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ABSTRACT 

EFFECTS OF WHITEWATER PARKS ON FISH PASSAGE:  

A SPATIALLY EXPLICIT HYDRAULIC ANALYSIS 

 
Whitewater parks (WWPs) provide a valuable recreational and economic resource that is 

rapidly growing in popularity throughout the United States. WWPs were originally thought to 

enhance aquatic habitat; however, recent studies have shown that the hydraulic conditions 

required to meet recreational needs can act as a partial barrier to upstream migrating trout and 

that WWP pools may contain lower densities of fish compared to natural pools. There is limited 

knowledge of the direct effects of WWPs on fish passage. Managers and policy makers are 

forced to review WWP designs and make permit decisions without sound scientific evidence. It 

is also difficult to make design recommendations for future WWPs and possibly retrofitting 

existing WWPs to allow for successful fish passage without improved understanding of the 

factors contributing to suppression of movement in WWPs. We describe novel approaches 

combining fish movement data and hydraulic results from a three-dimensional computational 

fluid dynamics model to examine the physical processes that limit upstream movement of trout 

in an actual WWP in Lyons, Colorado. These methods provide a continuous and spatially 

explicit description of velocity, depth, vorticity, and turbulent kinetic energy (TKE) along 

potential fish swimming paths in the flow field. Variation in the magnitude and distribution of 

velocity and depth relative to fish swimming ability is reflective of variation in passage success 

among WWP structures and size classes of fish. Logistic regression analyses indicate a 

significant influence of velocity and depth on limiting passage success and accurately predict     

> 86 percent observed fish movements. Relationships emerge at individual WWP structures that 
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highlight unique hydraulic characteristics and their effect on passage success. The methods 

described in this study provide a powerful approach to quantify hydraulic conditions at a scale 

meaningful to a fish and mechanistically evaluate the effects of hydraulic structures on fish 

passage. The results of these analyses can be used for management and design guidance, have 

implications for fishes with lesser swimming abilities, and demonstrate the need to assess 

additional WWPs of various sizes. 
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CHAPTER 1 INTRODUCTION 

1.1 Whitewater Parks and Water Resources 

Riverine biota have evolved to inhabit highly complex hydraulic environments formed 

through natural hydrologic variability and geomorphic response (Poff et al., 1997; Nestler et al., 

2012; Thorp et al., 2006). Aquatic organisms exploit habitats that vary spatially and temporally 

across dimensions and scales, thus highlighting the need for connectivity of the river landscape 

(Fausch et al., 2002; Frissel et al., 1986). For example, many fishes migrate in search of optimal 

habitats for spawning, rearing, overwintering, and other life-cycle processes (Schlosser and 

Angermeier, 1995). The reproductive success of migratory fishes and other organisms is 

dependent on the quantity, quality, and connectivity of available habitats from large-scale 

systems as they vary slowly and are disrupted infrequently, down to smaller habitat patches that 

are disturbed and change more frequently (Frissel et al., 2001). 

 Anthropogenic needs require the exploitation of water resources resulting in 

fragmentation of many rivers by dams, diversions, and other in-stream structures. When 

impassable, these structures cut-off necessary habitat linkages and migration routes of aquatic 

organisms, particularly fishes (Dudley and Platania, 2007; Fullerton et al., 2010; Walters et al., 

2014). There is a strong interdependence among organisms within an ecosystem, and the 

extirpation of a species could alter the entire ecosystem energy flow and composition (Baxter et 

al., 2004). Successful passage for fishes of all life stages across barriers to migration is 

imperative to restore and maintain ecosystem function (Beechie et al., 2010; Bunt et al., 2012; 

Wohl et al., 2005). In-stream structures must operate within the physiological limits of a fish’s 

swimming abilities, and understanding how fish respond to micro-hydrodynamic and macro-
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hydrodynamic conditions within a structure is necessary to effectively design for passage success 

(Williams et al., 2012).  

However, structures are designed and constructed without direct knowledge of fish 

passage success in response to altered hydraulic conditions. A whitewater park (WWP) consists 

of one or more in-stream structures primarily constructed to create a hydraulic jump that is 

desirable to recreational kayakers and other boaters. The hydraulic jump is typically formed by 

grouting a laterally constricted chute over a steep drop into a downstream pool. WWPs provide a 

valuable recreational and economic resource (Hagenstad et al., 2000) that is rapidly growing in 

popularity throughout communities in the United States, with Colorado being an epicenter of 

WWP design and construction (Fox, 2013). Currently there are 22 constructed and 12 proposed 

WWPs in the state of Colorado (Kondratieff, pers. comm.). WWPs were originally thought to 

enhance aquatic habitat (McGrath, 2003); however, recent studies (Fox, 2013; Kolden, 2013) 

have shown that WWPs can act as a partial barrier to upstream migrating trout, and WWP pools 

may contain lower densities of fish compared to natural pools. Further, the magnitude of 

suppressed fish movement varies at different WWP structures and among size classes of fish. 

Higher velocities with larger spatial distributions were recorded in WWPs compared to natural 

reaches, and unique hydraulic conditions exist at individual WWP structures as a result of 

seemingly subtle differences in their design and configuration. Concerns have arisen that the 

hydraulic conditions required to meet recreational needs are contributing to the suppression of 

movement of upstream migrating fishes, thereby disrupting the longitudinal connectivity of a 

river. 
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1.2 Fish Swimming Abilities 

Fish exhibit multiple modes of swimming when encountering different flow velocities in 

order to maximize ground speed and minimize energy expenditure (Beamish, 1978; Katopodis, 

2005). Additionally, the swimming ability of fishes is directly related to fish body length (BL) 

(Beamish, 1978; Castro-Santos et al., 2013; Peake et al., 1997; Webb, 1998). Velocity can act as 

a burst swimming barrier in which the velocity of the water is greater than the fish’s maximum 

swim speed. Velocity can also act as an exhaustive swimming barrier where a fish is unable to 

maintain positive ground speed over the required distance. Previous laboratory studies have 

observed burst swimming abilities of 10 to 15 BL/s (Beamish, 1978; Peake et al., 1997); 

however, a more recent study observed burst swimming abilities of brook trout (Salvelinus 

fontinalis) and brown trout (Salmo trutta) of up to 25 BL/s (Castro-Santos et al., 2013). 

Adequate depth is required for a fish to reach its full swimming potential (Webb, 1975). 

Minimum flow depths in a WWP are often located in zones of supercritical flow where velocities 

are greatest. Insufficient depth to submerge a fish impairs its ability to generate thrust through 

body and tail movements, exposes the gills limiting oxygen consumption, and exposes the fish to 

physical trauma through contact with the channel bed (Dane, 1978). Minimum depth 

recommendations for fish passage through culverts vary from 1.5 to 2.5 times the body depth of 

a fish depending on the species of interest, life stage, and regulating agency (Hotchkiss and Frei, 

2007). For non-anadromous salmonids, typical depth recommendations range from 0.4 to 0.8 ft 

(Fitch, 1995; Hotchkiss and Frei, 2007; Kilgore et al., 2010; National Oceanic and Atmospheric 

Administration (NOAA), 2001). 

Current knowledge of turbulence and its effects on fish swimming abilities suggests that 

turbulence might be contributing to the suppression of movement in WWPs. In particular, 
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vorticity and turbulent kinetic energy (TKE) are recognized as meaningful measures of 

turbulence (Lacey et al., 2012), and higher magnitudes of vorticity and TKE were observed in 

WWP pools compared to natural pools (Kolden, 2013).  Numerous studies have investigated the 

effects of turbulence metrics such as TKE, turbulent intensity (TI), Reynolds’ shear stress, and 

vorticity on fish swimming abilities. Turbulence can increase or decrease a fish’s swimming 

ability (Cotel and Webb, 2012; Lacey et al., 2012; Liao, 2007); however, high levels of 

turbulence pose a stability challenge to fish (Tritico and Cotel, 2010), and turbulence reduces 

fish’s swimming abilities at high current speeds (Lupandin, 2005; Pavlov et al., 2000). Fish 

migrating upstream through an experimental pool-type fishway appear to prefer locations of 

lower turbulence and velocity (Silva et al., 2012).  

Despite current knowledge of fish passage and hydraulics, there is little understanding of 

the factors contributing to the suppression of fish movements in WWPs. Previous attempts to 

directly correlate fish passage with hydraulic variables yielded only poor predictors of passage 

success (Castro-Santos et al., 2009). Studies examining the effects of hydraulics on fish passage 

are limited by scale. Fish experience hydraulic conditions locally (Eulerian frame) and 

continuously along a movement path (Lagrangian frame) in a highly complex hydraulic 

environment (Goodwin et al., 2006). Studies employing Particle Image Velocimetry have the 

capability of quantifying hydraulics continuously along fish movement paths; however, the 

majority of these studies are limited to laboratory settings that constrain the transferability of 

results to natural environments (Cotel and Webb, 2012).  Additional studies are limited to three-

dimensional (3-D) point measurements or averaging over larger spatial scales that do not capture 

the continuous small-scale hydraulic heterogeneity important to a fish (Crowder and Diplas, 

2000, 2006). 
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Consequently, the factors contributing the suppression of movement of upstream 

migrating fish in WWPs have not been mechanistically explained. Managers and policy makers 

are forced to make decisions and review designs regarding WWPs without sound scientific 

evidence. This problem has the potential to impose negative environmental impacts if a WWP 

that greatly disrupts the longitudinal connectivity of a river is approved. Alternatively, if a WWP 

does not pose a threat to the environment and is disapproved, a valuable recreational and 

economic opportunity will be missed. Without a direct understanding of the factors contributing 

to suppression of movement in WWPs, making informed management and policy decisions 

regarding WWPs will continue to be difficult and could have unintended consequences. 

