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ABSTRACT

SPARSE BAYESIAN REINFORCEMENT LEARNING

This dissertation presents knowledge acquisition and retention methods for efficient and robust

learning. We propose a framework for learning and memorizing, and we examine how we can

use the memory for efficient machine learning. Temporal difference (TD) learning is a core part

of reinforcement learning, and it requires function approximation. However, with function ap-

proximation, the most popular TD methods such as TD(λ), SARSA, and Q-learning lose stability

and diverge especially when the complexity of the problem grows and the sampling distribution

is biased. The biased samples cause function approximators such as neural networks to respond

quickly to the new data by losing what was previously learned. Systematically selecting a most

significant experience, our proposed approach gradually stores the snapshot memory. The mem-

orized snapshots prevent forgetting important samples and increase learning stability. Our sparse

Bayesian learning model maintains the sparse snapshot memory for efficiency in computation and

memory. The Bayesian model extends and improves TD learning by utilizing the state information

in hyperparameters for smart decision of action selection and filtering insignificant experience to

maintain sparsity of snapshots for efficiency.

The obtained memory can be used to further improve learning. First, the placement of the

snapshot memories with a radial basis function kernel located at peaks of the value function ap-

proximation surface leads to an efficient way to search a continuous action space for practical

application with fine motor control. Second, the memory is a knowledge representation for trans-

fer learning. Transfer learning is a paradigm for knowledge generalization of machine learning

and reinforcement learning. Transfer learning shortens the time for machine learning training by

using the knowledge gained from similar tasks. The dissertation examines a practice approach that

transfers the snapshots from non-goal-directive random movements to goal-driven reinforcement
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learning tasks. Experiments are described that demonstrate the stability and efficiency of learning

in 1) traditional benchmark problems and 2) the octopus arm control problem without limiting or

discretizing the action space.
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Chapter 1

Introduction

1.1 Overview of the Problem

Memory is an essential part of the learning process. This poses questions of how to represent

knowledge and how to store and retrieve it efficiently. This idea is closely related to cognitive

information processing in psychology and cognitive science. Information processing goes through

three stages: acquisition of knowledge, retention, and transfer (Figure 1.1) [3–6]. From learning,

humans achieve new knowledge and store it for future usage. Based on the stored information,

we generalize it to solve other problems. For instance, when we learn how to play soccer, we

first learn how to kick a ball. From the learned kicking skill, we remember the location of the

non-kicking foot, leg swing and contact positions between the ball and the kicking foot. From the

memorized information, we generalize or transfer this kicking skill to shooting a goal or passing

to another player. Similarly, a number of transfer learning approaches have been attempted [7–28]

to improve the performance of machine learning algorithms by establishing the “good" knowledge

basis from the other solutions of the related tasks. The memory plays a key role for the retention.

There are a few questions that arise such as how to store and retrieve the data and what to store for

future usage. In this dissertation, we examine the latter one, what is most valuable to remember

for generalization of knowledge in the future. Also, we examine how to maintain a sparse memory

for efficient and robust learning.

In machine learning and reinforcement learning research, one of the challenges is stability of

learning. When the sample distribution or explored samples are biased, the algorithms are prone
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Figure 1.1: Cognitive information processing steps

to fit on the biased data and to lose generalization ability. One of these examples is the neural

networks’ catastrophic forgetting [29–32]. Neural networks quickly respond to new data and make

a good approximation while losing what they learned previously. This learning behavior makes its

learning process unstable. To prevent forgetting, we focus on data retention process. If we do not

forget its experience, we will be able to make learning stable. However, what to remember and

how much memory we need to keep are significant questions. This dissertation examines these

memory related issues to improve learning stability and sparse memory management.

1.2 Motivation

The motivation of knowledge retention in reinforcement learning is to reduce the complexity

of problems as in knowledge representation and reasoning [33, 34]. Knowledge representation is

one area of machine learning and artificial intelligence that captures information about the environ-

ment. Generally, it looks for concise and sparse representations that help complex problem solving

become easier. For instance, dimensionality reduction can minimize the number of variables to
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consider and disentangle the complex problems. Combining with the traditional knowledge rep-

resentation, if we can remember the significant experiences or samples from data, we can better

represent the world. From stored knowledge, we can transfer the knowledge to other tasks (trans-

fer learning). Comparing the snapshot memories from different tasks, we can compare similarity

between problems. By maintaining the sparsity of retained memory, we can provide analysis tools

to understand the problems or solutions (by reviewing the snapshots, we can analyze the critical

causes).

1.3 Significance of Sparse Bayesian Reinforcement Learning

This dissertation first proposes a general reinforcement learning framework that can systemat-

ically memorize the significant experiences. The significance of the research in this dissertation is

summarized by the following points.

• The sparse Bayesian reinforcement learning proposes the general learning architecture for

machine intelligence. Following the human information processing chain, it suggests an

efficient and stable learning algorithms. By augmenting knowledge, it prevents forgetting

previously learned information and eventually achieve robustness of learning.

• The sparse Bayesian approach systematically remembers the most significant data samples.

It is first proposed to memorize the important samples based on the selection of kernels,

functions that measure the similarity between two inputs. Various heuristic approaches and

the choice of kernels can improve the flexibility of learning.

• Stored snapshot memory can improve learning. It can be used to generalize the knowledge.

It first suggests a practice approach that transfers knowledge from a non-reinforcement learn-
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ing task to a reinforcement learning task. We examines how practice can be generalized to

unknown tasks and how it can improve the performance of target task solving.

• By using the snapshot memory, we suggest the first solution of the simulated octopus arm

control problem without limiting the number of actions. Allowing continuous action control

in the octopus arm problem makes the problem difficult to solve with the high dimensional,

infinite search space. Efficient ways to search a continuous action are examined.

1.4 Research Objectives

The objective of this dissertation is the design and study of a general purpose intelligent system

that remembers the most significant samples for robust learning. Knowledge augmentation is a

key for stable learning, but it is important to maintain the sparsity of knowledge. The goals of this

research are summarized as follows.

• The sparse Bayesian learning design will be able to store the most important experience to

improve learning performance.

• The stored snapshot memory can be reused for generalization of knowledge. It can be trans-

ferred to other tasks, or it can used to improve a learning algorithms.

• The proposed approach mimic the cognitive information processing for knowledge acqui-

sition (learning), knowledge retention (snapshot memory), and transfer (generalization to

other tasks).

• Bayesian learning could provide an extra information to make a smart decision during ex-

ploration and knowledge retention. By using the confidence information, sparse Bayesian

learning explore the world efficiently and maintain the sparsity of snapshot memories.
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Figure 1.2: A Learning Framework for Knowledge Acquisition and Retention

1.5 Approaches for Knowledge Acquisition and Retention

The framework of the approach for knowledge acquisition and retention proposed here is de-

picted as in Figure 1.2. Based on the current value estimation of a state-action pair (Q value esti-

mation in Section 2.1), an agent takes actions in an environment and collects minibatch samples.

When we define the minibatch size to be one, it learns with online update. Based on the minibatch

samples, the core function approximator, a relevance vector machine (see Section 2.5), estimates

the Q values (see Section 4.1 and Section 5.2). By repeating sample collection and training, the

agent gradually learns the solution for the reinforcement learning problems. For knowledge reten-

tion, the following are added.

Filtering: Not all experience is valuable. Some minibatch samples can be irrelevant to the solu-

tion that an agent want to learn. Also, in the middle of successive minibatch training, we can have

5



large training error that does not give any useful learning result. The estimated values with a large

variance represent less confident approximation that are not helpful to learn. In these cases, we can

simply ignore or filter out the experience to maintain sparsity of knowledge.

Storing: Whenever the experience is not filtered out, the raw samples (relevance vectors in Sec-

tion 4.1 and Section 5.2) are stored. As learning proceeds, the are gradually augmented. We call

this augmented knowledge as snapshot memory.

Online Weight Update: The snapshot memories are used as bases to estimate Q values along

with the corresponding weights. Since the same snapshots can be reintroduced or unseen samples

can be added to the snapshots, a proper weight management is necessary. Online weight update

controls how quickly it will reflect new knowledge for the value estimation.

Relevant Experience Replay: Experience replay is one of the ways that we can mix input data

with previous samples to avoid sampling bias [35, 36]. Without additional memory requirement,

relevant experience relay avoids sampling bias problem with snapshot memory efficiently. Also,

instead of simply reintroducing previous samples to training function approximator, it learns by

building upon the snapshot bases and making relation between existing knowledge and new expe-

rience. This improves learning efficiency, shown in Chapter 5.

1.6 Overview of Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 briefly introduces reinforcement learning. First, we review the definition of value

functions and Q functions for control problems. Comparing to dynamic programming and Monte
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Carlo approach, we review the temporal difference learning (TD). After that, we introduce function

approximations to overcome the memory limit by approximating the value functions. To help

understanding of the development of sparse Bayesian reinforcement learning, we review support

vector machines, Bayesian learning, and relevance vector machines.

In Chapter 3, we introduce the online learning approach for sparse Bayesian learning. Applying

the online learning approach to various problems, we examine the possibilities and limitations.

Based on Fitted-Q batch learning, Chapter 4 introduces the sparse Bayesian reinforcement

learning framework to memorize the most important snapshots. From the suggested framework,

we examine the sparsity of proposed solution and robustness of learning. Examining the snapshots,

we analyze the learned solutions.

Chapter 5 examines how the snapshot memory can be used to improve learning. Although the

efficiency is well known [37], problems with continuous action control are difficult because of the

infinite search space. By using the snapshot memory, we suggest an efficient real-valued action

sampling.

In Chapter 6, we examine the generalization of the achieved knowledge. Unlike traditional

transfer learning, we consider harder problems of transferring the experience from supervised

learning to reinforcement learning task. We call this approach practice to improve learning speed

and performance.

Chapter 7 concludes the dissertation, summarizes the main contributions and discusses the

future directions that can use the snapshot memory efficiently.
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Chapter 2

Background

In this chapter, we introduce the formulation of reinforcement learning and review function ap-

proximations for large state space problems. For the choice of function approximations, we review

support vector machines, Bayesian learning and relevance vector machines. This chapter provides

the introduction to the core elements of sparse Bayesian reinforcement learning. The complete

overview of reinforcement learning, support vector machines and relevance vector machines are

available in [1, 35, 38–41].

2.1 Reinforcement Learning

By interacting with an environment, a reinforcement learning agent collects training samples.

From the collected samples, it evaluates its value on each move to achieve a policy to reach a goal.

The interaction with an environment contains the agent’s selection of actions and the environment’s

responses to them. Series of interactions present new situations to the agent along with rewards,

numerical values that the agent tries to maximize.

This sequence of interactions is formulated as a Markov decision process (MDP). An MDP is

defined as a tuple (S,A, P a
ss′ , R, γ), where for each time step t = 0, 1, 2, · · · , with probability P a

ss′

action a = at ∈ A in state s = st ∈ S transitions to state s′ = st+1 ∈ S, and the environment

emits a reward rt+1 ∈ R.

In an environment specified by the given MDP, a reinforcement learning agent aims to maxi-

mize the reward in the long run. In general, the long term reward is represented by the expected

sum of discounted rewards as follows:
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Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1,

where γ ∈ (0, 1] is a discounting factor.

To achieve a goal, reinforcement learning algorithms estimate the value of being in a state or

the value of performing a certain action in a given state. Here, the value can be defined as the

expected return, Rt. For a policy π : S → A, the value function V π that estimates the value of a

state s is defined as:

V π(s) = E[
∞∑
t=0

γtrt+1|st = s, π].

The value function satisfies the following Bellman equation:

V π(s) = T πV π(s) = Rπ(s) + γP πV π(s) = E[rt+1 + γV π(st+1)|s = st],

where Rπ(st) is a reward function for the state st, P π is the state transition probability under the

policy π, and T π is known as a Bellman operator. This Bellman equation shows a relationship

between the value of current state and its successor.

For control problems, to estimate how good an action is in a given state, we can define the

action value method for policy π, Qπ(s, a):

Qπ(s, a) = E[
∞∑
t=0

γtrt+1|st = s, at = a, π].

To see the relationship to the next state, the action-value function Q can be rewritten with Bellman

equation:

Qπ(s, a) = E[rt+1 + γV π(st+1)|s = st, a = at].
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Reinforcement learning looks for an optimal policy that maximizes either V π orQπ, which can

be denoted by V ∗ and Q∗ respectively.

V ∗(s) = max
π

V π(s)

V ∗(s) = max
a
Q∗(s, a) = max

a
max
π

Qπ(s, a)

Q∗(s, a) = max
π

Qπ(s, a)

= E[rt+1 + γV ∗(st+1)|s = st, a = at]

= E[rt+1 + γmax
a′

Q∗(st+1, a
′)|s = st, a = at]

(2.1)

Dynamic programming (DP) [42,43] can be used to solve an MDP for optimal control. By us-

ing value functions, DP algorithms learn good policies from additional information to the policy—

they require complete knowledge of the transition and reward models as input. DP can compute

optimal policies with a given perfect model of the environment, but there exist a major difficulty,

as Bellman stated, the curse of dimensionality. As the number of discrete states or actions grows,

or as the cost of discretization of the continuous state or action space grows exponentially, it is

impossible to compute complex high dimensional problems.

Without input of the environment model, Monte Carlo (MC) methods [44] learn from online

experience. We call the subsequences in the interaction between an agent and an environment

episodes and call the tasks with the episodes that end in terminal states episodic tasks. An MC

collects a complete trajectory per episode from an episodic task. Based on the average of sample

returns, MC algorithms solve an MDP by analyzing the full history of state-action steps from

complete episodes.
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Temporal difference (TD) learning algorithms combine DP and MC ideas. Without an en-

vironmental model, TD learns directly from experience and bootstraps to update value function

estimates—it updates the estimates based on the previously learned estimates. The simplest TD(0)

updates the value function as follows:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]).

Since V (st+1) is not known, the current estimate is used.

The iterative value update, TD(0) provides an estimation of the V π, but it cannot be used to find

π for control tasks. For control problems, we compute the optimal state-action value function Q∗

in Equation (2.1). On-policy TD, SARSA [35], estimates Qπ(s, a) for the current behavior policy

π. The Q estimate for next state and action st+1 and at+1 is fed in for bootstrap update as follows:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)].

Here, the action value function Q is for current behavior policy π. For simplicity, the π superscript

is omitted. Independently from the current behavior policy, off-policy TD, Q-learning [45], directly

approximates Q∗. From Q∗(s, a) = maxa′ Q(s, a′), Q-learning updates are defined by

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)].
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From the estimated Q, the current best policy can be chosen greedily by

π∗(s)← arg max
a
Qπ(s, a).

However, greedy action selection results in not enough samples for correct estimates of the value

function. The trade-off between exploration and exploitation occurs here. Several strategies such

as greedy, ε-greedy, softmax, and Gaussian noise balance the trade-off between them. ε-greedy

selects a random action with probability ε and chooses a greedy action with probability 1 − ε.

Softmax uses Boltzmann distribution to have different selection probabilities for actions as the

temperature τ decreases—as τ → 0, softmax action selection is equivalent to greedy selection.

Gaussian noise method adds noise with some variance parameter as input to a greedy action.

2.2 Function Approximations

Finding an optimal solution is challenging because of computational cost or memory limit.

Without a model or complete episodes, TD learning requires us to approximate the optimal state or

action values [35]. This can lead us to approximate unseen state or action values with frequently

encountered observations, but since more learning effort is concentrated on the observed samples,

infrequent observations can result in misleading approximation. Thus, we need to generalize the

approximation to estimate the values of unseen states and actions accurately. Extrapolation for the

unobserved states and actions makes this problem difficult.

