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Abstract

Four-Stroke, Internal Combustion Engine Performance Modeling

In this thesis, two models of four-stroke, internal combustion engines are created and

compared. The first model predicts the intake and exhaust processes using isentropic flow

equations augmented by discharge coefficients. The second model predicts the intake and

exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) ap-

proach. Both models employ the same heat release and reduced-order modeling of the cylin-

der charge. Both include friction and cylinder loss models so that the predicted performance

values can be compared to measurements.

The results indicate that the isentropic-based model neglects important fluid mechanics

and returns inaccurate results. The Q1D flow model, combined with the reduced-order model

of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics

and produces results that compare well with measurement. Fluid friction, convective heat

transfer, piston ring and skirt friction and temperature-varying specific heats in the working

fluids are all shown to be significant factors in engine performance predictions. Charge

blowby is shown to play a lesser role.
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CHAPTER 1

Introduction

1.1. Background

At this point in time, when battery technology has reached a level where fully electric cars

are becoming a possibility, it may seem misguided to pursue improvements in the internal

combustion engine. But there are still many applications for which the piston engine is

indispensable and will remain so for some time. That being the case, it is essential that we

continue working to make engines more efficient. With a typical thermodynamic efficiency of

only around 25%, there seems to be tremendous room for improvement: increasing specific

power and efficiency while reducing fuel consumption and in turn, emissions. There may

also be ways to make engines more carbon- or even resource-neutral, operating them on

biofuels or even on solar- or wind-generated ammonia. But there is a problem. Our selection

of modeling and analysis tools is limited. It restricts our ability to perfect current engine

designs and obstructs our pursuit and evaluation of new ideas.

While we humans have been designing and building engines for over 100 years, our ability

to create them has belied our limited understanding of the physics that occur within them.

The four-stroke piston engine reached a point of mechanical maturity by 1913 with the

Peugeot Grand Prix engine of Figure 1.1a. Building from that point, Vittorio Jano and

Harry Miller took the engine to its ultimate, refined form by 1926 [1]. Figure 1.1b shows

Miller with one of his 1.5 liter, straight-eights on the dynamometer. In 1926, this 330 lb.

engine was producing 285 horsepower at 8,200 RPM. Nearly 100 years later, the highest
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performance engines in our cars are indistinguishable from this engine. And their efficiency

hasn’t improved significantly.

(a) The 1913 Peugeot Grand Prix Engine

(b) Harry Miller with a 1.5 liter Straight-Eight

Figure 1.1. The Classic Pattern, Double Overhead Cam Engines from 1913
and 1926.

There has been a continuous effort over more than a century to demystify the physics of

the engine, with some of the greatest names in science and engineering adding their contri-

butions to the effort. The mechanics, structures, vibrational dynamics and thermodynamics

of engines were identified, understood and reached a state of utility by the 1920’s. Yet prior

to, and surprisingly, since, engine designers have been baffled over and over by some engines’

seeming refusal to perform as design rules of thumb and analytical tools say they should.
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With all of the understanding that’s been achieved, what is missing? Answer: an understand-

ing of, and ability to predict, the physics of the charge inside of the cylinder and the flows in

the intake and exhaust tracts. The science here has progressed along with the more recent

development of the science of aerodynamics. The problems are the same: experimentally,

attempting to observe the behavior of an invisible medium; analytically, attempting to apply

equations that we can write but can’t solve. And to make the process even more difficult,

all of the physics are hidden from view and happen over astonishingly short timescales.

With the advent of computers and the application of Computational Fluid Dynamics

(CFD) to the solution of fluid flows, researchers have been attempting to create systems

that can predict the performance of an engine with its intake and exhaust systems before it

is built. But as in all science and engineering, there are trade-offs. One obvious approach to

simulating an engine’s fluid flows is shown in Figure 1.2a, where the flow in a cylinder and

its intake and exhaust tracts are modeled using three-dimensional CFD.

(a) An Engine Modeled with 3-D CFD (b) The Cadillac V-16 (2002)

Figure 1.2. Computational Fluid Dynamics Applied to Engine Design

Cadillac used this approach to design a V16 (Figure 1.2b) in 2002 [2], with reportedly

good results—the real engine performed about as predicted. But the utility of the approach

is limited. Simulating this scenario, even by CFD standards, is very complicated. Cadillac
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used a team of over 100 engineers and programmers to construct the simulation. And then,

even running the simulation on their super computer, they waited...and waited...for the

results. It took two months for the simulation to deliver the engine’s power and torque

curves. In that same amount of time, a prototype could have been fabricated and tested on

a dynamometer, perhaps more than once. At the time of this writing, this approach doesn’t

lead to an effective design or research tool.

There are currently two commercial engine simulations on the market, from Ricardo and

GT-Power. Both are based on reduced-order methods, although neither supplier divulges the

internal algorithms of its system. In discussions with users (Dinan Corp., Edelbrock Corp.,

Continental Aircraft Engines, HyTech Exhaust Systems, Inc. and Rousch Performance),

the author has received negative reports. The systems sometimes diverge, take too much

time to deliver a solution and deliver inaccurate solutions. Dinan used Ricardo’s Wave for a

year before abandoning it and returning its engineers back to using their own intuition and

established techniques, which yielded better products.

The published literature currently offers no “best approach” for modeling the charge,

intake and exhaust flows of an engine. It is an unsolved problem and there is a healthy,

active branch of research devoted to this endeavour. To speed the return of results and make

an engine simulation a useful tool, the charge within the cylinder and, especially the intake

and exhaust flows, must be modeled with some kind of reduced-order method. Predicting

the flow dynamics has proved to be the technical bottleneck and much research is devoted to

it. Three approaches are commonly used to model the intake and exhaust flows: a Helmholtz

resonator model, an acoustic model or a one-dimensional CFD model.
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1.2. Motivation and Focus

This thesis will focus on the derivation, construction and comparison of two reduced-

order engine models. The first will model the intake and exhaust flows using an approach

based on the isentropic flow equations. The second will model the intake and exhaust

flows using a time-accurate, compressible, Quasi-One-Dimensional (Q1D) approach. In both

cases, the intake and exhaust models will connect to a time-domain model of the cylinder

and charge. Our motivation here is to see whether the dominant physics of the charge and

the dominant physics of the intake and exhaust flows can be captured with either of these

approaches. Researchers have identified and addressed many other factors that affect the

real performance of an engine and, for verification and validation purposes must be included

in an engine model. We will include a number of submodels so that we may evaluate

the simulations’ high-level predictions—power, torque, volumetric efficiency and Indicated

Mean-Effective Pressure—and compare them to some real measurements. We will also turn

these models on and off to see their effect on the simulations’ predictions. In this way, we

will be able to determine whether either of our modeling approaches is valid and suggest

what is and what isn’t dominant physics in the internal combustion engine.

1.3. Literature Review

A number of researchers have modeled the cylinder/intake/exhaust system as a Helmholtz

resonator. Bortoluzzi et al. [3] found reasonable predictions modeling a single intake stroke.

They also identified a significant weakness of the model, that it breaks down when stimulated

with frequencies of shorter wavelength than the duct. It can’t reproduce the organ pipe

oscillations that come in that regime. Chapman et al. [4] created a Helmholtz model that
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included viscous drag in the duct. Their development of the drag term could prove useful for

this author in the future. They model the flow through the valves using an isentropic flow

model, augmented by a discharge coefficient. They compare their results to those of a real,

motored engine. The intake prediction is quite good. When compared to the measurements

on the exhaust system of a firing engine, their results aren’t good. Tabaczynski [5] discusses

a number of closed-form approaches to predicting engine performance along with Helmholtz

resonator theory. He suggests that the crankshaft speed for tuning is roughly one-half the

Helmholtz frequency. He mentions organ pipe oscillations but adds their effect is unvalidated.

He goes on to discuss method of characteristics and finite-difference approaches superficially.

Hanriot et al. [6] performed experiments where they connected a Helmholtz resonator to

a complete intake system and identified the parameters that maximized intake mass flow.

Vorum [7] applies a two-state simulation that models intake and exhaust flows as Helmholtz

resonators while the valves are open and as organ pipes when the valves are closed.

In their all-inclusive paper, Chalet et al. [8] test a Helmholtz model, a one-dimensional

CFD model and an acoustic model on the flow through a pipe. The Helmholtz model breaks

down when the pipe is stimulated at wavelengths shorter than the length of the pipe. The

acoustic model, derived through the linearization of the one-dimensional Euler equations,

breaks down any time shock waves or supersonic flow are present. The 1-D CFD model

provides reasonable results throughout. Pearson and Winterbone [9] also take an acoustic

approach to modeling the flow through an intake manifold. They connect their simulated in-

take runner to a cylinder model and compare the results to experiment. The correlation isn’t

very high. Mezher et al. [10] created another frequency-based approach where experiments

were run on a simulated engine and shock tubes, using System Identification techniques to
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create a transfer function describing an engine’s overall performance. Harrison et al. [11] also

created a linear acoustic model that estimated the time-varying intake pressure in a research

engine. Their approach agrees fairly well with measurements made on the engine. Chalet

et al. [12] attempted to create a frequency-domain acoustic analysis that doesn’t assume

small velocity or pressure perturbations, then they applied the model to the flow through

an intake runner. Using an experimental setup, they studied the organ-pipe oscillations in a

pipe, then, in System Identification style, attempted to “back out” the dominant parameters

describing the fluid dynamics.

Much research has gone into applying Computational Fluid Dynamics techniques to

the intake and exhaust flows. In an attempt to analyze exhaust flows, Benson et al. [13]

applied an unsteady method of characteristics approach to model the flow through pipes

with area contractions and expansions. Bulaty and Niessner [14] modeled the flows with

one-dimensional governing equations, time-marching them using a Lax-Wendrof approach.

Their time-domain results seemed reasonable, but of greatest importance was a section of

their paper where they perform a magnitude analysis on the governing equations. They show

that, for the momentum equation, the effect of artificial viscosity is insignificant compared

to friction, a confirmation of the use of artificial viscosity to suppress oscillations in the

solution. They also show that, for the energy equation, heat convection strongly dominates

over conduction and viscosity. Chapman et al. [15] apply a finite difference approach to

solve what are essentially the quasi-one-dimensional governing equations over the length of a

pipe. They model intake and exhaust valves using an isentropic flow model with a discharge

coefficient. They present an interesting approach to handling pipe junctions that the author

will return to at a later date. Their results for a single engine RPM were good, but they
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never compared predicted and real power and torque curves. Shimamoto et al. [16] solve

the one-dimensional Euler equations using a method of characteristics approach and find

an important result. Measuring curved pipe lengths by the shortest possible length, rather

than by the centerline length, seems to provide the most accurate results. Takizawa et al.

[17] solve the quasi-one-dimensional governing equations of fluid flow using a Lax-Wendroff

approach. Their constant-RPM predictions are good, but they don’t compare measured and

predicted power, torque and volumetric efficiency over the engine’s operating RPM range.

Notably, they apply a “bend friction factor” that could prove useful for future work. Zhang

and Assanis [18] created a quasi-one-dimensional simulation that they solved using a finite-

volume approach which they claim to be Total Variation Diminishing. The TVD scheme

employs a central differencing scheme when the flow is elliptic in space and a one-sided

scheme when it is hyperbolic. They compare their results with Blair [19], which is also a

computational prediction, and get varying levels of agreement. Stockar et al. [20] performed

a comparison between three approaches to modeling a complete engine with intake and

exhaust tracts: a finite-difference approach, a finite-volume approach and a reduced-order,

spectral method. They model the valves as simple orifices with discharge coefficients. They

show reasonable agreement between the three methods in time-domain pressure traces at

the intake valve, and also characterize the relative computational cost of each method.

Researchers have recognized the need to replace empirical, steady-flow measurements of

fluid drag in the intake and exhaust flows with more first-principles models. In an important

paper, Chalet et al. [21] attempt to construct a reduced-order model that can account for the

separation of a flow as it enters a straight pipe from the atmosphere. While not applied in
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the current study, reduced-order models of flow separation are necessary to realize accurate,

non-empirical results from an engine simulation. This is a rich field for future research.

In a more pure fluid dynamics study, Kim et al. [22] looked at the flow through a poppet

valve using three-dimensional CFD. They compared the mass flow rate and downstream

mixing to that of a surrogate, contracting-expanding nozzle of equal flow area and found

that, functionally, they were identical. This provides strong footing for the use of such

nozzles as valves in the present study.
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CHAPTER 2

Cylinder Geometry

In this chapter, we derive the equations that describe the geometry of the cylinder and

the collection of gases held within the cylinder, the charge. The cylinder model drives the

engine simulation. Turning the virtual crankshaft causes the cylinder volume to change and

the valves to open and close. When the valves are open, the cylinder model acts as a forcing

function on the flows within the intake and exhaust tracts.

The cylinder model is largely a model of the charge within the cylinder. We’ll consider

the charge to be an isotropic, homogeneous mixture of gases. We’ll model the charge as

a single volume, neglecting the flow within the charge. In a four-stroke engine, the nearly

complete displacement of the charge out of the cylinder on the exhaust stroke, followed by

the positive inflow of new charge on the intake stroke, minimizes the effect of intracharge

flow phenomena and fluid structures. This approach has been found to return reasonable

results in closed-form gas cycle and four-stroke engine analyses [23] and it is one of the

simplifications that we will test here. Will a time-domain, control-volume treatment of the

charge encompass enough of the dominant physics to provide realistic results?

Figure 2.1 illustrates the charge, colored white, in the cylinder at bottom-dead-center

(BDC) and top-dead-center (TDC) of the piston’s stroke. Note how, at TDC, the charge

has been highly compressed, leaving a very small volume, the clearance volume (Vc), where

combustion will take place. We need to establish a relationship between the volume of the

charge and the angular displacement of the crankshaft.

Figure 2.2 illustrates the relevant dimensions that we’ll use in deriving the cylinder model.

These include the cylinder bore, the cylinder stroke and the length of the connecting rod.
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Figure 2.1. The charge in the cylinder at BDC and TDC

Figure 2.2. Cylinder Dimensions

We can envision the charge volume as being composed of two separate volumes, the clearance

volume, which is constant, and the volume created as the piston rises and falls. We’ll call

that latter the ”displacement volume”, Vd, of the charge. hd is the height of the displacement

volume. Rotation of the crankshaft, θ, is measured from TDC of the engine’s compression

stroke and ranges from zero to 4π, or 0 to 720◦.
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(a) Crankshaft/Connecting
Rod Assembly

(b) Journal displacements
(c) Connecting rod displace-
ments

Figure 2.3. Crankshaft/Connecting Rod Geometry

As the crankshaft rotates, the journal scribes a circular path in space. The vertical and

horizontal displacements of the journal are illustrated in figure 2.3b and are given by:

(2.1) hc =
s

2
cos(θ) wc =

s

2
sin(θ)

The large end of the connecting rod is connected to the crankshaft journal and translates

with it. The overall lateral and vertical travel (width and height) of the connecting rod are

illustrated in figure 2.3c and are related to its length by:

l2cr = w2
c + h2

cr or h2
cr = lcr − w2

c

Based on the lateral displacement of the crankshaft journal, the height of the connecting

rod is:
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(2.2) hcr =

√

l2cr − s2

4
sin2(θ)

The total height of the assembly as a function of crankshaft angle, as illustrated by figure

2.3a is then:

(2.3) ha = hc + hcr =
s

2
cos(θ) +

√

l2cr − s2

4
sin2(θ)

The maximum length of the assembly is

(2.4) hamax
= lcr +

s

2

Subtracting Equation 2.3 from Equation 2.4 gives us the distance between the transient

height of the connecting rod small end and its maximum height. Since the piston is attached

to the connecting rod small end, this also represents the distance between the piston’s maxi-

mum height and its transient height. This is the displacement height of the cylinder volume.

(2.5) hd(θ) = lcr +
s

2
− s

2
cos(θ) −

√

l2cr − s2

4
sin2(θ)

Multiplying by the circular area of the cylinder, ac = πr2 = π b2

4
, we have the displaced

volume of the cylinder as a function of crankshaft angular displacement:
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(2.6) Vd(θ) = π
b2

4

(

lcr +
s

2
− s

2
cos(θ) −

√

l2cr − s2

4
sin2(θ)

)

To determine the size of the clearance volume, we turn to the engine’s compression ratio.

The geometric compression ratio of the cylinder is equal to the maximum volume divided

by the clearance volume. The maximum volume of the cylinder is the sum of the clearance

volume and the maximum displacement volume,

Vmax = Vc + Vd

And the compression ratio is given by:

r =
Vmax

Vc

=
Vc + Vd

Vc

=
Vd

Vc

+ 1 or Vc =
Vd

r − 1

The maximum displacement volume is the product of the stroke and the cylinder area:

Vd = s
πb2

4

And so the clearance volume is:

(2.7) Vc =
πsb2

4(r − 1)
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And finally, the total volume of the charge in the cylinder, as a function of crankshaft

angle, is the sum of the clearance volume, Equation 2.7, and the current displacement volume,

Equation 2.6:

(2.8) V(θ) = πb2

4

(

lcr +
s

2
− s

2
cos(θ) −

√

l2cr − s2

4
sin2(θ) +

s

r − 1

)

Note the data values required for this equation: cylinder bore, stroke, compression ratio

and connecting rod length. All of these values except for connecting rod length are common

engine specifications, available from all sources. The connecting rod length must either come

from deeper sources or from actual measurement.

We’ll also need the time-derivative of Equation 2.8. Without showing the manipulations,

it is:

(2.9)
dV
dt

=
πb2

4




s

2
sin(θ)

dθ

dt
+

s2sin(θ)cos(θ)

4
√

l2cr − s2

4
sin2(θ)

dθ

dt





This equation, given crankshaft angle and crankshaft rotational velocity, provides the

rate of change of the cylinder volume. It will be needed later in the governing equations of

the charge.

The cylinder depicted in Figures 2.1 and 2.2 is a scale rendering of a cylinder from a

real engine, an Alfa Romeo 2.5 liter V6, as found in the GTV6 and Milano models. Its

dimensions are listed in Table 2.1.

15



Table 2.1. Cylinder Data

bore (b) stroke (s) connecting rod compression
(mm) (mm) length (lcr) ratio

(mm)

88 68 131 9.0

Table 2.2 lists a set of data derived from Table 2.1, the clearance volume, displacement

volume, cylinder volume and the rate of change of the cylinder volume as the crankshaft

passes through 90 degrees at 1,000 RPM.

Table 2.2. Derived Cylinder Data

clearance displacement cylinder volume rate
volume volume volume

(
dV
dt

)
at 90◦

(cc) (cc) (cc)
(

cc
sec

)

51.7 413.6 465.6 21,651
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Figure 2.4. Geometric Results for the Example Cylinder

Compare these results with the values in Figures 2.4a and 2.4b. Figure 2.4a illustrates

the volume of the cylinder with respect to crankshaft angle, VT (θ). The values are generated

by Equation 2.8, fed with the data from Table 2.1. We see the cylinder volume going from

its minimum value, 51.7 cc, to its maximum value, 465.3 cc. Note how the minimum and
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maximum values match those in Table 2.2. Also note the shape of the curve. A cosine

curve of equal amplitude and phase is included for reference. Because of the linkage between

the piston and the crankshaft, the piston’s vertical position as the crankshaft rotates isn’t

sinusoidal, and therefore, neither is the volume of the cylinder.

Figure 2.4b illustrates the rate of change of the cylinder volume with respect to time,

dV
dt
, at 1,000 RPM. The values here are generated by Equation 2.9 using the data from

Table 2.1. At 90 degrees crankshaft angle, we see the volume rate, 21,655 cc
sec

, essentially

matching the value of Table 2.2. Also note the asymmetry in the curve. A sine curve with

the same amplitude and phase is included for reference. Because of the piston-connecting

rod-crankshaft linkage, the piston velocity in this engine reaches a maximum value at about

80 degrees. Piston velocity isn’t sinusoidal.

These results give us confidence that our two equations, (2.8 and 2.9) are correct. This

is crucial, as these equations drive the engine simulation.

Returning to Equation 2.3, we will need an equation describing the velocity of the piston.

Without showing the manipulations, the time-derivative of Equation 2.3 is:

(2.10)
dhp

dt
= Vp = −s0

2
sin(θ)

dθ

dt
−

s2
0

4
sin(θ)cos(θ)

√

l2cr − s2
0

4
sin2(θ)

dθ

dt

Using the values from table 2.1, with a crankshaft rotational speed of 1,000 RPM, Equa-

tion 2.10 generates the values shown in Figure 2.5. At 0 and 180◦ we should see values of

0. At 90◦ we should see a value of -3.56 m
sec

and at 270◦ we should see a value of 3.56 m
sec

.

These values all lie on the plot, giving us confidence that this equation is correct.
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Figure 2.5. Piston Velocity
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CHAPTER 3

Governing Equations of the Charge

With functions in hand that describe the volume and volume rate of the charge with

respect to the crankshaft angle, we can now consider the aerodynamics and thermodynamics

of the charge. In keeping with the motivation for this work given in the introduction, we’re

going to attempt to create a reduced-order model that will capture all of the dominant

physics needed to provide a sufficient level of accuracy. For the cylinder model—the model

of the charge—we’ll consider the charge to be a homogeneous, isotropic mass of gas: density,

pressure and temperature are constant across the charge. We’ll assume that the gas is a

mixture with static molecular weight and with mass fractions that are constant in both

space and time. Finally, we’ll assume that the gases comprising the charge are inviscid. In

considering the charge to be a single mass of gas, we’ll neglect any fluid motions or fluid

structures that might exist within it. While they are certainly significant in analyses of

combustion and in the detailed aerodynamics of the intake, exhaust and intra-cylinder flows,

we hope to find that they aren’t significant in the prediction of torque, power and volumetric

efficiency in a four-stroke engine with poppet valves.

Figure 3.1 illustrates the charge in the cylinder as the piston is rising on the exhaust

stroke. The charge has the properties volume, V , rate of change of volume, dV
dt
, density, ρ,

temperature, T , pressure, P , molecular weight, W , and specific heats cp and cv. Note that

the exhaust valve is open, allowing fluid to flow out with mass flux ṁe. The intake valve

is closed, blocking any fluid flow; ṁi = 0. There is also a mass flux across the piston skirt.

This occurs because the piston and its rings don’t create a perfect seal against the cylinder

wall. This leakage through the rings is called ”blowby”. In reality, it is the result of many

19



Figure 3.1. Charge Massflow

minute mass flows. We will consider it as a single flow, with mass flux ṁb. The cylinder,

piston and cylinder head suggest a natural control volume surrounding the charge. It is

indicated by the dashed, black line in the figure and we will refer back to it continuously as

we derive the governing equations of the charge. The equations are derived by applying the

laws of nature, in the form of the governing equations of fluid flow, to the control volume

model.

3.1. The Continuity Equation

Physical principle applied here: mass is conserved. Since the charge is an inviscid fluid,

we’ll employ the continuity equation of the Euler Equations, [24] which is a refined statement

of mass conservation for fluids:

(3.1)
∂

∂t

∫∫∫

V

ρdV +

∫∫

S

ρ~V · d~S = 0
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Here V refers to a general volume of fluid, S under the double integral refers to the surface

enclosing that volume, ~V is the velocity of the fluid crossing the surface and ~S is the unit

surface normal vector pointing out of the volume.

Applied to the control volume surrounding the charge, illustrated in Figure 3.1, the

volume integral (left-hand side) becomes:

∂

∂t

∫∫∫

V

ρdV =
d

dt
(ρcV)

where V on the right is the volume of the charge.

The right-hand term of Equation 3.1 is the integral of the incremental mass flow rate

into or out of the control volume, increasing or decreasing the mass inside of the volume.

Applying this term to the control volume surrounding the charge, we see that fluid can’t

cross its solid walls. Over all of those surfaces, ~V · d~S = 0. Fluid can enter or leave the

control volume through three discrete paths, the open intake valve, the open exhaust valve,

or through the imperfect seal between the piston and the cylinder wall, blowby. Considering

massflow out of the cylinder as positive, the surface integral applied to the charge control

volume becomes

∫∫

S

ρ~V · d~S =
(

ρ~V A
)

i
+
(

ρ~V A
)

e
+
(

ρ~V A
)

b

where ρ is the density of the fluid passing through the path, ~V is the velocity of the fluid

in the intake, exhaust or blowby flow and A is the cross-sectional area of that flow.
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Putting these two terms together, we can say that the rate of decrease of the mass of the

charge, mc,is:

(3.2) −dmc

dt
= − d

dt
(ρcV) =

(

ρ~V A
)

i
+
(

ρ~V A
)

e
+
(

ρ~V A
)

b

Performing the derivative of the product on the left hand side,

− d

dt
(ρcV) = −dρc

dt
V − ρc

dV
dt

And so we have:

(3.3) −dρc

dt
V − ρc

dV
dt

=
(

ρ~V A
)

i
+
(

ρ~V A
)

e
+
(

ρ~V A
)

b

or,

(3.4)
dρ

dt
= − 1

V

[(

ρ~V A
)

i
+
(

ρ~V A
)

e
+
(

ρ~V A
)

b
+ ρ

dV
dt

]

Equation 3.4 is the continuity equation of the charge. Given the mass fluxes from the

valve and blowby flow models, plus the volume and volume rate derived in the previous

chapter, it provides the rate of change of the density of the charge in the cylinder. Note that

velocity out of the control volume (cylinder) is positive.
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3.2. The Momentum Equation

Physical principle applied here: Newton’s Second Law. We’ll employ a refined form of

this concept, the momentum equation of the Euler equations,

(3.5)
∂

∂t

∫∫∫

V

ρ~V dV +

∫∫

S

(

ρ~V · d~S
)

~V = −
∫∫

S

Pd~S

︸ ︷︷ ︸
a

The assumption that the charge is isotropic combines with the surface pressure integral,

term ”a” of Equation 3.5, to reveal a surprising result. Figure 3.2 shows the pressure force

on the surface of the control volume. Since the charge within the volume is isotropic, the

pressure is the same throughout the charge. At the control volume surface, the pressure

multiplied by the unit surface normal vector results in the force vectors pointing equally out

in all directions. Integrated over the control volume surface, the forces cancel; the integral is

zero. This means that there is no net pressure force on the charge, and it cannot accelerate

in any direction.

The result is that the momentum of the charge is zero and therefore the charge has zero

velocity. In reality, we know that the charge does move. The surface of the control volume

in contact with the piston translates up and down with the piston. When the valves are

closed, the surface of the control volume in contact with the cylinder head does not move.

But we can see that the centroid of the charge must translate. This seems like a rather

significant phenomenon to neglect. But closed-form engine analyses [23] making this same

assumption seem to provide realistic and relatively accurate results. And so we will accept

that the velocity of the charge is zero.
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Figure 3.2. Pressure Force on the Charge

3.3. The Energy Equation

Physical principle applied here: energy is conserved. The energy equation is essentially

a restatement of the first law of thermodynamics,

(3.6) δq + δw = δe

saying that the increase in energy of a system is equal to the heat added plus the work

done on the system. The charge being a fluid, we see that it can store energy kinetically,

through pressure (work done) and as internal energy, a function of temperature. We’re

interested in the total energy of the fluid in the charge. Energy can enter or leave the charge

through three mechanisms:
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• δw, work done on the piston by the charge. This is the pressure-generated force on

the piston, times the speed of the piston’s withdrawal.

• δw, work done on the intake, exhaust and blowby flows. This is the pressure-

generated force on those flows, times the outward speed of the flows.

• Mass transfer. As fluid leaves the charge through the valves and blowby, it carries

its energy with it, decreasing the total energy of the charge.

• δq, heat loss from the charge to the cylinder walls, piston crown and cylinder head.

This is heat transfered through convection and radiation.

• δq, heat addition (a negative value) through combustion of the reactants in the

charge.

Since our system is a fluid, we’ll employ the energy equation of the Euler Equations,

which is itself a restatement of the First Law:

(3.7)
∂

∂t

∫∫∫

V

ρ

(

e +
~V 2

2

)

dV

︸ ︷︷ ︸
a

+

∫∫

S

ρ

(

e +
~V 2

2

)

~V · d~S

︸ ︷︷ ︸

b

= −
∫∫∫

V

ρq̇dV

︸ ︷︷ ︸
c

−
∫∫

S

P ~V · d~S

︸ ︷︷ ︸

d

Here, e is the internal energy of the charge,

(3.8) e = cvT

where T is the absolute temperature of the fluid and cv is the constant-volume specific

heat of the fluid.
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The ”a” term in Equation 3.7 represents the total energy contained in a volume of fluid.

The ”b” term represents the energy flux carried by fluid entering or leaving the volume. The

”c” term represents heat added or lost from the mass of fluid contained in the volume and

the ”d” term represents work done on, or by, the fluid mass by pressure forces acting on the

volume’s surface. This equation embodies all of the processes listed above.

Applying the ”a” term of Equation 3.7 to the control volume surrounding the charge in

figure 3.1 it becomes:

(3.9)
∂

∂t

∫∫∫

V

ρ

(

e +
~V 2

2

)

dV =
d

dt
(ρeV)

Where V on the right is the volume of the charge. Note that, since we have no momentum

equation, we are assuming that the velocity of the charge is zero. Performing the derivative

of the product on the right:

(3.10)

∂

∂t

∫∫∫

V

ρ

(

e +
~V 2

2

)

dV =
dρ

dt
Ve + ρ

dV
dt

e + ρV de

dt

=
dρ

dt
Ve + ρ

dV
dt

e + ρVcv
dT

dt

Applying the ”b” term of Equation 3.7 to the control volume surrounding the charge in

figure 3.1, we see that ~V · ~dS is zero at the cylinder walls. At the valves and the blowby, it

is non-zero. And so the equation becomes:
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(3.11)
∫∫

S

ρ

(

e +
~V 2

2

)

~V · d~S =

[

ρ

(

e +
~V 2

2

)

~V A

]

i

+

[

ρ

(

e +
~V 2

2

)

~V A

]

e

+

[

ρ

(

e +
~V 2

2

)

~V A

]

b

where ρ is the density of the fluid passing through the path, e = cvT where T is the

temperature of the fluid passing through the path, ~V is the velocity of the fluid in the

intake, exhaust or blowby flow and A is the cross-sectional area of that flow. Again, note

that velocity out is positive.

Applying the ”c” term of Equation 3.7 to the control volume surrounding the charge in

figure 3.1 it becomes:

(3.12)

∫∫∫

V

ρq̇dV = ρq̇V = Q̇

We see that this term represents a volumetric heating or cooling of the charge from

unspecified sources. In our case, we will include a model for the convective and radiant heat

transfer from the charge to the cylinder walls (and vice-versa). This c term will also be the

conduit through which we add combustion heat to the charge.

(3.13)

∫∫∫

V

ρq̇dV = ρq̇V = Q̇T + Q̇c

Heat flow out of the control volume is positive.
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Finally, term ”d” of Equation 3.7 is a pressure-volume work term. (Actually, pressure-

generated force times velocity, or power.) Applying it to the control volume surrounding the

charge in figure 3.1 we see that ~V · d~S is zero at the stationary cylinder walls and, since no

fluid crosses the control surface at the piston crown, zero there also. It is non-zero at the

valves and blowby. For our discrete control volume,

(3.14)

∫∫

S

P ~V · d~S =
(

P ~V A
)

i
+
(

P ~V A
)

e
+
(

p~V A
)

b

Again, note that velocity out of the control volume is positive.

