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ABSTRACT 
 
 
 

AUTONOMOUS MANAGEMENT OF COST, PERFORMANCE, AND RESOURCE 

UNCERTAINTY FOR MIGRATION OF APPLICATIONS  

TO INFRASTRUCTURE-AS-A-SERVICE (IAAS) CLOUDS 

 
 

Infrastructure-as-a-Service (IaaS) clouds abstract physical hardware to provide 

computing resources on demand as a software service. This abstraction leads to the simplistic 

view that computing resources are homogeneous and infinite scaling potential exists to easily 

resolve all performance challenges. 

Adoption of cloud computing, in practice however, presents many resource management 

challenges forcing practitioners to balance cost and performance tradeoffs to successfully 

migrate applications. These challenges can be broken down into three primary concerns that 

involve determining what, where, and when infrastructure should be provisioned. In this 

dissertation we address these challenges including: (1) performance variance from resource 

heterogeneity, virtualization overhead, and the plethora of vaguely defined resource types; (2) 

virtual machine (VM) placement, component composition, service isolation, provisioning 

variation, and resource contention for multi-tenancy; and (3) dynamic scaling and resource 

elasticity to alleviate performance bottlenecks. These resource management challenges are 

addressed through the development and evaluation of autonomous algorithms and methodologies 

that result in demonstrably better performance and lower monetary costs for application 

deployments to both public and private IaaS clouds. 

This dissertation makes three primary contributions to advance cloud infrastructure 

management for application hosting. First, it includes design of resource utilization models based 

on step-wise multiple linear regression and artificial neural networks that support prediction of 

better performing component compositions. The total number of possible compositions is 

governed by Bell’s Number that results in a combinatorially explosive search space. Second, it 

includes algorithms to improve VM placements to mitigate resource heterogeneity and 

contention using a load-aware VM placement scheduler, and autonomous detection of under-
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performing VMs to spur replacement. Third, it describes a workload cost prediction 

methodology that harnesses regression models and heuristics to support determination of 

infrastructure alternatives that reduce hosting costs. Our methodology achieves infrastructure 

predictions with an average mean absolute error of only 0.3125 VMs for multiple workloads. 
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CHAPTER 1 

 

INTRODUCTION 

 
 
 
 Cloud computing strives to provide computing as a utility to end users.  Three service 

levels delineate cloud computing: software-as-a-service (SaaS), platform-as-a-service (PaaS) and 

infrastructure-as-a-service (IaaS).  Each offers an increasing level of infrastructure control with 

less infrastructure abstraction to the end user.  Software-as-a-service (SaaS) hosts computational 

services such as computational libraries, modeling engines, and/or application programming 

interfaces (APIs) making them more easily accessible to end users.  Platform-as-a-service 

(PaaS) provides a hosting framework that allows developers freedom to design and deploy 

services so long as they adhere to specific platform(s).  PaaS provides specific relational 

databases, application servers, and vendor/platform specific programming APIs while 

abstracting, hosting, of the underlying infrastructure.  Developers are freed from the burden of 

infrastructure management enabling them to focus on the design and development of application 

middleware, which can be deployed to PaaS containers.  PaaS cloud providers then optimize 

hosting and scaling of these containers to minimize cost and optimize performance.  

Infrastructure-as-a-service (IaaS) provides maximum freedom to developers enabling control 

of the middleware design, as well as the underlying application infrastructure stack.  Developers 

can freely choose databases, application servers, cache/logging servers as needed.  IaaS enables 

diverse application stacks to be supported through the virtualization of various operating systems 

using hypervisors such as Xen, KVM, or VMWare ESXi or operating system containers such as 

OpenVZ, LXC, or Docker [1]–[4].   

 IaaS provides many benefits including easier application migration to clouds as existing 
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applications can often be deployed as-is without extensive refactoring or new development 

which may be required when deploying applications to PaaS clouds that provide vendor specific 

infrastructure.  Legacy infrastructure can often be run under IaaS minimizing the need to 

rearchitect systems enabling a faster approach towards cloud migration.  Avoiding lock-in to 

vendor specific application infrastructures and APIs can improve software maintainability 

throughout the application's life-cycle as vendor specific APIs may incur special costs and have 

limited support if abandoned due to business reasons.  IaaS clouds enable application specific 

granular scaling as individual application components can be scaled as needed to meet demand.  

The number of public IaaS cloud offerings has grown extensively of late with a recent cloud 

evaluation website currently identifying 57 distinct providers, but only 14 PaaS providers [5]. 

Given the advantages, IaaS clouds have become very attractive for hosting applications 

with service oriented architectures.  In this dissertation we refer to applications with service 

oriented architectures as service oriented applications (SOAs).  Deploying to IaaS clouds 

involves deployment of each SOA’s application stack across virtual machines (VMs).  

Application stacks consist of the unique set of components that constitute an application’s 

infrastructure including: web server(s), proxy server(s), database(s), file server(s), distributed 

cache(s) and other server(s)/services.  But how should SOAs be rearchitected to take advantage 

of the unique characteristics of IaaS?  How can the costs of application hosting be minimized 

while maximizing application performance?  Research to investigate these questions forms the 

basis of this dissertation. 

1.1.   KEY RESEARCH CHALLENGES 

SOA deployment to IaaS clouds incurs many resource management challenges which can 

be broken down into three primary concerns: (1) Determining WHEN infrastructure should be 
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provisioned, (2) Determining WHAT infrastructure should be provisioned, and (3) Determining 

WHERE infrastructure should be provisioned.  Management challenges vary for practitioners 

depending on if they are deploying their application to a private or public IaaS cloud.  In private 

cloud settings, practitioners and system administrators have some ability to influence resource 

management leading to improved application deployments.  In public cloud settings, 

practitioners only have limited ability to influence the management of physical infrastructure.  

For public cloud application deployments, our research efforts focus on introspection of 

infrastructure management to improve awareness in helping identify scenarios that produce 

unwanted resource contention and application performance degradation.   

 WHEN server infrastructure should be provisioned to address service demand is 

informed by hotspot detection [6], [7].  Determining when to scale-up resources is complicated 

by the launch latency of virtual machines (VM).  In some cases, the time required to provision 

and launch new infrastructure exceeds the duration of demand spikes [7].  Analysis of historical 

service usage trends can support future load prediction to anticipate demand to enable pre-

provisioning server infrastructure.  Load prediction can be difficult particularly for applications 

with stochastic load behavior.  Care must be exercised as poor prediction can result in 

overprovisioning and higher hosting costs, or underprovisioning and poor performance.  

Prelaunching VMs in anticipation of future service demand can help mitigate launch latency and 

support service availability.  Additional VMs provisioned to address service demand spikes can 

be preserved in resource pools for future use when service demand drops. 

WHAT server infrastructure should be provisioned concerns the size and type (vertical 

scaling) and quantity (horizontal scaling) of VM allocations.  Vertical scaling involves 

modifying resource allocations of existing VMs.  Changing VM resource allocations including 
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CPU core, memory, disk, and network bandwidth may alleviate poor performance when 

possible.  When vertical scaling is unavailable or insufficient to address service demand, 

horizontal scaling can be used.  Additional service capacity is provisioned by launching new 

VMs and the service workload is balanced across the expanded pool of VMs.  A key challenge 

lies in determining how many VMs should be provisioned, and with what resource allocations?   

Vertical scaling is frequently unavailable in public clouds because to achieve economies 

of scale vendors fix VM resource allocations to provide a limited number of virtual machine 

types.  Focusing efforts on providing a limited set of resources helps vendors optimize hardware 

deployments and resource allocations for customer requests.  For example in the spring of 2014 

Amazon Elastic Compute Cloud (EC2) provided 34 fixed VM types [8], while Hewlett Packard’s 

(HP) Helion Cloud provided 11.  Quantifying the performance expectation of cloud resource is 

difficult.  Public cloud vendors typically provide only vague qualitative descriptions of VM 

capabilities.  These qualitative resource descriptions can be considered as ordinal scale 

measures [9].  Ordinal scale measures provide an empirical relation system which preserves the 

ordering of classes with respect to each other.  Ordinal measures provide ranking only. 

Comparisons involving calculation of differences or ratios involving ordinal values are not valid. 

Amazon EC2 describes VM performance using elastic compute units (ECUs), where one ECU 

(1.0 ECU) is stated to provide the equivalent CPU capacity of a 1.0 – 1.2 GHz 2007 AMD 

Opteron or Intel Xeon processor.  HP Cloud Compute Units are advertised to be roughly 

equivalent to the minimum power of 2/13th of one logical CPU core of an Intel 2.6 GHz 2012 

Xeon CPU.  Amazon employs approximate categories to describe network throughput of VM 

types.  Categories include: very low, low (250 Mbps), moderate (500 Mbps), high (1000 Mbps), 

and 10 Gigabit.  Attempts to calculate resource differences fail because these descriptions are at 
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best ordinal measures expressing only relative approximations of resource capabilities.  The lack 

of quantitative resource descriptions makes it exceedingly difficult for practitioners to interpret 

how their SOAs will run in the cloud. 

Hardware heterogeneity in private cloud settings is common when system administrators 

lack the resources to procure significant amounts of identical hardware infrastructure.  

Heterogeneous hardware leads to performance variation when application deployments are 

deployed to heterogeneous servers.  The problem of heterogeneous hardware has been shown to 

pervade in public  cloud settings as well [10], [11].  Prior work has demonstrated that public 

cloud VM types can be implemented using different backing hardware.  In 2011 Ou et al. 

identified no less than 5 different hardware implementations of the Amazon EC2 m1.large VM.  

Further, these “homogeneous” m1.large implementations led to application performance 

variance up to 28%.  We have replicated their results by demonstrating up to 14% performance 

variance for an erosion modeling service application on heterogeneous implementation variants 

of Amazon’s m2.xlarge VM. 

 Virtualization enables the resources of physical hardware to be partitioned for use by 

VMs.  Memory is physically reserved and not shared, while CPU time, Disk I/O and network I/O 

are multiplexed and shared by all VMs running on a PM.   The VM hypervisor either fully 

simulates physical devices using software, a practice known as full virtualization, or virtual 

device requests are passed directly to physical devices using para-virtualization.   Full and para-

virtualization of disk and network devices both incur overhead because underlying devices are 

shared amongst multiple guests.  WHAT resources are provisioned also involves the choice of 

virtualization hypervisor to provide cloud-based VMs in private cloud settings, and the 

awareness of the vendor’s hypervisor choice in public cloud settings.  Different hypervisors have 
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been shown to exhibit different degrees of virtualization overhead depending on the workloads 

being virtualized [3], [12], [13].  Our research has generally found that CPU bound workloads 

can perform better using KVM, while I/O bound workloads benefit from Xen.  HP’s Helion 

cloud uses kernel-based-virtual machines (KVM) while Amazon EC2 uses the Xen hypervisor.  

To our knowledge vendors do not mix hypervisor types when providing VMs of the same types.   

 WHERE server resources are provisioned- and the decision making processes involved- 

are abstracted by public IaaS clouds.  Representing VMs as tuples and using them to pack 

physical machines (PMs) can be thought of as an example of the multidimensional bin-packing 

problem that has been shown to be NP-hard [14].  Consequently in practice simplified heuristic 

based approaches to VM placement are typically used.   

SOAs consist of unique sets of components including: web server(s), proxy server(s), 

application server(s), relational and/or NoSQL database(s), file server(s), distributed caches, log 

services and others.  These components comprise the application stack.  Application deployment 

requires components to be deployed and scaled as service demand requires.  Components are 

distributed to virtualization containers using a series of machine images to instantiate virtual 

machines (VMs), a concept known as component composition.  The number of images and the 

composition of components vary.  Ideal SOA compositions exhibit very good performance using 

a minimum number of images/VMs.  Component aggregations typically deliver superior 

application performance when resource contention is avoided.   Service isolation involves 

hosting components of the application stack separately so they execute using separate virtual 

machine (VM) or operating system container instances.  Isolation provides components explicit 

sandboxes, not shared by other systems.  Service isolation supports easy resource elasticity as the 

quantity, location, and number of VM deployments for particular application components can 
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scale dynamically to meet varying system loads, improving agility to add and remove hardware 

resources to address service demand.  A lighter weight alternative to using full VMs is to 

segment the host operating system using operating system containers to provide isolated 

sandboxes that simulate separate physical computers.  

Using brute force performance testing to determine optimal component compositions is 

only feasible for applications with small numbers of components.  If considering an application 

as a set of (n) components, then the total number of possible component compositions is Bell's 

number (k).   

Bell's number is the number of partitions of a set (k) consisting of (n) members [15].  An 

exponential generating function to generate Bell numbers is given by the formula: 

 

Table 1.1 shows the first few bell numbers describing the possible component 

compositions for an application with (n) components.  Beyond four components the number of 

compositions grows large demonstrating that brute force testing to identify optimal compositions 

becomes an unwieldy, arduous task.  Further complicating testing, public IaaS clouds typically 

do not provide the ability to introspect or control VM placements making it difficult, if not 

impossible, to even infer where components have been deployed across physical hardware.   

WHERE VMs are provisioned in a public cloud is not only uncontrollable, but difficult to 

discern as well [16].  End user determination of VM location and co-location remains an open 

challenge.  Previous efforts using heuristics to infer VM co-residency and launching probe VMs 

for exploration are both expensive and only partially effective at determining VM locations [17].  

Resource contention from VM multi-tenancy has been shown to degrade performance and is of 

concern for SOA application hosting [16], [18].  Public clouds often pack VMs onto as few 
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physical hosts as possible to reduce hardware idle time and save energy [19].  Forcing multi-

tenancy in this way to save energy often leads to a tradeoff in performance.   

Table 1.1. Number of SOA Component Compositions 

Number of components (n) Number of compositions (k) 

3 5 

4 15 

5  52 

6 203 

7 877 

8 4140 

Provisioning variation, the variability of where application VMs are deployed across 

physical hosts of a cloud, results in performance variation and degradation [16], [18], [20].  

Unwanted multi-tenancy and interference occurs when multiple VMs that intensively consume 

the same resource (CPU, Disk I/O, and Network I/O) reside on the same physical host computer 

leading to resource contention and performance degradation.  Given an application with 4 

components and 15 possible component compositions, VM provisioning variation yields 46 

variations on how the 15 compositions can be deployed across physical hosts.  Component 

composition and VM provisioning variation result in an explosion of the search space, making 

brute force testing to quantify performance implications of provisioning variation an arduous 

task. 

Key resource management challenges for SOA deployment to IaaS clouds broken down 

by problems concerning WHEN, WHAT, and WHERE to provision infrastructure are 

summarized in table 1.2.   
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Table 1.2.  IaaS Cloud Resource Management Challenges 

WHEN to provision WHAT to provision WHERE to provision 

Hot spot detection 

Launch latency 

Load prediction 

Prelaunching VMs 

Vertical scaling 

Horizontal scaling 

Virtual machine types 

Hardware heterogeneity 

Virtualization 

Virtualization hypervisor 

Virtualization overhead 

Qualitative resource descriptions 

VM placement 

Component composition 

Service isolation 

Provisioning variation 

Multi-tenancy 

1.2.   KEY RESEARCH QUESTIONS 

This dissertation broadly investigates the following research questions: 

DRQ-1: [Chapter 3] What factors must be accounted for when migrating and then scaling 

SOAs on IaaS clouds for high performance? 