Fortunately, generalization from samples is well-studied in general machine learning research.

Reinforcement learning adopts those generalization methods, which is called function approxima-
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tion in reinforcement learning context. In this section, we review the existing function approxima-

tion methods.

First of all, when a parametric value function approximation Qθ is linear, it is defined as

Qθ(s, a) = φ(s, a)>θ,

where φ is a feature vector for state s and action a, and θ ∈ Rd is a d dimensional weight vector.

From samples, linear regression trains and updates the weights θ. In general, gradient-descent

methods search for the only one optimum θ∗. Thus, it is almost surely guaranteed to converge at

the global optimum— Baird [46] and Tsitsiklis and Van Roy [47] presented counterexamples that

lead to divergence and infinite mean squared error in off-policy learning.

Linear tile-coding function approximation, cerebellar model arithmetic computers (CMAC)

[48], is a form of discretization over continuous state space into tiles. Allowing overlapping tiles,

CMAC computes its output through the weighted sum of active tiles, where the contribution of i-th

tile is controlled by the weight wi. Thus, f(x) =
∑

iwifi(x) where fi(x) = 1 when i-th tile is

activated and fi(x) = 0 otherwise. Increasing tile width can improve generalization and raising

the number of tiles can allow more accurate representations.

Radial basis functions (RBFs) [35] is a continuous variant of CMAC. Rather than being discrete

either 0 or 1, feature values can be any value in the interval between 0 and 1. Replacing a discrete

tile, each feature φi has Gaussian response that is dependent on the center and its variance. RBFs

produces smooth function approximation that is differentiable, and this nonlinear approach fits

precisely on the target. For more precise approximation, restricted gradient descent [49] changes

its centers and variances.
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One of the most popular function approximation methods, neural networks (NNs), estimate the

action value function for continuous real-valued states. Although it has difficulty in convergence

with SARSA [46], it has been applied to many RL problems such as backgammon, robot shaping,

agent survival game, robot walking, robot soccer, and octopus arm control [50–55] successfully.

For off-policy learning, Maei, et al., [56] and Lee, et al., [57] has shown convergence of learning

with nonlinear function approximation. The weights in all layers are updated in gradient descent

manner through back-propagation. Recently, Mnih, et al., [58, 59] successfully applied convolu-

tion neural networks to Atari games and overcame the challenges of applying deep networks to

RL problems—small numbers of samples with delayed or noisy reinforcements, dependent data

samples from sequences of state transitions, and different sample distributions for diverse, new

behaviors. Silver, et al., [36] maintained three different deep networks for policy and value evalua-

tion and trained them with a combination of supervised learning and reinforcement learning. They

applied them to play Go successfully.

As Martin [60] suggested, online support vector regression (SVR) [61, 62] can be applied to

value function approximation. As online SVR removes useless support vectors, it provides good

generalization and performance on solving RL problems.

Bayesian models such as Bayesian Q-learning [63], Gaussian process temporal difference

learning (GPTD) [64–66], and linear Bayesian reinforcement learning [67] have been applied to

estimate value functions. Learning the distributions over Q functions, they showed good general-

ization to solve various reinforcement learning problems.

Value function approximations have shown success in estimating value functions and action-

value functions. Linear models have solved the discrete state problems such as tetris [68], dynamic

channel allocation [69], and robot obstacle negotiation [70]. Tile coding also showed success-
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ful performance on acrobot control [71] and robot soccer [55]. As previously mentioned, neu-

ral network function approximation successfully solved reinforcement learning problems such as

backgammon [50], navigation control [51,52], robot walking [53], and robot soccer [54,55]. Sup-

port vector regression solved cart port balancing problem [61, 62], and Bayesian model solved

simple octopus arm control [65] and blimp control [66] successfully.

Even with the successful application of the estimated value function approaches, there is no

free lunch that can be applicable for all the reinforcement learning problems [72]. Octopus arm

control as an example was successfully solved with GPTD, but it only showed the successful

learning with six predefined discrete actions. Also, there are well-known problems of each function

approximations. We will investigate them in next chapter in detail. Tackling these problems, we

propose a new function approximation method to be applicable on some practical reinforcement

learning problems that cannot be covered by other function approximations.

2.3 Support Vector Machines

Support vector machines (SVM) [73] [41] are a popular tool in solving classification, regres-

sion, and novelty detection. An important property of support vector machines is that the deter-

mination of the model parameters corresponds to a convex optimization problem, which enables

a local solution to be a global optimum [41]. Figure 2.1 illustrates the geometric interpretation of

SVM objective formulation. Separating the hyperspace with large margin allows us more room for

possible future classification errors. Therefore, SVMs are characterized by their margin: it looks

for the hyperplane that separates data into two classes with the maximum margin. Let the training

data be (xi, yi) where m input vectors xi and target values yi ∈ {−1, 1}. The hyperplane can be

defined as
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Figure 2.1: Support vector machine, the margin maximizer

f(x) = w>Φ(x) + b, (2.2)

where Φ(x) denotes a basis function that maps the input data to feature space. The w is the weight

vector, and scalar b is the bias. This linear combination in feature space makes the problem simpler

with linearity in feature space while nonlinear basis functions can represent nonlinearity of data.

Now, the constraints for the marginal separation into two half hyperspaces can be written as:


yi = −1 if w>Φ(xi) + b ≤ −1

yi = 1 if w>Φ(xi) + b ≥ 1

⇒ yif(xi) ≥ 1.

In Equation (2.2), w is an orthogonal vector to the hyperplane, so the distance of the margin is

the sum of the distances between the hyperplane and the closest data samples in both classes. The

distances are equivalent to both classes since the hyperplane is placed in the center of two data
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sets. We find the distance d = 1
‖w‖ , and the margin is 2

‖w‖ . Since maximizing 2
‖w‖ is equivalent

to minimizing ‖w‖
2

2
, the hard margin SVM that seeks for a maximum margin can be written with

correct classification constraints as described below:

minimize
‖w‖2

2

subject to yi(w
>Φ(x) + b) ≥ 1.

2.3.1 Soft Margin

In practice, the data is not always linearly separable. In such data, relaxing the correct classifi-

cation constraints can improve the performance. Thus, we apply the soft margin approach. Some

previous theoretical and experimental study shows that soft margin generally performs better than

hard margin SVM [73]. We can define the slack variables ξi > 0 to allow the classification errors:

yi(w
>Φ(x) + b) ≥ 1− ξi.

Now, adding control parameter C, we can rewrite the linear program.

minimize
‖w‖2

2
+ C

m∑
i=1

ξi

subject to yi(w
>Φ(x) + b) ≥ 1− ξi

ξi > 0

wherem is the number of points. C controls the conflicting objectives, maximizing the margin and

minimizing the sum of errors. When C is large, a large penalty is given to errors, it reduces the
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Figure 2.2: Soft margin linear support vector regression with ε-tube. The figure is from [1]

margin that minimizes the error term. When C is small, it allows more errors resulting in margin

increase.

2.3.2 Support Vector Regression

For regression, let us first define the regression function f with a basis function Φ,

f(x) = w>Φ(x) + b (2.3)

where w is a weight vector and b is a bias. ε-intensive loss function [74] in Figure 2.2 allows margin

errors that estimation values of f(x) are located inside the ε-tube while penalizing estimations

outside the tube. The loss function can be written as:

L(xi) =


0 if |f(xi)− ti| ≤ ε

|ti − f(xi)| − ε otherwise

with a target value ti for an input vector xi. This is beneficial for enforcing the possible estimation

error under the ε value. To avoid overfitting, the weight vector w needs to be as simple as possible,
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which leads to the following objective function:

minimize
‖w‖2

2

subject to (w>Φ(xi) + b)− ti ≤ ε

ti − (w>Φ(xi) + b) ≤ ε.

Similar to SVM for classification, by introducing slack variables ξ+ and ξ−, soft margin SVR can

provide robust estimation without increasing the ε precision to cope with outliers. The objective

function evolves as in Vapnik [74]:

minimize
‖w‖2

2
+ C

m∑
i=1

(ξ+ + ξ−)

subject to (w>Φ(xi) + b)− ti ≤ ε− ξ−

ti − (w>Φ(xi) + b) ≤ ε+ ξ+

ξ+, ξ− ≥ 0.

The constant C > 0 controls the tradeoff between the conflicting goals, the tolerance to errors and

simple weight solutions.

2.3.3 Reinforcement Learning with SVM

For reinforcement learning application, the function approximation needs to be updated grad-

ually as the samples from interaction of the world are gathered. This needs an incremental version

of support vector regression. Ma, et al., [75] proposed an accurate online support vector regression

(AOSVR) that gradually adds or removes a sample from training set while updating SVR function.
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Lee, et al., [61, 62] successfully adopted the online SVR as a function approximator in reinforce-

ment learning. However, their approach suffers from the increasing number of support vectors as

the complexity of the problem grows.

2.4 Bayesian Learning

Bayesian learning [41, 76] uses probability to represent statistical problems. With random

variables, it mathematically models our beliefs of an event and updates them as we observe more

data. This approach is different from the frequentist’s approach that measures the frequency of an

event without considering any belief about the experiment. Bayesian learning framework is based

on the Bayes’ rule:

P (θ|D) =
P (D|θ)P (θ)

P (D)

There are three key elements in Bayes’ rule, likelihood P (D|θ), prior P (θ), and posterior P (θ|D).

The prior distribution represents the belief before we observe the data D. When we consider the

coin flip example, if you think the coin that in your pocket is fair with 90% confidence, the prior

can be modeled with a probability of 0.9. The likelihood is the probability of observed D when

the data is generated by the model parameter θ. For instance, with a fair coin, the likelihood that

we see the head will be 0.5. Last, the posterior is updated our belief after collecting evidence

from observations. To take a fair coin case in, a series of observations can reinforce or weaken our

belief of the fairness of the coin in your pocket. After formulating a probability model for the data,

Bayesian learning follows the three steps to learn:
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1. decide prior distributions for weights,

2. compute likelihood from observation,

3. determine posterior distribution.

As an example, the next section describes the Bayesian linear regression model, which is the basis

of Gaussian processes and relevance vector machines in the following sections.

2.4.1 Bayesian Linear Regression

Similar to the linear regression, Bayesian linear regression makes a linear model assumption y.

In probabilistic framework, in addition to the linear model, we define an explicit Gaussian noise

ε ' p(ε|σ2) = N (0, σ2). Let y(xn; w) =
∑M

m=1wmΦm(xn) = Φw. The target can be modeled as

tn = y(xn; w) + εn. The zero mean Gaussian noise leads the target distribution to be Gaussian as

follows:

p(tn|xn,w, σ2) = N (y(xn; w), σ2)

=
1√

2πσ2
exp

[
− (tn − y(xn; w))2

2σ2

]

With an assumption that each target is independent, we define the likelihood over all N data sam-

ples with product rule where the vectors t = (t1, t2, · · · , tn)> and x = (x1, x2, · · · , xn)>:

p(t|x,w, σ2) =
N∏
n=1

p(tn|xn,w, σ2). (2.4)
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The goal is maximizing the likelihood, so we first define the logarithm of the likelihood for easier

computation:

L(w) = −N
2

log(2πσ2)− 1

2σ2

N∑
n=1

[tn − y(xn; w)]2

= − 1

2σ2
(t−Φw)>(t−Φw) + const.

Setting the first derivative of log-likelihood w.r.t w to zero, we reach the equivalent to least square

solution:

∂L(w)

∂w
=

1

σ2
[Φ>t−Φ>Φw] = 0

w = (Φ>Φ)−1Φ>t.

In ridge regression, to avoid over-fitting, we prefer a smooth solution that is achieved by penalizing

weights. Similarly, in Bayesian framework, we add a prior distribution to represent the degree of

belief over weights. In this way, we can control the complexity of model. The zero mean Gaussian

prior for m dimensional weight w can be defined as

p(w|α) = N (µ0, α
−1I) =

M∏
m=1

√
α

2π
exp(−α

2
w2
m),

where µ0 = 0. From the definition of t as the zero-mean Gaussian noise addition to the linear

model y, the likelihood is written

p(t|w) ∼ N (Φw, β−1I),
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where the inverse variance β = σ−2 because t = y+ε. The posterior distribution can be computed

from the combination of the likelihood and the prior distribution as follows:

p(w|t) ∝ p(t|w)p(w|α)

∝ N (Φw, β−1I)N (µ0, α
−1I).

Now, as in Chapter 2 Bishop [41], let z =

 w

t

, the joint distribution for w and t can be written

in terms of z:

p(z) = p(w, t) = p(w|t).

The logarithm on this joint distribution leads to

log p(z) = log p(t|w) + log p(w)

= −1

2
(t−Φw)>βI(t−Φw)− 1

2
(w − µ0)

>αI(w − µ0) + const

= −1

2
(t>βIt− t>βIΦw −w>Φ>βIt + w>Φ>βIΦw)

− 1

2
(w>αIw −w>αIµ0 − µ>0 αIw + µ>0 αIµ0) + const (2.5)

= −1

2
w>(αI + Φ>βIΦ)w − 1

2
t>βIt +

1

2
t>βIΦw +

1

2
w>Φ>βIt + const (2.6)

= −1

2

 w

t


 αI + Φ>βIΦ −Φ>βI

−βIΦ βI


 w

t


= −1

2
z>Rz (2.7)
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with the precision matrix R

R =

 αI + Φ>βIΦ −Φ>βI

−βIΦ βI

 =

 αI + βΦ>Φ −βΦ

−βΦ βI

 .

From Equation (2.6), Φ>βI is symmetric. By completing square w.r.t. w, we can get µ and Σ for

the posterior p(w|t,x, α, β) ∼ N (µ,Σ):

µ = β(αI + βΦ>Φ)−1Φ>t

Σ = (αI + βΦ>Φ)−1.

This solution is equivalent to the ridge regression solution with λ = α
β

.

In Equation (2.7), the covariance matrix (the inverse precision) for the joint distribution is

Cov[z] = R−1 =

 α−1I α−1Φ>

Φα−1 β−1 + α−1Φ>Φ

 . (2.8)

From Equation (2.5), after inserting µ for µ0 and applying completing the square, we retrieve the

first order terms to get the following expected value:

E[z] = R−1

 αµ

0

 =

 µ

Φµ

 . (2.9)
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From the Equation (2.8) and Equation (2.9), the mean and covariance for the marginal probability

for predicted target distribution p(t|x, α, β) ∼ N (m,S) can be computed as

m = Φµ

S = β−1 + α−1Φ>Φ.

(2.10)

2.4.2 Gaussian Processes

Gaussian processes (GPs) are the generalization of the multivariate normal to infinite dimen-

sion for continuing time-series data. When we have time series data, if we assume a Gaussian

distribution on each point, we can represent a window of the time-series as multivariate normal.

In previous section, we describe the Bayesian learning that infers the posterior for the parameter,

p(θ|D), since the function f is parametric with θ. Gaussian processes instead directly infer the

function p(f |D) by defining prior distribution p(f) [77, 78]. Since representing an infinite set of

function’s values is not possible, when we observe the inputs xi and the outputs yi = f(xi), GPs

select m arbitrary samples xk, ...,xk+m and assume the p(f(xk), . . . , f(xk+m)) jointly as Gaus-

sian distribution. Here, GPs model the mean and covariance as m(x) and Covf (x) = Cov(f(x)).

Usually a GP models the covariance function with a positive definite kernel Covfij(x) = k(xi,xj).

Now, we write Gaussian processes as follows:

f(x) = GP (m(x), k(x,x′)),
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where

m(x) = E[f(x))]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))>].

This can be represented with joint Gaussian:

p(f |X) = N (µ,Σ),

where µ = [m(x1), . . . ,m(xN)]> and Σij = k(xi,xj).

