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1 Introduction
1.1 Overview
The Simple Biosphere Model Version 4 (SiB4) is a mechanistic, prognostic land surface model
(LSM) that integrates heterogeneous land cover, environmentally responsive prognostic phe-
nology, dynamic carbon allocation, and cascading carbon pools from live biomass to surface
litter to soil organic matter (Haynes et al., 2019a; Baker et al., 2013; Lokupitiya et al., 2009;
Sellers et al., 1996a). By combining biogeochemical, biophysical, and phenological processes,
SiB4 predicts vegetation and soil moisture states, land surface energy and water budgets, and
the terrestrial carbon cycle. Rather than relying on satellite data, SiB4 fully simulates the
terrestrial carbon cycle by using the carbon fluxes to determine the above and belowground
biomass, which in turn feeds back to impact carbon assimilation and respiration.

Every timestep (currently 10-minutes), SiB4 computes the terrestrial albedo, radiation
budget, hydrological cycle, layered temperatures, and soil moisture, as well as the resulting
energy exchanges, moisture fluxes, carbon fluxes, and carbon pool transfers. Photosynthe-
sis depends directly on environmental factors (humidity, moisture, and temperature) and
aboveground biomass; and carbon uptake is determined using enzyme kinetics (Farquhar et
al., 1980) and stomatal physiology (Collatz et al., 1991, 1992). Carbon release occurs from
autotrophic and heterotrophic respiration. Biomass growth and maintenance contribute to
autotrophic respiration, and heterotrophic respiration depends on moisture, temperature,
and the amount of dead plant material in the surface and soil carbon pools.

To calculate the carbon pools, the net assimilated carbon is allocated to the live pools.
The phenology stage, combined with temperature and moisture environmental adjustments,
dictates the fraction of carbon allocated to each live carbon pool. Carbon is transferred
between the pools using totals of sub-hourly (timestep) amounts that vary with assimilation
rate, day length, moisture, temperature, and pool size. Once the pools are updated, the
land surface state and relative properties are revised; and the new values are used for assim-
ilation and respiration, completing the carbon cycle and providing self-consistent predicted
vegetation states, soil hydrology, carbon pools, and land-atmosphere exchanges.

SiB4 has been evaluated around the globe using a variety of metrics, including carbon
and energy fluxes from the Fluxnet network, satellite solar-induced fluorescence (SIF) and
soil moisture, and both remotely-sensed and site-level leaf area index (LAI) and biomass
(Cheeseman et al., 2018; Curry et al., 2016; Haynes et al., 2019b; Smith et al., 2018). SiB4
is found to improve model predictions over grasslands, and the start of the growing season
is well-captured across all vegetation types. In these studies, SiB4 is shown to have too
long of a growing season compared to observations, with senescence being delayed by several
weeks in some locations. In response to these findings, new respiration and transfer methods
described in this document are expected to improve senescence predictions.
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1.2 History
Over the past three decades, SiB has undergone substantial developments and improvements.
SiB began as a simple but realistic biosphere model developed for calculating the transfer of
energy, mass, and momentum between the land vegetation and the atmosphere (Sellers et
al., 1986). The original land-surface parameterization scheme utilized two distinct vegeta-
tion layers with prescribed physical and physiological properties; and the model had seven
prognostic physical-state variables: two temperatures, two interception water stores, and
three soil moisture stores. The framework of SiB is shown in Figure 1.1, which illustrates
the transfer pathways for latent and sensible heat flux. This version was coupled to general
circulation models to improve their lower boundary conditions (Sato et al., 1989a).

Figure 1.1: Framework of the Simple Biosphere Model (SiB) (Sellers et al., 1986).
The transfer pathways for latent and sensible heat flux are shown on the left- and right-hand side

of the diagram, respectively. Radiation and intercepted water treatment is omitted for clarity.

The first significant modification to SiB was to add ecosystem metabolism and satellite
data to produce a more realistic model of photosynthesis and canopy conductance (SiB2)
(Sellers et al., 1996a; Sellers et al, 1996b). The SiB2 structure is shown in Figure 1.2. To
provide a consistent description of energy exchange, evapotranspiration, and carbon exchange
by plants, SiB uses eco-physiological functionality to utilize photosynthesis and plant water
relationships (Sellers et al., 1997). The prediction of photosynthetic carbon assimilation uses
enzyme kinetics relationships developed by Farquhar et al. (1980). The vegetation behavior is
coupled to the surface energy budget via predicted stomatal conductance using the Ball-Berry
equation (Collatz et al., 1991, 1992; Randall et al., 1996; Sellers et al., 1996a). The leaf-level
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predictions are integrated to represent vegetation canopies using satellite data (Sellers et
al, 1996b). Remotely sensed vegetation indices specify time-varying phenological properties,
and these data are converted to leaf physiological properties utilized by SiB from robust
theoretical relationships (Sellers et al., 1992). The SiB2 carbon fluxes are annually balanced
so that the annual soil respiration equals the annual carbon uptake from photosynthesis,
with temporal variability in soil respiration arising from respiration rate dependencies on
both temperature and moisture (Denning et al., 1996a; Raich & Nadelhoffer, 1989).

Figure 1.2: SiB2 (Sellers et al., 1996a).

Building on SiB2, a number of modifications were added to create SiB3. For more realistic
flux calculations, the surface energy budget was revised to include prognostic temperature,
moisture, and CO2 in the canopy air space (CAS) (Vidale & Stöckli, 2005). Model hydrology
was improved by adopting the Community Land Model soil/snow sub-model, where soil
temperature and moisture are calculated for ten co-located soil layers and up to five snow
layers (Dai et al., 2003). All snow and soil layers have explicit treatment of liquid water
and ice, and the root profile in the soil is dependent upon vegetation type and exponentially
decreases from the surface down to the bottom soil layer (Jackson et al., 1996). Finally, Suits
et al. (2005) added the capability to model carbon isotope discrimination, biogeochemical
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fractionation, and the recycling of stable carbon isotopes. An updated depiction of SiB3 is
shown in Figure 1.3.

Figure 1.3: SiB3.

For SiB3, three important changes were made to improve the photosynthesis. First, to
simulate a more realistic response of photosynthesis to drought, the soil water stress was
modified to link the water stress to an effective root density (Baker et al., 2008, 2013).
The transpirational load shifting to deep layers when the surface layers dry out is simu-
lated by directly calculating the stress for each soil layer using volumetric water content
scaled between field capacity and wilting point. The total water stress is then calculated by
weighting the stress at each layer by the corresponding rooting fraction. Second, to include
a photosynthetic response to frost, the temperature stress was modified to include a simple
approximation of frost stress (Baker, 2011). And third, respiration was partitioned into au-
totrophic and heterotrophic components to help improve the annual cycle of carbon uptake
and release (Schaefer et al., 2002).

As SiB developed, it branched out to different versions that each added new modeling
capabilities to address concerns and uncertainties in the carbon cycle. The first concern,
and one of the most variable aspects of the carbon cycle, is the timing of carbon uptake
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and release. Plant physiological processes control vegetation phenology, and these processes
depend on surface climatic conditions such as temperature, moisture and light (Larcher,
2002; Scheifinger et al., 2002). Seasonal and interannual climatic variations influence the
timing of plant development, which in turn influences the temporal variability in ecosystem
productivity (Baldocchi & Wilson, 2001; Richardson et al., 2010). Prognostic phenology
models, which predict the timing of phenological events, can be used to investigate the
relationship between climate variables, plant development, and carbon fluxes, in addition
to providing continuous estimates of the biophysical state (Jolly et al., 2005; Stöckli et al.,
2008).

To address this concern, a branch of SiB added the capability to predict vegetation
phenology and leaf state, rather than relying on satellite products (SiBPP) (Stöckli et al.,
2008, 2011). SiBPP predicts the growing season timing, as well as the leaf area index
(LAI), using a combination of three climate and weather based factors: temperature, light
and water vapor. Optimal parameters for the growth-determinant factors were obtained
by using a data assimilation framework to perform a reanalysis of remotely sensed global
vegetation phenology. SiBPP removes the dependency on satellite data and is a first step to
mitigating some deficiencies of phenological models, providing a useful tool in understanding
the processes controlling phenology.

Another highly variable aspect of the terrestrial carbon cycle is the magnitude of the
fluxes, which is controlled not only by biological and physical processes, but also by the
plant biomass and carbon pools. The assimilation of carbon by photosynthesis is directly
related to the size of the leaf pool, and the release of carbon by respiration is directly related
to the magnitudes of the carbon pools. Without including carbon pools, the magnitude of
the leaf pool is typically prescribed from vegetation indices, such as the LAI or normalized
vegetation difference index (NDVI) (Huntzinger et al., 2012). For respiration, if the carbon
pools are not explicitly calculated, then models typically annually balance the carbon fluxes,
making the assumption that on an annual basis the carbon released from respiration equals
the carbon taken up during photosynthesis (Denning et al., 1996a). Modeling carbon pools
is a key requirement for predicting carbon sources and sinks, understanding plant carbon
allocation, and investigating the impacts of carbon pool changes due to disturbances such
as herbivory, land cover change and fires (Schaefer et al., 2008; Randerson et al., 1996).

To simulate carbon pools in addition to carbon fluxes, a version of SiB has been coupled
to the biogeochemistry from the Carnegie-Ames-Stanford Approach (CASA) model (SiB-
CASA) (Schaefer et al., 2008, 2009)). SiB-CASA contains a scheme for carbon allocation,
transformation and decomposition based on CASA (Potter et al., 1993; Randerson et al.,
1996). Carbon from photosynthesis is allocated to live carbon pools (storage, leaves, stems,
and roots), with the leaf pool being prognosed from LAI derived from remotely sensed
Normalized Difference Vegetation Index (NDVI). Once in live pools, the carbon then flows
through a series of dead pools (surface litter, woody debris, root litter, soil organic matter).
Throughout this carbon sequence, microbes are interacting with the carbon to release carbon
back into the atmosphere via heterotrophic respiration. The biophysical processes on short
time timescales from SiB, combined with the biogeochemical processes on longer timeframes
from CASA, make SiB-CASA suitable for a variety of research applications to study processes
affecting carbon storage and fluxes.
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In addition to varying temporally, carbon and energy fluxes and biomass pools vary
spatially from different vegetation coverage. Croplands cover a substantial fraction of the
land surface area and are significant contributors to spatial heterogeneity because they are
managed ecosystems with unique dynamics, characterized by high net primary productivity
during a short growing season. To better estimate the time-varying exchanges of carbon,
water, and energy for croplands, a version of SiB contains a crop phenology module to
specifically simulate corn, soybeans and wheat (SiBcrop) (Lokupitiya et al., 2009). SiBcrop
predicts crop phenology using a carbon allocation scheme based on growing degree-days
(GDD). In addition to simulating land-atmosphere exchanges for these species, SiBcrop also
predicts crop biomass and yield. Modeling specific crops better predicts the onset and end
of the growing season, carbon and energy exchanges, and biomass over croplands (Corbin et
al., 2010b; Lokupitiya et al., 2009).

Original LSMs have difficulty capturing spatial heterogeneity: they typically have coarse
spatial resolution and a single vegetation classification applying to the entire grid cell. The
land cover type of each grid cell is chosen from a limited number of vegetation biomes, which
include a variety of different species that coexist. As models increase in complexity and shift
from global scale to regional and local applications, the use of a single biome over a coarse
grid cell becomes limiting. To include land cover heterogeneity, LSMs include surface tiling
or patches, offering flexibility in the representation of heterogeneous land surface processes
(Avissar & Pielke, 1989; Essery et al., 2002). To capture land cover heterogeneity, a version
of SiB coupled to a mesoscale model implemented patches to represent multiple land use
classes within a single grid cell (SiB-RAMS) (Corbin et al., 2008; Wang et al., 2007).

To compile the different versions of SiB, incorporate the latest developments in land
surface modeling, and innovate a new method for predicting phenology and the terrestrial
carbon cycle, the latest version of SiB (SiB4) consistently combines carbon fluxes and carbon
pools in a predictive framework. The new features in SiB4 can be summarized as follows:

(i) Using plant functional types (PFTs), (Section 2.2.1),

(ii) Incorporating carbon pools (Section 2.2.3),

(iii) Using patches to represent heterogeneity, (Section 2.2.5),

(iv) Introducing prognostic phenology,
– Dynamic seasonal stages (non-crop PFTs, Section 8)
– Defined seasonal stages (crop PFTs, Section 9)

(viii) Including disturbance,
– Fire (Section 10.1)
– Grazing (Section 10.2)

(v) Adding variable carbon pool allocation (Section 11.1),

(vii) Including new autotrophic respiration processes (Section 11.2),

(vi) Adding litterfall mechanisms (Section 11.3.2), and

(ix) Closing the terrestrial carbon cycle (Section 12).
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With these updates, SiB4 uses a single mathematical framework to predict self-consistent
land-atmosphere exchanges of carbon, water, energy, radiation, and momentum; carbon stor-
age in cascading pools of biomass and organic matter; water storage in snow and soil column
layers; and vegetation properties such as albedo, LAI, and fraction of photosynthetically
active radiation (FPAR). An overview of SiB4 is shown in Figure 1.4. While still includ-
ing the biogeochemical processes shown in Figure 1.3, SiB4 predicts the terrestrial carbon
cycle by unifyied fluxes, interactive carbon pools, and prognostic phenology, removing the
dependence on remotely-sensed vegetation states. By using a single set of equations to rep-
resent ecosystem processes rather than specifying specific vegetation properties, ecosystem
characteristics emerge in SiB4, such as co-located vegetation and precipitation gradients and
variable root to shoot ratios.
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Soil Litter
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CO2 Release
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Figure 1.4: SiB4 (Haynes et al., 2019a).
White boxes show the land-atmosphere exchanges of carbon via photosynthesis and respiration.

Green boxes show the live carbon pools, tan boxes show the dead carbon pools, and black lines

show the flow of carbon. Green lines show the release of carbon into the atmosphere via

autotrophic respiration, and burgundy lines show the carbon release from heterotrophic

respiration. Yellow boxes show the predominant influences on the carbon fluxes and pools.
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1.3 Applications
Since its creation, several different versions of SiB have been developed, and it has been
used in a variety of studies across a wide range of spatial and temporal scales. SiB has been
implemented into General Circulation Models to predict land surface boundary conditions
(Sato et al., 1989a; Randall et al., 1996). In addition to providing surface properties and
energy fluxes, SiB has been updated to predict carbon fluxes that can be used to generate
atmospheric CO2 concentrations (Denning et al., 1996a,b); and these resulting atmospheric
CO2 concentrations can be analyzed to reveal processes driving atmospheric CO2 distribu-
tions (Corbin et al., 2008; Denning et al., 1999; Parazoo et al., 2008, 2012). Additionally,
global carbon fluxes from SiB have been used as input data for atmospheric inversions aimed
at locating and quantifying carbon sources and sinks and improving global carbon budget
estimates (Law et al., 2008; Lokupitiya et al., 2008; Patra et al., 2008).

In addition to simulating carbon and energy fluxes, SiB has the capability to simulate
other carbon-related constituents that can be used to aid our understanding of biophysical
processes. With the capability of simulating carbon isotopes, SiB has been used in global
fractionation studies to investigate terrestrial carbon exchange (Suits et al., 2005; Ballantyne
et al., 2011; van der Velde et al., 2014). With the capability of simulating carbonyl sulfide
(OCS), SiB has been used in global studies to investigate constraints on differential responses
of photosynthesis and respiration to environmental forcing (Berry et al., 2013; Glatthor et al.,
2015; Kuai et al., 2015; Wang et al., 2016). Finally, with the capability of simulating solar-
induced chlorophyll fluorescence (SIF), SiB has been used to investigate the relationship of
SIF to gross primary production (GPP) and the utility of SIF to constrain GPP (Baker et
al., 2014; Cheeseman et al., 2018).

Scaling down to regional studies, SiB has been used for studying land-atmosphere in-
teractions for a variety of different vegetation types across a wide range of climates. On
continental scales, SiB has been used to investigate photosynthesis across North America
and Africa (Baker et al., 2010; Williams et al., 2008; Williams & Hanan, 2011). In the trop-
ics, studies have used SiB to investigate tropical forests across a range of hydrological regimes
throughout Amazonia (Baker et al., 2008, 2013; Harper et al., 2014). In temperate regions,
studies focusing on grasslands and crops across central North America have used SiB to
investigate land-atmosphere exchanges of energy and carbon (Hanan et al., 2005; Lokupitiya
et al., 2016). And in high latitudes, SiB has been used to study carbon storage and fluxes
in permafrost regions (Schaefer et al., 2011; Sulman et al., 2012; Schaefer & Jafarov, 2016).

In addition to being used offline, SiB has also been used in combination with atmospheric
transport models. SiB has been coupled to a mesoscale model in order to focus on diurnal
and synoptic-scale land-atmosphere interactions, atmospheric circulations, and resulting at-
mospheric CO2 concentrations (Denning et al., 2003; Lu et al., 2005; Nicholls et al., 2003;
Wang et al., 2007). A regional scale atmosphere-ecosystem model coupled to SiB has also
been used to evaluate the space and time impacts on U.S. atmospheric CO2 concentrations
from fossil fuel emissions (Corbin et al., 2010a) and from crops (Corbin et al., 2010b). Fi-
nally, SiB has been utilized in conjunction with regional inverse models to obtain regional
carbon budgets across the North American mid-continent (Lauvaux et al., 2012; Ogle et al.,
2015; Schuh et al., 2013), and in studies investigating North American carbon sources and
sinks (Butler et al., 2010; Schuh et al., 2010; Zupanski et al., 2007).
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Figure 1.5: Future Applications.
A) Studies across timescales. B) Studies across spatial scales.

Combining new innovations with the established photosynthesis, radiation, and hydrol-
ogy processes, SiB4 is a tool that can be used in a wide variety of studies. Unifying carbon
fluxes and pools via phenology not only closes the terrestrial carbon cycle, but also yields
predictions that span multiple time scales. Utilizing biogeochemical mechanisms to capture
sub-hourly vegetation reactions to weather, phenological mechanisms to capture seasonal be-
havior, and climatological mechanisms to capture long-term vegetation responses to climate,
SiB4 predicts ecosystem behavior across time scales from minutes to centuries (Figure 1.5A).
Being a global model that reacts to high frequency variability, SiB4 has the capability to
respond to weather and climate anomalies, and thus can be used in studies of the impacts
of heat waves, freezing spells, and short-term drought on ecosystems around the world. By
using prognostic phenology, SiB4 can be included in growing season length studies to inves-
tigate the impact of earlier springs and delayed autumns on ecosystems, including changes
in land-atmosphere fluxes, live biomass, and carbon pools. Finally, SiB4 can be used to
investigate anomalies that persist through seasons or for years, such as long-term drought.

SiB4 has the capability of simulating emergent ecosystem behaviors in both time and
space because it uses a single mechanistic framework to capture overarching biological strate-
gies held in common as vegetation responds to changes in the environment. Spatial gradients
emerge as vegetation responds to shifts in climate, and SiB4 can be used as a tool to study
these emergent properties (Figure 1.5B). For example, with a single set of parameters, SiB4
predicts C4 grasslands ranging from desert to tall-grass prairies to productive tropical pas-
tures; and evaluating their response to varying climatic conditions can yield insights on
ecosystem behaviors and processes. Additionally, in SiB4 vegetation characteristics emerge
from relationships developed across climates, and analyzing these properties can lead to fur-
ther knowledge and understanding of ecosystem dynamics. For example, the root-shoot ratio
in SiB4 is not prescribed, but instead emerges as a long-term property from daily chang-
ing carbon allocation. By viewing root-shoot ratios as emergent properties from different
patterns in carbon allocation, evaluating this metric yields insight into allocation patterns
prevalent not only for different vegetation types and for different regions, but also for ecosys-
tem responses to climate and perturbations in time or space.
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2 Model Structure
2.1 Soil and Snow
2.1.1 Structure

SiB4 uses ten soil layers and up to five snow layers. The number of snow layers (nsl) is
variable. All soil column variables extend from the deepest layer (layer 10) to the top layer
(layer 1), and if present the snow variables extend from the level closest to the ground (layer
0) to the top layer (layer -5). The soil layers are calculated at the beginning of a simulation.
The depth (Nodez) of soil layer i is given by

Nodez(i) = fs
(
e0.5(i−0.5) − 1

)
, (1)

where i varies from 1 to nsoil and fs is a soil layer vertical scaling factor currently set to
0.073. The thickness (Dz) of each layer i is given by

Dzi =


0.5
(
Nodez(1) + Nodez(2)

)
i=1

0.5
(
Nodez(i+1) + Nodez(i-1)

)
i=2, ..., nsoil-1

Nodez(nsoil) − Nodez(nsoil-1) i = nsoil

(2)

And the interface depth (Layerz) for any layer i is given by

Layerz(i) =

{
0.5(Nodez(i) + Nodez(i+1)) i=1, ..., nsoil-1

Nodez(i) + 0.5(Dznsoil) i=nsoil
(3)

The soil structure information for SiB4 is shown in Table 2.1, and the soil column structure
variables are listed in Table B1.

Although the soil layers are set at the start of a simulation, the depth of the snow layers
can change, thus Dz is a prognostic variable whose calculation is discussed in Section 5.
Once the thickness of the snow layers is determined, the node depth and interface depth of
snow layer i are given by

Nodez(i) = Layerz(i) − 0.5Dzi (4)

Layerz(i−1) = Nodez(i) − 0.5Dzi (5)

This calculation is performed for the current number of snow layers given by nsl.
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Level Layerz (m) Nodez (m) Dz (m)

1 0.05114 0.02073 0.05114

2 0.13167 0.08154 0.08053

3 0.26444 0.18180 0.13277

4 0.48335 0.34709 0.21890

5 0.84426 0.61960 0.36091

6 1.43930 1.06891 0.59505

7 2.42037 1.80969 0.98106

8 4.03787 3.03104 1.61750

9 6.70467 5.04470 2.66681

10 10.0246 8.36465 3.31996

Table 2.1: Soil Layer Information.

2.1.2 Soil Properties

Soil sand and clay fractions, along with longwave and shortwave reflectivity, are required
input. This information is specified per grid cell and does not vary with depth. Upon the
start of a simulation, SiB4 calculates basic soil properties using relationships from Clapp &
Hornberger (1978), Cosby et al. (1984), and Lawrence et al. (2008). Since these equations
use both sand/clay fractions and percentages, first temporary variables save the soil texture
variables as percentages, such that ClayP = 100 · ClayFrac and SandP = 100 · SandFrac.
Using these, the calculations for the soil properties are provided below, and these variables
are listed in Table B2.

Poros = 0.489− 0.00126SandP (6)

BDDry = 2700(1− Poros) (7)

KSat =
0.0070556 · 10(−0.884+0.0153SandP )

1000.
(8)

CSolid =
2.128SandFrac + 2.385ClayFrac

SandFrac + ClayFrac
· 106 (9)

TKDry =
0.135BDDry + 64.7

2700.− 0.947BDDry

(10)

TKMineral =

(
8.8SandFrac + 2.92ClayFrac

SandFrac + ClayFrac

)(1−Poros)

(11)

TKSat = TKMineral · 0.57Poros (12)
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Bee = 2.91 + 0.159ClayP (13)

PHSat =
−10 · 10(1.88−0.0131SandP )

1000.
(14)

FC = Poros

(
−1.53061

PHSat

) −1
Bee

(15)

WP = Poros

(
−153.061

PHSat

) −1
Bee

(16)

WOpt = 100
(
−0.08Clay2

Frac + 0.22ClayFrac + 0.59
)

(17)

WSat = 0.25ClayFrac + 0.5 (18)

Zm = −2Clay3
Frac − 0.4491Clay2

Frac + 0.2101ClayFrac + 0.3478 (19)

WExp =

(
WOpt

100

)Zm

(20)

2.2 Vegetation
2.2.1 Plant Functional Types

Biomes represent biotic communities that are characterized by the prevailing climate, rather
than by vegetation behavior or ecological functionality; thus, they are arbitrary products of
classification rather than natural units with clearly defined and related mechanisms (Whit-
taker, 1956; Bonan et al., 2002). Since biomes represent communities rather than processes,
representing vegetation as biomes becomes inconsistent between the model resolution and
the plant level with decreasing spatial resolutions. An alternative method commonly used
to classify land surface vegetation is to use plant functional types (PFTs), which group
plants according to their function and physical, physiological, and phenological characteris-
tics. Using PFTs rather than biome classifications is useful in LSMs because they reduce the
complexity of species diversity and instead utilize leaf-level eco-physiological relationships
(Wullschleger et al., 2014).

SiB4’s PFTs (Table 2.2) group natural vegetation by plant size (tree, shrub, or grass),
by leaf shape (needleleaf or broadleaf), and by foliage longevity (evergreen or deciduous).
Since tundra environments are known to have difficult and unique growing conditions, both
shrubs and grasses have been separated by climate. SiB4 includes a modified version of the
crop phenology model developed by Lokupitiya et al. (2009), and thus has maize, soybeans
and winter wheat.