In order to determine the effect of hydraulic conditions on passage success, detailed fish 

movement data must be assessed in conjunction with hydraulic characteristics at a scale 

meaningful to a fish (Williams et al., 2012). Advancements in quantifying fish movement 

through passive integrated transponders (PIT) tags have increased our ability to monitor and 

evaluate passage success. Additionally, computational fluid dynamics (CFD) models provide a 

powerful means of estimating the fine-scale hydrodynamic conditions through which fish pass. 

 

1.3 Objectives 

We describe novel approaches combining fish movement data and hydraulic results from 

a 3-D computational fluid dynamics model to examine the physical processes that limit upstream 

movement of trout in an actual WWP in Lyons, Colorado. The objectives of this study are as 

follows: 

1. Use the results from a 3-D CFD model to provide a continuous and spatially explicit 

description of velocity, depth, vorticity, and TKE along the flow field. 
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2. Compare the magnitudes and distribution of velocity, depth, vorticity, and TKE 

among three unique WWP structures on the St. Vrain River, Colorado, USA. 

3. Determine the relationship between velocity, depth, vorticity, and TKE on the 

suppression of movement of upstream migrating fishes through statistical analysis of 

movement data from PIT-tag studies at the St. Vrain WWP.  

4. Provide design recommendations and physically-based relationships that help 

managers better accommodate fish passage through WWP structures. 
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CHAPTER 2 METHODS 

2.1 Study Site 

 Fish movement data and the results from a 3-D CFD model were available at a WWP 

located on the North Fork of the St. Vrain River in Lyons, Colorado (Fox, 2013; Kolden, 2013). 

The North Fork of the St. Vrain River originates on the east slope of the Rocky Mountains where 

it flows east to the foothills region in the town of Lyons and its confluence with the South Fork 

of the St. Vrain River. The study site consists of nine WWP structures along a 1,300-ft reach in 

Meadow Park. The natural river morphology at the study site can be described as the transition 

zone between a step-pool channel and a meandering pool-riffle channel. The natural river 

channel is characterized by riffles, runs, and shallow pools with cobble and boulder substrates. 

The North Fork of the St. Vrain River experiences a typical snowmelt hydrologic regime with 

peak flows occurring in late May to early June. Accurate U. S. Geological Survey (USGS) gage 

data were unavailable for the site due to a reservoir located approximately 8 mi upstream; 

however, a stage-discharge rating relationship was developed over the course of the study to 

provide a continuous record of discharges for the site (Fox, 2013).  

 

2.2 Fish Movement Data and Hydraulic Modeling Results 

2.2.1 Fish Movement Data 

Fish passage was assessed at three WWP structures by obtaining 14 months of fish 

movement data from PIT-antenna arrays (Fox, 2013). Tagged salmonids, rainbow trout 

(Oncorhynchus mykiss and Hofer x Harrison strain) and brown trout (Salmo trutta), were 

included in the analysis totaling 536 tagged fishes ranging in size from 115 to 435 mm. Due to 

safety risks involving park users, PIT antennas were installed directly upstream of the WWP 
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structures and in the tail-out of the pools directly downstream of the WWP structures (Figure 

2.1). The PIT-antenna configuration associated a time stamp and river discharge with a 

successful movement, but it did not provide information on failed attempts of individual fish. 

Therefore, fish were classified as fish that did pass a structure versus fish that did not pass a 

structure.  

 

Figure 2.1:  Plan view of a WWP structure with PIT-antenna configuration.     

Passage success was evaluated over four discrete time windows: October 2011 – March 

2012, March 2012 – October 2012, October 2012 – November 2012, and November 2012 – 

December 2012. The start of each time window was defined by a stocking or electroshocking 

event in which fish were observed in the pool directly below a structure. Movements were 

evaluated over the duration of that respective time window. A successful movement across a 

structure was only included in the analysis if a fish was observed in the pool directly below that 

structure at the start of the time window. This prevented over estimating passage success at 

structures where fishes with greater swimming abilities were able to migrate upstream crossing 
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multiple structures over the duration of a time window. There were 429 successful movements 

over the duration of all the time windows. 

2.2.2 Hydraulic Modeling Results 

Seven discharges were modeled at three WWP structures containing fish-tracking data 

using the 3-D CFD software FLOW-3D® v10.0 (Kolden, 2013). The modeled discharges 

include: 15, 30, 60, 100, 150, 170, and 300 cfs, representing a range of flows that produce 

various habitats throughout the year. FLOW-3D described the flow field by solving the 

Reynolds-Averaged Navier-Stokes (RANS) equations of fluid motion and a default 

renormalization group (RNG) turbulence closure with dynamically-computed turbulent mixing 

length.  The fluid domain was comprised of a series of discrete points making-up a mesh. The 

uniform grid sizes of the mesh ranged from 0.125 to 0.5 ft. The free surface was represented in 

the structured mesh by a process called volume of fluid (VOF) [FLOW Science, 2009], and 

channel roughness elements were assumed to be adequately resolved through surveyed 

bathymetry. Model validation through field measurements ensured the model was performing 

within an acceptable range of error (Kolden, 2013). Additional model validation was infeasible 

due to severe floods in September 2013 that significantly altered the channel geometry. Post-

processing of the hydraulic results from the CFD model was performed using EnSight® Standard 

v10.0.3. 

 

2.3 Defining the Flow Field 

In order to equally compare the hydraulics among WWP structures and across a range of 

discharges within WWP structures, a physically-based criterion was needed to define the 

upstream and downstream boundaries of the analysis domain. The Froude number provided a 
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physically meaningful criterion for establishing boundary conditions that captured the full extent 

of potential hydraulic barriers to fish passage. The upstream and downstream boundaries were 

defined by a Froude number of 1 and 0.8, respectively.  The upstream boundary condition 

includes supercritical flow and the most challenging velocities that must be traversed by a fish at 

all discharges. The downstream boundary encompasses the hydraulic jump from supercritical 

flow to subcritical flow and the highest levels of turbulence. 

EnSight® was used to create a flow volume consisting of the total modeled domain. 

Additional, reduced flow volumes were created that consisted of the total modeled domain below 

a specified Froude number (Figure 2.2). The cross-sectional area of the reduced and total flow 

volumes were sampled at 0.25-ft longitudinal increments throughout the entire reach. A 

deviation in the cross-sectional area, between the total flow volume and the reduced flow 

volume, indicated areas with a Froude number greater than the thresholds used to define the 

boundaries of the analysis domain (Figure 2.3). This process was repeated for all modeled 

discharges at each structure. The upstream-most point for all discharges at which the cross-

sectional areas diverged was used as the upstream boundary, and the downstream-most point at 

which the cross-sectional areas diverged was used as the downstream boundary. The Froude 

criteria were thoroughly analyzed to ensure the boundaries captured all features of the flow field 

relevant to fish passage.  
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Figure 2.2:  (a) Total flow volume, and (b) the reduced flow volume of all Froude numbers 
less than 1. 

 

Figure 2.3:  Example of longitudinal changes in cross-sectional area of the total flow 
volume versus the reduced flow volume comprised of Froude numbers less than 1. 

(a) (b) 
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2.4 Particle Trace and Potential Swimming Path Development 

Releasing particle traces through the flow field and quantifying hydraulic variables along 

each trace provides a meaningful description of the hydraulic conditions a fish might encounter 

while migrating upstream. EnSight® was used to emit particle traces from nodes within the 

gridded mesh. A particle trace consists of a series of points that track a massless-particle through 

both time and space in the fluid domain. The trajectory of the particle trace is parallel to the 

velocity vector field at that point and time.  

Releasing particle traces from a cross section at the upstream boundary limits the number 

of particle traces to the number of nodes that make-up the cross section; however, particle traces 

can be emitted from a volume to greatly increase the number of nodes from which particle traces 

can be emitted.  Additionally, releasing particle traces forward in time through the defined flow 

volume stops the particle traces at the downstream boundary. This excludes eddies and zones of 

reverse flow where a particle trace would continue past the downstream boundary and then 

recirculate back upstream into the defined flow volume (Figure 2.4). Therefore, particle traces 

were emitted forward and backward in time from volumes at the upstream and downstream 

boundaries encompassing important hydraulic features and the entirety of the flow field (Figure 

2.5).  
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Figure 2.4:  (a) Particle traces released forward in time from an upstream cross section 
traveling to the downstream boundary, and (b) particle traces released forward from an 

upstream cross section traveling through the entire reach. A reference recirculation zone is 
highlighted by a circle. 