When the new data x∗ comes, we can compute the prediction y∗ with

p(y∗|x∗,X,y) =

∫
p(y∗|f,x∗)p(f |X,y)df.

Gaussian processes are collection of random variables, so the distribution of a subset does not

affect the distribution of the other subset. This means that when the joint distribution of y =

(y1, . . . ,yN) ∼ N (µ,Σ), the distribution of y1:k = (y1, . . . ,yk) ∼ N (µ1:k,Σ1:k,1:k) and the

distribution of the other subset yk+1:N ∼ N (µk+1:N ,Σk+1:N,k+1:N). This is called consistency

requirement, or the marginalization property. This property is used to make a prediction from the

training samples.

Suppose we have n training samples X = [x1, . . . ,xn]> and corresponding labels y =

(y1, y2, ..., yn). We want to make predictions y∗ for new points X∗. Then, the prior joint dis-

tribution with zero-mean Gaussian is
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 y

y∗

 ∼ N

0,

Σ Σ>∗

Σ∗ Σ∗∗


 ,

where the covariance matrices are Σ = k(X,X), Σ∗ = k(X,X∗), and Σ∗∗ = k(X∗,X∗). By

conditioning the prior with zero mean Gaussian, the posterior predictive distribution is

p(y∗|X∗,X,y) ∼ N (µ′,Σ′)

µ′ = Σ∗Σ
−1y

Σ′ = Σ∗∗ −Σ∗Σ
−1Σ>∗ .

Now, the y∗ can be sampled from the posterior distribution for predictions.

2.4.3 Bayesian Reinforcement Learning

Bayesian learning models have shown some success and efficiency in reinforcement learning.

Bayesian Q-learning [63], Gaussian process temporal difference learning (GPTD) [64–66], and

linear Bayesian reinforcement learning [67] have been applied to estimate value functions. Unlike

classical RL, Bayesian RL suggests feasible solutions to the exploration-exploitation tradeoffs [63,

79]. Moreover, Bayesian RL can choose samples to learn especially when the sampling cost is

expensive [80]. Here are the list of the advantages of Bayesian reinforcement learning that is

summarized by Ghavamzadeh, et al., [81]:

• Exploration-exploitation control: Bayesian reinforcement learning provides a principled way

to tackle the tradeoff. By using the hyperparameters, the posterior captures the knowledge
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about the states so that an agent can choose actions that maximizes the expected gain in the

estimated values.

• Regularization: An assumption on a prior distribution relaxes the effects of the biased sam-

pling from a finite data set. This results in effective regularization: we can avoid the quick

drift-away of weights from true values and, at the same time, we can have slow convergence.

• Uncertainty Handling: Nilim and El Ghaoui [82] pointed out that when there is modeling

error or uncertainty in the model, frequentist approaches are either conservative or computa-

tionally infeasible. Bayesian reinforcement learning provides a principled way to solve the

difficult problems.

2.5 Relevance Vector Machines

RVM [39, 40] is a Bayesian sparse kernel technique that shares many characteristics of SVM

while avoiding the limitations of SVM such as point-estimate output, necessity of parameter

search, kernel requirement for Mercer’s Theorem, and no sparse solution guaranteed [41]. By

using individual hyper-parameters for each weight, probabilistic models only for relevance vectors

are maintained, which force RVM to be sparse. A probabilistic output of RVM captures the un-

certainty in its predictions. RVM is less-sensitive to hyper-parameters than SVM, and the kernel

function does not need to be positive definite.

For N samples {xn, tn}Nn=1 with data input xn and target tn, the regression can be modeled as

tn = f(xn; w) + εn,

28



where w is the weight vector for the regression function f and εn is zero-mean Gaussian noise

with variance β−1 = σ2. This implies

P(tn|xn) = N (f(xn; w), σ2).

Assuming independence, the likelihood function is given by

P(t|x,w, β) =
N∏
n=1

N (f(xn; w), β−1),

where t = (t1, t2, · · · , tN)> and X = [x1,x2, · · · ,xN ]. RVM mirrors the structure of an SVM: a

linear model with basis function that can be represented by a kernel function that associates one

data point at a time:

f(x) =
N∑
n=1

wnk(x,xn) + b.

Let φi(x) = k(x,xi) be the basis function with kernel k. Φ can be defined as a matrix composed

of training vectors transformed by the basis function. That is,

Φ = [φ(x1), φ(x2), · · · , φ(xN)],

where φ(xn) = [1, φ1(xn), φ2(xn), · · · , φN(xn)]>. For smooth regression, like regularization in

ridge regression, zero-mean Gaussian prior over the weight w is defined:

P(w|α) =
N∏
i=0

N (wi|0, α−1i )

29



with α, a vector of N + 1 hyper-parameters. That is, small magnitude weights are more likely

selected. Distributions for hyper-parameters α and β are defined as Gaussian distributions. How-

ever, as Tipping, et al., noted [39, 83], Gamma distribution can be chosen for the distribution as

written here:

P(α) =
N∏
i=0

Gamma(αi|a, b)

P(β) = Gamma(β|c, d)

where Gamma(α|a, b) = Γ(a)−1baαa−1e−bα with Γ(a) =
∫∞
0
ta−1e−tdt. With Gamma prior

distribution, the posterior becomes a student-t distribution that can be more flexible to represent

heavy-tail distribution. With Gamma prior, it can have more sparse solution; also, it can represent

Gaussian with a very large degree of freedom parameter in t distribution.

A broad prior over hyper-parameters makes posterior probability mass go to infinity, so poste-

rior probability of the associated weights to be concentrated at zero. This makes the corresponding

inputs to be irrelevant. This is called switching-off. By assigning an individual hyper-parameter to

each weight, an RVM can switch irrelevant weights or bases off and produce a sparse solution.

By marginalizing over uncertain weights and hyper-parameters, the predictive distribution for

new data x′, t′ can be computed as

P(t′|x′, t,X) =

∫
P(t′|x′,w,α, β)P(w,α, β|t,X)dwdαdβ

by averaging the model for new target. Since P(w,α, β|t,X) is analytically intractable, so is

P(t′|x′, t,X). Thus, we need to approximate these. Commonly, type-2 maximum likelihood,
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evidence approximation, can be used. Tipping et al. [39, 41], discussed the use of an expectation-

maximization (EM) algorithm to maximize P(t′|x′, t,X), yet direct optimization via evidence ap-

proximation converged faster. Before the approximation, we can decompose P(w,α, β|t,X) by

using the product rule of conditional probability:

P(w,α, β|t,X) = P(w|α, β, t,X)P(α, β|t,X).

Analytically computing the weight posterior distribution, we have a convolution of Gaussian dis-

tributions that combines the linear model of Gaussian likelihood and a Gaussian prior:

P(w|α, β, t,X) ∼ N (µ,Σ)

where the mean and covariance are given by

µ = βΣΦ>t

Σ = (βΦ>Φ + αI)−1. (2.11)

Marginal likelihood over the weight parameters represents zero-mean Gaussian with A = αI:

P(t|X,w,α, β) =

∫
P(t|X,w, β)P(w|α)dw

∼ N (m,C),
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where the mean and the variance are similar to Equation (2.10):

m = Φµ

C = β−1I + ΦA−1Φ>. (2.12)

Using the evidence approximation and omitting the input x for uncluttered notation, we can rewrite

the predictive distribution obtained by marginalizing over the weight w:

P(t|α, β) = (
β

2π
)
N
2 (
α

2π
)
M
2

∫
e−E(w)dw = (

β

2π
)
N
2 (
α

2π
)
M
2 e−E(w)(2π)

M
2 |A|−

1
2 ,

where M is the dimensionality of w, and regularized error is defined as E(w) = β
2
‖t −Φw‖2 +

α
2
w>w [41]. For computational efficiency, the logarithm of the marginal likelihood is used:

L(α, β) = logP(t|α, β) =
M

2
lnα +

N

2
lnβ − E(w)− 1

2
ln |A| − N

2
ln 2π. (2.13)

Maximizing L(α, β) with respect to hyper-parameters α and β gives the following iterative update

rule:

γi = 1− αiΣii

αi ←
γi
µ2
i

β ← N −
∑

i γi
‖t−Φµ‖2

. (2.14)

Here, γi is interpreted as a measure of how well-determined the weight wi is by the data.
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When α∗ and β∗ are found from training, the predictive distribution can be marginalized as

Gaussian with the following mean and variance:

f(x∗) = µ>φ(x∗) (2.15)

σ2(f(x∗)) = β∗
−1 + φ(x∗)

>Σφ(x∗). (2.16)

The trained model contains a large number of very large α that make the weights for corre-

sponding samples zero. Analogous to support vectors in SVM, the data samples with non-zero

weights are called relevance vectors (RVs). Fast marginal likelihood maximization [40] maintains

only the relevance vectors for bases and improves both computational speed, and we implements

this version of RVM.

For reinforcement learning problems, we compose the input with state-action pair, xt = (st, at),

and the Q estimates are computed with the predictive distribution:

Q(st, at) ∼ N
(
f(xt), σ

2(xt)
)

∼ N
(
µ>t φ(st, at), β

−1
t + φ(xt)

>Σφ(xt)
)
.

2.5.1 Reinforcement Learning with RVMs

Rexakis, et al., [84] have applied relevance vector machines to reinforcement learning. They

suggested a directed rollout classfication policy iteration (DRCPI-RVM). This work is motivated

by the limitations of their previous work with support vector machines. To avoid the policy sim-

ulations, they proposed a directed rollout approach with support vector machines. Although the

proposed approach was successful, it had to bear the computational overhead from the growing
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number of support vectors. They have shown that RVM-based approaches can overcome the prob-

lems in the computational overhead.
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Chapter 3

Online RVM-based Reinforcement Learning

In this chapter, we introduce the application of relevance vector machines to online reinforce-

ment learning. In this chapter, relevance vector machines (RVMs) are used as a simple function

approximator. For successful application, we modify the traditional RVM to different versions

to lower the computation and memory limits so that it can be applied to online reinforcement

learning. The modified version with a buffer ensures re-examination of deleted samples for basis

candidates. Our multivariate version uses multiple RVMs to estimate multiple output values which

potentially share the hyperparameter β. By applying these modified versions to a reinforcement

learning problem, we examine the efficiency and limitations of RVM function approximation.

As discussed in Section 2.2, various function approximations have extended the applications

of reinforcement learning to large state space problems successfully. However, even with the

successful applications of various function approximations, problems with the stability of learning

remain. Furthermore, SVR is well-known for its impracticality caused by the increasing number

of support vectors as the number of training samples grows [85].

In Section 2.4, we discussed Bayesian reinforcement learning models and their advantages

of success and efficiency. Since Bayesian approaches to reinforcement learning have shown ad-

vantages in the exploration-exploitation tradeoff and in lower sampling costs, by inheriting the

Bayesian advantages, we expect further improvement of learning performance.

To improve stability of learning with the previous function approximators and to solve the

growing number of support vectors with the support vector machines, we apply the sparse Bayesian

learning model, relevance vector machines [39, 40, 86], as a function approximator. Relevance

35



vector machines can be viewed as a Bayesian regression model that extends Gaussian processes

(GP), and also we can consider RVMs as an extension of support vector machine (SVMs). With

respect to the first point, RVMs can represent more flexible models by providing separate priors

for each dimension. With respect to the second point, while SVMs suffer from the explosive

growth of support vectors, RVMs provide sparse solutions by capturing the significant mass. To

accommodate those advantages of Bayesian RL and to overcome the limitations of SVM, the

RVM function approximators are expected to improve the robustness of learning and lessen the

memory and computation overhead. Online RVM function approximators are tested to examine

their efficacy. The RVM modification details, test experiments and results are discussed in the

following sections.

3.1 Online RVM Variations

With an incremental optimization, Tipping, et al., [40], proposed a more computationally ef-

ficient algorithm than O(N3) in their previous work. Starting without an RV, at each iteration, it

adds, re-estimates, or removes one RV. When adding an RV, the hyperparameter αi is adjusted to

maximize the marginal likelihood. They decomposed Equation (2.12), C = C−i+α
−1
i φiφ

>
i where

−i represents C without a relevance vector i contribution,

C−i = βI +
∑
j 6=i

αjφjφ
>
j .
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The logarithm of the marginal likelihood in Equation (2.13) can be written as

L(α) = L(α−i) + l(αi)

l(αi) =
1

2

(
logαi − log(αi + si) +

q2i
αi + si

)

where si = φ>i C−1−iφi and qi = φ>i C−1−i t. The sparsity factor, si measures the extent of overlaps of

φi with the existing other bases. The quality factor, qi = σ−2φ>i (t− y−i), measures the alignment

error of φi when the i-th output is excluded.

From the derivation in [86], there is a single maximum at αi =
s2i

q2i−si
if the denominator q2i > si.

If the denominator is zero or negative, αi is not valid, so we set it to∞. Thus, the algorithm adds

an RV or re-estimates the RV that is indexed by i when q2i > si; otherwise it removes the RV.

To apply this to a reinforcement learning function approximation, RVM must learn a policy

incrementally, so it needs to be memory-efficient. However, the existing algorithm needs to store

the kernel matrix Φ, and the memory requirement isO(N2) whereN is total number of interactions

with an environment. For this, we adopt the incremental/decremental steps in online support vector

regressions that add or remove a vector to a kernel matrix at a time [75, 87]. This results in the

online RVM (oRVM) with the following incremental and decremental steps to manage the kernel

matrix Φ. In this approach, oRVMs forget insignificant samples and remember only the relevance

vectors that can cover all the Q value space.
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Incremental step: When a new relevance vector is added, the proposed algorithm adds a vector

φi to Φ as follows:

Φnew =



φ1i

Φ
...

φni

φ1i · · · φni φii


where φji = k(xj, xi) and i represents an index for a new input.

Decremental step: When q2i ≤ si, oRVM sets α = ∞ and decrements the kernel matrix, by

removing the row i and column i.

Φnew =

Φ(1:i−1,1:i−1) Φ(1:i−1,i+1:N)

Φ(i+1:N,1:i−1) Φ(i+1:N,i+1:N)


Figure 3.1a shows oRVM applied to the regression problem of approximating a quadratic sine

curve when the data input is received in the order of low to high x values. Since it discards

samples at the moment of data input, the fit is a bit away from the true value. To compensate for

this estimation, we propose the buffered online RVM in the next section.

3.1.1 Buffered Online RVM

To improve the estimation accuracy, we propose a buffered online RVM algorithm that stores

l non-RVs. In addition to RVs, l base candidates are maintained for better RV selection. Now, Φ

includes the feature vector φ’s for the candidate samples. For buffer management, when the buffer

is not full, new data can be simply added to the buffer. However, if it is full, we need to discard
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(a) Online RVM

(b) Buffered online RVM

(c) Multivariate online RVM

Figure 3.1: oRVM, boRVM, and moRVM on quadratic sine curve. Blue dots are input data in left-to-
right sequence. Red dots represent relevance vectors, and light red curves are run-time estimation. Final
estimation after all 100 data inputs are exposed is shown in the red line. The numbers of RVs are 8, 24, and
41 for (a), (b), and (c) respectively. The accuracy gain or multivariate output requires more RVs to store.
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one of the candidates. Using the kernel function, we remove the closest candidate to existing RVs.

Thus, the index to delete from buffer is determined by:

idel = arg min
j
k
(
xj,X

(RV)
)

where kernel values are computed between the candidate xj and existing RV-related sample inputs

X(RV). When an RV is removed, it can be stored as a candidate, determined by repeating the

above procedure. With buffered online RVM (boRVM), Figure 3.1b shows the improved regression

curve using l = 25. However, adding a buffer results in less sparse results that store unnecessary

relevance vectors from the series of inputs.

