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Exchange options are one of the most popular exotic options, and have important implications for many
common financial arrangements and for implied beta as a measure of systematic risk. In this study,
we extend the existing literature on exchange options to allow for clustered jump contagion dynamics
in each single asset, as well as across assets, using the Hawkes jump-diffusion model. We derive the
analytical pricing formulae, the Greeks, and the optimal hedging strategy via Fourier transforms. Using
an illustrative numerical analysis, we present the relationship between the exchange option price and
clustered jump intensities and jump sizes in the underlying assets. We discuss the managerial insights on
financial arrangements with exchange options characteristics. Furthermore, we discuss the implications
of incorporating clustered jumps into the estimation of implied beta with exchange options, in which the
applications can be insightful and useful in finance practice.
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1. Introduction

Exchange options offer the option holder the right, but not the obligation, to exchange one risky
asset for another. First introduced by Margrabe (1978), and therefore also known as the Margrabe
option, it is one of the earliest and the most popular exotic options in the over-the-counter (OTC)
market.

Exchange options are designed to mitigate adverse relative movements across assets. Naturally,
it is important for investors concerned with the relative performance of different assets and has
become a widespread, effective risk mitigation tool in the stock, bond, commodity, and currency
markets. Due to its generic nature, exchange options are related to many other derivatives. A
vanilla European option on a single asset can be viewed as an option to exchange the asset with
the same maturity zero-coupon bond at principal at the strike price (Merton 1973). Exchange
options are also closely related to spread options, which derive their value from the difference, or
spread, between the prices of two underlying assets against a strike price; the spread option reduces
to an exchange option when the strike price is set to zero. Additionally, exchange options can be
effectively combined with other types of derivative instruments. For example, an option on a swap
(a.k.a., a swaption), which gives the holder the right to enter a swap at a later date to exchange one
set of cash flows for another, is prevalent in OTC markets. Carr (1988) also discusses the sequential
exchange opportunities as a compound exchange option when an exchange of assets creates the
potential for future exchange.
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Moreover, many common financial arrangements are either equivalent to exchange options or
have exchange options embedded. For instance, when a firm bids for another firm by offering its
own stocks in exchange for the stocks of the target firm in mergers and acquisitions (M&A), a
common practice is to include a walk away covenant (i.e., a bringdown condition) in the exchange
offer, which allows the bidder to walk away from the deal if the target firm’s stock price drops
significantly relative to that of the bidding firm. This walk away covenant is equivalent to an
exchange option and can be valued accordingly. Similarly, a hedge fund may buy or sell OTC
exchange options with the bidding and target firms’ stocks as the underlying assets to either hedge
or speculate on the risks of the M&A falling apart due to a material deterioration in the target firm’s
business or financial condition between signing and closing. The embedded exchange option is also
common in financial contracts. For instance, bondholders often have the right to convert their debt
into equity. In addition, a portfolio manager’s performance incentive fee arrangement, and margin
account with collateral for the margin loan, are also important examples of exchange option-type
arrangements in financial markets (Margrabe 1978; Rubinstein 1991). More generally, the basic
idea of exchange options are applied to many fields, including real options (Trigeorgis 1993; Herath
and Jahera Jr 2002), capital investment (Kensinger 1988), executive stock options (Johnson and
Tian 2000), guaranteed funds (Hardy 2003; Biffis and Millossovich 2006), and insurance (Bühlmann
2004), among others.

In essence, the value of the exchange option depends not only on the current asset that might
be exchanged and the life of the option, but also on the second asset and correlation between
the two assets. In the case of a stock in relation to a market index, the exchange option price
will incorporate important information about the option-implied correlations between the stock
and the market. Therefore, exchange options have been proposed to estimate the systematic risk
measured by beta (Siegel 1995), which is of central importance to both the theory and the practice
of finance. Since the option market provides the investors’ predictions about the future market
movement, option-implied measurements have strong predictive power for the future volatility and
higher moments (c.f. Corrado and Su 1997). Analogous to the concept of implied volatility, the
exchange option-implied beta can reveal a unique, up-to-date market value for the beta of the stock
with respect to the market index whenever such exchange options are traded1.

Given the rising importance of exchange options in the financial market, the increasing recog-
nition of exchange option-type financial arrangements and the important implication of exchange
option-implied beta for systematic risk, research on exchange options is of great value in finance for
investors, practitioners, academics, and other market strategists. In this study, we join the exten-
sive literature on exchange options. Since Margrabe (1978) first derived the closed-form expression
for the European exchange option under the Black-Scholes framework, others extended this classic
result under various extensions of the Black-Scholes model, such as the stochastic interest rate
(Liu and Wang 1999), stochastic volatility (Antonelli et al. 2010), credit risk (Kim and Koo 2016),
and the delayed underlying assets in the drift and diffusion parts (Lin et al. 2018). Since a promi-
nent feature of financial markets is their infrequent, but large, price movements as jumps, recent
studies showed considerable interest in evaluating exchange options with a jump-diffusion model
that includes Poisson processes (Quittard-Pinon and Randrianarivony 2010), geometric compound
Poisson jump processes (Cheang and Chiarella 2011), joint Poisson processes (Cufaro Petroni and
Sabino 2018), Lévy processes (Chen and Wan 2010), the Ornstein-Uhlenbeck model (Pablo and
Enrique 2017), the two-state Poisson capital asset pricing model (CAPM) (Kim et al. 2013), the
fractional Black-Scholes model with jumps (Kim et al. 2014), and jumps with the possibility of
default and a “bubble” in asset prices (Kardaras 2015).

1Since exotic options are mainly traded on the OTC market, exchange option prices are usually not available to the public

(with the notable exception of some closely related spread options, e.g., exchange-traded WTI/Brent Crude Oil spread options
in the Chicago Mercantile Exchange (CME), and energy spreads between the heating oil/crude oil and gasoline/crude oil crack
in the New York Mercantile Exchange (NYMEX)). Siegel (1995) also briefly discusses synthetic exchange options according to

the dynamic strategy of continuously adjusting the size invested in the underlying assets.
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Although the extant literature provides important insights on the valuation and hedging of
exchange options, the strength of their potential implications is significantly mitigated, however,
by a common and critical defect: prior studies virtually ignore the important phenomenon of
clustered jumps, including jump clustering in a single asset and jump linkages between different
assets. In reality, clustered jumps resulting from contagion or the propagation effect are regularly
and repeatedly observed in the market (c.f. Maheu and McCurdy 2004; Ané and Métais 2011;
Aı̈t-Sahalia et al. 2015). Aı̈t-Sahalia et al. (2015) argue that jumps can potentially influence future
asset prices and can affect other assets due to macro news, investor attention, market sentiment,
and other factors. The interplay between the various jump terms across markets and over time is
not trivial and cannot be captured by the standard jump diffusion process. As the occurrence of a
jump is likely to increase the probability and/or the magnitude of future jumps in both the asset
itself and another risky asset (Luciano and Schoutens 2006), clustered jumps may have important
implications in the valuation of exchange options and its hedging strategies. Additionally, this
oversight may also have an important impact on the implication of the exchange option-implied
beta, as clustered jumps could likely affect the measure of systematic risks.

While an exchange option is very simple by its design, it contains features at the source of some
of the most acute problems in contemporary finance and offers a unique test bed to examine the
foundations of stochastic asset pricing theory and the behavior of market participants under the
dynamics of market contagion. In this study, we propose to value exchange option that allows for
jump contagion in each single asset, as well as across assets, using a Hawkes jump-diffusion model.
The Hawkes jump-diffusion model generalizes the usual Poisson jump-diffusion process (Hawkes
1971). In a Hawkes process, the jumps are interdependent, and the occurrence of a jump in the
price of one asset increases the probability of jumps in its own price (i.e., univariate self-exciting
processes), as well as the prices of other assets (i.e., mutually exciting processes). Consequently,
Hawkes processes allow for both jump clustering in each asset and jump contagion across assets, and
have wide applications in finance (c.f., Bacry and Muzy 2014; ?; Ma et al. 2017; ?; Hawkes 2018). To
account for the behaviors observed in the financial market, prior studies propose mutually exciting
Hawkes processes to model clustered jumps, such as shocks to the credit default swap (CDS)
markets (Aı̈t-Sahalia et al. 2015), microstructure noise (Bacry et al. 2013), and structural credit
risk (Ma and Xu 2016), among others. For instance, Aı̈t-Sahalia et al. (2015) propose capturing
the contagious dynamics of asset returns through both mutually self-exciting and cross-exciting
clustered Hawkes jumps in the context of international stock index returns for five world regions.
Kokholm (2016) studies the contagion effect on multi-asset derivatives and calculates the hedge
ratios for European put and call options. Additionally, others propose self-exciting Hawkes models
to model joint defaults in the portfolios of credit derivatives (Errais et al. 2006). This recent stream
of literature provides significant evidence of clustered jumps, both in the asset and the derivatives
markets, especially during large and volatile movements in the markets. They also indicate the
critical importance of extending the existing asset pricing and derivatives models by incorporating
dynamic clustered jumps due to the complex interplay of clustered jumps, both across assets and
over time.