Each of the PFTs belongs to one of six groups: barren, needleleaf forest, broadleaf forest,
shrub, grass, or crop. Combining PFTs together into groups with similar leaf type and
structure provides a useful reference for PFTs with similar characteristics that share group-
specific processes. Each PFT also belongs to one of four types: bare ground, evergreen,
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Ref. PFT Name Abbr. Type Group

1 Desert and Bare Ground DBG 1 1

2 Evergreen Needleleaf Forest ENF 2 2

4 Deciduous Needleleaf Forest DNF 3 2

5 Evergreen Broadleaf Forest EBF 2 3

8 Deciduous Broadleaf Forest DBF 3 3

11 Shrubs (Non-Tundra) SHB 3 4

12 Tundra Shrubs SHA 3 4

13 Tundra Grassland C3A 3 5

14 C3 Grassland C3G 3 5

15 C4 Grassland C4G 3 5

17 C3 Generic Crop C3C 4 6

18 C4 Generic Crop C4C 4 6

20 Maize MZE 4 6

22 Soybeans SOY 4 6

24 Winter Wheat WWT 4 6

Table 2.2: Plant Functional Types (PFTs).

deciduous, or crop. These types are based on leaf persistence, foliar phenological patterns,
and seasonal behavior, and their values are used as references for phenological processes that
are type-specific.

2.2.2 Root Profiles

The root profile in the soil exponentially decreases from the surface down to the bottom soil
layer. The root fraction (RootF ) in each soil layer depends on the plant function type, such
that

RootTot =
(1− e−KRoot·Layerz(nsoil))

KRoot

(21)

RootF =
(e−KRoot·Z2 − e−KRoot·Z1)

(KRoot ·RootTot)
(22)

where RootTot is the total roots in the soil column and KRoot is a PFT-dependent root density
extinction coefficient. In addition to specifying the root extinction, SiB4 has an additional
parameter to specify the maximum rooting depth (RootD). There will not be any roots below
this specified depth, and the rooting fractions will be redistributed to move any necessary
roots. Sample rooting fractions for the EBF and C4G PFTs are shown in Table 2.3.
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Level Nodez (m) RootF EBF RootF C4G

1 0.02073 0.08326 0.24516

2 0.08154 0.11729 0.27011

3 0.18180 0.16153 0.25119

4 0.34709 0.19823 0.16347

5 0.61960 0.20163 0.06044

6 1.06891 0.15149 0.00926

7 1.80969 0.07024 0.00036

8 3.03104 0.01529 0.00000

9 5.04470 0.00103 0.00000

10 8.36465 0.00001 0.00000

Table 2.3: Sample Root Profiles.

2.2.3 Carbon Pools

For carbon storage, SiB4 uses eleven pools, which are updated daily at midnight local time
(LST) and listed in Table 2.4. Similar to SiB-CASA, the flow of carbon between the pools
in SiB4 is based on a system of first-order, linear differential equations (Schaefer et al., 2008,
2009). There are five live carbon pools in SiB4 (nlpool = 5), three of which are aboveground
and compose the plant canopy (ncpool = 3). The leaf pool (leaf) contains leafy biomass. The
stem/wood pool (stwd) holds the structural aboveground biomass: for grasses and crops this
represents stems, while for forest and shrub PFTs this is wood. The product pool (prod)
contains seed and flower carbon for non-crop PFTs and the yield for crops.

Number Carbon Pool Abbr. Type Location Levels

1 Leaf leaf Live Canopy 1

2 Fine Root froot Live Soil 10

3 Coarse Root croot Live Soil 10

4 Stem/Wood stwd Live Canopy 1

5 Product prod Live Canopy 1

6 Coarse Dead Biomass cdb Dead Surface 1

7 Metabolic Litter metl Dead Surface 1

8 Structural Litter strl Dead Surface 1

9 Soil Litter slit Dead Soil 10

10 Soil Slow slow Dead Soil 10

11 Soil Armored arm Dead Soil 10

Table 2.4: Carbon Pools.
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The roots are broken into two separate pools: fine (froot) and coarse (croot). The fine
roots take up water and nutrients and are shorter lived, while the coarse roots have a woody
structure with a longer turnover time. Using these definitions, forest and shrub PFTs have
both fine and coarse roots; however, grasses and crops only have fine roots. Both fine and
coarse roots have the same distributions throughout the soil column.

While many LSMs with carbon pools explicitly include live storage carbon (e.g. SiB-
CASA, CLM), SiB4 does not separate out the storage of nonstructural carbohydrates neces-
sary for plant maintenance and growth. The lack of storage carbon measurements, the high
variability of pool sizes between species (Poorter et al., 2015), and the uncertainty of carbon
allocation to carbon pools (De Kauwe et al., 2014; Malhi et al., 2011) justifies a simpler
approach. The carbon required for the maintenance of all live pools is removed directly from
the pool itself. During the growing season, the carbon for growth comes directly from the
carbon taken up during photosynthesis. For deciduous and grass PFTs, the carbon necessary
for leaf-out is stored in the minimal leaf pool.

The non-living carbon in SiB4 is divided into six pools (ndpool = 6), three at the surface
and three in the soil. The surface pools consist of two litter pools: a metabolic pool (metl)
with a fast soil turnover rate and a more slowly decaying pool (strl). There is also an
aboveground pool for coarse dead biomass (cdb). For grass PFTs, this pool stores the
carbon in standing dead grass; for forests and shrubs, this pool represents the coarse woody
debris, which stores the carbon in non-living wood. Belowground there are three non-living
carbon pools: a soil litter pool (slit) to store the non-living roots and quickly over-turning
soil carbon, a slow soil carbon pool (slow) to contain humus and other recalcitrant organic
material, and an armored pool (arm) containing organic material bound to clay with long
turnover times. Once in the soil, there is recycling of carbon amongst the soil carbon pools.

2.2.4 Vegetation Properties

SiB4 calculates a variety of vegetation properties that are used for hydrology, phenology,
photosynthesis, and radiation. These properties are updated daily at midnight LST and are
listed in Table B3.

The current leaf state is represented by the leaf area index (LAI), which is calculated
from the canopy pools using a specific leaf area (SLA), such that

LAI = PoolLAI · SLA (23)

PoolLAI =

 Leaf non-grass PFTs

Leaf + Stwd + Prod grass PFTs
(24)

where SLA is a parameter set to global-mean values from PFT-specific studies. In calculating
LAI, for grasslands and crops, all three canopy pools are summed, while for forest and shrub
PFTs the LAI represents only the leaf pool. The LAI is bounded such that

LAIMin ≤ LAI (25)
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where LAIMin is a parameter indicating the required minimal storage of carbon in the leaf
pool for seasonal regrowth.

2.2.5 Land Cover Heterogeneity

To include land cover heterogeneity, SiB4 uses tiles of up to ten different PFTs per site
or grid cell, each with separate areal fractions. The areal coverage of PFTs is prescribed
from satellite imagery. The weather driver data is defined per grid cell, whereas all soil and
vegetation variables are saved per PFT tile. Figure 2.1 shows a pictoral representation of
this setup in SiB4.

SiB4 Land Cover Heterogeneity

Grid Cell
Weather driving data

Plant Functional Type (PFT)

10

Up to 10 PFTs
(land unit tiles)

per grid cell

Figure 2.1: PFT Tiles.

2.3 Input Variables
SiB4 has five types of input variables: driver data, fire emissions, structural properties,
parameters, and constants. These are all listed in Appendix A at the end of this document
(Tables A1 - A15). Basic definitions for input variables are as follows:
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1. Meteorological Drivers (Table A1).

2. Fire Emissions (Table A2).

3. Structural Properties (Table A3).

4. Aerodynamic Parameters (Table A4).

5. Physiological Parameters (Table A5).

6. Dynamic Phenology Parameters (Table A6).

7. Defined Phenology Parameters (Table A7).

8. Fire Parameters (Table A8).

9. Grazing Parameters (Table A9).

10. Allocation Parameters (Table A10).

11. Autotrophic Respiration Parameters (Table A11).

12. Senescence Parameters (Table A12).

13. Heterotrophic Respiration Parameters (Table A13).

14. Physical Constants (Table A14).

15. Specified Constants (Table A15).

The meteorological drivers and fire emissions change in time and space, and thus grid
cell values are read as often as the temporal resolution of the data source, which is typically
hourly. Every model timestep these drivers and emissions are interpolated values between
the provided times. The structural properties, parameters, and constants are constant in
time, thus are only read in at the beginning of a simulation. The structural properties and
parameters are both defined at the PFT level; however, the structural properties vary in
space, while the parameters are single values per PFT applied globally. The constants are
single values that do not change over time.

To be as versatile as possible, nearly every number used in any SiB4 relationship is a
parameter, be it a driver, PFT-varying parameter, or a specified constant. While SiB4 in-
cludes numerous parameters, they are primarily used to represent mechanisms, and all of
them can be grouped either into physical quantities or values required to define relationships.
For example, a linear bounded relationship uses five parameters. These parameters should
not be thought of as individual values that must be specified, but instead as groups of num-
bers that quantify a relationship. The parameters that represent biogeochemical processes,
such as carbon allocation, are set from global mean values published from field campaigns
and in situ studies. The parameters that use previously published mechanisms, such as the
Q10 temperature-respiration response, use literature values. Finally, the parameters that
use relationships are set by performing sensitivity studies for each PFT and evaluating the
fluxes against eddy-covariance towers and the LAI to remotely-sensed values. Since SiB4 is
designed to allow the parameters to change in recognition that global mean values may not
be optimal for regional or site-specific studies, parameter ranges are provided.
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2.4 Prognostic Variables and Governing Equations
SiB4 has prognostic equations for four vertical levels: canopy, canopy air space (CAS),
ground surface, and soil/snow. The canopy and water interception variables are described
by Sellers et al. (1996a). SiB4 uses a prognostic canopy air space that is described by
Vidale & Stöckli (2005), allowing for the storage of heat, water, and carbon at that level
and providing a more explicit representation of canopy processes. For the soil/snow, SiB4
follows the Community Land Model (CLM) approach outlined in Lawrence et al. (2018),
where soil temperature and soil moisture are calculated for 10 co-located soil layers and up
to 5 snow layers. Finally, SiB4 includes 11 prognostic carbon pools as described by Haynes
et al. (2019a), where the soil pools include carbon storage for each of the 10 soil layers.
Each of these referenced papers provide full descriptions and evaluations of these processes.
Additionally, Baker (2011) provides derivations of these, including the numerical technique
used to perform timestepping.

This section briefly provides the basic equations of the SiB4 prognostic variables, which
are listed in Table B4. The net radiation terms are discussed more in Section 3; fluxes of
heat, water vapor, and CO2 are discussed more in Section 4, interception and soil moisture
are discussed more in Section 5; and carbon pools are discussed more in Sections 8, 9, 10,
11, and 12.

Canopy Temperature cc
δTc
δt

= Rnc −Hc − λEc − ξcs (26)

where cc = canopy effective heat capacity (J m−2 s−1)

Tc = canopy temperature (K)

Rnc = absorbed net radiation (W m−2)

Hc = canopy sensible heat flux (W m−2)

λ = latent heat of vaporization (J kg−1)

Ec = canopy evapotranspiration rate (kg m−2 s−1)

ξcs = energy from canopy interception phase changes (W m−2)

CAS Temperature ca
δTa
δt

= −Ha +Hc +Hg (27)

CAS Water Vapor ca
δea
δt

= −Ea + Ec + Eg (28)

CAS CO2 ca
δpco2a
δt

= −FCO2a + FCO2c + FCO2g (29)

where ca = CAS effective heat capacity (J m−2 s−1)

Ta = CAS temperature (K)

Ha = CAS sensible heat flux (W m−2)

Hg = surface (top soil/snow layer) heat flux (W m−2)
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Ea = CAS evapotranspiration rate (kg m−2 s−1)

Eg = surface evapotranspiration rate (kg m−2 s−1)

pco2a = CAS CO2 partial pressure (Pa)

FCO2a = CAS carbon flux (µmol m−2 s−1)

FCO2c = canopy carbon flux (µmol m−2 s−1)

FCO2g = surface carbon flux (µmol m−2 s−1)

Surface Temperature cg
δTD,g

δt
= Rng −Hg − λEg − 2πCD

τD
(TD,g − TD)− ξgs (30)

Soil/Snow Temperature cd
δTD
δt

= δ
δz

[
λ δT
δz

]
(31)

where cg = surface effective heat capacity (J m−2 s−1)

TD,g = surface (top soil/snow layer) temperature (K)

Rng = surface absorbed net radiation (W m−2)

cD = soil effective heat capacity (J m−2 s−1)

τD = daylength (s)

TD = soil/snow temperature (K)

ξgs = energy from ground interception phase changes (W m−2)

Canopy Interception
δcapaccliq,snow

δt
= P −Dd −Dc − Eci/ρ (32)

Ground Interception δcapacg
δt

= Dd +Dc − Egi/ρ (33)

where capaccliq = canopy surface liquid (kg m−2)

capaccsnow = canopy surface ice (kg m−2)

capaccg = ground surface liquid (kg m−2)

P = precipitation rate (Prcu + Prls, m s−1)

Dd = canopy throughfall rate (m s−1)

Dc = canopy drainage rate (m s−1)

Eci = evaporation rate from canopy stores

Egi = evaporation rate from ground stores

ρ = density of water (kg m−3)
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Soil Moisture δθ
δt

= δq
δz
− e (34)

θi =
WWWLiq,i

∆ziρLiq
+

WWWIce,i

∆ziρIce
(35)

where θ = volumetric soil water content (liquid and ice) (mm3 water/mm3 soil)

WWWLiq,i = soil/snow liquid water per layer i (kg/m2)

WWWIce,i = soil/snow ice per layer i (kg/m2)

q = soil water flux (kg/m2/s)

z = height above some datum in soil column (mm, positive upwards)

e = sink term (evapotranspiration loss, mm water/mm soil/s)

ρLiq = density of liquid water (kg/m3)

ρIce = density of ice (kg/m3)

Following CLM, the vertical soil moisture transport is governed by infiltration, surface and
sub-surface runoff, gradient diffusion, gravity, and canopy transpiration through root extrac-
tion. When soils freeze, the hydraulic conductivity of the soil is greatly decreased, leading
to nearly impermeable soil ice layers.

Canopy Conductance δgc
δt

= −kg(gc − gcinf) (36)

Stomatal Resistance δrst
δt

= g−1
c (37)

where gc = canopy conductance (m/s)

kg = time constant (1/s)

gcinf = estimate of gc as t→∞ (m/s)

rst = stomatal resistance

Live Carbon Pools
δClpool

δt
= GAssim +GSeed (38)

−LFire − LGrz − LGResp − LHrvst − LMResp − LTrans

Dead Carbon Pools
δCdpool

δt
= GGrz +GHrvst +GTransl +GTransd (39)

−LFire − LResp − LTrans
where Clpool = live carbon pools (mol C m−2)

Cdpool = dead carbon pools (mol C m−2)

GAssim = gain from photosynthesis (mol C m−2 s−1)

GSeed = gain from seed (mol C m−2 s−1)

GGrz = gain from grazing transfers (mol C m−2 s−1)
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GHrvst = gain from harvest transfers (mol C m−2 s−1)

GTransl = gain from live pool transfers (mol C m−2 s−1)

GTransd = gain from dead pool transfers (mol C m−2 s−1)

LFire = loss from fire (mol C m−2 s−1)

LGrz = loss from grazing (mol C m−2 s−1)

LGResp = loss from growth respiration (mol C m−2 s−1)

LHrvst = loss from harvest (mol C m−2 s−1)

LMResp = loss from maintenance respiration (mol C m−2 s−1)

LResp = loss from heterotrophic respiration (mol C m−2 s−1)

LTrans = loss from transfer to dead pools (mol C m−2 s−1)

2.5 I/O
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Figure 2.2: SiB4 Input and Output.
The required SiB4 input (yellow boxes), restart information (grey box), and the

predominant output (blue boxes).
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Figure 2.2 shows the inputs and major outputs of SiB4. One of the main features of SiB4
is the capacity to prognose both phenological timing and biomass. This predictive capability
removes the requirement of remotely sensed vegetation data, which has three significant
benefits:

1. It is no longer necessary to obtain satellite products depicting the leaf state for the
desired simulation time.

2. Evaluation of SiB4 can utilize a variety of satellite products, including the vegetation
data formerly used as input.

3. SiB4 can be used in a variety of forward-in-time studies, including weather prediction,
land-atmosphere feedback investigations, and climate sensitivity experiments.

Simultaneous prediction of phenology and carbon pools reduces the input data for SiB4.
Rather than using data that requires significant processing while limiting the simulation
times, SiB4 only has three input requirements: 1) weather data, 2) a PFT map indicating the
vegetation type, and 3) basic soil properties, including sand/clay fractions and reflectivity.
All of these input data have a variety of sources and can either be obtained in advance,
determined real-time, or easily predicted and then provided.

For initialization, SiB4 requires soil water profiles, carbon pools, and climate-based con-
stants (Figure 2.2, gray box). These values can either be specified or calculated during a
spin-up simulation. Ingesting carbon pools that contain sources and sinks enables SiB4 to
produce unbalanced fluxes that can be used for a variety of applications, including more
accurately simulating the atmospheric CO2 growth rate. In contrast, performing a spin-up
simulation will result in self-consistent carbon pools and fluxes. Spin-up simulations are typ-
ically run for at least ten years to create climatologically-based values that are less sensitive
to weather pattern anomalies. The resulting carbon pools from a spin-up run are the steady-
state pool values, which are obtained by iterating over the specified years until equilibrium
is reached. The equilibrium requirement is satisfied if all carbon pools at either the start
or end of the simulation are within 1% of the calculated equilibrium pools. If any of the
initialization data are not provided, SiB4 will use default PFT-specific values.

SiB4 predicts numerous quantities that can be evaluated against a variety of data (Figure
2.2, blue boxes). In addition to carbon, energy, and water fluxes, SiB4 includes the simulation
of COS that was developed in SiB3 (Berry et al., 2013). SiB4 also includes the simulation
of solar-induced chlorophyll fluorescence (SIF) from SiB3 (Baker et al., 2014). Since SiB4
prognoses both the phenology and the resulting biomass, the output contains consistent
predictions of carbon fluxes, biomass, surface carbon pools, and soil carbon reservoirs, as
well as the associated land cover characteristics and soil hydrology.
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2.6 Runtime Options
To run SiB4, users need to set all of the simulation specifications in the namelist (namel sibdrv).
There are eight lists with control options, each of which is listed and described here.

1. Control List

• nsib: Nnumber of points in the simulation

• starttime: Day of year to start simulation

• startyear: Year to start simulation

• endtime: Day of year to stop simulation

• endyear: Year to stop simulation

• dtsib: Model timestep, in seconds

• restart dtsib: Restart output interval (at least daily)

• qp dtsib: QP output interval (typically monthly)

• pbp dtsib: PBP output interval (typically daily)

• hr dtsib: HR output interval (typically hourly)

For all of the output intervals:
Values greater than zero are output frequencies with units of seconds.
Values less than zero are output frequencies with units of months.

2. IO List

• pft info: File containing PFT information

• pool info: File containing pool information

• aero file: File containing aerodynamic properties

• pgdd file: File containing defined phenology parameters

• pstg file: File containing dynamic phenology parameters

• phys file: File containing physiological parameters

• pool file: File containing pool respiration and transfer parameters

• vs file: File containing vegetation structure

• ic file: File containing initial conditions and restart values
If this file is not specified or does not exist, the model will start with default
values.

• dr path: Directory containing driver data

• fire path: Directory containing fire emissions

• out path: Directory for model output

• out info: File containing output specifications and information

• out rinfo: File containing restart specifications and information
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3. Spinup List

• spinup: Flag to perform a spinup simulation
A spinup simulation will continue until either:

Pools are within the threshold equilibrium values
Maximum number of iterations have been run

• spinup default: Flag to use default initial conditions for spinup
For the defaults:

All pools are zero except a minimal leaf pool
Soil moisture starts at saturation

• spinup numyrs: Number of years to perform before equilibrium calculations
Note that for spinup runs, entire years are simulated starting January 1 of the
startyear.

• spinup maxiter: Maximum number of iterations in a spinup

• spinup threshold: Input/output ratio threshold required to stop spinup

• spinup writediag: Flag to follow output choices during spinup (false saves only
equilibrium files)

• spinup writetxtf: Flag to write equilibrium pool information to a text file

4. Subgrid List

• minlon: Minimum longitude for setting a subgrid

• maxlon: Maximum longitude for setting a subgrid

• minlat: Minimum latitude for setting a subgrid

• maxlat: Maximum latitude for setting a subgrid

5. Point-By-Point (PBP) List

• npbp: Number of points to be saved in PBP output
Following this value, a list of corresponding lon/lat pairs (degress) is expected.
If npbp is set to -1, then all points will be saved in the PBP output.

6. Balance List

• badtc print: Print canopy temperatures?

• badtc stop: Stop simulation for bad canopy temperatures?

• canb print: Print canopy balance values?

• canb stop: Stop simulation if canopy balance fails?

• carbonb print: Print carbon balance information?

• carbonb stop: Stop simulation if carbon balance fails?

• carbonb thresh: Carbon balance thresholds

• fireb print: Print fire balance information?
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• fireb stop: Stop simulation if fire balance fails?

• fireb thresh: Fire balance threshold

• snocmbn print: Print snow combine information?

• snocmbn stop: Stop if snow combine water balance fails?

• snocmbn thresh: Snow combine balance threshold

• bnum allow: Number of allowable energy/water balance sequential offenses

• energyb print: Print energy balance values?

• energyb stop: Stop if energy balance fails?

• energyb thresh: Energy balance threshold

• waterb print: Print water balance values?

• waterb stop: Stop if water balance fails?

• waterb thresh: Water balance threshold

7. Print List

• print avec: Print avec/bvec values (matrix solver for fluxes)

• print driver: Print driver data values?

• print fire: Print fire emissions?

• print harvest: Print harvest information?

• print pftinfo: Print PFT information?

• print pooll: Print live pool values?

• print soil: Print soil properties?

• print sscol: Print soil/snow layer information?

• print veg: Print vegetation values?

• print stop: Stop simulation after printing information?

8. Switch List

• cornsoy switch: Flag to annually alternate corn and soybeans

• fire switch: Flag to use fire emissions

• grazing switch: Flag to use grazing

• green switch: Flag to use greenness fraction

• eqclear switch: Flag to clear equilibrium variables at start of simulation

• leapyr switch: Flag for using leap years (False == constant 365 days)

• updatelst switch: Flag to update carbon pools at 0 LST (rather than 0 GMT)
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3 Radiation
This section provides an overview of the radiation scheme in SiB4. Further details, including
complete equations, can be found in Sellers (1985) and Sellers et al. (1996a). All radiation
variables are listed in Table B5.

3.1 Solar Radiation Characteristics
The cosine of the solar zenith angle (µ) is

µ = sinφ sinδ − cosφ cosδ cosh (40)

where h is the solar hour angle, δ is the solar declination angle, and φ is the latitude.
Equation 40 assumes all angles have been converted to radians.

The solar hour angle is

h =
π

180
hrang (41)

hrang = 360LSTFrac − 180 (42)

LSTFrac =
SecDay
86400

+
lon

360
(43)

where hrang is the local time hour angle, LSTFrac is the local time expressed in a day fraction
from 0 to 1, SecDay is the current second of the day, 86400 is the number of seconds per day,
and lon is the longitude in degrees.

For the solar declination angle, both the sine and cosine are calculated such that

sinδ = sin
( π

180
decmax

)
· sin(lonEarth) (44)

cosδ =
√

(1− (sin δ)2 (45)

where decmax is a physical parameter and lonEarth is the true longitude of the Earth.
The true longitude of the Earth is counted from the vernal equinox, and is incremented

daily for each day following the equinox such that

lonEarth =

neqnx∑
day=1

t1 + 2(t2 + t3) + t4
6

(46)

t1 = πday Asc(lonEarth) πday (47)

t2 = πday Asc(lonEarth + 0.5t1) (48)

t3 = πday Asc(lonEarth + 0.5t2) (49)

t4 = πday Asc(lonEarth + t3) (50)
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where neqnx is the number of days since the vernal equinox (eqnx = 80), t1, t2, t3, and t4
are angle increments, and Asc is a correction calculated based on the angle around the Sun
traversed since the beginning of the year. This is expressed mathematically as

Asc = reccn(1− eccn · cos(α− πperi))2 (51)

reccn =
1

(1− eccn2)1.5
(52)

where eccn is the eccentricity physical constant, πperi is a solar zenith angle physical constant,
and α is the input angle.

3.2 Solar Radiation Components
Incoming solar radiation is partitioned into visible and near-infrared (NIR) components,
both of which are further divided into direct (beam) and diffuse estimates. Using the surface
incident shortwave radiation from driver data (SWDwn) and the current sun angle (µ), the
components are calculated as:

cloud =
radc5 · µ− SWDwn

radc4 · µ
(53)

dirad = 0.0683 +
0.0604

µ− 0.0223 + 1.e−10
(54)

dirad = dirad+ (1− dirad) · cloud (55)

vnrad =
radc1 − cloud · radc2

(radc1 − cloud · radc3) + (radc1 − cloud · radc2)
(56)

radvbc = (1− dirad) · vnrad · SWDwn (57)

radvdc = dirad · vnrad · SWDwn (58)

radnbc = (1− dirad) · (1− vnrad) · SWDwn (59)

radndc = dirad · (1− vnrad) · SWDwn (60)

where cloud, dirad, and vnrad are local variables. The radiation components radvbc, radvdc,
radnbc, and radndc are the visible beam radiation, visible diffuse radiation, NIR beam
radiation, and NIR diffuse radiation, respectively.
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3.3 Radiative Transfer Model
3.3.1 Overview

SiB4 calculates the interception, reflection, transmission, and absorption of radiation by veg-
etation and soil using the two-stream approximation model from SiB2 and described in Sellers
et al. (1996a). The fundamental equations were presented by Dickinson (1983), modified by
Sellers (1985), and summarized in Sellers et al. (1996a). The radiative transfer equations are
solved for each of the four solar radiation components, with a simplified calculation for the
exchanges of thermal infrared radiation. In solving the two-stream approximation model for
the canopy-ground system (Sellers, 1985), canopy reflectances, absorbances, and transmit-
tances are specified and the radiation absorbed by the canopy and soil from each incident
component is calculated. Using the Stefan-Boltzmann law assuming radiative equilibrium,
the net radiation is calculated from the absorbed radiation and the component temperatures.