3.1.2 Multivariate Online RVM

As described in the next section, we need a multivariate-output form of oRVM, moRVM, for

reinforcement learning. Thayananthan, et al., [88], simply extend RVM to a multivariate setting

by using a set of RVMs. Similarly, we propose a set of boRVM’s for moRVM. For computational

simplicity, β can be computed with average of errors:

βshared = K
N −

∑
i γi∑K

k=1 ‖tk −Φµk‖2

where K is the number of output dimensions. Figure 3.1c shows the online fit on two dimensional

output using βshared. Multivariate extension of RVM also requires more number of relevance vectors

to fit on multiple target outputs.
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3.2 oRVM-RL

For reinforcement learning problems, we consider the approximation of the function, Q(s, a).

Now, the input xt = (st, at), and the Q estimates are computed with the predictive distribution

from Equation (2.15) and Equation (2.16):

Q(st, at) ∼ N
(
f(xt), σ

2(xt)
)

∼ N
(
µ>t φ(st, at), β

−1
t + φ(st, at)

>Σφ(st, at)
)
.

When both state and action are used as an input of a function approximation, independence be-

tween each output yi is hard to be guaranteed. Separating outputs for generating target yi can

improve the stability of learning [89]. With moRVM, the predictive distribution for each action is

computed as:

Q(a)(st) ∼ N
(
f (a)(st), σ

(a)2(st)
)

∼ N
(
µ

(a)
t

>
φ(st), β

(a)
t

−1
+ φ(st)

>Σ(a)φ(st)
)
. (3.1)

With βshared, Equation (3.1) for all actions can be computed at once:

Q(a)(st) ∼ N
(
µ

(a)
t

>
φ(st), (βshared)t

−1 + φ(st)
>Σ(a)φ(st)

)
.

The βshared will be successfully applicable to dynamic programming; however, it is hard to use in

on-policy temporal difference learning, SARSA. Since SARSA explores only one action at a time,

there are no other outputs in other dimension, for which the βshared is a poor estimation.
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To minimize the temporal difference error, we can define the oRVM target as y = rt +

γQ(st+1, at+1) for SARSA or y = rt + γmaxaQ(st+1, a) for Q-learning. In this chapter, we ex-

amine only SARSA, so Algorithm 1 is based on SARSA update. Q-learning can be implemented

by simply changing y. Reinforcement learning agents develop the Q function from an initially

poor estimate of future reinforcement values to a more accurate one as learning progresses, so

maintaining Q estimates as targets for existing RV’s can deter learning. Thus, before RVM train-

ing, updating RV targets is critical for the learning performance. The online learning algorithm in

Algorithm 1 include such updates.

Algorithm 1 oRVM-RL / boRVM-RL / moRVM-RL
Initialization: empty RV for oRVM.
Choose discounting factor γ ∈ (0, 1], ε ∈ (0, 1] and cε ∈ (0, 1].
for i = 0...n episodes do

Select action at given state st by ε-greedy or softmax action selection.
Apply at to arrive at st+1.
Observe sample, (st, at, rt, st+1) at time step t.
for each observed sample and Qw,α,β(s, a) = w>φ(s, a) do

Set y = rt + γQ(st+1, at+1).
Updates RV targets with current estimations tRV = Qw,α,β(XRV)
Performs oRVM, boRBM, or moRVM training for Qw,α,β(st, at).
Decreases ε = ε× cε

end for
end for

3.3 Experiments

In this section, experiments are described in which the oRVM-RL algorithms are applied to

reinforcement learning problems of different complexities. For the experiments, we use Gaussian

kernel to localize the state or state-action space with Gaussian pdf. Discounting factor γ = 0.99
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Figure 3.2: boRVM-RL in two state problem. boRVM-RL stabilizes learning curves as increasing the size
of a buffer. The curves are means of 10 runs. Stability of learning curve increases as l, the size of the buffer
increases.

was the best parameter value for all of the following tests. To examine the consistency of the

performance, each experiment was repeated 10 times.

First, we examine how the buffer size affects the solutions of a simple toy problem with two

states, {0, 1}, two actions, {0, 1}, and deterministic state transition and reward functions as fol-

lows:

st+1 =


st if at = 0

0 if st = 1 and at = 1

1 if st = 0 and at = 1
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R(s, a) =


0 if s = a

1 otherwise
.

Figure 3.2 shows the average learning performance with varying buffer size, l. As we observed in

the quadratic sine curve fit example, without a buffer or l = 0, oRVM function approximation is

not good enough for stable learning. As the candidate buffer size increases to four, the learning

curve converges to optimal policy with low variance. This shows there exists some sweet spots

that both performance and efficiency can be obtained. For the following tests, we found l = 10

produced the best performance.

The proposed algorithm is now tested on a problem with state s ∈ {−b,−b+ 1, · · · , b− 1, b},

action a ∈ {−1, 0, 1}, and deterministic state transition given by

st+1 =


st + at if −b < st < b

st otherwise

where b is any arbitrary integer number to represent half of the state size. The reward function is

defined as

R(s, a) =


1 if − b

10
< s < b

10

0 otherwise
.

This problem is a non-episodic task, which means it needs to maintain in the goal region,
(
− b

10
, b
10

)
,

until the simulation time (500 steps) ends.

Storing a maximum of 10 candidates in a buffer (l = 10), boRVM successfully finds good

policies for these discrete problems. However, as the state space to search grows, it faces a lack of

experience. In Figure 3.3, when the size of the state space is up to 40, it learns well and converges
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Figure 3.3: boRVM (l = 10) function approximation in different state size of discrete-state transition
problems. Each run spends 500 episodes with ε-greedy by exponentially decreasing ε from 1 to 0.01.

to an almost optimal policy, but when it reaches 100, not all states are explored so it oscillates when

it starts from unexplored region. More time is needed to explore to converge to an optimal policy

with boRVM function approximation. Intuitively, it fails to learn an optimal policy in this discrete

problem with more than 100 states. We find this is also true in the following continuous-state

problem as well.
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The continuous-state problem dynamics and reward function are as follows:

s = [x, v], a ∈ {−1, 0, 1}

xt+1 =


xt + vt ×∆t if −5 < st < 5

−5 if st < −5

5 if st > 5

R(s, a) =


1 if −1 < s < 1

0 otherwise

vt+1 =


vt + (2at − frvt)∆t if −5 < st < 5

0 otherwise

where position x is a scalar in [−5, 5], v is velocity, ∆t = 0.1 and friction fr = 0.2. The action

space is still discrete with three values, and the maximum time step is set to 500. A state-action

input to a Q function approximator increases the search space with larger input dimensions. By

changing a Q function approximation to generate multiple outputs for each action for given state-

only inputs, we can reduce the search space for faster convergence. For this, we adopt moRVM as

a function approximation. We apply moRVM-RL to the continuous-state problem.

While oRVM was not able to learn in 500 episodes because of the large search space, moRVM

learns good policies within 200 episodes. Figure 3.4 shows the results with moRVM and GPTD

function approximation in continuous-state problem. It shows the difference between ε-greedy and

softmax. For ε-greedy, ε decreases exponentially from 1 to 0.1, so it has a full exploration stage in

the beginning. For softmax action selection, the temperature decreases from 3 to 0.005. Softmax

results shows that moRVM finds decent policy probability distributions quickly. Although it oscil-
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lates in 500 episodes, RVM builds good bases in the very early stage of learning. This can trigger

follow-up research that uses the learned relevance vectors to stabilize the learning and to improve

the performance. moRVM uses 1−7 RV bases for each action, so in total, moRVM construct the Q

value space with 8−25 bases. Online GPTD with accuracy threshold 0.01 maintains 41−45 bases

for the poor approximation. With the small amount of samples, moRVM function approximator

learns more efficiently which results in sparse solutions that can well-estimate the Q values.

With a Gaussian kernel, the learning resembles radial basis functions (RBFs) [35]. Unlike

RBFs, Gaussian kernel-based RVM makes the center move by picking the relevant RVs to bases,

so the number of centers either increases or decreases as learning goes on. Thus, it is comparable

to Platt’s resource allocation network (RAN) [90] or Barreto, et al.’s restricted gradient descent

(RGD) [49]. Unlike the RGD, Gaussian RVM uses a fixed width for each radial basis function.

Although the Gaussian RVM is less flexible than the RGD, by replacing the kernel function, an

RVM can be more flexble. Thus, the RVM function approximator is capable to solve various

problems including non-parametric problems.

Here, note that the instability of online RVM as the problem states grow. As learning goes

on, addition and deletion of relevance vectors vastly affects the Q estimation until it finds a good

policy, which requires more samples to converge. By using the minibatch training with knowledge

augmentation in next chapter, we achieve more stable learning.

3.4 Conclusions

We have described modified versions of online RVMs to apply to reinforcement learning prob-

lems. Based on online RVM with incremental and decremental steps, we introduce buffered online

RVM and multivariate online RVM. The buffered online RVM increases the accuracy by recon-
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(a) ε-greedy (b) softmax

(c) online GPTD

Figure 3.4: moRVM-RL (l = 10) and online GPTD in continuous-state problem. Blue line represents the
average over 10 runs and lighter area shows the variance. (a) and (b) depicts moRVM-RL with different
action selection method, ε-greedy and softmax. ε-greedy uses the average of 19.6 (min. 14, max. 25) RVs
for the training and softmax uses the average of 17.5 (min. 8, max. 28) RVs. (c) shows the unsuccessful
learning over 10 runs with online GPTD, which need more number of bases ranging between 41 and 45
bases.
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sidering non-RV samples as a basis candidate. The multivariate online RVM makes it possible to

evaluate multiple Q values for all the actions for reinforcement learning problems. We use all these

versions to test the efficacy of online RVM function approximation.

The main contribution of this chapter is the extensions of the original RVM to fully online

update versions. These modifications is not merely for reinforcement learning. With online update,

improved accuracy with a buffer, and multiple outputs possibility, we provide computationally and

memory-wise efficient online algorithm. Our preliminary tests discover that it is impossible to use

the traditional RVM in reinforcement learning because of limitations in computation and memory.

Thus, these modifications will help other applications that requires extensive computational power

and memory requirements.

Without storing or augmenting significant experience, however, it suffers from instability of

learning. Especially with online update, the bias from each sample is maximized enough to inter-

vene the learning process. This leads us to develop the knowledge augmentation approach that will

be introduced in next chapter.
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Chapter 4

Mini-batch RVM-based Reinforcement Learning

This chapter introduces the reinforcement learning framework that systemically stores most

significant memory, which is named as snapshot memory. The relevance vector machines first

update the hyperparameters that represent the covariance of weights and target estimation. RVM

training consists of two alternative stages. First, it estimates the hyperparameters α and β in

Equation (2.14). Based on the current estimation of hyperparameters, it approximates the mean

and variance of the weights as in Equation (2.11). The training process repeats these alternating

steps until it converges. The alternating training steps discard unnecessary bases based on the

hyperparameter values. This process makes the solution sparse by maintaining a small number

of relevance vectors. These relevance vectors are the key information that is related to the input

data samples. With some heuristics, we filter and store the relevance vectors to keep the most

significant snapshot experiences. In this chapter, we examine how reinforcement learning stabilizes

the performance by augmenting knowledge with successive transfer.

In Chapter 3, we examined the online RVM function approximator and observed the instability

of learning when we do not store the obtained knowledge, especially when the task is complex.

The simple replacement of the function approximator with an RVM still has the same problem of

unstable learning. Changes in the samples state distributions during training can cause the issue,

thus it requires many samples for good estimations of value functions.

For improved stability of learning, we propose a novel reinforcement learning framework that is

built upon Riedmiller’s fitted-Q minibatch learning [91] and incrementally accumulates snapshot

memory from experiences, which uses the relevance vector machines as a function approxima-
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tor. From RVM’s sparse learning, the framework’s gradual knowledge construction process with

snapshots increases the stability and robustness of reinforcement learning by preventing possible

forgetting. An additional benefit of the proposed approach is that RVM’s low sampling costs im-

prove the learning speed. This approach can be compared to directed rollout classification policy

iteration [84] in that both adopt RVMs to overcome the limitations of the growing number of the

support vectors (SVs), but the proposed approach focuses on value iteration with gradual shaping

of the data-centered features. By comparing the average learning performance with other function

approximations such as neural networks, SVR and GP, we examine the efficiency of the frame-

work. Also, we examine how the learned relevance vectors (RVs) or snapshots capture the signifi-

cant mass of the agent’s optimal behavior. We examine this approach with the popular benchmark

problems of pole-balancing and mountain car.

4.1 Framework for Knowledge Augmentation

The reinforcement learning framework with RVM function approximator is depicted in Fig-

ure 4.1. The approach extends Fitted-Q minibatch learning [91] with sequential accumulation of

key experiences. From the agent’s interaction with an environment, the learning framework col-

lects samples for training an RVM. The RVM regression model at each step estimates the Q values

with Q-learning updates. As learning continues, it shapes the target function approximator for the

next Q value estimation. For this, the evaluation and decision steps are necessary to establish a bet-

ter target function approximator. We apply transfer learning of learned RVs for coherent learning.

Our hypothesis in this section is that RVM regression on the Bellman target can obtain significant

RV bases for good Q estimation. By transferring and shaping the knowledge from RVM training,

we expect to achieve good Q function approximation.
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Figure 4.1: The RVM-RL learning framework

Algorithm 2 RVM-RL
Initialization: empty features for RVM0 and set target function approximation FA = RVM0.
Choose discounting factor γ ∈ (0, 1], ε ∈ (0, 1], learning rate c, threshold τ and cε ∈ (0, 1].
for each episode do

Select action at given state st by ε-greedy with FA. Apply at to arrive at st+1.
Observe N samples, (st, at, rt, st+1) at time step t.
Initialize the base features of RVMt with transferred RVs.
Add the RVs to training data and target.
Set target y = rt + γmaxaQw,α,β(st+1, a)
Train RVMt with alternate iteration of Equation (2.11) to Equation (2.14).
Evaluate RVMt with train RMSE
if RMSE < τ then
RV(FA) = RV(FA) ∪ RV(RVMt+1)
W(FA) = (1− c)W(FA) + cW(RVMt+1)
Store RV(RVMt+1) for transfer.

end if
Decreases ε = ε× cε

end for
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Figure 4.1 shows the ordered steps from collecting samples to transfer between minibatch

samples, and Algorithm 2 summarizes the steps. From an interaction with a simulated or real

world, an RL agent collects samples (st, at, st+1, rt+1, at+1). For mini-batch training, the agent

collectsN samples and updates the RVM model via a Q-learning update (Step 2. Train). The sparse

solution of RVM training embedded the RVs that can refer to the corresponding input samples. For

RV transfer and feature computation, we store these input samples. From now on, we regard the

relevance vectors to transfer or store as the related input samples.

When regression training is done, the framework checks the trained RVM to decide if the RVM

is good enough to shape the target function approximation (Step 3. Evaluate). Many different

heuristics possibly exist for evaluating RVM training. In this chapter, we chose the regression

RMSE as a measure for this decision. When the training RMSE is greater than a preset threshold,

we ignore the current RVM for the target function approximator.

The RVM that passes the evaluation test will be kept for updating the target function approx-

imator while the RVM that failed to pass the test will be ignored. The passed RVM is now ready

to update the target function approximator (Step 4. Decision). There are possible heuristics for

this step again. A new Q estimator can be constructed by averaging all successful RVMs. Another

way, which is the method used here, is to shape the target function approximator with stochastic

updates:

RV(RVMtarget) = RV(RVMtarget) ∪ RV(RVMt+1),

W(RVMtarget) = (1− c)W(RVMtarget) + cW(RVMt+1),
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where RV(·) retrieves the relevance vectors of the RVM and W(·) retrieves the weights (mean esti-

mates) of the RVM. c is a stochastic update scalar to control the learning speed. When c = 1, it

completely ignores previous RVM weights and uses the new RVM weights only. c = 0 means the

target function approximator is not affected by the new RVM. When the target decision is made,

the agent uses this function approximator to collect next samples. The weights for discarded RVs

become zero. In this approach, the increment of the RVs can lead to an very large number of them.

