several of these studies show DEG

counts that were thousands of genes higher than found in other studies. This was reflected in

both Figure 4.6 A and Figure 4.7 A. Salt, nitric oxide (via CysNO), P. Rapea (a butterfly), and B.

Cinerea (a fungus) stresses triggered a overwhelming up-regulation, in comparison to the number

of down-regulated genes, in differential expression.

Mineral deficiencies included: phosphate, iron, calcium, molybdenum, nitrogen, phosphorus,

sulfur, zinc, copper, manganese, potassium, magnesium, and boron. With exception of nitrogen,

potassium and phosphate, these deficiencies did not trigger a large change in differential gene

expression. It was surprising to see that while there was almost no differential gene expression,
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there were increased levels of differential intron retention. These differences can be seen in Figure

4.6, A and B.

The cold treatment study was interesting for many reasons. The study looks at differential gene

expression and genes that exhibited differential alternative splicing in response to a temperature

change from 20◦C to 4◦C. Samples were taken on the first and third day, every three hours. The

differentially expressed genes oscillate over time reflecting changes in the circadian rhythm. The

authors called this process “gating” [44], where the magnitude of changes in gene expression

depend on the time of day that the sample was taken, as seen in Figure 4.8. It would be interesting

to collect other experiments that kept track of the time of day that the plant was sampled, in order

to see how the circadian rhythm affects other conditions.

The cold treatment study exhibited the largest levels of differential intron retention. Each indi-

vidual experiment averaged around 350 genes with differential intron expression events, totaling to

around 1,200 unique genes. This can be seen in 4.6 B and Figure 4.7 B. However, the dramatic in-

crease in genes that exhibited differential intron retention between the cold condition and all other

conditions in Figure 4.7 might be due more to how much data this study produced, rather than the

treatment condition.

One issue with this compendium is that while some treatment conditions are examined by

numerous studies, producing a wealth of data, others do not have much publicly accessible data.

Because of this difference, our compendium will be a great place to investigate current data and

generate scientific queries.

4.11 Identification of Genes that Undergo Differential Expres-

sion Under Multiple Stresses

A set of genes that were differentially expressed under multiple stress treatments, MST genes,

were identified. We calculated the score of each gene by summing the number of unique biotic or

abiotic stresses that caused the gene to be differentially expressed. This was achieved by grouping
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Figure 4.6: Barplot A illustrates the extent that genes are differentially up-regulated or down-regulated per
treatment. Barplot B illustrates genes that contain an increase in differential intron retention events in the
treatment condition vs an increase in differential intron retention events in the condition. Sequence Read
Archive accessions are shown to the left to give frame of reference to how many treatment conditions are
analyzed per condition.
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Figure 4.8: A) is an image adapted from Coolen et al. [44] that shows the sampling times and strategy
for the experiment. B) Shows the differential gene expression for control vs. cold. C) shows genes with
differential intron retention events for control vs. cold.
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similar studies and creating a comprehensive list of genes that were differential expressed for each

of these groups. The groups were defined as shown in Table 4.3:

Table 4.3: Groups defined for generating a comprehensive a list of differentially expressed genes. Column
one shows the label used to generate the groups and plots. Column two gives a brief description of the
conditions. Column three quantifies how many studies were in each group.

Group Description Number of Studies

ABA abscisic acid 4
B. Cinerea necrotrophic fungus 1
Cold 3
CysNO nitric oxide donor 1
Drought 5
Ethylene plant hormone 1
Heat 7
Light exposure to red, blue and white light 1
Mannitol 1
Methyl jamonate (MeJA) a plant growth regulator 1
Mineral Deficiency 5
Nanomaterials 1
P. Rapae butterfly 1
R. Solani pathogenic fungus 1
Salicylic acid (SA) 1
Salt 1
Starvation carbon deprivation 1
Streptomyces gram positive bacteria 1

As with data used to generate the PCA and t-SNE visualizations, we focused on the three

primary tissue types: roots, leaves, and seedlings. We plotted this data on a set of histograms

and found it interesting that over 1,000 genes were differentially expressed in 15 or more unique

experiments, as shown in Figure 4.9 A. There were far fewer genes that had differentially retained

introns, as shown in Figure 4.9 A.