DRQ-2: [Chapter 4] Which resource utilization variables are the best independent variables 

for predicting application performance?  Which modeling techniques are most 

effective? 

DRQ-3: [Chapter 5] How does resource utilization and application performance vary relative 

to component composition across VMs?  What is the magnitude of performance 

variance resulting from the use of different component compositions across VMs? 

DRQ-4: [Chapter 7] What performance implications result from VM placement location when 

dynamically scaling cloud infrastructure for SOAs? 

DRQ-5: [Chapter 7] How can we detect the presence of noisy neighbors, multi-tenant VMs 

that cause resource contention and what are the performance implications for SOA 

hosting? 

DRQ-6: [Chapter 8] How effectively can we predict required infrastructure for SOA workload 
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hosting by harnessing resource utilization models and Linux time accounting 

principles? 

1.3.   RESEARCH CONTRIBUTIONS 

This dissertation contributes three primary contributions to advance IaaS cloud resource 

management for SOA hosting.  These contributions include: 

1. Resource utilization modeling to predict performance of SOA deployments on IaaS clouds 

2. Resource management techniques to improve VM placement to reduce resource contention 

for SOA deployments on both public and private IaaS clouds 

3. A workload cost prediction methodology which offers infrastructure alternatives to reduce 

SOA hosting costs on IaaS clouds 

Detailed research contributions of this dissertation from the individual chapters include: 

Chapter 3: An exploratory investigation on the implications of SOA migration to IaaS cloud 

is presented.  Key results identified through the study include: (1) the requirement 

of application tuning to address distinct system bottlenecks when scaling up 

server infrastructure, (2) the importance of careful component composition to 

avoid resource contention, and (3) relationships between application profile 

characteristics (e.g. CPU bound vs. I/O bound) and virtualization overhead. 

Chapter 4: Resource utilization models to predict performance of SOA deployments to IaaS 

clouds are proposed.  The best independent variables are identified and modeling 

techniques are identified. 

Chapter 5: An empirical investigation on the implications of SOA performance based on 

component composition across virtual machines.  Characteristics of compositions 
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that provide the best performance are identified.  Overhead is quantified from 

deploying components in isolation using separate VMs on the same physical host.  

Performance implications of increasing VM memory allocations (vertical scaling) 

and the use of different hypervisors (KVM vs. XEN) are studied. 

Chapter 6: The Virtual Machine Scaler (VM-Scaler), a REST/JSON based web services 

application which supports IaaS cloud infrastructure provisioning and 

management is described.  VM-Scaler provides a platform for conducting IaaS 

cloud research by supporting experimentation with hotspot detection schemes, 

dynamic scaling approaches, VM management/placement, job scheduling/proxy 

services, SOA workload profiling, and SOA performance modeling. 

Chapter 7: Multiple techniques are presented to reduce resource contention from multi-

tenancy to improve SOA performance.  These include: A load-aware VM 

placement/job scheduler, an empirical evaluation of performance implications of 

VM placement for dynamically scaling application infrastructure, evaluation of 

performance implications from VM type heterogeneity, and an approach to detect 

noisy neighbors in cloud settings using the cpuSteal CPU metric. 

Chapter 8: This chapter presents a workload cost prediction methodology to predict hosting 

costs of SOA workloads harnessing resource utilization models.  This 

methodology provides infrastructure alternatives that provide equivalent 

performance allowing the most economical infrastructure to be chosen for 

application hosting. 

1.4.   NON-GOALS 

Autonomic service composition and resource provisioning for hosting SOAs using IaaS 
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clouds is a compound problem that crosscuts many existing areas of distributed systems research.  

Related research problems which are NOT the primary focus of this work are described below.  

These research problems can be as considered related research and potential future work, but are 

generally considered as non-goals of this work. 

1.4.1. Stochastic Applications 

 This research focuses on service composition and resource provisioning to support 

hosting non-stochastic service oriented applications which exhibit stable resource utilization 

characteristics.  The primary focus is to support application deployment and infrastructure 

management for service-based applications which provide modeling or computational engines as 

a service to end users.  Applications with non-deterministic stochastic behavior are not the focus 

of this work. 

1.4.2. Simultaneous Deployment of Multiple Applications 

Public IaaS clouds and private IaaS clouds hosting multiple applications may experience 

interference when these applications simultaneously share the same physical hosts.  Interference 

from external applications, particularly stochastic applications, can cause unpredictable behavior.  

The research focuses on service composition and resource provisioning for one SOA at a time.  

Future work could investigate support for deploying multiple sets of non-stochastic applications 

simultaneously.   We do investigate resource contention for VM multi-tenancy from our own 

application hosting in chapter 5, and from external cloud users extensively in chapter 7. 

1.4.3. Fault Tolerance 

 This research does not focus exclusively on fault tolerance of the virtual infrastructure 

hosting SOAs.  Fault tolerance is considered an autonomic resource provisioning system feature, 
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but is not a primary focus of this research.  Fault tolerance support and investigation of fault 

tolerance research questions related to autonomic resource provisioning systems is considered as 

future or related work. 

1.4.4. Hot Spot Detection 

 This research does not focus specifically on development of novel hot spot detection 

algorithms.  Hot spot detection scheme(s) are required for autonomic resource provisioning and 

appropriate methods are chosen as needed for investigations of dynamic scaling in Chapter 7. 

1.4.5. Heuristic Based Approach for Component Composition 

This research investigates the use of performance models to predict performance of SOA 

component compositions.  Our approach relies on execution of training workloads to train 

performance models.  We do not develop a heuristic based approach to guide component 

compositions which avoids training regression based performance models.  This exercise is 

considered as future or related work. 

1.5.   ORGANIZATION 

The remainder of this dissertation is organized as follows.  Chapter 2 provides an 

overview of research gaps and related work.  Chapter 3 provides an exploratory investigation on 

the migration of service oriented applications to IaaS clouds.  Chapter 4 explores the 

development and use of resource utilization performance models to predict the performance of 

SOA component deployments across virtual machines.  Our resource utilization based approach 

to performance modeling for SOAs deployed to IaaS clouds is harnessed later in this dissertation 

to tackle a myriad of resource management challenges in chapters 5, 7, and 8.  Chapter 5 

investigates performance implications of WHERE SOA components are deployed across VM 
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and presents resource utilization based performance models which predict performance of 

component compositions.  Chapter 6 introduces the Virtual Machine Scaler (VM-Scaler), a 

REST/JSON Java-based web services application to support cloud infrastructure management for 

SOA deployment.  Chapter 7 investigates implications of WHERE VM placement occurs in both 

private and public clouds settings.  Multiple management approaches are presented to improve 

SOA performance deployed to both public and private IaaS clouds.  Chapter 8 harnesses 

resource utilization performance modeling to provide infrastructure alternatives to address 

WHAT infrastructure should be provisioned to balance both performance and cost tradeoffs. 

Chapter 9 provides overarching conclusions and Chapter 10 summarizes references cited in this 

dissertation. 
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CHAPTER 2 

 

BACKGROUND 

 
 
 

2.1.   PREVIOUS WORK 

 Placement of application components across a series of VM images can be envisioned as 

a bin packing problem.  The traditional bin packing problem states that each bin has a size (V), 

and items (a1,...,an) are packed into the bins.  For our problem there are a minimum of five bins 

describing dimensions of: CPU utilization, disk write throughput, disk read throughput, network 

traffic sent, and network traffic received.  To treat component composition as a bin packing 

problem both the resource capacities of our bins (PMs) as well as the resource consumption of 

our items (components) must be quantified.  Determining resource utilization and capacities is 

challenging particularly for stochastic applications and heterogeneous hardware where resource 

consumption and performance of resources varies.   

 Several approaches exist for autonomic provisioning and configuration of VMs for IaaS 

clouds.  Xu et al. have identified two classes of approaches in [21]: multivariate optimization 

(performance modeling), and feedback control.  Multi-variate optimization approaches have a 

specific optimization objective, typically improving performance, which is achieved by 

developing performance models which consider multiple system variables.  Feedback control 

approaches based on process control theory attempt to improve configurations by iteratively 

making changes and observing outcomes.  Formal approaches to autonomic resource 

provisioning attempted include: integer linear programming [22], [23], knowledge/case-based 

reasoning [24], [25], and constraint programming [26].  Integer linear programming techniques 

attempt to optimize a linear objective function.  Case based reasoning approaches store past 
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experiences in a knowledge base for later retrieval which is used to solve future problems by 

applying past solutions or inferring new solutions from previous related problems.  Constraint 

programming is a form of declarative programming which captures relations between variables 

as constraints which describe properties of possible solutions.  Feedback control approaches have 

been built using reinforcement learning [21], support vector machines [27], neural networks [28] 

[29], and a fitness function [30].  Performance models have been built using regression 

techniques [31], artificial neural networks [21], [32][21], and support vector machines [27].  

Hybrid approaches which combine the use of performance modeling with feedback control 

include: [21], [27], [29]. 

 Feedback control approaches apply control system theory to actively tune resources to 

best meet pre-stated service level agreements (SLAs).  Feedback control systems do not 

determine optimal configurations as they often consider a smaller subset of the exploration space 

as they use actual system observations to train models.  This may result in inefficient control 

response, particularly upon system initialization.  Multivariate optimization approaches model 

system performance with larger or complete training data sets enabling a much larger portion of 

the exploration space to be considered.  Performance models require initialization with training 

datasets which can be difficult and time consuming to collect.  Models with inadequate training 

data sets may be inaccurate and ineffective for providing resource control.  Time to collect and 

analyze training datasets results in a trade-off between model accuracy vs. availability.  

Additionally performance models with a large number of independent variables or a sufficiently 

large exploration space exhibit the accuracy vs. complexity trade-off.  Difficulty of collecting 

training data for models with a large search space, and a large number of variables leads to 

increased model development effort possibly forcing a tradeoff with model accuracy to keep 
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model building tractable.  Hybrid autonomic resource provisioning approaches combine the use 

of performance models with feedback control system approaches with an aim to provide better 

control decisions more rapidly.  These systems use training datasets to inform control decisions 

immediately upon initialization which are further improved as the system operates and more data 

is collected.  Hybrid approaches often use simplified performance models which trade-off 

accuracy for speed of computation and initialization. 

 Wood et al. developed Sandpiper, a black-box and gray-box resource manager for VMs 

[31].  Sandpiper was designed to oversee server partitioning and was not designed specifically 

for IaaS.  “Hotspots” are detected when provisioned architecture fails to meet service demand.  

Their approach was limited to vertical scaling which includes increasing available resources to 

VMs, and VM migration to a less busy PMs as needed.  They did not perform horizontal scaling 

by launching additional VMs and load balancing.  Sandpiper acts as a control system which 

attempts to meet a predetermined SLA.  Xu et al. developed a resource learning approach for 

autonomic infrastructure management [21].  Both application agents and VM agents were used to 

monitor performance.  A state/action table was built to record performance quality changes 

resulting from state/action events.  A neural network model was later added to predict reward 

values to help improve performance after initialization when the state/action table was only 

sparsely populated.  Kousiouris et al. benchmarked all possible configurations for different task 

placements across several VMs running on a single PM [32].  From their observations they 

developed both a regression model and an artificial neural network to model performance.  Their 

approach did not perform resource control, but focused on performance modeling to predict the 

performance implications of task placements.  Niehorster et al. developed an autonomic resource 

provisioning system using support vector machines (SVMs) for IaaS clouds [27].  Their system 
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responds to service demand changes and alters infrastructure configurations to enforce SLAs.  

They performed both horizontal and vertical scaling of resources and dynamically configured 

application specific parameters.   

 A number of formal approaches for autonomic resource management appear in the 

literature and commonly they've been built and tested with simulations only and not tested with 

physical clouds.  Lama and Zhou proposed the use of self-adaptive neural network based fuzzy 

controllers in [28], [29] and was limited to controlling the number of VMs.  Addis et al. model 

resource control as a mixed integer non-linear programming problem and apply two main 

features of classical local search exploration and refinement in [22].  Maurer et al. propose using 

a knowledge management system which uses case based reasoning to minimize SLA violations, 

achieve high resource utilization, conserve time and energy and minimize resource reallocation 

(migration) [24], [25].  Van et al. treat virtual resource management as a constraint classification 

problem and employ the choco constraint solver [26].  Their approach is model agnostic as 

individual applications must provide their own performance model(s).  Li et al. propose a linear 

integer programming model for scheduling and migration of VMs for multi-cloud environments 

which considers the costs of VM migration and cloud provider pricing [23].  Bonvin et al. 

propose a virtual economy which considers the economic fitness of the utility provided by 

various application component deployments to cloud infrastructure [30].  Server agents 

implement the economic model on each cloud node to help ensure fault tolerance and adherence 

to SLAs.  Unlike above mentioned approaches Bonvin et al. evaluated their approach using 

applications running on physical servers, but their approach did not consider server virtualization 

but simply managed the allocation/deallocation of services across a cluster of physical servers.   
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2.2.   RESEARCH GAPS 

 Table 2.1 provides a comparison of autonomic infrastructure management approaches 

described in [21], [27], [31], [32].  These approaches are compared because of the similarity to 

our proposed approach(es) described later in this research proposal.  Each of the reviewed 

approaches has built a performance model and validated it benchmarking physical hardware in 

contrast to theoretical approaches which were validated using only simulation [22]–[26], [28], 

[29].  The complexity of cloud based systems makes validation using only simple economics-like 

simulations of questionable value.  Table 2.1 shows features modeled, controlled, and/or 

considered by each of the approaches.  Analyzing these approaches helps identify gaps in 

existing research.  None of the approaches reviewed address composition of application 

components, as components were always deployed separately using full VM service isolation.  

Service isolation enables easier horizontal scaling of resources for specific application 

components but requires the largest number of VMs and may not provide better performance 

versus more concise deployments [13], [33].  Several issues were considered by only one 

approach including: horizontal scaling of VMs, tuning application specific parameters, 

determination of optimal configurations, and live VM migration.  None of the approaches in 

Table 2.1 consider many independent variables in performance models and generally focus on a 

few select variables purported as the crux of their research contributions while ignoring 

implications of other variables.  Approaches reviewed did not consider performance implications 

of virtualization hypervisor type (XEN, KVM, etc.) or disk I/O throughput, and only one 

approach considered implications of network I/O throughput and VM placement across PMs.  

Learning approaches which tend towards the use of simplified performance models may fail to 

capture the cause of improved performance when too many variables have been omitted from 
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models.  Other issues not addressed include the use of heterogeneous environments when PMs 

have varying capabilities, resource contention from interference between application 

components, and interference from non-application VMs.     

Table 2.1.  Autonomic Infrastructure Management Comparison 

Feature controlled / modeled Wood et al. 

[31] 

Xu et al.  

[21] 

Kousiouris 

et al. [32] 

Niehorster  

et al. [27] 

CPU scheduler credit  X X  

VM memory allocation X X  X 

Hypervisor type (KVM/XEN)     

Disk I/O Throughput     

Network I/O Throughput X    

Location of application VMs   X  

Service composition of VM images     

Scaling # of VMs per application component     X 

Application specific parameters    X 

SLA/SLO enforcement X X  X 

Determine optimal configuration   X  

Live VM migration X    

Live tuning of VM configuration X X  X 

# of CPU cores X X  X 

memory X X  X 

Performance modeling  X X X 

Multi-tier application support X   X 

 Research should establish the most important variables for impacting application 

performance on IaaS clouds to form a base set of parameters for future performance models.  