Assembling these four terms,

(3.15)

dρ

dt
Ve + ρ

dV
dt

e + ρVcv
dT

dt

+

[

ρ

(

e +
~V 2

2

)

~V A

]

i

+

[

ρ

(

e +
~V 2

2

)

~V A

]

e

+

[

ρ

(

e +
~V 2

2

)

~V A

]

b

= −Q̇T − Q̇c −
(

P ~V A
)

i
−
(

P ~V A
)

e
−
(

p~V A
)

b

Subsuming the energy flux and pressure-volume power terms into sums,

(3.16)

dρ

dt
Ve + ρ

dV
dt

e + ρVcv
dT

dt
+

3∑

i=1

[

ρ

(

e +
~V 2

2

)

~V A

]

i

= −
3∑

j=1

(

P ~V A
)

j
− Q̇T − Q̇c

where 1 = intake, 2 = exhaust, 3 = blowby.

And finally, with some rearrangement,
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(3.17)

dT

dt
= − 1

ρVcv

{
3∑

i=1

[

ρ

(

e +
~V 2

2

)

~V A

]

i

+
3∑

j=1

(

P ~V A
)

j
+ Q̇T + Q̇c + Vedρ

dt
+ ρe

dV
dt

}

Equation 4.1 is the energy equation of the charge. Given the rate of change of density,

from Equation 3.4, the energy fluxes from the valve and blowby flow models, the heat fluxes

due to loss and combustion, the charge volume and volume rate, derived in the previous

chapter, it provides the rate of change of the charge temperature.

dρ
dt

and dT
dt

can be integrated to return the density and temperature of the charge. Given

crankshaft rotational velocity, ω, and a rotational step size, ∆θ, we can calculate a timestep

size:

(3.18) ∆t =
∆θ

ω

To advance the solution of the charge state forward in time, we:

(1) Increment the crankshaft angle by ∆θ

(2) Advance the flow models forward in time by ∆t

(3) Calculate values for the volume and volume rate at the new θ

(4) Calculate a density rate with the continuity equation and integrate the rate by ∆t

to find the density at the current timestep.

(5) With the new density value and rate, calculate a new temperature rate and integrate

the rate by ∆t to find the temperature at the current timestep.
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(6) End the integration step by closing the system with the perfect gas equation of

state:

(3.19) P = ρRT

With the density, temperature and pressure of the charge in hand, we are now ready

to begin a new integration step by operating the flow models. In this manner, operating

the charge and flow models in lockstep, we time-march the entire engine simulation into the

future. Integration is done using a Runge-Kutta 4-stage integrator (RK4) that is fourth-order

accurate in time.
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Figure 3.3. Model Results

Figure 3.3 shows the system in operation. With the piston beginning at BDC, the charge

in the cylinder is assumed to be at ambient density and temperature. The crankshaft is

then rotated one revolution. No mass is allowed to escape and there is no heat flow from

the charge to the cylinder. Figure 3.3a illustrates the variation in density as the piston

rises, reaches TDC at 360 degrees, then returns back down to BDC at 540 degrees. For
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comparison, the density through this process can be modeled exactly using the isentropic

gas relation,

(3.20) ρ2 = ρ1
V1

V2

The exact relationship is given by the solid, red line, and the results of this model are given

by the dashed black line. Figure 3.3b shows the temperature as the crankshaft is rotated

one revolution and the piston cycles from BDC to TDC and back. The exact solution is

calculated using the isentropic gas relation,

(3.21) T2 = T1

(V1

V2

)γ−1

Note how high the charge temperature rises as it is isentropically compressed to one-ninth

of its original volume. The peak temperature is over 700 K.
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Figure 3.4. Calculation Error Over the Cycle
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Figure 3.4 illustrates the calculation error in density and temperature over the cycle.

The maximum error in density is about 0.27% and cyclic; it returns back to zero. Since

the temperature calculation relies on density, the error there is compounded. The maximum

error over the cycle is about 0.5% and accumulates. Since, in a typical power calculation, the

model is advanced four revolutions, the error will be insignificant at the end of a simulation

run.

Instantaneous power at the piston is measured by calculating the force on the piston and

multiplying by its velocity, Pi = FpVp. To calculate the power over a full, two-revolution

cycle, the instantaneous power is integrated with respect to time to give the total work over

the cycle:

(3.22) Wcycle =

∫ 720◦

0

FpVpdt

This is also accomplished numerically using the RK4 integrator. After the engine has

been advanced a full cycle, the work value is then divided by the time of the cycle to yield

average power over the cycle:

(3.23) Pcycle =
Wcycle

∆tcycle

Figure 3.5 illustrates the work performed as the crankshaft is rotated one revolution and

the piston cycles from BDC to TDC and back. Note how the work value is negative. This

means work is being done by the piston on the charge. A positive value would indicate work
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done by the charge on the piston. Importantly, the value returns back to zero at the end of

the revolution.
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CHAPTER 4

Gas Values and Combustion

There is more than one way to account for the addition of energy to the charge by

combustion. The energy equation of the charge,

(4.1)

dT

dt
= − 1

ρVcv

{
3∑

i=1

[

ρ

(

e +
~V 2

2

)

~V A

]

i

+
3∑

j=1

(

P ~V A
)

j
+ Q̇T + Q̇c + Vedρ

dt
+ ρe

dV
dt

}

provides a term, Q̇c, allowing us to add combustion energy to the charge at a finite rate.

But there is also the possibility of adding combustion energy to the charge instantaneously.

We’ll consider both approaches here.

4.1. Combustion Energy Release

In the engine, combustion energy comes from a fuel/air combustion reaction. Shortly

before the beginning of the piston’s intake stroke, the intake valve opens, allowing a mixture

of air and gaseous fuel to enter the cylinder. Shortly after the end of the intake stroke, the

intake valve closes, trapping the intake charge in the cylinder. The charge is compressed

over the compression stroke and then ignited by a spark near the top of the stroke. Once

ignited, the charge burns, releasing chemical energy as the mixture composition changes

from reactants to products.

The magnitude of energy released is determined by the difference in enthalpy from the

reactants to the products [25] [26] [27]:
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(4.2) Qc = Hp − Hr

and enthalpy,

(4.3) h̄ = c̄pT (overbar = mole-specific)

Gasoline is difficult to work with analytically. Rather than a compound, it is a mixture,

typically of 40+ hydrocarbon compounds. Its makeup is largely determined by the crude oil

from which it is refined. Its consistency is bounded by statistics, as the gas that comes out of

a cracking tower today will be different from what came out yesterday. And so for analytical

research we must substitute a compound that possesses as many of the characteristics of

gasoline as possible. Here, we will use octane, C8H18, which is often used as a chemical

surrogate, or simulant, for gasoline. And we will consider air a mixture of 78% nitrogen,

21% oxygen and 1% argon by volume. These volume fractions are equivalent to the mole

fractions of the mixture:

(4.4) yN2
= 0.78, yO2

= 0.21, yAr = 0.01

or,
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(4.5) yN2
= 3.71 yO2

yAr = 0.0476 yO2

The chemically balanced fuel/air reaction is then:

(4.6) C8H18 + 12.5O2 + (12.5)(3.71)N2 + (12.5)(0.0476)Ar

−→ 8CO2 + 9H2O + 46.375N2 + 0.595Ar

From the balanced equation, we can establish the mole fractions for each of the species.

The total moles of reactant species is 60.47. Then the mole fractions for the reactants, the

intake charge, are:

(4.7) yC8H18
= 0.0165, yO2

= 0.2067, yN2
= 0.767, yAr = 0.00983

Note how the mole fraction of each species in air has been reduced slightly by the addition

of the gaseous fuel. The balanced equation also specifies an air/fuel ratio (by mass) of

AF = 15.07. The molecular mass of the intake mixture is:

(4.8) Mi =
n∑

i=1

yiMi = 30.36
g

mol
= 30.36

kg

kmol
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We can find the enthalpy of each species in a mixture by multiplying its mole-specific

enthalpy by the number of moles of the species. Then the total enthalpy of the mixture is

the sum of the species enthalpies:

(4.9) Hmix =
m∑

i=1

nih̄i

Enthalpies of elements and molecules are found experimentally and given at standard

conditions of 298 K and 100 kPa. These are commonly called the ”enthalpies of formation”,

and for the species in our air/fuel reaction are:

N2 : h̄0
f = 0(4.10)

O2 : h̄0
f = 0(4.11)

Ar : h̄0
f = 0(4.12)

C8H18 : h̄0
f = −208447.0(4.13)

CO2 : h̄0
f = −393522.0(4.14)

H2O : h̄0
f = −241827.0(4.15)

with units
〈

kJ
kg−mol·K

〉

. Note that, since they exist without any reaction taking place,

elemental gases have an enthalpy of formation of zero.

The gas mixtures that form the working fluid of the engine will almost never be at stan-

dard conditions. Certainly, we expect the combustion products to be far from those values.
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Along with the enthalpies of formation, researchers have measured the constant-pressure

specific heats of many elements and compounds and created polynomial approximations of

cp with respect to temperature. Remember that enthalpy, h̄ = c̄pT , and so these polynomials

can be used to find non-standard enthalpies for elements and compounds. We will use the

following polynomials [28, 27]:

N2 : c̄p = 39.060 − 512, 790T−1.5 + 1.0727x107 T−2 − 8.204x108 T−3(4.16)

O2 : c̄p = 37.432 + 2.0102x10−5 T 1.5 − 178, 570T−1.5 + 2.3688x106 T−2(4.17)

Ar : c̄p = 520.426(4.18)

C8H18 : c̄p = −323.5 + 36.98T 0.5 − 0.4332T + 1.723x10−5 T 2(4.19)

CO2 : c̄p = −3.7357 + 3.0529T 0.5 − 0.041034T + 2.4198x10−6 T 2(4.20)

H2O : c̄p = 143.05 − 58.04T 0.25 + 8.2751T 0.5 − 0.036989T(4.21)

The units on each polynomial are
〈

kJ
kg−mol·K

〉

. Figure 4.1 illustrates the Cp value of each

gas species as a function of temperature.

Note how the value for Argon is constant. Argon, being a monatomic gas, doesn’t store

energy in molecular vibration, can’t dissociate and up to 6,000 K, isn’t ionized.

The non-standard enthalpy of an element or compound is found by adding the enthalpy

of formation and the change in enthalpy from actual to standard temperature:

(4.22) h̄ = h̄0
f + ∆h̄
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Figure 4.1. Cp Values

The ∆h̄ value is found by integrating c̄pT from standard temperature to the actual

temperature:

(4.23) ∆h̄ =

∫ T

T0

c̄pdT

The cp polynomials can be analytically integrated, yielding new polynomials for ∆h̄:

N2 : ∆h̄ = 39.06T + 1.0256x106 T−0.5 − 1.0727x107 T−1 + 4.102x108 T−2
]T

T0
(4.24)

O2 : ∆h̄ = 37.432T + 8.0x10−6 T 2.5 + 357, 140T−0.5 − 2.3688x106 T−1
]T

T0
(4.25)

Ar : ∆h̄ = 520.426T ]TT0
(4.26)

C8H18 : ∆h̄ = −323.5T + 24.65T 1.5 − 0.2166T 2 + 5.74x10−6 T 3
]T

T0
(4.27)

CO2 : ∆h̄ = −3.7357T + 2.0353T 1.5 − 0.02052T 2 + 8.0x10−7 T 3
]T

T0
(4.28)
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H2O : ∆h̄ = 143.05T − 46.43T 1.25 + 5.5167T 1.5 − 0.01849T 2
]T

T0
(4.29)

with units
〈

kJ
kg−mol

〉

. Finally, the energy provided by the combustion of the charge is

calculated by returning to Equation 4.2:

(4.30)

Hp(Tp) = (8)
[
−393, 522 + ∆h̄(Tp)CO2

]
+ (9)

[
−241, 827 + ∆h̄(Tp)H2O

]

+ (46.375)
[
∆h̄(Tp)N2

]
+ (0.595)

[
∆h̄(Tp)Ar

]

Hr(Tr) = (1)
[
−208447 + ∆h̄(Tr)C8H18

]
+ (12.5)

[
∆h̄(Tr)O2

]

+ (12.5)(3.71)
[
∆h̄(Tr)N2

]
+ (12.5)(0.0476)

[
∆h̄(Tr)Ar

]

Qc = Hp(Tp) − Hr(Tr) 〈kJ〉

where Tp is the temperature of the products and Tr is the temperature of the reactants.

This gives us the total energy released by the reaction, where 1 mole of fuel has been

burned with 12.5 moles of air. Per stoichiometric mole of fuel, the energy release is:

(4.31) q̄cfuel =
Qc

nfs

=
Hp(Tp) − Hr(Tr)

1

The simulation is marched forward in time by calculating the density of the charge at

each timestep. We also know the volume of the charge at each timestep, so we can calculate

the mass of charge in the cylinder. The total mass of the charge is:
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(4.32) mT = mair + mfuel

And the air-to-fuel ratio is:

(4.33) AF =
mair

mfuel

→ mair = AF mfuel

Substituting Equation 4.33 into Equation 4.32,

(4.34) mT = AF mfuel + mfuel = mfuel(AF + 1) −→ mfuel =
mT

AF + 1

Then the number of moles of fuel in the charge is:

(4.35) nf =
mfuel

Mfuel

=
mT

(AF + 1)Mf

Note that this is not the stoichiometric number of moles of fuel. This is the number of

moles of fuel actually introduced into the cylinder. Finally, based on the mass of charge in

the cylinder, we have the energy released by combustion of the intake charge:

(4.36) Qc = q̄cfuelnf = [Hp(Tp) − Hr(Tr)]
mT

(AF + 1)Mf
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Equation 4.36 gives the total energy added to the charge due to the combustion of its

reactants.

We’re left with the question of how to determine Tp and Tr. Tp is the temperature of

the products of combustion. For this value, we’ll use the temperature of the charge. This

is interesting, for as we add combustion energy to the charge, its temperature rises. This

in turn affects the enthalpy of the product gases and the amount of energy added to the

charge. The relationship is nonlinear. For the temperature of the reactants, consider that,

as combustion progresses, there are burned and unburned fractions of the charge [23]. At

ignition, the unburned fraction is 1. At completion of combustion, the unburned fraction is

0.

Figure 4.2. Burned and Unburned Fractions of the Charge

Figure 4.2 illustrates the burned and unburned fractions as distinct volumes within the

charge [23]. As the burned fraction grows the temperature of the charge rises. The pressure

of the charge rises in response. Thus even though the unburned fraction isn’t reacting,

it’s temperature is still rising from isentropic compression. We model this by storing the

temperature and pressure of the charge at ignition, the start of the combustion process. These

are the initial temperature and pressure of the unburned fraction, the initial temperature

and pressure of the reactants:
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Ts = Tcharge @ ignition(4.37)

Ps = Pcharge @ ignition(4.38)

Then as the simulation advances, the temperature of the reactants is calculated by:

(4.39) Tu = Ts

(
Ps

P

) γ−1

γ

4.2. Finite-Rate Combustion

Equation 4.36 provides the total energy that will be added to the charge. But the energy

equation (4.1) is time-relative and only offers a rate-of-combustion-energy-added term. We

must find a way to supply the energy of combustion as a rate. Ideally, we could define the

combustion reaction with a full reaction mechanism consisting of hundreds of intermediate

species undergoing hundreds of sub-reactions, each with a known, finite reaction rate. This

non-equilibrium approach would provide the greatest level of accuracy and has been ap-

plied in many computational combustion and reduced-order analyses [29, 30, 23, 27]. But

it requires a great deal of development and is very computationally expensive. It is too

demanding for our purposes.

A number of finite-rate energy release models have been developed in the past [23]. These

are based on differential equations, typically with respect to crankshaft angle. The models

are based on experimentation and observation and exhibit the three phases of combustion,
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ignition development (after the spark plug has been fired), rapid burning and burning com-

pletion. Wiebe [23, 31] developed a widely-used finite-rate heat release correlation based on

high-level modeling of combustion reaction mechanisms. He then estimated values of the

free parameters in his resulting equations using published experimental data.

The Wiebe function is:

(4.40) xb = 1 − exp

[

−a

(
θ − θs

θd

)n]

where,

xb = fraction of energy released and mixture burned

θ = crankshaft angle

θs = crankshaft angle at start of energy release (spark)

θd = duration of energy release

a = form factor (typically, a = 5)

n = efficiency factor (typically, n = 3)

Wiebe’s function provides the fraction of energy released. We can model the energy input

as a function of crankshaft angle by:

(4.41) Qc(θ) = Qcxb
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But we want the rate of energy released. So we will take the derivative of Equation 4.40

with respect to θ:

(4.42)
dxb

dθ
=

an

θd

(
θ − θs

θd

)n−1

exp

[

−a

(
θ − θs

θd

)n]

Then, the heat released with respect to time is:

(4.43)
dQ

dt
= Qc

dxb

dθ

dθ

dt
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Figure 4.3. Combustion Energy Release

Figure 4.3 is a plot of Equation 4.43 with respect to crankshaft angle for an engine speed

of 3,000 rpm. Here, ignition is begun at a crankshaft angle of 700◦ and combustion duration

is 60◦. This value is substituted into Equation 4.1 for the Q̇c term.

Figure 4.4 illustrates the result. The piston begins at BDC of the stroke with the charge

at ambient temperature and pressure. The crankshaft is turned one revolution, taking the
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piston to TDC and back. Ignition and combustion progress as above. The dashed, black line

illustrates the temperature of the charge without combustion. The red, dotted line is the

temperature of the burned fraction of the charge and the solid, blue line is the temperature

of the unburned fraction. The curve ends at the point where the unburned fraction is

consumed. Without the added pressure generated by the burning fraction, the unburned

fraction temperature would follow the no-combustion curve. Combustion pressures raise the

unburned fraction temperature significantly above the no-combustion values. This two-zone

model provides a vitally important piece of information. Note the peak unburned fraction

temperature of about 950 K. The autoignition temperature of the octane/air mixture is

about 1,300 K. We can see here that the charge will burn to completion without detonating,

without ”knock”. If the engine had a higher compression ratio we would see the unburned

temperature coming closer to the 1,300 K mark, indicating that the unburned fraction could

detonate, a condition that reduces performance in, and can even destroy, spark-ignition

engines.
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4.3. Instantaneous (Infinite-Rate) Combustion

It is also useful to model combustion occurring instantaneously. If we consider the charge

as the piston reaches TDC of the compression stroke, we can imagine the charge suddenly

going from reactants to products instantaneously. This would mean that the reaction rate

is infinite. In going from reactants to products instantly, there is no time for heat loss and

the reaction leaves the product gases at the adiabatic flame temperature of the mixture.

To determine the adiabatic flame temperature, we return to the First Law of thermody-

namics:

(4.44) Q − W = Hp(T ) − Hr(T )

There is no heat loss and no work being done on the mixture over this instant, so the

left-hand side is zero. We’re left with:

(4.45) Hp(T ) = Hr(T )

Just as before, we calculate the enthalpies using equations 4.30. We know the temperature

of the reactants. It is the temperature of the charge when the piston arrives at TDC. We

need to find a temperature where the enthalpy of the products is equal to the enthalpy of

the reactants. This is the adiabatic flame temperature. We find the value by applying a

Newton-Raphson method, successively iterating until the change in flame temperature is

below a minimum. For example, using a reactant temperature of 700 K, which is typical
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for an engine with a compression ratio of 9, we calculate an adiabatic flame temperature of

2,734 K.

Once the value of the adiabatic flame temperature is found, we directly set the temper-

ature of the charge to the new value and reset the pressure of the charge using the known

density and the perfect gas equation of state, P = ρRT . The charge is now in the post-

combustion state.

Instantaneous combustion provides an ideal situation where no heat is lost while the

reaction is occurring and where ignition advance plays no role. It provides a theoretical ideal

which can’t be reached in reality but to which we can compare more realistic calculations.

The power the engine makes using this approach is the most it could possibly make.

If, in simulating an engine, the real ignition advance is unknown, instantaneous com-

bustion can be employed to sidestep the issue and make comparisons as other values are

adjusted.
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Figure 4.5. Combustion Model Results
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Figure 4.5 shows the two combustion models in operation. We begin again with the piston

at BDC and the charge at ambient density and temperature. The crankshaft is rotated one

revolution and the piston rises from BDC to TDC and back. The Wiebe model activates at

700◦ and combustion completes at 760◦. The instantaneous model activates at 720◦. Figure

4.5a shows the effect on charge temperature. The black, dashed line, included for reference,

is the temperature of the charge with no combustion. The shape of the curve is a result of

isentropic compression of the charge. Without combustion, peak compression temperature

is around 700 K. Finite-rate combustion takes the peak temperature to about 2,300 K and

instantaneous combustion takes the temperature to about 2,700 K. Note how close the curves

fall during the expansion stroke. Notionally, we should be adding the same amount of energy

in either case, so it seems reasonable that the curves should overlap at a certain point. Figure

4.5b shows the pressures caused by both combustion models. Peak pressures are 60 and 85

atmospheres. Note again that the two curves merge on the expansion stroke.

4.4. Gas Values

The working fluid in the engine can be modeled in numerous levels of detail. At a

macroscopic level, in the simplest case, air can be used as the working fluid. Air is drawn

in, combustion energy is added to air during combustion, air is exhausted from the cylinder

[23]. For more detail, a mixture of air and gaseous fuel can be used as the working fluid until

combustion occurs, then, from combustion to the intake stroke, the fluid can be switched to

a mixture of the exhaust products. At intake, the mixture is switched back to air and fuel.

At the next lower scale, we can consider the gas properties of whatever working fluid is

chosen. In a real engine, a mixture of air and gaseous fuel is drawn in during the intake
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stroke. At ambient temperatures, the gas mixture stores energy internally in the translation

and rotation of its molecules. Over a small temperature range, temperatures below those of

combustion and velocities below about Mach 5, internal energy and enthalpy can both be

considered linear functions of temperature. But during the compression stroke, if the com-

pression ratio of the engine is high enough, the composition of the mixture can change as

high isentropic compression temperatures cause the fuel molecules to dissociate. Once com-

bustion begins, dissociation, vibrational stimulation and ionization occur. Energy is stored

in new, ”extended” modes and internal energy and enthalpy can no longer be considered

linear functions of temperature. For accurate calculations we expect that energy storage

in the extended modes must be taken into account. High-temperature gas dynamics would

have us track vibrational, dissociative and electronic energy for each species in the gas, and

apply rate constants to calculate the rates of storage or loss in each mode [29]. But this

approach takes us into the high-demand realm again. Instead, we can create a lower-order

model by turning to the cp functions listed above. Each function is a curve fit to experi-

mental measurements of the real responses of each species [28]. Each takes into account the

energy storage into the extended modes as temperature increases. Using the cp functions,

we can treat each species as a perfect gas, calculating internal energy, enthalpy and pressure

as functions of temperature.

We know the mole fractions, yi, of each species in air, and with the balanced, stoichio-

metric chemical equation of the combustion reaction, we know the mole fractions of each

species in the intake and exhaust mixtures. We also know the molecular masses, Mi, of each

species. The molecular masses of the mixtures are found by:
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(4.46) Mmix =
n∑

i=1

Mi yi

which yields

Mair = 28.97 Mintake = 30.38 Mexhaust = 28.72

The universal gas constant is invariant with temperature and pressure. Using it and the

molecular weight of each mixture, the specific gas constant for each mixture is:

(4.47) Ri =
R
Mi

which yields:

Rair = 287.0 Rintake = 273.7 Rexhaust = 289.5

The constant-pressure specific heat of each mixture is calculated using the cp function

for each species:

(4.48) cpmix
(T ) =

n∑

i=1

cpi(T ) yi

With the mixture cp values, we calculate the constant-volume specific heats, cv, of the

mixtures by:
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(4.49) cvmix
(T ) = cpmix

(T ) − Rmix

And the ratio of specific heats for each mixture is:

(4.50) γmix(T ) =
cvmix

(T )

cpmix
(T )
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Figure 4.6. Mixture Specific Heats

Figure 4.6 shows the specific heats of each mixture and the way they respond to increasing

temperature. Note the decrease in slope with increasing temperature. This implies that as

temperature rises, temperature itself,

T =
e

cv
T =

h

cp
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Figure 4.7. Mixture γ Values

is no longer a linear function of internal energy or enthalpy, and some of the internal

energy is being stored in the extended modes. Figure 4.7 illustrates the ratio of specific

heats for each mixture.

In modeling the engine’s working fluids in this manner, we will model the realistic physics

of employing the three mixtures as engine working fluids and also capture the realistic changes

in gas properties with increasing temperature [32]. The main drawback of using this reduced-

order model is that we don’t capture the temporal nature of the storage and release of energy

from the extended modes. That only comes with the full, non-equilibrium model. Our model

assumes that energy transitions between modes at infinite rate. Thus, we are employing an

equilibrium model.

Figure 4.8 illustrates the difference in gas responses using the different mixtures. We

have again begun with the piston at BDC and with the charge at ambient conditions. The

crankshaft is rotated one revolution taking the piston to TDC and back. In Figure 4.8a

we see the temperatures of frozen air, equilibrium air and equilibrium intake/exhaust gases.

Note that frozen air has the largest temperature response. All of the energy being put into
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Figure 4.8. Mixture Responses

the charge through the work of the piston is manifest in the temperature of the gas. In the

equilibrium air and equilibrium intake/exhaust curves, some of the energy is being stored

in the extended modes, resulting in lower temperatures. In Figure 4.8b we see the pressure

response of each mixture. Since P = ρRT and the difference in the specific gas constant,

R, is small from mixture to mixture, the differences we see here are largely driven by the

temperature responses of the mixtures.
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CHAPTER 5

Loss Modeling

While some of the physics that occur within an engine are hidden from view and can

be non-intuitive, other phenomena are so palpable that they are obvious to anyone who has

built or worked on an engine. Engines get hot. They have to be cooled to opearate for any

length of time. It’s clear that heat escapes from the hot charge in the cylinders and flows

out through the block and head. Also, turning the crankshaft of an engine by hand, one

feels resistance. When the rotating moment is taken away, the crankshaft doesn’t coast. It

stops immediately. So it’s clear that there is significant friction in the rotating and sliding

components of an engine. When turning over an engine by hand, one can also hear gases

escaping from the compressed charge through the small gaps between the piston rings and

the cylinder walls. If the crankshaft is turned slowly, the gases escape completely and there is

no resistance as the piston passes TDC of the compression stroke. It’s clear that the pistons

aren’t perfectly sealed in their cylinders and blowby occurs, causing loss of useful charge.

Are these phenomena dominant physics? We will find out by modeling them.

5.1. Blowby

Because of its obvious presence, blowby has been recognized as an issue from the earliest

days of engine development. It is assumed to play a role in engine performance and emissions

[23, 33–35]. Physically, blowby is composed of the passage of gas through the gaps between

the ends of the piston rings and through many small leaks where the rings form an imperfect

seal with the cylinder wall and with the piston ring grooves [36]. We can model blowby by
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condensing these small leaks into a single flowpath with an equivalent total cross-sectional

area, as illustrated in Figure 5.1.

Figure 5.1. Modeling Blowby

We will assume that the flow through the single, unified blowby passage is isentropic and

driven by the difference in pressure from the charge to the atmosphere. We can employ the

isentropic flow equations [29, 23, 37] as simple flow models. The isentropic flow equation for

pressure is,

(5.1)
P0

P
=

[

1 +

(
γ − 1

2

)

M2

] γ
γ−1

Here, P0 is the total pressure, the pressure we would measure if the flow was brought

to rest isentropically from a Mach number of M . P is the static pressure of the flow, the

pressre where the flow is moving with Mach number M . Since the total pressure is the

pressure anywhere the flow is brought to rest isentropically, or is already at rest, the air at

the upstream end of the flowpath, which has a velocity of zero just a short distance from the
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flowpath entrance, has a pressure of P0. Given the total pressure and the Mach number at a

given point in the flow, this equaton allows us to calculate the static pressure at that same

point in the flow. We can invert Equation 5.1:

(5.2) M =

√
√
√
√

[(
P0

P

) γ−1

γ

− 1

]

2

γ − 1

or,

(5.3) Mb = +

√
√
√
√

[(
Pc

Pa

) γ−1

γ

− 1

]

2

γ − 1
or, Mb = −

√
√
√
√

[(
Pa

Pc

) γ−1

γ

− 1

]

2

γ − 1

Equations 5.3 allow us to calculate the Mach number of the blowby flow based on the

pressure of the charge, Pc and atmospheric pressure, Pa. We will consider flow out of the

cylinder as positive, and so if Pc > Pa, M is positive. If Pc < Pa, M is negative.

With the Mach number at the downstream end of the blowby flowpath in hand, we can

calculate the temperature and density of the flow at that end:

(5.4)

Tb = T0

[

1 +

(
γ − 1

2

)

M2

]−1

ρb = ρ0

[

1 +

(
γ − 1

2

)

M2

] 1

1−γ

We can calculate the velocity at the downstream end with:
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(5.5) ~Vb = Mb

√

γRTb

and then the mass flow rate through the blowby is:

(5.6) ṁb = ρbAb
~Vb

Where Ab is the specified cross-sectional area of the blowby flowpath. We couple the

blowby model to the model of the charge by inserting the mass flow rate value into the

charge continuity equation (5.7, repeated here for convenience) as
(

ρ~V A
)

b
.

(5.7)
dρ

dt
= − 1

V

[(

ρ~V A
)

i
+
(

ρ~V A
)

e
+
(

ρ~V A
)

b
+ ρ

dV
dt

]

The values of ρb, Tb and ~Vb are also used for the first two terms of the charge energy

equation (5.8, also repeated here) where e = cvTb in term 1 and the pressure in term 2 is

Pcharge. In both terms the area is Ab.

(5.8)

dT

dt
= − 1

ρVcv







3∑

i=1

[

ρ

(

e +
~V 2

2

)

~V A

]

i
︸ ︷︷ ︸

1

+
3∑

j=1

(

P ~V A
)

j

︸ ︷︷ ︸
2

+Q̇T + Q̇c + Vedρ
dt

+ ρe
dV
dt






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Figure 5.2. Effect of Blowby on Charge Mass

Figure 5.2 shows the blowby model in operation. We begin the test with the cylinder

at BDC and the charge at ambient conditions. We rotate the crankshaft one revolution,

taking the piston to TDC and back. Combustion is turned off to simplify the results and the

crankshaft speed is set to a low 750 rpm to magnify the effect. In Figure 5.2a, as the piston

rises and the pressure in the cylinder increases, mass flows out the blowby path. The rate

of mass loss increases, reaching a maximum at TDC (720◦), then decreases. With the loss

of mass, on the downstroke, the pressure in the cylinder drops to ambient before the piston

reaches BDC. Then the pressure in the cylinder goes below ambient and the flow reverses,

with mass flowing into the cylinder through the blowby passage. Figure 5.2b shows the mass

of gas in the cylinder over the same test. Mass is lost as the piston and charge pressure both

rise. Near BDC on the downstroke mass flows back into the cylinder.

