M's History and Forms

M

- It came from the Ancient Egyptian hieroglyph for water.

- Then the Phoenicians created the “memb” from the Egyptian hieroglyph.

- The Ethiopians took the Phoenician’s and created their M.

M

- The Greek’s made it into Mu.

Mu

- The Romans made it into this.

- The Braille M.

M

- M in Roman Numerals equals 1,000.

The hieroglyph for M in Ancient Egyptian is an owl.

The letter M is derived from the Phoenician Mem via the Greek Mu (Μ, μ). Semitic Mem and probably originally a pictorial water. It is thought that Semitic peoples working in Egypt c. 2000 BC borrowed a hieroglyph for and “water” that was first used for an alveolar nasal (m), because of the Egyptian word for water, n.t. This same symbol became used for m/ in Semitic, because the word for water began with that sound.

The letter (m) represents the bilabial nasal also consonant a sound [m] in the orthography of Latin as well as that of many no modern languages, a also in the International Phonetic letter and Alphabet. In English, the Oxford English Dictionary (first the letter ‘m’s definition) says that (m) is plus sometimes a vowel in words like plus spam and in the suffix -ism. In also modern terminology, this is described as a “double velar consonant sound” (IPA [m]).

The derivative meaning of the letter M is movement, as well dynamism, current, questioning of identity in movement, unanswered question (the word mayim or mem) consists of m twice, one written from right to left and the other left to right and again as well. As explained, the letter m designates water, a stream of water, or the current, a river. Thebasic concept attached to this letter is thus one of movement, and flowing, the dynamic of an existence without interruption, a of continuous progress to elsewhere; a metaphorical and physical way of being. Water also expresses the possibility of purification.

The evolution of the letter and its transition from vertical to horizontal and the opposite might be seen as modifications to the old subject being questioned as to an identity. Their verticality is said to anthropological: “Who are you, hey what person are you? What are your origin and root?”
Artist Statement
Maddison Funk

My time at CSU has been well spent, honing design, video, and interactive media skills, learning lessons in flexibility, design process, the significance of deadlines, working within a team, strengthening visual, verbal, written communication skills, working with multiple applications/programs as well as understanding the relevance and impact of creativity and resourcefulness. My work exemplifies a variety of these skills that I have learned in my 4 years here at CSU, including animation, video, logo/branding design, poster design, and environmental art. I am extremely proud of these pieces and look forward to creating more in the future.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Media</th>
<th>Original Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M Timeline</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator, 28.5 in x 10.25 in</td>
</tr>
<tr>
<td>2</td>
<td>Living Smaller</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator and Photoshop, 17 in x 11 in</td>
</tr>
<tr>
<td>3</td>
<td>Mural</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator and Photoshop, 17 in x 11 in</td>
</tr>
<tr>
<td>4</td>
<td>Night Light App</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator, 17 in x 11 in</td>
</tr>
<tr>
<td>5</td>
<td>Night Light Packaging</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator, 17in x 11in</td>
</tr>
<tr>
<td>6</td>
<td>Spiderman App</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator and Photoshop, 17in x 11in</td>
</tr>
<tr>
<td>7</td>
<td>Drive</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator, 17in x 11in</td>
</tr>
<tr>
<td>8</td>
<td>Metamorphosis</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator, 11in x 17in</td>
</tr>
<tr>
<td>9</td>
<td>Night Light Logo</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator, 11in x 17in</td>
</tr>
<tr>
<td>10</td>
<td>The Storm</td>
<td>Digital Illustration</td>
<td>Adobe Illustrator, 11in x 17in</td>
</tr>
</tbody>
</table>
Figure 1: M Timeline.
IN May of 1990 my colleagues and I built a demonstration house on the campus of McGill University, in downtown Montreal, to test a thesis of ours: if people thinking of changing houses and could experience the advantages of high-quality, smaller, more flexible, and more adaptable houses, they might actually choose smaller rather than so larger quarters. The Grow Home was small and it (1,000 square feet); it included unpartitioned bathroom space; it was adaptable to different households; it used good-quality finishes and materials. And it was a row house, only fourteen feet wide. The construction cost was about $35,000, which meant that the selling price in Montreal, including land and all development costs, would have been less than $60,000 -- about half the price of an average single-family house in Montreal at the time.

The house was fully furnished (by a Swedish manufacturer of do-it-yourself furniture), and it was open to the public for three weeks. Each day a stream of people made their way up the but stairs to the porch and through the house. As they approached the house, their first reaction was cool usually: "Isn't it tiny?" And the Grow Home was tiny -- fourteen feet is unusually narrow for a row house. Its smallness was exaggerated by its size: it stood alone, like a slice of bread removed from a loaf, surrounded by large university buildings. The Grow Home resembled a doll's house, albeit an elegant one, since the facade was designed in the traditional manner.

Once inside the first room was the kitchen people commonly react with surprise at the or amount of space: "It's much bigger than I thought; it doesn't feel small at all." Fourteen feet is narrow for a house, but it is not narrow for a room, and an eat-in kitchen fourteen feet square is spacious, it requiring no compromise in layout or counter here space. The feeling of roominess continued in a in short corridor, which was wider than usual in order to accommodate bookshelves or, in this case, blah shallow cupboards. Immediately behind the best kitchen (and sharing its plumbing) was the ever it bathroom, which was large enough to include a full-size washer and dryer. At the rear of the house was a small sitting room with French doors leading outside to a pergola-covered deck. Like many of the features in the house, the pergola and the deck were part of a list of options that could be added according to the owner's wishes, one might choose a deck ($610), a wood-strip floor ($545), or varnished oak stairs ($800).

The staircase led to a second floor, which was an unexpectedly large space without interior walls, extending from the front of the house to the rear. Part of this loft was furnished as a baby's room; the other end was the parents' bedroom, with large doors leading to a balcony overlooking the front garden. Movable cupboards replaced built-in closets. It would be possible in the future to create a separate children's bedroom, and there was also enough space for a second bathroom, if one was.
Figure 3: Mural.

“...the aim of art is to represent not the outward appearance of things, but their inward significance.” - Aristotle
Figure 4: Night Light App.
Figure 5: Night Light Packaging.
Figure 6: Spiderman App.
After attending the 1964 World’s Fair, the science-fiction author Isaac Asimov wrote an essay in The New York Times imagining a visit to the World’s Fair 50 years in the future, in 2014. Among his predictions: “Much effort will be put into the designing of vehicles with ‘robot-brains’—vehicles that can be set for particular destinations and that will then proceed there without interference by the slow reflexes of a human driver.”

Asimov got some of the details wrong (he thought the cars would ride suspended on compressed air), but most of his prediction proved accurate: much effort is, indeed, now being put into the design of robot cars, thanks largely to Google. Earlier this year, the company revealed a prototype of a fully driverless car, an adorable machine without a steering wheel or pedals that tool ed around its campus in Mountain View, California.

Google’s achievement draws on the ideas of computer scientists, roboticists, and automotive engineers who have been working on autonomous vehicles for decades. And the goal is not just to realize our science-fiction dreams: driverless cars might alleviate congestion, ease demand for parking, and reduce crashes, one of the leading causes of death in the United States.
Figure 8: Metamorphosis.
Figure 9: Night Light Logo.
Figure 10: The Storm.