3.3.2 Original Equations

The radiative transfer in vegetative canopies can be described using a two-stream approxi-
mation method solving the equations:

−µ̄(dI ↑ /dL) + [1− (1− β)ω]I ↑ −ωβI ↓ = ωµ̄Kβoe
−KL (61)

µ̄(dI ↓ /dL) + [1− (1− β)ω]I ↓ −ωβI ↑ = ωµ̄K(1− βo)e−KL (62)

where I ↑ and I ↓ are the upward and downward diffuse radiative fluxes normalized by the
incident flux; µ̄ is the average inverse diffuse optical depth per unit leaf area; β and βo are
the upscatter parameters for the diffuse and direct beams; ω is the scattering coefficient; K
is the optical depth of the direct beam per unit leaf area; and L is the cumulative leaf area
index. Values of the parameters K and µ̄ are functions of canopy geometry and leaf angle
distribution, and values of β and βo are functions of canopy geometry and phytoelement
optical properties.

To solve these equations, boundary conditions appropriate to a vegetative canopy covering
a reflective soil surface are applied such that

I ↓ = 0 at L = 0 (63)

I ↑ = ρs[I ↓ +e−KLT ] at L = LT (64)

where ρs is the soil reflectance and LT is the total leaf area index. The solution of these
equations yields

I ↓ = α1e
−KL + α2e

−α3L + α4e
α3L (65)

I ↑ = α5e
−KL + α6e

−α3L + α7e
α3L (66)

where α1 through α7 are algebraic combinations of the coefficients in Equations (61) and
(62). These calculations are performed for each of the four solar radiation components, with
slightly different simplified calculations for the exchanges of diffuse and direct beam radiation.
Similar calculations are used to calculate the exchanges of thermal infrared radiation.
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Using the calculated radiative fluxes, the solar radiation absorbed by the canopy (Fc)
and ground (Fg) are given by

Fc = V [1− I ↑c −I ↓g (1− ρs)− e−KLT /V (1− ρs)]F∧ (67)

Fg = {(1− V )(1− ρs) + V [I ↓g (1− ρs) + e−KLT /V (1− ρs)]}F∧ (68)

where V is the canopy cover fraction, F∧ is the incident radiant solar energy, I ↑c is the
diffuse flux leaving the top of the canopy, and I ↓g is the diffuse flux leaving the base of the
canopy. The net absorbed thermal radiation by the canopy (FT,c) and ground (FT,g) are

FT,c = FT,0V δT − 2σsT
4
c V δT + σsT

4
g V δT (69)

FT,g = FT,0(1− V δT ) + σsT
4
c V δT − σsT 4

g (70)

where FT,0 is the incident thermal infrared radiation (TIR, diffuse), V δT is the fraction of
incident TIR absorbed by the canopy (with δT = 1−e−LT /V µ̄), and σs is the Stefan-Boltzmann
constant. Finally, the net radiative fluxes for the canopy (Rnc) and ground (Rng) are

Rnc =
∑

∧=V,N,T

F∧,c (71)

Rng =
∑

∧=V,N,T

F∧,g (72)

where V , N , and T are the visible, near-infrared, and thermal wavelength intervals.

3.4 Radiation Calculations
3.4.1 Albedo

Following the notation above and published by Sellers (1985), the albedo is divided into four
contributions: visible beam (albedoV isB), visible diffuse (albedoV isD), near-infrared beam
(albedoNIRB), and near-infrared diffuse (albedoNIRD). The albedo components are given by

albedoV isB = (1− V Cover) ∗ albedoGV is + V Cover ∗ albedoCB (73)

albedoV isD = (1− V Cover) ∗ albedoGV is + V Cover ∗ albedoCD (74)

albedoNIRB = (1− V Cover) ∗ albedoGNIR + V Cover ∗ albedoCB (75)

albedoNIRD = (1− V Cover) ∗ albedoGNIR + V Cover ∗ albedoCD (76)

albedoGV is = SorefV is ∗ (1− snowgvfc) + 0.8 ∗ fmelt ∗ snowgvfc (77)

albedoGNIR = SorefNIR ∗ (1− snowgvfc) + 0.4 ∗ fmelt ∗ snowgvfc (78)

albedoCB = h1/bot+ h2 + h3 (79)

albedoCD = h7 + h8 (80)

where albedoGV is is the visible ground albedo, albedoGNIR is the NIR ground albedo,
albedoCB is the beam canopy albedo, albedoCD is the diffuse canopy albedo, V Cover is
the fraction of vegetation cover, snowgvfc is the snow vertical ground coverage (0 to 1 frac-
tion), fmelt is the snow melting fraction, and h1, h2, h3, h7, h8, and bot are all constants
determined from the two-stream approximation model.
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3.4.2 Radiation Absorption Factors

The albedos can be combined with the vegetation coverage and canopy transmittances to
calculate canopy and ground radiation absorption factors (radfacc and radfacg). These
factors can be used to scale the incoming radiation fluxes in order to calculate the radiation
absorbed, and are given by

radfaccV isB = V Cover ∗ [(1− albedoCB)− Tran1V is ∗ (1− albedoGV is) (81)

−Tran3V is ∗ (1− albedoGV is)]

radfaccV isD = V Cover ∗ [(1− albedoCD)− Tran2V is ∗ (1− albedoGV is)] (82)

radfaccNIRB = V Cover ∗ [(1− albedoCB)− Tran1NIR ∗ (1− albedoGNIR) (83)

−Tran3NIR ∗ (1− albedoGNIR)]

radfaccNIRD = V Cover ∗ [(1− albedoCD)− Tran2NIR ∗ (1− albedoGNIR)] (84)

radfacgV isB = (1− V Cover) ∗ (1− albedoGV is) (85)

+V Cover ∗ [(Tran1V is ∗ (1− albedoGV is) + Tran3V is ∗ (1− albedoGV is)]

radfacgV isD = (1− V Cover) ∗ (1− albedoGV is) (86)

+V Cover ∗ Tran2V is ∗ (1− albedoGV is)

radfacgNIRB = (1− V Cover) ∗ (1− albedoGNIR) (87)

+V Cover ∗ [Tran1NIR ∗ (1− albedoGNIR) + Tran3NIR ∗ (1− albedoGNIR)]

radfacgNIRD = (1− V Cover) ∗ (1− albedoGNIR) (88)

+V Cover ∗ Tran2NIR ∗ (1− albedoGNIR)

where Tran1V is,NIR, Tran2V is,NIR and Tran3V is,NIR are canopy transmittances that de-
pend on various coefficients including the scattering coefficient, leaf projection, vegetation
greenness, saturation capacity depth, snow coverage, and solar zenith angle.

3.4.3 Absorbed Radiation

The absorption of radiation by the canopy (radc3c) and ground (radc3g) are given by

radc3c =
∑
i

[radfacci ∗ radni] + dlwbot ∗ egc (89)

radc3g =
∑
i

[radfacgi ∗ radni] + dlwbot ∗ (1− egc) (90)

where i=V isB, V isD, NIRB, and NIRD; radfacci and radfacgi are the corresponding
absorption coefficients calculated in the previous section (Section 3.4.2); radni are the ap-
propriate incoming radiation components (Section 3.2); dlwbot is the incoming downwelling
longwave radiation; and egc is the effective ground cover for thermal radiation. These values
account for the incident visible and NIR fluxes.
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3.4.4 Net Radiation

The net radiation is calculated from physical laws combined with current losses from the
canopy (closs), ground (gloss), and snow (sloss). The losses are given by

closs = 2 ∗ egc ∗ σs ∗ T 4
c − egc ∗ σs ∗ T 4

sfc (91)

gloss = σs ∗ T 4
g − egc ∗ σs ∗ T 4

c (92)

sloss = σs ∗ T 4
s − egc ∗ σs ∗ T 4

c (93)

where Tc is the canopy temperature, Tg is the ground temperature, Ts is the snow temper-
ature, and Tsfc is the gound temperature if no snow is present, or the snow temperature if
there is snow cover. Using these losses and the absorbed radiation, the canopy, ground, and
snow net radiation (radtc, radtg, and radts) are given by

radtc = radc3c− closs, (94)

radtg = radc3g − gloss, and (95)

radts = radc3g − sloss. (96)
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4 Land-Atmosphere Exchanges
Fluxes of heat, water, and carbon use the resistance formulation described in detail in Sellers
et al. (1996a) and Vidale & Stöckli (2005). In this approach, exchanges are expressed in terms
of differences as

flux =
potential difference

resistance
, (97)

and the resistances are the integrals of inverse conductances over a path between specified
potential difference endpoints. These fluxes are explicit functions of the atmospheric bound-
ary conditions (Table A1), the prognostic temperature and water stores, three aerodynamic
resistances (ra, rb, and rd ), the prognostic leaf surface resistance (rc), and the empirical
soil surface resistance (rsoil). Using a backward-differencing scheme, SiB4 solves the set of
equations for the governing equations. The predicted resistances are used to calculate the
heat fluxes and the prognostic temperature changes. The predicted conductances (inverse
of resistance) are used to calculate the moisture fluxes (transpiration and soil evaporation),
which are used to update the prognostic moisture stores. This section briefly discusses the
land-atmosphere exchange processes included in SiB4, which are illustrated in Figure 1.3,
and the variables used in this section are listed in Tables B3, B6, and B7.

4.1 Aerodynamic Resistances
The aerodynamic resistance model in SiB4 was originally documented in Sellers et al. (1986).
This scheme was modified to describe height-varying leaf-area densities, more accurately
representing the wind profile throughout the canopy by Sellers et al. (1989). SiB4 uses this
improved turbulent transfer scheme, which is described in detail in Sellers et al. (1996a) and
shown in Figure 4.1.

Different turbulence regimes exist between each of the layers, as shown in Figure 4.1.
Above the canopy, a turbulent transition layer extends from the top of the canopy (z2) to a
specified height above the canopy (zt). In this layer, shear stress is assumed to be constant
and momentum transfer varies linearly with height. Above zt, the conventional log-linear
wind profile is assumed to be valid. Within the canopy, shear is extracted from the airflow,
making the momentum transfer a linear function of local wind speed. The canopy is divided
into upper and lower segments, and leaf area density is assumed to increase linearly with
height from the lower canopy bound (z1) to an inflection height (zc), after which it decreases
linearly with height to z2. Below the canopy, a log-linear wind profile with constant shear
stress dependent on the ground roughness length (zs) links the soil surface to the flow at z1.
The full equation set describing the turbulent transfer profile are provided in Appendix B
of Sellers et al. (1996a), and they yield wind speed profiles and transfer coefficients that are
used to calculate the aerodynamic resistances.
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Figure 4.1: SiB Turbulent Transfer Regimes (Sellers et al., 1996a).

SiB4 has three aerodynamic resistances: the atmospheric reference level to canopy air
space (CAS) resistance (ra), the CAS to canopy resistance (rb), and the CAS to ground
resistance (rd). Following Sellers et al. (1996a), starting at the canopy to the CAS, rb is
given by

rb = C1

(u2)
1
2

=

[ ∫ z2
z1

Ld(u)
1
2

psCs
dz

]−1

neutral conditions (98)

=

[
(u2)

1
2

C1
+ LT

890

(
Tc−Tm
lw

) 1
4
]−1

nonneutral adjustment (99)

where C1 = bulk canopy to CAS resistance coefficient (m/s)−0.5

u2 = wind speed at z2 (m/s)

Cs = heat-mass transfer coefficient (90(lw)0.5)

lw = leaf width (m)

Ld = leaf area density (m2/m3)

ps = leaf shelter factor
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The canopy source height is assumed to be equal to the height of rb, and the resistance from
the ground up to the CAS (rd) is given by

rd = C2

u2
=
∫
zs
ha

1
Ks
dz neutral conditions (100)

= C2

u2φH
nonneutral adjustment (101)

φH =

[
1 + 9 (Tg−Tm)

Tgu22
z2

] 1
2

(102)

where C2 = ground to CAS resistance coefficient

Ks = heat-water vapor transfer coefficient, assumed equal to Km (m2/s)

ha = canopy source height (m)

Above the canopy, the transfer between the CAS and the reference height is the integration of
Ks over the distance from ha to zm, including within-canopy (ha to z2), turbulent transition
layer (z2 to zt) and log-linear profile (zt to zm) segments:

ra =
C3

um
=

∫
ha

zm
1

Ks

dz =

[
1

k
log

(
zm − d
z0

)]2

(103)

where C3 is the aerodynamic CAS to reference height resistance coefficient.

4.2 Photosynthesis
Photosynthesis in SiB4 is thoroughly documented in Sellers et al. (1996a). SiB4 uses a
physiologically-driven stomatal model that explicitly connects stomatal conductance and
photosynthesis (Figure 4.2), and the stomatal model of Ball (1988) combined with the C3
photosynthesis model of Farquhar et al. (1980) expanded by Collatz et al. (1991) and Collatz
et al. (1992) comprise the basis for the photosynthesis-conductance model. Leaf stomata
control the rate of CO2 diffusion into the leaf and water vapor out, regulating the addition
of CO2 with the loss of water. Leaf resistance (rc) is the canopy integral of stomatal resistance
(rst), which is the inverse of stomatal conductance (rst = 1/gs). Canopy resistance (rb) is
the canopy integral of the inverse of the conductance from the leaf to the CAS (1/gb), and it
regulates the fluxes from the leaf to the CAS. Sensible heat is assumed to be lost from both
sides of the leaf, whereas water and CO2 are assumed to be lost from one side only.

4.2.1 Assimilation

The Collatz et al. (1991, 1992) version of the photosynthesis model defines the leaf assimila-
tion (assim, gross photosynthetic rate) as the minimum of three limiting rates: a leaf enzyme
limited rate (assimOMC), a light-limited rate (assimOME), and a carbon compound export lim-
ited rate (assimOMS). The physiological limit on assimilation (assimOMC) is limited by the
maximum catalytic capacity of the photosynthetic enzyme (VMax) and is scaled by temper-
ature, moisture, interior CO2 (pco2i), reference CO2 (pco2m), and CO2 and O2 temperature
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Figure 4.2: SiB Photosynthesis-Conductance Model (Sellers et al., 1996a).

responses (zkc,zko). The light limited rate (assimOME) is dependent on the absorbed pho-
tosynthetically active radiation (APAR) and the CO2 photocompensation point (gamma).
The storage-export limiting rate (assimOMS) is dependent on VMax, temperature, and soil
moisture. These relationships are expressed as:

assim ≤ Min(assimOMC , assimOME, assimOMS) (104)

assimOMC = VMax,SS
pco2i − gamma
pco2i + rrkk

∗ C3 + VMax,SS ∗ C4 (105)

assimOME = APAR
pco2i − gamma
pco2i + 2gamma

∗ C3 + APAR ∗ C4 (106)

assimOMS = omss ∗ C3 + omss ∗ pco2i ∗ C4 (107)

rrkk = zkc ∗ (1.+ pco2m/zko) ∗ C3 +
VMax

5.
(1.80.1(TC−298.)) ∗ C4 (108)

zkc = 30. ∗ 2.10.1(TC−298.) (109)

zko = 30000. ∗ 1.20.1(TC−298.) (110)

omss =
0.5VMax ∗ 1.80.1(TC−298.)

rstfac2 ∗ C3 + rrkk ∗ rstfac2

∗ C4 (111)

rstfac2 =
(1 + wssp) ∗ AW
wssp+ AW

(112)

where VMax,SS is a stressed-scaled rubisco velocity, rstfac2 is a rootzone water potential, AW
is a vertically-weighted available water potential, and C3/C4 are mutually exclusive flags set
to 1/0 for PFTs with C3 photosynthesis and set to 0/1 for PFTs with C4 photosynthesis. The
leaf net assimilation rate (assimn) is given by subtracting the leaf maintenance respiration
rate from the gross assimilation.
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SiB4 also calculates potential assimilation rates (assimpot) that represent the maximum
assimilation rate under ideal conditions. For assimpotOMC , VMax is used, rather then the
stress-scaled, reduced VMax,SS. For assimpotOME, the top-of-the atmosphere photosynthet-
ically active radiation is used, rather than the surface APAR that is reduced by weather
conditions and leaf angle. Finally for assimpotOMS, the rootzone water potential is set to the
maximum value of one. All of these are combined to produce a single assimilation potential
(assimpot) that is used to calculate photon pathways and solar-induced fluorescence (SIF).

4.2.2 Stomatal Conductance

Using photosynthesis to link CO2 gain and water vapor loss, SiB4 calculates the leaf stomatal
conductance using the Ball-Berry relationship:

gs = m
assimn

pco2s
hsp+ b (113)

where assimn is the leaf net assimilation rate, pco2s is the CO2 partial pressure at the leaf
surface, hs is the relative humidity at leaf surface, p is the atmospheric pressure, and m
and b are empirical coefficients derived from observations. An iterative procedure solves for
physiology-specific values of the three assimilation rates along with the CO2 partial pressures
at the chloroplast (pco2c), inside the leaf (pco2i), and at the surface of the leaf (pco2s) and
the corresponding conductances.

4.2.3 Canopy Scaling

Since this conductance-photosynthesis model is relevant to a single leaf, it is integrated over
the depth of the canopy using a procedure described in Sellers et al. (1992). This method
hypothesizes that the maximum rate of photosynthesis exponentially decreases through the
canopy following the profile of absorbed photosynthecially active radiation (PAR). Following
the equations outlined in Sellers et al. (1996a), canopy photosynthesis and conductance can
be scaled from their leaf-level calculations via the summarized relationships

Canopy Rate = [Leaf Rate] [Environmental Forcing] [Canopy PAR-Use Parameter]

assim, gc = [An, gs] [B1 · · ·B6] [Π] .

In this method, the enrivonmental forcing terms describe the effects of temperature, humid-
ity, CO2 concentration and soil moisture stress and are defined in the next section. The
canopy PAR-use parameter, Π, can be approximated by

Π ≈ FPAR/k̄, (114)

where FPAR is the abosrbed fraction of photosynthetically active radiation and k̄ is the
time-mean extinction coefficient for PAR. Π varies between zero for no vegetation cover to
>1 for dense green vegetation. The canopy assimilation represents the gross photosynthetic
rate and the canopy conductance is used to determine the canopy transpiration rate.
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4.2.4 Environmental Forcing Potentials

Three environmental potentials (FLH , FRZ , and FT ) are used to scale photosynthesis at
various points in the solution, and each of these is unity under optimal conditions and zero
in adverse conditions (Sellers, 1987). As a diagnostic, the total environmental potential is
the multiplicative of these given by

FE = FLHFRZFT . (115)

FLH (sometimes referred to as rstfac1), is a function of water vapor pressure and repre-
sents leaf humidity stress (Collatz et al., 1991; Jarvis, 1976; Sellers et al., 1989, 1992). FLH
is calculated as the ratio of the leaf internal water vapor mixing ratio (H2Oi, hPa/Pa) to
the leaf surface water vapor mixing ratio (H2Os, hPa/Pa), which is expressed as

FLH =
H2Os

H2Oi
. (116)

FRZ represents root-zone water stress, and following Baker et al. (2008) is calculated as

FRZ =
(1 + wssp)wcolumn

wmax

wssp+ wcolumn

wmax

(117)

where wcolumn is water in the column in excess of wilt point (kg), wmax is the maximum
possible excess of water in the column (field capacity less wilt point, kg), and wssp is a water
stress curvature parameter, currently set to 0.2. FRZ can be summarized as follows: if the
total column soil moisture is above the field capacity, then there is maximum potential and
no stress; in contrast, if the soil moisture is below the wilting point, then the plant is totally
stressed and thus has zero potential.

FT is a function of temperature and incorporates high and low temperature stress (Baker
et al., 2008; Jarvis, 1976), and it is calculated using the following system of equations:

FT =
1

THighTLowTFrost
(118)

THigh = 0.98 + eshti(Tc−hhti) (119)

TLow = 0.98 + eslti(hlti−Tc) (120)

TFrost = 1 + esfti(hfti−Tcmin) (121)

Tcmin =

 Tc TC < Tcmin

Tcmin + 4dt
86400

TC > TIce
(122)

where shti, slti, hfti, hhti, hlti are parameters, TC is the canopy temperature (K), and TIce
is the freezing point of water (273.15 K). Tcmin includes a frost recovery at 2◦C per day.

Example FT values are shown in Figure 4.3. The solid black line shows the combined FT
values per corresponding Tc using the parameter values indicated in the caption. The figure
shows how the potential decreases rapidly for temperatures near freezing and above a high
temperature threshold.
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Figure 4.3: Example Environmental Potentials.
The solid black line shows the combined FT , and the colors show the three components.

Parameter values are slti=0.2, shti=0.3, hlti=272, hhti=308, sfti=0.35, and hfti=270.

4.3 Fluxes
As shown in Equation (97), SiB4 calculates fluxes using potential differences and the resis-
tances calculated in the previous sections. Fluxes of sensible heat (H) and latent heat (E)
use potential differences represented by temperatures and vapor pressures; and these are
summarized in Table 4.1.

Flux Potential Difference Resistance

fss (Ta - Tm) ρ cp ra

Hc (Tc - Ta) ρ cp rb

Hg (Tg - Ta) ρ cp rd

fws (ea − em) ρcp/γ ra

Ect (e∗Tc − ea) ρcp/γ (rc + 2rb)/(1 - Wc)

Eci (e∗Tc − ea) ρcp/γ (2rb/Wg)

Egs (hsoile
∗Tg − ea) ρcp/γ (rsoil + rd)/(1 - Wg)

Egi (e∗Tg − ea) ρcp/γ (rd/Wg)

Table 4.1: Fluxes, Potential Differences, and Resistances.

38



where Ta, Tc, Tg, Tm = CAS, canopy, ground, and reference air temperatures (K)

ea, em = CAS and reference vapor pressures (Pa)

e∗ = saturation vapor pressure at temperature T (Pa)

ρ, cp = density, specific heat of air (kg/m3, J/kg/K)

γ = psychrometric constant (Pa/K)

Wc = canopy wetness fraction (-)

Wg = soil wetness or snow cover fraction (-)

Hc, Hg = canopy and ground sensible heat flux (J/m2)

Ect, Eci = Canopy interception and transpiration latent heat flux (J/m2)

Egs, Egi = Ground interception and evaporation latent heat flux (J/m2)

fss, fws = CAS sensible and latent heat flux (W/m2)

The full computational procedure that calculates the fluxes, as well as the updates to temper-
ature, hydrology, and radiation, is elaborate; thus, only the simplified predominant equations
are shown here. For all of these updates, the partial derivatives are calculated using an im-
plicit solution system, and the system of equations is solved simultaneously by Gaussian
elimination at each timestep. Including ten soil layers and five snow layers, the number of
equations to be solved simultaneously is 21x21.

4.4 Energy Balance
Energy balance calculations for the CAS, canopy, ground, and total are performed every
timestep. All energy balance checks use the formulation:

0 = EIn − EStor − EOut (123)

where EIn is the incoming energy, EStor is the change in stored energy, and EOut is the
outgoing energy. These must sum to 0, or in reality a value near-zero (i.e. 1.E-6), or SiB4
prints the values and stops the simulation.

For the CAS, the energy balance is:

EIn = (Hg +Hc + Ect + Eci + Egs + Egi)/dt (124)

EStor = StorHCAS + StorWCAS (125)

EOut = fss + fws (126)

where StorHCAS and StorWCAS are the changes in CAS heat and water storage (W/m2)
and dt is the timestep length (s). The input fluxes are all saved in units of J/m2 and are
converted to W/m2 by dividing by the length of the timestep.
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For the canopy, the energy balance is:

EIn = radtc (127)

EStor = StorHC (128)

EOut = (Ect + Eci +Hc)/dt (129)

where StorHC is the canopy heat storage flux (W/m2).
For the ground, the energy balance is:

EIn = radtg (130)

EStor = StorHG (131)

EOut = (Hg + Egi + Egs)/dt (132)

where StorHG is the ground heat storage flux (W/m2). Using all components, the total
energy balance is given by:

EIn = radtc+ radtg (133)

EStor = StorHCAS + StorWCAS + StorHC + StorHG (134)

EOut = fss + fws (135)

These energy balance tests are not necessary in SiB4, and their inclusion is strictly for
safety checks. The SiB4 namelist has settings where the user can change the threshold of the
error allowed (energyb thresh), print the energy balance results (energyb print=True), and
not stop when an energy balance error occurs (energyb stop=False). With small thresholds,
occasional errors may occur due to the assumptions and machine precision, particularly
during shoulder seasons with rapid changes between liquid water and ice; and the namelist
also includes a flag (bnum allow=10) that allows for a certain number of timesteps to occur
before stopping the model (if desired).
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5 Hydrology
To simulate the hydrological cycle, SiB4 parameterizes the distribution of precipitation;
canopy interception, throughfall, and storage; snow accumlation, compaction, melting, and
water transfer between layers; soil liquid and ice water content and redistribution through
the soil column; surface runoff; evaporation; and sub-surface drainage and groundwater
discharge. The processes are all described in detail in published literature, and this section
provides a brief outline of the methods and the associated references. The hydrological
variables are listed in Tables B8 and B9.