Figure 5.3 shows the effect of blowby on the charge properties. In Figure 5.3a the black,

dashed line marks the density of the charge with no blowby. No mass is lost and we see

nothing but the effect of the isentropic compression and expansion of the charge. The solid,

red line shows the density with blowby. As mass is lost the density drops continuously
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Figure 5.3. Effect of Blowby on Charge

throughout the cycle. Figure 5.3b shows that, as mass is lost, the charge pressure drops.

This will affect power output, as power is directly related to the cylinder pressure.
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Figure 5.4. The Effect of Combustion on Blowby

In the previous test there was no combustion. Figure 5.4 shows the same test with

instantaneous combustion. Combustion increases charge pressure, so we expect to see a

higher rate of mass loss. Interestingly, we see a slight decrease in the rate of mass loss

because of the increase in charge temperature and resulting reduction of density at the
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blowby exit. But the increased pressure does cause mass to flow out the blowby passage

even after the piston has reached BDC.

Rose and Stahman [35] made measurements of blowby on a variety of cars operating at

a cruise speed of 40 mph and under road load. They found the average blowby volume rates

given in table 5.1. These values compare well with Kirkpatrick [23].

Table 5.1. Measured Blowby

Engine Blowby V̇ Exhaust V̇ % Blowby
ft3

min
ft3

min

6 cyl 0.95 44.8 2.12
8 cyl 1.55 45.9 3.4
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Figure 5.5. Percentage of Mass Lost

Figure 5.5 shows the mass loss through the blowby as a percentage of total mass in the

cylinder. This test is identical to the test above with instantaneous combustion, but with a

crankshaft rotational speed of 2,500 rpm. With a blowby cross-sectional area of 1.5 mm2, we

see a maximum mass loss of about 3.2%. Since this matches Rose and Stahlman, we’ll use

1.5 mm2 as the value for blowby area in our future studies. A typical specification on the

ring end-gap for a piston ring is 0.8 mm. And the typical specification on piston clearance
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is 0.04 mm. Multiplying these together, we get a flowpath area of 0.032 mm2 through the

ring end-gap. This means that leaks between the ring and the cylinder wall total about 1.46

mm2.

5.2. Heat Transfer

Like blowby, heat transfer from the hot charge to the cylinder walls is a phenomenon so

obvious it can’t be missed. As quickly as engines heat up and as hot as they get, even with

active cooling, heat loss seems likely to be dominant physics. To find out, we’ll examine

three heat transfer models to determine their effect on engine performance and whether heat

transfer is indeed dominant physics in engine modeling.

For greatest realism and accuracy, we’d like to employ a first-principles approach in

modeling heat transfer. This can be done if the charge is modeled using 3-dimensional Com-

putational Fluid Dynamics. But this again is too demanding for our purposes. Researchers

have developed reduced-order models that are based on the macroscopic physics expected

in heat transfer, calibrated using measurements from real engines. Our models are three of

these correlations.

Heat transfer in engines is understood to be a function of both the Nusselt number,

(5.9) Nu =
hb

k

(Where h is the macroscopic heat transfer coefficient of the gas, b is the cylinder bore

and k is the thermal conductivity of the gas.)
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and the Reynolds number which, for the purposes of engine heat transfer calculations is

calculated using mean piston speed, Ūp, for the velocity term and cylinder bore, b, as the

characteristic length:

(5.10) Ūp = 2sN

(5.11) Re =
~V x

ν
=

ρ~V x

µ
=

ρŪpb

µ

(5.12) Re =
2ρbsN

µ

The Nusselt number is the ratio of convection to conduction in a fluid and the Reynolds

number is the ratio of inertial to viscous forces in a fluid. The heat transfer coefficient of the

Nusselt number, h , represents convective heat transfer and is proportional to the velocity

and turbulence of the fluid. In an engine, during combustion, velocities and turbulence grow

rapidly. h grows in response. Some correlations take this into account. Some don’t.

The heat transfer correlations are all built on a variation of the relation

(5.13) Nu = f(Re)
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Annand’s correlation [38, 23] is the simplest we will employ here. It was developed using

instantaneous cylinder head heat flux measurements and is based on the relation:

(5.14) Nu = a1Rea2

The heat transfer coefficient, h , is considered constant. Filling in the details,

(5.15) q̇ = a1
K

b
Re0.7 (T − Tw)

︸ ︷︷ ︸
1

+ a2σ
(
T 4 − T 4

w

)

︸ ︷︷ ︸
2

〈
W

m2

〉

where:

0.35 < a1 < 0.8 depending on charge motion intensity. (We use the average, 0.575.)

a2 = 0.58 (diesel) a2 = 0.075 (spark)

σ = Stefan-Boltzman constant = 5.67x10−8

〈
W

m2K4

〉

Term 1 represents the convective heat flux between the charge and the cylinder wall.

Term 2 represents the radiant heat flux between the charge and the cylinder wall. Spark

ignition engines produce less carbon soot than diesels, thus the much lower radiant transfer

coefficient. Note the units. Equation 5.15 provides a power density. We must multiply this

by the total exposed area of the cylinder to get the heat transfer in the units of power. The

height of the exposed cylinder wall is:
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(5.16) y = lcr +
s

2
−
(

l2cr − s2

4
sin2θ

)−
1

2

− s

2
cosθ

And the total wall area surrounding the charge is:

(5.17) Aw = πby + π
b2

2

Then the total heat transfer is given by:

(5.18) Q̇ = q̇Aw 〈W 〉

This value is entered into the charge energy equation (5.8) for the Q̇T term.

Woschni [39, 23] created a more complex heat transfer correlation based on a heat balance

analysis of an engine, where he measured the heat fluxes into and out of an operating engine.

The Woschni correlation is based on the relation:

(5.19) Nu = 0.035Re0.8

and assumes that h varies with charge velocity and turbulence. The heat transfer coef-

ficient is:
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(5.20) h = 3.26P 0.8U0.8b−0.2T−0.55

〈
W

m2K

〉

U is a gas velocity term. It has two definitions, depending on whether the valves are

open or closed. If the valves are open,

(5.21) U = 6.18Ūp

If the valves are closed,

(5.22) U = 2.28Ūp + 0.00324Tic
Vd

Vic

P − Pm

Pic

where:

Tic = the charge temperature at intake valve closure(5.23)

Vic = the charge volume at intake valve closure(5.24)

Pic = the charge pressure at intake valve closure(5.25)

Vd = the displacement volume of the cylinder(5.26)

P = the current pressure of the charge(5.27)

Pm = the motored (non-firing) pressure of the charge(5.28)
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We can calculate a value for Pm by noting the charge volume and pressure at intake valve

closure (ic), then calculating Pm using the isentropic gas relation:

(5.29) Pm = Pic

( V
Vic

)γ

Then the Woschni heat flux is calculated by:

(5.30) Q̇W = hAw (Tg − Tw) 〈W 〉

This value is entered into the charge energy equation (5.8) for the Q̇T term.

Chang et al. [23] produced a set of modified parameters for the Woschni equation based

on measured instantaneous heat flux data for a Homogeneous Charge Compression Ignition

engine. Their modified Woschni equation is:

(5.31) h = 3.4P 0.8U0.8y−0.2T−0.73

〈
W

m2K

〉

where y is the height of the exposed cylinder wall. And they offer a modified valves-closed

velocity equation:

(5.32) U = 2.28Ūp +
0.00324

6
Tic

Vd

Vic

P − Pm

Pic

As above, the total heat transfer rate is:
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(5.33) Q̇W = hAw (Tg − Tw)

This value is entered into the charge energy equation (5.8) for the Q̇T term.
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Figure 5.6. Heat Transfer Models–No Combustion

Figure 5.6 shows these three heat transfer models in operation. The test is begun with

the cylinder at BDC and the charge at ambient conditions. The crankshaft is then rotated

half a revolution, taking the piston to TDC through the compression stroke. There is no

combustion, but the temperature of the cylinder walls is 500 K, much hotter than the

initial charge temperature. Crankshaft speed is 3,000 rpm. The dashed, black curve is
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the temperature with no heat transfer. We see that the three models predict different rates

of heat gain through the compression stroke. Chang predicts the least, followed by Woschni

and then Annand.
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Figure 5.7. Heat Transfer Models–Finite-Rate Combustion

In Figure 5.7 we see the same test, but this time with finite-rate combustion. Note that

each model predicts the charge heating up during the compression stroke due to heat transfer

from the hot walls. Combustion takes the charge in all three cases to about 2,200 K. During

the expansion stroke, each model predicts a different rate of heat loss to the cylinder wall.

Again we see Chang predicting the least followed by Woschni and then Annand. That the

models predict heat transfer from the walls to the charge when the charge is cooler and heat

transfer from the charge to the walls when the charge is hotter is a good physical result. We
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may only be able to state which model is most accurate when they are tested in the complete

engine model and the results compared to measured data.

5.3. Friction

Engine designers have known for a long time that internal friction results in significant

losses of power. Friction also causes wear and limits engine life. Engineers have dedicated

great levels of effort to understand where friction is generated inside engines and to minimize

its effects. With its noted significance, we must consider it here and determine what effect

it has on the modeling of an engine.

Engineers and scientists who work with engines classify friction into three main categories:

(1) Mechanical friction

(2) Accessory work

(3) Pumping work

To those of us outside of the engine research circle, items 2 and 3 seem rather misplaced

as they don’t fit our typical definition of friction. To the Aerodynamicist, the flows into and

out of an engine may be viscous and may exhibit significant losses. But these effects don’t

fit well under the common definition of “friction”, which we think of as a mechanical contact

phenomenon. Indeed, item 3 will not be examined in this section at all. Instead, the model

we’re creating here will explicitly calculate flow or pumping work and its associated losses.

That modeling will be covered in another chapter. We will however examine item 2 here, as

we’re curious about its level of significance: must it be included for realistic results?

Friction, the mechanical variety, is commonly broken down into three regimes [23, 40, 41]:

• Boundary, or surface-to-surface contact.
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• Hydrodynamic, or non-contact, fluid supported, viscous drag.

• Mixed, where both of these phenomena occur.

Engines possess a variety of rotating and translating components that are all subject to

friction. Engineers have made efforts to characterize and understand where and at what

levels friction is generated, but teasing out this information hasn’t been easy. We’re faced

again with the problem of seeing what is going on inside of the engine, when its necessary

design and construction precludes just such an examination. Bishop [40], working at Ford

Motor Company, pioneered a very interesting technique. First, he identified specific foci of

friction, like the crankshaft main bearings, piston rings, camshaft followers, etc. Then, with

the understanding of what regimes of friction occur at each location, plus the physics of each

sliding or rotating contact surface, he derived equations that described the general form of

the frictional physics at each location. Using a motoring dynamometer, he measured the

actual power consumed in turning over a real engine. Then he disassembled sections of the

engine to eliminate specific assemblies and retested. The difference in power input from one

run to the next indicated the power consumed by the removed component and its level of

friction. Doing this for a number of engines, he was able to adjust the parameters of his

equations to his measured data, creating a set of friction correlations. With these, a designer

can use the design data from a given engine and get estimates of the frictional losses that

the engine would exhibit in use.

Bishop decomposed overall engine friction into functional groups that are still commonly

recoginzed today [23, 40–42]:

• Crankshaft bearings (including connecting rod bearings) and seals

• Pistons (including piston skirts and piston rings)
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• Valve train (Camshaft bearings and seals and camshaft followers)

• Accessories (oil and coolant pumps)

• Pumping (intake and exhaust flows)

Bishop’s techniques are still in common use and have been revised and modified by other

researchers, like Patton, et al. [41] and Sandoval, et al. [42].

One universal measure of engine performance is to take the work an engine can do over one

thermodynamic cycle and divide that by its displacement. This work per unit displacement

results in units of pressure and is called the Mean Effective Pressure of the engine:

(5.34) mep =
Wcycle

Vd

If we measure the engine’s power output on a dynamometer (or engine “brake”), we can

calculate the brake mep (bmep) using power:

(5.35) bmep =
Ẇbrake60α

VdN

where α is the number of crankshaft revolutions in a thermydynamic cycle and N is the

crankshaft speed in rpm. Likewise, if we measure or calculate the work or power lost through

friction, we can calculate a frictional mep (fmep):

(5.36) fmep =
Wfriction

V =
Ẇfriction60α

VdN
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Thus, we have bmep representing the engine’s power output and fmep representing its

losses.

The following correlations, representing each of the functional groups above, are from

Patton and Sandoval [41, 42] all fmep units are in kPa:

• Crankshaft:

fmepcs = 1.22x105
(

Db

b2snc

)

+ 3.03x10−4

(
ND3

bLbnb

b2snc

)

+ 1.35x10−10

(
D2

bN
2nb

nc

)(5.37)

• Piston (including skirt, ring tension and ring pressure):

(5.38) fmepp = 294

(
Ūp

b

)

+ 4.06x104
(

1 +
500

N

)

+ 6.89
[

0.88r + 0.182r(1.33−2kŪp)
]

where k = 2.38x10−2.

• Valvetrain (including cam, cam followers and valves):

fmepv = 244
Nnb

b2snc

+ Cff

(

1 +
500

N

)
nv

Snc

+ Crf

(
Nnv

snc

)

+ Coh

(
L1.5
v N0.5nv

bsnc

)

+ Com

(

1 +
500

N

)
Lvnv

snc

(5.39)

• Accessories (including oil and coolant pumps and alternator):

(5.40) fmepa = 8.32 + 1.86x10−3N + 7.45x10−7N2
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• Pumping:

fmepi/o = (pa − pi) + 4.12x10−3

(
pi
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)2
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Ū2
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i
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(
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4
e

)(5.41)
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(b) Totalled Frictional Power Loss

Figure 5.8. Frictional Losses

(Some of the constant values have been left out to avoid clutter. See Sandoval for more

detail.)

Figure 5.8 illustrates their output, the fmep of the frictional components of a six cylinder

engine with a 100 mm bore and stroke and compression ratio of 11. Figure 5.8a shows the

fmep of each component with respect to crankshaft speed and provides a good comparison of

each component’s significance. Note how the power consumed by each component increases

with rpm. This means that, as rpm increases, the engine loses more power to friction.

Pumping losses are included here for illustration, but we will address them later. The
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pistons are the largest contributor of engine friction, and therefore the largest consumer of

engine power. Clearly, if we want to account for dominant physics, we will need to model at

least piston friction. Figure 5.8b shows the curves in stacked form. The “pumping” curve

represents the total for all of the components. With its 11:1 compression ratio, this engine

has a theoretical, or indicated mep (imep) of 1,582 kPa. We see that, at 3,000 rpm, this

engine has an fmep of about 150 kPa, so friction consumes about 9.5% of the engine’s power

at 3,000 rpm.

The correllations seem to provide realistic results. But one has to wonder, are they

accurate for any engine? Are there first-principles approaches to modeling friction for these

components that might be accurate for the general case?

5.3.1. Piston Friction

Figure 5.8a presents a single curve for piston friction, but its value actually represents

a total. Bishop, Patton and Sandoval [40–42] identified two distinct sources of friction

associated with the piston: the piston skirt and piston rings.

Figure 5.9 shows the piston in its cylinder with a magnification of the piston skirt and

cylinder wall. Typically, there is a clearance of about 0.05 mm between the skirt and the

wall. When the engine is running, the clearance is filled with oil to lubricate the two surfaces

hydrodynamically. In the magnified view the piston is depicted as moving downward. The

cylinder wall is stationary and the oil layer between them forms what is essentially a com-

bination Couette/Poiseuille flow. The no-slip condition creates a velocity gradient between

the two surfaces that results in viscous shear. Motor oils are considered Newtonian fluids,

and so the shear stress through the oil, and on the surface of the piston skirt is:
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Figure 5.9. Piston Skirt Magnified

(5.42) τs = µ
du

dx

〈
N

m2

〉

If we multiply the shear stress applied to the skirt by the area of the skirt, As, we have

the shear force on the piston. This is the piston skirt “friction”:

(5.43) Ffps = Asµ
du

dx

Since oil is Newtonian, the velocity gradient will be linear and we can approximate it

with a simple spatial difference:

(5.44) Ffps = Asµ
Up

∆x
〈N〉

76



The piston skirt imposes a shear force on the fluid at a given velocity, and thus is

imparting power into the oil film. This raises the temperature of the film [29, 24, 37]. The

temperature of the oil, with regard to x-position is [43]:

(5.45) T (x) = − µ

2k

( u

H

)2

x2 +

[
Tps − Twall

H
+

µ

2k

( u

H

)2

H

]

x + Tps

Where H is the “height” or thickness of the oil film, Twall is the temperature of the cylin-

der wall and Tps is the temperature of the piston skirt. Integrating this equation analytically

and dividing by H, we can calculate a space-average, instantaneous temperature of the oil

film:

(5.46) T̄ =
1

12

µ

k
u2 +

1

2
(Twall − Tps) + Tps

One might ask whether accounting for the increase in temperature of the oil in the

lubrication gap is necesssary, whether it is dominant physics. In the course of this research

we’ve found that it is, and it is something that Bishop, Patton and Sandoval erroneously

neglected.

Motor oil viscosity is sensitive to temperature. For SAE (Society of Automotive Engi-

neers) rated motor oils, Kirkpatrick [23] offers the relationship:

(5.47) µ = c1 exp

(
c2

1.8T + 127

)
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where µ is the dynamic viscosity, temperature, T , is in ◦C and c1 and c2 are given in

Table 5.2.

Table 5.2. SAE Viscosity Constants

SAE c1 c2
grade

(
Ns
m2

)
(◦C)

10 1.09x10−4 1157.5
20 9.38x10−5 1271.6
30 9.73x10−5 1360.0
40 8.35x10−5 1474.4

So as piston velocity rises, temperature in the oil film rises and viscosity drops. This

causes the skirt friction term to decrease in slope slightly with increasing rpm.

Calculating piston skirt friction is straight-forward. But because of its more complicated

physics, calculating piston ring friction isn’t. It’s been long recognized that engine cylinders

wear more quickly at the top and bottom, indicating that there is metal-to-metal contact,

“boundary-lubricated” wear, at the top and bottom of the stroke. Meanwhile, through

the mid-stroke, wear seems to be minimal, indicating hydrodynamic lubrication is occuring

there. Engineers surmised that the piston rings, which are in place to seal the clearance gap

between the piston and the cylinder wall, may be floating on a film of oil where the piston

speed is high enough, and settling onto the cylinder walls when the speed drops below a

certain level.

Figure 5.10 shows the piston rings nested in their grooves in the piston. The rings have

an outer diameter that is larger than the cylinder bore and must be compressed to fit into

the cylinder. Thus, they exert a constant pressure against the cylinder wall to aid in sealing.

The static tension typically results in a pressure of between 120 kPa to 250 kPa (1.2 to 2.5

atm) between the ring and the wall [34]. Note that the rings don’t fill the piston groove

from top to bottom or front to back. During combustion and the power stroke, this small
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Figure 5.10. Piston and Piston Rings

clearance allows high pressure cylinder gases in the cylinder to flow behind the ring and drive

it into the cylinder wall with even greater force.

Figure 5.11. Ring, cylinder wall and oil film

Figure 5.11 is an even more magnified view of the ring and cylinder wall. The ring is

moving down with respect to the stationary wall and there is a film of oil between the ring

and the wall. As with the skirt, the oil film forms a combination Couette/Poiseuille flow,
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with the oil film in viscous shear. The clearance behind the ring allows the ring to float on the

oil film, so that when the pressure behind the ring is low enough and the piston speed high

enough, the ring makes no actual contact with the cylinder wall. But when pressures rise high

enough and piston speeds drop low enough, the rings sink and make metal-metal contact.

Thus, piston rings operate in the mixed lubrication regime. Calculating the friction force is

difficult because the height of the ring must be estimated accurately. With a given piston

speed, a change in height creates a change in the velocity gradient across the gap, a resulting

change in the shear stress throughout the film, and a change in the shear load on the piston

ring. Also, when the height drops low enough, asperities, microscopic peaks in the finely

machined surfaces of the ring and cylinder wall, begin to make contact [44, 45, 23]. From

the low-friction realm of fluid drag proportional to piston velocity, the ring enters the true

realm of mechanical friction, where the tangential force is proportional to the normal force.

If the ring height is estimated poorly, then the extent of the stroke where boundary contact

occurs, and where the frictional forces on the rings are magnified by orders of magnitude,

will also be estimated poorly, yielding great errors in the calculation of piston ring friction.

Researchers have made in situ measurements of the size of the ring lubrication gap, the

“ring height”, hr, between the piston ring and the cylinder wall. Sherrington et al. [46] de-

scribe a series of both optical and electrical techniques for making ring height measurements.

Furuhama et al. [47] made measurements on an operating engine using a capacitance tech-

nique. Their results are quite noisy, but do show the kind of general trends that researchers

intuitively expected. The ring height grows through the middle of the stroke and drops at

the top and bottom. All through the power stroke, where cylinder pressures are high and the

rings are strongly driven into the cylinder wall, heights are lower. They measured maximum
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heights on the order of 10 µm, and minimum heights on the order of 0 µm. Figure 5.12

shows some of their results.

Figure 5.12. Ring Height and Cylinder Pressure from Furuhama

Söderfjäll et al. [48] have made direct friction measurements on a motored, instrumented

test rig with a piston running in a production engine block. Wakuri et al. [49] have made

friction measurements on a purpose-designed, firing test engine with a floating cylinder liner.

Both have been able to measure real values of friction force and confirm the mixed lubrication

theory for the piston rings, showing the greatly increased forces that are generated when the

rings make contact at the top and bottom of the stroke. In the Wakuri case, they have also

been able to show the massively increased friction values at the begining of the power stroke,

when cylinder pressures are high and piston speeds low.

The piston ring height, hr, is controlled by a balance of forces, the ring’s built-in tension

plus the gas pressure load, balanced by hydraulic pressure created in the oil film by the

motion of the piston and by differential pressure across the ring. The thin, viscous oil film

of figure 5.11 has been studied by researchers since the late 1800s [50] and their work forms

the backbone of lubrication theory. In 1886 Osborne Reynolds applied the Navier-Stokes
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equations to a model of flow through a channel of extremely small height and great length,

between parallel plates, as in Figure 5.13:

Figure 5.13. Flow Between Parallel, Flat Plates

He was able to eliminate lower-order terms, leaving only terms of the same order as h.

The result is the Reynolds Equation, which forms the basis for much lubrication theory

[51, 50, 52]:

(5.48)
d

dx

(
ρh3

µ

dP

dx

)

= 6u
d

dx
(ρh)

where:

h = the height of the fluid film(5.49)

ρ = the density of the fluid(5.50)

µ = the viscosity of the fluid(5.51)

u = the velocity of the upper wall(5.52)

Note that the lower wall is stationary. Also note that u refers to the velocity of the upper

wall, not the velocity of the fluid. Note, in fact, that there are no inertial terms in this
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equation. They have all been eliminated at this tiny scale. The only physics left is viscosity.

This means that this flow will exhibit physics that we are not familiar with.

The equation says that, given an upper wall velocity and height derivative at a point

along the flow, we can calculate a second derivative of pressure at that same point. Solving

the equation results in a fluid pressure profile down the length of the flow, P (x). The term

on the right contains a dh
dx

term. This provides a profile for the height of the film, h(x).

Unfortunately, it also typically introduces terms that make the equation nonlinear and very

difficult to solve analytically. There are a few simple cases of straight profiles, flat and linear

incline, with equal fluid pressures on both sides, that can be solved analytically. But for

the general case of a curved profile with differential pressure across the length of the flow

[P (0) 6= P (n)], the equation can’t be solved analytically.

If we work the derivative through on the left, we have:

(5.53)
d2P

dx2
+

3

h

dh

dx

dP

dx
− 6µu

h3

dh

dx
= 0

This equation is parabolic in space. This makes sense as viscous flows are expected to be

mathematically parabolic in nature. Perhaps, for the general case, we can solve the equation

using a numerical technique. Note that there is no time derivative available, so we can’t solve

the equation using a time-marching technique. And because it is parabolic, a space marching

technique won’t offer a properly posed solution. But since it is parabolic, we should be able

to solve it using a relaxation technique.

We’ll use a finite-difference approach, replacing the spatial derivatives of Equation 5.53

with the finite differences:
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(5.54)

(
dh

dx

)

i

=
hi+1 − hi−1

2∆x
(
dP

dx

)

i

=
Pi+1 − Pi−1

2∆x
(
d2P

dx2

)

i

=
Pi+1 − 2Pi + Pi−1

(∆x)2

The finite differences discretize the continuous oil film between the ring and cylinder wall

into a compuational domain, as illustrated in Figure 5.14. Here, the ring and cylinder wall

have been turned 90◦ for greater clarity. The piston ring is above the cylinder wall and

moves horizontally. The oil film fills the gap between the ring and wall.

Figure 5.14. Piston Ring Computational Domain

Substituting the finite differences into Equation 5.53, we see that our carefull selection

of a central, second-difference equation provides us with a Pi that we can isolate on the left:

(5.55) Pi =
Pi+1 + Pi−1

2
+

3

8hi

(hi+1 − hi−1) (Pi+1 − Pi−1) −
3µu∆x

2h3
(hi+1 − hi−1)
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Equation 5.55 is the equation we will solve across the domain. Note its structure: it

gives us the value of the pressure at any point in the domain using the pressure at the two

neighboring points. We must supply the height of the lubrication gap at each point, which

is just what we’re looking for, a general solution. We must also supply the distance between

points, ∆x. Note that we can’t apply this equation at the endpoints. There are no neighbors

above and below. But since the equation is parabolic, we must specify the pressure at the

endpoints (the boundaries) to have a well-posed solution. We will know the pressures at

those points from the start. To get the solution–to solve the pressure at all of the field

points in the domain–we will set the pressures of the endpoints, then use Equation 5.55 to

calculate the pressure at point 1. With that saved, we will repeat at point 2 and so-on to

point n. Each sweep of the domain “relaxes” the solution toward a final, converged result.

The Reynolds equation allows the use of “successive overrelaxation” in the relaxation of the

solution. After solving for the pressure at point i, we subtract the new pressure from that

of the previous iteration, multiply by the overrelaxation factor, then add this value to the

pressure value from the previous iteration:

(5.56) P n+1
i = (Pi − P n

i )ω + P n
i

With an overrelaxation factor of 1.8, the solution is stable under all tested scenarios and

the pressure converges on its final distribution in one-tenth the number of iterations required

with no overrelaxation. This speeds up the simulation by a factor of nearly 10.

Figure 5.14 depicts the ring in cross-section as a scraper or “inclined slider bearing”,

in the lubrication lexicon. This is a shape for which the Reynolds equation can be solved
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analytically. Figure 5.15 shows Hamrock’s [50] closed-form solution for the inclined slider

compared with the current numerical solution. They are identical.

0 10 20 30 40 50

0.5

1

1.5

2

2.5

Slider Station

P
re
ss
u
re

(M
P
a)

Hamrock
Current

(a) Comparison with Analytical Result

0 10 20 30 40 50

0.5

1

1.5

2

2.5

3

Slider Station
P
re
ss
u
re

(M
P
a)

Hamrock
Current

(b) Comparison with Differential Pressure

Figure 5.15. Reynolds Equation Solution

In Figure 5.15a the pressure at both ends of the fluid film is 100,000 Pa, the slider is

moving from right to left at 5 m
s
, the oil film is 16 µm thick on the left side of the slider

and 4 µm thick on the right. Note the massive increase in pressure caused by the slider’s

motion over the film. Figure 5.15b shows the same scenario with differential pressure. The

pressure on the left side of the slider is at 1 MPa. The numerical solution is identical to the

closed-form solution.

As the ring moves closer to the cylinder wall, the amplification in pressure increases.

Figure 5.16a shows the variation in the film pressure as the ring height is increased from

2 microns to 8. The response is nonlinear, with the pressure amplification growing greatly

when the ring nears the cylinder wall.

Figure 5.16b shows the fluid’s response as the speed of the ring across the cylinder wall

is increased from 2 m/s to 8. Here, we see a linear increase in pressure amplification with
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Figure 5.16. Fluid Film Pressure Variation

speed. These two figures show the most important physics of ring hydrodynamic lubrication,

that the pressure under the ring decreases with height and increases with speed. Thus we

see why the ring drops to the surface at the top and bottom of the stroke and we can also

envision that the height of the ring is self-stabilizing. As cylinder pressure increases and

drives the ring into the cylinder wall, the pressure under the ring will rise and eventually

match the combined pressure/tension load and the ring will be “flying” on the oil.

To calculate the fluid dynamic drag on the ring, at each crankshaft timestep, we add the

cylinder pressure and ring tension, then use a Newton-Raphson technique to find the ring

height where the integrated fluid pressure under the ring matches the total pressure being

applied. With the height in hand, we can then find the shear stress in the fluid and on

the ring and then, with the ring’s area, find the shear load on the ring–the friction. We’re

assuming that the pressure distribution under the ring adjusts from timestep to timestep

with infinite rate. We’re also neglecting the mass of the ring and assuming that the ring

87



settles at its stabilized height with infinite rate, and so this is actually an equilibrium solution

of ring height.

When the ring height drops below 2.25 µm, we assume there is asperity contact. Rather

than calculating the hydrodynamic drag on the ring, we sum the gas and tension pressure

and multiply by the face area of the ring for a total normal force. Then, using the coefficient

of friction for steel on steel, we calculate the friction force on the ring.

With all of this physics and math embodied in the full engine model, including simple,

dynamic models of the intake and exhaust flows (to be covered in the next chapter), we can

see the results.
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Figure 5.17. Cycle Ring Height

Figure 5.17 shows the ring height over the two-revolution cycle for the engine of Chapter

2. (The piston ring face profile is changed from the inclined slider, above, to a “crown face”,

or circular profile. This is a commonly used ring profile for production engines [34] and

is part of the motivation for finding a numerical solution for a complex-shaped lubrication

gap.) Here, each value on the x-axis represents a top- or bottom-dead-center point. From

left to right, we see the intake, compression, power and exhaust strokes. Note how, at TDC
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and BDC the ring height goes to zero and the ring makes contact with the cylinder wall.

Then, at mid-stroke, we see the largest height values because the piston velocity is greatest

there. Through the intake and exhaust strokes the cylinder pressure is low, near atmospheric,

and we see large and nearly equal ring height profiles. On the compression stroke, cylinder

pressure increases across the stroke, and so the ring height decreases more rapidly through

the stroke than through intake or exhaust. On the power stroke, the ring is being driven into

the cylinder wall by the high pressure combustion gases, resulting in the lowest ring heights

of the cycle. But as long as the piston is moving, the ring still finds a height where the oil

film pressure balances the forces driving it into the wall.

Finally, Figure 5.18 shows the result we’ve been pursuing. Here we see predictions for the

skirt and ring friction over a single engine cycle. Figure 5.18b illustrates the friction force on

the piston skirt at 3,000 rpm. We see that friction is proportional to piston speed and reaches

a peak value of almost 40 N. Figure 5.18a illustrates the friction force on the piston rings at

3,000 rpm. Each x-axis value marks a TDC or BDC point, with the engine strokes between.

