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Correspondence __

Estimation and Identification for 2-D Block Kalman
Filtering

Mahmood R. Azimi-Sadjadi

represented by a zero mean vector Markov field and modeled,
within each two adjacent strips of size M x N, by an Mth order
(along the horizontal direction) 2-D vector AR model with causal
quarter-plane region of support (ROS). Let us define a vector of
pixels in the ith strip of the original image by

Abstract-This correspondence is concerned with the development of
a recursive identification and estimation procedure for 2-D block Kal­
man filtering. The recursive identification scheme can be used on-line
to update the image model parameters at each iteration based upon the
local statistics within a block of the observed noisy image. The covari­
ance matrix of the driving noise can also be estimated at each iteration
of this algorithm. A recursive procedure is given for computing the
parameters of the higher order models. Simulation results are also pro­
vided.

z(i, k) = [z(iM, k)z(iM + 1, k) ... z(iM + M - 1, k)]',

(i, k) E R (1)

whereR = {(i,k):O ~ i ~ P - 1,0 ~ k ~ N-l},P:= N/M,

and z(m, n) represents the intensity ofthe pixel at (m, n)th location.
The 2-D vector AR model with a ROS shown in Fig. 1 can then be
written as

E[u(i, k)z'(i - p, k - q)]

= Quo(p, q) (i, k) E R, (p, q) E S (3)

z(i, k) = 'I>]z(i, k - 1) + 'l>2Z(i, k - 2) +

+ 'l>Mz(i, k - M) + 8oz(i - 1, k)

where o(p, q) represents the Kronecker delta function; E is the
expectation operator, and S = {(p, q): p = 0, 1, q E [0, M]} is
the ROS.

A vector of the observed noisy image is given by

where 'l>m's and 8m' s are the coefficient matrices of the model that
have to be identified and the driving noise sequence {u(i, k)} is a
zero mean white Gaussian vector process with covariance matrix
Qu' Note that although {u(i, k)} is a white vector process, the
elements within each vector can be mutually correlated. The or­
thogonality property of the estimator gives [1]

(4)

(2)

(i, k) E R

+ 8,z(i - 1, k - 1) + ...

+ 8Mz (i - 1, k - M) + u(i, k)

y(i, k) = z(i, k) + v(i, k),

where v(i, k) represents a vector of the scalar additive noise se­
quence {v(m, n)} which is a white Gaussian process with zero mean
and variance a~. Thus, the vector v(i, k) which is defined similar
to z(i, k) in (1) forms a vector process with zero mean and covari­
ance matrix Qv = a~/M where 1M is an identity matrix of size M x
M. It is assumed that {v(i, k)} is independent of {u(i, k)} and {z(i,

k)}.
The 2-D vector AR model in (2) and the observation model in

(4) can be arranged in a block state-space form and the correspond­
ing Kalman filter equations can then be derived [1] to generate the
block filtered estimates at each iteration. However, this requires
identification and estimation of the model parameters and the cov­
ariance matrix of the driving noise sequence from the observed im­
age.

The parameters of the 2-D vector AR model in (2) can be ob­
tained by solving the corresponding set of normal equations. The
normal equation is obtained by postmultiplying z(i, k) by z'(i - p,

II. IMAGE MODEL PARAMETER IDENTIFICATION

Consider an image of size N x N which is scanned vectorially
from left to right and top to bottom. The image is assumed to be
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I. INTRODUCTION

Recursive identification in linear discrete-time dynamic systems
has been the topic of a multitude of papers over the past decade
[2], [3]. In the image restoration area, recursive identification tech­
niques are used to update the filter parameters based upon the local
spatial activities within a processing window. This reduces the
smearing effects that are caused otherwise. Kaufman et al. [4] pro­
posed an identification and estimation procedure for a nonsyrnme­
tric half-plane (NSHP) image model which can be used on-line to
evaluate the covariance matrix of the driving noise and also the
parameters of the model. This method adjusts the image model pa­
rameters for each new pixel of the observed image since it uses a
scalar scanning scheme. Keshavan and Srinath [5] developed an
adaptive image restoration method for a 1-D interpolative model
which is obtained from decorrelating data either row-wise or col­
umn-wise. Katayama [6] proposed a method of identifying the pa­
rameters of a 2-D autoregressive moving average (ARMA) image
model and the filter gain simultaneously. The method proposed by
Azimi-Sadjadi [7] uses the stochastic Newton approach for updat­
ing the parameters of a 2-D block recursive model in the block
Kalman filter structure.