The set of important states, however, that are captured by the RVM converges to sparse solutions

as we will see in Section 4.2.

For the next sample training, instead of starting from scratch, we transfer the relevance vectors.

The new, next RVM (RVMt) initializes the initial features with the transferred RVs. That is, the

stored snapshot memories are reintroduced as new input data with union operation, and they are

used as initial bases for training the new RVM. At time t, the new input samples Xt are augmented

with the transferred samples and the transferred samples become the initial bases as follows.

Xt = Xtransfer ∪ Xt

RV(RVMt) = Xtransfer

where RV(RVMt) = φ. Here, Xtransfer are the accumulated snapshot samples to be used as an

initial bases for next minibatch training. When the collected samples are biased in a certain space,

learned RVs can be forgotten. By transferring RVs and using it as the initial base features of next

RVM, it helps learning to be unbiased on each stage and alleviate forgetting.

54



Figure 4.2: The mountain car problem

4.2 Experiments

Two reinforcement learning benchmark problems were used to investigate the efficiency of the

RVM-RL framework. The first is the mountain-car problem, in which an under-powered car must

be controlled to climb up a hill by using inertia. The second problem is a pole balancing problem.

We selected baseline algorithms based on function approximators. First, we compare the RVM-

RL with a value iteration approaches with neural networks. For this, we test neural fitted Q learning

that is most similar structure to the suggested approach. Considering the two different viewpoints

of RVM, an extension of SVM and GP, we test online SVR function approximation (oSVR-RL)

[61] and GPTD [64].

In our experiments, oSVR-RL fails to learn when a relatively small number of samples (200

episodes) are given. Furthermore, it suffers from the huge number of support vectors that limits the

choice of good kernel parameters because of the computation and memory limit. Thus, oSVR-RL

results are not presented. To illustrate the SV explosion in RL problems, we examine the number

of SVs with the actor-critic SVR-RL [62], which generates fewer SVs than oSVR-RL.
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4.2.1 Mountain Car

The mountain car (Figure 4.2) is a popular dynamics problem having an under-powered car that

cannot climb a hill directly, but must be pushed back and forth to gain the momentum needed to

reach the goal on top of the right hill. There are three actions: move forward (+1), move backward

(−1), and no acceleration (0). The optimal solution of pushing the car away from the goal makes

the problem difficult. This continuous control problem is described in detail in [42].

The state is two dimensional, consisting of the car position xt and its velocity ẋt. Following

the classic mountain car problem, we assign the reward −1 on each time step. When it reaches

the goal (xt = 0.5) at the top of the right hill, the agent gets the reward 0 and is restarted from

a random position. After each restart, a fixed number of samples are collected for training. The

described reinforcement function is defined as follows:

rt =


0 if xt ≥ 0.5

−1 otherwise

.

1000 samples are collected for each mini-batch, and 200 mini-batches are used to train the pro-

posed RVM-RL framework. Parameter values for each function approximator were approximately

optimized. For all experiments, the discount factor γ was set to 0.99 and ε decreased from 1 expo-

nentially by the factor 0.9885 to a minimum of 0.1. For RVM-RL, the radial basis function (RBF)

kernel with normalized input was used with the kernel parameter γ(RVM)
k = 0.1. The learning

rate was c = 1.0. For each RVM training, the maximum number of iterations was set to 100 and

tolerance threshold was set to 1 × 10−5. For neural networks, two layers of 20 hidden units were

used, which consist of one input layer (3 inputs), two hidden layers (20-20 units), and one output
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Figure 4.3: Average of steps to reach the goal in mountain car problem.

layer (one output). For the gradient update in backpropagation, we used Moller’s scaled conju-

gate gradient update (SCG) [92] with a maximum number of iterations of 20 to avoid overfitting.

GPTD parameters were chosen to be the accuracy threshold v = 0.1, the convergence threshold

η = 1 × 10−4, and initial standard deviation σ0 = 0.1. The RBF kernel was used for GPTD and

the kernel parameter γ(GPTD)
k = 0.01. All these parameters are chosen from our pilot tests that pick

the best performing set.

To compare the performance of RVM-RL, GPTD, and neural networks, we repeated the ex-

periment 10 times. Figure 4.3 shows the average number of steps to reach the goal with each

function approximator. While the neural network’s performance oscillates near the optimal point,

both GPTD and RVM-RL show stable convergence. However, GPTD found a policy that reaches

the goal with a greater number of steps with 200 mini-batches of training. Note that RVM-RL
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Figure 4.4: Trajectory of successful control of mountain car by trained RVM from position -0.3.

reaches the goal with the smallest number of steps. Example state trajectories followed by each

of the three function approximation methods are shown in Figure 4.4. The RVM-RL agent con-

sistently applies the −1 action to push the car farther up the left hill, then applies the +1 action to

reach the largest velocity of the three methods, reaching the goal the fastest.

4.2.2 Pole Balancing

Adding a pole to a cart that swings in two dimensions, Barto, et al., [93] first introduced the

benchmark pole-balancing problem (Figure 4.5). The objective is to apply forces to the cart to

keep the pole from falling over. Three actions to control the cart are defined: push left, push right,

and apply zero force. When the cart reaches the end of track, its velocity is set to zero. In this

instance, the pole is allowed to swing the full 360◦.

58



Figure 4.5: The pole balancing task

The state of this system is four dimensional: the cart position xt, its velocity ẋt, the pole angle

θt, and the angular velocity θ̇t. When the angle θt = π, the pole is upright. The reward function is

defined in terms of the angle as follows:

rt =


1 if |θt − π| < π

3

0 otherwise

.

Thus, when it can balance the pole through the simulation time, the optimal policy will result in

the average reward of 1.0.

The following parameters are selected from pilot testing. With the ε-greedy policy with an ε

that decreases exponentially with the factor of 0.9332, we use the discounting factor γ = 0.99. For

training, we use 100 mini-batches, each with 1000 steps of samples. For RVM-RL, RBF kernel

parameter γ(RVM)
k = 1.0 was the best from our pilot tests. The learning rate c = 0.1 was chosen,

RVM max iteration was 100, and tolerance was 1 × 10−5. From pilot tests, even with the best

performing parameters, neural networks and GPTD were not able to find an optimal policy in 100

mini-batches. With 200 minibatches with more random explored samples, neural networks and

GPTD converged to good policies. Neural networks with two hidden layers (10 hidden units per
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Figure 4.6: Average of rewards of an episode in pole balancing.

each) was the best structure. SCG max iteration was set to 80. GPTD required a finer accuracy

threshold v = 1 × 10−5 and relaxed convergence threshold η = 0.1. Initial standard deviation

σ0 = 10 and the RBF kernel parameter γ(GPTD)
k is set to 1× 10−5.

Figure 4.6 compares the average reward curves in pole-balancing task and shows the good per-

formance of the proposed framework. RVM-RL shows fast learning to balance the pole most of the

time. Neural networks and GPTD fail to learn within 100 mini-batches. They need twice as many

samples to learn the policy, compared to RVM-RL. Figure 4.7 confirms the good performance of

the RVM-RL when applying the learned policy. The upper plot shows the position changes over

the 1000 steps and the bottom shows the angle trajectory. It moves slightly toward the right but

keeps the pole balanced near π.

60



Figure 4.7: Trajectory of successful control for pole balancing. With positive samples, RVM quickly
adjusts learning. The cart and pole stay center and upright. Magnifying inner plots show slight wiggle
and movement to right.
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4.3 Discussion

As Tipping, et al., [39] state, one of the issues in support vector regression is the growing num-

ber of support vectors as the number of samples increases. This impact gets severe when we apply

SVR to reinforcement learning function approximator. Repeating 10 mountain car experiments,

Table 4.1 compares the number of support vectors and relevance vectors. The SVM model that we

use for comparison is the SVR-RL, actor-critic model by Lee, et al., [62]. The mean and median

of the number of SVs are 286 and 128.5, and the mean and median of the number of RVs are 11.5

and 10.5. The table illustrates the sparseness of our RVM approach. This suggests that the RVM-

RL may be the more practical approach for complex RL problems such as high-dimensional or

continuous-state tasks. In Figure 4.8, we examine the selected RVs for the mountain car problem

Mean Median Min Max
SVM 286 128.5 19 852
RVM 11.5 10.5 8 45

Table 4.1: The number of support vectors and relevance vectors in mountain car problem. The numbers are
collected from 10 runs for each FA.

over the contour plot of Q values for each action. From the samples experienced during RL train-

ing, RVM-RL discovered the key samples that can be used as a basis and they are plotted as white

dots. A total of 12 RVs were chosen as snapshot bases; 3, 5, and 4 RVs for actions of −1, 0, and

+1, respectively. It appears that for action−1 (Figure 4.8a), two snapshots represent positions near

the bottom of the valley and negative velocity. These probably contribute to a higher Q value for

the −1 action for these states. Most snapshots for action 0 (Figure 4.8b) are placed in low velocity

areas and near the top of the both hills. Snapshots for action +1 (Figure 4.8c) allow the selection

of action 1 when the car has moved far enough up the left hill. Figure 4.9 shows the policy that
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(a) left

(b) no action

(c) right

Figure 4.8: The RVM-RL trained on mountain-car problem. Relevance vectors shown as white dots over
the Q contour plot.
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Figure 4.9: Greedy action policy of the RVM-RL trained on mountain-car problem.

depicts the action that maximizes the RVM-RL Q estimations for each state. The figure illustrates

the policy of pushing right when moving down the left hill with high positive velocity, in the upper

portion of the displayed velocity-position state space. The low velocity range in the middle is gov-

erned by no action. When the velocity is negative, in the lower half of the velocity-position space,

pushing left rules.

The learned snapshots can be considered as high level knowledge about the dynamics and goals

of the task. They are abstractions of the experienced state-action pairs that are most relevant to the

RL problem. The sharing of snapshot memory, rather than the large number of state-action pairs,

with other RL agents in the same or similar environment can be used to quickly initialize them

with good base features. This can improve adaptability in multiagent systems or for environmental

changes. This is similar to human learning that mimic others or following advise from a teacher or a
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coach. Similar approaches are studied in the transfer of learning context, such as imitation [13,94]

and advising [14, 15].

4.4 Conclusion

We have described a novel reinforcement learning framework that trains relevance vector ma-

chines (RVMs) as function approximators with mini-batch samples. By transferring RVs acquired

during mini-batch training, the RVM-RL maintains the learned knowledge, snapshot memory,

which are considered as important experiences. By first evaluating the new RV bases and not

transferring them if they are judged to be detrimental, we filter negative knowledge transfer that

can deter learning.

The major contribution of our RVM-RL approach is a unique extension of the relevance vector

machine for sparse Bayesian reinforcement learning. The RVM is fully considered and examined

as a function approximator for reinforcement learning. Furthermore, with sparse solutions, it can

provide computational benefits by reducing the required number of samples to explore. Most

significantly, snapshot placement analysis facilitates an understanding of the solutions that can lead

to further investigation of algorithms and problems in the discovery of an unknown optimal policy.

Policies learned by the RVM-RL can lead to a useful analysis of the state-action space structure

by examining the snapshots after training. This analysis can also be utilized for a transfer of

knowledge for imitation or advising. Finally, empirically we observe the improvement of learning

speed, which is caused by augmented snapshot memory.
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Chapter 5

Continuous Action Spaces

In this chapter, we examine how the acquired snapshot memory from the knowledge acquisition

and retention framework can be used to improve learning performance, especially in continuous

action control problems. First, we introduce the improved framework in Chapter 4 without succes-

sive relevance vector transfer. This improvement is made since one RVM function approximation

is sufficient with an additional weight update rule and the novel relevant experience replay. In the

framework, an agent memorizes the most significant snapshots and stores them in the memory as

before. With the snapshots, we suggest the novel real-valued action sampling method by using

snapshot memory.

Reinforcement learning (RL) problems are often modeled as finite Markov decision processes

(MDP) [42] with solutions that lie in discrete spaces. Real world problems, however, require

multidimensional, even continuous state representation. Thus, the curse of dimensionality gets

worse when continuous actions are needed. In the infinite state-action spaces, fine discretization

can lead to successful control, but this can result in the need for a prohibitive amount of experience

[95].

In practical reinforcement learning studies, function approximation estimates the state-action

(Q) values to generalize based on limited experience to overcome the lack of experience. Param-

eterized Q function approximators have been successfully applied to various problems [51–55].

Some investigated transfer learning approaches to improve learning efficacy over the function ap-

proximations [13, 15, 94, 96]. Also, some studies have demonstrated convergence in practical ap-
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plications involving continuous domains [57, 97, 98]. However, these approaches are still slow for

practical applications and require numerous samples to learn convergent, near-optimal policies.

Perkins and Pendrith [37] showed that when the environment is partially observable, TD learn-

ing (SARSA or Q-learning) needs to follow the policy with real-valued continuous actions. Also,

Lee and Anderson [57] showed that continuous actions take finer control to improve performance,

and they can balance exploration and exploitation by directly searching an action over function

approximation regardless of maturity. When the function approximation is not mature, searched

action can be equivalent to guided exploration. When fine control is essential as in the applications

such as medical surgery, the continuous space action control can be beneficial.

Several studies have shown that continuous actions allow the solution of problems that are

impossible to solve with coarse discretization of action space [98–100]. The following studies

considered alternatives to discretization. From a finite set of actions, some researchers obtain

real-valued actions by interpolating discrete actions based on the value functions. Millan, et al.,

[101] sampled real-valued actions from neighbors incrementally based on the approximated value

function. Hasselt, et al., [99] select actions that have the highest Q value from the interpolator.

Lazaric, et al., [98] use Sequential Monte Carlo methods, which resample real continuous actions

according to an importance sampling. However, these approaches require additional computations

to search continuous actions.

We showed that our knowledge retention framework with relevance vector machine function

approximation can be successfully adopted and the gradual snapshot augmentation improves the

robustness of learning. However, the RVM-RL with augmentation suffers from a growing search

space when a problem requires continuous action control. The sparse nature of RVMs captures

the significant masses of an agent’s experience, and it is observed that relevance vectors tend to be
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located in the modes of the Q estimation surface. This happens especially when the Q estimation

converges to the true Q values. Thus, we can reuse the actions in a relevance vector set since one

of them is likely to be an optimal action.

In the following sections, we introduce a gradient descent approach with backpropagation and

the proposed RV-sampling approach that is followed by the experiments on the simulated octopus

arm control problem and analysis.

5.1 Gradient Descent Approaches for Continuous Action Search

In this section, we examine the gradient descent approaches for the problems in continuous

action spaces. Both neural network and relevance vector machine function approximators are

derived to search optimal, real-valued actions.

5.1.1 Action Search for Neural Network Function Approximation

The best action leads to the maximum estimated Q value on each step. At time t, with trained

weights vt and wt (for hidden units and output units respectively), the estimated optimal action a∗t

is determined by this maximization step [95]:

a∗t = argmax
a

Qvt,wt(st, a).