Over the strokes we see the same sinusoid-like variation present in the piston skirt curve. But

at the ends of the stroke we see sudden spikes. At TDC of the compression/power strokes we

see a set of massive spikes. These are caused by the rings making boundary contact with the

cylinder wall. Under compression pressure, when the rings make contact, we see about 500

N of force resisting the piston’s motion into the cylinder. Ignition begins, raising cylinder

pressures dramatically, driving the rings into the cylinder walls and as the piston reverses

and begins to descend we see a frictional force of about 800 N resisting its motion. When

the piston speed rises enough and the rings begin to float, the friction drops by orders of

magnitude.
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(b) Cycle Skirt Friction
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(c) Cycle Total Friction

Figure 5.18. Cycle Piston Friction

Figure 5.19. Piston Friction Measured on Running Engine (Wakuri [49])
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Figure 5.20. Predicted Piston Friction (Taylor)

Compare the total friction of Figure 5.18c with Figure 5.19, a plot of piston friction

measured by Wakuri et al. on a real, running engine. They made direct measurements

of friction by employing a floating cylinder liner held in place by load cells–the load cells

measuring piston friction loads directly. Note the spikes at TDC and BDC of the engine’s

strokes and the sinusoid-like hydrodynamic values in between. Their meausrements have a

bit of noise at TDC and BDC caused by “ringing” of the free cylinder liner. Their forces are

also higher, as their measurements are on a diesel engine with more rings in its piston and

much higher cylinder pressures. But there is strong qualitative agreement between these

real measurements and those produced by the engine model. Figure 5.18c also compares

very well with the results of Taylor et al., Figure 5.20 [53], which they generated using an

analytical technique.

One very important thing to note is the ring friction values through the strokes. Figure

5.21 is an enlargement of the intake stroke from Figure 5.18a. It shows a peak friction value

of about 12 N. Compare this with the friction loads on the piston skirt, almost 40 N. What

we’re seeing here is the difference in area between the rings, which are narrow (about 1.5

mm) and the skirt, which is centimeters in length. The hydrodynamic friction forces on the
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Figure 5.21. Intake Stroke Ring Friction

skirt actually pose a much greater loss than those of the rings. We can conclude that, if the

piston skirt could be made with narrow “contact” bands at top and bottom, we might be

able to significantly reduce the friction in the engine and raise its efficiency.
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Figure 5.22. FMEP: Current Model Compared to Sandoval Correlation

Figure 5.22 shows the final results. The curves show the skirt and ring fmep predicted by

our current model and those of Sandoval’s [42] correlation. There are two significant points to

note here. First, compare the total fmep curves. The current model’s result comes very close
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to matching the Sandoval correlation and provides strong validation for our first-principles

approach. This suggests we now have a technique for estimating piston friction that may

be more accurate and more general than the prior correlations. The second point to note is

that neither of the component fmep curves fall on the Sandoval curves. As we stated earlier,

Sandoval’s correlations make no accomodation for the reduction in oil viscosity with piston

speed. The Sandoval skirt curve is a straight line. But we can show that it shouldn’t be.

Instead, the slope of the skirt fmep curve should reduce gently with increasing piston speed,

as the model’s curve does. The physics here is simple enough to say that this must happen,

and that the model’s curve is correct. Sandoval’s equations are calibrated using real engine

measurements and his data included the piston speed/viscosity relationship. But Sandoval’s

math model for skirt friction can’t assimilate that data. Instead, we believe the results of

that data went into the ring fmep equation. And this is also the reason for the difference

between the two ring friction curves. Sandoval’s accounts for the reduction in viscosity with

piston velocity for the ring and for the skirt. The result is that the total fmep comes out

correct, but the component fmep values are incorrect.

One last point for this section: When the ring height decreases to the point where asperi-

tiy contact is made, around 2.25 microns, then the ring friction switches from hydrodynamic

to boundary friction. The shear force on the ring is:

(5.57) τpr = ηkFN

where ηk is the kinetic friction coefficient and FN is the ring normal force. References

list the friction coefficient for steel-to-steel contact from 0.41 – 0.57. When a value in this
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range is used, the friction force on the piston comes out much higher than predicted by the

Patton/Sandoval correlation. To match their estimates, a value of about 0.2 must be used.

This suggests that, in the case of ring–cylinder contact, we aren’t seeing true steel-to-steel

contact. It appears that some amount of oil adsorption must take place, limiting the dry

contact seen between the ring and cylinder wall.

5.3.2. Journal Bearing Friction

Figure 5.23. Journal Bearing Magnified

Like modeling friction for the piston skirt, modeling journal bearing friction is quite

straight-forward. Figure 5.23 shows a journal bearing in cross section. The bearing consists

of a circular shaft surrounded by a circular support. A small clearance between the two

surfaces provides an anular lubrication gap where oil circulates. The gap clearance is typ-

ically on the order of 0.015 mm. In practice, when it is supporting a load, the shaft runs

slightly eccentrically in the bearing, the lubrication gap slightly narrower opposite the load.

This change in gap height provides the same hydraulic pressure amplification that we saw

under the sliding ring, maintaining hydrodynamic lubrication between the two surfaces and

supporting the load. Like in the case of the piston ring, the shaft essentially “flies” on the
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oil film and finds a stabilized height where the fluid pressure exactly counters the load. For

our purposes, we will consider the shaft to be concentric, with the lubrication gap height

constant around the shaft. In the gap, we see the same velocity gradient and shear flow that

we saw around the piston skirt, except that, where the flow past the skirt is axial, in the

bearing it is radial. The shear stress through the film of fluid and on the surface of the shaft

is:

(5.58) τb = µ
du

dr

The radius of the shaft is many orders of magnitude larger than the clearance gap, so we

can “unroll” the bearing and ignore the effects of curvature. Since the oil is a Newtonian

fluid, the velocity gradient across the gap will be linear and we can represent it with a simple

difference. Keeping in mind that the outer surface is stationary:

(5.59) τb = µ
u

∆r

And u = ωr, so,

(5.60) τb = µ
ωDb

2

∆r
= µ

Db

2∆r
ω

The shear force on the shaft is equal to the shear stress times the area over which it is

applied. The area of the bearing is:

95



(5.61) Ab = πDbLb

whereDb is the diameter of the bearing surface and Lb is the length of the bearing surface.

Then the force applied to the shaft surface is:

(5.62) Fτ = πµ
D2

bLb

2∆r
ω

The moment created about the shaft by the shear force is:

(5.63) Mτ = Fτr = Fτ
Db

2
= πµ

D3
bL

4∆r
ω

This is the equation we will apply in the engine model, as there, we sum forces and

moments. But for component-level comparisons, we can continue on here and get a closed-

form result. The power consumed by the hydrodynamic friction is:

(5.64) Pτ = ωMτ = πµ
D3

bLb

4∆r
ω2

For convenience, we’d like to see rotational velocity in rpm, rather than radians per

second, ω = N 2π
60

= N π
30
:
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(5.65) Pτ =
π3µ

3600

D3
bLb

∆r
N2

And for comparison to the Patton/Sandoval correlation, we’d like an fmep value:

(5.66) fmepb =
120Ẇ

VdN
=

π3µ

30

D3
bLb

∆r

N

Vd

Viscosity is sensitive to temperature and so, for accuracy, we must again include the

temperature of the oil film, Equation 5.46 and the SAE viscosity equation, 5.47. There is

some disagreement on the operation of shaft seals, with Patton/Sandoval claiming that they

operate in the boundary friction regime, while DICHTA [54], a seal manufacturer, claims

they operate in the hydrodynamic regime with an oil film height of about 3µm. Here, we

will assume the latter and apply Equation 5.66 for the crankshaft main bearings, connecting

rod bearings and shaft seals.
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Figure 5.24. Crankshaft Friction Model Comparison
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Figure 5.24 shows the results. The blue, dashed curve is the Patton/Sandoval correlation.

The red, dotted curve is the correlation of Shayler [23]. The black, solid curve is for the

present model. Each result is calculated for the same engine, with:

• six cylinders

• 100 mm bore and stroke

• seven main bearings, 54 mm diameter, 21.6 mm length

• six connecting rod beaings, 49 mm diameter, 21.4 mm length

• For the present model:

– two crankshaft seals, 1.0 mm wide with 3 µm clearance

• SAE 30 oil at 90◦ C

There is a significant difference in the predictions. Shayler and Sandoval are correlations

and aren’t guaranteed to be accurate for every engine. It should also be noted that the

Sandoval results seem to underpredict real measurements in that paper. The current model

falls between the Sandoval and Shayler predictions, and has a similar shape to Shayler’s.

This at least provides a level of confidence that the current model and its derivation are

correct and may be valid.
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CHAPTER 6

Simple Intake and Exhaust Flow Modeling

6.1. Valves

The most commonly used valve in piston engines is the poppet valve. Figure 6.1a shows

a poppet valve situated in its place in a cylinder head with its port visible in cross section

above it. The valve is open and flow is free to move in or out. If this were an intake valve,

an intake “runner” would be connected to the atmospheric end of the port. If this were an

exhaust valve, an exhaust “header” pipe would be connected to the atmospheric end. When

closed, the valve rests on its seat, sealing the port, preventing gas from moving either in

or out. Figure 6.1b shows just the valve and its seat. The seat and the valve’s matching

contact surface are finely machined so that, when in contact, a perfect seal is formed and no

fluid can pass. (With use, the seat and the valve’s seating surface both wear and the perfect

seal is lost. Gases begin to leak out during the compression and power strokes, decreasing

the engine’s efficiency.) The seat is made of hardened steel and is retained in the cylinder

head by a strong interference fit. The seat is illustrated in-place in Figure 6.1a.

Figure 6.1b illustrates the pertinent dimensions associated with a valve, its diameter and

its lift. The lift isn’t really a valve property, but instead is determined by the geometry

of the cam that actuates the valve. The cross-sectional area of the port, the area of the

flowpath, is easy to envision and measure. But the area of the flowpath through the valve is

a bit more complicated. Typically, two measures are used.

Figure 6.2 shows, on the left, the valve seat area. This is the cross-sectional area of the

valve seat at its outer edge:
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(a) Open Poppet Valve

(b) Valve Dimensions

Figure 6.1. Valve Geometry

(6.1) Avs = π
D2

v

4

On the right, the horizontally hatched area is the “curtain area” of the valve flowpath.

It is a short, concentric cylinder of area:

(6.2) Avc = πDvLv

Here, we will represent the flowpath cross-sectional area using the valve curtain area.

The valves are actuated by a camshaft. The eccentric cams on the shaft push on the end

of the valve “stem”, forcing the valve open against spring force. As the camshaft rotates,

the cam opens the valve and then, as the cam lobe passes, the valve’s return spring forces it

closed and against its seat. The geometry of a cam, defined by its opening and closing points,
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Figure 6.2. Valve Flow Area

its maximum lift and the profile over which it goes from zero to maximum lift, all affect the

performance of an engine. To be useful, any engine analysis technique, from closed-form to

simulation, must be sensitive to changes in cam geometry. Three lift profiles are commonly

used in the manufacture of cams, simple harmonic, cycloidal and catenoidal. Each lifts the

valve at a slightly different rate over its opening duration, affecting the forces on the valve

and the airflow past the valve in its own, individual manner. Here, we will only study the

simple harmonic profile:

(6.3) Lv = Lv,max

1 − cos
[

2π
(

θ−θo
θc−θo

)]

2

where Lv,max is the maximum lift, θo is the crankshaft angle where the valve begins to

open, θc is the crankshaft angle where the valve is fully closed and θ is the current crankshaft

angle. Figure 6.3a shows the result, the lift profiles for the engine of chapter 2. The cam

geometry is:

• Intake θo = 323◦

• Intake θc = 600◦
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• Intake Lv,max = 9.0 mm

• Intake Dv = 40.9 mm

• Exhaust θo = 120◦

• Exhaust θc = 384◦

• Exhaust Lv,max = 6.4 mm

• Exhaust Dv = 36.6 mm
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(b) Valve Area Profiles

Figure 6.3. Valve Profiles

Figure 6.3a shows the lift profiles of both the intake and exhaust valves with respect

to crankshaft angle. TDC of compression is at 0◦. Each vertical grid line marks a TDC

or BDC point. The areas between the grid lines represent the four strokes of the engine:

power, exhaust, intake and compression, from left to right. Note how both valves are open at

TDC of the exhaust stroke (360◦). This “valve overlap” is a non-intuitive, beneficial design

feature that was discovered through experimentation. Figure 6.3b shows the valve curtain

area with respect to crankshaft angle. Note how there is less flowpath area on the exhaust

side. The hot exhaust gases have a much higher speed of sound, and so a smaller area can
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be used without the threat of choking. Also, the pressure on the cylinder side of the valves

is controlled by the piston rising, and so, even when choked, the mass flow rate can still rise

due to supply-side pressure. Choking through the intake valve is especially detrimental and

by minimizing the size of the exhaust valve, more real estate is made available in the head

and the intake valve can be made larger.

6.2. Isentropically-Based Flow Model

The simplest model of intake and exhaust flow begins with an isentropic model. Here, we

employ the isentropic flow equations [29, 23, 37], applying them to two regions, that outside

of the valve and that inside of the valve:

P0

P
=

[

1 +

(
γ − 1

2

)

M2

] γ
γ−1

(6.4)

T0

T
=

[

1 +

(
γ − 1

2

)

M2

]

(6.5)

ρ0

ρ
=

[

1 +

(
γ − 1

2

)

M2

] 1

γ−1

(6.6)

Equation 6.4 can be inverted for Mach number and the other equations solved for their

static values:

(6.7) M = +

√
√
√
√

[(
Pc

Pa

) γ−1

γ

− 1

]

2

γ − 1
or, M = −

√
√
√
√

[(
Pa

Pc

) γ−1

γ

− 1

]

2

γ − 1
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(6.8)

T = T0

[

1 +

(
γ − 1

2

)

M2

]−1

ρ = ρ0

[

1 +

(
γ − 1

2

)

M2

] 1

1−γ

Here, Pc is pressure inside of the cylinder and Pa is atmospheric pressure. When cylinder

pressure is higher, the left equation 6.7 is used, yielding a positive Mach number, or flow

out of the cylinder. When atmospheric pressure is higher, the right Equation 6.7 is used,

yielding a negative Mach number or flow into the cylinder.

With the Mach number in hand, equations 6.8 are used. Here, the subscript 0 applies

to the high-pressure or upstream side of the valve. The result is then the temperature and

density of the fully expanded flow on the downstream side of the valve where the Mach

number is given by equations 6.7.

We calculate the velocity on the downstream side with:

(6.9) ~V = M
√

γRT

and then, with the valve’s current curtain area, we calculate the mass flow rate through

the valve:

(6.10) ṁ = ρ~V Avc
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We couple the intake/exhaust model to the model of the charge by inserting the mass

flow rate value into the charge continuity equation (6.11, repeated here for convenience) as
(

ρ~V A
)

i
and

(

ρ~V A
)

e
.

(6.11)
dρ

dt
= − 1

V

[(

ρ~V A
)

i
+
(

ρ~V A
)

e
+
(

ρ~V A
)

b
+ ρ

dV
dt

]

The values of ρ, T and ~V are also used for the first two terms of the charge energy

equation (6.12, also repeated here) where e = cvT in term 1 and the pressure in term 2 is

Pcharge. In both terms the area is Avc. In the sums, the intake values correspond to subscript

1, exhaust values to subscript 2 and blowby values to subscript 3.

(6.12)

dT

dt
= − 1

ρVcv







3∑

i=1

[

ρ

(

e +
~V 2

2

)

~V A

]

i
︸ ︷︷ ︸

1

+
3∑

j=1

(

P ~V A
)

j

︸ ︷︷ ︸
2

+Q̇T + Q̇c + Vedρ
dt

+ ρe
dV
dt







These isentropic flow equations don’t specify the process that is used to expand the intake

and exhaust flows to the downstream pressures. But they do envision a flowpath and they

do envision the flow being accelerated down that flowpath. The cross-sectional area of the

flowpath has a perfect profile that delivers the flow at the downstream end at downstream

pressure. We need to add just a bit of non-theoretical reality to this model, however. When

we envision the flowpath, it will have some finite area profile down its length. It could be

constant area or it could have a minimum area at some point along its length. In that case,

when the pressure differential is high enough, we will see the flow reach Mach 1 at that point
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and the flow will be choked. We need to include this behavior, so we’ll say that the flowpath

area will reach a minimum value at the downstream end; the throat of the flowpath is at the

exit. Then we know that the Mach number there must never exceed 1. We can test for this

condition by looking at the pressure differential:

P0

P
=

[

1 +

(
γ − 1

2

)

M2

] γ
γ−1

(6.13)

P0

P
=

[

1 +

(
γ − 1

2

)

(1)

] γ
γ−1

(6.14)

(6.15)

For a ratio of specific heats of 1.4, this gives a value of:

(6.16)
P0

P
= 1.893

and,

T = 0.833T0(6.17)

ρ = 0.634ρ0(6.18)

Note then, that on the intake stroke, since P0 is fixed, the velocity on the downstream

side will have a limit and, for a given valve opening, so will mass flow rate. For the exhaust

stroke, P0 is unbounded. If the flow chokes the pressure will continue to rise as the piston
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compresses the charge and the downstream density and temperature will rise along with it,

increasing the mass flow rate. So we see that an engine’s performance is limited by choking

through the intake tract. In the engine model, we’ll make these calculations with frozen or

equilibrium gas values, as discussed earlier.

Real flow through the intake and exhaust tracts is viscous. It has drag, imposed by the

viscous boundary layer and by any separation that may occur as the flow proceeds through

the tract. Even though we’re modeling the flow isentropically, we can account for drag by

taking a page from the experimentalists.

Figure 6.4. A Cylinder Head Flow Bench

Racers, engine builders and engine designers have been using a device called a cylinder

head flow bench (Figure 6.4) for years. This device draws a vacuum on the cylinder side

of the head, measuring the mass flow rate of air passing from the atmosphere through the

engine’s tracts and into the bench’s vacuum chamber. A lift adjusting screw is used to open

the valve a precisely measured amount so that the relationship between lift and mass flow

rate can be built. Given the measured mass flow rate and the isentropic mass flow rate for

the same pressure differential and valve area, they calculate a “discharge coefficient”:
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(6.19) Cd =
ṁmeas

ṁisen

=
Af

Avc

Then, we can say that there is an effective flowpath area, based on the discharge coeffi-

cient:

(6.20) Af = CdAvc

The discharge coefficient isn’t constant across engine operating conditions or even across

the valve open duration. It changes with valve lift and with flow Reynolds number. For the

intake flow, Kirkpatrick [23] offers the equation:

(6.21) Cdi = −0.798

(
Lv

Dv

)2

− 0.860
Lv

Dv

+ 0.850

And for the exhaust:

(6.22) Cde = −3.6975

(
Lv

Dv

)2

+ 1.0585
Lv

Dv

+ 0.6499

We’ll use these equations to calculate the effective areas of the intake and exhaust valves,

completing the flow model. Note that, with the discharge coefficients added, the intake and

exhaust flows are no longer isentropic; instead, they are adiabatic. With this flow model
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added to the overall engine model, we finally reach our first major milestone. We have a

complete, operating simulation of an engine.

6.3. Preliminary Results

For the following discussion, to avoid complicating the technical picture, we’ll operate

the complete simulation with all of the loss models turned off. There will be no blowby, heat

transfer or friction. The results we present will be driven only by the fluid dynamics and

thermodynamics of the complete model.

Figure 6.5 shows the results, the properties of the charge across the engine’s two-revolution

cycle. The solid, vertical grid lines indicate the TDC and BDC points of the engine cycle.

The red, dash-dotted grid lines indicate the opening and closing points of the intake and

exhaust valves. Each is labeled on the bottom plot. Begin observing this figure at 0 degrees

crankshaft angle. This is TDC of the compression stroke. As the crankshaft angle increases,

ignition has occurred and the charge is burning. The piston is moving downward on the

power stroke. Note how the density decreases as the piston drops and the volume of the

trapped charge increases. Temperature and pressure drop as the density decreases. At 120◦

the exhaust valve opens. The pressure in the cylinder is about 5 atmospheres and with the

valve opening, the hot, high-pressure gases begin to rush out in what is called the “blow-

down” phase. Note the inflection of all three curves at this point as, with mass now flowing

out of the cylinder, the density decreases even more rapidly. The exhaust valve continues

to open as the crankshaft rotates. Just after 180◦, BDC of the power stroke, blowdown

ends as the charge pressure equalizes with ambient. The piston begins to move upward and

the charge is pumped out of the cylinder. With the valve fully open and the volume of the
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Figure 6.5. Cycle Charge Properties, 3,000 rpm

cylinder decreasing, the charge pressure remains at ambient and the density and temperature

remain essentially constant. At 323◦, with the piston still rising, the intake valve begins to

open. At 359◦ the piston has arrived at TDC of the exhaust stroke. It now begins moving

downward again on the intake stroke. Follow the plot around to the left, where we continue
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at the beginning of the intake stroke. The exhaust valve is now nearly closed and the intake

valve is opening wider. With the intake valve open, the pressure of the charge remains at

ambient. The piston is now drawing cool fuel/air mixture into the cylinder. Note how the

temperature of the charge decreases as the cool intake charge mixes with the residual, hot

exhaust gases. Also note how the density increases as the cool, dense intake charge mixes

with the hot, low density residual gases. The intake valve closes at -119◦, sealing the cylinder,

trapping the intake charge. With the piston rising on the compression stroke, the density,

temperature and pressure of the charge all increase. Ignition starts at -20◦. Note the slight

discontinuity of the temperature plot at this point. As the charge begins to burn, the piston

passes 0◦, TDC of compression, and we begin the cycle over again.

Figure 6.6. Measured Charge Pressure and Temperature

Figure 6.6 shows the pressure and temperature measured inside of an operating engine

cylinder by Yagi et al. [55]. These measurements are made on a four-stroke engine of

unspecified displacement at 8,000 rpm. While we can’t compare the results directly, there

is good qualitative agreement between the measurements and the model’s calculations. In
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particular, note the blowdown section visible in the pressure plot and the drop in temperature

as the cool intake charge is drawn in (both circled).
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Figure 6.7. Intake and Exhaust Flow Velocities

Figure 6.7 illustrates the velocities of the intake and exhaust flows as they pass through

the valves. Here, TDC of compression has been moved to the left to increase clarity. Positive

velocity is flow out of the cylinder. Negative velocity is flow in. It is easy to see where the

valves open and close. At 120◦ the exhaust valve opens. We see blowdown occurring, with

the flow through the valve choked. As the piston passes through BDC, the cylinder pressure

equalizes and the velocity drops to nearly zero. Then as the piston rises we see the velocity

grow and stay in the low, subsonic regime. In the center of the figure we see the overlap

region. When the intake valve opens, hot exhaust gases actually flow out for a short period

of time. Then, as the piston passes through TDC, some air is drawn in through the exhaust

valve. Note that these are velocities. The valve areas are changing continuously from left to

right. So the values here don’t reflect mass flux.

In Figure 6.8 we do see mass flux. At the top of the figure, we repeat the valve area

profile, for convenience. Below it, we see the mass flow rates through the two valves. Positive
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Figure 6.8. Mass Inducted and Exhausted
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is flow out and negative is flow in. The exhaust flux curve clearly shows blowdown. Note that

the curve isn’t discontinuous, as is the velocity. This is because the rate is controlled by the

varying pressure of the charge on the upstream end. After blowdown, we see the flow being

pumped out by the piston. Note the overlap region. While the velocities were significant

through this range, the mass flow rates are quite modest. Also note the flow reversal at the

end of the intake valve’s duration. Here, we see that we’re actually losing some useful intake

charge, as it flows back out the intake tract, and we note that, if the valve were to close a

few degrees earlier, we might gain some power. This is something that is difficult to measure

on a real engine, and is validation of the effort in creating an engine model. The bottom

plot in the figure shows the integrated mass inducted into and exhausted out of the cylinder.

On the exhaust curve, we again see the blowdown phase. On the intake curve, we can easily

see the intake charge escaping before the valve closes. Note that the total mass exhausted

is equal to the total mass inducted, another sign that the model is working as designed.
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Figure 6.9. High-Level Results
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Figure 6.9a is arguably the most important result the simulation can produce. To an

engine designer, vehicle or equipment engineer, or intake and exhaust system designer, the

power the engine generates and the character of its delivery is of greatest importance. The

power is calculated as described in Chapter 3. It is a high-level result, as it isn’t revealed

by basic data. Instead, pressure must be integrated over the engine’s two-revolution cycle.

The values predicted here are in line with what would be expected from the real engine of

Chapter 2. Note that the curve is not linear. It appears there may be a peak at a higher

rpm. This is a normal characteristic of engine power delivery; there is always a power peak.

The torque curve is calculated from the power values by:

(6.23) τ =
P

ω

where τ is torque, P is power and ω is the rotational velocity of the crankshaft. Figure

6.9b shows the “volumetric efficiency” of the engine. This is a measure of how much the

cylinder fills with charge over the intake stroke. A value of 1 indicates that the density of

the charge is equivalent to the ambient air density at intake valve closure. This curve also

typically has a peak value.

Remember that these results include no loss modeling. They represent only the fluid

dynamics and thermodynamics active in the engine.

Experience shows that real engines are sensitive to changes in cam timing. To be accurate,

an engine model must also be sensitive to such changes. Figure 6.10 shows the model’s power,

torque and volumetric efficiency predictions when the intake cam is advanced and retarded

5◦. Figure 6.10a shows that power increases slightly over the entire rpm range when the
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Figure 6.10. Model Sensitivity to Cam Timing

intake timing is advanced (-5◦) and decreases slightly when the timing is retarded (+5◦).

Torque follows the same pattern, with the variation greatest at low rpm. Figure 6.10b shows

the variation in volumetric efficiency as the intake timing is varied. Ev increases, especially

at low rpm, when the intake timing is advanced and drops when the timing is retarded. So

we do see that the model is sensitive to changes in valve timing.

We’ve skipped one key question: how do we start the simulation? For measuring power

and for observing the charge and flow values over the engine’s two revolution cycle, it’s most

convenient to start the simulation with the piston at TDC of the compression stroke. Then

the simulation is advanced 720◦ into the future, completing one cycle and arriving at the

beginning of another. But does this work? Figure 6.11a shows how charge pressure responds

to such a strategy.

Here, the charge is initialized to ambient density, pressure and temperature at TDC of

the compression stroke. The simulation begins marching forward from 0◦. The pressure is

low and begins to rise due to combustion. The simulation advances through the power and
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Figure 6.11. Simulation Convergence, 3,000 rpm

exhaust strokes, arriving at the right-hand side of the plot at the top of the exhaust stroke.

We follow around to -360◦ and watch as we advance through the intake and compression

strokes, the pressure following a very different path as the engine begins a second cycle.

Note how, by the third cycle, the pressure converges on a final, repetitive curve. Figure

6.11b shows the power predicted by the simulation, given the same startup strategy, over a

succession of cycles. Note how the measurement converges on a final value over three cycles.

The convergence indicates that this is a valid approach to starting the simulation. But

we need to keep in mind that the simulation must be cycled through two thermodynamic

cycles–four crankshaft revolutions–before the physics settle and we can consider the data

accurate. All of the figures above are generated with this in mind.
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CHAPTER 7

Quasi-One-Dimensional Intake and Exhaust Flow

Modeling

Modeling the intake and exhaust flows with the isentropic flow equations, as in the

previous chapter, is a reasonably simple solution that, combined with the model of the

charge in the cylinder, provides a very realistic simulation of a piston engine in operation,

with a high degree of functionality and realism. But it has clear shortcomings. At each

timestep, when the intake and exhaust Mach numbers are calculated, there is an implicit

assumption that the velocity, density and temperature of the flows instantaneously arrive at

the new values. But air has mass, and so we know that, even if the rate of acceleration is

very high, it is still finite. Also, the intake and exhaust tracts of a real, installed engine—the

flowpaths from the cylinder to the atmosphere—are often quite long and enclose a significant

mass of air, which must flow and stop cyclically. The simple model doesn’t account for the

inertia or momentum of the air in those flows. We ask, “are those physics important?”

To find out, will compare the simple-flow results to those of a higher-order, higher-fidelity

model.

Again, a three-dimensional CFD model would be the most desirable for realism and

accuracy. But that approach is far too computationally expensive for our purposes. Instead,

we will take the next step up in realism, and unfortunately, a great step up in complexity, from

the simple approach and model the intake and exhaust flows using a Quasi-One-Dimensional

(Q1D) approach. In a Q1D model, the assumption is that the flow is enclosed in a conduit

or duct of unspecified cross-sectional shape but of known cross-sectional area. The sectional
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Figure 7.1. A Quasi-One-Dimensional Duct

shape of the duct isn’t a factor in the final equations, and can therefore be thought of as

any arbitrary shape. But usually, for simplicity in derivation and thought experiment, the

conduit is assumed to be circular.

Figure 7.1 shows a duct in cross section. At any point along the duct we can measure

or specify a cross-sectional area, A. For the Q1D model, we specify that there is only one

dimension, x. Even though the duct is, in our imagination, a three-dimensional object, we

will say that there is no measurement in the y- and z-dimensions and, importantly, there is

no flow in the y- or z-directions. Velocities v and w are both zero. We also specify that fluid

properties—velocity, density, temperature and pressure are constant across any cross section.

In reality this assemblage of requirements is impossible. If the duct changes area, there must

be flow in three dimensions. But if the area change is gradual and smooth, and if the velocity

in the x-direction is an order or two of magnitude larger than the transverse velocities would

be, this is actually not a bad approximation. Closed-form and computational Q1D analyses
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show surprisingly good agreement with flow through real nozzles [56, 29, 24]. Note that the

duct doesn’t go to infinity in either direction. There will always be two ends separated by

a finite length of duct. We will be modeling a non-isentropic flow, and so the values of the

fluid properties will be known, specified, at each end.

Figure 7.2. Q1D Duct Discretized into Cells

Figure 7.2 shows a schematic of a duct in cross-section. The duct is divided into discrete

volumes or cells, with the cell of interest labeled i. The cell in the negative x-direction is

labeled i - 1 and the cell in the positive x-direction is labeled i + 1. Cell i is enclosed by

a control volume that is bounded on the left by the fully permeable cross-sectional area Al

and on the right by the permeable cross-sectional area Ar. At top and bottom, the control

volume is bounded by solid, non-permeable walls. We will assume that those walls are linear,

connecting Al to Ar. The length of each cell is ∆x and we will assume that the cell lengths

are not equal. We’ll call the collection of cells that comprise a duct a “mesh”. And ∆x

along the mesh will be non-uniform. It is clear from the figure that the straight control

volume walls don’t perfectly match the smooth curve of the duct. But as ∆x gets smaller

the approximation gets better and better.
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We’re going to apply the integral form of the Euler Equations [29, 24, 37] to the control

volume of cell i. In doing so, we will be developing what is commonly called a “Finite

Volume” approach to solving the flow along the duct.