In this correspondence, a recursive identification process for
2-D adaptive block Kalman filtering is proposed which can be used
on-line to estimate the image model parameters based upon each
new block of the noisy image. Unlike the method in [7], the iden­
tification scheme in this correspondence is derived using a nongra­
dient approach [8], [9] and by taking into account the particular
structure of the dynamic model in the block Kalman filter [1]. A
recursive scheme for computing the parameters of higher order
models is introduced which can generate a 2-D vector autoregres­
sive (AR) model with minimized correlation mismatch. Finally,
simulation results are presented.
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However, since the original image is not generally given Pp,q should
be estimated from the observed noisy image. Taking into account
the statistical properties of the sequence {v (i, k)} and using (4) we
can write

Having known Qv' the matrices Pp.q's can readily be estimated from
rp.q's. Now, writing (5) for all the values of (p, q) in S gives the
following vector Yule-Walker equation which should be solved for
<l>m's and Om's:

(p, q) E T

(l3a)

rp.q(n) = M
1

L;L; yet, k)y'(t - p, k - q),
n (/,k)EW"

where

or

(p, q) E T (l4a)

1
rp q(n + 1) = L;L; y(l, k)y'(t - p, k - q),

, (n + I)M (/.k)EW,+,

Wn = {(t, k): {t = 0, 1, ... , i-I, k E [0, N - I]}

U {t=i,k=O, 1,'" ,jM-l}}, i,jE[O,P-l].

(l3b)

The region in which rp,q(n) is evaluated is shown in Fig. 2. The
estimate based upon (n + 1) blocks can be obtained using

where

Yi •j = [y'(i, jM)y'(i, jM + 1) .. , y'(i,jM + M - 1)]'. (12)

Then the estimate of rp •q at the nth iteration is

t, = [0 .. , 0 1M 0 ... 0] .

ith entry

Note that premultiplying matrix fA/I by operator nand postmulti­
plying it by ~ extracts the (i, j)th block of this matrix. Although
fast algorithms such as Levinson method can be used to solve this
system of equations efficiently, the procedure becomes computa­
tionally very laborious when the parameters of the model are to be
estimated for each new block of the noisy image. Thus, it would
be very useful to develop a recursive identification process which
requires neither matrix inversion operation nor solving the system
of (7) at every iteration. Now, in order to develop such a proce­
dure, let us assume that the image field is column-wide sense sta­
tionary. Using ergodic property of the image field, a reasonable
estimate for rp•q can be obtained from

rp •q = _11

111
L;L; yet, k)y'(t - p ; k - q), (p, q) E T (II)

R (/,k)ER

where T = {(p, q): p = 0, 1, q E [-M, M]}, and IIRII is the size
of R. Using a similar approach as suggested in [8]-[11] "».« can
recursively be updated at each iteration based upon the information
in the current block of the image. Let us denote the estimate of rp . q

based upon all the blocks up to and including block n by rp.q(n),
where the block index n is obtained by mapping the 2-D array (i,
j) to a I-D array n with n = iP + j + 1. And block (i, j) or n of
the observed image is defined as

(6)

(5)

(7)

~ :ROSof me Model

(p, q) E S.= Pp•q + Qvo(p, q),

= PP.q-,<I>\ + Pp.q-2<1>& + ... + Pp,q-M<I>~

+ PP-I.qO~ + Pp-l,q- 10\ +

+ Pp-I.q-MO~ + Quo(p, q).

rp,q : = E[y(i, k)y'(i - p, k - q)]

s, = IpO.k P\'-k] ,
lP,.k PO.k

«i-I)M,k-M) ....., , «i-I)M,k)