Performance models may be further improved by the development and application of heuristics 

which capture performance behavior and characteristics specific to IaaS clouds.  New 

performance models should be developed which better capture effects of virtualization, 

component and VM location, and characteristics of physical resource sharing to support ideal 

load balancing of disk I/O, network I/O and CPU resources.   

 Existing gaps in research result from the infancy of cloud computing and the difficulty of 
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performance modeling while resulting from a large problem space(s) with many potential 

independent variables.  Benchmarking application resource utilization is difficult as isolating 

resource utilization data using public clouds with heterogeneous PMs which may potentially host 

multiple unrelated applications is difficult.  Collecting resource utilization data involves 

overhead and can skew the accuracy of the data.  Use of isolated testing environments such as 

private IaaS clouds can support testing but private IaaS virtual infrastructure management (VIM) 

software is still evolving and presently exhibits variable performance, incomplete feature sets, 

and inconsistent product stability [34].  Virtualization further complicates IaaS research, in that 

the effects of virtualization are often misunderstood as the underlying implementation of 

virtualization hypervisors are often misunderstood. 
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CHAPTER 3 

 

MIGRATION OF SERVICE ORIENTED APPLICATIONS 

 
 
 

3.1.   INTRODUCTION 

Migration of service oriented applications (SOAs) to Infrastructure-as-a-Service (IaaS) 

clouds involves decomposing applications into an application stack of service-based 

components.  Application stacks may include components such as web server(s), proxy server(s), 

database(s), file server(s) and other servers/services.  Service isolation involves separating 

components of the application stack so they execute using separate virtual machine (VM) 

instances.  Isolation provides components explicit sandboxes, not shared by other systems.  

Using hardware virtualization, isolation can be accomplished multiple times for separate 

components on a single physical server.  Previously service isolation using a physical data center 

required significant server real estate.  Hardware virtualization refers to the creation and use of 

VMs which run on a physical host computer.  Recent advances in x86-based virtualization 

enabled by CPU-specific enhancements to support device simulation have eliminated the need 

for specialized versions of guest operating systems as required with XEN-based 

paravirtualization [2].  Full virtualization, where the guest operating system is unaware that it is 

being virtualized is now possible as hardware is simulated with no direct access to the physical 

host's hardware.  Virtualization provides for resource elasticity where the quantity, location, and 

size of VM allocations can change dynamically to meet varying system loads, as well as 

increased agility to add and remove services as an application evolves.    

Together service isolation, hardware virtualization, and resource elasticity are key 

benefits motivating the adoption of IaaS based cloud-computing environments such as Amazon's 
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Elastic Compute Cloud (EC2).  Despite these advantages, cloud-based virtualization and service 

isolation raise new challenges which must be addressed when migrating SOAs to IaaS clouds.  

Provisioning variation, the ambiguity over how and where application components hosted by 

VMs are deployed across physical machines of a cloud, can lead to unpredictable, and even 

unwanted performance variation [16], [18], [20].  Unwanted multi-tenancy occurs when multiple 

resource intensive VMs reside on a single physical host computer potentially leading to resource 

contention and application performance degradation.  Virtualization incurs overhead because a 

VM's memory, CPU, and device operations must be simulated on top of the physical host's 

operating system.   

In this chapter we investigate the following research questions: 

RQ-1: How can service oriented applications be migrated to Infrastructure-as-a-Service cloud 

environments, and what factors must be accounted for while deploying and then 

scaling  applications for optimal throughput? 

RQ-2: What is the impact on application performance as a result of provisioning variation?  

Does multi-tenancy, having multiple application VMs co-located on a single physical 

node machine, impact performance? 

RQ-3: What overheads are incurred while using Kernel-based virtual machines (KVM) for 

hosting components of a service oriented application? 

3.2.   RELATED WORK 

Rouk identified the challenge of finding optimal image and service composites, a first 

step in migrating SOAs to IaaS clouds in [35].  Chieu et al. [36] next proposed a simple method 

to scale applications hosted by VMs by considering the number of active sessions and scaling the 
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number of VMs when the number of sessions exceed particular thresholds.  Iqbal et al. [37] using 

a Eucalyptus-based private cloud developed a set of custom Java-components based on the 

Typica API which supported auto-scaling of a 2-tier web application consisting of web server 

and database VMs.  Their system automatically scaled resources when system performance fell 

below a predetermined threshold.  Log file heuristics and CPU utilization data were used to 

determine demand for both static and dynamic web content to predict which system components 

were most heavily stressed.  Appropriate VMs were then launched to remedy resource shortages.  

Their approach is applicable web applications where the primary content being served is static 

and/or dynamic web pages.  Liu and Wee proposed a dynamic switching architecture for scaling 

a web server in [38].  Their work was significant in identifying the existence of unique 

bottlenecks occurring at different points when scaling up web applications to meet greater 

system loads.  In each case fundamental infrastructure changes were required to surpass each 

bottleneck before scaling further.  They identified four web server scaling tiers for their 

switching architecture including: (1) a m1.small Amazon EC2 VM (consists of: 1.7 GB memory, 

32-bit ~2.6 GHz CPU core, 160 GB HDD), (2) a set of load balanced m1.small Amazon EC2 

VMs, (3) a c1.xlarge Amazon EC2 VM (consists of: 7GB memory, 64-bit ~2.4 GHz 8 CPU 

cores, 1690 GB HDD), and (4) the use of DNS level load balancing to balance across multiple 

c1.xlarge Amazon EC2 VMs.  DNS load balancing was required when more than 800 Mbps of 

network bandwidth was required, the threshold found to exceed an Amazon EC2 c1.xlarge 

instance.  Their work is important because they identified the complexity of scaling a web server 

by showing that multiple unique bottlenecks occur while scaling infrastructure to meet greater 

system loads.  Wee and Liu further demonstrated a cloud-based client-side load balancer, an 

alternative to DNS load balancing, which achieves greater throughput than software load 
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balancing [39].  Using Amazon's simple storage service (S3) to host client-side script files with 

load balancing logic, they demonstrate load balancing against 12 Amazon VMs enabling a total 

throughput greater than the bandwidth of a single c1.xlarge VM.  The investigations above made 

contributions in investigating approaches to host and scale web sites hosted in cloud 

environments, but they did not consider issues of hosting and scaling more complex SOAs such 

as web services and models in IaaS clouds.    

Schad et al. [18] demonstrated the unpredictability of Amazon EC2 VM performance, an 

effect caused by resource contention for physical machine resources and provisioning variation 

of VMs in the cloud.  Using a XEN-based private cloud Rehman et al. [16] tested the effects of 

resource contention on Hadoop-based MapReduce performance by using IaaS-based cloud VMs 

to host Hadoop worker nodes.  They tested the effect of provisioning variation of three different 

provisioning schemes of VM-based Hadoop worker nodes and observed performance 

degradation when too many worker nodes were physically co-located.  Zaharia et al. further 

identified that Hadoop's scheduler can cause severe performance degradation as a result of being 

unaware of resource contention issues when Hadoop nodes are hosted by Amazon EC2-based 

VMs [20].  They improved upon Hadoop's scheduler by proposing the Longest Approximate 

Time to End (LATE) scheduling algorithm and demonstrated how this approach better dealt with 

virtualization issues when Hadoop nodes were implemented using Amazon EC2-based VMs.  

Both of these papers identified implications of provisioning variation when migrating Hadoop 

worker nodes from a physical cluster to an IaaS-based cloud, but implications resulting from 

provisioning variation of hosting components of SOAs was not addressed.   

Camargos et al. investigated different approaches to virtualizing linux servers and 

computed numerous performance benchmarks for CPU, file and network I/O [3].  Several 
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virtualization schemes including XEN, KVM, VirtualBox, and two container based virtualization 

approaches OpenVZ and Linux V-Server were evaluated.  Their benchmarks targeted different 

parts of the system including tests of kernel compilation, file transfers, and file compression.  

Armstrong and Djemame investigated performance of VM image propagation using Nimbus and 

OpenNebula two different IaaS cloud infrastructure managers [40].  Additionally they 

benchmarked throughput of both XEN and KVM paravirtualized I/O.  Though these works 

investigated performance issues due to virtualization neither study investigated the virtualization 

overhead resulting from hosting complete SOAs in IaaS clouds. 

3.3.   CONTRIBUTIONS 

This chapter presents the results of an investigation on deploying two variants of a 

popular scientific erosion model to an IaaS-based private cloud.  The variants enabled us to study 

application migration for applications with two common resource footprints: a processor bound 

and an I/O-bound application.  Both application variants provided erosion modeling capability as 

a webservice and were implemented using four separate virtual machines on an IaaS-based 

private cloud.  We extend previous work which investigated effects of provisioning variation for 

Hadoop worker nodes deployed on IaaS clouds [16], [20] and virtualization studies which largely 

used common system benchmarks to quantify overhead [3], [40].  Our work also extends prior 

research by investigating the migration of complete SOAs to IaaS clouds [36]–[39] and makes an 

important contribution towards understanding the implications of application migration, service 

isolation and virtualization overhead to further the evolution and adoption of IaaS-based cloud 

computing. 
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3.4.   EXPERIMENTAL INVESTIGATION 

3.4.6. Experimental Setup 

For our investigation we deployed two variants of the Revised Universal Soil Loss 

Equation – Version 2 (RUSLE2), an erosion model as a cloud-based web service to a private 

IaaS cloud environment.  RUSLE2 contains both empirical and process-based science that 

predicts rill and interrill soil erosion by rainfall and runoff [41].  RUSLE2 was developed 

primarily to guide conservation planning, inventory erosion rates, and estimate sediment delivery 

and is the USDA-NRCS agency standard model for sheet and rill erosion modeling used by over 

3,000 field offices across the United States.  RUSLE2 is a good candidate to prototype SOA 

migration because its architecture consisting of a web server, relational database, file server, and 

logging server serves as a surrogate for multi-component SOA with a diverse application stack.   

RUSLE2 was originally developed as a Windows-based Microsoft Visual C++ desktop 

application.  To facilitate functioning as a web service a modeling engine known as the 

RomeShell was added to RUSLE2.   The Object Modeling System 3.0 (OMS 3.0) framework 

[42], [43] using WINE [44] provides middleware to facilitate model to web service inter-

operation.  OMS was developed by the USDA–ARS in cooperation with Colorado State 

University and supports component-oriented simulation model development in Java, C/C++ and 

FORTRAN.  OMS provides numerous tools supporting data retrieval, GIS, graphical 

visualization, statistical analysis and model calibration.  The RUSLE2 web service was 

implemented as a JAX-RS RESTful JSON-based service hosted by Apache Tomcat [45].     

A Eucalyptus 2.0 [46] IaaS private cloud was built and hosted by Colorado State 

University which consisted of 9 SUN X6270 blade servers on the same chassis sharing a private 

1 Giga-bit VLAN with dual Intel Xeon X5560-quad core 2.8 GHz CPUs each with 24GB ram 
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and 146GB HDDs.  The host operating system was Ubuntu Linux (2.6.35-22) 64-bit server 

10.10.  VM guests ran Ubuntu Linux (2.6.31-22) 32 and 64-bit server 9.10.  8 blade servers were 

configured as Eucalyptus node-controllers, and 1 blade server was configured as the Eucalyptus 

cloud-controller, cluster-controller, walrus server, and storage-controller.  Eucalyptus-based 

managed mode networking was configured using a managed Ethernet switch isolating VMs on 

their own private VLANs.   

QEMU version 0.12.5, a Linux-based PC system emulator, was used to provide VMs.  

QEMU makes use of the KVM Linux kernel modules (version 2.6.35-22) to achieve full 

virtualization of the guest operating system.  Recent enhancements to Intel/AMD x86-based 

CPUs provide special CPU-extensions to support full virtualization of guest operating systems 

without modification.  With these extensions device emulation overhead can be reduced to 

improve performance.  One limitation of full virtualization versus XEN-based paravirtualization 

is that network and disk devices must be fully emulated.  XEN-based paravirtualization requires 

special versions of both the host and guest operating systems with the benefit of near-direct 

physical device access [3]. 

3.4.7. Application Components 

Table 3.1 describes the four VM image types used to implement the components of 

RUSLE2's application stack. The Model M VM hosts the model computation and web services 

using Apache Tomcat.  The Database D VM hosts the spatial database which resolves latitude 

and longitude coordinates to assist in parameterizing climate, soil, and management data for 

RUSLE2.  Postgresql was used as a relational database and PostGIS extensions were used to 

support spatial database functions [47], [48].  The file server F VM was used by the RUSLE2 

model to acquire XML files to parameterize data for model runs.  NGINX [49], a lightweight 
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high performance web server provided access to a library of static XML files which were on 

average ~5KB each.  The logging L VM provided historical tracking of modeling activity.  The 

codebeamer tracking facility was used to log model activity [50].  Codebeamer provides an 

extensive customizable GUI and reporting facility.  A simple JAX-RS RESTful JSON-based 

web service was developed to encapsulate logging functions to decouple Codebeamer from the 

RUSLE2 web service and also to provide a logging queue to prevent logging delays from 

interfering with the RUSLE2 webservice.  HAProxy was used to provide round-robin load 

balancing of M and D VMs.  HAProxy is a dynamically configurable very fast load balancer 

which supports proxying both TCP and HTTP socket-based network traffic [51]. 

Table 3.1.  Virtual Machine Types 

VM Description  

M Model 
64-bit Ubuntu 9.10 server w/ Apache Tomcat 6.0.20, 
Wine 1.0.1, RUSLE2, Object Modeling System 
(OMS 3.0) 

D Database 

64-bit Ubuntu 9.10 server w/ Postgresql-8.4, and 
PostGIS 1.4.0-2.   
Spatial database consists of soil data (1.7 million 
shapes, 167 million points), management data (98 
shapes, 489k points), and climate data (31k shapes, 3 
million points), totaling 4.6 GB for the state of TN 
and CO 

F File server 
64-bit Ubuntu 9.10 server w/ nginx 0.7.62 to serve 
XML files which parameterize the RUSLE2 model.  
57,185 XML files consisting of 305MB. 

L Logger 
32-bit Ubuntu 9.10 server with Codebeamer 5.5 
running on Tomcat.  Custom RESTful JSON-based 
logging wrapper web service.   

3.4.3. Component Deployments 

Our application stack of 4 components can be deployed 15 possible ways across 4 

physical node computers.  Tables 3.2 shows the four stack deployments we tested labeled as P1-

P4 and V1-V4 respectively.  P1-P4 denotes physical stack deployments where components were 

deployed on physical machines by installing software directly on the host operating system.  V1-

V4 denotes virtual stack deployments where components were imaged and then launched as 

VMs in our private Eucalyptus cloud.  Eucalyptus does not provide control where VMs are 
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physically deployed.  To test (V1-V4) deployments placeholder VMs were launched and 

terminated to force the desired VM placements as using Eucalyptus' round-robin VM 

deployment scheme.  We expected the D and M components to be the most resource intensive 

components motivating our interest to test their deployment in isolation on physical nodes 

(P2/V2 and P4/V4).  P1/V1 tested the deployment of all components on a single machine.  P1/V1 

should benefit from locality of dependent services which should reduce dependence on network 

I/O with the added cost of greater contention for local disk and CPU resources.  P3/V3 tested 

running each component in isolation, allowing components the greatest freedom to fully utilize 

local CPU and disk resources, at the expense of greater network I/O requirements. 