7.1. The Continuity Equation

The continuity equation of the Euler Equations is:

(7.1)
∂

∂t

∫∫∫

V

ρdV +

∫∫

S

ρ~V · d~S = 0

Expanding the dot product and noting that v and w are zero,

(7.2)
∂

∂t

∫∫∫

V

ρdV +

∫∫

S

ρ

(

u dSx + ✟✟✟✟✯0
v dSy +✘✘✘✘✿0

w dSz

)

= 0

gives us the continuity equation specialized to one-dimensional flow:

(7.3)
∂

∂t

∫∫∫

V

ρ dV

︸ ︷︷ ︸
1

+

∫∫

S

ρu dSx = 0

︸ ︷︷ ︸
2

Figure 7.3 is a schematic of cell i. The cell has volume V and the fluid in the cell has

the properties velocity, u; density, ρ; temperature, T and pressure, P . The control surface

surrounding the cell encloses volume V and has four discrete surfaces, each with its own
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Figure 7.3. Cell i Surface Areas

surface normal vector, S. Term 1 of Equation 7.3 is the rate of change of mass in the cell.

Applied to cell i, it becomes:

(7.4)
∂

∂t

∫∫∫

V

ρdV =
d

dt
(ρV)

Term 2 represents the integrated mass flux across the control surface. dSx is the surface

unit normal vector pointing out of the volume in the x-direction. Integrated, the unit surface

normal vectors become the x-areas of each discrete surface of the cell, Sx. Because of the

cell’s discrete surfaces, we can convert the integral to a sum. The fluid properties can vary

in the x-direction and so we must perform the product, ρuSx, to form the integrand at

each surface location. On the left side of the cell the product becomes −ρuAl, the negative

associated with the negative-pointing area vector. On the right side, we have ρuAr and at

the walls, since there is no flow across them, we have 0. Term 2 becomes:

(7.5)

∫∫

S

ρu dSx =
∑

S

ρuSx
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And the discretized continuity equation is:

(7.6)
d

dt
(ρV) +

∑

S

ρuSx = 0

For the mass flux term, term 2, the flow properties are evaluated at the surface of the cell.

But exactly where are the values defined? We will stipulate that the primitive values are

defined at the center of each cell, the point equidistant from the left and right faces, creating

a “cell-centered” approach [57, 58]. With the values defined at the cell centers, we must

find some way of approximating the values at the cell faces. We will employ the simplest

approach, a linear interpolation between cell i and its neighbors. Keeping in mind that we’ve

declared the mesh to be non-uniform, for cell i’s right-hand face a general property value,

F , is:

Fr = Fi +

(
∆xi

∆xi + ∆xi+1

)

(Fi+1 − Fi)(7.7)

= Fi + Zr (Fi+1 − Fi)(7.8)

And for a value at cell i’s left face:

Fl = Fi −
(

∆xi

∆xi−1 + ∆xi

)

(Fi − Fi−1)(7.9)

= Fi − Zl (Fi − Fi−1)(7.10)
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or, using the mass flux (ρu) from Equation 7.6 as an example:

(ρu)r = (ρu)i + Zr

[
(ρu)i+1 − (ρu)i

]
(7.11)

(ρu)l = (ρu)i − Zl

[
(ρu)i − (ρu)i−1

]
(7.12)

This approach to approximating the values at the cell faces provides a solution that is

second order-accurate in space [59, 57, 58]. Note how the quantity with the cell lengths,

which we will call Z, is a proportioning term. When cell i and its neighbor are the same

length, the approximation becomes a simple average.

There is no flow across the cell (duct) walls, and so ρu is zero there. We can now write

the continuity equation in semi-discrete form:

(7.13)

d

dt
(ρV)
︸︷︷︸

a

−Al

{
(ρu)i − Zl

[
(ρu)i − (ρu)i−1

]}

︸ ︷︷ ︸

b

+Ar

{
(ρu)i − Zr

[
(ρu)i+1 − (ρu)i

]}

︸ ︷︷ ︸
c

= 0

Note the form of terms b and c in Equation 7.13. They are the mass flux through the left

and right cell boundaries, respectively. That the difference between them is equal to the rate

of change of mass within the cell makes complete sense and gives us some confidence that

the derivation is correct. We can approximate the volume of the cell by taking the average

area and multiplying by the length:

(7.14) Vi =
Al + Ar

2
∆x = Ā∆x
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But we must consider a subtle issue: these equations are derived from the conservation

form of the Euler Equations. Term a of Equation 7.13, which is the mass within a given

cell along the duct, is considered a “conserved value” across the domain. Under steady-state

conditions, the mass flow rate will be constant across the domain, even across shock waves,

if they exist. But the inclusion of ∆x in this term stipulates that ∆x is also conserved. And

we’ve already stated that it isn’t. This means that, when ∆x changes along the domain,

the conserved value being constant, we will see a compensating change in ρ, a mathematical

artifact. So we must remove ∆x from this term. Since it doesn’t change with time, we can

move it out from the time derivative:

(7.15)
∂

∂t

∫∫∫

V

ρdV = ∆x
d

dt

(
ρ Ā
)

(7.16)

∆x
d

dt

(
ρĀ
)
− Al

{
(ρu)i − Zl

[
(ρu)i − (ρu)i−1

]}
+ Ar

{
(ρu)i − Zr

[
(ρu)i+1 − (ρu)i

]}
= 0

In an attempt to minimize algebraic complexity, let’s call:

(7.17) U1 ≡ ρĀ and F1 ≡ ρu

Finally then, the semi-discrete, quasi-one-dimensional continuity equation is:
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(7.18)

(
dU1

dt

)

i

=
1

∆xi

{
Al

[
F1i − Zl

(
F1i − F1i−1

)]
− Ar

[
F1i + Zr

(
F1i+1

− F1i

)]}

7.2. The Momentum Equation

The momentum equations of the Euler Equations are:

(7.19)
∂

∂t

∫∫∫

V

ρ~V dV +

∫∫

S

(

ρ~V · d~S
)

~V = −
∫∫

S

Pd~S + Fviscous

This is a vector equation that expands into three velocity components. Keeping in mind

that ~V · d~S = u dSx + �✒
0

v dSy + ✟✟✯
0

w dSz = u dSx, the equation becomes:

∂

∂t

∫∫∫

V

ρudV +

∫∫

S

(ρu) udSx = −
∫∫

S

PdSx + Fvx(7.20)

∂

∂t

∫∫∫

V

ρ�✒
0

vdV +

∫∫

S

(

ρ�✒
0

v

)

udSx = −
∫∫

S

P✚
✚✚❃

0
dSy + ✚

✚✚❃
0

Fvy(7.21)

∂

∂t

∫∫∫

V

ρ✟✟✯
0

wdV +

∫∫

S

(

ρ✟✟✯
0

w
)

udSx = −
∫∫

S

P✟✟✟✯
0

dSz + ✟✟✟✯0
Fvz(7.22)

The u and v equations disappear completely and we’re left with a single momentum

equation, specialized to one-dimensional flow:
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(7.23)
∂

∂t

∫∫∫

V

ρu dV

︸ ︷︷ ︸
1

+

∫∫

S

ρu2 dSx

︸ ︷︷ ︸
2

= −
∫∫

S

P dSx

︸ ︷︷ ︸
3

+Fvx

Applied to cell i of Figure 7.3, term 1 of Equation 7.23 becomes:

(7.24)
∂

∂t

∫∫∫

V

ρudV = ρuV

As in the continuity equation, term 2 of Equation 7.23 becomes:

(7.25)

∫∫

S

ρu2 dSx =
∑

S

ρu2 Sx

Like term 2, term 3 operates over each of the cell faces and in discrete form becomes:

(7.26)

∫∫

S

P dSx =
∑

S

PSx

We will leave the viscous term undefined for now. But with the terms defined as above,

the semi-discrete, one-dimensional form of the momentum equation is:

(7.27)
d

dt
(ρuV) +

∑

S

ρu2 Sx = −
∑

S

PSx + Fvx
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The momentum flux term, term 2 of Equation 7.23, is evaluated as the mass flux term

is for the continuity equation. We will estimate the values of ρ and u at the left and right

cell boundaries using a linear interpolation with the neighboring values.

(
ρu2
)

r
=
(
ρu2
)

i
+ Zr

[(
ρu2
)

i+1
−
(
ρu2
)

i

]

(7.28)

(
ρu2
)

l
=
(
ρu2
)

i
− Zl

[(
ρu2
)

i
−
(
ρu2
)

i−1

]

(7.29)

Term 3 is a force term; we are calculating the force on the fluid, applied at the boundaries

of the cell. Since the surface integrand doesn’t contain a velocity value, all four surfaces enter

into the discrete sum, unlike in term 2. We will evaluate it at the left and right cell faces

and at the solid cell walls. At the left and right faces, we’ll interpolate the pressure. At the

walls, we can envision that the center of each wall aligns with the center of the cell. And so

we’ll say that the pressure at the cell center acts there. Observing Figure 7.3, we see that

the pressure doesn’t simply act on the area of each wall. Instead, it acts on the x-oriented

area, Sx of each wall. And looking at the Figure, we can see that there are two Sx areas, at

top and bottom. Then the total x-area presented by the walls is equal to Al − Ar. If Al is

greater than Ar, the area vector is positive. If Al is smaller than Ar the vector is negative.

Assembling each of these terms into a single equation:

d

dt
(ρuV) + Ar

{(
ρu2
)

i
+ Zr

[(
ρu2
)

i+1
−
(
ρu2
)

i

]}

− Al

{(
ρu2
)

i
− Zl

[(
ρu2
)

i
−
(
ρu2
)

i−1

]}

= −Ar {Pi + Zr [Pi+1 − Pi]} + Al {Pi − Zl [Pi − Pi−1]} − Pi (Al − Ar) + Fvx

(7.30)
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Combining the flux and pressure terms,

d

dt
(ρuV) = −Ar

{(
ρu2 + P

)

i
+ Zr

[(
ρu2 + P

)

i+1
−
(
ρu2 + P

)

i

]}

+Al

{(
ρu2 + P

)

i
− Zl

[(
ρu2 + P

)

i
−
(
ρu2 + P

)

i−1

]}

−Pi (Al − Ar) + Fvx

(7.31)

As above, we can approximate the left-hand side of Equation 7.31 with:

(7.32)
d

dt
(ρuV) = d

dt

(
ρuĀ∆x

)

And since ∆x isn’t conserved,

(7.33)
d

dt
(ρuV) = ∆x

d

dt

(
ρuĀ

)

Then, if we call,

(7.34) U2 ≡ ρuĀ and F2 ≡ ρu2 + P and J2 ≡ −P (Al − Ar) + Fvx

the semi-discrete, quasi-one-dimensional momentum equation is:
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(7.35)
(
dU2

dt

)

i

=
1

∆xi

{
Al

[
F2i − Zl

(
F2i − F2i−1

)]
− Ar

[
F2i + Zr

(
F2i+1

− F2i

)]
+ J2i

}

7.3. The Energy Equation

The energy equation of the Euler Equations is:

(7.36)

∂

∂t

∫∫∫

V

ρ

(

e +
~V 2

2

)

dV +

∫∫

S

ρ

(

e +
~V 2

2

)

~V · d~S =

∫∫∫

V

ρq̇dV −
∫∫

S

P ~V · d~S + Ẇviscous

Expanding the dot products and noting that ~V = u, we have the energy equation spe-

cialized to one-dimensional flow:

(7.37)

∂

∂t

∫∫∫

V

ρ

(

e +
u2

2

)

dV

︸ ︷︷ ︸
1

+

∫∫

S

ρ

(

e +
u2

2

)

u dSx

︸ ︷︷ ︸
2

=

∫∫∫

V

ρq̇dV

︸ ︷︷ ︸
3

−
∫∫

S

Pu dSx

︸ ︷︷ ︸
4

+Ẇvx

Term 1 of Equation 7.37, applied to Figure 7.3 is:

(7.38)
∂

∂t

∫∫∫

V

ρ

(

e +
u2

2

)

dV =
d

dt

[

ρ

(

e +
u2

2

)

V
]

= ∆x
d

dt

[

ρ

(

e +
u2

2

)

Ā

]

To reduce algebraic clutter, let’s call,
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(7.39) e′ ≡ e +
u2

2

Then,

(7.40)
∂

∂t

∫∫∫

V

ρ

(

e +
u2

2

)

dV = ∆x
d

dt

(
ρe′Ā

)

Discretized, term 2 of Equation 7.37 becomes:

(7.41)

∫∫

S

ρ

(

e +
u2

2

)

u dSx =

∫∫∫

S

ρe′u dSx =
∑

S

ρe′uSx

And evaluating the sum,

(7.42)

∑

S

ρe′uSx = Ar

{
(ρe′u)i + Zr

[
(ρe′u)i+1 − (ρe′u)i

]}
− Al

{
(ρe′u)i − Zl

[
(ρe′u)i − (ρe′u)i−1

]}

Term 3 of Equation 7.37 is:

(7.43)

∫∫∫

V

ρq̇dV = ρq̇V = ρq̇Ā∆x

In practice, q̇ would be a function expressing the rate of conductive and convective heat

transfer from the fluid within a cell to the cell’s walls, or vice-versa. While it’s depicted
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as a source term here, it could easily contain surface and volume integrals of its own. And

incorporating it could, itself, prove a significant line of research. For the sake of brevity in

an already very full study, we are going to neglect this piece of complex physics and leave it

to be added as future research. So at this point, now that we have identified and defined it,

we will drop term 3.

And finally, in discretized form, term 4 of Equation 7.37 is:

(7.44)

∫∫

S

Pu dSx =
∑

S

PuSx

While term 4 resembles the pressure term of the momentum equation, the velocity value

makes it go to zero at the walls; we only evaluate the sum at the left and right boundaries

of cell i:

(7.45)

∑

S

PuSx = Ar

{
(Pu)i + Zr

[
(Pu)i+1 − (Pu)i

]}
− Al

{
(Pu)i − Zl

[
(Pu)i − (Pu)i−1

]}

We can combine terms 2 and 4, Equations 7.42 and 7.45:
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∫∫

S

ρ

(

e +
u2

2

)

u dSx +

∫∫

S

Pu dSx

= Ar

{
(ρe′u)i + Zr

[
(ρe′u)i+1 − (ρe′u)i

]}
− Al

{
(ρe′u)i − Zl

[
(ρe′u)i − (ρe′u)i−1

]}

+ Ar

{
(Pu)i + Zr

[
(Pu)i+1 − (Pu)i

]}
− Al

{
(Pu)i − Zl

[
(Pu)i − (Pu)i−1

]}

= Ar

{
(ρe′u + Pu)i + Zr

[
(ρe′u + Pu)i+1 − (ρe′u + Pu)i

]}

− Al

{
(ρe′u + Pu)i − Zl

[
(ρe′u + Pu)i − (ρe′u + Pu)i−1

]}

(7.46)

For now, we’ll leave the viscous work term undefined.

To reduce algebraic clutter, we’ll say:

(7.47) U3 ≡ ρe′Ā F3 ≡ ρe′u + Pu J3 ≡ Ẇvx

and collecting all of the terms above the semi-discrete quasi-one-dimensional energy equa-

tion is:

(7.48)
(
dU3

dt

)

i

=
1

∆xi

{
Al

[
F3i − Zl

(
F3i − F3i−1

)]
− Ar

[
F3i + Zr

(
F3i+1

− F3i

)]
+ J3i

}

7.4. The Equations Collected

Finally, we have the semi-discrete, finite-volume governing equations of quasi-one-dimensional

flow, all in one place:
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(7.49)
(
dU1

dt

)

i

=
1

∆xi

{
Al

[
F1i − Zl

(
F1i − F1i−1

)]
− Ar

[
F1i + Zr

(
F1i+1

− F1i

)]
+ J1i

}

(
dU2

dt

)

i

=
1

∆xi

{
Al

[
F2i − Zl

(
F2i − F2i−1

)]
− Ar

[
F2i + Zr

(
F2i+1

− F2i

)]
+ J2i

}

(
dU3

dt

)

i

=
1

∆xi

{
Al

[
F3i − Zl

(
F3i − F3i−1

)]
− Ar

[
F3i + Zr

(
F3i+1

− F3i

)]
+ J3i

}

(7.50)

Zr =
∆xi

∆xi + ∆xi+1

Zl =
∆xi

∆xi−1 + ∆xi

We can write a single, generic equation to represent this system,

(7.51)

(
dU

dt

)

i

=
1

∆xi

{Al [Fi − Zl (Fi − Fi−1)] − Ar [Fi + Zr (Fi+1 − Fi)] + Ji}

where U , F and J are the vectors,

(7.52)

U =












ρĀ

ρuĀ

ρe′Ā












U1

U2

U3

F =












ρu

ρu2 + P

ρue′ + Pu












F1

F2

F3

J =












0

−P (Al − Ar) + Fvx

Ẇvx












J1

J2

J3

and,
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(7.53) e′ = cvT +

(
u2

2

)

The U values are called the “flux variables”. They constitute the solution vector for the

problem but are fluxes, not the primitive variables of density, temperature, pressure and

velocity. The F values are called the “flux terms”. They are also fluxes, of mass, momentum

and energy, into a given cell. The J values are source terms, adding or removing mass,

momentum or energy from a given cell.

Equations 7.49 allow us to calculate the time-rates of change of the flux variables for

any cell in the domain given the flux values of that cell and those of its neighbors. If we

integrate the flux variable rates with respect of time, we can obtain the flux variables for

the cell. Doing this for each cell in succession, we solve the equations of Q1D flow across

the domain. But our true interest is in the primitive variables in each cell. They are the

physical values that describe the state of the flow. We also need them to construct the flux

and source terms. So we will need to “decode” the flux variables to get to the primitive

variables:

(7.54)

ρ =
U1

Ā

u =
U2

U1

e′ =
U3

U1

T =
γ − 1

R

[

U3

U1

− 1

2

(
U2

U1

)2
]
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Note that pressure isn’t returned among the flux variables. But density and temperature

are. We can construct pressure using the perfect gas equation of state, then decode the flux

variables for pressure:

(7.55)

P = ρRT

P =
γ − 1

Ā

(

U3 − 1

2

U2
2

U1

)

This closes the system of equations. We now have four equations in four unknowns.

7.5. Time-Marching the Q1D Governing Equations

Now we must ask, “How will we march the solution of the Q1D governing equations

forward in time?” This is determined by the mathematical nature of the governing equa-

tions and by the finite-volume discretization we have created. On a uniform mesh, the linear

interpolation we use to approximate the flux values at the cell faces reduces to a central,

finite-difference scheme, with the right-hand side of each equation becoming a central, first-

difference equation. We’ve derived the Q1D governing equations from the Euler equations,

and so they contain no viscous—physically diffusive or numerically dissipative—terms; they

are pure convection equations. They are also nonlinear and their nonlinearity makes it very

difficult to study the stability of a solution that marches them forward in time. Researchers

have studied Time Marching Methods (TMMs) for space-discretized equations by applying

modal analyses to model equations, then examining the amplification factors that drive the

transient portion of the solution to grow or decay [59, 58, 60, 61]. For a linear convection

model equation, discretized using central, first-differences for the spatial derivative, applied

136



to a 1-dimensional domain with periodic boundaries, we find that the system of equations

has a set of eigenvalues that are purely imaginary. (Inclusion of viscosity in the governing

equations would give the eigenvalues a negative-real component.) Since they are pure con-

vection equations, the Q1D governing equations will also have purely imaginary eigenvalues

and behave like the model equation. To march the solution of the equations forward in

time, we must choose a Time Marching Method (TMM) that includes at least some of the

imaginary axis in its stability region. If a TMM is used that doesn’t include part of the

imaginary axis, then the eigenvalues of the system won’t fall inside of the TMM’s stability

region and the solution will diverge as it is advanced forward in time.
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Figure 7.4. Runge-Kutta TMM Stability Contours

Figure 7.4 shows the stability contours for the Runge-Kutta RK3 and RK4 TMMs when

applied to the central-differenced, linear convection model equation. These TMMs both

include part of the imaginary axis in their stability regions and for this reason are commonly

used to time-march the Euler and Navier-Stokes equations [58, 60, 57]. For our finite-volume

approach, the RK3 and RK4 methods will both produce a solution that is conditionally

stable—provided that the timestep is made small enough to keep the system’s eigenvalues
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within the TMM’s stability contour. The RK4 method’s stability region extends farther

up and down the imaginary axis than that of the RK3 method, and Jameson and Hirsch

[57, 58] point out that this allows the use of a Courant-Friedrichs-Lewy (CFL) factor, which

multiplies the calculated timestep, of up to 2
√
2 or about 2.8 times while still providing a

stable solution. This implies that, when a simulation is being time-marched to the steady

state, the RK4 method will allow for a larger CFL, less timesteps and faster convergence

than the RK3 method. But our application is unsteady, and must match, temporally, the

physics that occur in the cylinder. So we will always use a timestep that provides a time-

accurate solution, with a CFL value of 1. The author has already shown that the RK3

TMM is sufficient for this application [62], providing stability in all tested conditions. But

here, for comparison, we will use the RK4 TMM. Implementations vary. Here, denoting a

general variable to be integrated as u and denoting a time derivative of the variable as u′,

the method is given as [57, 58]:

u0 = un(7.56)

u1 = u0 +
1

2
∆tu′

0(7.57)

u2 = u0 +
1

2
∆tu′

1(7.58)

u3 = u0 + ∆tu′

2(7.59)

un+1 = un +
1

6
∆t [u′

0 + 2u′

1 + 2u′

2 + u′

3](7.60)

This is just a mathematical description of the method. The process for implementing the

scheme is:
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(1) Store the current u value for each cell in a safe location, which we’ll call u0.

(2) With the u values for the current timestep still in place, advance the system in time,

to sub-timestep u1, using the current and saved u values and Equation 7.57. For

each cell, save a copy of the time derivative for later use.

(3) With the original u0 values still in place, but with new u values created by the

previous operation, advance the system again using Equation 7.58 to sub-timestep

u2. Save a copy of the time derivative for each cell for later use.

(4) Using Equation 7.59, repeat the process again, advancing the system to sub-timestep

u3. Again, save a copy of each time derivative.

(5) Finally, using the stored u0 value, along with the saved time derivative values, calcu-

late the value of un+1 for each cell using Equation 7.60. The system is now advanced

one timestep and the values of u0 and the stored derivatives can be overwritten.

To facilitate the RK4 operations, we’ll need the following data values at each cell:

• The primitive variables, ρ, u, T and P .

• The flux variables U1, U2 and U3.

• The saved flux variable values from the current timestep, U10 , U20 and U30 ,

• The time-derivatives u′

0,
(
dU1

dt

)

0
,
(
dU2

dt

)

0
and

(
dU3

dt

)

0
, the flux variable rates from

sub-timestep 1.

• The time-derivatives u′

1,
(
dU1

dt

)

1
,
(
dU2

dt

)

1
and

(
dU3

dt

)

1
, the flux variable rates from

sub-timestep 2.

• The time-derivatives u′

2,
(
dU1

dt

)

2
,
(
dU2

dt

)

2
and

(
dU3

dt

)

2
, the flux variable rates from

sub-timestep 3.
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• The time-derivatives u′

3,
(
dU1

dt

)

3
,
(
dU2

dt

)

3
and

(
dU3

dt

)

3
, the flux variable rates from

sub-timestep 4.

• The cell left and right cross-sectional areas, Al and Ar.

• The cell average area, Ā.

• The artificial viscosity values for each flux variable, S1, S2 and S3.

• The length of the cell, ∆x.

• The interpolation proportioning terms, Zl and Zr.

The size of the timestep, ∆t, is critical to the stability of the solution. If the timestep

selected is too large, the eigenvalues of the system move above or below the stability region

on the imaginary axis and the solution diverges. To select the correct timestep size we can

turn to the characteristics of the system, its eigenvalues.

Figure 7.5. Propagation of Influences with Time

Figure 7.5 illustrates a segment of the finite-volume mesh centered on cell i. From cell

i − 1, characteristic u + c carries influences through the domain to the right. From cell

i + 1, characteristic u − c carries influences through the domain to the left. As time passes,

the influences from each neighbor cell travel through time and space along the characteristic

lines (u + c)t and (u − c)t. Physically, we must size the timestep so that influences can

reach the center of cell i from both of its neighbor cells. From cell i − 1 it takes,
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(7.61) ∆t =
∆x

u + c

for an influence to propagate the distance ∆x and reach the center of cell i. From cell

i + 1 it takes,

(7.62) ∆t = − ∆x

u − c

for an influence to reach the center of cell i. To ensure that influences propagate from

both neighbor cells to the center of cell i, we must make both calculations, then take the

smaller as the correct timestep. Note that it’s possible, when the flow goes supersonic,

for either calculation to go undefined or negative. We must trap this condition and avoid

making the calculation in that case. We must make these calculations for each cell in the

domain, selecting the smaller of the two ∆t values as correct for that cell. Then, scanning

down the entire domain, we must select the smallest cell ∆t value as the ∆t for the domain.

Doing otherwise would result in one or more cells exceeding its maximum allowable timestep.

This calculation is made at the beginning of each RK4 procedure, then the whole system is

marched forward one timestep, ∆t.

Using the prescribed timestep, which will always be quite small, we can march the whole

domain forward in time a prescribed number of seconds—many timesteps. We simply decre-

ment the specified time by ∆T each timestep, marching one final, short timestep at the

end. This is necessary since the overall engine model is advanced based on the time required
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to move the crankshaft a specified angle. At the top level, we advance the crankshaft one

“tick”, then advance the Q1D model the equivalent length of time.

7.6. Stability and Accuracy Considerations

Surprisingly, one very demanding task for the Q1D model comes when a valve is closed

and the flow in the intake or exhaust tract progresses toward quiescence. At 3,000 rpm

the intake valve is closed for about 25 msec. The largest ∆t we can expect is on the order

of 1 µsec, and so the CFD model will be marched ahead at least 25,000 steps with ever-

decreasing property value rates that will ultimately be of the same order as the computer’s

truncation errors. At low RPM this stress grows worse, as the number of timesteps grows

with decreasing engine speed.
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(b) A Valve Remaining Quiescently Stable

Figure 7.6. Mesh-Independence and Stability

Figure 7.6a shows what happens when a valve is closed, initialized to zero velocity and

ambient fluid values and marched forward in time 25,000 steps. The velocity should be zero

across the duct and the other values should all measure 1.0. Note how density, temperature
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and pressure are all diverging from their correct values and causing the velocity to become

non-zero. If the number of cells in the duct is reduced, this effect grows. A 19-cell duct

can completely diverge, with its properties reaching machine infinity after being advanced

25,000 timesteps.

It turns out that this test is a good measure of “mesh-independence”. If a CFD mesh

is too coarse, the simulation can’t resolve phenomena and flow structures that should be

present in the flow and the solution loses accuracy. As more cells are added and the mesh

becomes finer, the solution will converge on a final result that includes all of the phenomena

and structure that can be modeled by the CFD physics. When the mesh gets extremely

coarse, the model can diverge. In our case, with the valve closed, these two results happen

at about the same time. As we add cells to the valve, we find a point—46 cells—where

grid-independence is reached. The quiescent solution no longer diverges. Figure 7.6b shows

the result. Here, a valve with 46 cells is initialized to zero velocity and ambient fluid values

and marched 25,000 timesteps into the future with no hint of divergence. We must use at

least 46 cells in each 2 cm valve.

While considering stability and accuracy, we must recognize another subtle but important

point. In section 7.5 we said that we would find the appropriate ∆t value for each cell in

the numerical domain, then use the smallest value as the overall ∆t in the RK4 timestep.

This ensures the system will stay stable, but only a single cell in the entire domain will be

marched forward at its optimal rate. All of the other cells in the domain will be marched

forward at a sub-optimal ∆t. What happens?

Figure 7.7 illustrates a mesh that has been marched one timestep into the future. Because

of the governing equations and the discretization we’ve used, cell i receives information from
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Figure 7.7. A Sub-Optimal Timestep

cells i − 1 and i + 1. Those cells and cell i itself form cell i’s computational “domain of

dependence”, which is marked by the shaded triangle. The characteristic lines extending from

the neighboring cells intersect at the optimal timestep for cell i. If the domain were advanced

this far into the future, influences from the centers of the neighboring cells would be carried

exactly to the center of cell i and cell i’s domain of dependence and the characteristics would

coincide. But let’s say that, due to conditions at another cell, the actual timestep is smaller.

Note where the characteristics drawn through cell i’s center (parallel to the characteristics

from the neighboring cells) now fall. In this case, cell i’s physical, or analytical domain of

dependence lands somewhere between the neighboring cell centers. But we’re still feeding

the math with data from the cell centers. This causes the calculation of cell i’s flux variable

rates to become less accurate. In a simulation marching to a steady-state solution, this isn’t

as big a problem. Each cell can be advanced at its optimal rate. But in a time-accurate

simulation, all of the cells in the domain must be advanced the same timestep. We’re saddled

with some level of inaccuracy that we must accept. And that’s the good news. The bad news

is that this introduction of error exacerbates the quiescent flow condition discussed above.

By introducing error and requiring more timesteps to advance a given time increment, a

short timestep causes any marginally stable cell to diverge farther during valve closure. We
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must do whatever we can to minimize this condition. In testing, when a valve diverges, it

is clear that the intake valve always diverges first. Why? Consider the difference in typical

flow temperatures. The intake tract operates at around ambient temperature, 300 K. But

the exhaust tract operates at temperatures of 800 K and above. Timestep size is a function

of the speed of sound, which is a function of temperature. The calculated timestep for the

exhaust tract will always be a fraction of the proper timestep for the intake tract. If both

tracts are advanced together, the intake tract will see far more error build-up, causing the

intake valves to diverge more rapidly. To combat this, we will model the two tracts as

separate domains, each with its own calculated timestep size. Both tracts will be advanced

into the future a specified time using the procedure given in section 7.5. This strategy makes

the simulation more robust and reduces the possibility of a flow calculation diverging.

7.7. Artificial Viscosity

There is a notable difference between the Q1D equations and the model convection equa-

tion used for the modal analyses: the model equation is linear and the Q1D equations are

nonlinear. In our analysis, when and where the flow through the duct is smooth, the Q1D

equations will exhibit a more linear behavior, and we can expect to see stable predictions

of the flow state into the future. But Hirsch [58] points out that when we pair a central-

difference spatial discretization with the RK4 TMM, high frequency waves passing through

the domain will see amplification factors approaching 1. This can cause the solution to be-

come poorly posed and marginally stable around sharp changes in flow properties or duct

areas.
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To reduce this tendency, we will employ artificial viscosity terms. These are source terms

that are designed to act at points of high pressure gradient in the domain and are dissipative;

they consume small amounts of momentum and energy and introduce a negative-real eigen-

value component to the governing equations. This helps to damp-out the oscillations around

high-frequency features in the flow and leads to a stable solution. The artificial viscosity

is non-physical, and therefore adds error into the solution. Being dissipative, it also causes

flow structures to soften. But the artificial viscosity terms are derived to be fourth-order in

space and thus are two orders of magnitude below the accuracy of the solution. As long as

their influence is kept to a low level, their introduction of error can be kept to acceptable

levels. We’ll calculate artificial viscosity using the empirical equation provided by Anderson

[59]:

(7.63) Si = Cx
|Pi+1 − 2Pi + Pi−1|
Pi+1 + 2Pi + Pi−1

(Ui+1 − 2Ui + Ui−1)

where P is the pressure within a cell, U is the vector of flux variables above and Cx

is an adjustable proportioning term that is set through trial and error. To apply artificial

viscosity to the Q1D governing equations, we simply add the term to the flux value in each

cell after it has been advanced forward in time:

(7.64) (U)n+1

i =

∫ n+1

n

(
dU

dt

)n

i

dt + Si
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The artificial viscosity terms are computationally expensive to calculate. Notionally, we

would apply them at the end of each RK4 sub-timestep. But researchers have found that

they can be applied at the end of a full RK4 timestep with good results and a significant

reduction in computational load [57]. Here, we are applying artificial viscosity once each

timestep, after the RK4 process has been completed but before the flux variables have been

decoded. This provides very acceptable results.