5.1 Precipitation

Figure 5.1: SiB Precipitation Relationships (Sellers et al., 1996a).
a) Precipitation area-amount relationships, where x refers to the fraction of the grid area, Ix is

the relative amount of precipitation, Il is the large-scale precipitation (nearly invariant), and Ic is

the convective precipitation (nonuniformly distributed). b) Precipitation interception dynamics,

where the integral of the water amount above Mcs + Mcw represents the total amount of water

intercepted by the canopy. All water above the canopy storage limit Sc drains off the canopy to

the ground, and all below is added to the canopy interception store (capacc).

Precipitation is provided to SiB4 in two contributions: convective (Prcu) and large-scale
(Prls); and the surface precipitation (p0) is the sum of these contributions, given by

p0 = Prcu + Prls. (136)

Hydrological effects resulting from the spatial nonuniformity of convective precipitation are
explicitly addressed following Sato et al. (1989b) and Sellers et al. (1996a). For simplicity,
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only liquid convective precipitation falling on surfaces above freezing is permitted, and the
convective rainfall is spatially distributed according to a simple exponential function (Figure
5.1a).

5.2 Canopy
Canopy throughfall, interception, and storage of precipitation is described in Sato et al.
(1989a), Sato et al. (1989b), and Sellers et al. (1996a). Rainfall that falls through gaps in
the canopy comprises the direct throughfall component of precipitation and is calculated by
a modification of the radiative transfer model. SiB4 has three prognostic interception water
stores (canopy surface water, capccliq; canopy surface snow, capccsnow; and ground surface
liquid, capcg). Using the rainfall that is intercepted but not necessarily retained by the
canopy, the proportion of the grid area for which the canopy has intercepted enough rainfall
to equal or exceed its saturation limit is calculated as

PIxs = Sc −Mcs −Mcw (137)

where Sc is the canopy storage limit (0.0001LT ), Mcs is the snow already stored on the canopy
(capaccsnow) and Mcw is the water already stored on the canopy (capaccliq). Figure 5.1b shows
how the precipitation area-amount fraction is added to the canopy stores. Integrating the
equations provides an estimate of the canopy drainage loss (vertically hatched area), and a
canopy wetness fraction (wetfracc) is calculated by dividing the current canopy stores by the
canopy storage limit. Similarly, the ground surface liquid (capacg) is updated, the ground
wetness fraction is calculated (wetfracg), and the proportion of the grid area for which the
ground has intercepted enough rainfall to exceed its surface (puddle) storage limit (Sg=0.2
mm) is also determined. The water in excess of the canopy and ground storage limits is
added to the throughfall to provide an effective precipitation rate for the ground surface. If
this effective amount is greater than the local infiltration capacity of the soil, overland flow
(roffo) is generated. Once the overall amounts of precipitation are determined, water on the
canopy and ground surface must be determined to be either liquid or snow, and a series of
calculations are made to calculate any phase changes, update the necessary variables, and
follow through all of the implications.

5.3 Snow
SiB adopted the snow model from the Community Land Model (CLM) Version 3.0 (Dai et al.,
2003; Oleson et al., 2000; Schaefer et al., 2009). Snow can occupy up to five layers (nsl), and
these layers have varying mass and depth. An example of the three snow layers is shown in
Figure 5.2. All snow layers have explicit treatment of liquid and ice fraction (WWWLiq,-nsl:0

and WWWIce, -nsl:0), and these prognostic wetness stores are co-located with prognostic snow
layer temperatures (TD-nsl:0). Included with the snow hydrology are calculations of the total
depth (snowgdepth, m) and mass (snowgmass, kg/m2) of snow on the ground, the snow vertical
cover fraction (snowcvfc), and the snow ground cover fraction (snowgvfc). Snow accumulation
and the addition of snow layers, along with snow compaction over time, melting, and the
remove of snow layers is all described in detail in the CLM technical document (Lawrence
et al., 2018).
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Snow/atm interface

i = nsl + 1 = -2

i = nsl + 2 = -1

i = nsl + 3 = 0
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Figure 5.2: Example 3-Layer Snow Pack (Lawrence et al., 2018).

5.4 Soil
SiB adopted the soil model from the Community Land Model Version 2.0 (Bonan, 1996;
Oleson et al., 2000). Soil hydrology includes an explicit treatment of frozen and liquid
soil water for ten soil layers (nsoil = 10, WWWLiq,1:nsoil, and WWWIce,1:nsoil). As in the
snow model, these prognostic wetness stores are co-located with prognostic soil temperatures
(TD1:nsoil). Sub-surface runoff (roff) occurs when saturated soil moisture conditions exist
within the soil column. The soil water predicted in these ten layers is governed by the
vertical soil moisture transport dependent on infiltration, surface and sub-surface runoff,
gradient diffusion, gravity, and canopy transpiration through root extraction, all of which is
described in detail in Lawrence et al. (2018).

5.5 Water Balance
Although not necessary, for safety SiB4 calculates the water balance every timestep:

0 = p0−∆CAS− Runoff−∆Stor −∆CASStor (138)

∆CAS = fws/(dt ∗ lvap) = (Eci + Ect + Egi + Egs)/lvap (139)

Runoff = roff + roffo (140)

∆Stor = ∆Int + ∆Soil + ∆Snow (141)

∆Int = ∆capaccliq + ∆capaccsnow + ∆capacg (142)

∆Soil = ∆WWWliq + ∆WWWIce (143)

∆Snow = ∆snowgmass (144)

∆CASStor = ∆StorWCAS/(dt ∗ lvap) (145)

where ∆Stor is the net change in storage, ∆Int is the change in canopy and ground surface
storage, ∆Soil is the change in the soil moisture stores, ∆Snow is the change in the snow
mass, ∆CASStor is the change in CAS water storage from the latent heat flux, and lvap
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is the latent heat of vaporization. These all must sum to 0, or in reality a value near-
zero (i.e. 1. E-6), or SiB4 prints the values and stops the simulation. As in the energy
balance, the SiB4 namelist has settings where the user can change the threshold of the error
allowed (waterb thresh), print the water balance results (waterb print=True), and not stop
when a water balance error occurs (waterb stop=False). With small thresholds, occasional
errors may occur due to the assumptions and machine precision, particularly during shoulder
seasons with rapid changes between liquid water and ice; and the namelist also includes a
flag (bnum allow=10) that allows for a certain number of timesteps to occur before stopping
the model (if desired).

5.6 Water Availability
SiB includes a number of soil moisture diagnostics in order to predict the moisture availability
to plants and the resulting stress on vegetation. Baker et al. (2008, 2013) describe the soil
water stress calculations. Here we briefly provide equations of diagnostics that will be used
to predict plant phenology and the carbon cycle.

Plant available water (PAW) quantitatively defines how much water in the soil plants
have access to. The PAW per soil layer i is defined as:

PAWi = volliq,i −WP (146)

where volliq,i is the volume of liquid water in soil layer i and WP is the wilting point. To
have a metric that quantifies the water available to plants throughout the entire soil column,
PAWFRW is defined as:

PAWFRW =

nsoil∑
i=1

RootFi (volliq,i −WP)

FC −WP
, (147)

where RootFi is the root fraction in soil layer i, and FC is the field capacity.
Since for many plants the majority of the roots are in the top three soil layers, SiB4

also uses a metric that quantifies the water available to plants in the top three soil layers
(PAWFTop), which is calculated as:

PAWFTop =

3∑
i=1

RootFi (volliq,i −WP)

FC −WP
, (148)

The diagnostics PAWi, PAWFRW, and PAWFTop are all calculated every timestep.
To quantitatively define the total water available in the soil column, the variable (TAWFRW)

can be calculated as:

TAWFRW =

nsoil∑
i=1

RootFi ((volliq,i + volice,i)−WP)

FC −WP
, (149)
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where volice,i is the volume of ice in soil layer i. Analogous to PAW , SiB4 also calculates
the total water available only in the top three soil layers (TAWFTop),

TAWFTop =

3∑
i=1

RootFi ((volliq,i + volice,i)−WP)

FC −WP
, (150)

as well as the daily mean total water available in the top three soil layers (TAWFTopD).
Long-term water availability is used by the prognostic phenology methodology to deter-

mine the maximum vegetation coverage suitable for a given climate. SiB4 calculates two
climatological water availability values, one for the plant available water (ClimPAWFRW) and
one for the total available water (ClimTAWFRW). In SiB4, these are calculated as long-term
running means of their timestep counterparts:

ClimPAWFRW = (1− Climwt)ClimPAWFRW + ClimwtPAWFRW (151)

ClimTAWFRW = (1− Climwt)ClimTAWFRW + ClimwtTAWFRW (152)

Climwt =
1

ClimLen ∗ steps per day
(153)

where Climwt is the long-term running mean weighting factor calculated from the parameter
ClimLen, which is typically set to 10 years.
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6 Solar-Induced Fluorescence (SIF)
Plants are able to use sunlight to produce glucose from carbon dioxide and water. During
this process, the absorbed photosynthetically active radiation (APAR) has four fates: 1)
Photochemistry (P), 2) Thermal Dissipation (D), 3) Energy-Dependent Heat Dissipation (N),
and 4) Fluoresence (F) (Kitajima & Butler, 1975; Gentry et al., 1989). While photosynthesis
is generally an efficient process, a relatively small (∼1%) fraction of the absorbed energy is
re-emitted at longer wavelengths (Jeong et al., 2017). This reemission of natural sunlight is
called solar-induced fluorescence (SIF), and it is regulated by the biology of living cells by
way of complex mechanisms of energy dissipation (Krause & Weis, 1991; Zhang et al., 2014).

Recently, global satellite measurements of SIF have become available, and these have
been used to study plant productivity and phenology (Meroni et al., 2009; Frankenberg et
al., 2011; Joiner et al., 2011). Due to phenology, several studies have shown a near linear
relationship between remotely-sensed SIF and GPP in seasonal ecosystems (van der Tol et
al., 2009; Zarco-Tejada et al., 2013); and ground-based SIF measurements also have been
shown to correlate well with GPP from flux towers over seasonal temperate and boreal forests
(Joiner et al., 2014; Yang et al., 2015). Since SIF is a physiological process, satellite-based
SIF observations offer an alternative view of vegetation function compared to the information
on structure and greenness offered by traditional reflectance indices (Jeong et al., 2017).

In order to study and simulate SIF, photosynthesis models have been extended to include
SIF predictions (Lee et al., 2015; van der Tol et al., 2014). SiB4 calculates SIF following van
der Tol et al. (2014), using leaf-level to canopy-level scaling based on Lee et al. (2015). This
section outlines the equations included in the model, and the variables used to calculate SIF
are listed in Table B10. For a complete description and derivation of these equations, the
readers are referred to the two references listed above.

To calculate SIF, SiB4 uses equations derived by van der Tol et al. (2014) to calculate
probabilities for the fate of absorbed photons. First, potential and actual electron transport
rates are set from the assimilation rates calculated in the photosynthesis module:

sifje = assim (154)

sifjo = assimpot (155)

sifjejo = sifje/sifjo (156)

where assim is the CO2 assimilation rate, assimpot is the potential assimilation rate, and
sifjejo is their ratio. Using relationships determined from empirical experiments, SiB4 calcu-
lates the probabilities of absorbed photons to follow each of the four different pathways:

sifKd = 0.95 if Tc < 300 (157)

= 0.95 + 0.0236(Tc − 300) if Tc ≥ 300

sifKn = 5.01[(11sifx
1.93)/(10.0 + sifx

1.93)] (158)

sifKp = p1(sifKn + sifKd + sifKf0)/(1.0− p1) (159)

sifx = 1.0− sifjejo (160)
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p1 = p2sifjejo (161)

p2 = 4.0/(0.05 + sifKd + 4.0) (162)

where sifKd is the heat dissipation probability, sifKf0 is an initial probability for SIF set to
0.05, sifKn is the non-photochemical quenching (NPQ) probability, sifKp is the photosynthesis
probability, and sifx is a GPP scaling factor that is one if there is no GPP and zero is GPP is
at its potential. From these constraints, the SIF probability (sifKf) can be back-calculated:

sifKf = sifKf0/KTot (163)

KTot = sifKd + sifKf0 + sifKn + sifKp (164)

where KTot is the total probability used to convert these values to yields.
Using these probabilities, yields for each of the four possible actions of an absorbed

photon can be calculated:

φD = sifKd/KTot (165)

φF = mf ∗ (1.0− p1) (166)

φN = sifKn/KTot (167)

φP = sifKp/KTot (168)

mf = sifKf0/(sifKd + sifKf + sifKn) (169)

where φD is the heat dissipation yield, φF is the SIF yield, φN is the NPQ yield, and φP
is the photosynthetic yield. The yields sum to one because these processes are mutually
exclusive.

Using leaf-to-canopy scaling as described in Lee et al. (2015), SIF is calculated as

SIF = PARNS ∗ FPAR ∗ 1.E6 ∗ φF/κ (170)

κ = 0.04 ∗ VMax ∗ 1.E6 + 8.1 (171)

where PARNS is the non-scattered PAR, FPAR is the absorbed fraction of PAR, VMax is
the maximum rubisco velocity, and 1.E6 is a units conversion factor.
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7 Carbonyl Sulfide (COS)
Carbonyl Sulfide (COS) is an atmospheric trace gas that is an analog of carbon dioxide
(CO2). The main source of COS is biogenic activity in the ocean, and the main sinks of COS
are vegetation leaves and soil (Cutter et al., 2004). Because it is taken up by plants during
photosynthesis and soils during microbial activity, it can provide information on carbon cycle
processes. Berry et al. (2013) implemented mechanistic and empirical descriptions of leaf and
soil COS uptake into SiB in order to predict estimates of the COS land flux. The equations
included in SiB4 are summarized here, and the SiB4 COS variables are listed in Table B11.

7.1 Leaf Uptake
Atmospheric COS is taken up by vegetation as it is travels from the atmosphere into the
leaves, where it is consumed inside chloroplasts in the leaf cells by the carbonic anhydrase
(CA) enzyme. Once COS has diffused into leaf cells, it is hydrolyzed in a reaction that is
catalyzed by CA at a rate proportional to the partial pressure of COS in the chloroplast.
This process is described in detail by Berry et al. (2013), who developed and evaluated a
model for predicting COS leaf uptake in SiB.

Figure 7.1: COS Uptake-Resistance Model (Berry et al., 2013).
Numbers in parentheses are conductance values corresponding to the process stated in the square

boxes: 1) Boundary layer conductance, gb; 2) Stomatal conductance, gs, 3) Mesophyll

conductance; and 4) Biochemical rate constant. Together steps 3 and 4 comprise the apparent

COS conductance, gCOS .

Since COS takes the same pathway as CO2 through a leaf to the location of consumption
inside the chloroplasts, the assimilation of COS can be modelled by the same series of
resistances as CO2, as shown in Figure 7.1. Relative to H2O, which also traverses through
the same pathway from the atmosphere to the leaf cells, the greater mass and larger cross
section of COS restricts its diffusion by a factor of 1.94 in the stomatal pore and 1.56 in the
laminar boundary layer (Seibt et al., 2010; Stimler et al., 2010). Analogous values for CO2
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are 1.6 and 1.4, respectively; leading to ∼20% slower gas phase diffusion of COS than CO2.
Once COS has diffused into the leaf cell, it is hydrolyzed in a reaction that is catalyzed by the
CA enzyme. While the rate at which this occurs remains uncertain globally, studies indicate
that the mesophyll conductance and biochemical CA activity scale with the photosynthetic
capacity (VMax, maximum rubisco velocity in the leaf) (Badger & Price, 1994; Evans et al.,
1994). Using this assumption, these two processes can be combined into a single conductance
for COS uptake (gCOS) that is proportional to VMax such that

gCOS = α ∗ VMax (172)

where α is a parameter that is calibrated to observations of simultaneous measurements of
COS and CO2 uptake (Stimler et al., 2012). Anaysis of these measurements yield estimates
of α of ∼1400 for C3 and ∼7500 for C4 species.

Using this framework and simplifications, the COS uptake (assimCOS) is expressed as

assimCOS = cosCAS ∗ gtCOS (173)

gtCOS = [1.56/gb + 1.94/gs + 1.0/gCOS]−1 (174)

gCOS = 1400 ∗ VMaxT ∗ (1.0 + 5.33 ∗ C4) ∗ APARKK ∗RSTFAC2 (175)

∗(P/P0Sfc) ∗ (TCan/TIce)

where cosCAS is the COS mole fraction in the canopy air space (CAS), gtCOS represents the
series conductance of the leaf system for COS calculated from the respective water vapor
conductances predicted by SiB (Figure 7.1), VMaxT is the temperature-adjusted VMax rate,
APARKK is the scaling factor for leaf radiation, RSTFAC2 is the rootzone water potential,
P is the pressure, P0Sfc is the reference surface pressure (10,000 Pa), TCan is the canopy
temperature, and TIce is the freezing temperature of water (273.15 K).

As a diagnostic, the leaf relative uptake of COS compared to CO2 (lruCOS) is

lruCOS = (assimCOS/assim) ∗ (CO2m/COSm) (176)

where assim is the assimilation rate of CO2, CO2m is the reference level CO2 concentration,
and COSm is the reference level COS concentration. COS concentrations at the leaf surface
and inside the leaf can also be calculated as diagnostics such that

coss = cosCAS − assimCOS ∗ (1.56/gb) and (177)

cosi = coss − assimCOS ∗ 1.94/gs), (178)

where coss is the COS concentration at the leaf surface and cosi is the internal leaf COS
concentration.

7.2 Soil Uptake
Because uptake also occurs in soil organisms, COS diffused into the soil is also hydrolized
(Seibt et al., 2006; Wingate et al., 2008). While an empirical study by Van Diest &
Kesselmeier (2008) indicated that the COS soil diffusion rate is a function of the activity of
CA, soil temperature, porosity, and water content, explicit values for these relationships is
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currently not available globally. Due to this limitation, SiB uses a soil COS uptake that is
proportional to CO2 production by soil respiration (Yi et al., 2007). Since Rh is modeled
separately for each soil layer in SiB4, the soil COS uptake is calculated separately for the
top three layers (i=1,2,3), with the total flux being sum from these layers scaled to the
total soil respiration. The soil COS uptake (grndCOS) can be expressed as a function of the
heterotrophic respiration (Rh):

grndCOS =
3∑
i=1

ksoil ∗ cosCAS ∗ F (θ)i ∗Rh,i/Rh3 ∗Rh (179)

F (θ)i = F (Freeze)i ∗ F (Temp)i ∗ F (Moist)i (180)

F (Freeze)i = WWWLiq,i/(WWWLiq,i +WWWIce,i) (181)

F (Temp)i = MHRTSoil,Hot,i (182)

wfracti = (WWWLiq,i/(dzi ∗ poros ∗ denh2o)) ∗ (RootFi/RootF3) (183)

F (Moist)i = [1.42− 1.42 ∗ wfracti] (184)

∗(0.8 ∗ wsat((wfractzm−woptzm)/(1.0−woptzm))2)

where ksoil is the COS soil decay rate (12000 s−1) relating the COS flux with Rh; the function
F (θ) represents water and temperature responses; Rh,i is the heterotrophic soil respiration
per soil layer, Rh3 is the total heterotrophic soil respiration in the top three layers, and Rh is
the total heterotrophic soil respiration (sum of all ten layers). In calculating the temperature
and moisture sensitivities, WWWLiq,Ice are the soil liquid and ice content (per soil layer),
MHRTSoil,Hot is the respiration high temperature potential (per soil layer), dz is the soil layer
thickness, poros is the soil porosity, denh2o is the density of water (1000 kg m−3); RootF is
the root fraction (per soil layer), RootF3 is the total root fraction in the top three soil layers;
and wfract, woptzm, wsat, and zm are variables calculated during the determination of
soil respiration. While the temperature sensitivity of COS uptake is the same as that used
in heterotrophic respiration, the moisture sensitivity of COS uptake falls more quickly with
soil moisture than Rh, reaching a minimum of 0 in completely saturated soils.

7.3 Prognostic Canopy Air Space (CAS) COS
Similar to the prognostic CAS CO2 calculation, cosCAS is a prognostic variable calculated as

cosCAS = [cosCAS,prev + dtSiB/coscap ∗ ((COSm ∗ ga)− grndCOS − assimCOS)] (185)

/[1.0 + (dtSiB ∗ ga)/coscap]

where cosCAS,prev is the cosCAS concentration of the previous timestep, dtSiB is the model
timestep, coscap is the air capacity for the COS exchange, and ga is the mixed-layer to CAS
conductance. Using the prognostic cosCAS concentration, the net COS flux is given by

fluxCOS = ga ∗ (cosCAS − COSm). (186)
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8 Dynamic Prognostic Phenology
SiB4 models plant phenology by taking advantage of the growth stage concept without
relying on empirical values or satellite vegetation data. To predict plant phenology, SiB4
uses dynamic stages that respond to the leaf state and environmental conditions. The
overarching idea is that vegetation progresses through phenology stages during a growing
season; however, the phenology stage can change daily. This dynamic behavior means that
plants can progress through the stages at different rates, returning to growth stages at any
time or never existing in specific stages. For example, desert environments with short rainy
seasons rapidly progress through the stages, while evergreen forests are never dormant.

In this approach, described in detail by Haynes et al. (2019a), the timing and length
of each phenology stage is not prescribed, but rather is diagnosed using a combination of
potentials that respond to assimilation rate, climate, day length, leaf pool size, and plant
stress from the associated weather and environmental conditions. This dynamic strategy
allows SiB4 to simulate day-to-day, seasonal, and interannual variability using a mechanistic
approach. The phenology stage can change daily and is associated with specified maximum
rubisco velocities (VMax), carbon pool allocations (Alloc), and carbon transfers from live to
dead pools. We performed sensitivity studies, finding that five stages optimally captures the
leaf-out and senescence of deciduous-type vegetation, while also providing sufficient options
to simulate carbon flux and pool variability in evergreen-type vegetation across a broad range
of climates. The parameters and variables for the prognostic phenology are listed in Tables
A6 and B12.

Photosynthesis
10 Minutes

Allocation

SiB4 Dynamic 
Prognostic Phenology

Daily Photosynthetic 
Gain

Phenology Stage
Growth 

Climate-Adjusted Benefit of Adding Leaves

Weather Potential
Temperature and Water Availability

Carbon Pools
Updated Daily

Day Length
Seasonal progression as days get shorter

Leaf-Out Growth Maturity Stress/Senescence
Dormant

Phenology Stages

Figure 8.1: SiB4 Dynamic (Non-Crop) Phenology.

51



An overview of the SiB4 dynamic phenology model is shown in Figure 8.1. Sub-hourly
photosynthesized carbon is summed daily and allocated to the live pools depending on the
seasonal development, which is represented by the phenology stage (also updated daily). The
appropriate aboveground carbon pools are used to determine the LAI, which then is used to
calculate photosynthesis. In addition to being used for allocation, the phenology stage also
plays a role in determining the maximum rubisco velocity (VMax), which affects the rate of
photosynthesis, as well as live pool turnover for senescence (TP). At the end of the season,
a minimal LAI is maintained in order for growth to occur once environmental conditions are
suitable, which is analougous to a labile carbon or storage pool used by some models, or the
seed carbon used in the crop phenology model.

8.1 Phenology Stages
To represent plants as they develop and mature through the growing season, SiB4 defines
five phenology stages (nstage = 5), which are listed in Table 8.1.

Num Stage

1 Leaf-Out

2 Growth

3 Maturity

4 Stress/Senescence

5 Dormant

Table 8.1: Dynamic Phenology Stages.

In leaf-out, growth begins from stored carbon, since the canopy cannot support photo-
synthesis. This stage begins when the environmental conditions become suitable for photo-
synthesis, which is determined from day length, soil moisture, and temperature. During the
growth stage, leaf growth is still promoted from carbon allocation, since the canopy contin-
ues to benefit by growing more leaves to intercept more light. This stage begins when the
canopy is large enough to support photosynthesis, and ends when an approximate balance
is reached between gains for growing leaves versus costs for maintaining leaves. At maturity,
the leaf amount is sustained and allocation is balanced between canopy maintenance, root
growth, and product production (seeds, fruit, and flowers). When there is a penalty for
growth because of high maintenance costs, plants move to the stress stage, where all carbon
is allocated to the roots for storage. During this stage, leaf photosynthetic capacity (VMax)
is reduced, and the leaf transfer fraction (TP) may be increased to help enhance senescence.
Once there are no leaves in the canopy or conditions are not suitable for photosynthesis,
the vegetation enters the dormancy phase. In this stage, the canopy is inert, there is no
photosynthesis, and autotrophic respiration continues at a low rate. This stage continues
until phenological triggers initiate a transition to leaf-out.
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8.2 Stage Selection
8.2.1 Phenology Index (PI )

The timing and length of each phenology stage are diagnosed from a combination of potentials
that depend on climate, day length, leaf pool size, and plant stress from the associated
weather and environmental conditions. In order to quantify the shifting between phenology
stages, this scheme uses a phenology index (PI) such that:

PI = Min

[
PSDayL, PSGrw, PSWx

]
(187)

where PSDayL is a day length potential, PSGrw is a growth potential, and PSWx is a weather
potential. When it is beneficial to grow leaves and environmental conditions support pho-
tosynthesis, PI will be near 1; however, when there is no benefit to growing leaves or when
conditions are not suitable for photosynthesis, then PI will be near 0. To distinguish between
the phenology stages, SiB4 applies prescribed threshold values (PIThresh) to PI. Currently all
vegetation uses the same thresholds of 0.8, 0.6, 0.4, and 0.2 between stages 1 to 5, respec-
tively; however, SiB4 has the flexibility for the user to change these for any PFT.