 

Figure 2.5:  (a) Particle traces released from a volume at the downstream boundary both 
forward and backward in time, and (b) particle traces released from volumes at the 

upstream and downstream boundaries both forward and backward in time. A reference 
recirculation zone is highlighted by a circle. 

A portion of the particle traces released from volumes at the upstream and downstream 

boundaries both forward and backward in time nevertheless stopped prematurely and did not 

reach the opposite boundary. A particle trace stopped prematurely if the trace moved outside the 

(a) (b) 

(a) (b) 
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space in which the vector field was defined or the particle trace entered a location where the 

velocity was 0 (Computational Engineering International, Inc., 2013). Additional particle traces 

existed that recirculated in an eddy before stopping prematurely or continuing through the flow 

field. Particle traces that stopped prematurely or recirculated within the flow volume introduce 

bias when quantifying hydraulic variables along each particle trace and assessing the conditions 

a fish might experience as it swims upstream.  

In order to resolve this bias, particle traces that recirculated to the upstream or 

downstream boundary were divided at the point where they began to recirculate relative to the 

upstream/downstream directions. Two particle traces that do not make it through the entire flow 

volume result from each circulation. Each trace that did not make it through the entire volume 

(incomplete trace) was connected to a trace that did travel through the entire flow volume 

(complete trace) providing a path that represents the hydraulic conditions a fish might experience 

when migrating upstream. This task was accomplished by searching for the point within all the 

complete traces with the shortest Euclidean distance to the terminus of an incomplete trace. The 

new trace consisted of the incomplete trace, the point of connection, and the needed portion of 

the complete trace to continue through the entire flow volume. The new trace was added to the 

list of complete traces and made available for connecting to additional incomplete traces. A 

maximum connection distance of 0.5 ft was established to prevent excessive interpolation and an 

unrealistic hydraulic representation of the flow field. If the closest connection point for an 

incomplete trace was greater than 0.5 ft, connecting that particular incomplete trace was re-

attempted after all the incomplete traces were cycled through. After the first iteration, the 

allowable connection distance was adjusted to 1 ft and the process was repeated until the 

minimum connection distance was greater than 1 ft or there were no more incomplete traces. The 
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distance of each particle trace was determined along with the maximum distance between nodes 

along each trace to validate the modified particle traces. Approximately 6,500 to 20,000 particle 

traces were used to describe the flow field at each structure depending on the flow volume being 

analyzed. 

 

2.5 Particle Trace Evaluation 

Each particle trace was evaluated as a potential fish movement path (flow path). Velocity, 

depth, vorticity, and TKE were defined in 3-D at every point along a flow path and used to 

define hydraulic variables that relate to fish swimming abilities. The maximum velocity relative 

to fish swimming ability, a cumulative cost in terms of energy and the drag force on a fish, the 

minimum depth, and the sum and maximum vorticity and TKE were quantified along the entire 

length of each flow path providing a distribution of hydraulic variables for each modeled 

discharge. The magnitude and distribution of these hydraulic variables were compared among 

WWP structures. 

2.5.1 Velocity 

The magnitude of a velocity vector was calculated as the root-mean-square (rms) of 

velocity in the x, y, and z planes with a directional component relative to the x-direction 

(Equation (2.1)): 

 
x

x
zyxrms v

v
vvvv 222  Equation (2.1) 

By definition, the rms of velocity is always positive and does not take into account the 

direction of flow. This is important because a velocity vector with a resultant in the positive 

upstream direction might be advantageous to a fish migrating upstream. Therefore, positive and 
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negative signs were assigned to the vrms based on the velocity in the downstream (vx) and 

upstream directions, respectively (Figure 2.6). A positive value indicates a resultant in the 

downstream direction, while a negative value indicates a resultant in the upstream direction. 

Velocity vectors that were limited to the y (vy) and z (vz) planes were assigned a positive value. 

 

Figure 2.6:  Plan view of a WWP structure colored by velocity along the x-axis indicating 
flow moving upstream or downstream. 

Velocity was used to define a variable that assesses the hydraulic environment relative to 

burst swimming ability. The velocity ratio is defined as the ratio of the local water velocity (vrms) 

to the burst swimming ability (vburst) of a particular fish (Equation (2.2)): 
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burst

rms

v
vratiovelocity   Equation (2.2) 

This variable is evaluated at every point along a flow path. If the ratio is ≥ 1, theoretically 

the fish cannot traverse that point.  The maximum velocity ratio was determined along each flow 

path and the fraction of traces with a maximum velocity ratio ≥ 1 was determined. If this fraction 

equals 1, every trace contains a point greater than a fish’s burst swimming ability. If this fraction 

is 0, theoretically, none of the flow paths are greater than a fish’s burst swimming ability. The 

maximum velocity ratio was determined for 100 – 400 mm fish with burst swimming abilities of 

10 and 25 BL/s (Peake et al., 1997; Castro-Santos et al., 2013). 

Velocity was also used to define a cost variable (Equation (2.3)) in order to compare 

relative measures of cumulative energy expenditure through the length of a structure:  

 
rms

rms
rms v

v
dv 2Cost  Equation (2.3) 

where vrms is the average rms velocity between two nodes; and d is the distance between two 

nodes. The square of velocity is proportional to energy and the drag force on a fish (Chow, 1959; 

McElroy et al., 2012). The distance term accounts for the length over which a fish might 

experience those velocities. By squaring the vrms, it is always positive; thus, the fraction term 

containing the vrms adds a directional component to the cost based on the upstream/downstream 

directions. If the flow is traveling downstream, the cost between nodes will be positive as a fish 

will have to expend more energy to swim against the flow and vice versa. Cost is calculated over 

the distance in between nodes and summed along the length of the flow path. Therefore, the 

length of the hydraulic jump at a structure has a direct effect on cost. 
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2.5.2 Depth 

A minimum of 0.6 ft was used to evaluate depth as a barrier to upstream passage for this 

study. Without direct knowledge of fish body depths, 0.6 ft provides an average minimum depth 

criterion across the range of suggested values and fish size (Hotchkiss and Frei, 2007). Any 

location along a flow path where the fluid was less than 0.6 ft was defined as a passage barrier. 

The minimum fluid depth along each flow path was evaluated, and the fraction of flow paths that 

did not maintain at least 0.6 ft along the entire length of the path was determined. The maximum 

velocity ratio and depth were also assessed in combination. If the minimum depth along a flow 

path was less than 0.6 ft or the maximum velocity along the path was greater than a fish’s 

swimming ability, the flow path was considered a passage barrier. Each flow path was evaluated, 

and the fraction of flow paths that exceeded a fish’s burst swimming ability or did not provide 

adequate depth was determined.   

2.5.3 Turbulence 

Vorticity and TKE were selected as measures of turbulence meaningful to a fish. 

Vorticity is a vector representing the rotation rate of a small fluid element about its axis 

(Crowder and Diplas, 2002; Kolden, 2013).  EnSight® was used to calculate 3-D vorticity at each 

element within the gridded mesh (Equation (2.4)): 

 k
y
u

x
vj

x
w

z
ui

z
v

y
w ˆˆˆ  Equation (2.4) 

where u, v, and w are the x, y, and z-components of velocity, respectively, and i,  j, and k are unit 

vectors in the x, y, and z directions, respectively. TKE is a measure of the increase in kinetic 

energy due to turbulent velocity fluctuations in the flow (Equation (2.5)) (Lacey et al., 2012; 

FLOW Science, 2009):  
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2
1TKE wvu  Equation (2.5) 

where σu, σv, and σw are the standard deviations of velocity in the x, y, and z directions, 

respectively.  

The magnitudes of vorticity and TKE at each point along a flow path were summed over 

the length of the path quantifying the cumulative effect of vorticity and TKE a fish might 

experience. Additionally, the maximum vorticity and TKE along the length of a path was 

determined to examine the largest magnitudes of vorticity and TKE a fish might experience. 

Specific thresholds of turbulence relative to fish swimming abilities are unknown; therefore, we 

are limited to a relative comparison of turbulence among WWP structures and passage success. 

Examining the cumulative effect and maximum magnitudes of vorticity and TKE along each 

flow path highlights potential barriers due to turbulence cumulatively through the flow volume 

and in locations characterized by the highest levels of turbulence. 

 

2.6 Data Analysis 

Individual fish were designated as making a successful movement or an unsuccessful 

movement for each time window. The hydraulic variables associated with a successful 

movement were determined based on the discharge at which the movement occurred. However, 

the hydraulic variables associated with an unsuccessful movement were determined based on the 

most frequent discharge that occurred during the respective time window. Logistic regression 

was used to test for a significant influence of the hydraulic variables on passage success. 

Significance was evaluated using the chi-square statistic. Stepwise forward regression with a 

minimum Akaike Information Criterion (AIC) stopping rule was used to determine the hydraulic 

variables to include in logistic regression. Collinearity was assessed by examining the bivariate 
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fits among the hydraulic variables. To avoid issues of collinearity, combinations of variables 

were manually selected to be tested for significance by stepwise forward regression. All 

statistical procedures were completed using JMP® Pro 11 (SAS Institute Inc., 2013). 
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CHAPTER 3 RESULTS 

Quantifying the hydraulic conditions along potential fish swimming paths highlights the 

magnitude and distribution of potential barriers to upstream migrating trout at each WWP 

structure. The magnitude and distribution of the hydraulic variables vary among WWP 

structures, relative to each size class of fish, and across discharges, similar to passage success. 