Although the clustered jump modeled by Hawkes processes may have natural and important
implications for exchange options valuation and hedging, to the best of our knowledge, its use has
not been studied or explored in the literature. In the same spirit of this new stream of literature,
this study contributes to the development and implementation of valuation, hedging, and testing
procedures for exchange options. Moreover, we also further the discussion on the economic im-
plications of clustered jumps in the context of the implied beta and financial arrangements with
exchange options characteristics. More specifically, our research integrates work on exchange option
pricing with research on the Hawkes jump-diffusion model and the implied beta. We contribute to
the existing literature in at least three important ways. First, we develop a new method to derive
the closed-form pricing formula for European exchange options under the Hawkes jump-diffusion
model. The presence of clustered jumps makes it very challenging to implement because it can
quickly become mathematically non-treatable. We successfully address this problem via the Fourier
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transform technique. Second, our model accounts for the interacting dynamics of the underlying
assets jumps, and we thus obtain the exchange option’s Greeks and derive the optimal dynamic
hedging strategy under the mean-variance criterion. Additionally, we demonstrate the sensitivity
of the exchange option price to the parameters related to Hawkes jumps. Third, we discuss the
important implications of incorporating clustered jumps into the exchange option-implied beta and
compare it with other models. Our study yields several findings. First, the exchange option value
increases with jump volatility, the absolute value of mean jump size, the intrinsic intensity and
intensity jump size, and decreases with exponential decay rate. The fluctuation of the underlying
assets could account for the effects of the parameters related to jumps on the option value because
the occurrence of jumps and the jump amplitude increase the fluctuation of the underlying assets,
which in turn contributes to the option value. Second, the effects of two underlying assets on the
value of the exchange option are symmetric, and the effects of positive and negative mean jump
sizes on the exchange option price are asymmetric. Third, ignoring jumps and clustered jumps will
significantly misestimate the implied beta, and these errors may carry forward to important issues
such as estimating the cost of capital, measuring performance, and detecting abnormal returns.

The remainder of this paper is organized as follows. In Section 2, we introduce the Hawkes
jump-diffusion process and derive its joint characteristic function under the general affine jump-
diffusion framework. In Section 3, we obtain the European exchange option price by incorporating
clustered jumps using the Fourier transform method. In Section 4, we present the Greeks, the
optimal hedging strategies, and sensitivity of the option prices to the parameters of Hawkes jump
intensities and jump sizes. We also discuss the managerial insights on financial arrangements with
the characteristics of exchange options. In Section 5, we discuss the implied beta under clustered
jumps and its economic implications, and provide a numerical investigation its estimation under
different models. In Section 6, we propose a hybrid approach and implement an empirical analysis
to examine its forecasting performance for the implied beta. Section 7 concludes this paper.

2. The Hawkes Model

To capture the interacting dynamics among different jumps and across different assets as a means to
evaluate their impacts on exchange option values properly, we propose a model based on mutually
exciting Hawkes jump-diffusion processes with the characteristics of both self-excitement and cross-
excitement. In this section, we first provide a brief overview of mutually exciting point processes
and then specify our proposed model in detail.

2.1. Hawkes Jump-diffusion Processes

There are two underlying assets in an exchange option, with prices of Sj,t for asset j at time t,
j = 1, 2. Consider a filtered probability space (Ω,F , {Ft}t≥0,Q), where {Ft} is a right-continuous
and complete filtration representing the available information set and Q is a risk-neutral probability
measure. We can model the underlying asset prices as

Sj,t = Sj,0e
∫ t

0
µj,sds+Xj,t , j = 1, 2, (1)

where µj,s are the expected rates of returns on the underlying assets at time s. Following Kokholm
(2016), the processes Xj,t have the initial conditions Xj,0 = 0 and follow these dynamics:

dXj,t = (−1

2
σ2
j,t − ξjλj,t)dt+ σj,tdWj,t + dJj,t, (2)

where σj,t are the volatilities of the underlying assets at time t, Wj,t are standard Brownian motions
independent of the pure jump processes Jj,t with intensities λj,t, and dW1,tdW2,t = ρtdt. Further-
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more, let τj,l denote the time of occurrence of the l-th jump in asset j and Nj,t =
∑∞

l=1 1{τj,l ≤ t}
is the cumulant of the jumps in asset j up to time t. Let dJj,t = εj,tdNj,t, where εj,t are random
jump sizes with distribution functions of Fj across t and are independent of each other for all t and
j. ξj =

∫∞
−∞(ey − 1)dFj(y) are the mean price-jump sizes. Then, the drifts in (2) can ensure that

eXj,t are martingales under Q. Assume that Ni,t, i = 1, 2, are mutually exciting Hawkes processes
with intensity processes λj,t given by

dλj,t = ηj(λj,∞ − λj,t)dt+
2∑
l=1

θj,ldNl,t, (3)

or

dλj,t = ηj(λj,∞ − λj,t)dt+
2∑
l=1

θj,ldJl,t, (4)

where ηj , λj,∞ and θj,l are positive constants. If we use (4) to specify the intensity, then the supports
of Fl must be subsets of (0,∞) (e.g., lognormal or exponential distribution) to guarantee that the
intensities are always positive. Under either specification, when a jump occurs in one process, the
jump intensities of both processes will increase instantly, but the impact of this jump will decay
exponentially over time. λj,∞, θj,l, and ηj reflect the intrinsic jump intensities, the self-excitement
or cross-excitement effects, and decay rates, respectively. The main distinction between (3) and (4)
is that for the former, the increment of intensity at any jump is constant, whereas for the latter,
it also depends on the jump size. In particular, if θj,l = ηj,l = 0, then Xj,t degenerate to Poisson
jump-diffusion processes.

2.2. Characteristic Functions of Hawkes Processes

In the following, we derive the characteristic functions of the Hawkes jump diffusion processes. Let
Xt = (X1,t, X2,t)

′ and u = (u1, u2)′; then, with E denoting the expectation under the probability
measure Q, the time-t conditional joint characteristic function for the process Xt at the future time
T is

Φ(u1, u2, t, T ) = E[eiu
′XT |Ft], (5)

where i is the imaginary unit; that is, i =
√
−1.

We can express the marginal condition characteristic functions for X1 and X2 as{
Φ1(u1, t, T ) :=E[eiu1X1,T |Ft] = Φ(u1, 0, t, T ),

Φ2(u2, t, T ) :=E[eiu2X2,T |Ft] = Φ(0, u2, t, T ).
(6)

We can easily decompose Xt into Xt = XC
t +XJ

t by defining

XC
t = (−1

2

∫ t

0
σ2

1,sds+

∫ t

0
σ1,sdW1,s, −

1

2

∫ t

0
σ2

2,sds+

∫ t

0
σ2,sdW2,s)

′,

and

XJ
t = (−ξ1

∫ t

0
λ1,sds+ J1,t, − ξ2

∫ t

0
λ2,sds+ J2,t)

′.
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Moreover, since Wt and Jt are independent, we have

Φ(u1, u2, t, T ) = ΦC(u1, u2, t, T )ΦJ(u1, u2, t, T ), (7)

where ΦC(u1, u2, t, T ) = E[eiu
′XC

T |Ft]) and ΦJ(u1, u2, t, T ) = E[eiu
′XJ

T |Ft]. Next, we show how we
calculate ΦC(u1, u2, t, T ) and ΦJ(u1, u2, t, T ).

It is obvious that XC
T − XC

t follows a bivariate normal distribution with mean mt,T :=

(−1
2

∫ T
t σ2

1,sds, − 1
2

∫ T
t σ2

2,sds)
′ and covariance matrix

ct,T :=

[ ∫ T
t σ2

1,sds
∫ T
t ρsσ1,sσ2,sds∫ T

t ρsσ1,sσ2,sds
∫ T
t σ2

2,sds

]
.

Hence,

ΦC(u1, u2, t, T ) = eiu
′XC

t E[eiu
′(XC

T −XC
t )|Ft] = eiu

′(XC
t +mt,T )− 1

2
u′ct,Tu. (8)

On the other hand, we can derive ΦJ(u1, u2, t, T ) under the general framework of affine jump
diffusion models. 0V denotes a bi-dimensional row vector of zeros, 0M a 2× 2 matrix of zeros, and
similarly, 1V a bi-dimensional row vector of ones. 1j a bi-dimensional row vector with one at the
j-th entry and zero at the other entry. According to Errais et al. (2006) and Kokholm (2016),

Yt = (λ1,t, λ2,t,−ξ1

∫ t

0
λ1,sds+ J1,t,−ξ2

∫ t

0
λ2,sds+ J2,t)

′

is a 4-dimensional affine jump-diffusion process satisfying

dYt = (α+ βYt)dt+

2∑
j=1

γjdLj,t,

and

λj,t = δjYt,

where α = (η1λ1,∞, η2λ2,∞,0V )′ and

β =

[
diag(−η1,−η2) 0M
diag(−ξ1,−ξ2) 0M

]
.