Table 3.2.  Physical (P) and Virtual (V) Stacks Deployment 

 Node 1 Node 2 Node 3 Node 4 

P1/V1 M D F L    

P2/V2 M D F L   

P3/V3 M D F L 

P4/V4 M L F D   

Eucalyptus 2.0 allows custom definitions for VM sizes (small, medium, large) supporting 

customization of the number of virtual CPUs, memory, and disk size allocations.  We tested a 

variety of VM resource allocations for our application VMs.  For some tests we over-allocated 

the number of virtual CPUs far beyond the number of physical CPUs present on the host 

machine.  For stack deployments with multi-tenancy this increased contention for computational 

resources. 

3.4.4.  Testing Infrastructure 

The RUSLE2 web service supports individual model runs and ensemble runs which are 

groups of modeling requests bundled together.  To invoke the web service a client sends a JSON 
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object including parameters for management practice, slope length, steepness, latitude, and 

longitude.  Model results are computed and returned as a JSON object.  Ensemble runs are 

processed by dividing the set of modeling requests into individual requests which are resent to 

the web service, similar to the “map” function of MapReduce.  A configurable number of worker 

threads concurrently executes individual runs of the ensemble, and upon completion results are 

combined (reduced) into a single JSON response object and returned.  A simple program 

generated randomized ensemble tests of 25, 100, and 1000 runs.  Latitude and longitude 

coordinates were randomly selected within a large bounding box from the state of Tennessee.  

Slope length, steepness, and the management practice parameters were also randomized.  

Randomization of latitude and longitude resulted in variable spatial query execution times due to 

the variable complexity of the polygons coordinates intersected with.  To counteract the effect of 

caching, before each ensemble test was run, all application server components were stopped and 

restarted and a 25-model run ensemble test was executed to warm up the system.  The warm up 

test was warranted after we observed postgresql performing slowly on initial spatial queries upon 

startup.   

To measure performance, the RUSLE2 model and web service code was instrumented to 

capture timing data for various operations and returned in the JSON response objects.  Custom 

parsing programs were used to extract timing data from the JSON objects for analysis and 

graphing.  Captured timing data included: “fileIO“ the time required to load data files provided 

by nginx,   “model” the time spent shelling to the operating system to execute the model using 

WINE, “climate/soil query”  the time spent executing spatial queries,  “logging” the time spent 

submitting models to the logger, “overhead” representing all operations not specifically timed, 

and “total” the total time of the web service call from start to finish.  “fileIO” was a subset of the  
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“model” time because nginx file I/O occurred simultaneously during model execution. 

3.4.5. Application Variants 

Our investigation tested two variants of RUSLE2 which we refer to herein as the “d-

bound” for the database bound variant and the “m-bound” for the model bound variant.  By 

testing two variants of RUSLE2 we hoped to gain insights on two common types of SOAs, an 

application bound by the database tier, and an application bound by the middleware (model) tier.  

For the d-bound version of RUSLE2 two primary spatial queries were modified to perform a join 

on a nested query, while the m-bound variant was unmodified.  This modification significantly 

increased demand for computational resources from the database.  The d-bound variant should 

require the same resources as the m-bound plus additional processing to compute results of 

several thousand additional queries making the d-bound application more CPU bound than the 

m-bound variant.    

3.5.   EXPERIMENTAL RESULTS 

3.5.1. Application Profiling 

An application's profile refers to its processing, I/O, and memory requirements which 

change over time as an application evolves.  To assess the application profiles of the RUSLE2 

variants we used the V1 stack configuration.  An identical 100-model run ensemble test was used 

to determine the time distribution of model operations as shown in figure 3.1.  For the d-bound 

application the “climate” and “soil” spatial queries  consumed about ~77% of “total” execution 

time, while the “model” spent about ~22%, with remaining time split between “logging” time 

and “overhead”.  “Logging” time was negligible because the logger queued logging requests 

which then executed independently of model execution.  “FileIO” a subset of the “model” time 

took approximately 3.5% of the overall time.  D-bound climate queries were generally fast 
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compared to soil queries.  Much of the execution time reported for climate queries we observed 

was time spent waiting for soil queries to complete.  For the m-bound application the model 

consumed ~91% of the “total” execution time, while spatial queries accounted for about 1%.  

“Overhead” was just over 8% of the “total” time, while “FileIO” operations, a subset of “model” 

time, increased to 19%.  Performance for the D-bound and M-bound application variants 

appeared bounded by their respective named components D and M. 

The application variants were next tuned to minimize the 100-model run ensemble test 

execution time.  Virtual resource allocations were determined for CPU cores, memory size, and 

disk space.  Application tuning included determining an optimal number of shared database 

connections for the database connections pool, and the number of model execution (worker) 

threads for ensemble runs.  For each tuning step we identified ideal parameter configurations by 

identifying when performance improvements leveled off and appeared as normal variation or 

when performance actually decreased.  

To determine an optimal number of database connections we tested using a D VM 

allocated with 6 virtual cores while using 6 worker threads to run models.  Figure 3.2 shows the 

best performance for the d-bound application occurred when using approximately 5 database 

connections, while the number of database connections did not appear to have a significant 

impact on the m-bound application.  For subsequent tests we used 5 and 8 connections for the d-

bound and m-bound applications respectively.  According to the postgresql documentation 

individual connections can utilize at most only 1 CPU core leading to our assignment of 8 

connections and 8 cores for the m-bound application.   

For the d-bound application with 5 shared connections, we varied the D VM's number of 
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virtual cores to test the impact on performance as shown in Figure 3.3.  The best performance 

was observed while allocating approximately 6 virtual cores with a slight performance 

degradation seen when using additional virtual cores.  Sharing 16 database connections while 

increasing the number of D VM virtual cores did not improve performance.  When observing the 

D VM's KVM process on the host machine, we observed with virtual CPU allocations (>6), the 

D VM did not utilize more than ~500-600% of the 8-core physical machine's CPU capacity, 

where 100% represents a fully allocated CPU core.  It was unclear if this limitation was caused 

by postgresql or through the use of KVM. 

 

Figure 3.1.  RUSLE2 Application Time Footprint 

 

Figure 3.2.  V1 stack with variable database connections 
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Figure 3.3.  V1 stack d-bound with variable D VM virtual CPUs 

 

Figure 3.4.  V1 stack with variable M VM virtual CPUs 

Figure 3.4 shows the average model run time while varying the number of virtual cores 

allocated to the M VM.  Optimal performance was observed using 5 or more virtual cores for the 

d-bound application and 8 virtual cores for the m-bound application.  The m-bound application 

benefited from additional virtual cores but suffered when cores were over-allocated beyond the 

number of physical cores on the host.  Figure 3.5 shows the 100-model run ensemble time using 

16 and 8 shared database connections for the d-bound and m-bound applications respectively.  

Each worker thread concurrently executed RUSLE2 model runs.  Using 6 worker threads 

appeared to be an optimal number for the d-bound application with similar performance seen 

using 5 or 7 worker threads.  For the m-bound application using at least 6 threads appeared 

optimal.  For the m-bound application, we tested using up to 100 worker threads but did not 

observe a significant performance difference versus 6 threads.  
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Figure 3.5.  V1 stack with variable worker threads 

 

Figure 3.6.  D-bound ensemble time with variable D VMs 

Upon completion of application tuning for the V1 provisioning scheme the d-bound 

application required an average of ~120 seconds to complete a 100-model run ensemble test, and 

the m-bound application ~32 seconds. 

3.5.2. Virtual Resource Scaling 

After tuning a V1 deployment of our application variants we next scaled the variants to 

fully utilize all available resources of our private cloud to obtain optimal performance for 100-

model run ensemble tests.  Additional D and M VMs were allocated for the d-bound and m-

bound applications.  Figure 3.6 shows the performance of the d-bound application when we 

allocated multiple D VMs with each running in isolation on a separate physical machine.  For the 

m-bound application allocating additional D VMs was not tested because we were unable to fully 

saturate a single D VM.  We tested the performance using 5 shared database connections and 
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also database connections equal to the number of D VMs multiplied by 5.  Increasing the number 

of database connections was required to ensure that the tomcat server would have at least one 

connection to each postgresql database.  Scaling the number of D VMs was shown to result in a 

favorable performance improvement until approximately 3 to 4 D VMs.  Beyond this 

performance improvements could not be differentiated as the results appeared similar to 

variance.    

 

Figure 3.7.  Ensemble runtime with variable worker threads 

To move past the d-bound application bottleneck the number of worker threads was 

increased as shown in figure 3.7.  For the d-bound application we observed a bottleneck when 40 

shared database connections and 24 concurrent worker threads were used.  Increasing beyond 24 

worker threads appeared to degrade performance.  For the m-bound application only 1 D VM is 

used for tests in figure 3.7, but a similar performance result is seen when exceeding 24 worker 

threads.  To realize further performance improvements both applications required us to next 

increase the number of M VMs. 



38 
 

 

Figure 3.8.  Ensemble runtime with variable M VMs 

Figure 3.8 shows the speed improvement realized by scaling the number of M VMs.  

While scaling the number of M VMs, a fixed number of 24 and 8 worker threads were used for 

the d-bound and m-bound applications respectively.  For the d-bound application beyond 

allocating 3 M VMs performance gains appeared minimal.  At 7 M VMs we observed slight 

performance degradation.  At the completion of d-bound application scaling the 100-model run 

ensemble test executed in 21.8 seconds, 5.5x faster than before VM scaling using {8 D, 6 M, 1 F, 

1 L} VMs with 24 worker threads and 40 shared database connections per M  VM. 

 

Figure 3.9.  M-bound with variable M VMs and worker  threads 
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Figure 3.10.  M-bound with 16 M VMs variable worker threads 

For the m-bound application a bottleneck was encountered after allocating 4 M VMs 

using 8 worker threads and 8 shared database connections.  To surpass the bottleneck the number 

of worker threads was scaled.  For each M VM, an additional 8 worker threads were allocated 

starting with 8 worker threads for a single M VM.  Figure 3.9 shows the 100-model run ensemble 

time while scaling to 16 M VMs with 128 worker threads.  The first 8 M VMs were deployed on 

separate physical machines.  Beyond this we lacked additional physical hosts to run every M 

VMs in isolation so multiple M VMs were deployed on the physical hosts.   

A series of 1000-model run ensemble tests were made to assist tuning the optimal number 

of worker threads for the 16 M VM deployment shown in figure 3.10.  Optimal ensemble test 

times were observed using 48 worker threads.  At the conclusion of m-bound application scaling 

the 100-model run ensemble test executed in 6.7 seconds, 4.8x faster than before M VM scaling 

using {16 M, 1 D, 1 F, 1 L} VMs with 48 worker threads and 8 shared database connections per 

M VM. 

3.5.3. Provisioning Variation 

We tested performance using the physical (P1-P4) and virtual (V1-V4) stack provisioning 

schemes identified in table II.  Timing results for the 100-model run ensemble tests for each 
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stack provisioning for both application variants are shown in Table III.  To determine if the stack 

provisioning schemes performed differently from each other we checked if schemes varied more 

than 1 standard deviation from each other.  For all tests we observed the slowest performance 

when all application components were co-located on the same physical machine (P1/V1), an 

expected result.  For the virtual tests we observed the best performance when all components ran 

in physical isolation (V3), also an expected resulted.  For the m-bound application we observed 

slower performance when the M VM shared physical resources (V1/V4) with other components 

and for the d-bound when the D VM shared physical resources (V1/V2).  The impact of 

provisioning variation on application performance appeared dependent on characteristics of the 

application profile.  Best performance required the most computational and I/O intensive 

components to be run in physical isolation.  

Table 3.3.  M-BOUND vs.  D-BOUND M-Bound vs D-Bound Provisioning Variation 

 M-Bound D-Bound 

 Total (sec) Rank Total (sec) Rank 

P1/V1 16.15 / 33.65 4 110.21 / 123.61 4 
P2/V2 15.89 / 30.99 2 99.08 / 123.43 '1 / 3 

P3/V3 15.59 / 29.50 1 103.80 / 115.98 '2 / 1 

P4/V4 16.11 / 33.65 3 104.17 / 116.05 '3 / 2 

3.5.4. Virtualization Overhead 

To investigate the virtualization overhead resulting from using KVM performance the P1 

and V1 provisioning schemes were compared by executing 1000-model runs.  The V1 d-bound 

and m-bound applications used 5 and 8 virtual cores respectively for the M VM.  Both 

applications used 6 virtual cores for the D VM and 5 virtual cores for the F and L VMs.  For both 

physical and virtual deployments the d-bound application used 6 worker threads and 5 shared 

database connections, while the m-bound application used 8 worker threads and 8 shared 

database connections.  
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Table 3.4.  P1 vs. V1 KVM Virtualization Overhead 

 D-bound M-bound 

 Virt. O/H 

P1 

 avg (ms) 

V1 

avg (ms)  Virt. O/H 

P1 

avg (ms) 

V1 

avg (ms) 

fileIO 319.70% 55.77 234.06 463.54% 56.57 318.79 

model 54.50% 968.47 1496.24 100.16% 815.56 1632.46 

climate query -11.41% 691.86 612.95 404.54% 1.28 6.45 

soil query 3.25% 4371.20 4513.39 12.04% 11.84 13.26 

logging 1360.69% 0.32 4.72 2680.58% 0.35 9.59 

overhead 395.14% 14.30 70.81 740.02% 15.54 130.54 

total 10.78% 6046.16 6698.10 112.22% 844.56 1792.30 

Table IV shows timing of the physical versus virtual stacks.  The d-bound application's 

virtualization overhead for the total system was quite low at just 10.78%, while the m-bound 

application was 112.22%.  When examining the application footprints of the m-bound and d-

bound applications, the m-bound application appears more I/O bound with nearly 20% (~319 

ms) of the total model execution time spent in “fileIO” versus just 3.5% (~234 ms) for the d-

bound application.  Similarly “overhead” which consisted primarily of writing logging files was 

7.3% (~131 ms) of the total model execution time for the m-bound application, but only 1.1% 

(~71 ms) for the d-bound application.  For the m-bound application I/O operations were not only 

a greater percentage of the overall application footprint, but the operations themselves took 

longer to perform.  We suspect this result was due to greater contention for CPU and I/O 

resources because of the higher density of I/O operations for the m-bound application.  This 

effect was barely seen with the P1 provisioning scheme because the physical machines 

performed direct device I/O and did not experience by additional resource contention from 

device emulation.  The d-bound application was less impacted by I/O virtualization overhead 

because most of the execution time 77% (~5053 ms) was spent performing CPU-bound nested 

database queries.  Our results demonstrate that application profiles which detail how applications 

utilize resources (CPU, memory, I/O) are helpful in determining application performance when 

virtualized. 
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3.6.   CONCLUSIONS 

Two variants of the RUSLE2 erosion model serving as surrogates for common SOA 

architectures were tested to investigate application migration to IaaS clouds.  While scaling both 

application variants, different bottlenecks were encountered based on each variant's application 

profile.  Surmounting these bottlenecks required custom tuning of application parameters and/or 

virtual resource allocations.  Simply increasing the number of VMs did not lead to optimal 

application throughput.  Application scaling required understanding the application profile as 

well as dependencies among the application components. 