Further, logistic regression shows a statistically significant influence of specific hydraulic 

variables on passage success. 

 

3.1 Hydraulic Variables 

WWP1 is the most downstream structure characterized by a short-steep drop constructed 

by large boulders. WWP2 is the middle structure producing a wave over a longer distance with 

the maximum constriction at the exit of the chute into the downstream pool. WWP3 is the most 

upstream structure producing a wave similar to WWP2 but over a longer chute. The total length 

of the flow volume from the upstream to downstream boundary was 11 ft at WWP1, 16.5 ft at 

WWP2, and 19.6 ft at WWP3 (Figure 3.1).  
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WWP1 
 

WWP2 WWP3 

 

(a) 15 cfs 

WWP1 
 

WWP2 WWP3 

 

(b) 150 cfs 

Figure 3.1:  Analysis flow volume at WWP1, WWP2, and WWP3 for (a) 15 cfs, and (b) 150 cfs. 



23 

3.1.1 Maximum Velocity Ratio 

The fraction of flow paths that exceed a fish’s burst swimming ability varies among 

WWP structures, different size classes of fish, and across discharges (Tables 3.1 and 3.2). For 

example, assuming a burst velocity of 25 BL/s at WWP1 indicates that there are more flow paths 

available (flow paths that are not barriers to migration) at 15 cfs compared to 300 cfs for a 125-

mm fish. In contrast, there are more flow paths available at 300 cfs compared to 15 cfs for a 150-

mm fish. This relationship varies among structures, where there are more flow paths available at 

15 cfs compared to 300 cfs for a 150-mm fish at WWP2 and WWP3 (Table 3.1). This variability 

is also present for burst swimming abilities of 10 BL/s (Table 3.2). 

The results for 25 BL/s indicate that a majority of the flow paths are available at all 

discharges for 175-mm fish and larger (Table 3.1). Though few flow paths are available, WWP1 

provides the most available flow paths for the smallest size class of fish compared to WWP2 and 

WWP3, with a majority of the traces becoming available for fish 150 mm and larger. At WWP2, 

greater than 20 percent of the flow paths at 30 cfs exceed the swimming ability of fish up to 300 

mm in length. A large number of flow paths become available for fish exceeding 175 mm in 

length across all discharges at WWP2, with the exception of 30 cfs. In general, there are more 

available flow paths across discharges and size classes of fish at WWP3, with a majority of the 

flow paths becoming available for fish exceeding 150 mm in length. WWP2 appears to present 

the fewest available flow paths. There is a general trend at all WWP structures for fish less than 

175 mm in length that neither the lowest nor highest discharge presents the greatest challenge; 

rather, an intermediate discharge appears to be most limiting. 
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Table 3.1:  Fraction of traces that exceed burst swimming abilities (25 BL/s) for each size 
class, discharge, and WWP structure. 

  Fish Body Length 
 Discharge 

(cfs) 
100  
mm 

125  
mm 

150  
mm 

175  
mm 

200  
mm 

225  
mm 

250  
mm 

275  
mm 

300  
mm 

325  
mm 

350  
mm 

375  
mm 

400  
mm 

W
W

P1
 

15 0.89 0.2 0.12 0.07 0.02 0.02 0 0 0 0 0 0 0 

30 1 0.44 0.12 0.08 0.01 0 0 0 0 0 0 0 0 
60 1 0.28 0.13 0.06 0.05 0 0 0 0 0 0 0 0 

100 1 0.95 0.21 0.07 0 0 0 0 0 0 0 0 0 
150 0.99 0.9 0.1 0.03 0.03 0 0 0 0 0 0 0 0 
170 0.98 0.86 0.35 0.09 0 0 0 0 0 0 0 0 0 
300 0.96 0.54 0.05 0.01 0 0 0 0 0 0 0 0 0 

W
W

P2
 

15 1 0.85 0.11 0 0 0 0 0 0 0 0 0 0 

30 1 1 0.39 0.25 0.23 0.23 0.23 0.23 0.23 0.03 0.03 0.03 0 
60 1 1 1 0.19 0.01 0 0 0 0 0 0 0 0 

100 1 0.97 0.62 0.28 0.17 0 0 0 0 0 0 0 0 
150 1 0.76 0.62 0.15 0 0 0 0 0 0 0 0 0 
170 1 0.99 0.45 0.2 0.07 0 0 0 0 0 0 0 0 
300 1 0.98 0.23 0.03 0 0 0 0 0 0 0 0 0 

W
W

P3
 

15 1 0.07 0 0 0 0 0 0 0 0 0 0 0 

30 1 0.07 0 0 0 0 0 0 0 0 0 0 0 
60 1 0.27 0 0 0 0 0 0 0 0 0 0 0 

100 1 0.83 0.36 0.01 0 0 0 0 0 0 0 0 0 
150 1 0.9 0.5 0 0 0 0 0 0 0 0 0 0 
170 0.57 0.55 0.27 0.07 0 0 0 0 0 0 0 0 0 
300 1 0.76 0.34 0.01 0 0 0 0 0 0 0 0 0 
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Table 3.2:  Fraction of traces that exceed burst swimming abilities (10 BL/s) for each size 
class, discharge, and WWP structure. 

  Fish Body Length 
 Discharge  

(cfs) 
100  
mm 

125  
mm 

150  
mm 

175  
mm 

200  
mm 

225  
mm 

250  
mm 

275  
mm 

300  
mm 

325  
mm 

350  
mm 

375  
mm 

400  
mm 

W
W

P1
 

15 1 1 1 1 1 0.93 0.89 0.75 0.53 0.16 0.12 0.12 0.11 

30 1 1 1 1 1 1 1 0.75 0.58 0.39 0.2 0.12 0.09 
60 1 1 1 1 1 1 1 0.99 0.96 0.26 0.17 0.13 0.12 

100 1 1 1 1 1 1 1 1 0.96 0.93 0.62 0.21 0.12 
150 1 1 1 1 1 1 0.99 0.94 0.92 0.86 0.48 0.1 0.07 
170 1 1 1 1 1 1 0.98 0.92 0.88 0.81 0.7 0.35 0.23 
300 1 1 1 1 1 0.99 0.96 0.84 0.62 0.44 0.18 0.05 0.01 

W
W

P2
 

15 1 1 1 1 1 1 1 1 0.88 0.25 0.15 0.11 0.06 

30 1 1 1 1 1 1 1 1 1 1 0.45 0.39 0.28 
60 1 1 1 1 1 1 1 1 1 1 1 1 0.88 

100 1 1 1 1 1 1 1 0.99 0.98 0.71 0.69 0.62 0.47 
150 1 1 1 1 1 1 1 1 0.76 0.72 0.67 0.62 0.36 
170 1 1 1 1 1 1 1 1 1 0.6 0.58 0.45 0.32 
300 1 1 1 1 1 1 1 1 0.99 0.95 0.35 0.23 0.08 

W
W

P3
 

15 1 1 1 1 1 1 1 0.51 0.14 0.01 0 0 0 

30 1 1 1 1 1 1 1 0.96 0.61 0 0 0 0 
60 1 1 1 1 1 1 1 0.68 0.65 0.04 0.01 0 0 

100 1 1 1 1 1 1 1 0.87 0.84 0.76 0.57 0.36 0.26 
150 1 1 1 1 1 1 1 0.98 0.96 0.74 0.64 0.5 0.1 
170 1 1 1 1 1 0.82 0.57 0.57 0.56 0.5 0.35 0.27 0.17 
300 1 1 1 1 1 1 1 1 0.81 0.74 0.67 0.34 0.24 

 

When examining burst swimming abilities of 10 BL/s, greater than 90 percent of the flow 

paths exceed a fish’s burst swimming ability at all structures for fish 200 mm and smaller (Table 

3.2). WWP1 and WWP2 vary in the fraction of available flow paths depending on the discharge 

and size class of fish; however, there is a general tendency that fewer flow paths are available at 

WWP2 compared to WWP1. At WWP2, there are no available flow paths for fish  

≤ 325 mm at 30 cfs and ≤ 375 mm at 60 cfs. Larger fish consistently have the most available 

flow paths at WWP3. A threshold appears at WWP3 with a large fraction of flow paths 
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becoming available at 15 to 60 cfs. Again, there is a general tendency that neither the lowest nor 

the highest discharge presents the greatest challenge. 

3.1.2 Depth 

The fraction of flow paths that do not provide adequate depth for fish passage varies 

among WWP structure and discharge; however, low flows appear to be the most limiting (Figure 

3.2). At 15 cfs, WWP2 and WWP3 do not have any flow depths greater than 0.6 ft, while greater 

than 90 percent of the flow paths contain depths less than 0.6 ft at WWP1.  WWP1 poses the 

greatest depth challenge at intermediate flows with greater than 60 percent of the flow paths 

inaccessible due to depth. At high flows, the fraction of available flow paths increase at WWP1 

and WWP3 reducing the likelihood of depth as a passage barrier. At WWP2, the fraction of flow 

paths acting as a depth barrier increases from 40 percent at 150 cfs to 65 percent at 300 cfs. 