In addition, for each j, γj = diag(θ1,j , θ2,j ,1j), δj = (1j ,0V ), and Lj,t is a 4-dimensional pure jump
process in which Lj,t = (Nj,t1V , Jj,t1V )′ for (3) and Lj,t = (Jj,t1V , Jj,t1V )′ for (4). According to
Duffie et al. (2000), we can obtain the time-t conditional characteristic function of Yt at the future
time T by

ΦY (ν, t, T ) = E[eν
′YT |Ft] = eA(ν,t,T )+B(ν,t,T )′Yt , ν ∈ C4, (9)

where A(ν, t, T ) and B(ν, t, T ) = (B1(ν, t, T ), . . . , B4(ν, t, T ))′ satisfy the ordinary differential equa-
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tions (ODEs): 
∂A

∂t
= −α′B,

∂B

∂t
= −β′B −

2∑
j=1

(Ψj(γjB)− 1)δ′j

(10)

with boundary conditions A(ν, T, T ) = 0 and B(ν, T, T ) = ν. In addition, we obtain Ψj using

Ψj(ω) =

∫
R
eω
′ϕdFj(y), ω ∈ C4,

where ϕ = (1V , y1V )′ for (3) and ϕ = (y1V , y1V )′ for (4). Consequently, we have

ΦJ(u1, u2, t, T ) = ΦY ((0V , iu1, iu2)′, t, T ). (11)

In general, there are no closed-form solutions for A(ν, t, T ) and B(ν, t, T ). However, if we reduce
the Hawkes processes to Poisson processes, then the closed-form solutions are available. In this
study, we will solve the ODEs numerically using the Runge-Kutta algorithm (Butcher 1987).

3. Pricing Exchange Options with Hawkes Processes

The traditional methods of pricing exchange options by directly solving a partial differential equa-
tion (PDE) are limited under the Hawkes clustered jumps processes. In this section, we propose
a new approach to price the exchange option that incorporates clustered jumps via the Fourier
transform technique.

3.1. Change in the Measure and Risk-neutral Pricing

An exchange option gives the holder the right to exchange asset two for asset one at expiration time
T . Its payoff at time T is VT = max{S1,T −S2,T , 0} = (S1,T −S2,T )+. According to the risk-neutral
pricing approach, the value of the exchange option at time 0 ≤ t ≤ T is

Vt = e−r(T−t)E[(S1,T − S2,T )+|Ft], (12)

where r is the risk-free interest rate. For simplicity of exposition, we assume µj,t = µj , σj,t = σj ,
and ρt = ρ, j = 1, 2 in this study, but the framework extends easily to the more general cases. Since
e(qj−r)tSj,t are martingales under the risk-neutral measure Q, it is obvious that µj = r− qj , where
qj is the continuously paying dividend yield of asset j.

We define another probability measure Q̃ by dQ̃
dQ = eX2,T ; that is, eX2,T is the Radon-Nikodým

derivative of Q̃ with respect to Q. Let Ẽ be the expectation under the probability measure Q̃; then,
we can rewrite the value of the exchange option at time t as

Vt = e−r(T−t)E[S2,T (
S1,T

S2,T
− 1)+|Ft] = S2,te

−q2(T−t)Ẽ[(
S1,T

S2,T
− 1)+|Ft]. (13)

Furthermore, let Φ̃(u1, u2, t, T ) denote the time-t-conditional joint characteristic function for Xt at
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future time T under the probability measure Q̃; then, we have

Φ̃(u1, u2, t, T ) = Ẽ[eiu1X1,T +iu2X2,T |Ft] = e−X2,tΦ(u1, u2 − i, t, T ). (14)

3.2. The Fourier Transform of Exchange Option Prices

In this subsection, we use a Fourier transform to derive the value of the exchange option. Let

K(u1, u2, t, T ) =
1

u1u2
exp{

3∑
j=1

Kj(u1, u2, t, T )},

and 

K1(u1, u2, t, T ) =

2∑
j=1

uj [logSj,t − qj(T − t)],

K2(u1, u2, t, T ) = −1

2
u1u2σ

2(T − t),

K3(u1, u2, t, T ) = A∗(u1, u2, t, T ) +
2∑
j=1

B∗j (u1, u2, t, T )λj,t,

where σ =
√
σ2

1 + σ2
2 − 2ρσ1σ2, and

{
A∗(u1, u2, t, T ) = A((0V , u1, u2)′, t, T ),

B∗j (u1, u2, t, T ) = Bj((0V , u1, u2)′, t, T )

with A((0V , u1, u2)′, t, T ) and Bj((0V , u1, u2)′, t, T ) obtained from the ODEs (10).

Theorem 3.1 We can write the exchange option value under a clustered jump process as

Vt = S1,te
−q1(T−t) − 1

π

∫ ∞
0

Re[K(
1

2
+ iw,

1

2
− iw, t, T )]dw. (15)

where Re(·) is the real part of a complex number.

Proof. Let k1 = logS1,0 − logS2,0 + (µ1 − µ2)T and k2 = logS1,0 + logS2,0 + (µ1 + µ2)T . The
generalized Fourier transform of G(x) = (ek1+x − 1)+ is

Ĝ(z) =

∫ ∞
−∞

eizxG(x)dx = − e−izk1

z2 − iz
, z ∈ C, Im(z) > 1, (16)

where Im(·) is the imaginary part of a complex number. The generalized Fourier inverse transform
of G(x) is

G(x) =
1

2π

∫ iv+∞

iv−∞
e−izxĜ(z)dz, v = Im(z). (17)

8
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From (13), (14), and (17), it follows that the integral expression for the exchange option value is

Vt = S2,te
−q2(T−t)Ẽ[G(X1,T −X2,T )|Ft]

=
S2,te

−q2(T−t)

2π
Ẽ[

∫ iv+∞

iv−∞
e−iz(X1,T−X2,T )Ĝ(z)dz|Ft]

=
S2,te

−q2(T−t)

2π

∫ iv+∞

iv−∞
Ẽ[e−iz(X1,T−X2,T )|Ft]Ĝ(z)dz

=
S2,0e

rt−q2T

2π

∫ iv+∞

iv−∞
Φ(−z, z − i, t, T )Ĝ(z)dz.

Moreover, we can change the integration contour into Im(z) ∈ (0, 1) by the residual theorem (c.f.,
Lewis 2001). Let v = 1

2 and z = w + 1
2 i; then,

Vt =
S2,0e

rt−q2T

2π

[
2πek1Φ(−i, 0, t, T )−

∫ ∞
−∞

e( 1

2
−iw)k1Φ(−w − i

2 , w −
i
2 , t, T )

w2 + 1/4
dw

]

= S1,te
−q1(T−t) − e

1

2
k2−r(T−t)

π

∫ ∞
0

Re[eiwk1Φ(w − i
2 ,−w −

i
2 , t, T )]

w2 + 1/4
dw

By simple calculation, we have

Vt = S1,te
−q1(T−t) − 1

π

∫ ∞
0

Re[K(
1

2
+ iw,

1

2
− iw, t, T )]dw. �

Note that since Vt = e−r(T−t)E[(S1,T − S2,T )+|Ft] < e−r(T−t)E[S1,T |Ft] = S1,te
−q1(T−t), it follows

that ∫ ∞
0

Re[K(
1

2
+ iw,

1

2
− iw, t, T )]dw > 0. (18)

4. Greeks and Optimal Hedging Strategy

In this section, we discuss the optimal hedging strategy for exchange options under clustered
jumps, and present the Greeks for the corresponding exchange option, including Delta, Theta,
Vega, Gamma, and other partial derivatives. Then, we illustrate the effects of Hawkes-type jumps
with numerical examples on exchange option prices.

4.1. The Optimal Hedging Strategy

Since jumps are present in the proposed model, perfect hedges for exchange options do not exist.
Here, we apply the mean-variance hedging (quadratic hedging) approach to obtain an optimal
hedging strategy. In a mean-variance hedging, we describe the optimal self-financing strategy by
an initial capital of P0 and a portfolio process ∆t = (∆1,t,∆2,t), where ∆j,t is the number of shares
of asset j at time t. The objective is to minimize the terminal hedging error in the mean-variance
sense:

inf
∆t

E(PT − VT )2, (19)

9
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or equivalently, inf
∆t

E[(e−rTPT − e−rTVT )2], where the hedge portfolio value Pt is driven by

dPt =

2∑
j=1

[∆j,t(qjSj,t + dSj,t)] + r(Pt −
2∑
j=1

∆j,tSj,t)dt.