Provisioning variation impacted performance based on application profiles.  Best 

performance was observed when the most CPU and I/O intensive components were isolated on 

separate physical hardware whereas performance degradation occurred when too many resource 

intensive components were co-located highlighting the importance of considering an 

application's profile for VM placement across physical machines.  

Virtualization overhead varied based on the profile of the application being virtualized.  

The d-bound application, which was more CPU-bound, appeared less impacted by virtualization 

overhead (~11% overhead) whereas the m-bound application, which appeared more I/O bound, 

showed a greater performance degradation due to virtualization (~112% overhead).  As file and 

network device performance varies with different virtualization approaches a future investigation 

is planned to test other types of virtualization including XEN-based full and para-virtualization 

to better understand implications of hosting SOAs using different types of virtualization. 

In conclusion, application scaling, provisioning variation and virtualization overhead all 

appear impacted by an application's profile.  We have explored how an application's profile 
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relates to interactions between its constituent components and the corresponding implications for 

migration.  Once an application's profile is known, this can guide the efficient deployment of the 

application to IaaS clouds while accounting for scaling and throughput requirements. 
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CHAPTER 4 

 

PERFORMANCE MODELING TO 

 

SUPPORT SERVICE ORIENTED APPLICATION DEPLOYMENT 

 
 
 

4.1.   INTRODUCTION 

Migration of service oriented applications (SOAs) to Infrastructure-as-a-Service (IaaS) 

clouds requires applications be decomposed into sets of service-based components known as the 

application stack.  Application stacks consist of components such as web server(s), application 

server(s), proxy server(s), database(s), file server(s) and other servers/services.   

Infrastructure-as-a-Service clouds support better utilization of server infrastructure by 

enabling multiplexing of resources.  Infrastructure supporting specific applications can be scaled 

based on demand while multiple applications share the physical infrastructure through the use of 

server virtualization.  IaaS clouds consisting of many physical servers with one or more multi-

core CPUs can host Virtual Machines (VMs) enabling resource elasticity where the quantity, 

size, and location of VMs can change dynamically to meet varying system demand. 

Many challenges exist when deploying SOAs toIaaS clouds.  VM image composition 

requires application components to be composed across a set of VM images. Resource 

contention should be minimized by taking advantage of opportunistic placements by collocation 

of codependent components.  Provisioning variation refers to the uncertainty of the physical 

location of VMs when deployed to IaaS clouds [16].  VM physical location could lead to 

performance improvements or degradation depending on component resource requirements and 

interdependencies.  Internal resource contention occurs when application VMs are provisioned to 
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the same physical machines (PMs) while competing for the same resources.  External resource 

contention can occur when different applications share physical infrastructure an important issue 

for public clouds.  Virtualization overhead refers to the costs associated with emulating a 

computer as a software program on a physical host computer.  This overhead varies depending 

on the approaches used to multiplex physical resources among virtual hosts.  Virtualization 

hypervisors vary with respect to their ability to minimize this overhead with some generally 

responding better to certain resource sharing and simulation scenarios than others [1]–[3], [40].  

Resource provisioning refers to the challenge of allocating adequate virtual infrastructure to meet 

performance requirements while accounting for the challenges of image composition, 

provisioning variation, resource contention, and virtualization overhead.  Research and 

investigation into approaches supporting autonomic resource provisioning also known as 

autonomic infrastructure management is an active area of cloud computing research [21], [27], 

[31], [32]. 

Service compositions must be determined which map application stacks across VM 

images.  Determining beneficial combinations of components which multiplex resources without 

causing unwanted resource contention poses a challenge.  Component compositions will vary for 

SOAs as applications have different application stacks of components and resource utilization 

profiles further complicating determination of ideal VM component deployments.    

Using brute force performance testing to determine optimal placements is only feasible 

for applications with small numbers of components.  Bell's number is the number of partitions of 

a set (k) consisting of (n) members [15].  If we consider an application as a set of (n) 

components, then the total number of possible component compositions for an application is 

Bell's number (k).  Table 4.1 shows the first few Bell numbers describing the possible number of 
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component compositions.  As the number of components increases, the possible number of 

service compositions grows rapidly making the use of brute force testing to benchmark 

performance impractical.  Web applications such as mashup applications which aggregate many 

data sources and application programming interfaces (APIs) may have application stacks with a 

large number of components.  Complicating matters further, public IaaS clouds often do not 

provide the ability to control VM placements making it difficult, if not impossible, to deploy all 

possible placements.  Exclusive reservation of PMs may be available for an additional cost 

enabling granular control of physical placement of VMs. 

Table 4.1.  Service Oriented Application Component Counts 

Number of Components (n) Number of Compositions (Bn) 

3 5 
4 15 

5 52 

6 203 

7 877 

8 4,140 

An exponential generating function to generate Bell numbers is given by the formula: 

 

Performance models hold promise as a means to rapidly evaluate a large number of 

possible service compositions without physically deploying and testing them.  Good performance 

models should be able to predict performance outcomes of VM placement and service 

compositions allowing brute force testing of the entire configuration space to be avoided.  

Collecting training data to train performance models should be easier than performing brute 

force testing of all service compositions.  Models should provide the ability to make reasonably 

accurate performance predictions with reasonable amounts of time spent collecting training data 
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and training models.    

This chapter presents results of an exploratory study which investigates building SOA 

performance models using resource utilization statistics.  The utility of using different resource 

utilization statistics as independent variables for predicting service response time is investigated.  

Performance models of SOAs deployed to IaaS clouds hold promise to (1) guide application 

component placement across VM images, and (2) support real-time virtual infrastructure 

management for IaaS clouds by predicting resource requirements for specific performance goals.   

The following research questions are investigated in support of our investigation on 

Infrastructure-as-a-Service application performance modeling: 

RQ-1: (Independent Variables) Which VM and PM resource utilization statistics are most 

helpful for predicting performance of different application service compositions? 

RQ-2: (Profiling Data) How should resource utilization data be treated for use in performance 

models?  Should VM profiling data from multiple VMs be combined or used 

separately? 

RQ-3: (Exploratory Modeling) Comparing multiple linear regression (MLR), multivariate 

adaptive regression splines (MARS), and an artificial neural network (ANN), which 

model techniques appear to best predict application performance and service 

composition performance ranks? 

4.2.   RELATED WORK 

Rouk identified the challenge of creating good virtual machine images which compose 

together application components for migrating SOAs to IaaS clouds in [35].  Negative 

performance implications and higher hosting costs may result when ad hoc compositions are 
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used resulting in potential unwanted contention for physical resources.   Xu et al. identify two 

classes of approaches for providing autonomic provisioning and management of virtual 

infrastructure in [21]: multivariate optimization (performance modeling), and feedback control.  

Multivariate optimization approaches attempt to support better application performance by 

modeling the tuning of multiple system variables to predict the best configurations.  Feedback 

control approaches based on process control theory attempt to improve configurations by 

iteratively making changes and observing outcomes in real time using live systems.  Feedback 

control approaches have been built using reinforcement learning [21], support vector machines 

(SVMs) [27], ANNs [28], [29], and a fitness function [30].  Performance models have been built 

using MLR [31], ANNs [21], [32], and SVMs [27].  Hybrid approaches which combine the use 

of a performance model for model initialization and apply real time feedback control include: 

[21], [27]–[29]. 

Multivariate optimization approaches can model far more configurations enabling a much 

larger portion of the exploration space of system configurations to be considered.  Time to 

collect and analyze model training datasets results in a trade-off between model accuracy vs. 

availability.  Additionally performance models trade-off accuracy vs. complexity.  More 

complex models with larger numbers of independent variables and data samples require more 

time to build and compute but this investment can lead to better model accuracy.   

Feedback control approaches apply control system theory to actively tune resources to 

meet pre-stated service level agreements (SLAs).  Feedback control systems do not determine 

optimal configurations as they only consider a subset of all possible configurations limited by 

observations of configurations seen in real time.  Feedback control approaches may produce 

inefficient configurations, particularly upon system initialization.  Hybrid approaches combine 
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performance modeling and feedback control to provide better control decisions more rapidly.  

Hybrid systems use training datasets to initialize performance models to better inform control 

decisions immediately upon start-up.  Control decisions are further improved as the system 

operates and collects additional data in real time.  Hybrid approaches often use simplified 

performance models trading off accuracy for speed of computation and initialization. 

Wood et al. developed Sandpiper, a black-box and gray-box resource manager for VMs 

[31].  Sandpiper, a feedback control approach, was designed to oversee server partitioning and 

was not designed specifically for IaaS.  Sandpiper detects “Hotspots” when provisioned 

architecture fails to meet service demand.  Sandpiper performs only vertical scaling including 

increasing available resources to VMs, and VM migration to less busy PMs but does not 

horizontally scale the number of VMs for load balancing.  Sandpiper uses a MLR performance 

model to predict service time by considering CPU utilization, network bandwidth utilization, 

page fault rate, memory utilization, request drop rate, and incoming request rate as independent 

variables.  Xu et al. developed a resource learning approach for autonomic infrastructure 

management [21].  Both application agents and VM agents were used to monitor performance.  

A state/action table was built to record performance quality changes resulting from control 

events.  Their resource learning approach only considered VM memory allocation, VM CPU 

cores, and CPU scheduler credit.  An ANN model was added to predict reward values to help 

improve performance upon system initialization when the state/action table was only sparsely 

populated.  Kousiouris et al. benchmarked all possible configurations for different task 

placements across several VMs running on a single PM [32].  From their observations they 

developed both a MLR model and an ANN to model performance.  Their research was not 

extended to perform resource control but focused on performance modeling to predict the 
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performance implications of task placements.  Kousiouris et al.’s approach used an ANN to 

model task performance for different VM configurations on a single machine.  They contrasted 

using a ANN model with a MLR model.  Model independent variables included:  CPU 

scheduling time, and location of tasks (same CPUs with L1 & L2 cache sharing, adjacent CPUs 

with L2 cache sharing, and non-adjacent CPUs).  Niehorster et al. developed an autonomic 

resource provisioning system using support vector machines (SVMs) [27].  Their system 

responds to service demand changes and alters infrastructure configurations to enforce SLAs.  

They performed both horizontal and vertical scaling of resources and dynamically configured 

application specific parameters.  Niehorster et al.’s performance model primarily considered 

application specific parameters.  The only virtual infrastructure parameters considered in their 

performance model included # of VMs, VM memory allocation, and VM CPU cores. 

4.3.   CONTRIBUTIONS 

Existing approaches using performance models to support autonomic infrastructure 

management do not adequately consider performance implications of where application 

components are physically hosted across VMs.  Additionally, existing approaches do not 

consider disk utilization statistics, and only one approach has considered implications of network 

I/O throughput [31].  This chapter extends prior work by investigating the utility of using VM 

and PM resource utilization statistics as predictors for performance models for applications 

deployed to IaaS clouds.  Use of application performance models can support determination of 

ideal component compositions which maximize performance using minimal resources to support 

autonomic SOA deployment across VMs.  These performance models can also support 

autonomic IaaS cloud virtual infrastructure management by predicting outcomes of potential 

configuration changes without physically testing them.  To support our investigation we modeled 
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performance of two variants of a scientific erosion model services application.  The variants 

serve as surrogates for common SOAs: an application-server bound SOA and a relational 

database bound SOA. 

4.4.   EXPERIMENTAL INVESTIGATION 

4.4.1. Experimental Setup 

The test infrastructure used to explore SOA migration in [12] was extended to explore 

our application performance modeling research questions presented in section 1.  Two variants of 

the Revised Universal Soil Loss Equation – Version 2 (RUSLE2), an erosion model, were 

deployed as a web service and tested using a private IaaS cloud environment.  RUSLE2 contains 

both empirical and process-based science that predicts rill and interrill soil erosion by rainfall 

and runoff [41].  RUSLE2 was developed primarily to guide conservation planning, inventory 

erosion rates, and estimate sediment delivery and is the USDA-NRCS agency standard model for 

sheet and rill erosion modeling used by over 3,000 field offices across the United States.  

RUSLE2 is a good candidate to prototype SOA performance modeling because its architecture 

consisting of a web server, relational database, file server, and logging server is analogous to 

many multi-component SOAs with diverse application component stacks.   

RUSLE2 was deployed as a JAX-RS RESTful JSON-based web service hosted by 

Apache Tomcat [45].    The Object Modeling System 3.0 (OMS 3.0) framework [43], [52] using 

WINE [44] was used as middleware to support model integration and deployment as a web 

service.  OMS was developed by the USDA–ARS in cooperation with Colorado State University 

and supports component-oriented simulation model development in Java, C/C++ and 

FORTRAN.   



52 
 

A Eucalyptus 2.0 [46] IaaS private cloud was built and hosted by Colorado State 

University consisting of 9 SUN X6270 blade servers on the same chassis sharing a private  Giga-

bit VLAN with dual Intel Xeon X5560-quad core 2.8 GHz CPUs each with 24GB ram and 

146GB HDDs.  8 blade servers were configured as Eucalyptus node-controllers, and 1 blade 

server was configured as the Eucalyptus cloud-controller, cluster-controller, walrus server, and 

storage-controller.  The cloud controller server was supported by  Ubuntu Linux (2.6.35-22) 64-

bit server 10.10, while node controllers which hosted VMs used CentOS Linux (2.6.18) 64-bit 

server.  Eucalyptus managed mode networking was used to isolate experimental VMs on their 

own private VLANs.  The XEN hypervisor version 3.4.3 supported by QEMU version 0.8.2 was 

used to provide VMs [1].  Version 3.4.3 of the hypervisor was selected after testing indicated it 

provided the best performance when compared with other versions of XEN (3.1, 4.0.1, and 4.1).   

To facilitate testing, ensemble runs, groups of individual modeling requests bundled 

together were used.  To invoke the web service a client sends a JSON object representing a 

collection of parameterized model requests with values for management practice, slope length, 

steepness, latitude, and longitude.  Model results are computed and returned using JSON 

object(s).  Ensemble runs are processed by dividing grouped modeling requests into individual 

requests which are resent to the web service, similar to the “map” function of MapReduce.  A 

configurable number of worker threads concurrently execute individual runs in parallel. 

Modeling results are then combined (reduced) and returned as a single JSON response object.  A 

test generation program created randomized ensembles.  Latitude and longitude coordinates were 

randomly selected within a bounding box from the U.S. state of Tennessee.  Slope length, 

steepness, and the management practice parameters were also randomized.  20 randomly 

generated ensemble tests with 100 model runs each were used to test performance of 15 different 
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service compositions.  Before executing each 100 model-run ensemble test, a smaller 25 model-

run ensemble test was executed to warm up the system.  The warm up test was warranted after 

observing slow spatial query performance from postgresql on startup.   

A test script was used to automatically configure service placements and collect VM and 

PM resource utilization statistics while executing ensemble tests.  Cache clearing using the Linux 

virtual memory drop_caches  function was used to purge all caches, dentries and inodes 

before each test was executed to negate training affects resulting from reusing ensemble tests.  