8.2.2 Day Length Potential (PSDayL)

Photoperiod is a dominant cue to initiate senescence processes, particularly in the Arctic
(Ernakovich et al., 2014; Estiarte & Peñuelas, 2015; Pau et al., 2011). To progress the
phenology as days get shorter, as well as to prohibit leaf-out during mild weather events
during the winter, this strategy uses a photoperiod potential (PSDayL). The day length
potential captures the idea that vegetation responds to shortening days as a trigger for the
end of the growing season, allowing a way to model the evolutionary behavior of high-latitude
vegetation in preparing for the oncoming winter.

Since sensitivity studies in the Arctic suggest that vegetation in high latitudes may
begin to prepare for the end of the growing season even before the equinox, PSDayL has
been designed to include expressions that decrease this potential even when day lengths are
approaching their longest values. To do this, PSDayL has three parameters: PSDRef, which is
used as a reference value and typically varies between -1 and 2; PSDMul, which is a multiplier
for the rate of the decrease in the day length potential; and PSDMin, the minimum value
that PSDayL can drop down to. When PSDRef is < 0, then PSDayL begins decreasing prior to
the equinox. The equations for this circumstance are

PSDayL =

 1− PSDMul (DayL−DayLO) DayLdt ≥ 0

1−DayLA − PSDMul (DayLMax −DayL) DayLdt < 0
, (188)

DayLO = (DayLMax + PSDRef) , and (189)

DayLA = DayLMul (DayLMax −DayLO) . (190)
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where DayL is the length of day, DayLdt is the change in the length of day, DayLMax is the
length of the longest day of the year, and DayLO is an offset value.

In contrast, when PSDRef is ge 0, then PSDayL begins decreasing after the equinox. The
equations for this circumstance are

PSDayL =

 1 DayLdt ≥ 0

1− PSDMul (DayLO −DayL) DayLdt ≤ 0
and (191)

DayLO = (DayLMax − PSDRef) . (192)

Regardless of when PSDRef begins decreasing, it always must satistfy

PSDMin ≤ PSDayL ≤ 1. (193)

This set of equations allows the strength of the photoperiod phenological response to vary
with vegetation type and with latitude. For PFTs that exist across all latitudes, the length of
day can have no impact on the phenology at low latitudes (e.g. tropics), while the length of
day can have significant phenological impacts at high latitudes (e.g. arctic). Sample PSDayL

values for two different latitudes and four different combinations of parameters are shown in
Figure 8.2.
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Figure 8.2: Sample Day Length Potentials.
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8.2.3 Growth Potential (PSGrw)

The growth potential evaluates the benefit of adding new leaves as opposed to allocating
carbon belowground, capturing the idea that vegetation has evolved to grow to established
sizes based on both climate and seasonal conditions. Vegetation grows as large as the en-
vironmental conditions will support, be it limited by water, temperature, or nutrients. For
example, large, extensive forest canopies exist where both weather and temperatures are
optimal for growth; whereas small and sparse vegetation occurs in deserts that are water
limited or in tundra environments that are temperature limited. Since climate is likely the
dominant determining factor in long-term vegetation growth and sustainability, PSGrw makes
use of a climatological LAI and water availability in order to provide a metric to quantita-
tively evaluate climate suitability. The behavior of the growth potential follows the light-use
efficiency curve and radiation saturation effect. When there is minimal vegetation coverage,
each additional leaf has a significant impact on the photosynthesis rate. In contrast, as the
canopy closes and approaches the maximum aboveground biomass that can be supported by
the climate, adding more leaves is no longer beneficial. To mimic this behavior, the growth
potential changes as necessary, starting at its maximum value when the vegetation is minimal
(highest potential for growth) and decreasing to its minimal value with a full canopy.

The growth potential (PSGrw) linearly decreases with increasing LAI such that:

PSGI =


1 LAI ≤ ClimLAIMin

PSGMax − PSGMin

ClimLAIMin − ClimLAIMax

ClimLAIMin ≤ LAI ≤ ClimLAIMax

PSGMin LAI ≥ ClimLAIMax

(194)

where ClimLAIMin and ClimLAIMax are the diagnosed minimum and maximum LAI for
a given climate, and PSGMin is a parameter.

Using PFT-specific relationships, minimum and maximum bounds of LAI calculated
from long-term water availability are compared to current LAI values, determining PSGrw.
Example PSGrw values are shown in Figure 8.3, where each colored line represents different
climates with different ClimP values and thus different LAI bounds. At the start of a
growing season, the LAI is minimal, so PSGrw is at its maximum potential of 1. As the LAI
increases, the benefit of adding more leaves decreases due to increasing respiratory costs or
decreasing resources, such as limited light or water. PSGrw linearly decreases with increasing
LAI until it reaches its minimum value (PSSMin) when LAI surpasses ClimLAIMax. As PSGrw

decreases, PI decreases, advancing the phenology stage.
The minimum and maximum canopy fullness values (ClimLAIMin, ClimLAIMax) sup-

ported by climatic conditions is determined from 10-year running means initialized during
spin-up using

ClimLAIMin = ClimPCLC + CLL and (195)

ClimLAIMax = ClimPCLC + CLG, (196)

where ClimP is a climatological suitability index and CLC , CLL, and CLG are parameters.
ClimP can exponentially or linearly scale climatic water availability to cover environmental
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Figure 8.3: Example Growth Potentials.

conditions specific to each vegetation type. Being an index, ClimP is minimal in climates
that cannot support vegetation and increases with increasing water availability. ClimP is
calculated as

ClimP = CPA(CPB)ClimW + CPC(ClimW − CPD) (197)

CPMin ≤ ClimP ≤ CPMax (198)

where ClimW is a climatological water availability index and CPA, CPB, CPC , CPD, CPMin,
and CPMax are parameters.

ClimW provides a standardized metric to determine the climatological amount of soil
water available to plants, since water availability is a key determinant of plant productivity.
Because climates have different responses to various water availability calculations, SiB4
includes the flexibility to change which water availability metric is used for ClimW depending
on PFT. Using the parameter CWAType, the user can specify which of four climatological
water availability metrics to use: 1) Convective Precipitation (ClimCupr), 2) Precipitation
(ClimPr), 3) Root-Weighted Plant Available Water (ClimPAWFRW ), or 4) Root-Weighted
Total Available Water (ClimTAWFRW ). All are 10-year running averages of their timestep
counterparts, where convective and total precipitation are provided by the driver data and
PAWFRW and TAWFRW are calculated as shown in Section 5.6.

The relationships between ClimP and ClimW used for the grassland PFTs are shown
in Figure 8.4. Because grasslands grow across a wide climatic range, they demonstrate the
different functionalities that can exist between ClimP and ClimW , and all three grasslands
use ClimPAWFRW as their water availability metric. C4 grasslands use the exponential
functionality (using CPA and CPB) to rapidly increase ClimP for water availability values
in the mid-range of ClimW . For these grasslands, small differences in ClimW can produce
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Figure 8.4: Example Climate Suitability and Water Availability Relationships.

large differences in vegetation greenness and productivity, so ClimP values extend from 0.1
to 2. C3 grasslands use the linear relationship between ClimP and ClimW . Temperate C3
grasslands also cover broader climate conditions, thus ClimP values for this PFT also extend
from 0.1 to 2. In contrast, arctic grasslands typically grow in water stressed environments due
to either low precipitation amounts or freezing conditions, and because of this the changing
ClimP values are focused on low ClimW values.

8.2.4 Weather Potential (PSWx)

The phenology weather potential utilizes real-time weather conditions and soil moisture to
represent the potential photosynthesis, capturing how vegetation responds to humidity, tem-
perature, and water stress. This factor allows vegetation to respond to transient conditions.
PSWx is unity at the start of the growing season when environmental conditions are suitable
for photosynthesis, ensuring rapid growth immediately at the onset of leaves. As the growing
season progresses and the environmental conditions required for photosynthesis deteriorate,
PSWx decreases until it reaches zero under highly stressed conditions when photosynthesis is
inhibited.

The equation used to calculate PSWx is

PSWx =

(
PFWx

PFWx,SM

)
, (199)

where PFWx is a combined potential that is sensitive to soil moisture, humidity, and tem-
perature, and PFWx,SM is the seasonal maximum of PFWx. The combined potential PFWx is
calculated as

PFWx =
1

2

(
PFE + PFWA

)
, (200)
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where PFE and PFWA are 10-day running mean potentials that represent environmental
conditions and water availability. Since the phenology scheme aims to follow seasonal plant
progression, 10-day running means provide an optimum length to avoid spontaneous reac-
tions in plant growth due to short-lived weather systems, while still responding to synoptic
and seasonal-scale anomalies. All PFTs and running-mean phenology variables use this
length; however, each variable has its own input parameter in SiB4 and can be changed as
the user sees appropriate.

PFE is a combined potential from three envoronmental conditions and is the 10-day
running mean of the environmental potential used to scale photosynthesis (FE, Section 4.2).
PFE is the multiplicative of three potentials, FLH , FRZ , and FT . To summarize, the FLH
potential represents leaf humidity stress (Sellers et al., 1992), the FRZ potential represents
root-zone water stress (Baker et al., 2008), and the FT potential incorporates high and low
temperature stresses (Baker et al., 2008; Jarvis, 1976).

To intensify the effects of drought, FWA is the 10-day running mean of a water availability
metric. The parameter PSWXType allows the user to select a water availability metric per
PFT from eight options:

1. PAWFTop

2. PAWFZW

3. PAWFZW · 2

4. No stress for PAWFZW > 0

5. TAWFTop

6. TAWFZW

7. FRZ

8. FE

All of the PAW and TAW options are defined in Section 5.6.

8.3 Growing Season Start
The beginning of the growing season depends on climate and is not always straight-forward.
For example, temperate grasslands may have strong seasonality with a dormancy period
during the winter, while tropical vegetation continues growing all year. Adding even more
complexity, grasslands may have two growing periods within a single year, with a brief
period of browning in-between when the environmental conditions are too hot and dry to
support growth; while in contrast, deciduous forests typically only have one leaf-out period
for the entire growing season. To mimic natural behavior, the phenology scheme needs to be
dynamic, with the ability to return to the leaf-out or growing stages when necessary, while
not triggering leaf-out mid-season for vegetation experiencing mid-season stress that should
only have a single seasonal cycle.

To accomplish this, one of the phenological potentials, PSWx can be reset in order to help
obtain the leaf-out stage when warranted. With PSWx being a ratio, it is reset to unity by
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setting the seasonal maximum value PFWx,SM equal to the current value PFWx. For seasonal
vegetation, this ensures rapid growth from a minimal leaf pool when day lengths are not
substantially decreasing. However, for non-seasonal vegetation that may not ever obtain the
conditions required for resetting the stress factor, leaf-out or growth can still be obtained if
the conditions support rapid growth.

To determine when PFWx,SM is reset, SiB4 uses two flags. The first is the growing
season suitability flag (FlagG), which is true when conditions are suitable for photosynthesis.
Following the growing season start drivers used by Jolly et al. (2005), SiB4 uses temperature,
soil moisture, and day length requirements to begin a growing season. For temperature,
the daily mean temperature (TMD) must be between a specified minimum temperature
(GTMin) and maximum temperature (GTMax) for a specific number of days (GTLen). For soil
moisture, SiB4 uses the root-weighted total available fraction of water in the top three layers
(TAWFTop). The top three soil layers contain ∼75% of simulated roots, thus these layers
can be used to indicate water availability while responding quickly to precipitation events
given their shallow depth. To start the growing season, TAWFTop must be above a specified
value (GWMin) for a specific number of days (GWLen). For light, the day length must be
longer than a specified minimum length. When the days are getting longer, the required
day length is given by GLMinI. When the days are getting shorter, SiB4 has two choices
to determine if the day length is suitable to start a growing season. If GLOffD is negative,
then the day length must be greater than the absolute value of GLOffD. Otherwise, the day
length subtracted from the maximum day length must be less than GLOffD to start a growing
season, indicating that only a minimal amount of day has passed since the occurrence of the
maximum day length. If all three of these conditions are met, then FlagG is true, otherwise
FlagG is false.

The second flag used to determine the start of the growing season is an assimilation flag
(FlagA), which is set to true when the assimilation rate becomes minimal at the end of the
growing season. FlagA makes use of an assimilation potential (PFA) and is true when

PFA < ALRV and (201)

PFA =
AssimRM

AssimSM
, (202)

where ALRV is a parameter that is currently set to 0.1 for all PFTs. In calculating PFA,
AssimRM is a 10-day running-mean of the assimilation rate, and AssimSM is the seasonal
maximum of AssimRM. As with the other running-mean lengths used in this phenology
approach, SiB4 has a PFT-specific parameter ALRL to change the running-mean length if
desired. The occurrence of both FlagA and FlagG indicates a new growing season can begin
and the vegetation can commence leaf-out.

8.4 Phenology and Physiology Interactions
SiB4 uses the hypothesis that three physiological processes are directly dependent on phe-
nology: carbon allocation, leaf photosynthetic capacity, and senescence. Carbon allocation
determines the fate of assimilated carbon and affects plant growth, and studies have shown
that allocation shifts from aboveground to belowground through the growing season (e.g.
Aguado et al. (2016); De Kauwe et al. (2014); Guillemot et al. (2017)). This progression
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falls in-line with the philosophy that plants adjust their allocation to improve their most
limiting resource. At the beginning of the growing season when the leaf pool is small, plants
are limited by light and thus allocate resources to growing leaves; however, at the end of
the season plants allocate more resources belowground to the roots in order to capture more
water and to store carbon for growth the following season.

To capture this behavior, SiB4 includes seasonally-varying allocation by including stage-
specific allocation fractions (parameter AllocP ) that specify the fraction of photosynthesized
carbon allocated to each live pool for each phenology stage. In the case of light limitation, if
the environmental conditions support growth and if adding leaves would provide an improve-
ment to photosynthesis at a reasonable cost, then the phenology stage shifts to the leaf-out
or growth stages with high leaf allocation fractions. Moisture sensitivity is also included in
the phenology stage determination: if the vegetation is moisture stressed, then the phenology
stage shifts towards the stress stage that has more allocation to the roots.

Second, plants can change their leaf photosynthetic capacity (maximum carboxylation
rate of rubisco, VMax) throughout the season. VMax is an important control on the pho-
tosynthetic rate that has large seasonal variations, changing the amount of carbon being
available for growth and maintenance and having significant impacts on the carbon cycle,
energy exchanges, and hydrology (Bauerle et al., 2012; Groenendijk et al., 2011; Houborg et
al., 2013; Zhou et al., 2014). Specifying VMax by phenophase ties it to seasonal development,
providing a mechanistic way to change it throughout the growing season. SiB4 includes VMax

as a parameter that changes with phenology stage and with PFT, and current values use
the strategy that it increases through the growth stage and then decreases as the leaves age
(Restrepo-Coupe et al., 2013; Saleska et al., 2014; Wu et al., 2016; Xu et al., 2017).

Third, timing of plant senescence occurs seasonally; thus, SiB4 has a parameter, LPTran,
that changes the turnover rate of leaves with phenology stage. This allows litterfall to be tied
to senesence for highly seasonal vegetation types, aiding the rapid drop of leaves at the end
of the season. Implementing prognostic phenology using dynamic stages provides a powerful
mechanism to integrate ecosystem processes, linking carbon pools (storage), land-atmosphere
(energy) fluxes, and biosphere-atmosphere (carbon) exchanges.
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9 Defined Prognostic Phenology (Crops)
A crop phenology model was incorporated in SiB by Lokupitiya et al. (2009) to improve
land-atmosphere carbon exchanges from croplands. This work focused on specific sites for
three crops: maize, soybeans, and winter wheat. SiB4 includes all three of these crops. In
addition, since there are numerous species of crops that are not specifically simulated, SiB4
has two generic crop PFTs, one for C3 crops and one for C4 crops. These PFTs capture the
short and intense growing season that generally occurs for crops, and they follow the soybean
and maize phenology strategies, respectively. The crop phenology model was extended to
regional applications by Corbin et al. (2010b). We have made further modifications to the
crop phenology approach in order to simulate crops globally in a consistent framework with
the non-crop vegetation types.

Photosynthesis
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SiB4 Defined 
Prognostic Phenology

Phenology Stage
Growing Degree Days

- or -
Day After Planting Date

Carbon Pools

Har
vest

Planting
Date
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Transfer

10 Minutes

Daily

Figure 9.1: SiB4 Defined (Crop) Phenology.

An overview of the SiB4 defined crop phenology model is shown in Figure 9.1. The crop
phenology model in SiB4 determines the phenology stage using either growing degree days
(GDD) or the number of days since planting (DAPD). To start the season, planting dates
are estimated based on temperature, soil moisture, and day length. Initial growth occurs
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from seed carbon, which quickly transfers to self-sustaining growth from carbon taken up
via photosynthesis. Sub-hourly photosynthesized carbon is summed daily and allocated to
the live carbon pools depending on seasonal development. In return, the updated carbon
pools are used to calculate the LAI, which then closes the cycle and is used to determine
carbon uptake. At the end of the season, the crops are harvested, with carbon either being
removed or transferred to the dead carbon pools. The parameters and variables needed to
model crops are listed in Tables A7 and B13.

SiB4 assumes that crops are not limited by nutrients nor water. Although SiB4 assumes
that the crops are well fertilized, it does have an indirect representation of nitrogen limitation
through rubisco dynamics within the photosynthetic mechanism. Rather than including
irrigation explicitly, SiB4 assumes a basic irrigation strategy such that if water is available
in any soil layer, the crops can obtain this water and are not stressed. This approach allows
SiB4 to obtain high yields over productive croplands, while still responding to significant
droughts when the soil moisture is depleted throughout the entire soil column.

9.1 Phenology Stages
Crops have well-defined growth and development stages that can be modelled using the same
basic approach as the dynamic phenology framework. Because crops step through their
development sequentially, they are more straight-forward to model than natural vegetation.
For each crop, the number of phenology stages is an adjustable parameter (nstage). Three
options currently exist for predicting the current phenology stage (PIStage). For each crop,
the method can be specified by setting the parameter GPD to one of the following:

1. Growing degree days (GDD). If this option is selected, then additional parameters need
to be set to establish the temperature base (GDDTBase) and the temperature maximum
(GDDTMax), where the GDD is calculated daily as

GDD =

 GDD + (TMDF − TBase) GDDTBase ≤ TMDF ≤ GDDTMax

GDD + (GDDTMAX − TBase) TMDF > GDDTMax

(203)

with TMDF being the daily mean temperature in Farenheit.

2. Days after planting DAPD, accumulated daily.

3. Days after planting above freezing DAPDNF, accumulated daily if the daily mean
temperature is above freezing.

No matter which method is selected, the appropriate values are saved in the phenology index
(PI), and thresholds PIThresh separate PI into different phenology stages PIStage.

Just as with the dynamic phenology approach, the defined phenology stage controls three
physiological properties:

1. Carbon allocation to the live pools, determined by the parameter AllocP.

2. Leaf photosynthetic capacity, determined by the parameter VMax.
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3. Litterfall (leaf transfer), determined by the parameter LPTran.

Using this setup allows SiB4 to step through the growing season following the specific crop
development stages.

9.2 Growing Season Start
The original crop phenology model by Lokupitiya et al. (2009) only used temperature to
predict the planting date; however, to run globally, the growing season initiation has to be
altered since the temperatures are always suitable for planting in the tropics. Following the
dynamic phenology requirements to begin a growing season, SiB4 uses the growing season
suitability flag FlagG as described in Section 8.3, where the flag is set to true if day length,
temperature, and water availability conditons are all satisfied.

Additionally, SiB4 uses a precipitation flag FlagP to establish a planting window cen-
tered around the seasonal peak precipitation. This flag aids the starting dates in tropical
ecosystems, where the crop growing season should be centered on the time period with the
maximum rainfall. To do this, SiB4 saves four variables associated with precipitation: the
running-mean precipitation PFPr, the seasonal maximum precipitation PFPr,SM, the day of
year the seasonal maximum precipitation occurred PFPr,SDOY, and the climatological mean
day of seasonal maximum precipitation (PFPr,CDOY). A planting window can then be created,
setting FlagP to True if the following condition is satisfied:

PFPr,CDOY −GPBef ≤ DOY ≤ PFPr,CDOY + GPAft (204)

where DOY is the current day of the year and GPBef and GPAft are parameters. If the DOY
is outside of this window, then FlagP is set to False. Both FlagA and FlagP must be true to
start a growing season.

9.3 Seasonal Progression
Once the growing season start flags are set to true, if not already set then the planting day
(PD) is set to the current day of the year and the seed pool (SeedPool) is set to the crop-
specific seed carbon (parameter SeedC). The initial growth comes from the seed pool, which
releases carbon to the live carbon pools (lp) in daily increments (GainSeed,lp) such that

GainSeed,lp = SeedR · AllocPlp,1 (205)

SeedPool = SeedPool − SeedR (206)

where AllocPlp,ips is the parameter prescribing the pool allocations per phenology stage,
SeedR is the daily carbon released from the seed pool, and the seed pool depletes daily. Once
the seed carbon pool has been spent, the crop must be self-sustaining, and the biomass
increments come from the daily photosynthetic assimilate. As the crop progresses through
the growth cycle, the specific stages are set based on the defined thresholds (PFThresh). The
rate of photosynthesis varies based on the growth stage via stage-specific VMax values, and
the photosynthesized carbon is allocated to the different live carbon pools depending on
phase of the growth cycle (Section 11.1). Additionally, biomass transfer rates vary with the
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growth stage to further control development and senescence (Section 11.3.2). The crop is
harvested once it reaches the last specified PFThresh or once it reaches the maximum growing
season length (GSLMax), whichever occurs first.

9.4 Harvest
At the end of the growing season, crops are harvested and all live biomass is removed. To
update the carbon pools, the live pool (lp) biomass is transferred into the LossHrv,lp variable
and added to the daily net live pool loss (Losslp). The carbon lost from all pools is summed
(HrvC) and moved to the locations specified by the parameter HrvTran. This parameter
includes indices for all dead pools, as well as for respiration and removal of the carbon
harvested from crops. HrvTran must sum to 1, ensuring that all the harvested carbon is
removed or transferred. The transfer of harvested carbon is expressed as

RespHrv = HrvTran,1 ·HrvC/dt (207)

RmvdHrv = HrvTran,2 ·HrvC (208)

GainHrv,dp = HrvTran,2+dp ·HrvC (209)

where RespHrv is the respired carbon from harvest, RmvdHrv is the carbon removed, and
GainHrv,dp is the carbon gained to dead pool dp. The carbon gained in each of the dead
pools is added to the daily net dead pool gain (Gaindp). For the dead soil carbon pools, the
carbon is distributed throughout the soil column using the fraction of carbon per soil layer
(PoolFLay). At the beginning of the simulation, this fraction is set to the rooting fraction
(RootF).

9.5 Redistribution
If harvested carbon is removed, SiB4 includes a post processing routine to redistribute this
carbon in a constant respiration flux. The routine sums the global harvested carbon that
is removed and redistributes it using human and livestock populations. The routine also
includes a parameter controlling the amount of removed carbon that is respired regionally
(using 11 different regions as defined by TransCom in Gurney et al. (2002)) or respired
internationally (i.e. export). Once the removed carbon is redistributed, it is respired at a
constant rate.

9.6 Switching Corn and Soybeans
Since it is common practice for farmers to rotate fields between corn and soybeans, SiB4
includes an option to alternate the crop type between corn and soybeans every other year.
To do this, in the model namelist the user can set the flag cornsoy switch to true. This
option is useful for agricultural sites, as it simplifies comparisons to observations.
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10 Disturbance
10.1 Fire
SiB4 includes the capability to read in fire emissions and remove the burned carbon from the
carbon pools. SiB4 expects both the carbon loss from fire (FireC) and the carbon dioxide
emissions (FireCO2) to be provided in fire dataset. Fire emissions are read in from a file
following the procedure for the meteorological data. During this process, both FireC and
FireCO2 are interpolated to fluxes that specify the loss and respiration per second.

Fire emissions are removed from the carbon pools using the parameters and variables
listed in Tables A8 and B14 and following the procedure outlined below.

1. Calculate the aboveground and total biomass.

2. Rank the PFTs by the aboveground biomass.

3. Remove carbon from the top PFTs, using up to three PFTs where the amount of
carbon removed from each corresponds to their normalized areal coverage. The amount
of carbon removed from each pool is specified by parameters corresponding to the
aboveground carbon pools. Currently, the fractions of carbon burned from the surface
pools are:

• Leaf Pool (FireFL) = 0.3

• Coarse Dead Biomass (FireFC) = 0.2

• Metabolic Litter (FireFML) = 0.2

• Structural Litter (FireFSL) = 0.2

• Wood Pool (FireFW) = 0.1

4. Check the carbon removed. If all of the fire emissions have not been burned, attempt
to remove the carbon from the soil litter, soil slow, and soil armored pools, respectively.

5. If fire emissions still have not been burned, add them to the variable RmvdFire.

6. Set the carbon loss (LossFire) to the calculated fire loss per pool, and the fire respiration
(RespFire) to the total carbon loss from the fire (FireC).

7. Check the fire carbon balance, ensuring the carbon emissions equal the carbon burned
and removed.
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10.2 Grazing
Grasslands have a long history of grazing, and grazing is an important disturbance that
has direct impacts on the carbon cycle from the local-scale vegetation dynamics, to regional
productivity, to global sources and sinks (Kang eq al., 2007; Knapp et al., 2012; Koerner et
al., 2014; Yan et al., 2013). Grazing removes aboveground plant material, which has consid-
erable effects on the land-atmosphere interactions by changing the aboveground vegetation
cover, and hence altering the LAI, litter, albedo, roughness length and resulting energy and
momentum exchanges. Changing the aboveground carbon pools also alters the carbon fluxes
and plant productivity, which feeds back to impact not only the root biomass, but also the
resulting carbon stored in the soil. Extensive grazing occurs globally, and these local impacts
scale up to have global implications.