 

 

Figure 3.2:  The fraction of flow paths where the minimum depth is less than 0.6 ft for each 
discharge and WWP structure. 
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3.1.3 Maximum Velocity Ratio and Depth Combined  

The fraction of flow paths that either exceed a fish’s burst swimming ability or do not 

provide adequate flow depth varies among WWP structure, size class of fish, and across 

discharges. Simultaneously examining the maximum velocity ratio for 25 BL/s and depth shows 

that greater than 80 percent of the flow paths are inaccessible to fish of all size classes at flows 

less than 30 cfs (Table 3.3). In general, WWP1 provides the most available flow paths for fish 

150 mm in length and less. WWP1 has the largest fraction of available flow paths at 15 and 30 

cfs while WWP3 has the least available flow paths. Flows greater than 150 cfs provide the most 

available flow paths at all structures.  
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Table 3.3:  Fraction of traces that exceed burst swimming abilities based on the minimum 
depth criterion and maximum velocity ratio (25 BL/s) for each size class, discharge, and 

WWP structure. 

  Fish Body Length 
 Discharge  

(cfs) 
100  
mm 

125  
mm 

150  
mm 

175  
mm 

200  
mm 

225  
mm 

250  
mm 

275  
mm 

300  
mm 

325  
mm 

350  
mm 

375  
mm 

400  
mm 

W
W

P1
 

15 1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

30 1 0.98 0.88 0.87 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 
60 1 1 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94 

100 1 0.99 0.78 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 
150 1 0.99 0.39 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 
170 1 0.96 0.55 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 
300 1 0.73 0.36 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

W
W

P2
 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 

30 1 1 0.91 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 
60 1 1 1 0.89 0.85 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

100 1 1 1 0.72 0.64 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 
150 1 1 0.96 0.54 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
170 1 1 0.9 0.66 0.55 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 
300 1 1 0.81 0.67 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 

W
W

P3
 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 

30 1 0.88 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 
60 1 0.92 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

100 1 1 0.78 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 
150 1 1 0.65 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
170 1 1 0.79 0.6 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 
300 1 1 0.61 0.28 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

 
Combining the minimum flow depth and the maximum velocity ratio for 10 BL/s as 

barriers to migration indicates that greater than 90 percent of the flow paths are unavailable for 

fish less than 300 mm in length (Table 3.4). In general, WWP2 provides the fewest number of 

available flow paths. Excluding 15 cfs, there is an evident threshold at WWP3 that all flow paths 

are inaccessible for fish 300 mm in length and smaller. At WWP1 and WWP2, a clear threshold 

for the size class of fish at which flow paths become accessible is less apparent as discharge 

varies. 
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Table 3.4:  Fraction of traces that exceed burst swimming abilities based on the minimum 
depth criterion and maximum velocity ratio (10 BL/s) for each size class, discharge, and 

WWP structure. 

  Fish Body Length 
 Discharge  

(cfs) 
100  
mm 

125  
mm 

150  
mm 

175  
mm 

200  
mm 

225  
mm 

250  
mm 

275  
mm 

300  
mm 

325  
mm 

350  
mm 

375  
mm 

400  
mm 

W
W

P1
 

15 1 1 1 1 1 1 1 1 0.96 0.95 0.95 0.95 0.95 

30 1 1 1 1 1 1 1 1 1 0.97 0.88 0.88 0.87 
60 1 1 1 1 1 1 1 1 1 0.99 0.95 0.95 0.95 

100 1 1 1 1 1 1 1 1 0.99 0.98 0.87 0.78 0.74 
150 1 1 1 1 1 1 1 0.99 0.99 0.96 0.67 0.39 0.37 
170 1 1 1 1 1 1 1 1 0.98 0.93 0.86 0.55 0.45 
300 1 1 1 1 1 1 1 0.97 0.8 0.65 0.43 0.36 0.33 

W
W

P2
 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 

30 1 1 1 1 1 1 1 1 1 1 0.96 0.91 0.89 
60 1 1 1 1 1 1 1 1 1 1 1 1 0.96 

100 1 1 1 1 1 1 1 1 1 1 1 1 0.89 
150 1 1 1 1 1 1 1 1 1 1 1 0.96 0.7 
170 1 1 1 1 1 1 1 1 1 1 0.98 0.9 0.77 
300 1 1 1 1 1 1 1 1 1 0.99 0.92 0.81 0.7 

W
W

P3
 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 

30 1 1 1 1 1 1 1 1 0.96 0.88 0.87 0.87 0.87 
60 1 1 1 1 1 1 1 1 1 0.75 0.72 0.72 0.72 

100 1 1 1 1 1 1 1 1 1 0.99 0.97 0.78 0.68 
150 1 1 1 1 1 1 1 1 1 0.86 0.76 0.65 0.25 
170 1 1 1 1 1 1 1 1 1 0.97 0.87 0.79 0.7 
300 1 1 1 1 1 1 1 1 1 1 0.94 0.61 0.5 

 

3.1.4 Cost 

The magnitude and distribution of cost vary among WWP structures and discharges 

(Figure 3.3). WWP1 consistently has a lower cost at all discharges. WWP2 and WWP3 have 

similar magnitudes of cost at 15 and 30 cfs. The distribution of cost is much narrower at 15 cfs. 

WWP3 has the maximum 50th percentile of cost at all discharges except 60 cfs (Figure 3.4). At 

100 cfs, the range of costs at WWP3 increases and indicates greater hydraulic heterogeneity 
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within the flow field. The maximum cost at WWP2 occurs at 30 cfs. At 150 and 300 cfs, the 

maximum cost at WWP1 greatly increases.  

 

 

Figure 3.3:  50th percentile of cost for each WWP structure and discharge. 
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Figure 3.4:  Non-exceedence probabilities for the cost along flow paths at each WWP 
structure for: (a) 15 cfs, (b) 30 cfs, (c) 60 cfs, (d) 100 cfs, (e) 150 cfs, and (f) 300 cfs. 

3.1.5 Turbulence 

The highest magnitudes and broader distributions of the maximum vorticity generally 

occur at the lowest discharges (15 and 30 cfs). WWP3 has the greatest 50th percentile of 

maximum vorticity at 15 and 30 cfs (Figure 3.5); however, WWP1 has the highest overall 

maximum vorticity value at 30 cfs (Figure 3.5). The magnitude and distribution of the maximum 

vorticity is similar among the WWP structures at discharges ≥ 100 cfs.  

(a) (b) 

(c) 

(f) (e) 

(d) 
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The magnitude and distribution of the maximum TKE along a flow path also vary 

substantially among WWP structures and discharges (Figure 3.6). At a specific discharge, the 

maximum TKE among the WWP structures depends on the percentile of the distribution. WWP1 

has the highest maximum TKE at 30, 100, and 300 cfs. WWP2 has the greatest 50th percentile of 

TKE at all discharges except 30 cfs (Figure 3.7). WWP3 appears to have a more narrow 

distribution of TKE at all discharges compared to WWP1 and WWP2. The maximum 50th 

percentile of TKE occurs at 30 cfs at WWP2 and WWP3, and 170 cfs at WWP1.  

 

 

Figure 3.6:  Non-exceedence probabilities for maximum vorticity along flow paths at each 
WWP structure for: (a) 15 cfs, (b) 30 cfs, (c) 60 cfs, (d) 100 cfs, (e) 150 cfs, and (f) 300 cfs. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3.7:  Non-exceedence probabilities for the maximum TKE along flow paths at each 
WWP structure for: (a) 15 cfs, (b) 30 cfs, (c) 60 cfs, (d) 100 cfs, (e) 150 cfs, and (f) 300 cfs. 

The magnitude and distribution of the sum of vorticity along a flow path vary among 

WWP structures and discharges (Figure 3.8). The maximum 50th percentile of the sum of 

vorticity along a flow path occurs at 30 cfs for WWP1 and WWP3, and 100 cfs for WWP2 

(Figure 3.8). WWP3 has the highest 50th percentile of the sum of vorticity with the exception of 

60 and 100 cfs. The maximum of the sum of vorticity along a flow path varies between WWP2 

(a) (b) 

(c) (d) 

(e) (f) 
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and WWP3 depending on the discharge and percentile being analyzed. There is a general trend 

that WWP1 contains the lowest sum of vorticity along a flow path. Additionally, narrow 

distributions for each WWP exist at 15, 150, and 300 cfs. 

 The magnitude and distribution of the sum of TKE along a flow path varies among 

WWP structures and discharges (Figure 3.9). The maximum 50th percentile of the sum of TKE 

occurs at 30 cfs for WWP1 and WWP3, and 300 cfs for WWP2 (Figure 3.10). Similar trends in 

the relative magnitude of the 50th percentile of the sum of vorticity and TKE exist at each 

individual WWP structure. The 50th percentile of the sum of TKE is lowest at WWP1 for all 

discharges. However, WWP1 has the overall maximum of the sum of TKE along a flow path at 

150 and 300 cfs, while WWP2 had the overall maximum at 30 to 100 cfs. WWP3 has the overall 

maximum of the sum of TKE along a flow path at 15 cfs. Each structure is characterized by a 

narrower distribution of the sum of TKE at 15 cfs. 
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Figure 3.9:  Non-exceedence probabilities for sum of vorticity along flow paths at each 
WWP structure for: (a) 15 cfs, (b) 30 cfs, (c) 60 cfs, (d) 100 cfs, (e) 150 cfs, and (f) 300 cfs. 