The validity of this approach was verified by observing CPU, file I/O, and network I/O 

utilization statistics for the automated tests with and without cache clearing.  When caches were 

not cleared the number of disk sector reads dropped after the system was initially exposed to the 

test dataset.  When caches were force-cleared the system exhibited more disk reads confirming it 

was forced to reread data each time.  Initial experimental observations showed that as the number 

of records stored in the logging database increased, ensemble test performance declined.  To 

work around performance effects of the growing logs and to eliminate running out of disk space, 

the Codebeamer logging component was removed and reinstalled after each ensemble test run.  

Additionally all log files for all application components were purged after each ensemble test.  

These steps allowed several thousand ensemble tests using all of the required service 

compositions to be automatically performed without intervention.   

4.4.2. Application Components 

Table 4.2 describes the four application services (components) used to implement 

RUSLE2's application stack.  The Model M component hosts the model computation and web 

services using the Apache Tomcat application server.  The Database D component hosts the 

geospatial database which resolves latitude and longitude coordinates to assist in parameterizing 
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climate, soil, and management data for RUSLE2.  Postgresql was used as a relational database 

and PostGIS extensions were used to support geospatial functionality [47], [48].  The file server 

F component was used by the RUSLE2 model to acquire XML files to parameterize data for 

model runs.  NGINX [49], a lightweight high performance web server provided access to a 

library of static XML files which were on average ~5KB each.  The logging L component 

provided historical tracking of modeling activity.  The codebeamer tracking facility supported by 

the Derby relational database was used to log model activity [50].  A simple JAX-RS RESTful 

JSON-based web service was developed to decouple logging requests from the RUSLE2 service 

calls.  This service implemented an independent logging queue to prevent logging delays from 

interfering with RUSLE2 performance.  HAProxy was used to redirect modeling requests from a 

public IP to potentially one or more backend M VMs.  HAProxy is a dynamically configurable 

very fast load balancer which supports proxying both TCP and HTTP socket-based network 

traffic [51]. 

Table 4.2.  RUSLE2 Application Components 

Component Description  

M Model 
Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, 
Object Modeling System (OMS 3.0) 

D Database 

Postgresql-8.4, PostGIS 1.4.0-2 
Geospatial database consists of soil data (1.7 
million shapes, 167 million points), management 
data (98 shapes, 489k points), and climate data 
(31k shapes, 3 million points), totaling 4.6 GB for 
the state of TN. 

F File server 

nginx 0.7.62  
Serves XML files which parameterize the 
RUSLE2 model.  57,185 XML files consisting of 
305MB. 

L Logger 

Codebeamer 5.5, Apache Tomcat (32-bit) 
Custom RESTful JSON-based logging wrapper 
web service.  Ia-32libs support operation in 64-bit 
environment. 

4.4.3. Tested Service Compositions 

RUSLE2’s application stack of 4 components can be deployed 15 possible ways across 4 
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physical node computers.  Tables 4.3 shows the 15 service compositions tested labeled as SC1-

SC15.  To achieve each of the compositions a single composite VM image was created with all 

components installed (M, D, F, L).  Four PMs were used to host one composite VM each.  The 

testing script automatically enabled/disabled services as needed to achieve all service 

compositions (SC1-SC15). 

Table 4.3.  Tested Service Compositions 

 VM 1 VM 2 VM 3 VM 4 

SC1 MDFL    

SC2 MDF L   

SC3 MD FL      

SC4 MD F L  

SC5 M DFL   

SC6 M DF L  

SC7 M D F L 

SC8 M D FL  

SC9 M DL F  

SC10 MF DL   

SC11 MF D L  

SC12 ML DF   

SC13 ML D F  

SC14 MDL F   

SC15 MLF D   

Every VM ran Ubuntu Linux 9.10 64-bit server and was configured with 8 virtual CPUs, 

4 GB memory and 10GB of disk space.  Drawbacks to our scripted testing approach include that 

our composite image had to be large enough to host all components, and for some compositions 

VM disks contained installed but non-running components.  These drawbacks are not expected to 

be significantly relevant to performance. 
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4.4.4. Resource Utilization Statistics 

Table 4.4 describes the 18 resource utilization statistics collected using an automated 

profiling script.  The profiling script parsed the Linux operating system /proc/stat , 

/proc/diskstats , /proc/net/dev  and /proc/loadavg  files.  Initial resource 

utilization statistics were captured before execution of each ensemble test.  After ensemble tests 

completed resource utilization statistics were captured and deltas calculated representing the 

resources expended throughout the duration of the ensemble test’s execution.  This data was 

recorded to a series of output files and uploaded to the dedicated blade server performing the 

testing.  The same resource utilization statistics were captured for both VMs and PMs, but 8 

statistics were found to have a negligible value for PMs.  Resource utilization statistics collected 

for PMs are designated with “P”, and for VMs with “V” in the table.  Some statistics collected 

are likely redundant in that they are different representations of the same system properties.  

Subtleties in how related statistics are collected and expressed may provide performance 

modeling benefits and were captured for completeness is this study. 

Performance models were built to predict ensemble execution time for different service 

compositions of RUSLE2.  Using estimated average ensemble execution times for service 

composition rank predictions were made.  Accurate performance rank predictions can be used to 

identify ideal compositions of components to support autonomic component deployment. 
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Table 4.4.  Resource Utilization Statistics 

Statistic Description  

P/V CPU time CPU time in ms 

P/V cpu usr CPU time in user mode in ms 

P/V cpu krn CPU time in kernel mode in ms 

P/V cpu_idle CPU idle time in ms 

P/V contextsw Number of context switches 

P/V cpu_io_wait CPU time waiting for I/O to complete 

P/V cpu_sint_time CPU time servicing soft interrupts 

V Dsr Disk sector reads (1 sector = 512 bytes) 

V Dsreads Number of completed disk reads 

V Drm Number of adjacent disk reads merged 

V readtime Time in ms spent reading from disk 

V Dsw Disk sector writes (1 sector = 512 bytes) 

V dswrites Number of completed disk writes 

V Dwm Number of adjacent disk writes merged 

V writetime Time in ms spent writing to disk 

P/V Nbr Network bytes sent 

P/V Nbs Network bytes received 

P/V Loadavg Avg # of running processes in last 60 sec 

4.4.5. Application Variants 

Our investigation tested two variants of RUSLE2 which we refer to herein as the “d-

bound” for the database bound and the “m-bound” for the model bound application.  By testing 

two variants of RUSLE2 we hoped to gain insight into performance modeling by using two 

versions of RUSLE2 with different resource utilization profiles.  For the d-bound RUSLE2, two 

primary geospatial queries were modified to perform a join on a nested query (as opposed to a 

table).  The m-bound RUSLE2’s geospatial queries used the ordinary table joins.  The SC1 “d-

bound” deployment required on average 104% more CPU time and 17,962% more disk sector 

reads (dsr) than the “m-bound” model.   This modification significantly increased database CPU 

time and disk reads.  Average ensemble execution time for all service compositions was 

approximately ~29.3 seconds for the m-bound model, and 4.7x greater at ~137.2 seconds for the 

d-bound model. 
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4.5.   EXPERIMENTAL RESULTS 

Table 4.5 summarizes tests completed for this study totaling approximately 300,000 

model runs in 3,000 ensemble tests. The effectiveness of using the resource utilization statistics 

from table 4.4 as independent variables to predict service composition performance (RQ1) are 

presented in section 5.1.   Section 5.2 discusses experimental results which investigate how to 

best compose resource utilization statistics for use in performance models (RQ2).  Section 5.3 

concludes by presenting results of performance model effectiveness for predicting ensemble 

execution time and service composition performance ranks for different application component 

compositions (RQ3). 

Table 4.5.  Summary of Tests 

Model 
Trials 

Ensembles 

/Trial 
Service Comps. Model Runs Ens. Runs 

d-bound 2 20 15 60k 600 

m-bound 3 20 15 90k 900 

m-bound 1 100 15 150k 1,500 

Totals 6   300,000 3,000 

4.5.1. Independent Variables 

This study investigated the utility of resource utilization statistics describing CPU utilization, 

disk I/O, and network I/O of both VMs and PMs for performance modeling as described in table 

4.4.  To investigate the predictive strength of each independent variable we performed separate 

linear regressions for each independent variable to predict ensemble execution time.  R2 is a 

measure of model quality which describes the percentage of variance explained by the model’s 

independent variable.   Adjusted R2 is reported opposed to multiple R2 because adjusted R2 is 

more conservative as it includes an adjustment which takes into account the number of predictors 

in the model [53].  Statistics reported in table 4.6 used 20 ensemble runs each for the 15 service 
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compositions for both the “m-bound” and “d-bound” models.  Untested statistics are indicated by 

“n/a”.  In these cases resource utilization was typically zero.  Total resource utilization statistics 

were calculated by totaling values from VMs and PMs used in the service compositions.   

Table 4.6.  Independent Variable Strength 

Statistic Adjusted R
2
 “m-bound” Adjusted R

2
 “d-bound” 

 VM PM VM PM 

CPUtime 0.7162 -0.0033 0.5096 0.1406 

cpuusr 0.7006 -0.0019 0.444 0.04437 

Dsr 0.3693 n/a 0.02613 n/a 

dsreads 0.3129 n/a 0.02606 n/a 

cpukrn 0.1814 n/a 0.2958 0.2221 

dswrites 0.1705 n/a 0.1151 n/a 

Dsw 0.1412 n/a 0.02292 n/a 

dwm 0.1374 n/a 0.01528 n/a 

contextsw 0.0618 -0.001 0.4592 0.1775 

cpu_io_wait 0.0514 0.086 0.02528 0.05718 

writetime 0.0451 n/a -0.001199 n/a 

loadavg 0.0168 0.0132 0.04321 0.004962 

cpu_sint_time 0.0112 0.0141 0.02251 0.00003713 

readtime 0.0094 n/a 0.02753 n/a 

Nbs 0.0042 0.0039 0.01852 0.3385 

Nbr 0.0041 n/a 0.01858 0.3368 

cpu_idle 0.004 -0.0001 0.2468 0.2542 

Drm 0.0005 n/a 0.0261 n/a 

Total R
2
 2.938 0.1109 2.341 1.576 

   CPU time is shown to predict the most variance for both models.  Large differences in R2 

for “d-bound” compared to “m-bound” are shown in bold.  For the “d-bound” model dsr and 

dsreads were less useful predictors, while contextsw and cpu_idle were shown to be better 

predictors.   PM resource utilization statistics were generally found to be less useful as indicated 

by total R2 values.  No single PM statistic for the “m-bound” model achieved better than 
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R2=.086, while PM statistics for the “d-bound” model appeared better but not great with nbs as 

the strongest predictor at R2=.3385.   

 Besides having strong R2 values, good predictor variables for use in MLRs should have 

normally distributed data.  To test normality of our resource utilization statistics the Shapiro-

Wilk normality test was used [54].  100 ensemble runs were made for each of the 15 service 

compositions for the “m-bound” model.  Combining service composition data together was 

shown to decrease normality.  Normality tests showed an average of 9 resource utilization 

statistics had normal distributions for individual compositions.  When data for compositions was 

combined only loadavg, cpu_sint_time, and cpu_krn had strong normal distributions for the “m-

bound” model and loadavg, CPUtime, cpu_usr, and cpu_krn for the “d-bound” model.  

Ensemble time appeared to be normally distributed for both applications, but appeared more 

strongly normally distributed for “d-bound”.  Histogram plots for CPU time and dsr are shown in 

figure 4.1.  CPUtime and other related CPU time statistics (cpu_usr, cpu_krn) were among the 

strongest predictors of ensemble execution time for both models.  Dsr was a better predictor for 

“m-bound” and its distribution appears more normal than for “d-bound”.  The plots visually 

confirm results of the Shapiro-Wilk normality tests. 
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Figure 4.1.  CPU time and Disk Sector Read Distribution Plots 

4.5.2. Treatment of Resource Utilization Data 

The RUSLE2 application’s 4 components (M, D, F, L) were distributed across 1 to 4 

VMs.  Resource utilization statistics were collected at the VM and PM level.  Two treatments of 

the data are possible.  Resource utilization statistics can be combined for all VMs and used to 

model performance: RUdata=RUM+RUD+RUF+RUL or only resource utilization statistics for the 

VM hosting a particular component can be used to model performance: RUdata={RUM; RUD; 

RUF;  RUL;} To test the utility of both data handling approaches 10 MLR models were generated.  

A separate training and test data set were collected using 20 ensemble runs for each of the 15 

service compositions for both the “m-bound” and “d-bound” RUSLE2.  Results of the MLR 

models are summarized in table 4.7. 
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Table 4.7.  Multiple Linear Regression Performance Models 

Model 

Data Adj. R2 RMStrain RMStest Avg. Rank Error 

d-bound RUM .9982 642.78 967.35 .13 

d-bound RUD  .9983 622.24 1248.24 .4  

d-bound RUF  .9984 615.64 606.94 .27 

d-bound RUL .9983 621.99 978.92 .4 

d-bound RUMDFL .9107 4532.85 44903.96 1.73 

m-bound RUM .8733 576.05 759.36 1.47 

m-bound RUD .67 929.54 971.85 2.13 

m-bound RUF .7833 775.70 866.18 2 

m-bound RUL .6247 991.29 42570.5 2.4 

m-bound RUMDFL .8546 616.98 807.34 1.2 

For the models described in table 4.7 VM data (not PM) for all 18 independent variables 

was used.  Adjusted R2 values describe the variance explained by the models. The root mean 

squared error (RMS) expresses the differences between the predicted and observed values and 

serves to provide a measure of model accuracy.  A statistically significant model (p<.05) will 

predict 95% of ensemble execution times with less than +/- 2 RMS error from the actual values 

[55].  RMStrain describes error at predicting ensemble times for the training dataset and RMStest 

describes error at predicting ensemble times using the test dataset.  For compositions an average 

estimate for ensemble execution time was calculated.  The estimated average ensemble execution 

time was used to generate performance rank predictions for each of the 15 service compositions.  

The average rank error is the average error of actual vs. predicted ranks. 

Analysis of model results shows that for the “d-bound” performance model, CPU_idle 

time from individual VMs is an excellent predictor of ensemble execution time.  R2 for 

cpu_idle_time for the M, D, F, L models is .7716, .7844, .6041, and .4223 respectively but only 

.2468 when combining VM statistics.  This is in contrast to .0223, -.0024, .0271, .1199 and 

combined .0039 for the “m-bound” model.  Further analysis reveals that the “d-bound” model 

makes 93.6x more disk sector reads than “m-bound” but only requires 2x as much CPUtime 

while having 5.1x more idle CPUtime.  The “d-bound” model waits while this I/O is occurring 
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making CPU_idle time an excellent predictor for ensemble execution time for the “d-bound” 

application.  The number of context switches for the busiest component seems to be a good 

predictor with D for “d-bound” at R2=.4619 and M for the “m-bound” at R2=.4786.  The strength 

of using the number of context switches as a predictor of other VMs was less significant. 