z (i-Lk-M) __ ~;~;~;~;~;~I-z(i-I,k)
,;<,;,;..;,

(iM,k-M)-

~~~~~~~~~]
-(iM,k)

z(i,k-M) -- !4--~z (i,k)

(iM+M-I,k-M) -" (iM+M-I,k)

pp •q : = E[z(i, k)z'(i - p ; k - q)]

[

RO R\ R~ ]

:~ :~, ~'
where

k - q) and then taking the expectation of the result, i.e.,

Fig. I. Region of support for the vector AR model.

k E [0, M], t E [1, M]

So = [1M -00]', and 0 = [Q~ 0]'.

(8a)

(8b)
r

p
q(n + 1) = I [i~1 N~I yet, k)y'(t _ p , k _ q)

. (n + I)M (~O k=O

where matrix f M is a Hermitian doubly Toeplitz, though its indi­
vidual subelements R, are not in general Hermitian, i.e., R~ "* Rb

k "* 0. From (7) or (9) we obtain

(p, q) E T

In a simpler notation (7) can be rewritten as

Qu = (l',fA/'II)-1

e, = (!&k+,fA/'II)Qu

e, = (!&k+2 fA/ 'I,)Qu

(9)

(lOa)

(lOb)

(lOc)

jM-'
,:. L; y(i, k)y'(i - p, k - q)

k~O

jM+M-' ]
+ kEM y(i, k)y'(i - p, k - q) ,

1
= rp.q(n) + (n + 1)

[ 1/ M jM+ii- ' y(i, k)y'(i - p, k - q) - rp.q(n)],
k~jM

(p, q) E T. (14b)
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Fig. 2. Regions for computing Tp . .<n) and Tp . .<n + 1).

(l9b)IrM II'll'lr
M 1 I~l

LII Ro LSM+' = Lo
where

The recursive equation (18) provides a method for estimating the
2-D vector AR model parameters from the noisy observations. The
advantage of using this nongradient approach over that in [7] is
that the proof of convergence is easily derived [12]. An iterative
procedure for computing the Kalman gain matrix and the error cov­
ariance matrices can also be derived which does not require any
matrix inversion operation. The interested reader is referred to [12].

III. ORDER DETERMINATION OF THE IMAGE MODEL

In Section II, the order of the 2-D vector AR model along the
horizontal direction, i.e., M was assumed to be known. However,
if M is unknown we can fit models of increasing orders and test
their goodness of fit by measuring the correlation mismatch be­
tween the actual correlation values and those generated by the
model. The appropriate order is determined when the correlation
mismatch is minimized. An alternative criterion will be to check
the optimality of the Kalman filter and test for the whiteness of the
innovation sequence [8], [9]. For both criteria the approach would
be similar and is given below. Let us denote the parameters of the
(M + l)th order system by <J?k's and 8i's, k E [1, M + 1],1 E [0,
M + 1]. Then writing (7) for this system gives

or

(15a)

(l5b)

k E [0, M]. (15c)

• + ~ :Regioofor r(n+I)
~ p,q

oR~ ]
oR~_,

... oRo

[

ORo
se,

orM(n) = : : :

oRM

where

lOPOk op\ -kloRk = l/(n+ 1) ..
OP"k OPO,k

Similarly, ~(n + 1) = ~(n) + M(n). Now, using a similar method
developed in [8]-[11] the first-order approximation r;' (n + 1) can
be given by

Let us denote the term in the bracket in (14b) by orp.q(n). Note that
we can assume that orp,q(n) = opp.q(n). Then applying this to all
the elemental blocks of rM(n + 1) gives

and

(16) (19c)

However, the first-order approximation may result in a poor esti­
mation. An iterative procedure is developed in [12] which allows
generation of higher order approximation of this matrix. Using this
scheme the kth order approximation of r;' (n + 1) is given by

r~r'(n + 1) = [/ZM(M+') - r~-wl(n + l)orM(n)]r;l(n),

where

which give

(21a)

(20a)

(20b)

Sk's are defined in a manner similar to (8a) with submatrices <J?k's
and 81's. Using (19b) we obtain

(17a)v k ~ 1

with

Equations (21a) and (21b) provide a tool for computing the new
(M + 1)th order model parameter matrix 'IrM +' = ['Ir~S~ + , ] t from
the old Mth order parameter matrix 'IrM'

(l7b)

Having computed r;' (n + 1) recursively, the solution of the vec­
tor Yule-Walker equation in (9) for the (n + l)th block can then
be written as

'lrM(n + 1) = r;'(n + 1) ~(n + 1)

= 'lrM(n) - r~·-WI(n + l)orM(n)~(n)

+ r;' (n + l)o~(n) (18a)

and

SM+ I = [-Ro + R,AM + ... + RM+ IAor'

. [R1SM + ... + RM+,So]· (21b)

where k« is a value of k at which an acceptable solution for r;' (n
+ 1) is achieved. That is

r~·)-I (n + 1) = r;' (n + 1).

Note that M (n) is computed using (10a) and (16).

(18b)

IV. IMPLEMENTATION

The recursive parameter identification method proposed in this
paper is implemented on the girl (Lena) image shown in Fig. 3.
This image has a resolution of 512 x 512 and a number of grey
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Fig. 3. Originalgirl (Lena) image.

Fig. 4. Degraded girl image (SNR = 2 dB).

levels that is 256. The image is corrupted by adding a white Gauss­
ian noise with zero mean and variance a~, = 1444 to produce a
SNR = 2 dB. The resultant degraded image is shown in Fig. 4.
The image process is modeled by a 2-D vector AR model of order
4 (M = 4) with a ROS extended to two adjacent strips, as shown
in Fig. 1. The size of each vector or the width of each strip is also
4. Thus, the processing window consists of 4 blocks of image each