 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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Figure 3.10:  Non-exceedence probabilities for the sum of TKE along flow paths at each 
WWP structure for: (a) 15 cfs, (b) 30 cfs, (c) 60 cfs, (d) 100 cfs, (e) 150 cfs, and (f) 300 cfs. 

 

3.2 Fish Passage 

Fish passage success varies among WWP structures and size classes of fish (Figure 3.11). 

Passage success is greatest at WWP1 for fish 200 mm in length and smaller; however, passage 

success decreases as fish size increases at WWP1.  WWP2 has the highest success rate for larger 

(a) (b) 

(c) (d) 

(e) (f) 
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fish. Additionally, there appears to be a positive linear relationship with passage success and fish 

size. At WWP3, passage success increases from 28 to 80 percent when fish length exceeds 300 

mm. Different fractions of successful movements at each WWP structure occurred over different 

discharges (Figure 3.12). At 15 cfs, the largest fraction of successful movements occurred at 

WWP2. There is a mode of successful movements for all WWP structures at 30 cfs. Indeed, 

more than 80 percent of fish passage at WWP1 occurred at 30 cfs. At 60 cfs, a larger fraction of 

successful movements occurred at WWP3 compared to WWP1 and WWP2. As discharge 

increases from 100 to 300 cfs, the fraction of successful movements at each WWP greatly 

decreases. 

 

Figure 3.11:  The fraction of observed fish by size class at each WWP structure that 
successfully passed that structure. 
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Figure 3.12:  The fraction of successful movements occurring over the range of modeled 
discharges at each WWP structure. 

 

3.3 Logistic Regression Analysis 

Logistic regression analysis of hydraulic variables, i.e., percentile of cost tested 

individually with the maximum velocity ratio for 25 and 10 BL/s, the minimum depth criterion, 

the 50th percentile of the maximum vorticity, and the 50th percentile of the maximum TKE 

consistently indicated that maximum velocity ratio for 25 and 10 BL/s, and the minimum depth 

criterion were the best predictors of passage success across all WWP structures (Table 3.5). In 

contrast, the cost variable was a poor predictor of passage success (Appendix A). Removing the 

cost variable from the logistic regression model does not have a significant effect on the model 

fit. 

Model parameter estimates indicate that passage success decreases with increases in the 

fractions of flow paths that exceed burst swimming ability and the minimum depth criterion 
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(Table 3.5). A unit change in the minimum depth criterion results in the greatest response in 

passage success compared to the maximum velocity ratio (odds ratio = 6.73 × 10-13).  The final 

model was highly significant (p < 0.05) with classification accuracies of 71.7 and 92.5 for 

successful and unsuccessful movements, respectively (Table 3.6).  

Table 3.5:  Logistic regression analysis for passage success across all WWP structures. 

Predictor β SE β χ2 df p odds ratio (eβ) 

Constant 27.6948 2.2348 153.5700 1 <0.0001 – 
Maximum Velocity Ratio (10 BL/s) -2.4217 0.9061 7.1400 1 0.0075 0.0888 

Maximum Velocity Ratio (25 BL/s) -2.5155 0.5742 19.1900 1 <0.0001 0.0808 

Minimum Depth Criterion -28.0266 2.1821 164.9700 1 <0.0001 6.73E-13 

Test χ2 df p 

Overall model evaluation: 
Likelihood ratio test 271.7842 3 <0.0001 
Goodness-of-fit test 147.8854 3 0.1222 

 
Table 3.6:  The observed and predicted frequencies for passage success across all WWP 

structures. 

Predicted 
Observed Pass Did Not Pass % Correct 

Pass 114 45 71.7% 
Did Not Pass 37 458 92.5% 
Overall % Correct 87.5% 

 

Logistic regression analysis of each individual structure shows a significant influence of 

different hydraulic variables at each structure (Appendix A). Depth is statistically significant at 

WWP1, depth and the maximum velocity ratio for 25 BL/s are significant at WWP2, and depth 

and the maximum velocity ratio for 10 BL/s are significant at WWP3. The parameter estimates 

and odds ratio for the hydraulic variables at each individual structure show a decrease in the 

probability of success as the fraction of flow paths that exceed burst swimming ability increase 

(Table 3.7). The goodness-of-fit test at WWP1 indicates that more complex variables could be 
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added to the model (p < 0.05). Despite the results from the goodness-of-fit test at WWP1, the 

likelihood ratio test indicates that the models predict passage success with high accuracy (p < 

0.05) (Table 3.7). Additionally, the model correctly predicted 76.14 percent of the observations. 

The logistic regression models accurately predicted 88.5 and 86 percent of the observations at 

WWP2 and WWP3, respectively (Table 3.8). 

Table 3.7:  Logistic regression analysis for passage success at each WWP structure. 

 Predictor β SE β χ2 df p odds ratio (eβ) 

W
W

P1
 Constant 31.9771 3.8436 69.2100 1 <0.0001 – 

Minimum Depth Criterion -36.3190 4.2438 73.2400 1 <0.0001 1.69E-16 

W
W

P2
 Constant 29.7199 4.6198 41.3900 1 <0.0001 – 

Maximum Velocity Ratio (25 BL/s) -4.8744 1.6846 8.3700 1 0.0038 7.64E-03 
Minimum Depth Criterion -31.7426 4.6872 45.8600 1 <0.0001 1.64E-14 

W
W

P3
 Constant 26.8093 3.4570 60.1400 1 <0.0001 – 

Maximum Velocity Ratio (10 BL/s) -3.2481 0.6892 22.2100 1 <0.0001 3.89E-02 

Minimum Depth Criterion -26.2229 3.3716 60.4900 1 <0.0001 4.09E-12 
 Test χ2 df p  

W
W

P1
 Overall model evaluation: 

Likelihood ratio test 119.3776 1 <0.0001 
Goodness-of-fit test 9.9828 1 0.0068 

W
W

P2
 Overall model evaluation: 

Likelihood ratio test 89.4292 2 <0.0001 
Goodness-of-fit test 21.2561 2 0.9674 

W
W

P3
 Overall model evaluation: 

Likelihood ratio test 92.7136 2 <0.0001 
Goodness-of-fit test 33.8460 2 0.1389 
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Table 3.8:  The observed and predicted frequencies for passage success at each individual 
WWP structure. 

 Predicted 
 Observed Pass Did Not Pass % Correct 

W
W

P1
 Pass 8 10 44.4% 

Did Not Pass 37 142 79.3% 
Overall % Correct 76.1% 

W
W

P2
 Pass 35 15 70.0% 

Did Not Pass 7 135 95.1% 
Overall % Correct   88.5% 

W
W

P3
 Pass 41 14 74.5% 

Did Not Pass 22 181 89.2% 
Overall % Correct   86.0% 

 
Logistic regression analysis of the combined variable for the maximum velocity ratio and 

minimum depth criterion indicate a significant influence of the maximum velocity ratio for 25 

BL/s and the minimum depth criterion; however, the maximum velocity ratio for 10 BL/s and the 

minimum depth criterion was not significant (Appendix A). The combined variable has a 

negative parameter estimate and odds ratio < 1, indicating that passage success decreases as the 

fraction of flow paths that exceed burst swimming ability (25 BL/s) or do not meet the minimum 

depth criterion increases (Table 3.9). The likelihood ratio test indicates that the model predicted 

passage success with high accuracy (p < 0.05); however, the goodness-of-fit test indicates that 

additional variables could be added to improve the model fit. The model accurately predicted 

87.5 percent of the observations (Table 3.10). 
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Table 3.9:  Logistic regression analysis for passage success across all WWP structures for 
the combined variable (maximum velocity ratio of 25 BL/s and the minimum depth 

criterion). 

Predictor β SE β χ2 df p odds ratio (eβ) 

Constant 24.6694 2.0324 147.34 1 <0.0001 – 
Maximum Velocity Ratio (25 BL/s)  
and the Minimum Depth Criterion -27.2676 2.1608 159.24 1 <0.0001 1.44E-12 

Test χ2 df p 

Overall model evaluation: 
Likelihood ratio test 228.7675 1 <0.0001 
Goodness-of-fit test 81.9267 1 <0.0001 

 

Table 3.10:  The observed and predicted frequencies for passage success across all WWP 
structures for the combined variable (maximum velocity ratio of 25 BL/s and the minimum 

depth criterion). 