Since grazing has widespread impacts, SiB4 includes a rudimentary grazing scheme that
is called every timestep. A flag (FlagPFT) controls whether each PFT uses grazing or not;
thus, all PFTs have the option to use grazing with the idea that grazing may extend beyond
grasslands to provide a first effort at representing insect infestation for shrubs and forests.
The parameters and variables used by this grazing approach are listed in Tables A9 and
B15. The amount of removed carbon from grazing is a constant fraction of the aboveground
biomass. SiB4 uses two different grazing intensities (GrzF) depending on climatological LAI
ClimLAI such that

GrzF =

 GrzCFracP/86400. ClimLAI > GrzSLAI

GrzCFracD/86400. ClimLAI ≤ GrzSLAI

(210)

where GrzCFracP and GrzCFracD are parameters specifying the daily fraction of carbon grazed
in productive and sparse ecosystems, respectively. Grazing occurs on days when the LAI
greater than the minimum LAI required by the parameter GrzMLAI. A counter variable,
ndGrz, keeps a running total of the number of days grazed for the entire simulation.

The daily carbon loss in canopy pool cp due to grazing (LossGrz,cp) is

LossGrz,cp = Ccp ·GrzF · dt. (211)

where Ccp is the carbon in the canopy pools. The total loss of carbon from the canopy pools
due to grazing (GrzC) is

GrzC =
∑

LossGrz,cp. (212)

Grazed carbon can be removed, respired (RGrz) or transferred to the dead carbon pools
(GainGrz,dp) as dictated by the parameter GrzTran following

RespGrz = GrzTran,1 ·GrzC (213)

RmvdGrz = GrzTran,2 ·GrzC · dt (214)

GainGrz,dp = GrzTran,2+dp ·GrzC · dt (215)

where the fractions of carbon being distributed to each fate (GrzTran) must sum to 1. For
the portion of carbon that is respired, it is released at a constant rate the day the grazing
occurs.
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11 Carbon Pool Exchanges
11.1 Allocation
Every day the carbon taken up via photosynthesisis is allocated back out to the live carbon
pools at midnight LST. Assimilated carbon is allocated to the live carbon pools using both
phenology and weather-based adjustments. All of the parameters and variables used to do
this are listed in Tables A10 and B16.

The daily carbon gain from assimilation (GainA) can be assigned to each live pool (lp)
such that:

GainA,lp =
nsoil∑
i=1

Distriblp,i · Alloclp · AssimDay, (216)

where Distrib is the vertical distribution fraction of carbon through the soil, Alloc is the
carbon allocation fraction, and AssimDay is the daily carbon assimilation. For live pool lp
and soil layer i, Distrib is defined as

Distriblp,i =


1 i=1
0 i=2 to nsoil

lp = leaf, stwd, prod

RootFi lp = roots

. (217)

Using this formulation, the carbon gain for the root pools is distributed vertically in the soil
layers using the rooting depth profile (RootF). The capability of SiB4 to simulate the vertical
movement of carbon in the soil and thus varying vertical profiles is one of the next goals for
future development; however, currently the carbon fraction per layer for all soil pools is the
same as the root fraction.

Carbon allocation (Alloc) depends on phenology stage and ambient conditions such that
for live pool lp and phenology stage s

Alloclp,s = AllocPlp,s + AllocAlp,s, (218)

where AllocP are the phenology-based allocation fractions and AllocA are weather-based
allocation fraction adjustments. The values of AllocP are parameters that are specified
per pool and per phenology stage and have the requirement that for every stage the pool
allocation fractions must sum to one. Utilizing phenology stages with unique allocation
fractions provides a method to shift carbon allocation from canopy pools during leaf-out to
root pools during maturity and stress if desired (by PFT).

The adjustments in AllocA are calculated from weather and environmental functions and
vary depending on phenology stage, such that for stage s

AllocAlp,s =

{
0 s = 1, nstage
AllocAMlp + AllocATlp s = 2 to (nstage− 1)

, (219)
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where AllocAM is a soil moisture adjustment and AllocAT is a temperature adjustment. If
the flag AdjMoist is set to true, then the moisture adjustments are used; and if the flag AdjTemp

is set to true, then the temperature adjustments are used. Both allocation adjustments are
based on the philosophy that plants adjust their allocation to improve the most limiting
resource. Friedlingstein et al. (1999) presented the original implementation of this idea in
land surface models, and SiB3-CASA utilizes this concept to modify pool allocations based
on light, water, and temperature adjustments (Schaefer et al., 2008). In SiB4, allocation to
the leaf pool in the case of light limitation is captured in the phenology stage selection: if the
environmental conditions support growth and if adding leaves would provide an improvement
to photosynthesis at a reasonable cost, both PSGrw and PSWx are high and the phenology
stage shifts to the leaf-out or growth stages with high leaf allocation fractions. Moisture
sensitivity is also included in the phenology stage determination via the PSWx potential: if
the plant is moisture-stressed, then the phenology will shift towards later stages that have
more allocation to the roots in an attempt to acquire more water. The phenology stage
is meant to represent the plant progression through the season, and the phenology-based
allocation and adjustments are complimentary, providing a way to capture basic seasonality
and day-to-day ambient condition impacts.

To calculate the AllocAM adjustment, a root allocation adjustment potential (AFRoot) is
created based on the daily mean of the root zone water potential (FRZ), where

AFRoot = 1− 2.8AFRZ . (220)

Since moisture stress increases allocation to the fine root pool in an attempt to attain more
water, the moisture allocation adjustment removes carbon allocation from the canopy pools
and adds carbon allocation to the fine root pool where the soil water is extracted. This is
expressed as

AllocAMlp =

 −AFRoot · AllocPlp lp = leaf, stwd, prod

AllocAMTot lp = croot, froot

 , where (221)

AllocAMTot = AFRoot(AllocPleaf + AllocPstwd + AllocPprod). (222)

Using AllocAM allows the allocation fractions to be modified within the phenology stages as
an additional and direct response to soil moisture and drought stress.

The AllocAT adjustment uses the temperature stresses from SiB3-CASA (Schaefer et
al., 2008), and it is based on the premise that leaf and wood growth decline in response to
seasonally cold temperatures. The leaf growth declines when daily minimum temperatures
(TMinD) drop below freezing (< 273 K), and the wood growth declines under cool temper-
atures (< 278 K). Allocation potentials for leaf freeze (AFLeafF) and wood freeze (AFWoodF)
are defined as

AFLeafF = Max

(
0.6,

1

(1 + e1.3(273−TMinD))

)
(223)
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AFWoodF =
1

(1 + e1.3(278−TMinD))
. (224)

Since wood growth is more sensitive to cool temperatures for specific types of vegetation,
SiB4 includes a second PFT-specific wood temperature potential (FWoodT):

AFWoodT =
1 + eshti(TMinD−hhti)

1 + eslti(hlti−TMinD)
, (225)

where shti, hhti, slti, hlti are originally defined in Sellers et al (1996b) and are now PFT-
specific physiological parameters. Both wood potentials are combined into a total wood
temperature potential (FWood):

AFWood = AFWoodF · AFWoodT . (226)

The temperature stress adjustment decreases the allocation to the leaf and wood pools, and
therefore must increase the allocation to the remaining live carbon pools, such that

AllocATlp =


−AllocPlp(1− AFLeafF) lp = leaf

−AllocPlp(1− AFWood) lp = croot, wood

AllocATTot lp = froot, stem, prod

 , where (227)

AllocATTot = (1− AFLeafF)AllocPleaf + (1− AFWood)(AllocPcroot + AllocPwood).(228)

The AllocAT factor allows the leaf and wood pools to be reduced under low temperatures in
response to cold spells during the growing season.

11.2 Autotrophic Respiration
Autotrophic respiration is the carbon plants release to the atmosphere from the metabolic en-
ergy expended to grow and maintain living tissue. To simulate this process, SiB4 is based on
the growth-and-maintenance-respiration paradigm (GMRP) (Amthor, 2000)), which divides
autotrophic respiration into growth and maintenance contributions. The total respiration is
the sum of these components, which are defined in this section. All of the parameters and
variables used to calculate autotrophic respiration are defined in Tables A11 and B17.

All live pools have growth (RG) and maintenance (RM) requirements, and the total
autotrophic respiration rate (RA) is the sum of these costs:

RA = RG +RM . (229)
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11.2.1 Growth Respiration

The carbon loss per live pool (LossGResp,lp) and the growth respiration (RG) are defined as

LossGResp,lp = GRFrac,lp ·GainA,lp (230)

RG =
1

dt

nlpool∑
lp=1

LossGResp,lp (231)

where GRFrac is the growth respiration fraction, GainA is the daily carbon allocated to the
pool, and dt is the model timestep in seconds. Moving and storing the carbon in specific pools
requires energy, and this cost is proportional to the amount of allocated carbon (GainA).
Although the carbon pools are only updated daily, the growth respiration is released every
timestep as the carbon is assimilated.

Using different values for GRFrac allows SiB4 to model different strategies regarding the
costs of growth respiration. Currently, the model uses the strategy that the growth costs for
the product pool are the highest, since seeds and flowers have more complicated structures
that are carbon and energy intensive to build. In contrast, the cost for new leaves is lower,
under the premise that the energy required to build the leaf structure is less to counter
higher maintenance costs. Parameterizing RG in this way allows the user to easily change
the growth respiration as more PFT and pool-specific data become available.

11.2.2 Maintenance Respiration

Maintenance respiration is associated with any costs necessary to retain the living tissue,
thus it has pool-specific requirements. The maintenance loss per live pool LossMResp,lp and
associated respiration are proportional to the amount of carbon in the pool, and these are
calculated using the following system of equations:

LossMResp,lp = Elp Clp krater,lp dt (232)

krater,lp =

 1
τcp
MCRScale cp = leaf, stwd, prod

1
τrp
MRRScale rp = croot, froot

(233)

RM =
1

dt

nlpool∑
lp=1

LossMResp,lp (234)

where C is the live pool carbon, dt is the timestep length, E is the respiration efficiency,
krater is a scaled maintenance loss rate, MCRScale is the canopy maintenance respiration
scaling coefficient, MRRScale is the root maintenance respiration scaling coefficient, and τ is
the pool turnover time. For the root pools, the pool carbon and scaling coefficient vary per
soil layer. Both E and τ are parameters that vary with PFT and are used for respiration and
live pool transfers to dead carbon pools. The scaling coefficients MCRScale and MRRScale are
designed to include all non-growth related contributions to autotrophic respiration. While
SiB4 includes several different processes in the respiration scaling coefficients, the specific
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mechanisms influencing autotrophic respiration are still uncertain, particularly the amount
of respiration from plant components as well as the causes of day-to-day variability (Amthor,
2000; Meir et al., 2008; Molchanov, 2009).

11.2.3 Canopy Maintenance Respiration Scaling Coefficient

SiB4 applies the hypothesis that MCRScale is influenced by the assimilation rate, freezing
conditions, and high temperatures and is given by:

MCRScale = MCRAssim ·MCRFreeze ·MCRHot (235)

where MCRAssim is an assimilation-based canopy scaling coefficient, and MCRFreeze and
MCRHot are temperature-based scaling coefficients.
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Figure 11.1: Sample Canopy Assimilation Scalars for Autotrophic Respiration.
The colors show different parameter values.

The first influence that SiB4 uses to scale maintenance respiration is an assimilation-
based scalar, MCRAssim. This factor was developed from studies that have suggested that
autotrophic respiration scales predominantly with the assimilation rate (Flexas et al., 2006;
Meir et al., 2008; Molchanov, 2009). SiB4 uses a combination of climatological and daily
assimilation in calculating MCRAssim.

If AssimD < CRAML ClimAssim (236)

Then MCRAssim = CRAMin
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If CRAML ClimAssim < AssimD < CRAMH ClimAssim (237)

Then MCRAssim = AssimD · slope + yint (238)

Where slope = S1/S2

S1 = CRAMax − CRAMin

S2 = CRAMHClimAssim − CRAMLClimAssim

yint = CRAMin − slope · CRAMLClimAssim

If AssimD > CRAMHClimAssim (239)

Then MCRAssim = CRAMax (240)

In this system of equations, CRAMH, CRAML, CRAMin, and CRAMax are parameters; AssimD

is the daily assimilation rate, and ClimAssim is the climatological assimilation rate (10-year
running mean). Using the climatological assimilation rates shifts the maintenance respiration
rates in response to different environments, and sample MCRAssim values are shown in Figure
11.1.
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Figure 11.2: Sample Canopy Freeze Inhibition Scalars (MCRFreeze).
The colors show different parameter values.

The second influence that SiB4 uses to scale canopy respiration is a freezing inhibition
coefficient MCRFreeze, which uses an exponential function that rapidly decreases to a specified
minimum value when the temperature drops below a threshold value. This is expressed as

MCRFreeze = eCRFMul(TC−CRFRef) and (241)

CRFmin ≤ MCRFreeze ≤ 1 (242)
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where CRFMin, CRFMul, and CRFRef are parameters and TC is the canopy temperature. This
equation illustrates that MCRFreeze is unity in non-freezing conditions and decreases below
freezing. Example MCRFreeze functions are shown in Figure 11.2.
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Figure 11.3: Sample Canopy High Temperature Scalars (MCRHot).
The colors show different parameter values.

The third influence on canopy respiration is a high temperature coefficient, MCRHot.
As in SiB3, SiB4 exponentially increases RM with increasing temperatures using the Q10

empirical relationship reported by Ryan (1991). When the temperature is less than the
reference temperature, the scaling coefficient is 1. As the temperature increases above the
reference, the scalar increases exponentially to a specified maximum value. For any canopy
pool, this relationship is expressed as

MCRHot = CRHQ10
0.1(TC−CRHRef) and (243)

1 ≤ MCRHot ≤ CRHMax (244)

where CRHQ10, CRHMax, and CRHRef are parameters. Example MCRHot functions are shown
in Figure 11.3.

11.2.4 Root Maintenance Respiration Scaling Coefficient

Belowground, partitioning soil respiration into root, microbial, and mycorrhizal contributions
remains difficult; thus, the driving mechanisms remain uncertain despite soil respiration be-
ing intensively studied (Hopkins et al., 2013; Ryan & Law, 2005; Wei et al., 2009). Recent
evidence suggests that the assimilation rate may be playing an important role in root respi-
ration; therefore, SiB4 incorporates this concept and uses four different mechanisms to scale
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root maintenance respiration: assimilation (MRRAssim), LAI (MRRLAI), freezing conditions
(MRRFreeze), and high temperatures (MRRHot). These responses are multiplicative to allow
for interaction, and SiB4 combines the four contributions into a total respiration scaling
coefficient MRRScale such that

MRRScale = MRRAssim ·MRRLAI ·MRRFreeze ·MRRHot. (245)

Each of these scalars is the root-weighted column-average of their layer-specific counterpart.
The assimilation and temperature factors use the same equations as described for the canopy
respiration; however, all of the parameters (CR) are replaced by root parameters (RRT ).
The LAI scaling coefficient uses vegetation to increase root respiration, with the hypothesis
that roots work harder to supply water to larger canopies. This is expressed as

MRRLAI = LAI/ClimLAI and (246)

RRTLMin ≤ MRRLAI ≤ RRTLMax (247)

where LAI is the current LAI, ClimLAI is the climatological mean LAI, and RRTLMin and
RRTLMax are parameters.

11.2.5 Diagnostic Respiration Rates

Along with autotrophic, growth, and maintenance respiration rates, SiB4 calculates two
additional respiration rates: leaf respiration (RLeaf) and root respiration (RRoot). These are
calculated as:

RLeaf = RG,Leaf + RM,Leaf and (248)

RRoot = RG,CRoot + RG,FRoot + RM,CRoot + RM,FRoot. (249)

(250)

Finally, SiB4 includes a nonvegetation respiration rate, RNVeg, which respires any assimila-
tion that is taken up when all the pools are at their minimum values. This condition occurs
occasionally for bare ground, and including this respiration rate is required for carbon bal-
ance.
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11.3 Senescence
The parameters and variables used to model senescence are listed in Tables A12 and B18.

11.3.1 Turnover

Pool turnover is tied to respiration, and the loss of carbon from any live pool (LossT,lp) that
is transferred to a dead carbon pool (dp) uses the equation

LossT,lp = (1− Elp) Clp krater,lp dt (251)

where LossT is the timestep loss due to pool turnover. For seasonal vegetation types, such
as grasslands and deciduous forests, the aboveground biomass mortality occurs primarily at
the end of the growing season as litterfall (see next section); thus, for those PFTs Ecp =
0.95. In contrast, because root turnover is still poorly constrained, in SiB4 the root mortality
depends solely on turnover. Since root production, respiration, mortality, and turnover all
interact, SiB4 uses root respiration efficiencies ranging from 0.45 to 0.6.

11.3.2 Litterfall

At the end of the season, senescence is characterized by a very rapid death in the canopy
plant material, and hence rapid transfer and accumulation in the dead surface pools. Using
phenology stages updated daily provides a mechanistic approach for modeling the seasonal
growth onset and progression; however, changing allocation and photosynthetic rate alone
combined with continuous turnover is not enough to capture the rapid browning seen by
several vegetation types at the end of the growing season. To predict senescence, SiB4 uses
four explicit processes for litterfall: day length, temperature, soil moisture, and phenology
stage.

During litterfall, the loss of carbon from the live pools (LossLF,lp) is calculated as

LossLF,lp = (TD + TF + TW + TP ) Ccp dt, (252)

where LossLF is the timestep loss of carbon, TD is the fraction of the canopy pool that is
transferred to the dead carbon pools due to decreasing day length, TF is the fraction trans-
ferred due to freezing temperatures, TFW is the fraction transferred due to water deprivation,
and TFP is the fraction due to phenology. For litterfall, the live pools are restricted to the
canopy pools (cp).

For day length, TD increases as the days get shorter following

TD = LTDC(DayLMax −DayL)(DayLMax − LTDR) and (253)

0 ≤ TD ≤ LTDMax (254)

where LTDC, LTR, and LTDMax are parameters. Sample daylength transfer fractions at 52◦N
are shown in Figure 11.4A.
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Figure 11.4: Sample Litterfall Transfer Fractions.
A) TD B) TF C) TW . The black line shows the day length. The parameter values are

listed by color.

For freezing temperatures, TF increases with decreasing temperatures using a Q10 rela-
tionship following

TF = LTFQ10
0.01(LTFR−TC) − 1 and (255)

0 ≤ TF ≤ LTFMax (256)

where LTFQ10, LTFR, and LTFMax are parameters. Sample freezing transfer fractions are
shown in Figure 11.4B.

For moisture deprivation, TW increases with lowering PAWFRW such that

TW = LTWC(LTWB
10(PAWFRW−LTWR) − 1) and (257)

0 ≤ TW ≤ LTWMax (258)

where LTWB, LTWC, LTWR, and LTWMax are parameters. Examples of TW are shown in
Figure 11.4C.
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Finally, litterfall increases with increasing phenology stage such that

TP = TP + LPTran/steps per day (259)

where LPTran is a parameter with fractions specified per PFT and per pool and steps per day
is the daily number of simulated timesteps. LPTran increases incrementally as long as the
same stage is maintained. Once a new stage is predicted, it is reset.

11.3.3 Transfer

The gain of carbon in the dead pools from the loss of live pool carbon due to turnover and
litterfall is expressed as

GainTL,dp =

nlpool∑
lp=1

TFlp,dp (LossLF,lp + LossT,lp) (260)

where TFlp,dp is the transfer fraction of carbon from live pool lp to dead pool dp. If the
carbon is being transferred from an aboveground pool to a soil pool, the vertical distribution
of carbon in the soil is set to the rooting profile.

11.4 Heterotrophic Respiration and Decay
Heterotrophic respiration is the carbon that decomposer organisms release to the atmosphere
during the breakdown of organic matter, while decay is the process of transferring the re-
maining organic matter into subsequent carbon pools (typically with longer lifetimes). These
two processes are tied together and depend on the efficiency of the carbon breakdown be-
tween dead pool dp and the subsequent dead pool dp2, as well as the fraction of carbon that
is transferred from dp to dp2. Per pool dp, its loss of carbon due to respiration (LossHR,dp)
and decay (LossHT,dp) and gain of carbon from the decay of other dead pools (GainTD,dp),
along with the total heterotrophic respiration (RH), are expressed in the following system
of equations, and the parameters and variables used in this section are listed in Tables A13
and B19.

LossHR,dp =

ndpool∑
dp2=1

EDP,dp,dp2 TRDP,dp,dp2 Cdp krater,dp dt (261)

LossHT,dp =

ndpool∑
dp2=1

(1− EDP,dp,dp2) TRDP,dp,dp2 Cdp krater,dp dt (262)

krater,dp =


1
τfp

MHSfc,Scale fp = cdb, metl, strl

1
τsp

MHSoil,Scale sp = slit, slow, arm

(263)

RH =
1

dt

ndpool∑
dp=1

LossHR,dp (264)
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GainTD,dp =

ndpool∑
dp2=1

LossHT,dp2 TRDP,dp2,dp dt (265)

The parameter EDP is the respiration efficiency between dead pools, the parameter TRDP

is the transfer fraction between dead pools, C is the pool carbon, krater,dp is a scaled decay
rate, MHSfc,Scale is the surface pool heterotrophic respiration scaling coefficient, MHSoil,Scale

is the soil pool heterotrophic respiration scaling coefficient, and τ is the pool turnover time.
Microbes control the heterotrophic respiration rate and are sensitive to both moisture

and temperature; however, similar to root respiration, the exact relationships controlling
their activity are still being investigated. The carbon released from the decomposition of the
dead pools depends on the pool as given by:

MHSfc,Scale = MHSfc,Assim ·MHSfc,Freeze ·MHSfc,Hot ·MHSfc,Precip and (266)

MHSoil,Scale = MHSoil,Freeze ·MHSoil,Hot ·MHSoil,Moist ·MHSoil,PAW, (267)

where MHSfc/Soil,Assim is an assimilation rate scaling coefficient, MHSfc/Soil,Freeze are freeze
inhibition scalars, and MHSfc/Soil,Hot are high temperature exponentials, MHSfc,Precip is a
surface moisture scalar based on precipitation, and MHSoil,Moist/PAW are soil moisture scalars.

The assimilation-rate scaling coefficients, freeze inhibition scalars, and high temperature
scaling coefficients use the same calculations as defined for the canopy pools in Section 11.2.3.
To apply these equations to heterotrophic respiration, the following modifications are made:

• For assimilation rate, the four parameters are replaced by surface and soil pool specific
parameters (HRTSfc/Soil,AMH, HRTSfc/Soil,AML, HRTSfc/Soil,AMax, and HRTSfc/soil,AMin).

• For freeze inhibition, the three parameters are replaced by surface and soil specific
parameters (HRTSfc/Soil, FMin, HRTSfc/Soil,FMul, and HRTSfc/Soil,FMax). Additionally, the
temperatures used in the calculation are the top layer of the soil temperature (TD1)
for the surface pools and the soil temperature per soil layer s (TDs) for the soil pools.

• For high temperature, the three parameters are replaced by surface and soil specific
parameters (HRTSfc/Soil,HMax, HRTSfc/Soil,HQ10, and HRTSfc/Soil,HRef. Additionally, the
temperatures used in the calculation are the top layer of the soil temperature (TD1)
for the surface pools and the soil temperature per soil layer s (TDs) for the soil pools.

Heterotrophic respiration also includes a moisture response. For the surface pools, the
moisture scalar is a precipitation inhibition given by

MHSfc,Precip = PrSeas/(PrClim · HRTPML) and (268)

HRTPMin ≤ MHSfc,Precip ≤ 1, (269)

where HRTPML and HRTPMin are parameters, PrSeas is the seasonal precipitation rate, and
PrClim is the climatological precipitation rate. PrSeas is the 18-day running-mean of precip-
itation (mm/day); however, the time averaging length is a parameter that can be adjusted
(SeasLen,Precip). Similarly, PrClim is the the 10-year running-mean of precipitation (mm/day),
and the averaging length is set by the parameter ClimLen. In SiB4, this rainfall inhibition
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is based on two premises. First is that surface pool respiration is responsive to immediate
water limitations as given by precipitation, rather than soil moisture deficiencies that are
time-integrals of wetness conditions. Second is that surface pool respiration largely does not
saturate as seen in the soil respiration, and instead is primarily water-limited such that a
lack of rain will reduce surface pool respiration. In the case of drought, MHSfc,Precip is highly
suppressed down to its minimum value. Example MHSfc,Precip values are shown in Figure
11.5A.
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Figure 11.5: Sample Moisture Inhibitions for Heterotrophic Respiration.
A) Surface precipitation inhibition values, where the colors show different parameter

values. B) Soil moisture inhibition values, where the colors show different soil clay content.

For the soil pools, SiB4 uses two moisture responses. The first is MHSoil, Moist, and SiB4
uses the same relationship to moisture that is seen in SiB3, which is based on the premise
that mycorrhizal fungi activity are optimal at a given soil moisture content (Flexas et al.,
2005, 2006; Li & Arora, 2012). From Denning et al. (1996a), the equations governing this
relationship are

WExp =

(
WZm −WZm

Opt

1−WZm
Opt

)2

and (270)

MHSoil,Moist = 0.98W
WExp

Sat + 0.02, (271)

HRT Soil,MMin ≤ MH Soil,Moist ≤ 1 (272)

where W is the water saturation fraction, WSat is the saturated soil moisture fraction, WOpt

is the optimal soil moisture fraction, Zm is a soil constant, and HRTSoil,MMin is a parame-
ter. Sample MHSoil,Moist values are in Figure 11.5B, illustrating that it is unity at optimal
conditions and near zero when soil moisture is depleted, severly restricting soil respiration.