Let V (t, s1, s2, λ1, λ2) denote the value of the exchange option at time t if the underlying asset
prices at that time are Sj,t = sj and the intensities are λj,t = λj , j = 1, 2. Additionally, let

V S
j,t =

∂V

∂sj
(t, S1,t, S2,t, λ1,t, λ2,t), j = 1, 2.

Furthermore, if the intensity processes λj,t are as in (3), then let

{
V J

1,t,y = V (t, S1,t−e
y, S2,t, λ1,t−+θ11, λ2,t−+θ21)− V (t, S1,t− , S2,t, λ1,t− , λ2,t−),

V J
2,t,y = V (t, S1,t, S2,t−e

y, λ1,t−+θ12, λ2,t−+θ22)− V (t, S1,t, S2,t− , λ1,t− , λ2,t−),

and if λj,t are given by (4), then let

{
V J

1,t,y = V (t, S1,t−e
y, S2,t, λ1,t−+θ11y, λ2,t−+θ21y)− V (t, S1,t− , S2,t, λ1,t− , λ2,t−),

V J
2,t,y = V (t, S1,t, S2,t−e

y, λ1,t−+θ12y, λ2,t−+θ22y)− V (t, S1,t, S2,t− , λ1,t− , λ2,t−).

Theorem 4.1 Let ζj =
∫∞
−∞(ey − 1)2dFj(y) and φj,t =

∫∞
−∞(ey − 1)V J

j,t,ydFj(y). The optimal
hedging portfolio is

∆̂t = (∆̂1,t, ∆̂2,t)
′ = argmin

∆t

Eε2T = a−1
t bt, (20)

where

at =

(
(σ2

1 + λ1,tζ1)S1,t ρσ1σ2S2,t

ρσ1σ2S1,t (σ2
2 + λ2,tζ2)S2,t

)
,

and

bt =

(
σ2

1S1,tV
S

1,t + ρσ1σ2S2,tV
S

2,t + λ1,tφ1,t

σ2
2S2,tV

S
2,t + ρσ1σ2S1,tV

S
1,t + λ2,tφ2,t

)
.

Proof. Obviously, we have

d(e−rtPt) =e−rt
2∑
j=1

(σjSj,t∆j,tdWj,t + Sj,t∆j,tdJ
∗
j,t)

where

dJ∗j,t = (eεj,t − 1)dNj,t − ξjλj,tdt, j = 1, 2.

10
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Since e−rtVt is a martingale under the risk-neutral probability measure Q,

d(e−rtVt) = e−rt
2∑
j=1

(σjSj,tV
S
j,tdWj,t + V J

j,t,εj,tdN
∗
j,t),

where dN∗j,t = dNj,t − λj,tdt. Let

εt = e−rt(Pt − Vt), εWj,t = e−rtσjSj,t(∆j,t − V S
j,t), εJj,t = e−rtSj,t∆j,t, εNj,t,y = e−rtV J

j,t,y,

and εJj,t,y = (ey − 1)εJj,t − εNj,t,y, j = 1, 2. According to Itô’s formula for a semi-martingale,

ε2T =

∫ T

0
{2ρεW1,tεW2,t +

2∑
j=1

[(εWj,t)
2 + λj,t(ε

J
j,t,εj,t)

2]}dt

+
2∑
j=1

{∫ T

0
2εtε

W
j,tdWj,t +

∫ T

0
2εt−ε

J
j,tdJ

∗
j,t +

∫ T

0
[(εJj,t,εj,t)

2 − 2εt−ε
J
j,t,εj,t ]dN

∗
j,t

}
.

Because Wj,t, N
∗
j,t and J∗j,t are martingales, we have

Eε2T = E
∫ T

0
{2ρεW1,tεW2,t +

2∑
j=1

[(εWj,t)
2 + λj,t(ε

J
j,t,εj,t)

2]}dt,

= E
∫ T

0
{2ρεW1,tεW2,t +

2∑
j=1

[(εWj,t)
2 + λj,t

∫
R

(εJj,t,y)
2dFj(y)]}dt.

Differentiating the mean-variance hedging error with respect to ∆t, we can obtain the first-order
conditions for the optimal hedging portfolio:

at∆t = bt.

Consequently,

∆̂t = argmin
∆t

Eε2T = a−1
t bt. �

4.2. The Greeks

Proposition 4.2 Delta is given by
∂V

∂s1
= e−q1(T−t) − 1

πs1

∫ ∞
0

Re[(
1

2
+ iw)K(

1

2
+ iw,

1

2
− iw, t, T )]dw,

∂V

∂s2
= − 1

πs2

∫ ∞
0

Re[(
1

2
− iw)K(

1

2
+ iw,

1

2
− iw, t, T )]dw.

(21)

Obviously, V = s1
∂V
∂s1

+ s2
∂V
∂s2

. Although we allow Hawkes jumps for the pricing model, the
relationship between the option value and Delta still holds as indicated in Margrabe (1978) under
the Black-Scholes model. Since the option’s intrinsic value increases with the price of asset one and
decreases with the price of asset two, ∂V

∂s1
is positive and ∂V

∂s2
is negative.

11
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Proposition 4.3 Theta is given by

∂V

∂t
= q1s1e

−q1(T−t) − 1

π

∫ ∞
0

Re[K∗(
1

2
+ iw,

1

2
− iw, t, T )K(

1

2
+ iw,

1

2
− iw, t, T )]dw (22)

where

K∗(u1, u2, t, T ) =
1

2
u1u2(σ2

1 + σ2
2 − 2ρσ1σ2) +

2∑
j=1

{ηjB∗j (u1, u2, t, T )(λj − λj,∞)

+ [1+ujξj −Ψj(γjB
∗(u1, u2, t, T ))]λj + ujqj}

and B∗(u1, u2, t, T ) = B((0V , u1, u2)′, t, T ).

If q1 = q2 = 0, then the option value decreases with time decay and thus ∂V
∂t < 0. However, if

the underlying assets pay dividends, the sign of Theta is uncertain.

Proposition 4.4 Vega is


∂V

∂σ1
=

(σ1 − ρσ2)(T − t)
π

∫ ∞
0

(w2+
1

4
)Re[K(

1

2
+ iw,

1

2
− iw, t, T )]dw,

∂V

∂σ2
=

(σ2 − ρσ1)(T − t)
π

∫ ∞
0

(w2+
1

4
)Re[K(

1

2
+ iw,

1

2
− iw, t, T )]dw.

(23)

Obviously, the structures of ∂V
∂σ1

and ∂V
∂σ2

are symmetrical. If ρ ≤ 0, then the changes in the
underlying assets are unrelated or in opposite directions, and higher volatility is more likely to
cause higher payoffs and lead to a higher option price; hence, we have ∂V

∂σ1
> 0 and ∂V

∂σ2
> 0. It

also implies that the integral part of Vega is positive. However, if ρ > 0, then the diffusion parts of
the underlying assets tend to change in the same direction, and higher volatility do not necessarily
cause a larger gap between the prices of two underlying assets. Therefore, the sign of Vega is
uncertain.

Proposition 4.5 Gamma is

∂2V

∂s2
j

=
1

πs2
j

∫ ∞
0

(w2 +
1

4
)Re[K(

1

2
+ iw,

1

2
− iw, t, T )]dw, j = 1, 2. (24)

Symmetry also arises between ∂2V
∂s21

and ∂2V
∂s22

, and it follows from Vega that the integral part is

positive; thus, ∂2V
∂s21

> 0 and ∂2V
∂s22

> 0. That is, the option value is a convex function of the price

of each underlying asset. Moreover, Rho is ∂V
∂r = 0; that is, the value of the exchange option is

irrelevant to the risk-free interest rate.
In addition to the usual Greeks, we also obtain the partial derivatives of V with respect to q1,

12
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q2, ρ, and λj , as follows:



∂V

∂q1
= (T − t){ 1

π

∫ ∞
0

Re[(
1

2
+ iw)K(

1

2
+ iw,

1

2
− iw, t, T )]dw − s1e

−q1(T−t)},

∂V

∂q2
=

(T − t)
π

∫ ∞
0

Re[(
1

2
− iw)K(

1

2
+ iw,

1

2
− iw, t, T )]dw,

∂V

∂ρ
= −σ1σ2(T − t)

π

∫ ∞
0

(w2 +
1

4
)Re[K(

1

2
+ iw,

1

2
− iw, t, T )]dw,

∂V

∂λj
= − 1

π

∫ ∞
0

Re[B∗j (
1

2
+ iw,

1

2
− iw, t, T )K(

1

2
+ iw,

1

2
− iw, t, T )]dw, j = 1, 2.