We wanted to compare the results of our compendium with results acquired in a previous pub-

lication, “Functional-genomics-based identification of genes that regulate Arabidopsis responses

to multiple abiotic stresses” [197]. In this study, the authors collected data from 17 micro-array

experiments, including a heat experiment that they conducted for this research. The treatment con-
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Figure 4.9: These histograms represent a combination of the three tissue types we focused on: leaf, root,
and seedling. This included 32 studies from the Sequence Read Archive. Histogram A shows how many
genes were differentially expressed exclusively in that number of studies. Histogram B shows the how many
genes had exhibited differential intron retention in that number of studies.

ditions that they covered were: heat, drought, cold, salt, osmotic stress (similar to drought), high

light, oxidative stress, and abscisic acid.

Surprisingly, there was only a 11% overlap between the list of genes from the previously pub-

lished results, as illustrated in Figure 4.10 A. To explore this further, we wondered if it was because

we were testing different sets of treatment conditions. We filtered our conditions in the following

ways:

• We only used conditions that matched what the authors had specified in their paper

• We filtered out experiments that last more than 10 hours. The paper noted that stress re-

sponses were generally triggered upstream within the stress signal transduction pathways

but some responses did peak at around 10 hours [197].

We then calculated the overlap between our new set of differentially expressed genes and the

published results. Interestingly, we doubled the amount of genes that overlapped between the two

groups, but that was still only a 16% overlap.
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Figure 4.10: Group A represents the genes that we identified as MST genes. Group B represents the genes
that were identified by Kant et al. [197]
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Chapter 5

Conclusion and Future Work

There are multiple compendiums for mammal RNA-sequencing [4–8, 48, 49, 66, 67], there

are not similar resources for plant data. These resources help advance science by providing large

collections of data that can be combined to provide global insights into the ‘omics fields. In our

study, each sample was carefully curated, the metadata were comprehensively re-annotated, and

the sequencing data was all processed using the same pipeline. This is a valuable resource for the

plant community because there are currently no compendiums that focus on plant RNA-sequencing

data. We also created a Snakemake sequencing pipeline to automate this process and will make

it available for future use. This way our results can be reproduced and other research groups can

use it to process their own data. There are some aspects of our pipeline that might be important to

consider:

• Adding new studies to the compendium. Especially studies that investigate treatment con-

ditions in which we have limited samples. The more studies we have, testing the same

condition, the greater we can enhance data standardization techniques within our pipeline.

• Integrate other model plant organisms, like Oryza sativa and sorghum bicolor

• Investigate ways to automate the standardization and correctness of metadata. This is a

bottleneck within the research process because of how long it takes to identify corresponding

academic papers and which data is relevant.

• Updating software within the pipeline that has added new features, like Snakemake. As we

mentioned in Chapter 3, software that is actively maintained has a decreased chance of un-

dergoing software collapse. Since the induction of this project, Snakemake has added several

desirable features that speed up processing and make it easier to organize the project. Ac-

tively integrating these features into the software will help prevent keep the pipeline relevant.
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• Creating a web interface so that the data sets can be provided to the scientific community.

We provided a limited analysis to demonstrate the range of tissue types and treatment condi-

tions we have acquired. We used t-SNE and PCA to cluster studies that used different types of

treatment conditions and showed that the studies clustered by tissue type and secondarily treat-

ment condition. An interesting set of observations could be made by clustering genes based on

differential expression or differential intron retention patterns. This may provide some insight into

genes that exhibit differential expression and intron retention under multiple stress factors, as well.

We gathered datasets for each study of differentially retained introns and differential gene ex-

pression. Other information we could gather in the future are other types of alternative splicing

events and novel splice junctions. These would provide a more comprehensive view of how the

expression is changing as the plants undergo each stress treatment. Lastly, we looked into genes

that exhibit differential gene expression in multiple stresses, and compiled a list of these genes for

future analysis. Each of these areas could be expanded in order to give insight into how plants

adapt and evolve.
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