The second is MHSoil,PAW, which is equal to the plant available water fraction per soil layer
PAWF. Since this represents the fraction of water available plants, it has a maximum value
of 1 and is restricted to be above a minimum value given by the parameter HRTSoil,PAWMin.

79



11.5 Pool Updates
The carbon pools are updated daily at midnight LST, when no photosynthesis is occurring.
This is done so that the change in pools and vegetation state occurs at night at every location
in order to minimally impact the fluxes. For any pool p:

dCp
dt

= Gainp − Lossp, (273)

Gainp =

 GainA,p +GainSeed,p p = live pools

GainHrv,p +GainGrz,p +GainTD,p +GainTL,p p = dead pools
(274)

Lossp =


LossGResp,p + LossMResp,p + LossLF,p + LossT,p p = live pools

+LossFire,p + LossGrz,p + LossHrv,p

LossHR,p + LossHT,p + LossFire,p p = dead pools

(275)
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12 Terrestrial Carbon Cycle
12.1 Overview
SiB4 fully simulates the terrestrial carbon cycle by using prognostic phenology to inte-
grate ecosystem processes, linking carbon pools, land-atmosphere fluxes, and biosphere-
atmosphere exchanges. This approach leads to a fully predictive terrestrial carbon cycle,
rather than relying on satellite data for the vegetation state (Figure 12.1). Every timestep
SiB4 computes albedo, hydrology, radiation, soil moisture, and temperature, as well as the
resulting energy exchanges, moisture fluxes, and carbon fluxes. Fire emissions are also re-
leased every timestep, as well as the changes in carbon pools from burning and grazing.
From sums of carbon pool gains and losses, SiB4 updates the carbon pools daily. Using
the updated pools, all related land surface properties are diagnosed and used for sub-hourly
photosynthetic assimilation as well as sub-hourly autotrophic and heterotrophic respiration
and pool transfer rates. This sequence completes the carbon cycle, providing self-consistent
predicted vegetation state, carbon pools, and land-atmosphere exchanges.

Daily

10 Minutes

Carbon Transfer 
- Pool Losses
- Subsequent Gains

Carbon Release
- Autotrophic Respiration
- Heterotrophic Respiration
- Disturbance

Determine Phenology Stage
Sum pool losses 

and gains

SiB4
Carbon 
Cycle

Update driver data Update LAI, FPAR, 
and vegetation 

properties

Disturbance: Crop Harvest
Disturbance: 
Fire emissions

Carbon Assimilation
- Photosynthesis

Update running-means 

Allocate Carbon
- Phenology Stage
- Meteorological Conditions

Set Growing Season Flags

Disturbance: 
Grazing

Update Pools

Figure 12.1: SiB4 Carbon Cycle.
Processes calculated every model timestep are in the yellow boxes. Processes calculated

daily are in the blue boxes.
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12.2 Calculation Sequence

1. Initialize SiB4.

2. Update driver meteorology, including zenith angle.

3. Update fire emissions, including determining the carbon pool reduction from burning.

4. Update the phenology potentials, and determine the phenology stage daily.

5. Update the carbon pools and vegetation state daily.

6. Calculate the radiation budget via a two-stream radiation approximation, updating
surface reflectance, transmissivity, albedo, absorbed radiation, and net radiation.

7. Update canopy conductances and resistances.

8. Simulate photosynthesis.

9. Calculate carbonyl sulfide fluxes.

10. Calculate solar induced fluorescence (SIF).

11. Increment the prognostic variables (CAS, ground, and soil temperatures, CAS wa-
ter vapor mixing ratio and pressure, CAS turbulent kinetic energy, CAS CO2 partial
pressure, and CAS COS partial pressure).

12. Calculate the latent and sensible heat fluxes.

13. Update the model hydrology, including canopy, snow, and soil variables.

14. Calculate autotrophic respiration, live pool turnover, and litterfall.

15. Simulate grazing.

16. Calculate heterotrophic respiration.

17. Write requested output.
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Region, Pará, Brazil. J. Geophys. Res., 110, D21102,
https://doi.org/10.1029/2004JD005757.

Malhi, Y., Doughty, C., & Galbraith, D. (2011). The allocation of ecosystem net primary
productivity in tropical forests. Phil. Trans. R. Soc. B, 366, 3225-2345,
https://doi.org/10.1098/rstb.2011.0062.

McCormack, M.L., Adams, T.S., Smithwick, E.A.H., & Eissenstat, D.M. (2014). Variability
in root production, phenology, and turnover rate among 12 temperate tree species.
Ecology, 95(8), 2224-2235.

Medvigy, D., Wofsy, S.C., Munger, J.W., Hollinger, D.Y., & Moorcroft, P.R. (2009).
Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem
Demography model version 2. J. Geophys. Res., 114, 1-21,
https://doi.org/10.1029/2008JG000812.

Meir, P., Metcalfe, D.B., Costa, A.C.L., & Fisher, R.A. (2008). The fate of assimilated
carbon during drought: impacts on respiration in Amazon rainforests. Phil. Trans. R.
Soc. B, 363, 1849-1855, https://doi.org/10.1098/rstb.2007.0021.

Melaas, E.K., Friedl, M.A., & Richardson, A.D. (2016). Multiscale modeling of spring
phenology across deciduous forests in the eastern United States. Glob. Chang. Biol., 22,
792-805, https://doi.org/10.1111/gcb.13122.

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., & Moreno, J.
(2009). Remote sensing of solar-induced shlorophyll fluorescence: Review of methods and
applications. Remote Sens. Environ., 113(110), 2037-2051,
https://doi.org/10.1016/j.rse.2009.05.003.

92



Migliavacca, M., Sonnentag, O., Keenan, T.F., Cescatti, A., O’Keefe, J., & Richardson,
A.D. (2012). On the uncertainty of phenological responses to climate change, and
implications for a terrestrial biosphere model. Biogeosciences, 9, 2063-2083,
https://doi.org/10.5194/bg-9-2063-2012.

Molchanov, A.G. (2009). Effect of moisture availability on photosynthetic productivity and
autotrophic respiration of an oak stand. Russ. J. Plant Physiol., 56(6), 769-779,
https://doi.org/10.1134/S1021443709060065.

Morellato, L.P.C., Alberton, B., Alvarado, S.T., Borges, B., Buisson, E., Camargo,
M.G.G., . . . Peres, C.A. (2016). Linking plant phenology to conservation biology.
Biological Conservation, 195, 60-72, https://doi.org/10.1016/j.biocon.2015.12.033.
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Appendix A: Input Data and Parameters

Table A1: Meteorological Drivers.

Name Definition Units

LWDwn Surface Incident Longwave Radiation W/m2

Prcu Cumulus Precipitation Rate mm/s

Prls Stratiform Precipitation Rate mm/s

Ps Surface Pressure hPa

Sh Mixed Layer Water Vapor Mixing Ratio kg/kg

Spdm Wind Speed m/s

SWDwn Surface Incident Shortwave Radiation W/m2

Tm Mixed Layer Temperature K

PCO2m Mixed Layer CO2 Partial Pressure Pa

PCOSm Mixed Layer COS Partial Pressure Pa

Table A2: Fire Emissions.

Name Definition Units

FireC Fire Carbon Loss mol C/m2/s

FireCO2 Fire CO2 Respiration mol C/m2/s

Table A3: Structural Properties.

Name Definition Units

PFTArea PFT Fractional Coverage (per grid cell) -

PFTRef PFT Reference Number -

ClayFrac Soil Clay Fraction -

SandFrac Sand Clay Fraction -

SorefVis Soil Shortwave Reflectance -

SorefNIR Soil Longwave Reflectance -

Table A4: Aerodynamic Parameters.

Name Definition Units

RbC Coefficient for Canopy to CAS Aerodynamic Resistance -

RdC Coefficient for Ground to CAS Aerodynamic Resistance -

Z0 Canopy Roughness Coefficient -

ZpDisp Zero Plane Displacement -
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Table A5: Physiological Parameters.

Name Definition Range Units

ATheta Coupling Parameter 0.8 to 0.98 -

BTheta Coupling Parameter 0.95 -

BInter Conductance-Photosynthesis Intercept 0.01 to 0.04 mol C/m2/s

Chil Leaf Angle Distribution Factor -0.3 to 0.25 -

EffCon Quantum Efficiency 0.05 to 0.08 mol CO2/mol quanta

FCMin Field Capacity Minimum 0.3 to 1 m−3

FlagC4 C4 Flag T or F -

FlagGraze Grazing Flag T or F -

FPARSat
Saturation FPAR

(Fraction of Photosynthetically Active Radiation)
≤ 1 -

GMeso Mesophyll Conductance 4000 mol C/m2/s

Gradm Conductance-Photosynthesis Slope Parameter 4 to 9 -

hfti Half-Point of Frost Inhibition 267 to 269 K

hhti Half-Point of High-Temp Inhibition 303 to 317 K

hlti Half-Point of Low-Temp Inhibition 268 to 281 K

KRoot Root Density Extinction Coefficient 1.7 to 5.5 -

LAIMin Minimum LAI 0.05 to 0.15 m2/m2

LAISat Saturation LAI 0 to 8.5 m2/m2

Ref Leaf Reflectance
(Shortwave/Longwave and Green/Brown)

0.07 to 0.48 -

RootD Maximum Rooting Depth 3.5 to 10 m

SLA Specific Leaf Area 10 to 210 cm2 Leaf Area/g Leaf

sfti Slope of Frost Inhibition 0.35 to0.6 K−1

shti Slope of High-Temp Inhibition 0.3 to 0.35 K−1

slti Slope of Low-Temp Inhibition 0.2 to 0.95 K−1

Tran Leaf Transmittance
(Shortwave/Longwave and Green/Brown)

0.05 to 0.375 -

WPMin Wilting Point Minimum 0.16 to 1 m−3

WSSP Water Stress Shape Parameter 0.1 to 0.2 -

Z1 Canopy Bottom 0.1 to 12 m

Z2 Canopy Top 1 to 35 m
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Table A6: Dynamic Phenology Parameters.

Name Definition Range Units

AllocP
(nlpool,nstage)

Phenology-Specific allocation fractions
(per live pools and per phenology stage)

0 to 1 -

ALRL Assimilation Potential Running-Mean Length 10 days

ALRV Assimilation Potential Threshold 0.1 -

CLC Climatological LAI Coefficient 0.6 to 2.4 -

CLG Climatological LAI Maximum Offset 0.6 to 5.2 -

CLL Climatological LAI Minimum Offset -0.4 to 3.2 -

ClimPA
Climatological Suitability (ClimP)

Exponential Adjustment
0 to 0.1 -

ClimPB ClimP Exponential Adjustment Base 0 to 800 -

ClimPC ClimP Multiplicative Adjustment Coef 0 to 3 -

ClimPD ClimP Multiplicative Adjustment Offset 0 to 0.6 -

ClimPMin ClimP Minimum Value 0.05 to 0.6 -

ClimPMax ClimP Maximum Value 1 to 2 -

CWAType

Climatological Ssuitability Water Availability Type
1 = Convective Precipitation

2 = Total Precipitation
3 = Root-Weighted Plant Available Water
4 = Root-Weighted Total Available Water

1 to 4 -

GLMinI
Minimum Day Length for GSS

(increasing day length)
10 to 24 hr

GLOffD
Minimum Day Length for GSS

(decreasing day length)
-13 to 4 hr

GTLen Valid Temperature Days for GSS 4 to 7 days

GTMin Minimum Temperature for GSS 268 to 288 K

GTMax Maximum Temperature for GSS 298 to 312 K

GWLen Days of Water Availability for GSS 4 to 6 days

GWMin Minimum Water Availability for GSS 0.12 -

LPTran
(nstage)

Phenology-based Leaf (LAI) Transfer
(per phenology stage)

0 to 0.5 Pool
Fraction

nstage Number of Phenological Stages 5 -
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PIThresh

(nstage-1)
Thresholds Between Phenology Stages

(per phenology stage change)
0 to 1 -

PSDRef Day Lenth Potential Reference -1 to 2 hr

PSDMin Day Length Potential Minimum 0.38 to 1 -

PSDMul Day Length Potential Daily Change 0 to 0.14 -

PSGMin Growth Potential Minimum 0.25 to 0.5 -

PSWXType

PSWX type
1 = PAWFTop, 2 = PAWFZW

3 = PAWFZW · 2, 4 = No Stress for PAWFZW > 0
5 = TAWFTop, 6 = TAWFZW

7 = FRZ, 8 = FE

1 to 8 -

VMax

(nstage)
Rubisco Velocity

(per phenology stage)
0.1e−4 to

1.8e−4
mol/m2/s
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Table A7: Defined Phenology Parameters.

Name Definition Range Units

AllocP
(nlpool,nstage)

Phenology-Specific allocation fractions
(per live pools and per phenology stage)

0 to 1 -

ALRL Assimilation factor running-mean length 7 to 10 days

ALRV Assimilation factor threshold to reset growing season 0.05 to 0.1 -

GLMinI
Minimum Day Length for GSS

(increasing day length)
10 to 24 hr

GLOffD
Minimum Day Length for GSS

(decreasing day length)
-13 to 4 hr

GPAft Days After Max Precip for GSS 10 to 90 days

GPBef Days Before Max Precip for GSS 70 to 90 days

GPLen Precip Running-Mean Length for GSS 30 days

GTLen Valid Temperature Days for GSS 4 to 7 days

GTMin Minimum Temperature for GSS 268 to 288 K

GTMax Maximum Temperature for GSS 298 to 312 K

GWLen Days of Water Availability for GSS 4 to 6 days

GWMin Minimum Water Availability for GSS 0.12 -

GDDTBase Growing Degree Day (GDD) base temperature 42 to 50 F

GDDTMax GDD Maximum Temperature 78 to 90 F

GPD Crop Season Length Identifier
(GDD or DAPD)

1 or 2 -

GSLMax Maximum Growing Season Length 140 to 260 day

HrvTran
(ndpool + 2)

Harvest Transfer Fractions
(resp,rem,dp)

0 to 1 -

LPTran
(nstage)

Phenology-based leaf pool (LAI) transfer
(per phenology stage)

0 to 0.5 Pool
Fraction

nstage Number of phenological stages 10 -

PIThresh

(nstage-1)
Thresholds between phenology stages

(per phenology stage change)
0 to 1 -

SeedC Carbon Contained in Seed 2 g C

SeedR Daily Seed Carbon Released 0.2 g C

VMax
(nstage)

Rubisco Velocity
(per phenology stage)

0.1e−4 to
1.8e−4 mol/m2/s
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Table A8: Fire Parameters.

Name Definition Value

FireFC Coarse Dead Fraction 0.2

FireFL Leaf Fire Emission Fraction 0.3

FireFML Metabolic Litter Fire Emission Fraction 0.2

FireFSL Structural Litter Fire Emission Fraction 0.2

FireFW Wood Fire Emission Fraction 0.1

Note: All parameters are unitless and a single value is specified for all PFTs.

Table A9: Grazing Parameters.

Name Definition Value

FlagPFT Grazing Flag Per PFT T or F

GrzCFracP
Fraction of Canopy C Grazed Daily

(productive)
0.008

GrzCFracD
Fraction of Canopy C Grazed Daily

(sparse/non-productive)
0.003

GrzMLAI Minimum LAI for Grazing 0.7

GrzSLAI LAI Sparse/Productive Grazing Threshold 1.0

GrzTran

(ndpool+2)

Grazing transfer fractions

(per dead pool with remove and respire)
0 to 1

Note: All parameters are unitless and a single value is specified for all PFTs except for FlagPFT.

Table A10: Allocation Parameters.

Name Definition Units

AdjMoist Use Moisture Adjust Allocations T or F

AdjTemp Use Temperature Adjust Allocations T or F
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Table A11: Autotrophic Respiration Parameters.

Name Definition Range Units

CRAMH Canopy resp assimilation high multiplier 0 to 4 -

CRAML Canopy resp assimilation low multiplier 0 to 1 -

CRAMax Canopy resp assimilation maximum 1 to 2 -

CRAMin Canopy resp assimilation minimum 0.4 to 1 -

CRFMin Canopy resp freeze inhibition minimum 0 to 0.3 -

CRFMul Canopy resp freeze inhibition multiplier 0 to 0.1 -

CRFRef Canopy resp freeze inhibition ref temperature 274 to 278 K

CRHMax Canopy resp high temperature maximum 1 to 3 -

CRHQ10 Canopy resp high temperature Q10 base 1 to 2.2 -

CRHRef Canopy resp high temperature reference 295 to 313 K

ELP
(nlpool)

Respiration efficiency for live pools
(per live pools)

0.3 to 0.95 -

GRFrac
(nlpool)

Growth respiration fraction
(per live pools)

0.1 to 0.4 -

RRTAMH Root resp/transfer assim high multiplier 2 to 4 -

RRTAML Root resp/transfer assim low multiplier 0.6 to 1.5 -

RRTAMax Root resp/transfer assim maximum 1 to 1.2 -

RRTAMin Root resp/transfer assim minimum 0.6 to 1 -

RRTFMin Root resp/transfer freeze inhibit minimum 0.4 to 1 -

RRTFMul Root resp/transfer freeze inhibit multiplier 0.1 to 1 -

RRTFRef Root resp/transfer freeze inhibit ref temp 270 to 278 K

RRTHMax Root resp/transfer hot maximum 1 to 3 -

RRTHQ10 Root resp/transfer hot Q10 base 1.8 to 2.2 -

RRTHRef Root resp/transfer hot ref temperature 293 to 311 K

RRTLMin Root resp/transfer LAI ratio minimum 1 -

RRTLMax Root resp/transfer LAI ratio maximum 1 -

τ
(nlpool)

Pool turnover time
(per live pool)

0.1 to 320 yr
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Table A12: Senescence Parameters.

Name Definition Range Units

LTDC Leaf transfer day length coefficient 0 to 0.0008 -

LTDMax Leaf transfer day length max (fraction per day) 0 to 0.08 -

LTDR Leaf transfer day length reference 0 to 6 hr

LTFMax Leaf transfer freeze max (fraction per day) 0 to 0.1 -

LTFQ10 Leaf transfer freeze Q10 base 2.2 -

LTFR Leaf transfer freeze reference temperature 274 to 278 K

LTWB Leaf transfer water deficiency exponential base 0 to 0.07 -

LTWC Leaf transfer water deficiency coefficient 0 to 0.005 -

LTWMax Leaf transfer water deficiency max (fraction per day) 0 to 0.08 -

LTWR Leaf transfer water deficiency reference 0 to 0.12 -

TF
(nlpool,ndpool)

Transfer Fraction
(from live pool lp to dead pool dp)

0 to 1 -
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Table A13: Heterotrophic Respiration Parameters.

Name Definition Range Units

EDP

(ndpool,ndpool2)

Respiration efficiency for dead pools

(from dead pool dp to dead pool dp2)
0.4 to 0.95 -

HRTSfc,AMH Surface pool het resp/transfer assim high multiplier 0 to 2 -

HRTSfc,AML Surface pool het resp/transfer assim low multiplier 0 to 0.6 -

HRTSfc,AMax Surface pool het resp/transfer assim maximum 1 to 1.2 -

HRTSfc,AMin Surface pool het resp/transfer assim minimum 0.1 to 1 -

HRTSfc,FMin Surface pool het resp/transfer freeze minimum 0.1 to 1 -

HRTSfc,FMul Surface pool het resp/transfer freeze multiplier 0.1 to 1 -

HRTSfc,FRef Surface pool het resp/transfer freeze ref temp 274 to 278 K

HRTSfc,HMax Surface pool het resp/transfer hot maximum 1 to 3 -

HRTSfc,HQ10 Surface pool het resp/transfer hot Q10 base 1.6 to 2.2 -

HRTSfc,HRef Surface pool het resp/transfer hot ref temp 283 to 300 K

HRTSfc,PMin Sfc pool het resp/trans precip inhibit min 0.1 to 1 -

HRTSfc,PML Sfc pool het resp/trans precip inhibit multiplier 0.8 to 1 -

HRTSoil,AMH Soil het resp/transfer assim high multiplier 2 -

HRTSoil,AML Soil het resp/transfer assim low multiplier 0.6 -

HRTSoil,AMax Soil het resp/transfer assim maximum 1 to 1.2 -

HRTSoil,AMin Soil het resp/transfer assim minimum 0.6 to 1 -

HRTSoil,FMin Soil het resp/transfer freeze minimum 0.1 to 1 -

HRTSoil,FMul Soil het resp/transfer freeze multiplier 0.1 to 0.2 -

HRTSoil,FRef Soil het resp/transfer freeze ref temp 274 K

HRTSoil,HMax Soil het resp/transfer hot maximum 1 to 3 -

HRTSoil,HQ10 Soil het resp/transfer hot Q10 base 1.6 to 2.2 -

HRTSoil,HRef Soil het resp/transfer hot ref temp 283 to 300 K

HRTSoil,MMin Soil het resp/trans moisture inhibition min 0.02 to 1 -

HRTSoil,PAWMin Soil het resp/trans PAW inhibition min 0.2 to 1 -

τ

(ndpool)

Pool turnover time

(per dead pools)
0.1 to 320 yr

TFDP

(ndpool,ndpool)

Transfer Fraction

(from dead pool dp1 to dead pool dp2)
0 to 1 -
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Table A14: Physical Constants.

Name Definition Value Units

amagat Molar Volume Reciprocal 44.6 mol/m3

amagatwv Water-Vapor Adjusted Amagat 44.032476 mol/m3

bco2m Mixed Layer CO2 Concentration 370.0 ppm

bcosm Mixed Layer COS Concentraiton 500.0 ppt

coszmin Minimum Cosize of Zenith Angle -0.1045 radians

cpice Specific Heat of Ice 2117.27 J/deg/kg

cpliq Specific Heat of Water 4188.0 J/deg/kg

cv Specific Heat of Water Vapor
(constant pressure)

1952.0 J/deg/kg

cwlim Canopy Water Storage Limit 0.001 kg/m2

decmax Maximum Declination 23.441 -

denh2o Density of Water 1000.0 kg/m3

denice Density of Ice 917.0 kg/m3

eccn Eccentricity 0.016715 -

eqnx Day of Vernal Equinox 80 day

gas const R Gas Constant for Dry Air 287.0 J/kg/K

grav Earth Gravity 9.81 m/s2

gwctog Water Storage Adjustment 0.25 -

gwlim Ground Water Storage Limit 10. kg/m2

h2ohc Water Heat Capacity 4.186E6 J/deg/m3

leafhc Leaf Heat Capacity 837.2 J/deg/m3

lvap Latent Heat of Vaporization 2.25E6 J/kg

lfus Latent Heat of Fusion 0.3336E6 J/kg

lsub Latent Heat of Sublimation lvap+ lfus J/kg

mol bmze Convert: mol C/m2 to bushels/acre 4.248 (corn) -

mol bsoy Convert: mol C/m2 to bushels/acre 3.965 (soy) -

mol bwwt Convert: mol C/m2 to bushels/acre 3.965 (wheat) -

mol dw Convert: mol C/m2 to g DW/m2 24.0 -

mol mg Convert: mol C/m2 to Mg C/ha 0.12 -

mol umol Convert: mol C/m2 to umol C/m2 1.E6 -

mol pmol Convert: mol C/m2 to pmol C/m2 1.E12 -

molch2o Moles per Liter of Water 55.36 mol/l

mwc Molecular Weight of Carbon 12.0 g/mol

NHSolstice NH Longest Day of Year 172 day
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po2m Mixed Layer O2 Concentration 20900.0 ppm

phmin Minimum Soil Potential -1E8 mm

π Pi 3.1415926535897932384 -

πday Zenith Angle Constant 0.0172142 -

πperi Zenith Angle Constant 1.7924530506134 -

psb PBL Mass Depth 50 hPa or mb

psref Reference Pressure 1013.246 hPa

p0sfc Surface Pressure 1E5 Pa

rv Water Vapor Gas Constant 4.61E2 -

rstar Universal Gas Constant 8.3143 m3 Pa/mol/K

Solar Const Solar Constant 1367.0 W/m2

SHSolstice SH Longest Day of Year 355 Day

snomel Latent Heat of Fusion of Ice 3.705185E8 J/m3

spec heat cp Specific Heat at Constant Pressure 1005.0 J/kg/K

ssi Irreducible Water Fraction of Snow 0.033 -

stefan Stefan Boltzmann Constant 5.67E−8 W/m2/K4

TFfrz Freezing Temperature 32.0 F

TKair Thermal Conductivity of Air 0.023 W/m/K

TKwat Thermal Conductivity of Water 0.6 W/m/K

TKice Thermal Conductivity of Ice 2.29 W/m/K

Tsref Reference Temperature 373.15 K

Tref Reference Temperature 273.15 K

Tice Freezing Temperature of Water 273.15 K

Tbgmin Minimum Snow Temperature 253.15 K

Tbgmax Maximum Snow Temperature 273.15 K

Timin Lowest Ice Temperature 173.16 K

Timax Highest Ice Temperature 273.16 K

Twmin Lowest Water Temperature 173.16 K

Twmax Highest Water Temperature 373.16 K

vkrmn Von Karmann Constant 0.35 -

wimp Water Impermeabality Level 0.05 -

wpotfc Water Potential At Field Capacity -15. J/kg

wpotwp Water Potential At Wilting Point -1500. J/kg

wtfact High Water Table Areal Fraction 0.3 -

zlnd Roughness Length for Land 0.01 m
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Table A15: Specified Constants.