(25)

Therefore,

∂V

∂q1
= −(T − t)s1

∂V

∂s1
< 0,

∂V

∂q2
= −(T − t)s2

∂V

∂s2
> 0,

∂V

∂ρ
= −(T − t)σ1σ2s

2
1

∂2V

∂s2
1

< 0.

Theoretically, dividend payments decrease the asset price, and the lower the price of asset one
(asset two) is, the lower (higher) the value of the exchange option is. Moreover, as the correlation
varies from −1 to 1, the prices of the two underlying assets change from being in opposite directions
to being in the same direction, which decreases the intrinsic value of the exchange option gradually.
Since a larger jump intensity can make the underlying asset jump more frequently and is more likely
to cause a higher (lower) price for asset one (asset two), then the option will likely have a higher
payoff, which lead to a higher option price. Hence, we have ∂V

∂λ1
> 0 and ∂V

∂λ2
> 0. Finally, because

the partial derivatives of the exchange option value with respective to λj,∞, θj,1, θj,2, and ηj are
not analytical, we will investigate them using a numerical analysis in the following subsection.

4.3. Numerical Examples

In the previous discussion, we investigated analytically the sensitivities of the exchange option
price with respect to time, the underlying asset prices, volatilities, the correlation coefficient, the
dividend rates, the interest rate, the jump intensities, and so on. In this subsection, we use numerical
examples to show the relationship between the exchange option price Vt and the mean jump sizes,
the jump volatilities, and the parameters of the Hawkes intensity process such as λj,∞, θj,1, θj,2,
and ηj , and j = 1, 2.

In the numerical examples, we choose jump intensities in the form of (3) and assume that the
jump sizes follow normal distributions εj,t ∼ N(µJj , (σ

J
j )2), j = 1, 2. According to the empirical

results of Aı̈t-Sahalia et al. (2015) and Kokholm (2016), the parameter values for the base case
are as follows: t = 0, T = 1, S1,0 = S2,0 = 1, q1 = q2 = 0, σ1 = σ2 = 0.15, ρ = 0, µJ1 = µJ2 = 0,
σJ1 = σJ2 = 0.05, λ1,0 = λ2,0 = 1, λ1,∞ = λ2,∞ = 0.5, θ1,1 = θ2,2 = 12.5, θ1,2 = θ2,1 = 2.5,
η1 = η2 = 20. In the following numerical analysis, we change the value of only one parameter at a
time and keep the values of the remaining parameters unchanged from the base case.

As Figure 1 shows, the sensitivities of the exchange option price to µJ1 and µJ2 are the same,
and the value of the exchange option can achieve the minimum when the mean jump size is near
zero. In other words, the exchange option price increases with the absolute mean jump sizes, but
the effects of positive and negative mean jump sizes with the same absolute value of the exchange
option price are not the same. From Figure 2, the sensitivities of the exchange option price to σJ1
and σJ2 are also the same, and the exchange option price increases with the jump volatilities.

We can explain the symmetry in Figures 1-2 and the effects of mean jump sizes and jump
volatilities on exchange option prices as follows. Assume that there are two exchange options, A
and B, and denote by V A

t the value of exchange option A with a payoff of (S1,T−S2,T )+ and V B
t the

13
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Figure 1. The exchange option price against the mean jump sizes in the Hawkes jump diffusion model.
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Figure 2. The exchange option price against jump volatilities in the Hawkes jump diffusion model.

value of exchange option B with a payoff of (S2,T − S1,T )+. Since S1,t and S2,t have symmetrical
structures, and the payoffs of exchange options A and B are also symmetric, it is obvious that
∂V A

t

∂µJ
1

= ∂V B
t

∂µJ
2

at µJ1 = µJ2 and ∂V A
t

∂σJ
1

= ∂V B
t

∂σJ
2

at σJ1 = σJ2 , with the other parameter values set as in the

base case. Next, according to European exchange option call-put parity,

V A
t + S2,te

−q2(T−t) = V B
t + S1,te

−q1(T−t), (26)

we have ∂V A
t

∂µJ
2

= ∂V B
t

∂µJ
2

and ∂V A
t

∂σJ
2

= ∂V B
t

∂σJ
2

. From the above and based on the base case, we have
∂V A

t

∂µJ
1

= ∂V B
t

∂µJ
2

= ∂V A
t

∂µJ
2

at µJ1 = µJ2 and ∂V A
t

∂σJ
1

= ∂V B
t

∂σJ
2

= ∂V A
t

∂σJ
2

at σJ1 = σJ2 , which means that µJ1 and µJ2
have the same effect on the exchange option price, and so are the effects of σJ1 and σJ2 . In addition,
since the large absolute value of the mean jump size and the large jump volatility can contribute to
the fluctuation in the value of the asset, they are all able to cause a high exchange option price. The
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Figure 3. The exchange option price against the intrinsic intensities in the Hawkes jump diffusion model.
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Figure 4. The exchange option price against the jump sizes of the intensities in the Hawkes jump diffusion model.

larger the absolute value of the mean jump sizes or jump volatilities are, the higher the exchange
option price is.

Figures 3-5 show the effects of the parameters of the intensity process on the exchange option
price. The figures show that the effects of λ1,∞, θ1,1, θ1,2, and η1 are the same as that of λ2,∞, θ2,2,
θ2,1, and η2 on the exchange option price, respectively. From Figures 3-4, the exchange option price
is increasing in the intrinsic intensities and jump sizes of intensities, respectively. From Figure 5,
the exchange option price is decreasing in exponential decay rates. In addition, from Figure 4, the
self-excitation coefficients (θ1,1 and θ2,2) and the cross-excitation coefficients (θ1,2 and θ2,1) make
no significant difference in the exchange option price.

We can explain the results in Figures 3-5 as follows. First, larger intrinsic intensities cause more
jumps in the asset prices, and then the larger jump sizes of the intensities can increase the intensities
when the asset price jumps, which also leads to more jumps in the asset price. Finally, the smaller
the exponential decay rates are, the more slowly the increments of the intensities decay and the
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Figure 5. The exchange option price against the exponential decay rates in the Hawkes jump diffusion model.

longer the intensities remain at a high level, which accordingly leads to more jumps in the asset
price. In summary, the exchange option price will increase as the asset price jumps more frequently,
which can be caused by larger intrinsic intensities, larger jump sizes in the intensities, and smaller
exponential decay rates, respectively.

4.4. Managerial Insights for Arrangements with Exchange Options Characteristics

In addition to the direct application of evaluating exchange options as an OTC derivative under
clustered jumps dynamics, the proposed framework can also apply to exchange-traded derivatives
on a single asset with self-excitement clustered jumps. These are special cases since an exchange
option degenerates into a vanilla call or put when either asset has constant value over time.

Moreover, the derived valuation formula, Greeks, and optimal hedging strategies offer important
managerial insights for many common financial arrangements that assign one party the right to
exchange one asset for another in a wide variety of contexts. For instance, in an exchange offer,
the target firm’s shareholders may exchange their shares for those of the bidding firm as a part or
all of the consideration. Hence, as the party that has the option to exchange, the target firm owns
an embedded exchange option in the offer. Thus, the value of this exchange option is naturally of
interest for the target firm’s shareholders. To keep the analysis tractable, assume that this offer
conveys no information about the prospects of either firm. Then the offer itself may increase the
price of shares in the target firm since its shareholders now have an option to exchange their shares
for something else that is worth at least zero, at the cost of the bidding firm’s shareholders if the
bidding firm does not charge any premium for this tender exchange offer (Margrabe 1978; Amihud
et al. 1990).

The rights of the bidding firms to walk away after a deal is announced but before the deal
closes is certainly a very interesting addition to the literature. Gilson and Schwartz (2005) study
merger contracts that contain material adverse change (MAC) and material adverse effect (MAE)
clauses that allow the buyer to costlessly cancel the deal if such a change or effect occurs. They
examine the litigation functions that the MAC and MAE term serve in terms of the threat of moral
hazard in the structure of an M&A agreement. Denis and Macias (2013) show that MAEs are the
underlying cause of 69% of acquisition terminations and 80% of renegotiations, and acquisitions
with fewer MAE exclusions are associated with higher offer premiums, which clearly provides
evidence that MAE clauses contain substantial value as an option. Bhagwat et al. (2016) study the
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general risk of either party walking away. They find empirically that increases in market volatility
decrease subsequent deal activity, and merging parties attempt to shorten the interim window as
risk increases. These empirical observations are consistent with the implications of viewing the
right to walk away as an exchange option, the value of which would increase when firm values can
change substantially, and decrease when the interim window between the time deal terms are set
and the actual deal closing are shortened.