Predicted 
Observed Pass Did Not Pass % Correct 

Pass 108 51 67.9% 
Did Not Pass 31 464 93.7% 
Overall % Correct 87.5% 

 
Logistic regression analyses of each individual structure indicated a significant influence 

of the combined variable for the maximum velocity ratio of 25 BL/s and the minimum depth 

requirement. According to the odds ratios and parameter estimates, passage success decreases 

with an increase in the fraction of traces that exceed burst swimming ability (25 BL/s) or do not 

meet the minimum depth criterion increases (Table 3.11). The likelihood ratio test indicates that 

each model predicts passage success with high accuracy (p < 0.05) (Table 3.11). Additionally, 

the goodness-of-fit test at WWP2 and WWP3 indicates that the inclusion of additional variables 

would not improve the model fit (p > 0.05); however, the addition of more complex variables at 

WWP1 might improve the model fit (p < 0.05). The model accurately predicted passage success 

for 90.7, 87.5, and 85.7 percent of the observations at WWP1, WWP2, and WWP3, respectively 

(Table 3.12).  
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Table 3.11:  Logistic regression analysis for passage success at each WWP structure for the 
combined variable (maximum velocity ratio of 25 BL/s and the minimum depth criterion). 

 Predictor β SE β χ2 df p odds ratio (eβ) 

W
W

P1
 Constant 45.0055 5.5986 64.62 1 <0.0001 – 

Maximum Velocity Ratio (25 BL/s)  
and the Minimum Depth Criterion -49.7348 6.0592 67.37 1 <0.0001 2.51E-22 

W
W

P2
 Constant 24.8876 3.6464 46.58 1 <0.0001 – 

Maximum Velocity Ratio (25 BL/s)  
and the Minimum Depth Criterion -27.0016 3.7769 51.11 1 <0.0001 1.88E-12 

      

W
W

P3
 Constant 20.4209 2.9188 48.95 1 <0.0001 – 

Maximum Velocity Ratio (10 BL/s)  
and the Minimum Depth Criterion -22.6106 3.0498 54.96 1 <0.0001 1.51E-10 

      
 Test χ2 df p  

W
W

P1
 Overall model evaluation: 

Likelihood ratio test 104.3809 1 <0.0001 
Goodness-of-fit test 38.4229 1 <0.0001 

W
W

P2
 Overall model evaluation: 

Likelihood ratio test 80.308 1 <0.0001 
Goodness-of-fit test 13.6666 1 0.6235 

W
W

P3
 Overall model evaluation: 

Likelihood ratio test 71.7071 1 <0.0001 
Goodness-of-fit test 0.0999 1 0.9513 

 

Table 3.12:  The observed and predicted frequencies for passage success at each individual 
WWP structure for the combined variable (maximum velocity ratio of 25 BL/s and the 

minimum depth criterion). 

 Predicted 
 Observed Pass Did Not Pass % Correct 

W
W

P1
 Pass 43 11 79.6% 

Did Not Pass 8 142 94.7% 
Overall % Correct 90.7% 

W
W

P2
 Pass 33 17 66.0% 

Did Not Pass 7 135 95.1% 
Overall % Correct   87.5% 

W
W

P3
 Pass 34 21 61.8% 

Did Not Pass 16 187 92.1% 
Overall % Correct   85.7% 
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CHAPTER 4 DISCUSSION 

The methods used in this study provide a novel and powerful approach to evaluate fish 

passage at hydraulic structures. Describing the hydraulic conditions along potential fish 

movement paths continuously quantifies important flow features at a scale meaningful to a fish. 

The logistic regression analyses indicate that the maximum velocity ratio for burst swimming 

abilities of 25 and 10 BL/s and the minimum depth criterion accurately predict passage success 

for over 87 percent of observed trout. Additionally, the model accurately predicted over 92 

percent of the observations of no movement. The fraction of available flow paths that exceed a 

fish’s burst swimming ability or do not provide adequate depth had a negative influence on 

passage success.  This strongly suggests that both depth and velocity are contributing to the 

suppression of movement of upstream migrating salmonids. These results contrast with a 

previous study that did not find velocity to have an evident effect on passage success (Fox, 

2013). This contradiction is likely the result of the difference in scale over which velocities were 

quantified. Fox (2013) calculated cross-sectional velocity quantiles within the chute of WWP 

structures not accounting for discontinuities in acceptable velocities along a movement path. 

Logistic regression analysis indicates a significant influence of the combined variable for 

the maximum velocity ratio (25 BL/s) and the minimum depth criterion across all WWP 

structures and at each individual WWP structure. This underscores the importance of jointly 

considering depth and velocity as barriers to upstream migration. Additionally, combining 

velocity and depth into a single variable allows for a simplified, but highly accurate, statistical 

analysis. Quantifying a single variable provides a means to assess passage success with fewer 

observed movements. This could have implications for future projects where time and cost are 

limiting factors. 
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Although the combined variable accurately captures the effects of velocity and depth, 

additional analyses of the variation in statistically significant hydraulic variables among WWP 

structures highlights unique hydraulic characteristics at each WWP structure that affect passage 

success differently. Depth is the primary limiting factor contributing to the suppression of 

movement at WWP1, while both velocity and depth have significant influences at WWP2 and 

WWP3. The evaluation of the maximum velocity ratio, depth, and their joint influence on 

passage success by size class and discharge emphasizes the importance of site-specific 

characterization of subtle differences in structure design. However, depth has lowest odds ratio 

in all logistic regression analyses suggesting it has the strongest effect on passage success. 

At lower discharges, continuous passage routes across WWP1 are only accessible 

through narrow chutes (< 1 ft) flowing in between boulders that may not provide adequate depth 

or flow area for larger fish, but do provide lower velocities accessible to smaller fish. This is 

confirmed through logistic regression, the maximum velocity ratio and depth variables, and 

observed passage success by size class. Depth presents the greatest challenge across discharges 

at WWP1, and examining the maximum velocity ratio for burst swimming abilities of 10 BL/s 

and depth concurrently indicates that WWP1 provides the most available flow paths for smaller 

fish.  Depth is the only statistically significant variable influencing passage success at WWP1, 

and higher success rates are observed for smaller fish compared to larger fish at WWP1.  

WWP2 constricts the flow to the center of the chute at lower discharges and forces fish to 

traverse shallow flow depths characterized by the highest velocities. This is reflected in the lack 

of available flow paths exceeding 0.6 ft at 15 cfs and the fraction of flow paths that exceed burst 

swimming ability for 25 BL/s at 30 cfs. At 30 cfs, the fraction of accessible flow paths is limited 

and similar among size classes for a 175- to 300-mm fish indicating concentrated flow. When 
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observing higher discharges and the fraction of available flow paths for 10 BL/s, there is a 

positive linear increase in the amount of available flow paths with fish size that is reflective of a 

linear increase in passage success. Further, logistic regression confirms depth and velocity as 

significant influences on passage success at WWP2. As discharge increases, flow spills over the 

wing walls and a small zone adjacent to the left bank provides lower velocities.  

At WWP3, recirculation zones exist adjacent to the main velocity jet. At lower flows 

these low-velocity zones may not provide adequate flow depth, forcing fish to pass through the 

main velocity jet. These flow patterns are confirmed by examining the aggregate effect of the 

maximum velocity ratio for 10 BL/s and depth. Depth appears to prevent passage at 15 cfs, while 

passage is accessible to larger fish as discharge increases to 30 cfs indicating velocity as the 

limiting factor. Fish movement data show a similar threshold of increased passage success for 

larger fish at WWP3. However, as discharge increases, water spills over the wing walls, flow 

depths increase adjacent to the main velocity jet, and more flow paths become available to larger 

fish. Logistic regression verifies depth and velocity as significant influences on passage success 

at WWP3. 

It is interesting that the maximum velocity ratios for burst swimming abilities of  

10 and 25 BL/s are both statistically significant. Fish naturally vary in their physical capabilities 

much like humans (Williams et al., 2012). Thus, a variation in physical capabilities among fish is 

likely illustrated through the inclusion of the maximum velocity ratio for burst swimming 

abilities of 10 and 25 BL/s. This is consistent with a previous study examining passage success 

through fishways, where not all fish were able to pass a structure equally well (Caudill et al., 

2007).  Additionally, burst swimming abilities of 10 and 25 BL/s agree with the different 

findings of previous laboratory studies (Beamish, 1978; Peake et al., 1997; Castro-Santos et al., 
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2013). Further, a mixed population of hatchery fish and naturally producing fish supports the 

inclusion of different burst swimming abilities. It has been shown that hatchery rearing can alter 

the behavior and swimming ability of fish (Duthie, 1987; Peake et al., 1997). The inclusion of 

the maximum velocity ratio for different burst swimming abilities at individual structures could 

also indicate the influence of additional hydraulic variables, such as depth or turbulence, to 

reduce a fish’s swimming ability.  

The goodness-of-fit test at WWP1 shows that more complex variables could improve the 

model fit. This suggests that additional variables to depth could be contributing to the 

suppression of movement at WWP1. A study examining the effects of turbulence on passage 

success in three different pool-type fishways found that the fishway with the highest turbulence 

had the worst passage success, but passed smaller fish better than the other configurations (Silva 

et al., 2012). Similarly, WWP1 has the worst overall passage success; however, smaller fish 

experience higher success rates at WWP1 compared to larger fish. WWP1 is also characterized 

by the highest magnitudes and larger distribution of the maximum vorticity along flow paths at 

discharges when the majority of the movements occurred. This suggests that turbulence could be 

an additional factor affecting passage success at WWP1.  