Name Definition Value Units

aadjustmin Phenology allocation adjustment minimum 0.02 -

bstabl Surface Flux Constant 8.0 -

bunstablM Surface Flux Constant 10.0 -

bunstablT Surface Flux Constant 15.0 -

cstabl Surface Flux Constant 10.0 -

cunstablM Surface Flux Constant 75.0 -

cunstablT Surface Flux Constant 75.0 -

ClimLen Climtological averaging length 3650 days

CO2CASMin CAS Depth Minimum for CO2 4 m

COSCASMin CAS Depth Minimum for COS 10 m

COSksoil COS Soil Decay Rate 1.2E4 s−1

lftit Leaf Adjustment Reference Temperature 273.0 K

lftif Leaf Adjustment Factor 1.3 -

lgrwmin Leaf Growth Minimum 0.6 -

moistmul Moisture Adjustment Multiplier 2.8 -

radc1 Radiation Parameter 580. -

radc2 Radiation Parameter 464. -

radc3 Radiation Parameter 499. -

radc4 Radiation Parameter 963. -

radc5 Radiation Parameter 1160. -

RHAStart Humidity stress curvature start 0.5 -

RHExp Humidity stress curvature 2.2 -

RHExp,Crop Humidity stress crop exponent 0.7 -

RHNForest Humidity stress min for needle forests 0.7 -

RHTundra Humidity stress min for tundra 0.6 -

RSTmax Maximum Stomatal Resistance 5E6 s/m

RTmoist,exp Moisture Resp/Transfer Scalar Exponent 30.0 -

RTmoist,range Moisture Resp/Transfer Scalar Range 0.98 -

SeasLen Seasonal averaging length 10 days

SeasLen,Precip Seasonal precipitation averaging length 18 days

SIFmu SIF Aerosol Optical Depth Parameter -0.6 -

SIFperih SIF TOA Solar Parameter 1.7963 -
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SIFa1 SIF Parameter 1.93 -

SIFa2 SIF Parameter 10.0 -

SIFkf0 SIF Parameter 0.05 -

SIFkn0 SIF Parameter 5.01 -

SIFkp0 SIF Parameter 4.0 -

snowc2 Snow Compaction Parameter 23E−3 m3/kg

snowc3 Snow Compaction Parameter 2.77E−6 s−1

snowc4 Snow Compaction Parameter 0.04 K−1

snowc5 Snow Compaction Parameter 2.0 -

snowdm Compaction Limit 100.0 kg/m3

snoweta0 Viscosity Coefficient 9E5 kg/m3

Tcbot Minimum Canopy Temperature 253.15 K

wftit Wood/Stem Adjustment Reference Temperature 278.0 K

wftif Wood/Stem Adjustment Factor 1.3 -

wsatdefault Default Water Saturation Fraction 0.95 -
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Appendix B: Variables

Table B1: Soil Structure.

Name Definition Units

Dz
(nsoil+nsnow)

Prognostic Soil/Snow Thickness
(per soil/snow layer)

m

Layerz
(nsoil+nsnow)

Soil/Snow Layer Interface Depth
(per soil/snow layer)

m

Nodez
(nsoil+nsnow)

Soil/Snow Layer Node Depth
(per soil/snow layer)

m

Table B2: Soil Properties.

Name Definition Range Units

BDDry Bulk Density of Dry Soil Material - kg/m−3

Bee Exponent - -

CSolid Heat Capacity (Soil Solids) - J/m3/K

FC Field Capacity (Volumetric) 0 to 1 m−3

KSat Hydraulic Conductivity at Saturation - m/s

PHSat Tension at Saturation - m

Poros Porosity 0 to 1 -

TKDry Thermal Conductivity (Dry Soil) - W/m/K

TKMineral Thermal Conductivity (Soil Minerals) - W/m/K

TKSat Thermal Conductivity (Saturated Soil) - W/m/K

WExp Combined Soil Moisture Exponent 0 to 1 -

WOpt Optimal Soil Moisture Saturation Fraction 0 to 1 -

WSat Saturated Soil Moisture Saturation Fraction 0 to 1 -

WP Wilting Point (Volumetric) 0 to 1 m−3

Zm Texture-Based Constant 0 to 1 -
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Table B3: Vegetation Properties.

Name Definition Units

cc1 Bulk boundary layer resistance coefficient (s/m)1/2

cc2 Ground to canopy air space resistance -

ClimLAI Climatolotical LAI m2/m2

FPAR Fraction of absorbed fraction of photosynthetic radiation -

gmudmu Time-mean leaf projection -

green Green fraction of LAI -

LAI Leaf area index m2/m2

LAIT Canopy total LAI (with dead grass) m2/m2

RootF
(nsoil)

Rooting Vertical Distribution
(fraction per soil layer)

-

VCover Fraction of vegetation cover -

VMax Rubisco Velocity mol/m2/s

Z0 Canopy snow-adjusted roughness length m

Z0D Canopy roughness length m

ZPDispD Zero-plane displacement m

ZPDAdj Snow-adjusted zero-plane displacement m

ZZTemp Temperature height for mass flux m

ZZWind Wind height for mass flux m
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Table B4: Prognostic Variables

Name Definition Units

C

(nlpool+ndpool, nsoil)

Pool Carbon

(per pool, soil layer)
mol C m−2

capaccliq Canopy Surface Liquid kg/m2

capaccsnow Canopy Surface Snow kg/m2

capacg Ground Surface Liquid kg/m2

ea CAS Water Vapor Pressure hPa

pco2a CAS CO2 Partial Pressure Pa

rst Stomatal resistance s/m

Tc Canopy Temperature K

Ta Canopy Air Space (CAS) Temperature K

nsl Number of Snow Layers -

Dz

(nsoil+nsnow)

Soil/Snow Thickness

(per soil/snow layer)
m

TD
(nsoil+nsnow)

Soil/Snow Temperature

(per soil/snow layer)
K

WWWLiq

(nsoil+nsnow)

Soil/Snow Liquid Water

(per soil/snow layer)
kg/m2

WWWIce

(nsoil+nsnow)

Soil/Snow Ice

(per soil/snow layer)
kg/m2
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Table B5: Radiation Variables

Name Definition Units

albedoVisB Visible beam albedo -

albedoVisD Visible diffuse albedo -

albedoNIRB Near-Infrared (NIR) beam albedo -

albedoNIRD NIR diffuse albedo -

radc3c Absorbed radiation by canopy W/m2

radc3g Absorbed radiation by ground W/m2

radfacc1,1
Canopy radiation absorption factor

(visible, beam)
-

radfacc1,2
Canopy radiation absorption factor

(visible, diffuse)
-

radfacc2,1
Canopy radiation absorption factor

(NIR, beam)
-

radfacc2,2
Canopy radiation absorption factor

(NIR, diffuse)
-

radfacg1,1
Ground radiation absorption factor

(visible, beam)
-

radfacg1,2
Ground radiation absorption factor

(visible, diffuse)
-

radfacg2,1
Ground radiation absorption factor

(NIR, beam)
-

radfacg2,2
Ground radiation absorption factor

(NIR, diffuse)
-

radtc Canopy net radiation W/m2

radtg Ground net radiation W/m2

radts Snow net radiation W/m2

radvbc Visible beam radiation W/m2

radvdc Visible diffuse radiation W/m2

radnbc NIR beam radiation W/m2

radndc NIR beam radiation W/m2

tsfc Surface temperature K
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Table B6: Flux Variables

Name Definition Units

ct Thermal transfer coefficient -

cu Momentum transfer coefficient -

drag Drag kg/m2/s

ea Canopy Air Space (CAS) water vapor pressure hPA or mb

EC Canopy latent heat flux J/m2

ECI Latent heat flux, canopy interception (Puddles) J/m2

ECT Latent heat flux, canopy transpiration J/m2

EG Ground latent heat flux J/m2

EGI Latent heat flux, ground interception J/m2

EGS Latent heat flux, ground evaporation J/m2

ES Snow latent heat flux J/m2

fss CAS sensible heat flux W/m2

fws CAS latent heat flux W/m2

hcapC Canopy heat capacity J/m2/K

hcapCAS CAS heat capacity J/m2/K

HC Canopy sensible heat flux J/m2

HG Ground sensible heat flux J/m2

HS Snow sensible heat flux J/m2

ra CAS to mixed layer resistance s/m

rb Canopy to CAS resistance s/m

rc Bulk leaf to canopy resistance s/m

rd Ground to CAS resistance s/m

rsoil Soil surface resistance s/m

shCAS CAS water vapor mixing ratio kg/kg

StorHC Canopy heat storage flux W/m2

StorHG Ground heat storage flux W/m2

TC Canopy temperature K

TCAS CAS temperature K

TCMin Frost Canopy Temperature K

TKECAS CAS turbulent kinetic energy J/kg

u* Friction velocity m/s

VCapCAS CAS vapor capacity J/m2/hPa

ventmf Ventilation mass flux kg/m2/s
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Table B7: Photosynthesis Variables

Name Definition Units

APAR Absorbed photosynthetically active radiation mol/m2/s

APARKK Factor for scaling of leaf radiation -

assim Gross assimilation rate mol C/m2/s

assimD Daily assimilation rate mol C/m2/s

assimOMC Rubisco-limited assimilation mol C/m2/s

assimOME Light-limited assimilation mol C/m2/s

assimOMS Sink-limited assimilation mol C/m2/s

assimfac1 Assimilation rate rubisco-limited stress factor -

assimfac2 Assimilation rate light-limited stress factor -

assimfac3 Assimilation rate sink-limited stress factor -

assimfac4 Total Assimilation rate stress factor -

assimpot Potential top leaf photosynthesis mol C/m2/s

assimpotOMC Potential rubisco-unlimited assimilation mol C/m2/s

assimpotOME Potential light-unlimited assimilation mol C/m2/s

assimpotOMS Potential sink-unlimited assimilation mol C/m2/s

FLH Leaf surface relative humidity potential (rstfac1) -

FRZ Rootzone water potential (rstfac2) -

FT Temperature potential (rstfac3) -

FE Environmental Photosynthetic Potential (rstfac4) -

gamma CO2 photocompensation point Pa

PAR Photosynthetically active radiation mol/m2/s

PARNS Non-scattered PAR mol/m2/s

PCO2C Chloroplast CO2 partial pressure Pa

PCO2A CAS CO2 partial pressure Pa

PCO2I Leaf internal CO2 partial pressure Pa

PCO2S Leaf surface CO2 partial pressure Pa

rst Prognostic stomatal resistance s/m

SoilFrz Soil freeze function -

SoilFrzTG Soil freeze function for top soil layer -

SoilFrzTD Soil freeze function for second soil layer -

VMax,SS Stressed rubisco velocity mol/m2/s
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Table B8: Hydrology Variables (Surface or Single-Value)

ClimPAWFRW Climatological root-weighted PAW fraction -

ClimTAWFRW Climatological root-weighted TAW fraction -

infil Water infiltrated into the top soil layer mm

nsl Prognostic number of snow layers -

PAWFRW Root-weighted PAW -

PAWFZW Soil layer thickness weighted PAW -

PAWFTop Mean PAW fraction in top 3 soil layers -

p0 Ground surface precipitation mm

pcpgrain Ground surface rain precipitation mm/s

pcpgsnow Ground surface snow precipitation mm/s

roff Total subsurface runoff from soil layers mm

roffo Overland runoff mm

Sc Canopy wetness storage limit kg/m2

Sg Ground wetness storage limit kg/m2

snowgdepth Depth of snow on ground m

snowgmass Mass of snow on ground kg/m2

snowcvfc Snow vertical cover fraction -

snowgvfc Snow ground cover fraction -

TAWFRW Root-weighted TAW -

TAWFTop Mean TAW fraction in top 3 soil layers -

wetfracc Canopy wetness fraction -

wetfracg Ground wetness fraction -

120



Table B9: Hydrology Variables (Column)

Name Definition Units

effporos

(nsoil+nsnow)
Soil/snow liquid effective porosity

(per soil/snow layer)
-

PAW
(nsoil)

Plant Available Water
(per soil layer)

kg/m3

rootr
(nsoil)

Effective rooting fraction
(per soil layer)

-

satfrac
(nsoil)

Fraction of water saturation
(per soil layer)

-

shcap
(nsoil+nsnow)

Soil/Snow total heat capacity
(per soil/snow layer)

J/m2/K

TAW
(nsoil)

Total Available Water
(per soil layer)

kg/m3

TD

(nsoil+nsnow)
Prognostic Soil/Snow Temperature

(per soil/snow layer)
K

TKsoil

(nsoil+nsnow)
Soil/Snow thermal conductivity

(per soil/snow layer)
W/m/K

volice
(nsoil)

Soil ice water volume
(per soil layer)

kg/m3

volliq
(nsoil)

Soil liquid water volume
(per soil layer)

kg/m3
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Table B10: Solar-Induced Fluorescence (SIF) Variables

Name Definition Units

φD Heat Dissipation Yield -

φF SIF Yield -

φN NPQ Yield -

φP Photosynthetic Yield -

sifje Electron Transport -

sifjo Max Electron Transport -

sifjejo Fractional Transport (je/jo) -

sifKd Heat Dissipation Probability -

sifKf SIF Probability -

sifKn Non-photochemical quenching (NPQ) Probability -

sifKp Photosynthesis Probability -

SIF Solar-Induced Fluorescence (SIF) W m−2 sr−1 nm−1

Table B11: Carbonyl Sulfide (COS) Variables

Name Definition Units

assimCOS COS Assimilation mol/m2/s

grndCOS COS Soil Uptake mol/m2/s

fluxCOS Canopy Air Space (CAS) COS Flux mol/m2/s

coscap Air Capacity for COS Exchange mol air/m2

cosCAS CAS COS mol COS/mol air

cosi Leaf Internal COS mol COS/mol air

coss Leaf Surface COS mol COS/mol air

gCOS Apparent Mesophyll Conductance and Biochemical Activity mol/m2/s

gtCOS Total COS Conductance mol/m2/s

lruCOS COS Leaf Relative Uptake -

VMaxT Temperature-Adjusted Maximum Rubisco Velocity mol/m2/s
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Table B12: Dynamic Phenology Variables

Name Phenology Variable Units Min Max

AssimRM Running-Mean Assimilation mol C/m2/s 0

AssimSM Seasonal Maximum Mean Assimilation mol C/m2/s 0

ClimCupr Climatological Convective Precipitation mm/s 0

ClimPr Climatological Precipitation mm/s 0

ClimPAWFRW Climatological Root-Weighted PAW - 0 1

ClimTAWFRW Climatological Root-Weighted TAW - 0 1

ClimLAIMax Maximum Climatological LAI m2/m2 0

ClimLAIMin Minimum Climatological LAI m2/m2 0

ClimP Climatological Suitability - CPMin CPMax

ClimW Climatological Water Availability - 0 1

FlagA Assimilation Flag T or F

FlagG Growing Season Flag T or F

Name Diagnostic Potential Units Min Max

PFA Running-Mean Assimilation Potential - 0 1

PFE Running-Mean Environmental Potential - 0 1

PFWA Running-Mean Water Availability Potential - 0 1

PFWx Mean Weather Potential - 0 1

PFWx,SM Mean Weather Potential Seasonal Maximum - 0 1

PI Phenology Stage Index - 0 1

PIStage Phenology Stage - 1 nstage

PSDayL Phenology Stage Day Length Potential - 0 1

PSGrw Phenology Stage Growth Potential - 0 1

PSWx Phenology Stage Weather Potential - 0 1

Name Environmental Variables Units Min Max

DayL Day Length hr 0 24

DayLdt Change in Day Length hr 0 0.1

DayLMax Maximum Day Length hr 0 24

TMD Daily Mean Temperature K

Name Water Availability Metrics Units Min Max

FE Environmental Potential - 0 1

FRZ Root-Zone Soil Moisture Potential - 0 1

PAWFTop Root-Weighted PAW in Top Three Layers - 0 1

PAWFZW Soil Layer Thickness-Weighted PAW - 0 1

TAWFTop Root-Weighted TAW in Top Three Layers - 0 1

TAWFZW Soil Layer Thickness-Weighted TAW - 0 1
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Table B13: Defined Phenology Variables

Name Crop Variable Units

DAPD Days After Planting Date days

DAPDAF Days After Planting Date Above Freezing days

FlagG Growing Season Flag T or F

FlagP Precipitation Flag T or F

GDD Growing Degree Days -

PFPr Running-Mean Precipitation mm/day

PFPr,SM Seasonal Maximum Precipitation mm/day

PFPr,SDOY Day of Seasonal Maximum Precipitation DOY

PFPr,CDOY Climatological Mean Day of Seasonal Max Precip DOY

PI Phenology Stage Index -

PIStage Phenology Stage -

TMDF Daily Mean Temperature Degrees F

Name Pool Variable Units

GainSeed,lp

(nlpool)

Seed Carbon Gain to Live Pools

(per live pool)
mol C/m2

HrvC Total Harvested Carbon mol C/m2

GainHrv,dp

(ndpool)

Harvested Carbon Gain to Dead Pools

(per dead pool)
mol C/m2

LossHrv,lp

(nlpool)

Harvested Carbon Loss from Live Pools

(per live pool)
mol C/m2

RespHrv Harvested Carbon Respired mol C/m2

RmvdHrv Harvested Carbon Removed mol C/m2

SeedPool Seed Pool Carbon Mol C/m2
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Table B14: Fire Variables

Name Fire Variables Units

ndFire Number of Days Burned days

Name Pool Variables Units

LossFire
(npool)

Fire Carbon Loss from Live and Dead Pools
(per pool)

mol C/m2

RespFire Fire Respiration mol C/m2/s

RmvdFire Fire Respired But Not Removed mol C/m2

Table B15: Grazing Variables

Name Grazing Variables Units

ndGrz Number of Days Grazed days

Name Pool Variables Units

GainGrz,dp

(ndpool)
Grazed Carbon Gain to Dead Pools

(per dead pool)
mol C/m2

LossGrz,cp

(ncpool)
Grazed Carbon Loss from Canopy Pools

(per canopy pool)
mol C/m2

RespGrz Grazed Carbon Respired mol C/m2/s

RmvdGrz Grazed Carbon Removed mol C/m2
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Table B16: Allocation Variables

Name Allocation Variables Units

Alloclp

(nlpool)
Allocation Fractions

(per live pool)
-

AllocAlp

(nlpool)
Weather-Based Allocation Adjustment

(per live pool)
-

AllocAMlp

(nlpool)
Soil Moisture Allocation Adjustment

(per live pool)
-

AllocATlp

(nlpool)
Temperature Allocation Adjustment

(per live pool)
-

AssimDay Daily Assimilation mol C/m2/day

TMinDay Daily Minimum Temperature K

Name Environmental Potentials Units

AFLeafF Leaf Freeze Allocation Adjustment Potential -

AFRoot Root Allocation Adjustment Potential -

AFRZ Daily Mean Root-Zone Soil Moisture Potential -

AFWood Wood Allocation Adjustment Potential -

AFWoodF Wood Freeze Allocation Adjustment Potential -

AFWoodT Wood Temperature Allocation Adjustment Potential -

Name Pool Variables Units

Distrib
(nlpool, nsoil)

Soil Carbon Vertical Distribution
(fraction per soil layer, per live pools)

-

GainA,lp

(nlpool)
Assimilated Carbon Gain to Live Pools

(per live pool)
mol C/m2
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Table B17: Autotrophic Respiration Variables

Name Autotrophic Respiration Variables Units

krater

(nlpool,nsoil)

Scaled Maintenance Loss Rate

(per live pool, per soil layer)
1/s

MCRAssim Canopy Assimilation Scalar -

MCRFreeze Canopy Freeze Inhibition -

MCRHot Canopy High Temperature Exponential -

MCRScale Combined Canopy Respiration Scalar -

MRRAssim Root-Weighted Root Assimilation Scalar -

MRRFreeze Root-Weighted Root Freeze Inhibition -

MRRFreeze,Lay

(nsoil)

Root Freeze Inhibition

(per soil layer)
-

MRRHot Root-Weighted Root High Temperature Exponential -

MRRHot,Lay

(nsoil)

Root High Temperature Exponential

(per soil layer)
-

MRRScale Root-Weighted Combined Root Respiration Scalar -

MRRScale,Lay

(nsoil)

Combined Root Respiration Scalar

(per soil layer)
-

Name Environmental Variables Units

ClimAssim Climatological Assimilation Rate mol C/m2/s

Name Pool Variables Units

LossGResp

(nlpool)

Growth Respiration Live Pool Loss

(per live pool)
mol C/m2

LossMResp

(nlpool,nsoil)

Maintenance Respiration Live Pool Loss

(per live pool, per soil layer)
mol C/m2

Name Respiration Rates Units

RA Autotrophic Respiration mol C/m2/s

RG Growth Respiration mol C/m2/s

RLeaf Leaf Respiration mol C/m2/s

RM Maintenance Respiration mol C/m2/s

RNVeg Non-Vegetation Respiration mol C/m2/s

RRoot Root Respiration mol C/m2/s
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Table B18: Senescence Variables

Name Senescence Variables Units

TD Litterfall Daylength Transfer Fraction -

TF Litterfall Freezing Temperature Transfer Fraction -

TP Litterfall Phenology Transfer Fraction -

TW Litterfall Water Deprivation Transfer Fraction -

Name Pool Variables Units

GainTL

(ndpool,nsoil)

Dead Pool Gain From Live Pools

(per dead pool, per soil layer)
mol C/ms

LossLF

(nlpool)

Litterfall Live Pool Loss

(per live pool)
mol C/m2

LossT

(nlpool,nsoil)

Turnover Live Pool Loss

(per live pool, per soil layer)
mol C/m2
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Table B19: Heterotrophic Respiration Variables

Name Heterotrophic Respiration Variables Units

krater

(ndpool,nsoil)

Scaled Loss Rate

(per dead pool, per soil layer)
1/s

MHSfc,Assim Surface Pool Assimilation Scalar -

MHSfc,Freeze Surface Pool Freeze Inhibition -

MHSfc,Hot Surface Pool High Temperature Exponential -

MHSfc,Precip Surface Pool Precipitation Exponential -

MHSfc,Scale Combine Surface Pool Respiration Scalar -

MHSoil,Freeze

(nsoil)

Soil Pool Freeze Inhibition

(per soil layer)
-

MHSoil,Hot

(nsoil)

Soil Pool High Temperature Exponential

(per soil layer)
-

MHSoil,Moist

(nsoil)

Soil Pool Moisture Scalar

(per soil layer)
-

MHSoil,PAW

(nsoil)

Soil Pool PAW Scalar

(per soil layer)
-

MHSoil,Scalar

(nsoil)

Combined Soil Pool Respiration Scalar

(per soil layer)
-

Name Environmental Variables Units

PrClim Climatological Precipitation Rate mm/day

PrSeas Seasonal Precipitation Rate mm/day

Name Pool Variables Units

GainTD

(ndpoolnsoil)

Dead Pool Gain from Dead Pool Transfers

(per dead pool, per soil layer)
mol C/m2

LossHR

(ndpool,nsoil)

Heterotrophic Respiration Dead Pool Loss

(per dead pool, per soil layer)
mol C/m2

LossHT

(ndpool,nsoil)

Decay Dead Pool Loss

(per dead pool, per soil layer)
mol C/m2

Name Respiration Rates Units

RH Heterotrophic Respiration mol C/m2/s

RSoil Soil Respiration mol C/m2/s

RSoilNR Dead Soil Respiration (Without Roots) mol C/m2/s

129


	List of Figures
	List of Tables
	Introduction
	Overview
	History
	Applications

	Model Structure
	Soil and Snow
	Structure
	Soil Properties

	Vegetation
	Plant Functional Types
	Root Profiles
	Carbon Pools
	Vegetation Properties
	Land Cover Heterogeneity

	Input Variables
	Prognostic Variables and Governing Equations
	I/O
	Runtime Options

	Radiation
	Solar Radiation Characteristics
	Solar Radiation Components
	Radiative Transfer Model
	Overview
	Original Equations

	Radiation Calculations
	Albedo
	Radiation Absorption Factors
	Absorbed Radiation
	Net Radiation


	Land-Atmosphere Exchanges
	Aerodynamic Resistances
	Photosynthesis
	Assimilation
	Stomatal Conductance
	Canopy Scaling
	Environmental Forcing Potentials

	Fluxes
	Energy Balance

	Hydrology
	Precipitation
	Canopy
	Snow
	Soil
	Water Balance
	Water Availability

	Solar-Induced Fluorescence (SIF)
	Carbonyl Sulfide (COS)
	Leaf Uptake
	Soil Uptake
	Prognostic Canopy Air Space (CAS) COS

	Dynamic Prognostic Phenology
	Phenology Stages
	Stage Selection
	Phenology Index (PI )
	Day Length Potential (PSDayL)
	Growth Potential (PSGrw)
	Weather Potential (PSWx)

	Growing Season Start
	Phenology and Physiology Interactions

	Defined Prognostic Phenology (Crops)
	Phenology Stages
	Growing Season Start
	Seasonal Progression
	Harvest
	Redistribution
	Switching Corn and Soybeans

	Disturbance
	Fire
	Grazing

	Carbon Pool Exchanges
	Allocation
	Autotrophic Respiration
	Growth Respiration
	Maintenance Respiration
	Canopy Maintenance Respiration Scaling Coefficient
	Root Maintenance Respiration Scaling Coefficient
	Diagnostic Respiration Rates

	Senescence
	Turnover
	Litterfall
	Transfer

	Heterotrophic Respiration and Decay
	Pool Updates

	Terrestrial Carbon Cycle
	Overview
	Calculation Sequence

	References
	Acknowledgements
	Appendix A: Input Data and Parameters
	Appendix B: Variables