Obviously, when there are possible clustered jumps for either the bidding or target firm, or across
the two firms, the intensity and size of jumps and other parameters would affect the value increase
of the target firm, as we discussed. Moreover, when the bidding firm is a public company, it may
attempt to issue more stocks as a way to finance the acquisition, in which case, the value of such
exchange offer would affect more public investors. A further complication that can arise in valuing
these opportunities occurs when the exchange offer also includes a bringdown condition, such that
the bidding firm can walk away when the target firm’s stock price drops significantly relative to
that of the bidding firm between signing and closing. We can consider such walk away covenant as
an exchange option owned by the bidding firm, and will reduce the value of the exchange option
owned by the target firm. Managers of either firm or hedge funds that want to speculate on the
M&A transaction, may adopt some hedging strategies based on the proposed framework to help
mitigate the risk from the change in the exchange option value due to the clustered jump dynamics.

As another example, the proposed framework may also shed some light on the value of portfolio
managers. Passive investment that tracks some major market indices such as the Standard and
Poor’s 500 Index using an exchange-traded fund (ETF) or index fund is both cost effective and
can be easily self-managed by the investors themselves. Portfolio or fund managers offer services
to provide an opportunity to outperform the broad market indices at a nontrivial cost, so it is
important to evaluate fund managers and mitigate risk. Investors may be concerned about the
probability that a managed portfolio will underperform against the market benchmark. Since the
managed portfolio can be considered as exchanging at least partial components of the passive
investments in the benchmark with actively managed investments, investors may consider an equity
swaption as having the right to exchange the deviations back to the original components in the
benchmark, such that the investors can always get the higher return from the managed portfolio
and the market benchmark. The value of the portfolio manager can be considered as the difference
in returns from the managed portfolio and premium of the equity swaption. Due to the potential
spread of market disturbances, it is important to incorporate clustered jumps in a portfolio manager
evaluation.

With a similar concept, Cremers and Petajisto (2009) and Petajisto (2013) introduce active shares
as a simple measure of the a fund manager’s activeness by looking at the absolute deviations of the
manager’s portfolio holdings against their benchmark portfolio holdings and relate active share to
fund characteristics such as size, expense, and turnover in the cross-section. Despite its simplicity,
Frazzini et al. (2016) more recently suggest that the active share is not a valuable measure of
managers’ skill, as it cannot justify the value of such deviations. In comparison, the proposed
framework could be used to directly evaluate the option value of the manager’s portfolio holdings
against their benchmark portfolio holdings by considering the deviations as exchange options.

While the complete development of these ideas is beyond the scope of this paper, we are optimistic
that they will be subjects of future research that extends this work.

5. Implied Beta Under Clustered Jumps

In this section, we discuss the implied beta under the proposed Hawkes jump-diffusion model and
compare the implied betas under the Hawkes jump-diffusion model, Poisson jump-diffusion model,
and Black-Scholes model (geometric Brownian model).
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5.1. Implied Beta

Systematic risk plays a critical role in finance practice. Beta is the well-known measure of the
systematic risk of an asset. Beta is the variability of the asset’s return relative to the return of the
market portfolio. In practice, market indexes are usually used to represent the market portfolio. The
traditional method to estimate beta is typically based on a regression model using the historical
returns of the asset and the market portfolio. For instance, according to the CAPM,

RX,t = αt + βtRM,t + et, (27)

where RX,t and RM,t are rates of return from the asset and market, respectively, and et is a random
error with zero-mean and is independent of RM,t. Beta βt is given by

βt =
Cov(RX,t, RM,t)

Var(RM,t)
. (28)

However, it has long been recognized that significant bias can arise when using historical data to
estimate the expected model since it leads to sensitivity to minor changes in the sample period
and the choices of single or multi-factor models (Sharpe 1964; Fama and MacBeth 1973; Fama and
French 1993; McNulty et al. 2002). In essence, it is hard to assess the bias associated with the
estimation of an ex ante model using the ex post historical data.

More recently, several attempts have been made to reduce the estimation error that arises from
the use of historical data by exploiting information about systematic risk contained in option prices.
For instance, Chang et al. (2011) use both option-implied skewness and volatility to estimate market
beta. Buss and Vilkov (2012) use stock returns in the market index constituents and a factor
model to construct a complete correlation matrix. However, these estimation methods rely on
simplified assumptions, such as a single factor model, zero skewness of the market return residual,
or unrealistic assumptions such as that the implied correlations are always higher than the realized
correlations. Despite these weak assumptions, these methods show the significant explanatory power
of information from the option market on estimating beta (Harris et al. 2019).

Under the Black-Scholes model, Siegel (1995) demonstrates a method to derive the implied beta
from an exchange option for which the underlying assets are the market index and the asset, and
two vanilla options on the market index and the asset, respectively. In the following, we show how
to derive the implied beta from the exchange options under the proposed Hawkes jump-diffusion
model.

Theorem 5.1 The implied beta under the Hawkes jump-diffusion model is

βt =
ρσXσM

σ2
M + ζM

λM,∞ηM (ηX−θX,X)+λX,∞ηXθM,X

(ηM−θM,M )(ηX−θX,X)−θM,XθX,M

. (29)

Proof. Let SM,t be the market index price and SX,t be the asset price. For consistency with our
proposed framework and notations, we simply replace the subscripts 1 and 2 with X and M ,
respectively; that is, the individual asset is asset 1 and the market index is asset 2 in the exchange
option. The rates of return are

RX,tdt =
dSX,t
SX,t

, RM,tdt =
dSM,t

SM,t
.

Thus, we have

βt =
Cov(dSX,t/SX,t, dSM,t/SM,t)

Var(dSM,t/SM,t)
.
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Note that, since the variance and covariance are not subject to adaptation with the change in
measure, we calculate them under the risk-neutral measure. Then, under the risk-neutral measure,
the asset price and the market index follow the dynamics:

dSX,t
SX,t

= (r − qX)dt+ σXdWX,t + dJ∗X,t,

dSM,t

SM,t
= (r − qM )dt+ σMdWM,t + dJ∗M,t.

Obviously,

V ar(dSM,t/SM,t) = σ2
Mdt+ V ar(dJ∗M,t),

Cov(dSX,t/SX,t, dSM,t/SM,t) = ρσXσMdt+ Cov(dJ∗X,t, dJ
∗
M,t).

Since V ar(dJ∗M,t) = ζMEλM,tdt+ o(dt) and Cov(dJ∗X,t, dJ
∗
M,t) = o(dt), we have

βt =
ρσXσM

σ2
M + ζMEλM,t

.

According to Aı̈t-Sahalia et al. (2015),

EλM,t =
λM,∞ηM (ηX − θX,X) + λX,∞ηXθM,X

(ηM − θM,M )(ηX − θX,X)− θM,XθX,M
;

thus, the implied beta under the Hawkes jump-diffusion model is

βt =
ρσXσM

σ2
M + ζM

λM,∞ηM (ηX−θX,X)+λX,∞ηXθM,X

(ηM−θM,M )(ηX−θX,X)−θM,XθX,M

. �

5.2. Simulation Study of Implied Betas under Different Models

To calculate the implied beta under the proposed model, we first jointly calibrate all of the pa-
rameters except ρ to the prices of the market-traded plain vanilla options on the market index
and on the asset. Second, based on the pricing formula in (15), we deduce ρ from the exchange
option price whenever it is tradable. Specifically, if we replace S2,t with strike price K, q2 with
interest rate r, K3(1/2 + iw, 1/2− iw, t, T ) with K3(1/2 + iw, 0, t, T ), and set ρ, σ2, λ2,t, and the
parameters of the jump size distribution in the asset two equal to zero, then we will transform
(15) into the pricing formula for European call options on asset one with strike K at time t. Using
this procedure, we can derive the implied betas by the observed exchange option prices. Since the
Hawkes jump diffusion model includes the Black-Scholes model as a special case and allows jump
contagion and jump clustering, which are empirically detected in reality, the proposed model could
derive a more accurate forward-looking beta.

We first consider a hypothetical example by generating a series of prices on the market index and
on the asset for European options with different strike prices to represent the real market-traded
option prices. To generate European call option prices, we assume that the distributions of the
jump sizes of the market index and the asset are the same as those in section 5.1, and set the
parameters for the base case as follows: t = 0, T = 0.25, SM,0 = SX,0 = 1, r = 0.05, qM = qX = 0,
σM = 0.2, σX = 0.25, µJM = µJX = 0, σJM = σJX = 0.05, λM,0 = λX,0 = λM,∞ = λX,∞ = 1,
θM,M = θX,X = 12.5, θM,X = θX,M = 2.5, and ηM = ηX = 20. We choose ten different strike prices
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Figure 6. Implied beta against the exchange option price under the Black-Scholes model, Poisson jump-diffusion,
and Hawkes jump-diffusion models.
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Figure 7. The percentage difference between different model-implied betas with the Black-Scholes model-implied
beta as the benchmark. The left and right plots represent the positive and negative benchmarks, respectively.

of 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, and 1.25, and calculate the corresponding European
call option prices on the market index and on the asset, respectively. Table 1 reports the results.