7.8. Boundary Handling

At the high-level, our problem is an Initial, Boundary-Value Problem. We must specify

an initial value for each cell in the domain and, directed by the characteristics of the flow at

the cylinder and atmospheric boundaries, also specify certain values there while calculating

others. If the boundaries aren’t handled correctly, the solution will become ill-posed and

we can expect it to diverge. The simplest approach for handling the boundaries is to apply

Dirichlet boundary conditions, specifying or calculating the primitive fluid values, by way of

the flux variables. For the simulation of external flows, this technique provides a well-posed

and stable solution. For unsteady internal flows, the picture isn’t so clear. The numerical

dissipation of the external solution’s large domain softens and damps waves as they travel.

And the large, open boundaries of the external flow allow the highest wavelength disturbances

to exit the domain. Internal flows like ours have physically smaller domains which dissipate

less and walls that reflect and trap disturbances, leading to the buildup of waves that travel

back and forth between the boundaries. In the engine simulation at high RPM, the violent

stimulation at the cylinder boundary, especially when the valve is just barely open, leads

to a buildup of wave fronts with extremely large gradients that eventually cause a cell to
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diverge, typically taking its temperature negative. After the first cell diverges, the rest of

the cells in the domain diverge in a cascade. After only a few timesteps, the primitive fluid

values across the domain go to machine infinity.

To combat this problem, we need to apply some form of boundary handling that allows

waves to exit the domain. That is precisely the behavior of “non-reflective” boundary han-

dling. There is no better reason to apply non-reflective boundary handling than to provide

a stable solution. But it also offers some other major benefits, providing for greater realism

than the pressure-based, “hard” Dirichlet boundary handling.
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Figure 7.8. A Nozzle Operating at Various Throat Areas with Hard Bound-
ary Handling

Figure 7.8 shows the Q1D model operating with hard boundary handling. The system

is solving the flow through a nozzle operating at a number of selected throat areas. The

pressure on the 0th end of the nozzle is 3 times atmospheric and the pressure on the Nth end

is one atmosphere. At 84% opening, the nozzle is operating at its design operating condition.

Figure 7.8a shows the velocity of the frozen, standard air in the 84%-open nozzle accelerating

from subsonic to supersonic, and exiting the nozzle supersonically, at atmospheric pressure.

148



The entire flow through the nozzle is isentropic. Figure 7.8b shows the pressure of the air

passing through the nozzle decreasing steadily from 3 atmospheres to 1. When the nozzle

is open 14% the air accelerates to about Mach 2.5, then decelerates to subsonic velocity

through a shock wave. The air continues to decelerate through the expanding portion of

the nozzle and exits subsonically at 1 atmosphere. These are both valid and correct results.

But observe the 54% solution. The flow accelerates to supersonic speed through the nozzle,

then suddenly drops to lower supersonic speed through a shock wave before exiting. In

Figure 7.8b, the pressure drops below atmospheric through the nozzle, then suddenly rises

to atmospheric at the exit. This is a correct result up until the exit. At 54%, the nozzle

is operating overexpanded. In a real nozzle, the flow would be brought to atmospheric

pressure through a train of shock waves outside of the nozzle exit. And so the velocity at

the exit should be supersonic. Because the “hard” boundary handling imposes atmospheric

pressure at the exit, we get an erroneous, non-physical result. With the nozzle 100% open,

the flow at the exit should be underexpanded, exiting at about Mach 1 but at greater than

atmospheric pressure. In a real nozzle, an annular expansion fan forms outside of the nozzle

exit, accelerating the flow to supersonic speed and atmospheric pressure. With the hard

boundary handling, we see this happening inside of the nozzle, over a small set of cells.

The hard boundary handling can only provide a correct result when the flow at the exit is

naturally at atmospheric pressure, that is, subsonic or at the design supersonic velocity.

The hard boundary handling also misses a very important transient result. Figure 7.9

shows a set of Schlieren photographs from Blair [19]. They show the tip of an engine’s

exhaust pipe as the engine is just beginning its exhaust stroke. Under most conditions, the

pressure in the cylinder of an engine is above atmospheric when the exhaust valve opens.
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(a) Shock Wave at Exhaust Pipe Exit

(b) Shock Wave Outside of Pipe Exit

(c) Shock Wave Expanding Three-Dimensionally

Figure 7.9. A Shock Wave Exiting an Exhaust Pipe
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This results in a shock wave forming and propagating down the pipe. Figure 7.9a shows

the shock wave at the pipe exit. We need to observe this photo and think for a minute.

What is the pressure at the exit of the pipe? The shock wave is an almost infinitesimally

thin discontinuity. We can see from the figure that the pressure in front of the wave is

atmospheric. The pressure behind the shock must be above atmospheric. Otherwise, the

wave would dissipate; it wouldn’t be there. So we’re looking at a scenario where the pressure

at the atmospheric end of the pipe isn’t atmospheric. It’s a physical scenario which the

constant-pressure boundary handling can’t reproduce. Note the one-dimensionality of the

shock wave. This gives a good bit of credence to the notion that we can simulate pipe flow

using the Q1D approach. In Figure 7.9b the shock wave has exited the pipe and is beginning

to expand three-dimensionally into the atmosphere. What is the pressure at the pipe exit

now? The pressure in front of the shock is still atmospheric. And since the shock wave

still exists, we know the pressure behind the shock is still above atmospheric, but likely

decreasing as the shock wave expands into the atmosphere. Figure 7.9c shows the shock

wave a short distance from the pipe exit, and becoming nearly spherical as it expands. At

this point, we still can’t apply atmospheric pressure to the Nth cell of the pipe and get a

correct physical result. Even though the shock wave has exited the pipe, the pressure at the

exit takes a finite length of time to return to atmospheric.

The derivation and application of non-reflective boundary handling to the Q1D model is

a non-trivial task. To help maintain the flow of this chapter, we will include it as Appendix

A. For now, let’s simply say that the non-reflective approach creates a set of Neumann

boundary conditions that we apply to the 0th and Nth cells of the complete tract. The

Neumann conditions specify the time-rates of change of the flux variables. The rates are
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calculated in step with the rates for the field cells and marched forward in time along with

the field cells using the RK4 integration. While the non-reflective calculations add many lines

of code to the model, their application removes all of the characteristic-based logic required

to operate Dirichlet boundary handling. Conceptually, the model gets a bit simpler.
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Figure 7.10. A Nozzle Operating at Various Throat Areas with Non-
Reflective Boundary Handling

Figure 7.10 shows the same test that was performed above, with the nozzle operating

at a 3:1 pressure ratio and four different throat areas. This time, both boundaries are

handled non-reflectively. Compare Figure 7.10a with Figure 7.8a. There is a significant,

and importantly, realistic difference in the results. At 14% and 84% opening, the curves

are identical to above. However, at 54%, the overexpanded case, there is no shock wave in

the domain. The flow is exiting the domain at the correct supersonic speed. At 100%, the

underexpanded case, we no longer see the flow accelerating over the final few cells. Instead,

it is exiting at just over Mach 1. We see even more satisfying results in Figure 7.10b. Now,

for the 54%, overexpanded case, we indeed see that the exit pressure is below atmospheric.
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And for the 100%, underexpanded case, we see that the exit pressure is above atmospheric.

The CFD model is now solving for the exit pressure.
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Figure 7.11. The Effect of Hard and Non-Reflecting Boundary Handling

Figure 7.11 compares the results of the Q1D model simulating the passage of a shock

wave through a valve with a connected, straight pipe. Figure 7.11a is a sequence of snapshots

as a shock wave passes from left to right. The shock wave induces the flow to accelerate to

the right (positive velocity) as it passes. When the wave reaches the Nth cell of the pipe,

instead of the cell’s pressure suddenly going from atmospheric to the pressure behind the

shock, the pressure in cell Nth simply stays atmospheric. This causes the physics of the Q1D

governing equations to instantaneously generate an expansion wave that returns back down

the pipe, from right to left, (the curves with associated time values) inducing even higher

velocity in the positive direction and taking the pressure in the pipe to atmospheric. This

doesn’t happen in a real pipe; it is a mathematical artifact. Figure 7.11b shows exactly the

same scenario with non-reflective boundary handling on the Nth end. Now, when the shock

wave reaches the Nth boundary, the pressure in cell N spikes, just as it does in the field cells,
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allowing the shock to exit the domain, as it would in a real pipe. The pressure in cell N

then decreases at a finite rate to atmospheric, generating an infinite series of infinitesimal

expansion waves that slowly bring the pressure in the pipe back to atmospheric.

These results are far closer to reality than we can get using the simpler, hard boundary

handling. For the cost of adding non-reflective boundary handling, we get a solution that is

physically accurate across the domain. But importantly, it also solves the problem we talked

about earlier: it allows shock waves to pass through the pipe exit, rather than reflecting

back and forth, causing non-physical artifacts and possibly destabilizing the CFD solution.

The simulation will remain stable, even at extremely high RPM.

7.9. Preliminary Results

With all of these details embodied in software, we can present the following preliminary

results. For each of these tests, the gas used is exhaust gas, a mixture of CO2, H2O, N2

and Ar. The gas has the composition described in Table 7.1 and has the properties listed in

Table 7.2.

Table 7.1. Exhaust Gas Mixture

Constituent Gas Mole Ratio

N2 0.725
H2O 0.141
CO2 0.125
Ar 0.00930

Table 7.2. Exhaust Gas Properties at 800 K

Molecular Mass 28.72 g
mol

Specific Gas Constant (R) 289.5 kJ
kg−K

Specific Heat (Cp) 1,270 kJ
kg−K

Specific Heat (Cv) 981.0 kJ
kg−K

Ratio of Specific Heats (γ) 1.295
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Figure 7.12 illustrates the sudden initiation of flow in a straight duct that is initially

quiescent. The duct is 2 cm long, 7.355 cm2 in cross-sectional area and runs left-to-right in

the figure. The duct contains 46 cells with the 0th cell at the left and the 45th cell at the

right.
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Figure 7.12. Shock Wave Transiting a Straight Pipe

A high-pressure reservoir of exhaust gas at three atmospheres and 800 K is positioned at

the 0th boundary and the Nth boundary is open to the atmosphere. When the simulation is

begun, cells 1 through 45 are initialized to atmospheric conditions. Cell 0 is initialized with

the high-pressure gas. When time-marching is begun, the discontinuous pressure gradient

between cells 0 and 1 creates a shock wave which advances into the lower pressure gas and

induces a positive velocity in the gas as it passes. The figure presents the velocity of the flow

as four snapshots, 10 µsec apart. The shock wave is denoted by the steep rise in velocity,

with zero velocity ahead of it and relatively high velocity behind it. Note how the shock

wave is transiting from left to right as the flow is time-marched into the future. This is

physically correct behavior and shows how well the system can handle strong shock waves.

Note the absence of oscillations in the velocity.
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Figure 7.13. Q1D Nozzle Flow Steady State Results

Figure 7.13 shows a more detailed example. Here, exhaust gas is flowing steadily from

left to right through a converging/diverging nozzle. The nozzle is 2 cm long and has the area

profile given by Figure 7.13a. The minimum duct area, A∗, is one-tenth the maximum area.

The 0th boundary connects to a reservoir of exhaust gas at 3 atmospheres and 800 K; the

Nth boundary is open to the atmosphere. The flow through the nozzle is started in the same

manner as that in Figure 7.12, then time-marched to the steady state. Figure 7.13b shows

the values of the primitive flow variables when steady flow is reached. Note how the velocity

is positive, indicating flow from left-to-right through the duct. The gas accelerates through

the converging section of the nozzle, reaching Mach 1 at the throat. Then it continues

accelerating through the diverging section of the nozzle until reaching Mach 2.37. There, a

shock wave forms, taking the flow to subsonic speed. Across the shock, density, temperature

and pressure all increase. Downstream of the shock wave, the flow decelerates through the

final, divergent section of the nozzle, exiting at Mach 0.23. With a Cx value of 0.9, the

velocity break at the beginning of the shock wave is quite sharp, yet we see only very minor
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oscillations in the result. Note the appropriate behavior of the density, temperature and

pressure values across the domain.
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Figure 7.14. Computed and Exact Mach Numbers

Figure 7.14 compares the computed Mach number for this example with the exact Mach

number, generated using a separate program that applies closed-form, quasi-one-dimensional

theory. (For a nozzle operating in the non-isentropic regime, generating these results proves

to be a surprisingly non-trivial task on its own.) The CFD model does a very good job of

matching theory from the reservoir to the shock wave. There, we note differences. By always

summing a cell’s flux values on both the left and right faces, we have created a “non-upwind”

solution. In the supersonic region of the flow, we’re taking information from downwind of

the cell when influences can’t come from that side. As a result, the calculation of the shock

wave is smudged out across a number of cells, reducing the maximum Mach number slightly

and affecting the point where isentropic flow resumes. Note that the exact shock wave is

discontinuous, and the flow through the duct is composed of two isentropic flows joined by

a discontinuity. The computed shock wave is has finite thickness, intruding into both of

157



the isentropic regions, truncating the upstream isentropic flow slightly and displacing the

return to isentropic flow slightly down the duct. The result is still accurate enough for our

purposes. Also note how accurately the CFD model is able to capture the location of the

shock wave—identical to the exact location.

7.10. Additional 0th End Boundary Handling

As discussed in the previous chapter, the engine has poppet valves that open and close to

control the flows in the intake and exhaust tracts and to seal the cylinder so the charge can

be compressed and contained. Kim et al. [22] showed that the poppet valves in an engine

can be validly replaced by convergent-divergent nozzles of equal flowpath area. The fluid

drag, downstream velocities, mass flow rates and fluid structures are unaltered. And so we

will replace the intake and exhaust poppet valves with nozzles of time-varying, parabolic

cross-sectional area profile, given by:

(7.65) A(x) = 4 (A0 − A∗)
x2

L2
− 4 (A0 − A∗)

x

L
+ A0

Where x is the axial station along the nozzle, A0 is the non-varying area at either end of

the nozzle and A∗ is the variable area of the throat.

Figure 7.15 shows the nozzle-valve at four stages of closure, wide open, 75% open, 50%

open and 1% open. Flow through the valve is from left to right and vice-versa. The valve is

modeled using a duct of 46 cells. The 0th end of the duct always connects to the cylinder,

making positive duct velocity equate to flow out of the cylinder. The Nth end of the duct

connects to the atmosphere or to another duct that represents either an intake runner or
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Figure 7.15. Nozzle-as-Valve Profile at Selected Percentages of Opening

exhaust header. The ends of the valve are set to the area of the intake or exhaust port and

the throat area is slaved to the skirt area of the modeled valve, dictated by the cam timing

and cam profile in the cylinder model. As the crankshaft is stepped forward in time, the

valve lift is updated at each step. Returning to the flux variable decode equations, Equations

7.54, we see that density and pressure both have Ā in their denominators. Reducing the

throat area to zero will cause those calculations to fail at the throat cell. And so the valve’s

minimum throat area, A∗, will be limited to 1% of A0. As the valve opens and closes, the

simulated flow sees the cross-sectional area growing and shrinking while, at the same time,

the cylinder acts as a forcing function on the valve’s 0th end. While 1% cross-sectional area

is small, it doesn’t stop the fluid from flowing. Some mechanism is still required to fully stop

the flow when the valve is closed. For that, we can apply another boundary condition to the

zeroth end of the valve, making that end of the duct a solid boundary.

Figure 7.16 shows the characteristics at the 0th duct boundary when the flow there is

stopped. There is a single characteristic entering the domain. This means that we must

specify a flux variable there while letting two float. We’re already specifying velocity, zero,
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Figure 7.16. Characteristics for the Closed 0th End

so we’ll allow density and temperature to float. We can extrapolate the values of U1 and

U3 from the interior cells, but we get a better result if we calculate the F1 and F2 values,

associated dU1

dt
and dU2

dt
rates and time-step this cell along with the field cells. But there is

no neighboring cell to the left, so how do we estimate the flux values at the left cell face?

We won’t have to. If we consider the velocity in cell 0 to be zero, we can validly specify that

the velocity at the left cell face is also zero. Therefore, the fluxes within cell 0 and at its left

face are zero. And so, applying the semi-discrete Q1D equations to the cell, we get a new

set of finite volume equations. The generic equation for cell 0 becomes,

(7.66)

(
dU

dt

)

0

= − 1

dx
[ArZr(F )1 + (J)0]

with the vectors,
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(7.67) U =












ρĀ

0

ρcvTĀ












U1

U2

U3

F =












ρu

ρu2 + P

ρue′ + Pu












F1

F2

F3

J =












0

PAr + Fvx

Ẇvx












J1

J2

J3

This complicates the boundary handling for Cell 0. Now, when the valve is open, we

calculate the flux variable rates using non-reflective handling. When the valve is closed, we

calculate the flux variable rates for as above. In both cases, we integrate the rates with those

of the field cells.
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0 10 20 30 40
0

0.5

1

1.5

2

2.5

Cell Number

M
ac
h
N
u
m
b
er

99%

91%

75%

54%

28%

0%

(b) Velocities as the Valve Closes

Figure 7.17. Flow Through the Moving Valve

Figure 7.17 shows the additional 0th boundary handling in operation. Here, the valve

is bounded on the 0th end by a reservoir of exhaust gas at three atmospheres and is open

to the atmosphere at the Nth end. The valve starts closed, then opens and closes again

sinusoidally over a period of 14 msec. This simulates the exhaust valve opening and closing

at a crankshaft speed of 3,000 rpm. In Figure 7.17a, the valve starts out with zero velocity
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throughout. At 28% opening there is a shock wave around cell 42. As the valve continues

to open, the shock wave moves downstream, exiting the domain. At 99% opening, the flow

through the entire valve is near Mach 1.

Figure 7.17b picks up where Figure 7.17a leaves off. As the valve closes, a shock wave

forms at the exit, and with further closure, travels upstream. There is hysteresis in the

reverse sequence, so we don’t see the shock wave enter until the valve is closed below 28%.

The final curve shows the valve at 1% minimum throat area, with the closed-end handling

active. In the compressible flow, while fluid at the 0th end is stopped, fluid through the rest

of the valve is still moving to the right. The very small throat area results in deceptively

large velocity there.
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Figure 7.18. Velocities After Valve Closure

Figure 7.18 picks up where Figure 7.17b leaves off. The valve is now closed, with closed

0th-end handling active. The velocity is positive at first, then drops to near zero, then

reverses. Note that the velocity of cell 0 is always zero. The velocity oscillation in the body

of the valve continues for a number of cycles with decreasing amplitude, as the flow decays

toward quiescence. This is organ pipe oscillation, what one hears when patting the open
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end of a pipe with the opposite end closed, and importantly, is physically accurate behavior.

This is again good validation that the model is working correctly and that the assumptions

we made for the 0th-end handling are both valid and correct.

7.11. Connected Ducts

The intake and exhaust systems of engines are composed of valves, intake and exhaust

ports, intake runners and exhaust headers, plus other piping. Computationally, it’s not

convenient to create a long string of cells with varying area, varying ∆x and, to top it off,

one set of cells whose area changes temporally. Instead, it’s easier to create individual ducts

and connect them together end-to-end to form an entire intake or exhaust tract. Then,

each duct can have a distinct identity and behavior. For example, a valve duct can have

time-varying area. But accomplishing this requires yet another set of boundary handling

algorithms.

Figure 7.19. Connected Ducts

Figure 7.19 shows two ducts connected end-to-end. For the left duct, the duct to its

right is its Nth duct. For the right duct, the duct to its left is its 0th duct. It’s clear from

the illustration that we must make sure the touching face areas of the Nth and 0th cells are

equal. Otherwise we have an ambiguous face area at the interface. Applying the generic

equation to the connected cells is straight forward. If we call the Nth cell of the 0th duct N ′

and the 0th cell of the Nth duct 0′, then for the 0th cell:
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(7.68)

(
dU

dt

)

0

= − 1

∆x0

{Al [F0 − Zl (F0 − FN ′)] − Ar [F0 + Zr (F1 − F0)] + J0}

And for the Nth cell:

(7.69)

(
dU

dt

)

N

= − 1

∆xN

{Al [FN − Zl (FN − FN−1)] − Ar [FN + Zr (F0′ − FN)] + JN}

where the vectors are given by Equations A.8.

But this provides yet another boundary handling requirement. On the 0th end of a duct,

we must test for three possible conditions: Open to the cylinder, closed or connected to

another duct. On the Nth end, we must test for connected and not connected. Then the

boundary handling rules become:

Table 7.3. 0th Cell Boundary Handling Rules

Open Closed Connected
Calculate U1, U2 and U3

rates using non-reflective
handling

U2 = 0, Calculate U1 and U2

according to Equations 7.66
and 7.67

Calculate U1, U2 and U3 rates
according to Equations 7.68

and A.8

Table 7.4. Nth Cell Boundary Handling Rules

Open to the Atmosphere Connected
Calculate U1, U2 and U3 rates using

non-reflective handling
Calculate U1, U2 and U3 rates according to

Equations 7.69 and A.8

With these additions to the model, Figure 7.20 presents the initiation of flow in a straight

tract composed of a wide-open valve, 2 cm long, connected to a straight pipe 20 cm long.

∆x in the valve is 0.435 mm and in the pipe, 5 mm. So this is a good test of both the

connected-end handling and the ∆x-based flux proportioning Z terms. The figure is again
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Figure 7.20. Shock Wave Transiting Connected Pipes

a collection of snapshots, each 100 µsec apart. Like in Figure 7.12, we see the shock wave

transiting through the initially quiescent flow, inducing positive velocity. The shock wave

advances across the duct connection without any distortion, indicating that the algorithm

and software are both correct.
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(b) Tract Flow Properties

Figure 7.21. Q1D Tract Flow Steady-State Results

Figure 7.21 shows exhaust gas flowing through a combined valve/pipe tract. The valve, 2

cm long, is connected to a straight pipe, 20 cm long, at its Nth end. The overall area profile

of the tract is shown in Figure 7.21a. The valve is open 10% and exhaust gas is supplied at 3
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atmospheres and 800 K at the left. The right end of the pipe is open to the atmosphere. The

flow was started as above, with the passage of a shock wave, then marched forward in time to

the steady state. Compare the flow through the valve section with Figure 7.13b. The results

are identical. Downstream of the valve exit, the flow remains constant through the pipe to

the atmosphere. (The pipe section has been truncated to make the curves through the valve

easier to see.) The curves are all smooth where the two ducts connect, again indicating that

the algorithm and software are correct.
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Figure 7.22. Closed-End Fluid Response

From the fully developed, steady-state flow presented above, we can slam the valve shut

instantaneously, stopping the flow at the left end of the tract. This is a very violent event and

stresses the simulation. What happens? Figure 7.22 shows the results; the fluid oscillates as

it does in an organ pipe. Here, oscillations of the fluid in the tract are very visible. Because

of the length of the tract, the frequency is lower than in Figure 7.18 and the oscillations

decay more slowly. Each curve is plotted 2 msec from the last.

Figures 7.13b, 7.14 and 7.21b show that the Q1D model is accurate in predicting steady-

state results. But what about time-accuracy? For us, it’s just as important for the Q1D
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Figure 7.23. Organ Pipe Oscillations

model to be able to predict when an event will occur as it is to predict how and where it

will occur. Luckily, we’re dealing with pipes, which have acoustic responses. We can take

advantage of that. We use the same setup as above, a tract composed of a valve with attached

pipe. The test begins with the valve closed and the tract filled with standard, frozen air

at ambient temperature and 1.1 atmospheres. The simulation is advanced forward and the

effect is as if a membrane over the open end of the pipe, retaining the lightly compressed air,

has suddenly ruptured. The tract goes into organ pipe oscillations. Figure 7.23 shows the

result. The total length of the tract is 0.022 m and acoustic theory says the oscillations should

occur at a frequency of 430 Hz. Figure 7.23a shows the pressure experienced at the closed

end of the tract. The wavelength of the oscillations is about 2.3 msec, for a frequency of 435

Hz, very close to the theoretical value. Figure 7.23b shows the velocity of the air column at

the open end of the pipe. Note how the velocity leads the pressure by 270 degrees. That the

predicted and theoretical frequencies are close provides additional confidence that the Q1D

model and software are correct.
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7.12. Fluid Friction

Now that we have an operating Q1D fluid flow model, we can think about adding more

physics. The governing equations of Q1D flow were derived from the Euler equations and

are therefore inviscid. Without the inclusion of fluid viscosity, it would seem we are stuck

with an ideal model that doesn’t include the important phenomenon of fluid drag. But this

is precisely why we included the viscous work terms in the J2 and J3 terms of the generic

equation.

In an external flow over a body, like the flow over an airframe, we’re very concerned with

estimating the force of drag imparted to the body by the air. In an internal flow, we’re

more interested in estimating the drag imparted on the fluid by the walls. Returning to our

original Q1D assumptions, the properties across any given fluid cross section are constant.

There is no boundary layer at the walls, no transverse velocity gradient. But we can still

model the viscous drag on the fluid by applying a source term reflecting the drag force at a

point along the flow, averaged out over the cross sectional area of the flow.

Figure 7.24. The Boundary Layer and its Viscous Shear Stress

168



Figure 7.24 shows one cell of a duct. If the duct had a three-dimensional, viscous flow

inside of it, we could envision an annular boundary layer along the wall, indicated by the area

between the wall and the dashed lines, where the fluid is in viscous shear. The enlargement

at the right shows the parabolic velocity distribution through the boundary layer. The no-

slip condition at the wall dictates that the fluid there has a velocity of zero and the fluid at

the edge of the boundary layer has free-steam velocity. The retardation of the flow at the

surface results in a shear stress, τ , applied to the wall:

(7.70) τ = ν
∂u

∂r

〈
N

m2

〉

where ν is the viscosity of the fluid and r is the radius from the centerline of the duct.

We can integrate the shear stress over the surface of the cell—the area of the wall—arriving

at the viscous force applied to the cell wall:

(7.71) Fwall =

∫

S

τdS 〈N〉

where S is the surface of the cell wall. According to Newton’s third law, this same force

acts on the fluid itself, and so Fwall = −Ffluid, and the force we calculate is the total drag

force on the fluid passing through this cell. Note that the drag we’ve calculated is a single,

vector value applying to all of the fluid in the cell. Since it is a single value, we can apply it

to the flow in the cell as a source term, drag, D.
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For a Newtonian, viscous flow, the force of drag increases with the square of velocity. It

is common to non-dimensionalize the drag force by the dynamic pressure times a reference

area, resulting in a drag coefficient:

(7.72) CD =
D

1
2
ρu2S

or,

(7.73) D =
1

2
ρu2SCD

If we assume a circular duct and a cell with conical section,

(7.74) S = 2∆x
√

πĀ

then, using the area of the cell wall as the reference area,

(7.75) D = ρu2∆x
√

πĀCD

From experiment, for a Reynolds number, Re > 105 and a surface roughness of 0.0005r̄,

researchers have found, [29],
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(7.76) CD = 0.005

That is the surface roughness of a smooth but unpolished pipe. A typical, cast intake

runner or exhaust header has a surface roughness of about an order of magnitude higher,

and so we can expect to use a value significantly higher than CD = 0.005 for realistic results.

To apply drag to the momentum equation, we remind ourselves that the momentum

equation is a force equation. Therefore, drag gets added to the J2 term as a force. Drag is

also opposite in sense to velocity, so:

(7.77) J2 = −P (Al − Ar) − sgn(u)ρu2∆x
√

πĀCD

To apply drag to the energy equation, we remember that the energy equation actually

employs power. And so we need to add the power lost to drag to the equation. The power

of drag is equal to the drag force times velocity:

(7.78) Ẇdrag = Du = ρu3∆x
√

πĀCD

Drag always consumes power, and so the drag power term is always negative. The J3

term of the generic equation becomes:
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(7.79) J3 = −
∣
∣
∣ρu3∆x

√

πĀCD

∣
∣
∣
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Figure 7.25. The Effect of Friction on Subsonic Flow

With these new source terms added to the Q1D generic equation, Figure 7.25 shows the

result for subsonic flow. A wide-open valve is attached to a 20 cm long straight pipe, forming

a pipe 22 cm long. The velocity (U2) at the inflow (left side of the figure) is specified, with

respect to temperature, at 0.5 Mach, density (U1) is allowed to float and U3 is specified

with respect to temperature and velocity. A first run is made with CD set to 0 (non-solid

lines), then a second run is made with CD set to 0.005 (solid lines and primed labels). With

friction, Mach number increases from inflow to outflow. Temperature drops from inflow to

outflow. Because the flow is subsonic, outflow pressure is equal between the two runs, but

when friction is added, it is clear that pressure decreases from inflow to outflow. Last, density

also decreases from inflow to outflow. These trends each match the closed-form results for a

Fanno flow [29, 24, 63].
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Figure 7.26. The Effect of Friction on Supersonic Flow

Figure 7.26 shows the effect of friction on a supersonic flow. The same duct is used

but now all three flux variables are specified at the inflow (for supersonic inflow, three

characteristics enter the domain) with velocity specified at Mach 2. An initial run with no

viscosity is represented by the non-solid lines. A second run with CD = 0.005 is represented

by the solid lines. In this flow regime, viscosity makes the Mach number decrease, the

temperature increase, pressure increase and density increase. These trends again match the

closed-form results for Fanno flow.
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Figure 7.27. The Effect of Friction on Flow Through a Nozzle
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Figure 7.27 shows the effect of friction on the flow through a nozzle. The nozzle tested

is 20 cm long, to magnify the effect of friction (more total wall area). Again, a first run

was made with no friction (non-solid lines), then a second run was made with CD = 0.005

(solid lines). As the velocity increases through the nozzle the effect of friction becomes

more evident. This makes sense, since the force of friction is proportional to the square of

velocity. With friction it appears that, rather than reaching Mach 1 at the nozzle throat,

the flow instead reaches Mach 1 slightly downstream of that point. Additionally, after the

throat, the velocity is lower and the shock wave moves slightly upstream. The Mach number

downstream of the shock is decreased, as is temperature. Pressure and density both appear

to increase.