For neural networks, Lee and Anderson [57] have demonstrated continuous action search with

back-propagation in neural networks. They use back-propagation to calculate the derivative of Q

with respect to the continuous action input. We can find the best action a∗ that maximizes Q(st, a)

by using gradient ascent of Q(st, a) with respect to a. Since the feed-forward output is Q, the
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gradient step is derived as below:

∂Q(st, a)

∂a
= w>t � (1− z2)v

(a)
t

>
,

where � represents a component-wise multiplication, v
(a)
t are the weights applied to action input

(v = [v(s),v(a)]) and the hidden unit outputs z = h(Xv) with the activation function h(·) =

tanh(·). In the beginning, the network approximates the Q function poorly, and the found action

is not likely to be the optimal. This will lead to further exploration in early stages. However, as

the training goes on, or as ε decreases to exploit the learned policy, the accuracy of approximation

grows, and back-propagation search will be close to the optimal. For faster search, we use Moller’s

SCG [92] that uses gradients with approximate second order derivatives.

5.1.2 Action Search for RVM-RL

We examine a continuous gradient descent action search over the RVM-RL framework with

Gaussian kernel. When function approximation is mature, the best action leads to the maximum

estimated Q value on each step. At time t, with trained weights wt, the estimated optimal action

a∗t is determined by the following step [95]:

a∗t = argmax
a

Qwt(st, a).

With Gaussian kernel k(x,x′) = exp(−γ‖x− x′‖2), from the mean estimate

Q = f(x) =
N∑
n=1

wnk(x,xn) + b = Φ(x)w + b,

69



we derive the gradient for input x

∂Q

∂x
= −2γ(x− x′)>(w � Φ(x)),

where � is an element-wise multiplication operator and x is a N -by-M matrix composed by N

M -dimensional relevance vectors. Since x = [s>a>], the last dim(a) columns are gradient for

action search. Using scaled conjugate gradient (SCG) [92], action search will utilize real-valued

continuous actions for finer control.

Along with the continuous action search, automatic action selection based on RVM distribution

output on Q estimation can be adopted. Using Maximum Expected Improvement (MEI) [102], the

improvement measure I(Q, θ) ∈ [0, 1] can be used as ε for ε-greedy action selection.

5.2 RVM-RL with One Function Approximation

The main goal of relevance vector sampling is minimizing the computation costs for continuous

action search. By using the sparse solutions of relevance vector machines, we can easily construct

a continuous action set that has the best action with a maximum Q value. To tackle the large

search space problem with real-valued continuous actions, it is required to improve the RVM-RL

as follows.

5.2.1 Relevant Experience Replay

The RVM-RL [103] can be slow to learn when the problem is extremely complex. When the

number of input dimensions grow and the state and action spaces are continuous, the RVM-RL

spends much time on maintaining multiple RVMs and updating relevant parameters. Having only
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Figure 5.1: The modified RVM-RL learning framework. Instead of maintaining multiple RVMs, it shapes
a single RVM with relevant experience replay.

one RVM can reduce the required computation or transfer processes. However, a single RVM can

be unstable with overfitting on each batch of training data. As a solution, we suggest a relevance

vector storage, snapshot memory, for experience replay–we named this as relevant experience

replay. Thus, the modified RVM-RL, after each batch, stores relevance vectors and replays them as

a training sample that is combined with the new minibatch sample. From pilot tests, it is observed

that the relevant experience replay reduces the possibility of losing sparsity with augmentation.

Figure 5.1 depicts the modified RVM-RL with the relevant experience replay.

5.2.2 RV Sampling for Continuous Actions

The previous section described the derivative of a radial basis function kernel for the gradient

continuous action search over RVM function approximation. Focusing on the action a, we can
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rewrite the previous equation with respect to the action gradient:

∂Q(st, a)

∂a
= −2γ(wt � φ)>(a− a′), (5.1)

where a′ is actions in a set of relevance vectors. These gradient search approaches, however,

require additional computational costs for optimization. Furthermore, there is no guarantee for

global maximum solution with the additional computation since the Q approximation can have

multiple local maxima.

Figure 5.2 shows that with multiple RVs, depending on the selection of kernel parameters, it is

likely to have more than one local maximum, which makes it difficult to find a global maximum

with a gradient descent approach. Along with the multimodality, it is observed that the placements

of relevance vectors are located at the modes of the Q estimation surface.

Now, we suggest a way to use an RVM as an action sampler based on the observation. With

an assumption that the current Q estimation is valid, the action sets that are stored in relevance

vectors lead to local maxima. For greedy action selection, the RV action with highest Q value in

the action set can be chosen. From state st, when current relevance vectors are stored in X(RVM) =

[s(RVM), a(RVM)], the candidate actions are ã(RVM) after removing duplicate elements. From the

candidates, we select action as follows:

a∗t = argmax
a∈ã(RV M)

Qwt(st, a). (5.2)
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(a) Q plots

(b) Q values for all actions at the State 4

Figure 5.2: Multi-modal Q function approximation with RVM-RL. As learning converges, relevance vectors
are place the modes of Q function approximation. Restricting the search of continuous actions to relevance
vectors lead the proposed RV sampling.
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By using the RVM-RL framework, the relevance vector sampling simplifies the continuous action

set construction greatly. Additional computation is only required to remove the duplicate actions

in relevance vectors that are taken in different states.

5.2.3 Kernel for Bases

For the given MDP model, RVM function approximation maps state and action inputs to the

estimated Q values, ie. Q : S ×A→ R for state set S and action set A. Since the positive definite

kernels are closed under multiplication, Engel, et al., [104] separately compute the correlation

between different state values and the correlation between different action values with the product

kernel.

k(s, a, s′, a′) = ks(s, s′)ka(a, a′)

Interestingly, the kernel approach enables us to handle both parametric and nonparametric prob-

lems. In this chapter, our target problem includes finding a general solution for different goals, so

we include goal position in the input, ie. Q : S ×A×G→ R for the goal position set G. For this,

we extend the product kernel with an additional kernel for the goal inputs.

k(s, a, g, s′, a′, g′) = ks(s, s′)ka(a, a′)kg(g, g′)

For the continuous action space, this product kernel can increase the search space. Thus, the

proposed search of actions with relevance vectors can simplify the problem.
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Figure 5.3: 2-dimensional octopus arm model with N compartments [2]. Spring-like muscles, 2 longitu-
dinal (dorsal and ventral) and 2 transverse, surround a constant area C, and 2N + 2 masses connect the
muscles.

(a) Initial State (b) Rereaching the goal

Figure 5.4: The octopus arm control task (10 compartments)
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5.3 Octopus Arm Control

In this section, we investigate the efficiency of our RV sampling approach for continuous action

for reinforcement learning with the simulated octopus arm control problem. A real octopus arm is

a complex organ with many degrees of freedom. Here, the Yekutieli’s two-dimensional model [2]

is used (Figure 5.3). The model is composed of spring muscles for each compartment. The basis of

the model is that muscular hydrostats maintain a constant volume [105], so forces are transferred

among the segments. Gravity, buoyancy, fluid friction, internal particle repulsion and pressure, and

muscle contractions are computed each time step. For our experiments, we implemented a Python

version of the octopus arm model defined in the RL-competition [106] (Figure 5.4), which simu-

lates the simplified physics in Yekutieli, et al., [2]. The problem contains 10 compartments, and

the ventral, dorsal, and transverse muscles are controlled by independent activation variables. For

the experiments, we fix the base and do not consider rotation about the base. To make the problem

simple, Engel, et al., [65], used 6 predefined discrete actions. Here we do not predefine actions.

Without reducing the action space manually, we train the arm to learn from the full action space

defined by 30-dimensional real-valued actions. For the 10-compartment example, the state space

is defined by 88 continuous values: x-y coordinate positions of each joint, and their velocities.

We place the goal at (4, 2) as in Figure 5.4. Initially the base of the arm is placed close to (0,

0) and the arm is straight toward the right. The target task is touching the goal with any part of

the arm. On each time step, the arm receives −0.01 as a penalty, and if it reaches the goal, it gets

10 as a reward. The maximum number of steps per each episode is limited to 1000 steps. Thus,

if the arm touches the goal at the last moment, the total reward will be 0. If it fails to reach the

goal, the total will be −10. Positive, larger rewards are obtained when the goal is reached sooner.
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The episodes are repeated 200 times with exponentially decreasing ε value from 1 to 0.01. Each

experiment was run 10 times.

Figure 5.5 shows the average learning performance with RV-based continuous action selection

in the RVM-RL. For the test, the best performing parameters from pilot tests were chosen. We use

the kernel parameter γk = 10.0 and the learning rate c = 0.6. The maximum number of RVM

iterations was set to 100 and tolerance threshold was set to 1× 10−5.

In the beginning, since the RVM-RL agent starts learning with no RV basis, the agent explores

the world randomly or revisits one of a few actions in a RV set when ε decreases. This pure explo-

ration stage does not have any success record, but it accumulates the RV samples with continuous

actions. After about 25 episodes, as the agent applies RV actions more often, instability of learning

happens because of poor Q approximation. As learning continues, after 50 episodes of experience

the transient curve quickly converges in both reward and step curves. Eventually, it finds a good

solution to reach the goal in 137 steps. These results are comparable to our previous continu-

ous action search with neural networks [57] but with very low cost for search. With the similar

performance, RV sampling benefits from its sparsity again. By evaluating the small number of

actions, it can quickly find a greedy action while neural network back-propagation search spends

more time with gradient descent updates. Furthermore, the RV sampling has room for improve-

ment by adopting efficient exploration strategies such as importance sampling [98] and Bayesian

exploration-exploitation control [63, 107].

Figure 5.6 depicts the continuous actions in the chosen relevance vectors after training. After

training, 21 RVs are achieved, and they repeat the two actions, one full contraction on dorsal

muscles (action2) and a more complex s-shaped muscle contraction (action1). These two actions

are alternated to curl the octopus arm to reach the goal. We can observe that sparse (only two)
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(a) Initial State

(b) Approaching the goal

Figure 5.5: Successful learning with RVM-based continuous actions. Blue line represents mean steps and
rewards over 10 experiments, and green region shows the min and max values.
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Figure 5.6: Two core continuous actions found in 21 RVs after training. As the annotated number in each
box represents the contraction force. 1 means full contraction force and 0 means releasing action without
any force on a muscle.
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Figure 5.7: Successful transfer learning from two separate tasks to a moving goal task on each episode. In
the beginning, it oscillates without noticing the changes of the goal, but as it proceeds, it discovers a good
policy that can handle both goals. Blue line represents the average over rewards over 20 experiments, and
green region represents the minimum and maximum values.

action options are left. This supports the argument about the benefits of RV sampling over slower

neural network gradient descent action search. The solutions are sparser, so it is faster to evaluate

the actions. However, we need to be careful about extremely sparse solutions that are likely to miss

important samples, which can result in a poor policy. We expect this problem could be solved with

better exploration strategies.

Now, we generalize the problem to have multiple goals. In this experiment, we change the goal

positions to (4, 2) and (4, -2) every other episode. Alternating the goal locations can disturb what

is learned, especially when it overfits to one goal. Thus, this problem ends up with oscillating per-

formance. To simplify this problem, we adopt transfer learning. We train for two goals separately,

one with (4, -2) and the other with (4, 2). After finding near-optimal policies from two tasks, an
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agent learns two curling actions toward the different goal directions. After that, we transfer the

learned relevance vectors to tackle the changing goal problem. In this problem, we added goal

position in the state input along with state and action. Figure 5.7 shows the successful learning

curve from 20 experiments. With the transferred relevance vectors, after 20 episodes of oscillation

with random exploration (large ε), it quickly discovers good continuous actions and a near-optimal

policy that reaches the goals quickly. For this experiment, we used the same parameters that we

used for the previous single goal experiment.

Videos showing the arm controlling at different learning stages are available at http://www.cs.

colostate.edu/~lemin/octopus.php.

5.4 Conclusion

In this chapter, we proposed a sparse Bayesian reinforcement learning algorithm with novel

relevance vector sampling. The RVM-RL framework has been improved to handle problems with

large search spaces by using experience replay with relevance vector samples. The proposed ap-

proaches are successfully applied to the high dimensional, continuous octopus arm control prob-

lem, even with alternating goals.

The major contributions of this chapter are the modification of the RVM-RL and low-cost,

continuous action sampling. To overcome the limitations of the RVM-RL for continuous action

domain problems, we replace the costly target function approximation shaping with significant (or

relevant) sample storage for relevant experience replay. In addition, by reusing already discovered

relevance vectors, our approach lowers the continuous action search cost to constant time. The

approach proposed here to achieve the action sets from relevance vectors resembles importance

sampling in sequential Monte Carlo learning [98], so its computation load is less intense than the
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direct line search as in [57]. Since the RVM-RL stores the sparse relevance vectors from the learn-

ing process, there is no additional sampling cost required. In addition and most importantly, the

relevant experience replay suggest a novel approach to improve learning stability by reintroduc-

ing only the necessary inputs to prevent sampling bias. Also, by using the snapshots as bases, an

agent can build new knowledge upon the existing ones so that it makes learning more efficient and

robust.

The following steps will be taken to further improve the approach described here. Since the

proposed approach assumes the eventual convergence of Q approximation, it can guarantee fast or

stable learning only when it reaches the near-optimal point. Thus, we can combine Equation (5.1)

and Equation (5.2) by using the RV actions as starting position for gradient search for improved

learning performance in early stage. Instead of random exploration, however, if we sample actions

efficiently based on the current RVs and Q estimation, the RVM-RL is expected to place RVs on

the peaks of new Q estimation and the correct action with the highest Q value will be selected with

greedy strategy.
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Chapter 6

Practice in Reinforcement Learning

This chapter introduces our practice approach [108] to improve the learning performance in

target tasks. We define practice as a kind of transfer learning but with a no-reinforcement or no-

goal related source task. The idea of practice comes from human development. Occasionally,

babies wave their hands and arms without any purpose. From successive incidents, they realize

the effects of the random movements, and they use this experience to better perform in a specific

task such as grasping a toy. Similarly, athletics spend a lot of time on practice so that they can

out-perform in real games.

Natural intelligence is developed from acquired experience and adaptation to new environ-

ments, resulting in the learning of new knowledge. The repetition of this cycle constructs new

knowledge and sharpens acumen. Machine learning studies have tried to mimic this behavior and

have shown successful transfer of knowledge in various domains. The benefits from transfer learn-

ing in supervised learning have been shown in textual data classification [26], natural language

processing [109], image classification [110], WIFI localization [27], spam filtering and intrusion

detection [28].

A reinforcement learning (RL) agent needs a fair amount of experience to find a near-optimal

policy. Transfer learning has been investigated as a means to reduce the amount of experience

required. Transfer learning can boost reinforcement learning (RL) in many tasks, such as video

games [59], and robot soccer [111]. In reinforcement learning, since the samples for training

contain an agent’s behavior, schemes in addition to simple parameter value transfer can be adopted,

such as smooth landing imitation [13, 94] and advising [14, 15]. However, these approaches are
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limited to knowledge exchange between two reinforcement learning tasks. When the target task or

the goal is not unveiled, it is impossible to collect knowledge for transfer. Transfer learning that

requires another similar reinforcement learning task as a transfer source can also be costly in the

amount of experience required.

In this chapter, we examine the possible “practice" approach that transfers knowledge from a

non-RL task to a target RL task to avoid the expensive data sampling. By using snapshot memory,

we analyze how practice captures the distributions of state and action spaces in an environment. To

better understand the benefits of practice, we focus on the obtained snapshots from the knowledge

retention framework. The analytical power of the framework through a Bayesian interpretation

can help us observe how practiced knowledge assists successive learning. Because of the sparse

nature of RVMs that capture the significant mass of an agent’s experience, an RVM-RL helps

us understand how state transition prediction in Anderson, et al., [96] improves the performance

of reinforcement learning. For this, we use a modified version of the RVM-RL as a learning

framework to collect the experiences in practice to explain what knowledge an agent obtains from

practice and how it can be applied as a feature space for reinforcement learning. We demonstrate

how practiced knowledge contributes to reinforcement learning by fixing the RV bases with the

suggested framework.