We then apply these option prices to jointly calibrate the parameters except ρ under the Hawkes
jump-diffusion model, Poisson jump-diffusion model, and Black-Scholes model, respectively, with
detailed calibration procedure to be discussed in subsection 6.2. The parameters t, T , SM,t, SX,t,
r, qM , and qX remain unchanged from the base case. We summarize the calibrated parameters
in Table 2. Finally, we deduce ρ from the exchange option price under the three models above
respectively, and then obtain the implied betas βH , βP , and βB with (28) and (29), where the
superscripts refer to the initial letters of these models.

Figure 6 shows that the implied betas are decreasing in the exchange option price under these
three models, and that βP < βB and the gap between βP and βB decreases first and increases later
with the increasing exchange option price. In addition, there exists two exchange option prices at
which we have βH = βP and βH = βB. We denote the two exchange option prices as V1 and V2, and
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Table 1. European call option prices with different strike prices

Strike price 0.8 0.85 0.9 0.95 1
Index option price 0.2105 0.1627 0.1180 0.0791 0.0485
Equity option price 0.2116 0.1656 0.1234 0.0871 0.0580

Strike price 1.05 1.1 1.15 1.2 1.25
Index option price 0.0271 0.0139 0.0066 0.0029 0.0013
Equity option price 0.0364 0.0216 0.0121 0.0065 0.0034

Table 2. Calibrated parameters under three different models

Parameters σM σX λM,∞/λM λX,∞/λX θM,M θM,X θX,M

Hawkes J-D model 0.2003 0.2481 0.7946 1.3452 11.5337 3.5402 3.8935
Poisson J-D model 0.2026 0.2420 0.4410 2.5604 – – –

B-S model 0.2169 0.2620 – – – – –

Parameters θX,X ηM ηX µJ
M µJ

X σJ
M σJ

X
Hawkes J-D model 8.7502 22.7006 13.6142 -0.0002 -0.0002 0.0545 0.0477
Poisson J-D model – – – -0.0045 0.0015 0.1033 0.0607

B-S model – – – – – – –

V1 < V2. When the exchange option price is lower than V1, we have βH < βP < βB, and both the
gap between βH and βP and that between βH and βB are decreasing in the exchange option price.
When the exchange option price is higher than V1 but lower than V2, we have βP < βH < βB, and
with an increasing exchange option price, the gap between βH and βP increase and that between
βH and βB decrease. When the exchange option price is higher than V2, we have βP < βB < βH ,
and both the gap between βH and βP and that between βH and βB are increasing in the exchange
option price.

Moreover, to present the relative difference in the implied betas between the jump-diffusion model
and the Black-Scholes model, we take βB as the benchmark to calculate the percentage difference
(PD) between βH and βB, and that between βP and βB, which we define as PDj = (βj−βB)/|βB|
to ensure that its sign is consistent with βj − βB, where j ∈ {H,P}. It is easy to deduce that
PDP < 0 and to infer from Figure 6 that when the exchange option price is lower than V2,
PDH < 0, we have |PDH | < |PDP | if βH < βP and vice versa. When the exchange option price
is higher than V2, PDH > 0 and the change in PDH and |PDH | is the same. Figure 7 shows that
both PDH and PDP increase slightly first and then decrease if βB > 0, and increase if βB < 0,
with the increasing exchange option price. In addition, when the exchange option price is higher
than V2, |PDH | is smaller than |PDP | at first, and then as the exchange option price increases, the
gap between |PDH | and |PDP | decreases gradually to zero, and afterward |PDH | is larger than
|PDP |.

5.3. Economic Implications of the Implied Betas under Clustered Jumps

The benefits of the implied beta are analogous to those of the implied volatility that directly
indicates the current market sentiment on systematic risk. The proposed framework captures higher
moments and tail dependency due to the clustered jumps, and can hence provide extra information.
As illustrated in Figures 6 and 7, ignoring clustered jumps may significantly misestimate the implied
beta, which can be quantified by comparing the results. Because systematic risk changes through
time, especially in volatile and contagious market environments, an option-implied beta would
provide timely and improved estimates of forward-looking systematic risk and reflect the markets’
expectation of beta, incorporating the clustered jumps over the life of the exchange option.

The better predictive quality of the implied betas under clustered jumps within our proposed
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framework could lead to better cost-of-capital estimates and may have numerous empirical ap-
plications, such as detecting abnormal returns and statistical arbitrage in asset pricing and risk
management in cases when clustered jumps could be a concern or investment opportunity.

6. Hybrid Procedure for Implied Beta

As an OTC market product, exotic options prices are usually only available to institutional in-
vestors who can request quotes from market makers to estimate the implied beta with the proposed
framework. For retail investors who lack access to the exchange option prices, we also propose an
alternative procedure. French et al. (1983) and Chang et al. (2011) explore methods of combining
option-implied volatility with historical correlations to improve the measurement of betas. In addi-
tion, Buss and Vilkov (2012) propose option-implied correlations based on the Black-Scholes frame-
work. Despite the obvious limitations, these studies show that the use of option-implied volatility,
and historical or option-implied correlations, exhibit smaller and less systematic prediction errors
in their beta estimations.

In the same spirit, we propose a hybrid approach by combining the jointly calibrated option-
implied parameters in the Hawkes processes from the market-traded options and the historical
covariances from the stock and market index historical returns when investors do not have access
to the exchange options prices. In this section, we estimate the historical betas and the option-
implied betas under the Hawkes jump-diffusion model and the Poisson jump-diffusion model using
market data, and examine the performance of the various estimates to predict the future beta.

6.1. Data

We obtained the options data from the OptionMetrics database for two types of financial market
environments: the financial crisis period from January 2008 to December 2009 and the relatively
steady period from January 2016 to December 2017. Following the literature (c.f. Chang et al.
2011; Samuel 2018), we eliminated options that violated the arbitrage bounds, have zero volume,
zero open interest, or missing quotes from the sample to ensure an accurate calculation of the
parameters. We likewise excluded all observations for which the ask price was below the bid price,
the bid price was equal to zero, or the bid-ask spread was below the minimum tick size. As in Buss
and Vilkov (2012) and Harris et al. (2019), we use the mid closing bid-ask prices as the option
prices and choose the options with the last expiration date within each month when there are
one or more options expiration dates. Following Harris et al. (2019), we estimate the historical
beta and the option-implied beta on a monthly basis. We use the daily returns on the stock and
market index in the historical period to estimate covariance and to calculate the historical beta.
We use the daily returns of the stock and market index in the forward-looking period of 7 weeks
to calculate the future realized beta as the forecast benchmark. The S&P 500 index (ticker symbol
SPX) serves as a proxy for the U.S. market. In addition, we use the treasury bill yield as a proxy
for the risk-free interest rate, which we obtain from the CRSP treasury database.

Since the 2008 financial crisis originated from the financial industry and has a greater clustered
impact on the financial industry than on the other industries, we choose eight stocks from the
financial industry: JP Morgan Chase (JPM), Bank of America (BAC), Citigroup (C), Wells Fargo
(WFC), Goldman Sachs (GS), Morgan Stanley (MS), U.S. Bancorp (USB), and Capital One (COF).
These companies are among the largest banking firms with the most actively traded derivatives in
the U.S. 1.

1TD Bank and PNC Financial Services are among the largest banks, but the option expiration dates for these two options are

very limited. Hence, we exclude these two financial companies in our empirical study.
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6.2. Model Calibration, Beta Calculation, and Prediction Evaluation

We jointly calibrate the parameters of option-implied beta using the vanilla option prices of the
stock and market index, except for the covariance by using the historical returns on the stock
and market index in the hybrid approach. More specifically, we calibrate the option model by
minimizing the sum of squared errors (SSE) for the implied volatilities of each model and the
traditional implied volatility across strike prices. The calibration objective function is

SSE =
∑

options

(IVM − IV R)2, M ∈ {H,P}.

where IV R is the traditional implied volatility, and IV H and IV P are the Hawkes model and
Poisson model implied volatility, respectively. Since the implied volatility corresponds to the option
price via the Black-Scholes-type model, we can derive the implied volatility from option price. For
a call option with strike price K and underlying asset price S1,t, which satisfies the dynamic in
Section 2, the value of the call option under the Hawkes jump-diffusion model is

Vt = S1,te
−q1(T−t) − 1

π

∫ ∞
0

Re[Γ(
1

2
+ iw,

1

2
− iw, t, T )]dw,

where

Γ(u1, u2, t, T ) =
1

u1u2
exp{

2∑
j=1

Γj(u1, u2, t, T ) + Γ3(u1, t, T )}

and 
Γ1(u1, u2, t, T ) = u1[logS1,t − q1(T − t)] + u2[logK − r(T − t)],
Γ2(u1, u2, t, T ) = −1

2u1u2σ
2
1(T − t),

Γ3(u1, t, T ) = A∗(u1, 0, t, T ) +B∗1(u1, 0, t, T )λ1,t.