4.5.3. Performance Models 

Combined resource utilization statistics (RUMDFL) were used as training data for 4 

modeling approaches: MLR, stepwise multiple linear regression (MLR-step), MARS, and a 

simple single hidden layer ANN [54].  We investigated both MLR and stepwise MLR.  MLR 

models use every independent variable provided to predict the dependent variable.  Stepwise 

MLR begins by modeling the dependent variable using the complete set of independent variables 

but after each step adds or drops predictors based on their significance to test various 

combinations until the best model is found which explains the most variance (R2).  MARS is an 

adaptive extension of MLR which works by splitting independent variables into multiple basis 

functions and then fits a linear regression model to those basis functions.  Basis functions used 

by MARS are piecewise linear functions in the form of: f(x)={x-t if x>t, 0 otherwise} and 

g(x)=(t-x if x<t, 0 otherwise}.  Both stepwise MLR and MARS were chosen because they 

generally provide some small improvement over traditional MLR and were easy to implement in 

R.  ANNs are a very popular statistical modeling technique which excels at handling complex 

nonlinear relationships in the data. We tested single hidden layer ANN models supported by the 

R statistical software package to predict ensemble execution times.  R’s ANNs use the sigmoid 

function, a bounded logistic function used to introduce nonlinearity in the model.  A summary of 

performance models for the “m-bound” and “d-bound” application are shown in table 4.8. 
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Table 4.8.  Performance Models 

Model 

Type Adj. R2 RMStrain RMStest Avg. Rank Error 

d-bound MLR .9107 4532.85 44903.96 1.73 

d-bound MLR-step .9118 4589.27 43918.55 1.73 

d-bound MARS  .9180 4472.32 45137.28 1.33 

d-bound ANN n/a 4440.03 44094.03 1.6 

m-bound MLR .8546 616.98 807.34 1.2 

m-bound MLR-step .8571 621.41 799.22 1.33 

m-bound MARS .8718 596.45 825.34 1.86 

m-bound ANN n/a 595.49 800.71 1.73 

R2 values were not available for the ANN.  For both applications, the ANN provided the 

lowest RMS error for the training dataset but slightly higher RMS error for the test dataset 

compared with stepwise MLR.  For the 8 models RMStrain and RMStest values correlated strongly 

(R2=.999, p=2.4•10-10, df=6) suggesting that where a model performs well on training data it will 

likely perform well on test data.  There was no relationships between rank error and RMStest 

(R2=.02064, p=.734, df=6) suggesting that low error for ensemble time predictions does not 

guarantee low rank error.  All of the models had some error at predicting service composition 

rank but provided functional predictions as they easily differentiated fast vs. slow service 

compositions and accurately determined the top 2 or 3 compositions. 

4.6.   CONCLUSIONS 

Modeling performance of component compositions of SOAs deployed to IaaS clouds can 

help guide component deployment to provide best performance using with minimal virtual 

resources.  Results of our exploratory investigation on performance modeling using resource 

utilization statistics for two variants of soil erosion model services application include:  

(RQ-1) CPU time and other CPU related statistics were the strongest predictors of 

execution time, while disk and network I/O statistics were less useful.  Measured disk and 

network I/O utilization statistics for our study suffered from non-normality and large variance 
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when data from multiple service compositions were combined together for modeling purposes.  

CPU idle time and number of context switches were good predictors of execution time when the 

application’s performance was I/O bound.  Disk I/O statistics were better predictors when the 

application was more CPU bound.   

(RQ-2) The best treatment of resource utilization statistics for performance modeling, 

either combining data or using VM data separately, to achieve best model accuracy was 

dependent on each application’s resource utilization profile. 

(RQ-3) Advanced modeling techniques such as MARS and ANN provided lower 

RMSerror for training and test data sets than MLR but overall all of the modeling approaches 

tested had similarly performance at minimizing RMSerror.  Additionally all models determined 

the best 2 or 3 service compositions confirming the value of our performance modeling approach 

for determining ideal component compositions to support IaaS cloud SOA deployment.  
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CHAPTER 5 

 

PERFORMANCE IMPLICATIONS OF COMPONENT COMPOSITIONS  

 
 
 

5.1.   INTRODUCTION 

Migration of service oriented applications (SOAs) to Infrastructure-as-a-Service (IaaS) 

clouds involves deploying components of application infrastructure to one or more virtual 

machine (VM) images. Images are used to instantiate VMs to provide the application’s cloud-

based infrastructure. Application components consist of infrastructure elements such as 

web/application servers, proxy servers, NO SQL databases, distributed caches, relational 

databases, file servers and others. 

Service isolation refers to the total separation of application components for hosting using 

separate VMs. Application VMs are hosted by one or more physical machines (PMs). Service 

isolation provides application components with their own explicit sandboxes to operate in, each 

having independent operating system instances. Hardware virtualization enables service 

isolation using separate VMs to host each application component instance. Before virtualization, 

service isolation using PMs required significant server capacity. Service isolation has been 

suggested as a best practice for deploying multi-tier applications across VMs. A 2010 Amazon 

Web Services white paper suggests applications be deployed using service isolation. The white 

paper instructs the user to “bundle the logical construct of a component into an Amazon Machine 

Image so that it can be deployed (instantiated) more often” [56].  Service isolation, a 1:1 

mapping of application component(s) to VM images is implied. Service isolation enables 

scalability and supports fault tolerance at the component level. Isolating components may reduce 

inter-component interference allowing them to run more efficiently. Conversely service isolation 
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adds an abstraction layer above the physical hardware which introduces overhead potentially 

degrading performance. Deploying all application components using separate VMs may increase 

network traffic, particularly when VMs are hosted by separate physical machines. Consolidating 

components together on a single VM guarantees they will not be physically separated when 

deployed potentially improving performance by reducing network traffic. 

Provisioning variation results from the non-determinism of where application VMs are 

physically hosted in the cloud, often resulting in performance variability [16], [18], [20]. IaaS 

cloud providers often do not allow users to control where VMs are physically hosted causing this 

provisioning variation. Clouds consisting of PMs with heterogeneous hardware and hosting a 

variable number of VMs complicates benchmarking application performance [57]. 

Service Isolation provides isolation at the guest operating system level as VMs share 

physical hardware resources and compete for CPU, disk, and network bandwidth. Quantifying 

VM interference and investigation of approaches to multiplex physical host resources are active 

areas of research  [4], [58]–[63]. Current virtualization technology only guarantees VM memory 

isolation. VMs reserve a fixed quantity of memory for exclusive use which is not released until 

VM termination. Processor, network I/O, and disk I/O resources are shared through coordination 

by the virtualization hypervisor. Popular virtualization hypervisors include kernel-based VMs 

(KVM), Xen, and the VMware ESX hypervisor.  Hypervisors vary with respect to methods used 

to multiplex resources. Some allow pinning VMs to specific CPU cores to guarantee resource 

availability though CPU caches are still shared [60].  Developing mechanisms which guarantee 

fixed quantities of network and disk throughput for VM guests is an open area for research. 

This research investigates performance of SOA component deployments to IaaS clouds to 
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better understand implications of component distribution across VMs, VM placement across 

physical hosts and VM configuration. We seek to better understand factors that impact 

performance moving towards building performance models to support intelligent methodologies 

that better load balance resources to improve application performance.  We investigate hosting 

two variants of a non-stochastic multitier application with stable resource utilization 

characteristics. Resource utilization statistics that we capture from host VMs are then used to 

investigate performance implications relative to resource use and contention. The following 

research questions are investigated: 

RQ-1: How does resource utilization and application performance vary relative to how 

application components are deployed? How does provisioning variation, the placement 

of VMs across physical hosts, impact performance?  

RQ-2: Does increasing VM memory allocation change performance? Does the virtual machine 

hypervisor (Xen vs. KVM) affect performance? 

RQ-3: How much overhead results from VM service isolation? 

RQ-4: Can VM resource utilization data be used to build models to predict application 

performance of component deployments? 

5.2.   RELATED WORK 

Rouk identified the challenge of finding ideal service compositions for creating virtual 

machine images to deploy applications in cloud environments in [35]. Schad et al. [18] 

demonstrated the unpredictability of Amazon EC2 VM performance caused by contention for 

physical machine resources and provisioning variation of VMs. Rehman et al. tested the effects 

of resource contention on Hadoop-based MapReduce performance by using IaaS-based cloud 

VMs to host worker nodes [16]. They tested provisioning variation of three different deployment 
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schemes of VM-hosted Hadoop worker nodes and observed performance degradation when too 

many worker nodes were physically co-located. Their work investigated VM deployments not 

for SOAs, but for MapReduce jobs where all VMs were homogeneous in nature.  SOAs with 

multiple unique components present a more complex challenge for resource provisioning than 

studied by Rehman et al. Zaharia et al. observed that Hadoop’s native scheduler caused severe 

performance degradation by ignoring resource contention among Hadoop nodes hosted by 

Amazon EC2 VMs [20]. They proposed the Longest Approximate Time to End (LATE) 

scheduling algorithm which better addresses performance variations of heterogeneous Amazon 

EC2 VMs. Their work did not consider hosting of heterogeneous components. 

Camargos et al. investigated virtualization hypervisor performance for virtualizing Linux 

servers with several performance benchmarks for CPU, file and network I/O [3].  Xen, KVM, 

VirtualBox, and two container based virtualization approaches OpenVZ and Linux V-Server 

were tested. Different parts of the system were targeted using kernel compilation, file transfers, 

and file compression benchmarks. Armstrong and Djemame investigated performance of VM 

launch time using Nimbus and OpenNebula, two IaaS cloud infrastructure managers [40]. 

Additionally they benchmarked Xen and KVM paravirtual I/O performance. Jayasinghe et al. 

investigated performance of the RUBBoS n-tier e-commerce system deployed to three different 

IaaS clouds: Amazon EC2, Emulab, and Open Cirrus [64]. They tested horizontal scaling, 

changing the number of VMs for each component, and vertical scaling, varying the resource 

allocations of VMs. They did not investigate consolidating components on VMs but used 

separate VMs for full service isolation. Matthews et al. developed a VM isolation benchmark to 

quantify the isolation level of co-located VMs running several conflicting tasks [4]. They tested 

VMWare, Xen, and OpenVZ hypervisors to quantify isolation. Somani and Chaudhary 
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benchmarked Xen VM performance with co-located VMs running CPU, disk, or network 

intensive tasks on a single physical host [58].  They benchmarked the Simple Earliest Deadline 

First (SEDF) I/O credit scheduler vs. the default Xen credit scheduler and investigated physical 

resource contention for running different co-located tasks, similar to resource contention of co-

hosting different components of SOAs. Raj et al. improved hardware level cache management of 

the Hyper-V hypervisor introducing VM core assignment and cache portioning to reduce inter-

VM conflicts from sharing the same hardware caches. These improvements were shown to 

improve VM isolation [59]. 

Niehörster et al. developed an autonomic system using support vector machines (SVM) 

to meet predetermined quality-of-service (QoS) goals. Service specific agents were used to 

provide horizontal and vertical scaling of virtualization resources hosted by an IaaS Eucalyptus 

cloud [27]. Their agents scaled # of VMs, memory, and virtual core allocations. Support vector 

machines determined if resource requirements were adequate for the QoS requirement.  They 

tested their approach by dynamically scaling the number of modeling engines for GROMACS, a 

molecular dynamics simulation and also for an Apache web application service to meet QoS 

goals. Sharma et al. investigated implications of physical placement of non-parallel tasks and 

their resource requirements to build performance model(s) to improve task scheduling and 

distribution on compute clusters [65]. Similar to Sharma’s models to improve task placement, 

RQ-4 investigates building performance models which could be used to guide component 

deployments for multitier applications. 

Previous studies have investigated a variety of related issues but none have investigated 

the relationship between application performance and resource utilization (CPU, disk, network) 

resulting from how components of SOAs are deployed across VMs (isolation vs. consolidation). 
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5.3.   CHAPTER CONTRIBUTIONS 

This chapter presents a thorough and detailed investigation on how the deployment of 

SOA components impacts application performance and resource consumption (CPU, disk, 

network). This work extends prior research on provisioning variation and heterogeneity of cloud-

based resources. Relationships between component and VM placement, resource utilization and 

application performance are investigated. Additionally we investigate performance and resource 

utilization changes resulting from: (1) the use of different hypervisors (Xen vs. KVM), and (2) 

increasing VM memory allocation. Overhead from using separate VMs to host application 

components is also measured. Relationships between resource utilization and performance are 

used to develop a multiple linear regression model to predict application performance. Our 

approach for collecting application resource utilization data to construct performance model(s) 

can be generalized for any SOA. 

5.4.   EXPERIMENTAL DESIGN 

To support investigation of our research questions we studied the migration of a widely used 

Windows desktop environmental modeling application deployed to operate as a multi-tier web 

services application. Section 4.1 describes the application and our test harness. Section 4.2 

describes components of the multitier application. Section 4.3 details the configuration of tested 

component deployments. Section 4.4 concludes by describing our private IaaS cloud and 

hardware configuration used for this investigation. 

5.4.1. Test Application 

For our investigation we utilized two variants of the RUSLE2 (Revised Universal Soil 

Loss Equation — Version 2) soil erosion model [41]. RUSLE2 contains both empirical and 

process-based science that predicts rill and interrill soil erosion by rainfall and runoff. RUSLE2 
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was developed to guide conservation planning, inventory erosion rates, and estimate sediment 

delivery. RUSLE2 is the US Department of Agriculture Natural Resources Conservation Service 

(USDA-NRCS) agency standard model for sheet and rill erosion modeling used by over 3000 

field offices across the United States. RUSLE2 was originally developed as a Windows based 

Microsoft Visual C++ desktop application and has been extended to provide soil erosion 

modeling as a REST-based webservice hosted by Apache Tomcat [45]. JSON was the transport 

protocol for data objects. To facilitate functioning as a web service a command line console was 

added. RUSLE2 consists of four tiers including an application server, a geospatial relational 

database, a file server, and a logging server. RUSLE2 is a good multi-component application for 

our investigation because with four components and 15 possible deployments it is both complex 

enough to be interesting, yet simple enough that brute force testing is reasonable to accomplish. 

RUSLE2’s architecture is a surrogate for traditional client/server architectures having both an 

application and relational database. The Object Modeling System 3.0 (OMS3) framework [42] 

[43] using WINE [44] provided middleware to facilitate interacting with RUSLE2’s command 

line console. OMS3, developed by the USDA-ARS in cooperation with Colorado State 

University, supports component-oriented simulation model development in Java, C/C++ and 

FORTRAN. 

The RUSLE2 web service supports ensemble runs which are groups of individual model 

requests bundled together. To invoke the RUSLE2 web service a client sends a JSON object with 

parameters describing land management practices, slope length, steepness, latitude, and 

longitude. Model results are returned as JSON objects. Ensemble runs are processed by dividing 

sets of modeling requests into individual requests which are resent to the web service, similar to 

the ‘‘map’’ function of MapReduce. These requests are distributed to worker nodes using a 
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round robin proxy server. Results from individual runs of the ensemble are ‘‘reduced’’ into a 

single JSON response object. A test generation program created randomized ensemble tests. 

Latitude and longitude coordinates were randomly selected within a bounding box from the state 

of Tennessee. Slope length, steepness, and land management practice parameters were 

randomized. Random selection of latitude and longitude coordinates led to variable geospatial 

query execution times because the polygons intersected with varied in complexity. To verify our 

test generation technique produced test sets with variable complexity we completed 2 runs of 20 

randomly generated 100-model run ensemble tests run using the 15 RUSLE2 component 

deployments and average execution times were calculated. Execution speed (slow/medium/fast) 

of ensemble tests was preserved across subsequent runs indicating that individual ensembles 

exhibited a complexity-like characteristic (R2 = 0.914, df = 18, p = 5・10−

11). 