This chapter introduces a novel learning approach that acquires important snapshot samples

from practice and then applies them to a target RL task without changing learned bases. Results

show an improved learning efficiency through practice in classical benchmark problems and limi-

tations in OpenAI Gym problems.

84



Figure 6.1: Neural networks for state change prediction and Q estimation. First, neural networks are trained
to predict state changes. Then the role of the final layer is changed from predicting state change to predicting
future reinforcement as the value of a Q function.

6.1 Pretraining Deep Networks for Reinforcement Learning

Anderson, et al., [96], demonstrated how learning the dynamics of an environment can facilitate

the learning of a Q function in multilayered neural networks. For complex problems in practice,

pretraining neural networks can greatly reduce the number of interactions with an environment that

are required to achieve good performance.

Figure 6.1 explains how network weights are pretrained and transferred for learning a Q func-

tion. To pretrain the neural networks, state transition samples of state st, action at, and next state

st+1 are collected. From the samples, st and at are used as input and st+1 − st forms the target

output to fit. The scaled conjugate gradient (SCG) algorithm [92] was used to train the network

to minimize the mean squared error in the outputs. For this pretraining stage, any reinforcement

learning related information such as rewards, goals or objectives is not provided.

After pretraining the networks, a reinforcement learning agent collects mini-batches of st, at,

reward rt+1, st+1, and at+1 samples. With these mini-batches, the pretrained neural networks are
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further trained to estimate Q values by minimizing the Bellman error with SARSA [35] update.

Again, the SCG algorithm is applied. To lessen the chance of overfitting with each mini-batch, the

number of iterations of the SCG algorithm is limited to a small number.

6.2 RVM Practice for Reinforcement Learning

Here, we replace the term pretraining with the more general term practice. We focus on dis-

covering knowledge that summarizes the dynamics of an environment. We adopt the relevance

vector machines to discover such knowledge. We develop fixed-basis RVMs to examine the ob-

tained knowledge efficacy for efficient reinforcement learning. For this, we first summarize the

slight modifications to the RVM-RL framework with a fixed-basis and describe how to incorporate

practice in the learning of an agent and how to apply this to actual problems.

6.2.1 Fixed-basis RVM (fRVM)

For efficient learning, the fast marginal likelihood maximization algorithm for RVMs [40] adds

or removes bases, as defined by the set of RVs, to find the best fit that maximizes the log-likelihood.

However, when we already know the best bases or alternative ones, it is not necessary to go through

the RV addition or removal process. Assuming that XRVM are relevance vectors, we can define

the feature vector φ with kernel k(·) as follows:

φ(x) = k
(
x,XRVM

)
.

Now, we can alternatively compute the following weight mean and covariance and prior distribu-

tions without modifying RV bases. First, compute the mean and covariance of the weights. Here,
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Φ, representing φ(x), is the similarity of x to the preset relevance vectors:

µ = βΣΦ>t

Σ = (βΦ>Φ + αI)−1.

From the weight estimation, the hyper-parameters are computed:

γi = 1− αiΣii,

αi ←
γi
µ2
i

,

β ← N −
∑

i γi
‖t−Φµ‖2

.

Here, α and β represent the hyper-parameters for the prior distribution of weights and target. γi is

interpreted as a measure of how well-determined the weight wi is by the data. Φ can be defined as

a matrix composed of training vectors transformed by the basis function. t is the Q-learning target.

Figure 6.2 shows the application of the fRVM to a classic quadratic sine curve fit problem from

Tipping, et al., [39]. Manually setting the seven fixed RVs, we can obtain good predictions with

the radial basis function (RBF) kernel parameter γk = 0.06 and tolerance 1× 10−3.

6.2.2 RVM-based Practice for RL

In the practice stage, a regular RVM predicts state changes and discovers the relevance vectors

for reinforcement learning tasks. Our hypothesis is that learning the dynamics of the world can

result in the discovery of knowledge that can be applicable to reinforcement learning tasks. This

was empirically examined with deep networks [96]. We expect this will be the same with an
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Figure 6.2: fRVM with preset RVs (red dots). Blue dots represent the training samples and red line shows
the prediction curve fit.
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RVM function approximation. RVMs relate the learned experience to input samples, so we expect

to interpret what was learned in the practice stage more easily than from the pretrained neural

network structures.

To improve the learning speed and examine the practice contribution, we adopt fRVM-based

reinforcement learning that do not change the RV bases. In the previous section, we observed

fRVMs can fit well when the bases are known. From the randomly explored or collected samples,

we can train an RVM to predict the next state or the difference between current and next state. The

learned RVM produces relevance vectors that capture key dynamics of an environment. Assuming

these RVs are known bases, we can build a fixed-basis RVM for reinforcement learning (fRVM-

RL). Now the fRVM-RL adjusts weights, so it estimates Q vales based on similarity kernel features

to the learned RVs.

In a reinforcement learning framework, we use fRVM as a function approximator that estimates

Q-values. Unlike the RVM-RL, it does not need to maintain multiple RVMs and does not need to

transfer RVs in each step. It simply updates weights following the RVM update rules. Thus, after

practice results in good bases for reinforcement learning, fRVM-RL can learn a policy very effi-

ciently. Algorithm 3 describes the learning algorithm for practice and fRVM-based reinforcement

learning.

How to collect practice samples to improve the target learning performance is a significant is-

sue. Various practice approaches can be investigated but in this chapter, we focus on previously

examined state-transition dynamics samples and random sample collection. First, we can use a

simulation of a dynamic system to generate samples. In this case, we can have two different op-

tions for the regression target, the next state or the difference between the next state and current

state. When using dynamics simulation, the next state is close to the previous state and the samples
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Algorithm 3 RVM-Practice and fRVM-RL

Collect L samples of tuple (s, a, s′) using environment dynamics.
Set regression target z = s′ or the state changes z = s′ − s.
Train RVM and discover basis RVpractice and weights wpractice.
Initialization: the basis sample XRVM and weights w of fRVM with practiced RVpractice and
wpractice.
Choose discounting factor γ ∈ (0, 1], ε ∈ (0, 1], learning rate c and cε ∈ (0, 1].
for each mini-batch do

Select action at given state st by ε-greedy action selection. Apply at to arrive at st+1.
Observe N samples, (st, at, rt+1, st+1) at consecutive time steps t.
Set target y = rt+1 + γmaxaQw,α,β(st+1, a)
Train fRVM
w = (1− c)wt + cwt+1

Decreases ε = ε× cε
end for

are more likely dependent on each other, which can require more samples for the practice stage.

With the state difference target, we can reduce the required number of samples and increase the

independence of samples. Random sampling can be used when there is no simulation model for

dynamic sampling. Without knowing the dynamics of the world, it randomly generates samples

with a certain distribution. Also, it can reduce the possible biased sampling from simulated dy-

namics. However, it is difficult to understand what it learned from this randomly sampled practice

by disconnecting correlation between st and st+1 since st+1 is not dependent on st and at. Further

strategies should be investigated for better practice models and efficient reinforcement learning.

We will discuss more about this issue in following sections.

6.3 Experiments

We investigate the efficacy of RV bases that are built by RVM-based practice with two classic

reinforcement learning benchmark tasks. The first task is the mountain-car problem consisting of

an under-powered car that must climb up a hill is tested. For the second task, we test the pole
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balancing problem in which a pole must be balanced by pushing on the cart to which it is attached.

We compare RVM-based practice methods on these tasks with the following RL algorithms. Neural

fitted-Q learning (NN) is a well-known successful learning framework with a similar mini-batch

learning structure. The Gaussian process temporal difference (GPTD) algorithm has a Bayesian

structure similar to RVMs. Finally, the RVM-RL is included to allow the direct examination of the

efficiency of practice.

To examine the cases with large search space for practice, we apply the proposed fixed RVM-

RL to two Box2D problems in OpenAI Gym (http://gym.openai.com) [112]. The first task is the

lunar lander that controls a spaceship that fires main and side engines to smoothly reach on the

landing pad. The second task, car racing, is to learn how to control a car from the top-down racing

track image pixels. Both problems require large amounts of exploration to obtain a good policy.

Although solutions are found for lunar lander, yet no one found solutions for the car racing task.

With these two examples, we discuss the limitations of fixed bases learning approach.

6.3.1 Mountain Car

We are revisiting the mountain car problem in Chapter 4. that controls an under-powered car

that cannot climb directly up the right hill, but must first be pushed up the left hill to gain enough

momentum to reach the goal at the top of the right hill. Available actions are push forward (+1),

push backward (-1), and no acceleration (+0).

For the practice stage, we randomly generate samples p = (xt, ẋt) in the range of xt ∈

[−1.2, 0.5] and ẋt ∈ [−2.0, 2.0]. 10 repetitions of the generation of 1000 practice samples re-

sult in different numbers of RVs, ranging from 12 to 18. During this practice stage, the RBF kernel

parameter γk is set to 1.0, and the maximum number of iterations is limited to 100.
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The reinforcement learning discount factor γ is set to 0.9. To test with a small number of

exploration actions, we exponentially decrease ε from 1 to 0.1 with a factor 0.9885. With the

decreasing ε, actions are chosen by ε-greedy algorithm. This is repeated 1000 times. The mini-

batch of 1000 steps is used to update the fRVM weights for Q function estimation. This is repeated

for 200 mini-batches. For fRVM-RL training, we preset the fRVM with the RVpractice achieved

from the practice stage. The RBF kernel parameter γk is not changed from 1.0 to accommodate

the achieved knowledge. The learning rate c = 0.2 was best-performing in our pilot tests and used

for the mountain car task tests. The fRVM maximum number of iterations is set to 10. Neural

networks with two hidden layers, each of 20 units, are chosen for comparison. Moller’s scaled

conjugate gradient optimization algorithm [92] was limited to 20 iterations to avoid overfitting.

For GPTD, the RBF kernel parameter γk = 0.01, the accuracy threshold v = 0.1, the convergence

threshold η = 1× 10−4, and initial standard deviation σ0 = 0.1 result in the best performance.

fRVM updates only the weights in the middle of training, and as we can see in Figure 6.3,

fRVM-RL quickly finds the best policy. Comparing the convergence point, fRVM-RL with practice

converges to good performance with 100 fewer mini-batches than the previously best performing

algorithm, RVM-RL. Since we start ε = 1, we observe that the starting points of the curves are not

different, and the transferred weights are not utilized for jumpstart test. However, by not adding

or removing bases in the middle of training, the training is simplified with linear weight updates

that reduces learning time considerably. Most of all, this exemplifies the RV bases obtained from

practice well capture the distributions of main factors for correct Q estimation.
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Figure 6.3: Average of steps to reach the goal in mountain car problem. The average curve line is computed
from 10 experiments. Practice reduces the required number of samples greatly. 1000 samples (the number
of steps in one minibatch) are used for practice. The shaded areas represent 95 % confidence interval.

.

6.3.2 Pole Balancing

To examine the effects of practice, we test the pole balancing problem in Chapter 4. The

objective is to apply forces to a cart in a given track and to keep the pole from falling over. Three

actions to control the cart are defined: move left, move right, and apply zero force. The goal is to

maintain the pole upright as long as possible.

For the practice stage in the pole balancing environment, we use dynamic simulation and train

an RVM to predict state changes. 100 practice samples are good enough to produce the necessary

bases for fRVM-RL training. In 30 practice stages, RVMs produced from 7 to 20 of RVs. For
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practice, the RBF kernel parameter γk = 20, and the maximum number of iterations is limited to

100.

All tests share the discount factor γ = 0.99 and decrease ε from 1.0 to 0.1 exponentially. For

training, 100 mini-batches with 1000 samples each are collected. fRVM-RL uses the RBF kernel

parameter γk = 20 and the learning rate c = 0.2. The best parameters for the neural networks and

GPTD were found from pilot tests. Neural networks with 10 units in each of two hidden layers

was the best performing structure with the maximum number of iterations for SCG was set to 80.

GPTD performed best when v = 1 × 10−5 and η = 0.1 Initial standard deviation σ0 = 10 and

the RBF kernel parameter γk is set to 1× 10−5. As we can see in following results, even with the

best parameters, we cannot make the two function approximators work in 100 minibatches. They

required twice as many samples to find an optimal policy.

Similar to the mountain car task, we can observe that practice greatly contribute establishing

good basis for reinforcement learning function approximation. The fRVM-RL quickly reaches

the optimal point and steadily converges. Comparing to the RVM-RL, fRVM-RL can save more

than 40 mini-batches that contain more than 40,000 samples (Figure 6.4). For the pole balancing

task, we found that adding 100 samples for practice results in learning good performance quickly,

reducing the number of samples needed to approximate Q function correctly by 40,000 samples.

6.3.3 Racing Car and Lunar Lander

To examine the efficacy of practice in complex problems, we applied the fRVM-RL to Box2D

problems in OpenAI Gym such as CarRacing-v0 and LunarLander-v2. In the LunarLander-v2, an

agent chooses one of four actions: nothing, fire left orientation engine, fire main engine, and fire

right orientation engine. The goal is landing the craft on the landing zone smoothly. Thus, the
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Figure 6.4: Average of rewards for each episode in cart-pole balancing. Again, practice helps to converge
quickly at the optimal policy. 100 samples (10 % of the number of steps in one minibatch) are used for
practice. The shaded areas represent 95 % confidence interval.
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reward between 100 and 140 is given when it lands near zero speed. When it lands in the goal and

rests, it gets additional 100 while it gets −100 when it crashes on the surface. Firing main engine

cost -0.3, and each leg contact to ground gives 10.

For this problem, most samples that are collected during practice are only the crashing on the

surface. Thus, without strategic practice sampling, it gathers samples without any positive bases

around the high rewarding states, and resulting bases make feature values to near-zero, preventing

a good estimation of Q values.

This problem gets worse in CarRacing-v0. CarRacing is a problem that controls a racing car

from the top-down image of the racing environment. An agent controls steering, acceleration and

deceleration. The states are represented by 96 by 96 image pixels, and each frame costs -0.1 reward

value. Visiting each track tile is worth 1000/N when the number of track tiles are N .

Similar to LunarLander-v2, CarRacing practice does not sample enough. Mostly it gathers

samples around the starting position and makes it hard to estimate Q values when a car travels

far from the starting region with zero feature values. Thus, more strategic practice approaches are

required for complex domain problems. We will discuss this issue in next section in detail.

6.4 Discussion

From the results in the previous section, two questions arise. How does the kernel parameter

affect learning? After fRVM-RL training, does it select right basis only for the RL task? We

discuss these questions in this section.
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6.4.1 Analysis of Practice

To answer the first question, we plot Figure 6.5. The blue line represents the mean of the area

under the mean reward curve. For this plot, 10 test results for each γk value are collected. The

red line and green line represent the number of RVs after practice and active RVs after RL-train.

Here, the number of active RVs are recorded by counting the weights greater than 1.0 × 10−5 in

magnitude.

As γk grows, the base width for RBF gets smaller, which results in more of RVs. However,

the number of active RVs decreases because only task-related bases will capture the significant

mass [85]. Thus, we can observe that with an RBF kernel, the selection of the kernel parameter

greatly affects basis construction and reinforcement learning performance.