of size 4 X 4. The AR model and the observation equation are then
arranged into a block state-space form [I]. The block Kalman fil­
tering equations in [1] together with recursive equations (14)-(18)
are used to generate the block filtered estimates of the image at

Fig. 5. Restoredgirl image (SNR = 8.5 dB).

each iteration. The filtered image is shown in Fig. 5. The SNR for
this image is measured to be 8.5 dB which indicates considerable
improvement in the quality of the processed image. The result of
applying the direct block Kalman filtering [1] to this severely de­
graded image exhibits blocking effects which can be reduced by
updating the parameters of the 2-D vector AR model using the re­
cursive identification scheme introduced in this paper.

V, CONCLUSION

Two-dimensional adaptive block Kalman filtering for restoration
of noisy images is considered, A recursive parameter identification
scheme is developed for this filtering operation. Using this method
the parameters of a 2-D vector AR model can be updated on-line
based upon the spatial activities within each new block of the ob­
served image, This scheme is derived using a nongradient ap­
proach. A recursive algorithm for finding the parameters of higher
order AR models is also proposed.

The results developed in this paper are only concerned with the
case of identification from a noisy image. The degradation process
can, in general, include additive noise and blur. To develop an
identification method for this case, the available I-D methods for
multivariable stochastic systems should be extended to the 2-D
case, The problem in the I-D case which is studied in a number of
papers such as [13], [14], is a complicated one due to lack ofa
unique canonical realization for these systems. The problem in the
2-D case is even more difficult since there is no relation between
the local controllability and observability and minimal realization
for a given 2-D transfer function. This problem should further be
investigated.
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II. STABILITY OF THE UNIMODULAR FILTER

We intend to design a filter which minimizes the error energy
between the actual output and the desired output in the least squares
sense, shapes the actual output with unit area, and is stable for
noisy input.

The input-output equation for such a system, in the vector no­
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K is (m + n + I)X(n + 1) matrix obtainable from k

wherein
k is col (ko, k, .. " kn ) : source function,
N is (m + n + I)X(n + 1) matrix obtainable from n

wherein
n is col (no, n" .. " nn): noise with zero mean and

variance defined as
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Design of the Unimodular Shaping Filter

where

Y = (K + N)I (1)

Vijay P. Dimri E{n,} = 0, and E{n;} = 0"6

where d is col (do, d, .. " d.; + n): the desired output.
The unimodular constraint for a noise free case is given in [8] as

E and 0"6 are the expectation and noise power, respectively.

The error energy which is the difference between the actual out­
put and the desired output in the least squares sense can be written

Abstract-A unimodular shaping filter for noisy input is designed. It
is stable and also shapes the wavelet into a) the desired output with
least squares error and b) the actual output with a unit area. Stablity
was achieved by using the prewhitening parameter. A numerical ex­
ample shows that the prewhitening parameter reduces the error energy
in the unimodular constrained shaping filter as compared to the un­
constrained shaping filter.

IIel12= lid - Kj- Njl12 (2)

(3)

I. INTRODUCTION

There are many techniques in geophysical literature for inverting
the observed data when the source function is known [2], [7]. The
principle here is to design the inverse filter which, when convolved
(in time domain) with the observed data, produces the source func­
tion close to the spike or other close narrow function with different
criteria of closeness, e.g., the least squares criterion results in the
design of the optimum shaping filter. It produces a minimum error
between the desired and the actual output in the least squares sense.
To modify it further, one can impose constraints on the design prin-
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where U is col (1, 1,' . . 1) of length (m + n + 1): unit column
vector, and T is transpose.

The constraint for (1) becomes

(4)

Equation (2) is minimized subject to (4) using the wen-known
method of the Lagrange multiplier

IIell 2 = lid - Kj- Njll2 + A(UT(Kj + Nj) - 1)

lid - Kjl12 + 11Njll2 - 2(Nj)T(d - Kj)

+ AUTKj + AUTNj- A (5)

where A is the Lagrange multiplier.
Under the assumption of random noise, the cross-correlation term

with noise in (5) tends to zero. The autocorrelation and cross-cor-
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