Unless we’re simulating viscous flow through the ducts with a three-dimensional CFD

model, there is no way to accurately estimate the drag on the fluid, and so we must turn

to the common aerodynamic practice of using an empirical drag coefficient. In chapter 6,

we showed the use of an empirical discharge coefficient. That can also be used here. The

discharge coefficient is taken to relate the effective flowpath area through a valve to the

valve’s geometric flowpath area based on the current lift/diameter ratio. From Kirkpatrick

[23]:

Cd = −0.798

(
l

d

)2

− 0.86
l

d
+ 0.85 (Intake)(7.80)

Cd = −3.6975

(
l

d

)2

+ 1.0585
l

d
+ 0.6499 (Exhaust)(7.81)
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Unfortunately, drag coefficient and discharge coefficient are commonly expressed with

the same letters. Note we are using capital D for drag and lower-case d for discharge. The

effective flowpath area through the valve is then:

(7.82) Aeff = AskirtCd

And so we can simply modify the valve skirt area using Cd and use the effective area as

the throat area for our computational valve.

7.13. Connecting the Intake and Exhaust Flow Models: Preliminary Results

We now have a fairly complete model of Q1D flow through ducts. We can create two

valves, connect them each to a straight duct to form a complete intake or exhaust tract, then

connect each tract to the cylinder model.

Figure 7.28 shows the intake and exhaust tracts in place in a complete engine. Note how

the Q1D nozzles take the place of the engine’s valves. The pipes connected to the nozzle’s

Nth ends form the intake and exhaust ports. We can connect more pipes to the end of the

ports as intake runners and exhaust headers. We specified previously that the 0th cell of

each valve is connected to the cylinder. The Nth cell is either open to the atmosphere or,

more likely, connected to the 0th cell of a straight pipe. The outermost Nth cell of a complete

tract connects to the atmosphere.

We can couple the Q1D intake/exhaust tracts to the model of the charge by calculating

the mass fluxes, energy fluxes and pressure-work values at each valve’s 0th cell. Then

175



Figure 7.28. The Engine with Q1D Intake and Exhaust Tracts

we insert the mass flux value into the charge continuity equation (7.83, repeated here for

convenience) as

(

ρ~V Ā
)

0
=
(

ρ~V A
)

i
or

(

ρ~V Ā
)

0
=
(

ρ~V A
)

e

(7.83)
dρ

dt
= − 1

V

[(

ρ~V A
)

i
+
(

ρ~V A
)

e
+
(

ρ~V A
)

b
+ ρ

dV
dt

]

And we insert the energy flux and pressure-work values into the charge energy equation

(7.84, also repeated here), as
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(

ρe′~V Ā
)

0
+
(

P ~V Ā
)

0
=

[

ρ

(

e +
~V 2

2

)

~V A

]

i

+
(

P ~V A
)

j

For the sums, the intake values correspond to subscript 1, exhaust values to subscript 2

and blowby values to subscript 3.

(7.84)

dT

dt
= − 1

ρVcv







3∑

i=1

[

ρ

(

e +
~V 2

2

)

~V A

]

i
︸ ︷︷ ︸

energy flux

+
3∑

j=1

(

P ~V A
)

j

︸ ︷︷ ︸

pressure work

+Q̇T + Q̇c + Vedρ
dt

+ ρe
dV
dt







Thus, we have a complete, integrated engine model with cylinder and tract submodels.

But how do we know whether the integrated charge and flow models are working correctly? A

good, comprehensive test technique is to set the system up to model a Helmholtz resonator.

If we set the crankshaft rotational speed to zero, position the piston at the bottom of its

stroke and open one valve fully, the open volume of the cylinder, combined with the flow

path of a single tract (one must be kept closed) forms a Helmholtz resonator. With the

charge initialized to slightly over atmospheric pressure, as the simulation is marched forward

in time, the system should oscillate. One theory, based on the isentropic flow relations,

provides the angular frequency of oscillation [64]:

(7.85) ω = c

√

A

LV
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where A is the cross-sectional area of the intake or exhaust tract, L is the length of the

tract, V is the volume of the cylinder and c is the speed of sound in the fluid. From the

engine we’ve been using through the thesis, table 7.5 provides the pertinent data.

Table 7.5. Helmholtz Oscillator Values

L (valve only) 0.02 m
L (valve and pipe) 0.32 m

A 0.001155 m2

V 465.3 cc = 0.0004653 m3

c 344.5 m
s

Figure 7.29 shows the results. The cylinder is filled with frozen, standard air with a

density of 1.1 times ambient, resulting in a cylinder pressure of 1.1 atmospheres. The single,

wide-open valve is initialized to zero velocity and ambient conditions. Then the simulation

is marched forward in time with the timestep of the cylinder model, ∆t = 0.00005s. The

Q1D flow model sets its own, much smaller ∆t value and, as described above, cycles as many

times as necessary to march forward with the cylinder timestep.
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Figure 7.29. Cylinder/Valve Helmholtz Response
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Figure 7.29a shows the pressure response of the charge in the cylinder. The pressure rises

and falls just as we expect it to. The pressure response shows a period of 1.75 msec, for a

frequency of 571 Hz. The theoretical frequency is 611 Hz. Figure 7.29b shows the velocity

of the flow through the valve measured at its 0th cell. Flow out is positive. Note how the

velocity leads the pressure by 90◦, which makes sense.
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Figure 7.30. Cylinder/Tract Helmholtz Response

Figure 7.30 shows the same test done with a pipe connected to the valve for a total length

of 22 cm. For this test, the system timestep is set to 0.002 seconds. Figure 7.30a shows the

pressure response of the charge. Note the significantly longer wavelength. The period of

the response is 7.8 msec for a frequency of 128 Hz. Theory predicts a frequency of 153 Hz.

Figure 7.30b shows the velocity response leading the pressure response by 90◦.

Performed with hard boundary handling (not shown here), the results come out to within

5 Hz of the theoretical values. Apparently, non-reflective boundary handling has an effect

on the Helmholtz responses. This is concerning and is an issue that will be pursued at a

later date.
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7.14. The Fully Operational Simulation

Now that we’ve satisfied ourselves that the integrated cylinder and Q1D flow models form

a harmonious system that can make accurate predictions, it’s time to turn them loose as a

complete engine simulation. We’re continuing with the same engine we’ve used through the

thesis (described in Chapter 2). In this case, the cylinder is outfitted with bare Q1D intake

and exhaust valves. There is no port, intake runner or exhaust header attached to either

valve. This arrangement allows a direct comparison with the results from Chapter 6, where

the engine is modeled with simple valves. The following comparisons are made at 3,000

rpm, with all of the loss models turned off and CD set to zero so that we’re only observing

thermodynamic and inviscid aerodynamic physics. The working fluid is frozen, standard air.
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Figure 7.31. Intake and Exhaust Flow Velocities

Let’s begin by studying the intake and exhaust flows. Figure 7.31 presents the velocity

of the flows through the intake and exhaust valves. For each plot, TDC of compression is

at the left (0◦). The plots display the velocity through the valves over the engine’s two-

revolution cycle. In Figure 7.31a it’s very easy to see where the intake valve opens and
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closes. The solid, red curve is the velocity through the Q1D intake valve and the dashed,

blue curve is the velocity through the simple valve with the discharge coefficient set to zero.

The first thing we notice is that the Q1D flow is oscillating wildly, while the simple flow

is well behaved. What is going on here? Observe the oscillations beginning at 360◦, then

follow them to the right. The wavelength of the oscillations is growing as the piston drops

from TDC to BDC of the intake stroke. Following to the left of 360◦ we see the same trend.

These are Helmholtz oscillations. With the intake valve open and the exhaust valve closed,

we have a Helmholtz resonator, just like above. While the initial reaction is that there may

be something wrong, after some consideration, we may be seeing correct, physical behavior.

Note how the average Q1D value follows the isentropic curve. Figure 7.31b Shows the velocity

through the exhaust valve. Note the level of correlation in the predicted duration of choked

flow through the valve during blowdown. After the blowdown phase is complete, the Q1D

model shows strong oscillations. Note how the wavelength decreases as the piston rises from

180◦ to 360◦ through the exhaust stroke. Again, Helmholtz oscillations. Note again how

the average Q1D value tracks the simple value. Notionally, the appearance of Helmholtz

oscillations in the Q1D results makes sense. We can picture the volume of the cylinder and

the short duct that is the valve connected together and we can picture the momentum in

the valve flow creating an over- and underpressure in the charge. It’s also clear that the

simple model, lacking any modeling of momentum, shouldn’t be able to produce these kinds

of phenomena.

Figure 7.32 shows the mass flow rate through both valves. Note how the average value

of the Q1D flows tracks the value from the simple model. On inspection, it perhaps seems
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Figure 7.32. Intake and Exhaust Mass Fluxes

unlikely that the high-level results from the Q1D model would come close to matching the

results from the simple model. But Figure 7.33 tells a different story.
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Figure 7.33. Total Mass Inducted and Exhausted

Here, we see the total mass of air inducted into the engine (flow in is negative) and the

total mass of air expelled. Note how closely the totals from both models match. The intake

curves are almost coincident, with some gentle oscillations visible toward the bottom of the

Q1D curve. In the Q1D exhaust curve, the strong Helmholtz oscillations are quite evident,
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but they damp out as the piston rises and the Q1D and simple curves also become nearly

coincident. What at first looked like a disaster has begun to look far more promising. Let’s

look at some higher level results.

Figure 7.34 shows the density, temperature and pressure of the charge in the cylinder

over the engine’s two-revolution cycle. TDC of the compression stroke (0◦) has been moved

to the center of each plot for clarity. The opening (Io, Eo) and closing (Ic, Ec) points

of the intake and exhaust valves are indicated by the vertical lines. In the density curve,

note the strong correlation between the two models until blowdown ends. Then the strong

oscillations in the Q1D model are evident. Because of the short length of the exhaust valve,

only 2 cm, when the flow reverses, cold, dense, atmospheric air is brought into the cylinder.

This raises the density of the charge, oscillation after oscillation, until the valve closes. On

the temperature plot, we see the same physics in play. As the flow oscillates, hot exhaust

charge is pumped out and cold, atmospheric air is drawn back in, reducing the temperature

of the charge. Since the isentropic flow model neglects momentum, there is no flow reversal

and the density and temperature curves follow a more constrained path. But observe the

result in the pressure curve. The Q1D and isentropic models are almost identical, with the

two curves nearly coincident. There are some small pressure oscillations in the Q1D curve

over the exhaust stroke (180◦ – 360◦).

Figure 7.35 is of greatest interest to an engine designer. It presents the engine’s power and

torque predicted using the two models. In Figure 7.35a, note how close the two power curves

are. They are nearly linear and exhibit no peak value in the engine’s operating range; they

appear to extend to infinity. The torque curves of Figure 7.35b are fairly flat, exhibiting very

mild peaks. The form of the power and torque curves is actually unrealistic—real power and

183



0

2

4

6

8

10

C
h
a
rg
e
D
en

si
ty

(
k
g

m
3
)

Simple
Q1D

0

500

1,000

1,500

2,000

2,500

C
h
ar
ge

T
em

p
er
at
u
re

(K
)

−360 −180 0 180 359
0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

EoEc IoIc

Crankshaft Angle (deg.)

C
h
ar
ge

P
re
ss
u
re

(P
a)

Figure 7.34. Charge Properties

184



1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

10

20

30

40

Crankshaft Speed (rpm)

P
ow

er
(H

P
)

SimplePower
Q1D Power
CF Power

(a) Engine Power

1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

10

20

30

40

Crankshaft Speed (rpm)

T
or
q
u
e
(f
t-
lb
)

Simple Torque
Q1D Torque
CF Torque

(b) Engine Torque

Figure 7.35. Valve-Only Engine Performance Predictions

torque curves always exhibit a peak value–but the fact that the predictions are nearly equal

provides a good bit of confidence that the Q1D model is working correctly. The dot-dashed

curves present the results from a closed-form technique, included for comparison. The closed-

form technique overlays the Otto gas cycle on the four-stroke cycle of the engine, applying

isentropic compression and expansion, plus constant-volume combustion to make a prediction

of power and torque. The closed-form approach includes no concept of valves, intake flows

or exhaust flows, and therefore can’t account for any of the engine’s fluid dynamics. It

predicts a constant torque across the rpm range, which in turn produces a linear power

curve extending to infinity. The difference between the closed-form and the current models

is due to choking. The current models predict choking of the flow through the valves and

account for the power expended as the piston pumps the exhaust gases through the choked

valve. This happens, to some degree, at all engine speeds, and is the main reason for the

difference between the closed-form and current models across the rpm range. At extremely

high RPM the intake flow will also begin to choke, introducing additional pumping losses

and reducing the total mass inducted into the cylinder. The Q1D model adds momentum to
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the physics. But with only 2 cm of flowpath, the actual momentum of the flows is minimal

and at these engine speeds the Q1D model essentially reverts to the simple model. In fact,

that the isentropic and Q1D results in this scenario are nearly identical may be showing us

the limit that is reached when a real engine is made with intake and exhaust flowpaths of

essentially zero length.

1,000 2,000 3,000 4,000 5,000 6,000 7,000
0.75

0.8

0.85

0.9

0.95

1

Crankshaft Speed (rpm)

V
ol
u
m
et
ri
c
E
ffi
ci
en
cy

Simple
Q1D

(a) Volumetric Efficiency

1,000 2,000 3,000 4,000 5,000 6,000 7,000

800,000

900,000

1,000,000

1,100,000

1,200,000

Crankshaft Speed (rpm)

IM
E
P

(P
a)

Simple
Q1D

(b) Indicated Mean Effective Pressure

Figure 7.36. High-Level Performance Parameters

Figure 7.36 provides a comparison of two high-level performance parameters. Figure

7.36a shows the predicted volumetric efficiency for the engine. This is the percentage of

mass that actually flows into the cylinder during the intake valve duration, divided by the

mass of atmospheric air the cylinder can hold. Figure 7.36b shows the predicted Indicated

Mean Effective Pressure for the engine. The IMEP is the average pressure in the cylinder

over the engine’s two-revolution cycle. Again, we see strong correlation between the two

models for both parameters.
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7.15. Intake and Exhaust Flows with Drag

Prior to this section, every simulation run was done without discharge or drag coefficients.

Since discharge coefficients are measured with a bare cylinder head—no intake runner or

exhaust header—we’ll set the Q1D model up as before, with only intake and exhaust valves.

Figure 7.37a shows the effect of adding discharge coefficients to both the simple and Q1D

models. The loosely marked curves are the power curves from Figure 7.35a (no discharge

coefficients), expanded out to 15,000 RPM. The densely marked curves are the simulation’s

predictions for the models with discharge coefficients turned on. Note how the power peaks

have moved down and left significantly. These two curves look much more like real engine

power curves, with a smooth rise to a peak, then a drop as RPM increases. Both peaks even

fall at realistic values, around 9,000 RPM. This comparison makes it very clear that the drag

experienced by the intake and exhaust flows is dominant physics. For reasonable, realistic

results, drag can’t be neglected.
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In section 1.12 (Friction), we noted that researchers have established a value of CD =

0.005 for a smooth, straight pipe. We need to establish a CD value for the flow through the

valves, which aren’t straight pipes. The discharge coefficient is actually a measure of the

drag through the valves and we can use it to calibrate the valve CD. Figure 7.37b shows

the effect of applying drag to the valves-only Q1D model. The curve labeled “Q1D Cd” is

the Q1D power curve from Figure 7.37a, with discharge coefficients applied. For the other

curves, the discharge coefficient is turned off and the value of the drag coefficient is being

increased. Note the effect as CD is raised from 0.2 to 0.85. The power peak moves down and

to the left. At a value of CD = 0.85 the result is quite similar to the model with discharge

coefficients applied. The CD value is constant and doesn’t vary with valve L
D
, so the power

curve doesn’t have an identical shape. But this still allows us to establish a reasonable value

for the drag coefficient through the valves.

A ballpark CD value for a cast pipe is 0.05. The fact that CD must be increased to

a value of 0.85, a value 17 times that of a cast, straight pipe, is a clear indication that

the drag through the valves isn’t caused by laminar, viscous drag. Instead, it’s caused by

separated flow. This makes a good bit of sense. At the throat of the valve, velocities are

very high. Downstream of the throat, in the subsonic case, the flow is advancing into a

strong adverse pressure gradient. In the supersonic case, the flow is advancing through a

shock wave and entering an even more powerful adverse pressure gradient. Both cases are a

prescription for separation and its associated high drag. From this point on, we’ll apply a

value of CD = 0.85 through the valve and use a value of CD = 0.05 for straight pipes. When

simulating the complete engine, even when using discharge coefficients, we’ll apply a value

of CD = 0.05 to the straight pipes.
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7.16. Final Results: Modeling a Complete Engine

And finally, after all of this preparation, we can use the system to model a complete

engine. Let’s begin with a validation case. We’ll model the engine from Chapter 2: cylinder,

intake and exhaust valves, intake and exhaust ports, intake runner and exhaust header.

The working fluids are equilibrium intake and exhaust mixtures. Discharge coefficients are

as specified above. The valve drag coefficient is set to CD = 0.85 and the straight pipe

CD = 0.05. Combustion is Wiebe finite rate. Blowby, as well as ring and skirt friction, are

turned on. Heat transfer is Woschni. The engine’s specifications are repeated in Table 7.6

for convenience.

Table 7.6. Engine Data: Alfa Romeo GTV6 (one cylinder)

bore (b) stroke (s) connecting rod length compression
(mm) (mm) (mm) ratio
88 68 131 9.0

clearance displacement cylinder intake runner exhaust header
volume volume volume length length
(cc) (cc) (cc) (cm) (cm)
51.7 413.6 465.6 22.0 38.0

Intake Valve Intake Valve Intake Valve Intake Valve
Diameter Lift Opens Closes
(mm) (mm) (◦BTDC) (◦ABDC)
40.89 9.0 36.9 119.2

Exhaust Valve Exhaust Valve Exhaust Valve Exhaust Valve
Diameter Lift Opens Closes
(mm) (mm) (◦ATDC) (◦ATDC)
36.58 6.4 120.0 23.9

We will continue using the engine in this configuration from this point forward.

Figure 7.38 shows the results: the predicted power, torque and Ev curves for the fully

modeled engine. Each graph contains a curve generated using discharge coefficients (Cd) and

another using drag coefficients (CD). We don’t have complete dynamometer data for the

189



2,000 4,000 6,000 8,000 10,000
0

5

10

15

20

25

30

Crankshaft Speed (rpm)

P
ow

er
(H

P
)

Cd

CD

Measured Peak

(a) Predicted Power

2,000 4,000 6,000 8,000 10,000
0

5

10

15

20

25

Crankshaft Speed (rpm)

T
or
q
u
e
(f
t-
lb
)

Cd

CD

Measured Peak

(b) Predicted Torque

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

0.6

0.8

1

1.2

Crankshaft Speed (rpm)

V
ol
u
m
et
ri
c
E
ffi
ci
en
cy

Cd

CD

(c) Predicted Volumetric Efficiency

Figure 7.38. Predicted Performance, Alfa Romeo GTV6 (One Cylinder)

engine, but from the manufacturer’s literature, maximum power is listed as 25 HP at 5,700

RPM. Note how close the two power curves of Figure 7.38a come to that value. Maximum

torque is listed as 25 ft-lb at 4,000 RPM. The Torque curves of Figure 7.38b are also not far

off. These are exciting results. The predictions are far better than, as Anderson says, “on

the same sheet of graph paper”, and this without making any specific adjustments to the

models! Clearly, parameters like drag or discharge coefficient can be changed to bring the

prediction even closer to the actual measurements. We’re also not modeling the full intake
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or exhaust systems, just the primary flowpaths. Adding the intake plenum and snorkel, plus

the full exhaust system, could bring the predictions even closer to reality.

These results confirm that the engine model, as designed, with a time-domain cylinder

model connected to finite-volume-based Q1D models of the intake and exhaust flows, ac-

counts for much of the physics of a four-stroke engine. In addition, these results give us a

good bit of confidence that the simulation’s modeling is realistic and fairly accurate. It’s

predictions can be given a reasonable level of trust.

The simulation generated the curves of Figure 7.38 in about 10 minutes on a single

processor of an Intel P6200-powered, 2.14 GHz laptop. While this isn’t instantaneous, it

begins to provide the kind of rapid turnaround that is needed for a designer to go through

an effective edit/test cycle and understand the engine’s responses, or to iterate on a design

until it meets his requirements.

Yin [65] and Sammut et al. [66] both mention Engleman’s equation for approximating

the location of the Ev peak from intake runner length:

(7.86) N =
13.5c

k

√

A

LVd

√

r − 1

r + 1
= 5, 900 − 7, 400 RPM

where c is the speed of sound in the intake mixture, k is a value between 2 and 2.5,

A is the cross sectional area of the intake runner, L is the length of the runner, Vd is the

displacement volume of the cylinder r is the compression ratio and N is RPM. For the engine

above, this predicts the torque peak between 5,900 and 7,400 RPM. The 5,900 value doesn’t

compare too badly to the predicted discharge coefficient peak but it’s some distance from
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the measured peak of 4,000 RPM. The 7,400 RPM figure is almost on another sheet of graph

paper.
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Figure 7.39. The Effect of Intake Runner Length on Engine Performance

The working system allows us to delve deeper into the engine responses. We can vary

parameters and see how they effect the operation of the engine. For these runs, the working

fluid is frozen, standard air. Drag coefficients are set as above and the loss models are all

turned off. Combustion is finite-rate Wiebe. Figure 7.39 shows how the engine responds

192



when the exhaust valve is left open to the atmosphere and a straight pipe is connected to

the intake valve. In Figure 7.39a, the densely dotted curve shows the valves-only response.

When a 10 cm pipe is added (for a total flowpath length of 12 cm), simulating the presence

of the intake port, the ascending portion of the curve gets steeper and the power peak moves

down and to the left. With the lengthening of the pipe from 20 through 50 cm, the front

of the curve gets even steeper and the peak continues moving down and to the left. These

are qualitatively very realistic results, what one would expect to see from a real engine on a

dynamometer.

Figure 7.39b shows the reason for the power peak shift. With increasing intake runner

length, the volumetric efficiency peak moves up and to the left. For a given intake runner

length, the point of maximum volumetric efficiency is also the point of maximum torque.

And so as the intake runner is lengthened, the torque peak is moving to a lower RPM. Figure

7.39c shows the relationship between intake runner length and the crankshaft speed where

peak volumetric efficiency occurs. This takes us back to Engleman’s equation, 7.86. The

relationships are close:

Engleman: N = 2, 976 (Lintake)
−0.5(7.87)

Model: N = 2, 990 (Lintake)
−0.46(7.88)

But the small difference in exponents makes for a significant difference in the results.

The cylinder and intake tract together don’t quite form a perfect Helmholtz resonator.

Figure 7.39d shows what would happen if we could adjust the length of the intake tract

with RPM. We would be able to maximize volumetric efficiency and torque across the entire
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RPM range. In the case of this engine, Ev can be kept above 1 from 3,200 to 6,300 RPM.

The intake tract length required varies with the same (Lintake)
−0.46 relationship that we see

above. The intake length is non-dimensionalized by the engine stroke.
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Figure 7.40. The Effect of Exhaust Header Length on Engine Performance

Figure 7.40 shows the situation reversed. Here, the intake valve is left open to the

atmosphere and the exhaust header length is varied. Figure 7.40a shows that, if the exhaust

flow has any dynamic interaction with the charge, that effect doesn’t, in turn, affect the

intake stroke. Instead, as the length of the header is increased, exhaust pumping losses grow

and the height of the center and back of the power curve is reduced. For a given header

length, pumping losses increase with RPM, and so in addition to the back end of the curve

dropping, the power peak is also displaced slightly to the left. Figure 7.40b shows little

variation in volumetric efficiency with header length, confirming that the exhaust flow has

little effect on the intake stroke. Consider the freedom this provides the engine designer.

Adjustments to either the intake or exhaust system length are relatively independent.
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Figure 7.41. The Effect of Intake Area on Engine Performance

Figure 7.41 shows that the cross-sectional flowpath area of the intake tract has a signif-

icant effect on engine performance. In this scenario, the intake valve connects to an intake

port 8 cm long. The port varies linearly with area to match the Nth end of the valve with

the 0th end of the intake runner, which is 14 cm long. The total length of the intake tract

is 24 cm. The area of the runner is varied from 60% to 140% of the valve area. Figure 7.41a

shows the area profiles of the five cases. Av is the skirt area of the valve. Figure 7.41b shows
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the strong effect intake tract area has on the power curve. As the area is reduced from Av,

the power peak moves first up and to the left, then down and to the left. As the area is

increased from Av, the power peak moves down slightly and to the right. Importantly, there

is an optimum intake tract area. When the area is reduced to 0.8 Av, we see an absolute

power peak. As an added benefit, the peak moves down in the RPM range, steepening the

front of the curve. This is a significant finding for engine tuning. Figure 7.41c shows that

reducing the intake tract area moves the torque peak up and to the left. If low RPM torque

is a requirement, this provides a way to deliver it. As always, volumetric efficiency responds

as torque does, with the peak moving up and to the left as area is reduced.

The cross-sectional exhaust flowpath area also has a significant effect on engine perfor-

mance. Figure 7.42 shows what happens when the area of the exhaust header is increased

and decreased, just as the intake runner was. The exhaust port length is 8 cm and the port

varies in area linearly from the valve to the header. The header is 29 cm long, making for

a total exhaust tract length of 39 cm. Figure 7.42a shows the profiles of the exhaust tract

for the five cases, with the header varying from 0.6 Av through 1.4 Av. Figure 7.42b shows

the effect varying the exhaust area has on power. If the area is reduced from Av, the entire

power curve shifts down, presumably because of increased pumping losses. But when the

area is increased from Av, the power peak rises and shifts slightly to the left, both beneficial

responses. The 1.2 and 1.4 Av curves are coincident, so there is a tract area beyond which

there is no improvement. And so, just as there is for the intake, there is an optimum exhaust

tract area. The effect on torque is interesting. Reducing the area below Av moves the torque

peak down the RPM range, but also reduces its magnitude. Enlarging the area above Av
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Figure 7.42. The Effect of Exhaust Area on Engine Performance

raises the peak and moves it slightly to the right. We see the same effect on volumetric

efficiency.

Next let’s examine the effect of valve timing. Going back to the complete engine with

drag coefficients and all loss models turned on, Figure 7.43 shows the effect of advancing

and retarding the timing of the intake valve. Figure 7.43a shows the valve area profiles.

The exhaust valve timing is maintained while the intake valve timing is being advanced
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Figure 7.43. The Effect of Intake Cam Timing

(-) and retarded (+) with constant duration. Figure 7.43c shows that intake valve timing

has a significant effect on low- and high-RPM torque. As the timing is advanced from the

standard value of 0◦ (-10◦ and -20◦ curves), low RPM torque increases and high RPM torque

decreases. As the timing is retarded from the standard value (+10◦ and +20◦ curves), low

RPM torque decreases significantly and high RPM torque increases. This trend results in an
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increase in the height of the power peak in Figure 7.43b, with a shift in the peak to higher

RPM as intake valve timing is retarded. Volumetric efficiency responds much like torque.

Figure 7.44. Comp Cams’ Experience on Intake Cam Timing

Comp Cams [67], a cam manufacturer, has many years of experience testing its cams in

real engines on the dynamometer. On its website it offers its customers the advice offered in

Figure 7.44. They find that advancing the cam “builds more low-end torque” and retarding

the cam “builds more high-RPM power”. These are exactly the trends the simulation has

revealed above.

Next we look at the effect of changing exhaust cam timing. Figure 7.45a shows the intake

valve timing maintained while the exhaust valve timing is advanced (-) and retarded (+).

Figure 7.45c shows that advancing the timing of the exhaust valve shifts the entire torque

curve down. Retarding the timing raises the entire curve. This might be due to the greater

length of time that the expanding charge is retained over the power stroke. Figure 7.45b

shows that retarding the timing makes a significant change to the power curve, raising the

power peak while shifting it slightly to the right. From the plots, it appears the power

curve is arriving at an asymptote, and there is likely an optimal timing setting. Exhaust

timing also has a significant effect on volumetric efficiency. As the timing is retarded, overall

volumetric efficiency rises significantly.
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CHAPTER 8

Comparisons and Conclusions

8.1. Introduction

In this chapter, we’ll make comparisons to determine the significance of each of the

submodels that we’ve included in the overall engine model. We’ll decide whether or not each

embodies dominant physics. Then we will collect the conclusions that we have drawn from

this and the previous chapters.

8.2. Simple Valve Model
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Figure 8.1. Performance Predictions with the Simple Valve Model

Figure 8.1 shows the simulation’s predictions of the performance of our test engine, as

configured in Table 7.6. In this case, the simulation is using the simple valve model. All

loss models are turned off and combustion is finite-rate, Wiebe. In Figure 8.1a there are

four power curves. The curve labeled “Simple” is the bare simple valve model with choking
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detection and discharge coefficients (Cd) turned off. “Choking” is the result with choking

detection turned on and Cd off. Note how this and the previous curve are identical. This

shows that choking is intrinsically accounted for in the isentropic flow equations. No explicit

detection, with separate equations, is necessary. “Cd” is the result with Cd turned on and

choking detection turned off. Note the significant difference between this and the previous

curves. With only isentropic flow equations in place, the flow through the intake valve

experiences no throttling or restriction unless the flow chokes. Likewise, there is no pumping

work on the flow through either valve unless the flows choke. This happens with varying

degrees during the exhaust stroke, the duration increasing with RPM. The intake flow doesn’t

choke until extremely high RPM. With discharge coefficients turned on, the extent of choking

through the strokes is greatly increased. This acts to limit the intake mass flow rate and

total intake mass transfer, reducing volumetric efficiency, torque and power. The increased

level of choking also magnifies pumping losses, reducing power output. The pumping losses

increase with RPM, causing the power curve to reach a peak, then drop as RPM rises even

further. In the fourth curve, “Choking + Cd”, both options are on and we see that adding

choking to Cd makes no difference. When using the isentropic flow equations, the detection

of choking is redundant. Note the same behavior in the Torque curves.

8.3. Comparing the Simple and Q1D Valve Models

Figure 8.2 compares the simulation’s performance predictions with the simple and Q1D

flow models. Here, the simulation is operating at its maximum level of detail. The intake

and exhaust tracts are modeled to match those of the real engine. The total intake length

is 24 cm and the total exhaust length is 40 cm. The working fluid is equilibrium intake and
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exhaust gases. Blowby, ring and skirt friction, and Woschni heat transfer are all turned on.

Discharge coefficients are turned on for the simple valve model. The Q1D model is operated

with both discharge coefficients (“Cd” curves) and drag coefficients (“CD” curves).

2,000 4,000 6,000 8,000 10,000
0

5

10

15

20

25

30

Crankshaft Speed (rpm)

P
ow

er
(H

P
)

Q1D Cd

Q1D CD

Isentropic
Measured Peak

(a) Simple and Q1D Power

2,000 4,000 6,000 8,000 10,000
0

5

10

15

20

25

Crankshaft Speed (rpm)

T
or
q
u
e
(f
t-
lb
)

Q1D Cd

Q1D CD

Isentropic
Measured Peak

(b) Simple and Q1D Torque

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

0.6

0.8

1

1.2

Crankshaft Speed (rpm)

V
ol
u
m
et
ri
c
E
ffi
ci
en
cy

Q1D Cd

Q1D CD

Isentropic

(c) Simple and Q1D Ev

2,000 4,000 6,000 8,000 10,000
0

200,000

400,000

600,000

800,000

1,000,000

Crankshaft Speed (rpm)

IM
E
P

(P
a)

Q1D Cd

Q1D CD

Isentropic

(d) Simple and Q1D IMEP

Figure 8.2. Performance Predictions from Both Models

Figure 8.2a shows the power predictions for the two models. As we saw in the previous

chapter, the Q1D results straddle the measured power peak. The simple model is well below

the peak, about 20% low, at 5,700 RPM, and has its own peak just above 8,000 RPM, much

too high to be considered a reasonable estimate. The reason for the difference is shown in
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Figure 8.2c. Note the difference in the nature of the volumetric efficiency (Ev) estimates.