Another observation from Figure 6.5 is the difference between sampling methods. With ran-

dom sampling, the practice stage generates a larger number of RV bases while dynamic sampling

eliminates unnecessary RVs. In the case of next state prediction, the small state change makes the

sample similar to existing bases so that it can discard similar RVs. With state change prediction,

the RVM can remove samples that do not incur state changes, which can also result in a reduction

in the number of RVs. Interestingly, when a large number of RVs are used as a fixed basis, the ac-

tive RVs are spread over almost all of the basis and the number is not reduced. We can intuitively

assume that this is caused by the small likelihood that randomly generated samples coincide with

the true basis. This investigation answers the question that we raised in our previous pretraining

study with neural networks. Random generation of samples seems to be less likely to generate a

good basis that is near-orthogonal.
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(a) random sampling (b) dynamic sampling - next state prediction

(c) dynamic sampling - state change prediction

Figure 6.5: The effects of the RBF kernel γk selection with different sampling and target options. The green
dashed dot line represents the number RVs after practice, and the red dashed line shows the number RVs
with non-zero weights. The blue line depicts the mean of the area under the reward curve. The blue line is
scaled on the left reward y-axis and the other two are scaled on the right # RVs y-axis. Only average values
are presented for clear reading of plots. The variances of the number of RVs (green and blue) are less than
1 in (b) and (c) and less than 6 in (a). The range of variation in the reward values is between 1.06 and 6.89.
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6.4.2 Construction of Bases

A few authors have previously studied basis construction for supervised learning or semi-

supervised learning. Raina, et al., [18] posed the self-taught learning approach that requires the

learned structure (or basis) from unlabeled data to be applicable to labeled classification tasks.

This enables transfer from unsupervised learning to supervised learning tasks by building a basis

from unsupervised learning training. Deep learning [113–116] pretrains hidden layers of neural

networks in unsupervised ways and learns the network connectivity structures to be applicable to

a target supervised learning task. However, none of these considered reinforcement learning tasks

that learn from evaluations of an agent’s behavior or reinforcements rather than from known out-

put labels. Anderson, et al., [96] first proposed constructing neural network structures from state

dynamics prediction for reinforcement learning. However, it is difficult to interpret the learned

network structure. By using RVMs, we clearly see the RV bases and how features are generated

with a kernel function. This increases the understanding of the learned bases and environment

dynamics.

Furthermore, by providing fixed-basis RVM, the approach increases the efficiency of learning.

Classical radial basis functions [35], polynomial bases [117], and Fourier bases [118] work well,

but how to select a basis is not well understood. Learning in a small source task, proto value

functions (PVFs) [119] automatically specify an ortho-normal set of basis functions. This bases

can be transferred to tasks with different goals or in a slightly different state space. Practice poses

a harder problem and requires samples without reinforcements or objectives. The RVM bases

learned through practice can be transferred to a broader range of tasks than PVFs.

When the RV bases are well-established from practice, they support successful learning. As we

discussed earlier, when unstable sampling or learning parameters are chosen, it is possible to learn
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poorly on reinforcement learning tasks. For efficient practice, we can investigate 1) kernel methods

for reliable basis construction, 2) practice strategy development, 3) search space reduction, 4)

cyclic training of practice and learning, and 5) non-fixed, dynamic learning based on practiced

knowledge.

Knowing the effectiveness of bases can automate the basis construction during practice. That

is, we can automate the process of finding a good kernel and its parameters. Also, when the found

bases are not good enough, we can restart practice or increase the number of samples. Or, with

cycles of practice and reinforcement learning, learning can be improved further.

For this, we examine if there is any correlation between the hyperparameters and average re-

wards. Some preliminary tests were run to evaluate this and collected 100 samples with successful

runs (
∑

t rt >= 0.9×N where N is the number steps) and poor ones (
∑

t rt < 0.9×N ).

We recorded practice RMSEs, log likelihoods, and variances for each output dimension along

with average rewards. We observed that the data is scattered wide and trends are not obvious

(Figure 6.6). We tested some classification algorithms, such as LDA, QDA, linear and nonlinear

logistic regression, to see if it can be classified. The label is set to true if the mean reward is greater

than 0.9 and false otherwise. Table 6.1 shows the classification accuracy with the 12 features.

Nonlinear logistic regression seems to clearly separate successful cases by looking at the RMSE,

variance and log-likelihood. This tells us that the selected features are strongly related to the

subsequent reinforcement learning performance, so can be the bases for an approach to predicting

the success of a practice model. We will investigate this further with more samples and other

environments to examine if it can be generalized to other tasks.
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(a) rmse1 (b) var1 (c) loglike1

(d) rmse2 (e) var2 (f) loglike3

(g) rmse3 (h) var3 (i) loglike3

(j) rmse4 (k) var4 (l) loglike4

Figure 6.6: Scatter plots of features against average rewards. Errors, variances, and log likelihoods for each
dimension are selected features.
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Table 6.1: Preliminary evaluations for examination of automated practice with 100 practice and fRVM-RL
samples

Classifier Accuracy

LDA 63 / 100

QDA 69 / 100

Linear Logistic Regression 74 / 100

Nonlinear Logistic Regression 100 / 100

6.5 Conclusion

We examined the efficacy of practice for reinforcement learning tasks and observed increased

efficiency. By training an RVM and obtaining RV bases from dynamics prediction, we were able

to successfully transfer the bases and to show improved learning in classical benchmark problems.

With fixed basis learning, we demonstrated how effectively practice establishes bases in these

examples. Also, we observed the limitations of practice when the tasks get complex. Discussion

leads to plans for investigation of more efficient ways to practice and the measure that evaluates

how well bases are constructed.

A major contribution of this chapter is the demonstration of the importance of practice in a ma-

chine learning context. Without providing any objective or reinforcement, practice with an RVM

extends exploration before starting to solve the actual RL task and generates sparse but helpful

bases. As humans practice to develop faster reactions or better performance in real situations,

practice in reinforcement learning even without any goal-directives is expected to improve sub-

sequent learning with reinforcement signals. Additional experience with knowledge construction

from practice, in the form of sets of relevance vectors (RVs), turns out to be the key reason that

makes this work.
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From our discussion about results and practice evaluation, we can further investigate stable

kernel methods and search space reduction. Practice strategies such as human or agent guided

practice ("coaching"), and cyclic repetition of short practice and short learning will be interesting

direction for future study. Allowing adaption of the basis learned from practice might be necessary

not only to compensate for lack of practice but also to be easily extended to the continuous action

tasks [57, 120]. However, investigation of efficient transfer learning should be studied due to

possible disturbances from practice. This line of research will be continued through additional

experiments with the OpenAI Gym tasks.
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Chapter 7

Conclusions

Memory is one of the most important components for successful learning and generalization

of knowledge. This dissertation is motivated by cognitive information processing steps of acquisi-

tion, retention, and transfer of knowledge. When adopting these steps in intelligent systems, how

to retrieve and reuse knowledge is the challenging problem. The proposed framework suggests

the principled, systematic knowledge acquisition and retention. Since the snapshots can be repre-

sentative information about a task, it can be considered as a knowledge representation that can be

generalized over tasks. By transferring the knowledge or snapshots, we examined the generaliza-

tion of them as well. The results summarized here show that the knowledge retention approach

through the framework can make learning robust and efficient by preventing forgetting that causes

instability of learning. Snapshots are shown its analytical power, improve learning performance in

continuous action problems, and generalization over the novel practice application.

7.1 Contributions

Main contributions of this dissertation to reinforcement learning research can be summarized

as follows:

• Impact of the modifications of RVMs:

Various versions of the relevance vector machines extend the applications of them. From

fully online and low memory learning, oRVM can be easily adopted. By adding a bit more

memory with a buffer, boRVM can increase the accuracy of prediction greatly. For multi-
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ple target problems, moRVM can applicable. In general, Bayesian learning allows a user’s

contribution by defining prior distributions. fRVM with fixed bases can reflect users’ in-

depth contribution by adopting human knowledge about the domain for improved learning

performance.

• Impact of sparse learning:

By adopting sparse Bayesian regression model, RVMs, and filtering stages in the framework,

the snapshots are managed to keep the low sparsity level. The small number of snapshots

lowers the memory requirement for learning to be applicable to complex real-world prob-

lems. Learning upon the sparse snapshots minimizes the computational overhead.

• Bayesian learning:

Relevance vector machine, the Bayesian model, provides the advantages of Bayesian learn-

ing. Thus, the framework provide a room for human domain knowledge contribution by

defining prior distributions. Also, the extended state information including covariance im-

proves the learning algorithms. One of the usages is using the variance information for

filtering heuristics. Based on the confidence information about current Q estimates, we can

filter out low confident experience.

• Improved understanding of domain and solutions:

As we discussed in the previous chapters, the policies learned by the proposed frameworks

can lead to a useful analysis of the state-action space structure by examining the RVs after

training. Since the snapshots are raw input samples, we can visualize or examine each of

them to see what snapshots are left after the learning process is done. Some snapshots can
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be related to the learned solution, and the others can represent the domain or environmental

knowledge.

• Generalization of snapshot memory:

Snapshot memory is the knowledge that an agent has obtained from the learning process

with the proposed framework. Thus, we can consider the snapshots as the new knowledge

representation that allows us to transfer them for training. From the cognitive information

processing steps (Figure 1.1), we have discussed that the framework provides the first two

stages. We use the snapshots in the generalization step by a simple transfer learning ap-

proach. The snapshots can be utilized in imitation or advising for heterogeneous transfer

learning. In case of homogeneous transfer, the snapshots can be directly transferred to be

used as the initial bases.

• Improved learning with snapshot memory:

Analysis and thorough observations of snapshots discovered that the snapshot samples are

located at the modes of Q value estimation curves when Gaussian kernel is used. The fact

that this observation is dependent on the choice of the kernel function does not degrade the

possibility of the proposed approach. Rather, it promotes more possibilities of new discover-

ies with various kernels selection. Thus, the analysis of snapshots will lead valuable findings

to further improve reinforcement learning algorithms.

• Impact of practice with snapshot:

The practice approach can lower the required interaction with an environment vastly. Espe-

cially when the cost of real samples are expensive, practice can lower the burden without

using the environment. Furthermore, before tackling goal-directed tasks, we can collect pre-
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knowledge about the domain in the form of snapshots and provide the vast opportunity to

learn the domain and eventually improve learning performance. Results demonstrate how

practiced knowledge contributes to reinforcement learning. The discussion leads to how we

can further improve practice strategies to gain efficiency of learning. With the addition of

strategic practice, its impacts on various applications are promising.

• First solution of the full octopus arm control:

So far, only Engel, et al., [65] suggested the solution for the octopus arm control problem.

However, they limited the number of actions to 6 predefined discrete actions. Without re-

stricting the number of actions, even removing the limitation of discrete control on each

muscle, our approach is the first solution to the complex octopus control problem. This

envisions the possibility of broad applications of the proposed approaches.

7.2 Future Works

This dissertation examined the advancement of knowledge retention and transfer for reinforce-

ment learning. Although it showed large potential of the proposed approaches, it has still many

more to develop. The following lists are future directions to further investigate:

• Hierarchical continuous action sampling for further efficiency:

Although the proposed snapshot sampling approaches are efficient and computational costs

are low, unnecessary additional computation can result if we use continuous actions when it

is not necessary. Child development research such as Piek, et al., [121] examines different

intercorrelations between movement and self-perception. The movement is considered in

terms of fine and gross motor skills. Fine motor skills are in charge of delicate task or move-
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ment while gross motor skills run large muscle movement. Similarly, we can differentiate

the level of control based on hierarchical reinforcement learning [122–127]. The upper level

states use the gross control commands, which are discrete values, and the lower level states

apply the fine controls with continuous snapshot action sampling. By choosing a right tool

for each level, we can improve the efficiency and at the same time, we can save unnecessary

computation time.

• Repetition of practice and learning:

In Chapter 6, we proposed two-stage learning model with practice. In the end, we discussed

how we can evaluate the practice and how helpful the discovered bases are for the target task.

Once we discover better strategy for practice, it can increase the chances to perform better

on the target task. Instead of finishing training after one pass, repetition of practice and learn

can further improve the performance. In addition, practice can be added in shaping transfer

learning approaches, which increase the complexity of problems for transfer learning. Prac-

tice in between the transfer can smooth the knowledge transfer process and is expected to

learn efficiently.

• Strategic practice for jumpstart:

Jumpstart [24] means the enhanced performance in the beginning of a target task learning

after transfer. That is, when a knowledge is transferred from a source to a target task, jump-

start expects high utility of the knowledge from the very early stage of target learning. While

practice can speed learning and shorten the required samples to learn, it does not contribute

to jumpstarting on the target task. This is an intuitive result since the practice does not have

any information to the target task. However, we can ask if there is any practice strategies that
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can improve initial performance of learning. This direction of research can be investigated

along with the above repetitive approach.

• Theoretical examination of snapshot contribution on stability and convergence:

So far, we have examined the stability and efficiency of learning empirically. The conver-

gence and stability need to be more investigated theoretically to reexamine the soundness of

the approaches. This direction of research will improve our understanding of the approaches

and be able to enhance the methods.

• Multiple snapshots for knowledge base:

The snapshot memory can be stored for a task. When the learning process is done, instead of

getting rid of the snapshots, storing them for future training can construct multiple snapshot

models, eventually to build a knowledge base. The multiple snapshots or a knowledge base

can make learning from the existing knowledge not from scratch. The major issue when

developing this approach is how to efficiently evaluate new data samples to compute the

kernel relations with the large knowledge base. Efficient and fast kernel computation is a

key to success for this approach.

• Snapshots for causality analysis:

This dissertation has shown that snapshots can be used for analysis of the problem and the

solution. The analytical strength of snapshots can be used to find possible causality relations

to a certain results. Recent deep learning research [128,129] starts to peer inside the blackbox

model of the deep networks about why or how the networks make a good prediction or

the reason for a specific error when it occurs. However, neural networks are not easily

interpretable. The sparse Bayesian reinforcement learning framework and snapshots can
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provide a plenty of information to analyze the cause of an incident. For example, when an

error happens in a manufacturing belt, our snapshot learning model can provide the snapshots

to better understand the reason to prevent the same errors happening again.

• Convergent RVM-RL:

Greedy-GQ [56, 130] is proved convergent in the mean squared projected Bellman error

(MSPBE). Previous research [57] showed that nonlinear Greedy-GQ algorithm with neural

networks function approximation results in stable learning. Instead of mean squared Bell-

man error (MSBE), the RVM-RL framework can adopt MSPBE as an objective function to

minimize. A brief sketch for the convergent RVM-RL follows.

MSPBE(θ) = ‖Qθ(s, a)− ΠTQθ(s, a)‖2µ

= ‖Π[rt+1 + γQθ(s, a)]−Qθ(s, a)‖2µ

where Π is a projection operator to the linear space and µ(s) represents state visitation prob-

ability. The projection operator takes any value function to the nearest value function ap-

proximation, so the projection operator Π is defined as:

Π = Φ(Φ>DΦ)−1Φ>D

where D is a diagonal matrix with µ(s). The norm ‖Q‖2µ =
∫
Q2(s, a)µ(ds, da).

For the RVM-RL, let current basis Φt, sample state visitation probabilityDt, and the relevant

project Πt:

Πt = Φt(Φ
>
t DtΦt)

−1Φ>t Dt.
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Now, using the projection Πt, the prediction target t′ is

t′ = Πt (rt+1 + γQ(st+1, at+1)) .

The log of margianl likelihood for an RVM is

L(α) = logP(t|x,w,α, β) =
M

2
lnα +

N

2
lnβ − E(w)− 1

2
ln |A| − N

2
ln 2π.

where

E(w) =
β

2
‖t−Φw‖2 +

α

2
w>w

=
β

2
‖Πt(rt+1 + γQ(st+1, at+1))−Φw‖2 +

α

2
w>w.

Comparing this approach with the MSBE-based RVM-RL, we can examine convergence of

the RVM-RL both in theoretical and empirical way.
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