The fact that our models did not identify turbulence as a significant influence could be an 

issue of scale. It has been suggested that the intensity, periodicity, orientation, and scale (IPOS) 

of turbulence should be considered in conjunction when relating turbulence to fish swimming 

abilities (Lacey et al., 2012). The magnitude or intensity of vorticity and TKE do not account for 

the spatial scale at which fish experience turbulent eddies relative to body length. Turbulent 

eddies that are small compared with the fish scale lack momentum required to negatively affect a 

fish, and in some cases assist in forward movement (Haro et al., 2004, Hinch and Rand, 2000; 
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Lacey et al., 2012). Turbulent eddies with a diameter close to the length of a fish can pose 

stability challenges and reduce a fish’s swimming ability (Lupandin, 2005; Pavlov et al., 2000; 

Tritico and Cotel, 2010). However, examining these relationships remains difficult without direct 

observations of flow/fish interactions and established thresholds of the effects of turbulence on 

fish swimming abilities.  

The cumulative effects of velocity a fish experiences while crossing a structure have the 

potential to influence passage success. Studies have shown that as the swim speed of a fish 

increases the time to fatigue decreases (Bainbridge, 1960; Peake et al., 1997). The difference in 

the lengths of the flow volumes is a direct result of differences in the length of the hydraulic 

jump at each structure. The length of the hydraulic jump is greatest at WWP3, resulting in 

greater distances of supercritical flow and higher velocities. Consequently, WWP3 is 

characterized by the highest 50th percentile of cost with the exception of 60 cfs. However, similar 

costs exist at WWP2 and WWP3 at lower flows. As discharge increases, lower velocities along 

the channel margins at WWP3 provide similar costs between WWP3 and WWP2 below the 50th 

percentile. Considering a fish chooses the least cost path (McElroy et al., 2012) through a 

structure, it is unlikely that an exhaustive swimming barrier will exist. Logistic regression 

analysis does not indicate a negative effect of cost on passage success; however, visual 

observations of failed attempts will reveal direct relationships on passage success and velocity as 

an exhaustive swimming barrier. 

Passage success across barriers to migration is a function of the behavior and 

physiological limits of a fish (Castro-Santos et al., 2013).  This study examines hydraulic 

conditions as physiological barriers to migration and does not take into account fish behavior. 

Accessible movement paths might exist at a structure. However, a fish might feel the cumulative 
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effects of fatigue or lack motivation or willingness after several failed attempts to locate 

accessible movement paths (Castro-Santos et al., 2013). It is important to consider the timing of 

fish migrations and other life-cycle processes. Although higher discharges provide a higher 

fraction of accessible flow paths for fish, discharges at 15 to 60 cfs occur much more frequently 

throughout the year at the study site.  

Despite the remaining uncertainties in additional factors that might be contributing to the 

suppression of movement, management guidance and design recommendations can be provided 

based on the strong relationship of passage success with velocity and depth. Care should be taken 

to ensure that velocity and depth requirements are met continuously along likely fish movement 

paths. Multiple field studies indicate that fish exploit boundary layers created by objects in the 

flow field (Fausch, 1993; Nestler et al., 2008). Interstitial spaces within the center of the chute 

may provide zones of lower velocity for smaller fish. Increasing the size range of the interstitial 

spaces to at least the body depth of largest fish likely encountered may provide adequate flow 

depth and lower velocities to accommodate a broader size class of fish size. Continuous low-

velocity zones along the margins of the chute with adequate flow depth should be provided, 

allowing fish to avoid the main velocity jet. Low-velocity zones along the channel margins can 

be achieved by allowing water to spill over the wing walls at all discharges. If the wing walls are 

not grouted they act as roughness elements providing flow refugia for fish. Large eddies that 

recirculate back into the chute at all discharges can provide additional low-velocity zones as seen 

at higher discharges at WWP3. These low-velocity recirculation zones should come up the sides 

of the main velocity jet as far as possible. 

Quantifying hydraulic conditions along potential fish movement paths provides a novel 

and powerful approach to mechanistically evaluate the effects of hydraulics on fish passage over 
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a wide range of hydraulic structure types.  When assessing WWP designs, it is important to 

describe the hydraulic conditions at scales that fish experience them. Simply averaging the 

hydraulic conditions over large spatial scales or evaluating point measurements do not take into 

account the continuous complexity of the flow field along a fish’s movement path. It is also 

important to consider the interaction between multiple hydraulic variables such as depth and 

velocity to ensure all conditions are met for successful passage.  

The results of this study are potentially limited in their transferability to assessing 

passage success of salmonids at WWPs of similar size, design type, and hydrologic regime. 

Similar hydraulic analyses can provide information on the effects that velocity and depth might 

have on passage success at additional WWPs. Evaluating additional WWPs is highly 

recommended to determine the range of hydraulic conditions that fish are required to pass. 

Further, assessing passage success of non-salmonid fishes with different swimming abilities or 

behaviors could highlight the need for lower velocity zones or higher topographic diversity 

within WWP chutes. A more in-depth analysis of turbulence incorporating flow/fish interactions 

could reveal new thresholds and additional factors that affect passage success. Additionally 

visual observations of successful and failed attempts of individual fish will allow for a more-

detailed comparison of the hydraulic conditions that effect passage success and shed light on 

behavioral limitations. 
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CHAPTER 5 CONCLUSIONS 

This study used the results from a 3-D CFD model to provide a continuous and spatially 

explicit description of the hydraulic conditions along potential fish movement paths and examine 

their influence on fish passage at an actual WWP on the St. Vrain River in Lyons, Colorado. 

Quantifying the hydraulic conditions in this manner captured important and unique hydraulic 

characteristics at each WWP, and described velocity and depth throughout the flow field at a 

scale meaningful to a fish. A comparison of velocity and depth relative to a fish’s swimming 

ability was reflective of the variation in passage success among WWP structures and size classes 

of fish. Logistic regression indicated a significant influence of velocity and depth on passage 

success, and accurately predicted 87 percent of individual fish observations. Specific 

combinations of depth and velocity were statistically significant at individual WWP structures 

highlighting the effects of unique hydraulic conditions at each WWP on passage success. The 

results indicate that additional variables such as turbulence might also be contributing to the 

suppression of movement.  Further research is needed to examine the range of hydraulic 

conditions at existing WWPs and the effects of WWPs on native fishes with lesser swimming 

abilities. Additionally, studies involving flow/fish interactions are needed to evaluate fish 

behavior in response to hydraulic conditions and define turbulence at a scale relative to fish size. 

Similar hydraulic analyses coupled with fish movement data can be utilized to evaluate the 

effects of hydraulic conditions on passage success at other types and sizes of WWPs. This study 

lays the groundwork for a novel and powerful approach to mechanistically evaluate the effects of 

hydraulic structures on fish passage. Further, the results of this study can serve as a reference for 

managers and policy makers, provide design guidance for future WWPs, and be used to evaluate 

existing WWPs of similar size, design type, and hydrologic regime.  
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APPENDIX A LOGISTIC REGRESSION ANALYSIS 

 

Figure A.1:  Bivariate analysis of each individual variable. 
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(a) 5th percentile of cost 

Figure A.2:  Preliminary variables selected by stepwise forward regression and their 
inclusion in logistic regression for: (a) 5th percentile of cost, (b) 16th percentile of cost, (c) 

50th percentile of cost, (d) 84th percentile of cost, and (e) 95th percentile of cost. 
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(b) 16th percentile of cost 

Figure A.2 (continued) 



65 

 

 

 

(c) 50th percentile of cost 

Figure A.2 (continued) 
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(d) 84th percentile of cost 

Figure A.2 (continued) 
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(e) 95th percentile of cost 

Figure A.2 (continued) 
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Figure A.3:  Preliminary combined variables across all WWP structures selected by 
stepwise forward regression and their inclusion in logistic regression. 
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(a) WWP1 

Figure A.4:  Preliminary combined variables for each WWP structure selected by stepwise 
forward regression and their inclusion in logistic regression for: (a) WWP1, (b) WWP2, 

and (c) WWP3. 
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(b) WWP2 

Figure A.4 (continued) 
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(c) WPP3 

Figure A.4 (continued) 
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LIST OF ABBREVIATIONS 

3-D three-dimensional 

AIC  Akaike Information Criterion 

CFD computational fluid dynamics models 

CPW  Colorado Parks and Wildlife  

CWCB  Colorado Water Conservation Board 

CWI Colorado Water Institute 

IPOS  intensity, periodicity, orientation, and scale 

NOAA National Oceanic and Atmospheric Administration 

pers. comm. personal communication 

PIT passive integrated transponder 

® registered 

RANS  Reynolds-Averaged Navier-Stokes 

RNG renormalization group 

TKE turbulent kinetic energy 

TI turbulent intensity 

USA United States of America 

USGS U. S. Geological Survey 

VOF volume of fluid 

WWP whitewater park 

WWP1 whitewater park 1 

WWP2 whitewater park 2 

WWP3 whitewater park 3 