The Q1D model accounts for the so-called ram effect of the intake flow, predicting volumetric

efficiencies above 1 at around 5,500 RPM, thus the torque peak at the same crankshaft speed.

The simple model, neglecting the momentum of the intake and exhaust flows, predicts a

fully sub-unity Ev curve with a peak around 3,000 RPM. Both its Ev and torque peaks are

misplaced low. The Q1D model reproduces the dynamic interaction between the charge and

the intake flow that leads to the strong rolloff in Ev and torque after the peak. The simple

prediction leads to a much less severe decrease in Ev and torque after the peak, leading to

the power peak residing at an elevated RPM. The Indicated Mean Effective Pressure curve

is included for detail. Note how it follows the Ev curves.

The real beauty of the simple valve model is that it is computationally simple. With

piston and ring friction turned off, the set of curves here can be calculated in 7 seconds on

one processor of a 2.13 GHz Pentium P6200 laptop. With piston and ring friction turned on,

the same run takes about a minute. In contrast, the Q1D model is highly computationally

intensive, and requires on the order of 10 minutes to generate this set of curves, regardless of

piston and ring friction state. But speed and convenience aren’t everything. Imagine if we

were to compare the two models in the varying intake runner test of the previous chapter.

We already saw the positive effect changing runner length has on the Q1D model. The simple

model is completely insensitive to intake and exhaust length and on those plots its responses

would comprise a single, unchanging curve. That comparison by itself eliminates the simple

valve model as a useful tool. Momentum of the intake and exhaust flows is dominant physics

and can’t be neglected.
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8.4. Evaluating the Individual Models

Since the simulation’s predictions with the simple valve model vary significantly from

reality, we will drop that model. From this point on, we will only use the Q1D model for

comparisons. Let’s look into the submodels and see what effect each of them has on the high-

level predictions of the engine model. In Chapter 7 we showed that fluid drag is dominant

physics. So our discussion here will begin with the baseline engine model set up as above

and with the Q1D model operating with the valve drag coefficient set to CD = 0.85 and the

pipe drag coefficient set to CD = 0.05. To avoid masking any model effects, the baseline

configuration will have all of the loss models turned off. Figure 8.3 shows the system’s

predictions for the engine in the baseline configuration. Note how much closer the power

and torque predictions are to the measured peak values. The volumetric efficiency curve

is included, but the observant reader will see that it doesn’t differ from that with losses

included.
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Figure 8.3. The Baseline Model

205



8.4.1. Combustion Models
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Figure 8.4. Performance Predictions with Finite-Rate and Instantaneous
Combustion

Figure 8.4 compares the simulation’s predictions with Wiebe, finite-rate combustion and

instantaneous combustion. The Wiebe model begins releasing combustion energy at 20◦

BTDC and has a duration of 60◦. The instantaneous model releases the entirety of the

charge’s combustion energy at TDC. In closed-form analyses, this is referred to as “constant-

volume” combustion. There is a very significant difference in the results. Figures 8.4a and
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8.4b show the instantaneous power and torque peaks to be about 38% higher than the

finite-rate peaks. Figure 8.4c shows the volumetric efficiency to be nearly unchanged, and

so the increase in power and torque are due to more energy being extracted from the hot,

high-pressure charge when combustion is instantaneous. While the difference in results

unfortunately eliminates instantaneous combustion as a useful model, it also shows us that

accelerating the rate of combustion in a real engine could make the engine deliver more

power for its size (greater Indicated Mean Effective Pressure—IMEP) and return greater

efficiency—a note for future research.

8.4.2. Working Fluid Models

Figure 8.5 shows the simulation’s performance predictions using three different working

fluid models. Figure 8.5a shows the power delivery when the simulation models frozen,

standard air, equilibrium air and equilibrium intake/exhaust gases. For the frozen air model,

all of the gas properties, in the intake and exhaust systems and in the in-cylinder charge,

are those of frozen, standard air. For the equilibrium air model, the intake gas properties

are those of air at standard temperature, so identical to frozen, standard air. The exhaust

gas properties are those of air, frozen at 800 K. The gas properties of the in-cylinder charge

are those of air at the charge temperature. For the equilibrium intake/exhaust model, the

intake gas properties are those of the intake octane/air mixture at standard atmospheric

temperature. The exhaust gas properties are those of the combustion product mixture,

frozen at 800 K. The properties of the in-cylinder charge switch back and forth. From intake

valve opening to TDC of the compression stroke, the gas properties are those of the intake

octane/air mixture at charge temperature. From TDC of the compression stroke to intake
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Figure 8.5. Performance Predictions with Three Working Fluid Models

valve opening, the properties are switched to those of the combustion products at charge

temperature. As we saw in Chapter 5, frozen air stores no energy in the extended modes,

instead manifesting all of its internal energy as temperature. This increases cylinder pressures

and results in significantly higher torque and power predictions. It appears that energy

storage dominates over species properties, as the equilibrium air curves don’t fall far from the

equilibrium intake/exhaust curves. Note that in Figure 8.5c, the volumetric efficiency using

the three fluid models doesn’t vary much. We can conclude that the differences in the power,
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torque and IMEP curves are almost all thermodynamic. At the temperatures experienced

in the charge after combustion, energy storage in the extended modes is dominant physics.

With significant differences caused by energy storage, and minor differences caused by gas

species, it seems prudent to apply equilibrium intake and exhaust mixtures if one wants to

make accurate predictions.

8.4.3. Blowby
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Figure 8.6. Performance Predictions with and without Blowby
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Figure 8.6 shows the simulation’s predictions of engine performance with and without

blowby. Figure 8.6a shows little change to the power curve with the blowby model turned on.

There is a slight loss of power in the low RPM range, but not a significant amount. Volumetric

efficiency, Figure 8.6c isn’t affected at all. This makes sense, since there is little pressure

differential between the charge and the atmosphere over the intake stroke and blowby mass

flow is tiny compared to the mass flow through the intake tract. But Figure 8.6b shows a

significant loss of torque at low RPM—almost 8% at 1,000 RPM—decreasing toward the

torque peak. This is caused by the loss of working fluid, and therefore charge pressure, over

the power stroke. The pressure differential between the charge and the crankcase during the

power stroke is always high enough to choke the flow through the blowby passage, putting an

upper limit on the blowby mass flow rate. As RPM increases, the duration of loss through

the blowby decreases, resulting in a decreasing loss of working fluid and torque with RPM.

Figure 8.6d shows these same phenomenon manifest in IMEP. While a look at the power

curve suggests blowby could be neglected, if we’re interested in predicting torque correctly,

we need to account for blowby. We’ll call blowby dominant physics.

8.4.4. Heat Transfer

Figure 8.7 shows the simulation’s predictions of engine performance with three heat

transfer models and with no heat transfer. Comparing Figures 8.7a and 8.7b, we can see

that heat loss is greatest at low RPM for all three models and decreases with increasing

RPM. This makes intuitive sense, as there is less time for heat to transfer from the charge

to the cylinder, and vice-versa, as RPM increases. The Chang modification of the Woschni

correlation realizes the least amount of energy loss. The Woschni correlation loses noticeably
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Figure 8.7. Performance Predictions with Selected Heat Transfer Models

more. The Annand correlation is the simplest of the three and predicts the greatest level of

energy loss. The effect of heat transfer on the power curve could be significant. Annand sees

a maximum loss of 9.7%, Woschni loss is 4.6% and Chang is 1.7%. Which model is most

accurate? It’s difficult to say without a great deal more investigation. The Chang model uses

the Woschni framework with updated parameters to match modern engines. That makes

it seem like it may be the most trustworthy. With our limited data set, we have no way

of determining which is best. The torque curves, Figure 8.7b show much stronger heat
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transfer effects. Note the effect heat transfer has on volumetric efficiency. When considering

heat transfer, we tend to think only of the “forward” transfer from the hot charge to the

cooler cylinder during combustion and the power stroke, when temperature differentials are

greatest. But it’s clear there is also activity, in reverse, during the intake stroke. We can

envision that, as cool intake charge enters the cylinder, heat is transfered from the cylinder

to charge, heating it up and causing it to lose density. The more heat transfered, the lower

the Ev will be. Clearly, if we wish to predict power, torque and Ev accurately, we must take

heat transfer into account. It is dominant physics.

8.4.5. Piston Ring and Skirt Friction

Figure 8.8 shows the simulation’s performance predictions with the ring and skirt friction

models turned on. In Figures 8.8a and 8.8b the effect of ring friction (“Ring” plots) is

surprisingly limited. At peak power, the engine loses only 2.1% of its power to ring friction.

The power lost increases with RPM. At peak torque, the engine loses 2.0% of its torque

to ring friction. But note the opposite trends. Torque lost to ring friction decreases with

RPM. Skirt friction (“Skirt” plots) is more significant. At peak power the engine loses 3.9%

of its power to skirt friction. And at peak torque the engine loses 3.1% of its torque to

skirt friction. Power lost to skirt friction increases with RPM, while torque lost to skirt

friction appears to decrease slightly with RPM. Combined (“Both” plots), we see 6% power

lost to piston friction at peak power. But luckily, at low RPM piston friction losses are

minimal. Thus if we can arrange for an engine to operate at reasonably low RPM, we can

avoid expending fuel on, and creating emissions due to, piston friction. Approaching peak,

friction losses become significant. Above peak they become severe. This is something that
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Figure 8.8. Performance Predictions with Piston Ring and Skirt Friction

should be considered in the design of a racing or marine engine. Note that piston friction has

no effect at all on engine volumetric efficiency or IMEP. Piston friction is dominant physics.

If an engine is being operated at low RPM, it can be neglected. If an engine is operating at

high RPM or if torque prediction is important, it can’t be neglected.
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8.5. Conclusions

(1) Modeling the intake and exhaust flows of a four-stroke, internal combustion engine

using the isentropic flow equations supplemented with discharge coefficients doesn’t

capture all of the dominant physics of the flows and is insufficient to produce accu-

rate results.

(2) A four-stroke, internal combustion engine can be modeled using a single-volume,

time-domain representation of the charge, coupled with time-accurate, compressible,

Quasi-One-Dimensional models of the intake and exhaust flows.

(a) The charge can be modeled as a homogeneous, isotropic, non-adiabatic mass

of gas with equilibrium gas properties. Mass and energy conservation are the

dominant physics of the charge. Momentum can be neglected.

(b) The intake and exhaust flows can be modeled as Quasi-One-Dimensional flows,

with mass, momentum and energy conservation comprising the dominant physics.

A Runge-Kutta, four-stage integration technique can be used to time-march the

flow solutions. Artificial viscosity can be used to stabilize the solution without

adversely affecting the results. A minimum of 46 cells are required in a valve

that closes to 1% opening. Solving the intake and exhaust flows separately, each

with its own timestep, minimizes the growth of error. Non-reflective boundary

handling adds a level of realism to the flows and helps to stabilize the solution,

especially at high RPM.

(c) A model constructed in this manner is sensitive to intake and exhaust geometry

as well as intake and exhaust valve timing.
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(3) Drag, resulting from boundary layer and separated flow, is dominant physics in

the intake and exhaust flows. It can be modeled with both discharge and drag

coefficients. Separated flow in the valves is an order of magnitude more significant

than laminar flow through the pipes. Further research into sub-grid scale modeling of

separated flow would be very useful and could result in highly accurate performance

predictions using the Q1D approach.

(4) Modeling of combustion as an instantaneous process provides erroneous results. The

rate of heat release is dominant physics. The Wiebe combustion model seems to

provide realistic results. A study comparing the simulation’s predictions to full

dynamometer data could yield a “best” range of values for the Wiebe parameters

of ignition start time and combustion duration.

(5) Working fluids must be chosen carefully. Frozen models can’t account for energy

storage in the extended modes and result in artificially high power and torque pre-

dictions. With the high temperatures of combustion, energy storage is dominant

physics. Equilibrium gas models return acceptable results. Accounting for the com-

position and gas properties of the intake and exhaust mixtures makes for even more

accurate predictions, but is less dominant physics.

(6) Charge blowby plays an insignificant role in power prediction. If accurate torque

or IMEP predictions are required across the RPM range, then blowby is dominant

physics. Otherwise, it can be neglected.

(7) Heat transfer from the charge to the cylinder and vice-versa is dominant physics. It

significantly affects the prediction of power, torque, volumetric efficiency and IMEP.
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(8) Piston ring and skirt friction are dominant physics. First-principle models based

on the Reynolds equation and Newtonian fluid principles provide highly accurate

results. The temperature rise of the fluid in the lubrication gap is also dominant

physics and must be taken into account for accurate results.

(9) Intake and exhaust tract geometry (length and cross-sectional area), as well as intake

and exhaust valve timing, affect engine performance strongly.
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APPENDIX A

Derivation and Application of

Quasi-One-Dimensional, Non-Reflective Boundary

Handling

We can derive a set of Q1D, non-reflective boundary conditions by applying a character-

istic decomposition to the Q1D governing equations. To begin, we must have the equations

in differential form. They are presented here without derivation:

∂

∂t
(ρA) +

∂

∂x
(ρAu) = 0(A.1)

∂

∂t
(ρAu) +

∂

∂x

(
ρAu2

)
= −A

∂P

∂x
(A.2)

∂
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[

ρA

(

CvT +
u2

2

)]

+
∂

∂x

[

ρAu

(

CvT +
u2

2

)]

= − ∂

∂x
(PAu)(A.3)

Equation A.1 is the continuity equation, equation A.2 is the momentum equation and

equation A.3 is the energy equation. They are in conservation form and must be converted to

non-conservation form. We do this by carrying through the derivatives of products. Where

possible, we also apply the perfect gas equation of state, P = ρRT , and the speed of sound,

c2 = γRT , yielding:
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∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ 0

∂P

∂x
+

ρu

A

∂A

∂x
= 0(A.4)

∂u

∂t
+ 0

∂ρ

∂x
+ u

∂u

∂x
+

1

ρ

∂P

∂x
+ 0

∂A

∂x
= 0(A.5)

∂P

∂t
+ 0

∂ρ

∂x
+ ρc2

∂u

∂x
+ u

∂P

∂x
+

ρc2u

A

∂A

∂x
= 0(A.6)

We can write a generic equation that represents the system of three equations:

(A.7)
∂U

∂t
+ a

∂U

∂x
+ J = 0

where U and J are the vectors,

(A.8) U =












ρ

u

P












U1

U2

U3

J =












ρu

A

∂A

∂x

0

ρc2u

A

∂A

∂x












J1

J2

J3

and the matrix a is a Jacobian matrix. Since it is applied to the flux (spatial) derivative,

it is often called the “flux Jacobian”:

(A.9) a =










u ρ 0

0 u 1
ρ

0 ρc2 u









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Note how the generic equation (A.7) is in the form of a wave equation. If we had no

knowledge of the contents of matrix a, we might even think it is linear.

The a matrix can be decomposed into its eigenvalues and eigenvectors,

(A.10) a = RΛL or Λ = LaR

Where Λ is a matrix of a’s eigenvalues, L is the left eigenvector matrix and R is the right

eigenvector matrix. The left eigenvector matrix is the inverse of the right, so RL = 1. I have

come to call the following procedure the “black magic, left eigenvector trick”. I haven’t been

able to find the origin of the procedure, but it is commonly used to decompose a system

of equations into its characteristic components. Returning to the generic equation, A.7, we

find that, some time in the past, an ingenious person noticed that a could be multiplied on

the right by RL = 1 [79, 61]:

(A.11)
∂U

∂t
+ aRL

∂U

∂x
+ J = 0

Then, pre-multiplying the whole equation by the left eigenvector matrix,

(A.12) L
∂U

∂t
+ LaRL

∂U

∂x
+ LJ = 0

or,
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(A.13) L
∂U

∂t
+ ΛL

∂U

∂x
+ LJ = 0

a’s eigenvalues are

λ1 = u − c, λ2 = u + c, λ3 = u

And a’s eigenvalue matrix is:

(A.14) Λ =










u − c 0 0

0 u + c 0

0 0 u










Note that the eigenvalues of the Jacobian are the characteristics of the flow. And thus,

the eigenvalue matrix substitution has converted our original generic equation in to a true

wave equation, based on the characteristics of the flow. Equation A.13 is a “characteristic”

representation of the generic equation, A.7.

a’s left and right eigenvector matrices are:

(A.15) L =










0 − ρ
2c

1
2c2

0 ρ
2c

1
2c2

1 0 − 1
c2










R =










1 1 1

− c
ρ

c
ρ

0

c2 c2 0









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Note that, like the generic equation, equation A.13 is a vector equation. Let’s compute

each term.

(A.16) L
∂U

∂t
=










− ρ
2c

∂u
∂t

+ 1
2c2

∂P
∂t

ρ
2c

∂u
∂t

+ 1
2c2

∂P
∂t

∂ρ
∂t

− 1
c2

∂P
∂t










(A.17) L
∂U

∂x
=










− ρ
2c

∂u
∂x

+ 1
2c2

∂P
∂x

ρ
2c

∂u
∂x

+ 1
2c2

∂P
∂x

∂ρ
∂x

− 1
c2

∂P
∂x










(A.18) LJ =










ρu
2A

∂A
∂x

ρu
2A

∂A
∂x

0










Inserting these vectors into equation A.13, we obtain three equations:

− ρ

2c

∂u

∂t
+

1

2c2
∂P

∂t
+ (u − c)

(

− ρ

2c

∂u

∂x
+

1

2c2
∂P

∂x

)

+
ρu

2A

∂A

∂x
= 0(A.19)

ρ

2c

∂u

∂t
+

1

2c2
∂P

∂t
+ (u + c)

(
ρ

2c

∂u

∂x
+

1

2c2
∂P

∂x

)

+
ρu

2A

∂A

∂x
= 0(A.20)

∂ρ

∂t
− 1

c2
∂P

∂t
+ u

(
∂ρ

∂x
− 1

c2
∂P

∂x

)

= 0(A.21)
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Note how each spatial term is multiplied by a flow characteristic. Each of these equations

functions as a component, accounting for the propagation of influences through the flow, one

in the positive-x direction at the speed of sound through the fluid, u + c, one in the negative-

x direction at the speed of sound through the fluid, u − c and one with the motion of the

fluid, u. We can clean these equations up a bit by multiplying by c2 and 2c2:

−ρc
∂u

∂t
+

∂P

∂t
+ (u − c)

(

−ρc
∂u

∂x
+

∂P

∂x

)

+
ρuc2

2A

∂A

∂x
= 0(A.22)

ρc
∂u

∂t
+

∂P

∂t
+ (u + c)

(

ρc
∂u

∂x
+

∂P

∂x

)

+
ρuc2

2A

∂A

∂x
= 0(A.23)

c2
∂ρ

∂t
− ∂P

∂t
+ u

(

c2
∂ρ

∂x
− ∂P

∂x

)

= 0(A.24)

To simplify the following algebra, we’ll name each of the spatial terms:

(A.25)

L1 = (u − c)

(

−ρc
∂u

∂x
+

∂P

∂x

)

L2 = (u + c)

(

ρc
∂u

∂x
+

∂P

∂x

)

L3 = u

(

c2
∂ρ

∂x
− ∂P

∂x

)

Then the characteristic governing equations are:
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−ρc
∂u

∂t
+

∂P

∂t
+ L1 +

ρuc2

2A

∂A

∂x
= 0(A.26)

ρc
∂u

∂t
+

∂P

∂t
+ L2 +

ρuc2

2A

∂A

∂x
= 0(A.27)

c2
∂ρ

∂t
− ∂P

∂t
+ L3 = 0(A.28)

When we consider the application of these equations at a boundary, we can see where

one or two of the characteristics will be entering the domain from the outside. In that

case, the influence entering the domain will be truly one-dimensional [75]. And so, following

the Locally One-Dimensional, Inviscid [75] pattern, we’ll make an assumption that at the

boundary, the flow is one-dimensional. Then ∂A
∂x

= 0 and we can eliminate the source (J)

terms:

−ρc
∂u

∂t
+

∂P

∂t
+ L1 = 0(A.29)

ρc
∂u

∂t
+

∂P

∂t
+ L2 = 0(A.30)

c2
∂ρ

∂t
− ∂P

∂t
+ L3 = 0(A.31)

If we add equations A.29 and A.30, we have:

(A.32)
∂P

∂t
+

1

2
(L1 + L2) = 0

Then, substituting equation A.32 into equation A.31, we have:
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(A.33)
∂ρ

∂t
+

1

c2

[
1

2
(L1 + L2) + L3 = 0

]

Last, subtracting equation A.30 from A.29 we have:

(A.34)
∂u

∂t
+

1

2ρc
(L2 − L1) = 0

These equations give us the time-rates of change of the original state variables, ρ, u and

P based on the gradients of the state variables and the characteristic velocities. We can

integrate these values to calculate the state values. Problem: the Q1D CFD model we’ve

constructed has conservation-form flux variables—and with different primitive variables at

that! But we can calculate the flux variables from these primitives. For continuity, referring

back to Chapter 7,

∂U1

∂t
=

∂

∂t
(ρA) = A

∂ρ

∂t

(A.35)
∂U1

∂t
= A

∂ρ

∂t

∂U2

∂t
=

∂

∂t
(ρuA) = A

(

u
∂ρ

∂t
+ ρ

∂u

∂t

)
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(A.36)
∂U2

∂t
= A

(

u
∂ρ

∂t
+ ρ

∂u

∂t

)

∂U3

∂t
=

∂

∂t
(ρe′A) = A

(

e′
∂ρ

∂t
+ ρ

∂e′

∂t

)

where e′ = CvT + u2

2
and

∂e′

∂t
=

Cv

R

(
1

ρ

∂P

∂t
− P

ρ2
∂ρ

∂t

)

+ u
∂u

∂t

Then,

(A.37)
∂U3

∂t
= A

[(

CvT +
u2

2

)
∂ρ

∂t
+

Cv

R

(
∂P

∂t
− P

ρ

∂ρ

∂t

)

+ ρu
∂u

∂t

]

Using equations A.32, A.33, A.34, A.35, A.36 and A.37 we can calculate the time-rates

of change of the Q1D flux variables at the boundaries. We can calculate them at the same

time that we calculate the rates of the flux variables for the field cells, and then march them

forward in time by integrating them along with the field values.

The real beauty of the characteristic approach is that the characteristics of the equations

tell us where to find the data that feeds the equations. We will always be calculating the

values of ∂P
∂t
, ∂ρ

∂t
, ∂u

∂t
, ∂U1

∂t
, ∂U2

∂t
and ∂U3

∂t
, but the way we calculate L1, L2 and L3 will vary

depending on the direction and speed of the flow at each boundary. Figure A.1 shows cell

0 and the characteristics of the flow entering the cell. The characteristics are drawn from
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their terminus, the center of cell 0, to their origin, the point from which they carry physical

influences.

Figure A.1. Cell 0 Characteristics

For a subsonic inflow, λ1 (u − c), propagates from cell 1, λ2 (u + c) enters from beyond

the boundary, and λ3 (u) also enters from beyond the boundary. The origin of each charac-

teristic determines how L1, L2 and L3 will be calculated. We will calculate L1 from the field,

calculating the values of ∂u
∂x

and ∂P
∂x

using second-order, one-sided, finite-difference quotients

between cells 0, 1 and 2. But what shall we do about L2 and L3? The domain ends and we

have no way to calculate the derivatives beyond it. Poinsot and Lele [75] suggest a Linear

Relation Method (LRM), where we will calculate:
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(A.38)

L2 = K (P0 − P∞)

K = σ
(
1 − M2

0

) c0

L

where P0 is the pressure in cell 0, P∞ is the pressure outside the boundary, M is the

Mach number in cell 0, c0 is the speed of sound in cell 0, L is the length of the tract from

0th boundary to Nth boundary and σ is a multiplier.

The L functions have units
〈

kg
m−sec3

〉
and Poinsot and Lele have created their LRM value

to have the same units. We need to create a value to replace L3 for an outside influence.

Following Poinsot and Lele’s lead, we’ll create a similar value based on density that has the

same units:

(A.39)

L3 = Kc20 (ρ0 − ρ∞)

K = σ
(
1 − M2

0

) c0

L

These two functions will provide the non-reflective condition, allowing both the pressure

and density in cell 0 to fluctuate, but always seek the far-field values. Note that σ, by way

of the K function, sets the “stiffness” with which the boundary values are held. An infinite

value of σ gives us back hard boundary handling. A value of zero allows the pressure and

density to float freely.

Now return to Figure A.1 and consider the case of a supersonic inflow. This scenario is

physically impossible. Given a pipe with a minimum area somewhere along its length, that

point becomes the sonic point and the inflow must therefore be subsonic. The characteristic
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boundary conditions allow us to handle this situation with great elegance. If we simply don’t

allow λ1 to come in from outside of the boundary, the cell can’t go supersonic. It can only

reach Mach 1. So we will always calculate L1 from the field.

Now consider the two outflow cases. For subsonic outflow, we can calculate L2 and L3

from the field. But we must calculate L1 using the LRM method:

(A.40)

L1 = K (P0 − P∞)

K = σ
(
1 − M2

0

) c0

L

For a supersonic outflow, we simply switch and calculate L1 from the field. This indicates

that we must have some logic in the boundary handling. We must monitor λ1 (u − c) on the

outflow and when it goes less than or equal to zero, switch from LRM to field calculation.

Now consider the Nth boundary, shown in Figure A.2. For an inflow, we will calculate

L2 from the field using second-order, one-sided, finite-difference quotients between cells N ,

N − 1 and N − 2 for the ∂P
∂t

and ∂u
∂t

derivatives. We’ll calculate L1 and L3 using LRM:

(A.41)

L1 = K (PN − P∞)

K = σ
(
1 − M2

N

) cN

L

(A.42)

L3 = Kc2N (ρN − ρ∞)

K = σ
(
1 − M2

N

) cN

L
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Figure A.2. Cell N Characteristics

Again, we will always calculate L2 from the field to limit the inflow velocity to Mach

1. For a subsonic outflow, we will calculate L2 and L3 from the field and L1 using LRM.

We will monitor λ1 (u − c) and when it becomes equal to or greater than zero, indicating a

supersonic outflow, we will switch to calculating L1 from the field.

While we mentioned it a short time back, we left out an extremely important detail. To

what value shall we set σ? In his seminal paper, Thompson [79] essentially set σ to zero,

eliminating any influences from beyond the boundary. His paper considered simulations of

steady, external flows and applied the non-reflective handling to the single outflow boundary

of the domain, located a very large distance from the body, where one need not worry about

reversed flow. In marching to the steady state, time-accuracy is also not a consideration, so

in Thompson’s case, loss of the possible incoming influences at the outflow boundary isn’t
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a major detriment. It appears there may be no exact value for σ in the simulation of an

external flow. But Selle et.al. [78] found an analytical path allowing them to establish an

exact value of σ for pipes. A value of σ = π ensures that a quarter-wave pipe will couple

to the atmosphere correctly and produce acoustically accurate responses. It also allows

frequencies above the pipe’s fundamental to escape into the atmosphere, as happens with

real pipes, and allows shock waves to pass through the boundary, into the atmosphere.

Following their analysis, we see that, for a half-wave pipe, a value of σ = 2π is correct.

(A.43)

σ = π One end open.

σ = 2π Both ends open.

Figure A.3. Nozzle Shock Wave Progression
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We seem to have a complete boundary handling strategy devised at this point. But let’s

consider an operational scenario for a moment. Let’s say that the Q1D nozzle, the valve of

the engine model, is opening with constant inlet and exit pressures. The nozzle is exhausting

into air at “ambient” pressure, Pa. As the valve opens and the throat area, which we’ll refer

to as A∗, increases, the flow will accelerate to sonic speed at the throat, continue accelerating

to supersonic speed and then, in the expanding section of the nozzle, decelerate through a

normal shock wave. This is the top case in Figure A.3. Downstream of the shock wave the

velocity will be subsonic and decelerating to the exit, where the pressure of the flow will be

equal to Pa. As the valve opens wider and A∗ grows, the shock wave will move downstream.

At some A∗ the shock wave will be at the nozzle exit, the second case in the figure. In this

case, the flow is supersonic from the throat to just before the exit. The normal shock takes

the flow from a low pressure directly to Pa. As the throat opens still further, the shock wave

will expand out and transition to a cone with a trail of diamond shaped shock waves behind

it that bring the flow up to ambient pressure externally. This is the third case in the figure.

Note the significance of the transition from the second to third case. In cases one and two,

the flow at the exit is subsonic. In our simulation, for this case at the Nth boundary, we

calculate λ2 and λ3 from the field. λ1 = u − c < 0 and so we calculate L1 using the LRM

method. In case three, the flow at the exit is supersonic, λ1 = u − c > 0 and so we must

switch our handling and calculate L1 from the field. Now what happens if the nozzle begins

to close back down? The flow at the exit is already supersonic. No influences can enter the

domain from the exit to change the flow state. If we continue calculating L1 from the field,

we’ll reach a point where A∗ is back in the range for cases one and two, but our handling,

instead of allowing the shock wave to form, will instead give us the isentropic solution for
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those A∗ values, which we don’t want. When the flow at the exit is supersonic, we must

include some sensing mechanism that can tell us when to switch from calculating L1 from

the field to calculating it using LRM.

We know the nozzle is operating overexpanded when the Mach number at the exit,

MN >= 1 and the pressure is below atmospheric, PN < Pa. We’ll test for this condition on

each Q1D computational step. If it’s true, then we’ll assume that there is a shock standing

in the exit. We’ll calculate the pressure rise across the shock using the normal shock relation:

(A.44)
Pe

PN

= 1 +
2γ

γ + 1

(
M2

N − 1
)

where PN is the pressure in cell N, Pe is the pressure on the downstream side of the

shock, and MN is the Mach number in cell N. If Pe > Pa there can be no shock in the exit

nor upstream. There must be a shock train. So we know the exit velocity is still supersonic

and we continue calculating L1 from the field. If Pe <= Pa we know that the shock is either

in the exit or upstream, in the diverging section of the nozzle. In that case, we switch and

calculate L1 using the LRM method, forcing the flow at the exit to become subsonic. This

logic will allow the shock train to collapse into a normal shock at the exit, then enter the

nozzle and begin moving upsteam as necessary.

But note, the computation of K becomes problematic. As we switch from calculating L1

from the field to LRM, the Mach number in the end cell will exceed 1, and this will cause

K to go negative. We can clip the Mach number to 1, but then K simply goes to zero and

the influences that we want to introduce from beyond the boundary get smothered—nothing
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happens. Instead, we’ll limit the square of the Mach number to 0.95 in the equation. This

provides the results we’re looking for:

(A.45) K = σ
[
1 − min

(
M2

N , 0.95
)] cN

L
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