If θi,j = 0, i, j ∈ {1, 2}, then the Hawkes model will degenerate to a Poisson model. We assume
that the market index and stock price dynamics are the same as those in Section 5.1, and that
q1 = q2 = 0. To evaluate the calibration performance, we use the mean absolute error (MAE),
defined as

MAEM =
1

#{options}
∑

options

∣∣IVM − IV R
∣∣ , M ∈ {H,P}

Clearly, the smaller the mean absolute error is, the better the calibration performance is. Following
French et al. (1983) and Harris et al. (2019), we assume that the covariance between the market
index and stock remain unchanged in the short term so that we can use the historical covariance
to replace the option-implied covariance. Let RM,hist and RX,hist be the historical returns, RM,fut

and RX,fut be the future returns, and σM , σX and σM,X be the option-implied volatilities and
covariance. Then, the implied correlation coefficient is

ρ =
σM,X

σMσX
=

Cov(RM,hist, RX,hist)

σMσX
=
n
∑
RM,histRX,hist −

∑
RM,hist

∑
RX,hist

n2σMσX
.

Using the daily returns in the historical period and the option-implied volatilities, we can estimate
the correlation coefficient, and finally, calculate the implied betas by Equation (29). Additionally,
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we calculate the historical beta βhist and future realized beta βfut as

βhist =
Cov(RM,hist, RX,hist)

Var(RM,hist)
=
n
∑
RM,histRX,hist −

∑
RM,hist

∑
RX,hist

n
∑
R2
M,hist − (

∑
RM,hist)2

,

βfut =
Cov(RM,fut, RX,fut)

Var(RM,fut)
=
n
∑
RM,futRX,fut −

∑
RM,fut

∑
RX,fut

n
∑
R2
M,fut − (

∑
RM,fut)2

.

Let βMimp be the implied beta under model M, M ∈ {H,P}. We can also use the MAE to
evaluate the prediction ability. We define the MAE of the prediction as

MAEhist =
1

#{months}
∑

months

|βhist − βfut|, MAEMimp =
1

#{months}
∑

months

|βMimp − βfut|.

The smaller the MAE is, the more accurate the prediction is. Since the option-implied betas
contain forward-looking information, we expect that the prediction ability of the option-implied
betas should be better than that of the historical beta.

6.3. Empirical Results

Using the option data of the S&P 500 index and the 8 stocks with different strike prices, we jointly
calibrate the option-implied betas in each month during the financial crisis and the steady period,
and under the Hawkes and the Poisson jump-diffusion models, respectively.

Table 3 reports the prediction performance of the different types of betas during the two sample
periods. It is clear that the prediction error of the implied beta under the Hawkes jump-diffusion
model is always the smallest, the implied beta under the Poisson model is the next accurate, and the
prediction errors of the historical betas are always larger than that of both implied betas, in either
sample period. First, this result shows that the implied beta is a better estimator than the historical
beta is, and the forward-looking information in option data reveals extra information about the
future beta. Second, since the Hawkes jump-diffusion model can capture the characteristic of self-
and cross-excitation, it more accurately describes the underlying asset dynamics and the jump
interaction between the two assets. Thus, the implied beta under the Hawkes model has a smaller
prediction error than that under the Poisson model. Third, in either the financial crisis period or
the steady period, if one stock has the largest prediction error for the historical beta, then the
prediction error of the implied beta also tend to be the largest, and vice versa. Since the larger
prediction error of the historical beta implies the existence of larger changes in the covariance or
volatilities, and under our hybrid approach for implied beta, a larger change in covariance will lead
to a larger error in estimating implied correlation coefficient, which in turn would lead to a larger
prediction error for the implied beta. Therefore, the complete option-implied betas from tradable
exchange options will potentially outperform those from the hybrid approach, since the tradable
exchange options will provide a better estimation of the correlation coefficients.

We further define the prediction improvement rate (PIR) of a beta estimate relative to another
as

PIR =
|MAE2 −MAE1|

MAE1
,

where MAEi, i = 1, 2 are the mean absolute errors with respect to the prediction of the two betas.
Table 3 has shown that option-implied beta has stronger predication power than the historical
beta in both periods. Panels A and B in Table 4 further reveal that the prediction performance
of the option-implied beta relative to the historical beta is even better during the financial crisis
period in comparison to the relatively steady period. This is intuitive since the forward-looking
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Table 3. The predicted MAEs of the historical beta and implied betas under the Hawkes model and Poisson model
for different stocks during two distinct time periods

Beta Period JPM BAC C WFC GS MS USB COF

βH
imp

2008-2009 0.4589 0.6408 0.5863 0.5806 0.3636 0.4335 0.6006 0.6553
2016-2017 0.4285 0.6417 0.5747 0.3890 0.5409 0.7257 0.3058 0.4346

βP
imp

2008-2009 0.5241 0.7064 0.6334 0.6327 0.4145 0.4710 0.6494 0.6985
2016-2017 0.4840 0.6670 0.6029 0.4064 0.5707 0.7402 0.3189 0.4594

βhist
2008-2009 0.5678 0.8771 0.6769 0.8277 0.4412 0.5238 0.6809 0.7579
2016-2017 0.5154 0.6790 0.6148 0.4271 0.5941 0.7736 0.3328 0.4728

Table 4. The PIRs (%) for different stocks during two distinct time periods

Panel A: PIR for Hawkes implied beta relative to historical beta

Period JPM BAC C WFC GS MS USB COF
2008-2009 19.18 26.94 13.38 29.85 17.59 17.24 11.79 13.54
2016-2017 16.86 5.49 6.52 8.92 8.95 6.19 8.11 8.08

Panel B: PIR for Poisson implied beta relative to historical beta

Period JPM BAC C WFC GS MS USB COF
2008-2009 7.70 19.46 6.43 23.56 6.05 10.08 4.63 7.84
2016-2017 6.09 1.77 1.94 4.85 3.94 4.32 4.18 2.83

Panel C: PIR for Hawkes implied beta relative to Poisson implied beta

Period JPM BAC C WFC GS MS USB COF
2008-2009 12.44 9.29 7.44 8.23 12.28 7.96 7.51 6.18
2016-2017 11.47 3.79 4.68 4.28 5.22 1.96 4.11 5.40

information tends to have superior predictive power over the historical information especially when
the market is more volatile (c.f. French et al. 1983; Corrado and Su 1997; Chang et al. 2011). In
addition, Panel C illustrates that, the prediction performance of the Hawkes implied beta relative
to the Poisson implied beta is also much better in the financial crisis period than in the relatively
steady period. It is consistent with the intuition that during a financial crisis, more significant jump
clustering and jump spillover in stock prices will exist, and hence the option-implied beta of the
Hawkes jump-diffusion model, which captures such clustered jump characteristics, will have better
performance predicting the future beta in the financial crisis1. Given its importance for predicting
the future beta, especially during a financial crisis period, the superior prediction ability of the
implied beta under the Hawkes jump-diffusion model will enable investors to manage portfolios
and systematic risk more effectively.

7. Conclusion

Significant market movements or a crisis typically occur with clustered jumps and often have
spillover effects on other assets or markets as well. The occurrence of a jump in an equity
price/return will increase the possibility, frequency, and magnitude of other equities due to dif-
ferent scales of dependence.

In this study, we extend the existing literature on exchange options by using a mutually exciting
Hawkes jump-diffusion process to model the dynamics of two underlying assets. We develop a
method to calculate the time-conditional joint characteristic function for the Hawkes jump-diffusion

1We also account for some other industries’ representative companies and our results are robust. To conserve space, the results

are not tabulated and are available upon request.
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process, from which we derive the specific pricing formula for the exchange option using a Fourier
transform technique, and obtain the optimal hedging portfolio for the exchange option under
the mean-variance criterion. We also present the Greeks and some other partial derivatives of
the exchange option price under clustered jumps. Additionally, we perform a sensitivity analysis
for the Hawkes-type jumps using numerical examples. We show the effects of the corresponding
parameters in the two underlying assets on exchange option prices and how the parameters affect
the exchange option price by contributing to the fluctuations of the assets. Moreover, we discuss the
implications of incorporating clustered jumps in the exchange option-implied beta and compare the
implied betas under different models. Using the proposed hybrid approach, we empirically shows
that the prediction performance of the Hawkes implied beta are superior in comparison to the
alternative estimates, especially during the financial crisis period. Our research provides insightful
information for investors, risk managers, and researchers, and shows that exchange option models
with clustered jumps can potentially provide substantial information.

In addition to pricing European-style exchange options with clustered price discontinuities, the
proposed framework can be further extended to American-style exchange options or related deriva-
tives, such as spread options, using numerical approaches. Future work could help extend the
directional jumps techniques to further improve the forecasting capability of the implied beta and
the dynamic hedging performance.
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