Our investigation utilized two variants of RUSLE2 referred to as ‘‘d-bound’’ for the 

database bound variant and ‘‘m-bound’’ for the model bound variant, names based on the 

component dominating execution time. These application variants represent surrogates for two 

potentially common scenarios in practice: an application bound by the database tier, and an 

application bound by the middleware (model) tier. For the ‘‘d-bound’’ RUSLE2 two primary 

geospatial queries were modified to perform a join on a nested query. The ‘‘m-bound’’ variant 

was unmodified. The ‘‘d-bound’’ application had a different resource utilization profile than the 

‘‘m-bound’’ RUSLE2.  On average the ‘‘d-bound’’ application required ~2.45 x more CPU time 

than the ‘‘m-bound’’ model. 
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Table 5.1.  RUSLE2 Application Components 

Component Description  

M Model 
Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object 
Modeling System (OMS 3.0) 

D Database 

Postgresql-8.4, PostGIS 1.4.0-2 
Geospatial database consists of soil data (1.7 million 
shapes, 167 million points), management data (98 
shapes, 489k points), and climate data (31k shapes, 3 
million points), totaling 4.6 GB for the state of TN. 

F File server 
nginx 0.7.62  
Serves XML files which parameterize the RUSLE2 
model.  57,185 XML files consisting of 305MB. 

L Logger 

Codebeamer 5.5 w/ Derby DB, Tomcat (32-bit) 
Custom RESTful JSON-based logging wrapper web 
service.  IA-32libs support operation in 64-bit 
environment. 

5.4.2. Application Services 

Table 5.1 describes the application components of RUSLE2’s application stack. The M 

component provides model computation and web services using Apache Tomcat. The D 

component implements the geospatial database which resolves latitude and longitude coordinates 

to assist in providing climate, soil, and management data for RUSLE2 model runs. PostgreSQL 

with PostGIS extensions were used to support geospatial functionality [47], [48]. The file server 

F component provides static XML files to RUSLE2 to parameterize model runs. NGINX [49], a 

lightweight high performance web server hosted over 57,000 static XML files on average ∼5 kB 

each. The logging L component provided historical tracking of modeling activity. The 

Codebeamer tracking facility which provides an extensive customizable GUI and reporting 

facility was used to log model activity [50]. A simple JAX-RS RESTful JSON-based web 

service decoupled logging functions from RUSLE2 by providing a logging queue to prevent 

delays from interfering with model execution. Codebeamer was hosted by the Apache Tomcat 

web application server and used the Derby filebased relational database. Codebeamer, a 32-bit 

web application, required the Linux 32-bit compatibility libraries (ia32-libs) to run on 64-bit 

VMs. A physical server running the HAProxy load balancer provided a proxy service to redirect 

modeling requests to the VM hosting the modeling engine. HAProxy is a dynamically 
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configurable fast load balancer that supports proxying both TCP and HTTP socket-based 

network traffic [51]. 

Table 5.2. Tested Component Deployments 

 VM1 VM2 VM3 VM4 

SC1 MDFL    

SC2 MDF L   

SC3 MD FL      

SC4 MD F L  

SC5 M DFL   

SC6 M DF L  

SC7 M D F L 

SC8 M D FL  

SC9 M DL F  

SC10 MF DL   

SC11 MF D L  

SC12 ML DF   

SC13 ML D F  

SC14 MDL F   

SC15 MLF D   

5.4.3. Service Configurations 

RUSLE2’s infrastructure components can be deployed 15 possible ways using 1–4 VMs. 

Table 5.2 shows the tested service configurations labeled as SC1–SC15. To create the 

deployments for testing, a composite VM image with all (4) application components installed 

was used. An automated test script enabled/disabled application components as needed to 

achieve the configurations. This method allowed automatic configuration of all component 

deployments using a single VM image. This approach required that the composite disk image 

was large enough to host all components, and that VMs had installed but non-running 

components. 

For testing SC1–SC15, VMs were deployed with physical isolation. Each VM was hosted 

by its own exclusive physical host. This simplified the experimental setup and provided a 

controlled environment using homogeneous physical host machines to support experimentation 

without interference from external non-application VMs. For provisioning variation testing (RQ-
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1) and service isolation testing (RQ-3) physical machines hosted multiple VMs as needed. For all 

the tests VMs had 8 virtual CPUs, and 10 GB of disk space regardless of the number of 

components hosted. VMs were configured with either 4 GB or 10 GB memory. 

Table 5.3 describes component deployments used to benchmark service isolation 

overhead (RQ-3). Separate VMs are delineated using brackets. These tests measured 

performance overhead resulting from the use of separate VMs to isolate application components. 

Service isolation overhead was measured for the three fastest component deployments: SC2, 

SC6, and SC11.  

Table 5.3. Service Isolation Tests 

NC NODE 1 NODE 2 NODE 3 

SC2-SI [M] [D] [F] [L]  

SC2 [M D F] [L]  

SC6-SI [M] [D F] [L] 

SC6 [M] [D] [F] [L] 

SC11-SI [M] [F] [D] [L] 

SC11 [M F] [D] [L] 

5.4.4. Testing Setup 

A Eucalyptus 2.0 IaaS private cloud [46] was built and hosted by Colorado State 

University consisting of 9 SUN X6270 blade servers sharing a private 1 Giga-bit VLAN. Servers 

had dual Intel Xeon X5560-quad core 2.8 GHz CPUs, 24 GB RAM, and two 15 000 rpm HDDs 

of 145 GB and 465 GB capacity respectively. The host operating system was CentOS 5.6 Linux 

(2.6.18-274) 64-bit server for the Xen hypervisor [1] and Ubuntu Linux 10.10 64-bit server 

(2.6.35-22) for the KVM hypervisor. VM guests ran Ubuntu Linux (2.6.31-22) 64-bit server 

9.10. Eight servers were configured as Eucalyptus node-controllers, and one server was 

configured as the Eucalyptus cloud-controller, cluster-controller, walrus server, and storage-



77 
 

controller. Eucalyptus managed mode networking using a managed Ethernet switch was used to 

isolate VMs onto their own private VLANs. 

Table 5.4.  Hypervisor Performance 

Hypervisor Avg. Time (sec) Performance 

Physical server 15.65 100% 

Xen 3.1 25.39 162.24% 

Xen 3.4.3 23.35 149.20% 

Xen 4.0.1 26.2 167.41% 

Xen 4.1.1 27.04 172.78% 

Xen 3.4.3 hvm 32.1 205.11% 

KVM disk virtio 31.86 203.58% 

KVM no virtio 32.39 206.96% 

KVM net virtio 35.36 225.94% 

Available versions of the Xen and KVM hypervisors were tested to establish which 

provided the fastest performance using SC1 from Table 5.2. Ten trials of an identical 100-model 

run ensemble test were executed using the ‘‘m-bound’’ variant of the RUSLE2 application and 

average ensemble execution times are shown in Table 5.4. Xen 3.4.3 hvm represents the Xen 

hypervisor running in full virtualization mode using CPU virtualization extensions similar to the 

KVM hypervisor. Xen 3.4.3 using paravirtualization was shown to provide the best performance 

and was used for the majority of experimental tests. Our application-based benchmarks of Xen 

and KVM reflect similar results from previous investigations [3], [40]. 

The Linux virtual memory drop_caches function was used to clear all caches, dentries 

and inodes before each ensemble test to negate training effects from repeating identical ensemble 

tests.  This cache-flushing technique was verified by observing CPU, file I/O, and network I/O 

utilization for the automated tests with and without cache clearing. When caches were not 

cleared, total disk sector reads decreased after the system was initially exposed to the same 

ensemble test. When caches were force-cleared for each ensemble run, the system reread data. 

As the test harness was exercised we observed that Codebeamer’s Derby database grew large 
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resulting in performance degradations. To eliminate decreased performance from log file and 

database growth our test script deleted log files and removed and reinstalled Codebeamer after 

each ensemble run. These steps prevented out of disk space errors and allowed uninterrupted 

testing without intervention.  

VM resource utilization statistics were captured using a profiling script to capture CPU 

time, disk sector reads and writes (disk sector = 512 bytes), and network bytes sent/received. To 

determine resource utilization of component deployments from all VMs hosting the application 

were totaled. 

5.5.   EXPERIMENTAL RESULTS 

To investigate our research questions we completed nearly 10,000 ensemble tests totaling 

~1,000,000 individual model runs. Tests were conducted using both the ‘‘m-bound’’ and ‘‘d-

bound’’ RUSLE2 model variants. VMs were hosted using either the Xen or KVM hypervisor 

and were configured with either 4 GB or 10 GB memory, 8 virtual cores, and 10 GB disk space. 

15 component placements across VMs were tested, and these VMs were provisioned using 

physical hosts 45 different ways. Test sets executed 20 ensembles of 100 model runs each to 

benchmark performance and resource utilization of various configurations. All ensembles had 

100 randomly generated model runs. Some test sets repeated the same ensemble test 20 times, 

while others used a set of 20 different ensemble tests for a total of 2,000 randomly generated 

model runs per test set. Results for our investigation of RQ-1 are described in Sections 5.1–5.3. 

Resource utilization characteristics of the component deployments are described in Section 5.1 

followed by performance results of the deployments in Section 5.2. Section 5.3 reports on 

performance effects from provisioning variation, the variability resulting from where application 
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VMs are physically hosted. Section 5.4 describes how application performance changed 

whenVM memory was increased from 4 GB to 10 GB, and Section 5.5 reports on the 

performance differences of the Xen and KVM hypervisors (RQ-2). Section 5.6 presents results 

from our experiment measuring service isolation overhead (RQ-3). Section 5.7 concludes by 

presenting our multiple linear regression based performance model which predicts performance 

of component deployments based on resource utilization statistics (RQ-4). 

5.5.1. Component deployment resource utilization 

Resource utilization statistics were captured for all component deployments to investigate 

how they varied across all possible configurations. To validate that component deployments 

exhibited consistent resource utilization behavior, linear regression was used to compare two 

separate sets of runs consisting of 20 different 100-model run ensembles using the ‘‘m-bound’’ 

model with 4 GB Xen VMs. The coefficient of determination R2
 was calculated to determine the 

proportion of variance accounted for when regressing together the two datasets. Higher values 

indicate similarity in the datasets. Comparing R2
 resource utilization for CPU time (R2

 = 

0.937904, df = 298), disk sector reads (R2
 = 0.96413, df = 298), and network bytes received/sent 

(R2
 = 0.99999, df = 298) for repeated tests appeared very similar. Only disk sector writes (R2 = 

0.273696, df = 298) was inconsistent. Network utilization appeared similar for both the ‘‘m-

bound’’ and ‘‘d-bound’’ model variants as they communicated the same information. For the ‘‘d-

bound’’ model D performed many more queries but this additional computation was independent 

of the other components M F L. 

Application performance and resource utilization varied based on the deployment 

configuration of application components. Comparing resource utilization among deployments for 
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the ‘‘m-bound’’ model network bytes sent/received varied by ~144%, disk sector writes by 

~22%, disk sector reads by ~15% and CPU time by ~6.5% as shown in Table 5.5.  Comparing 

the fastest and slowest deployments the performance variation was ~3.2 s, nearly 14% of the 

average ensemble execution time for all deployments.  Resource utilization differences among 

deployments of the “d-bound” model was greater than ‘‘m-bound’’ with ~820% for disk sector 

reads, ~145% for network bytes sent/received, ~111% for disk sector writes but only ~5.5% for 

CPU time as shown in Table 5.6.  ‘‘D-bound’’ model performance comparing the fastest versus 

slowest deployments varied by 25.7% (>34 s). 

Table 5.5. M-bound deployment performance variation 

Parameter M-bound Deployment 

Difference 

Avg. ensemble (sec) 23.4 13.7% (3.2 sec) 

Avg. CPU time (sec) 11.7 6.5% 

Avg. disk sector reads 57,675 14.8% 

Avg. disk sector writes 286,297 21.8% 

Avg. network bytes rec'd 9,019,414 144.9% 

Avg. network bytes sent 9,037,774 143.7% 

Table 5.6. D-bound deployment performance variation 

Parameter D-bound Deployment 

Difference 

Avg. ensemble (sec) 133.4 25.7% (34.3 sec) 

Avg. CPU time (sec) 27.8 5.5% 

Avg. disk sector reads 2,836,144 819.6% 

Avg. disk sector writes 246,364 111.1% 

Avg. network bytes rec'd 9,269,763 145.0% 

Avg. network bytes sent 9,280,216 143.9% 

Comparing both applications hosted by 4 GB Xen VMs a ~138% increase in CPU time 

was observed for the ‘‘d-bound’’ model. Network utilization increased ~3% and disk sector 

reads for the ‘‘d-bound’’ model where the M and D components were collocated increased 

24,000% vs. the ‘‘m-bound’’ model, but decreased 87% for deployments where M and D were 

not co-located. On average the Xen ‘‘d-bound’’ model ensemble execution times were 5.7× 
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‘‘m-bound’’, averaging 133.4s versus 23.4. Network utilization likely increased for the ‘‘d-

bound’’ model due to the longer duration of ensemble runs. 

 
Figure 5.1. Resource Utilization Variation of Component Deployments 

Figure 5.1 shows resource utilization variation for component deployments of the ‘‘m-

bound’’ model. Resource utilization statistics were totaled from all VMs comprising individual 

component deployments.  The graph shows the absolute value of the deviation from average 

resource utilization for the component deployments (SC1–SC15). The graph does not express 

positive/negative deviation from average but the magnitude of deviation. Larger boxes indicate a 

greater deviation from average resource utilization and smaller boxes indicate performance close 

to the average. The graph visually depicts the variance of resource utilization for our 15 

component deployments. 

5.5.2. Component deployment performance 

To verify that component deployments performed consistently over time and to verify 
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that we were not simply observing random behavior, two test sets consisting of 20 runs of the 

same 100-model run ensemble test were performed using all component deployments. The 

regression plot in Figure 5.2 compares the behavior of the two repeated test sets. Linear 

regression confirms the consistency of component deployment performance across subsequent 

test sets (R2 = 0.949674, df = 13, p = 8.09・10−

10).  The three ellipses in the graph identify three 

different performance groups from left to right: fast, medium and slow. Performance consistency 

of ‘‘d-bound’’ tests was verified using the same technique.  The consistency was not as strong 

due to higher variance of ‘‘d-bound’’ model execution times but was statistically significant (R2 

= 0.81501, df = 13, p = 4.08・10-6
). 

 

Figure 5.2.  4GB “m-bound” regression plot (XEN) 

To simulate a production modeling web service 20 randomized 100-model run ensembles 

were generated (2000 unique requests) and used to benchmark each of the 15 component 

deployments.  Figure 5.3 shows the performance comparison of the ‘‘m-bound’’ vs. ‘‘d-bound’’ 

model using the 20 different ensemble tests. Performance differences from average and overall 
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rankings are shown in Table 5.7. 

 

Figure 5.3.  Performance Comparison – Randomized Ensembles (XEN) 

Table 5.7. Performance Differences – Randomized Ensembles 

composition m-bound rank d-bound Rank 

SC1 7.59% 14 4.46% 9 

SC2 -6.06% 1 -13.35% 1 

SC3 -0.80% 10 -12.64% 3 

SC4 -3.74% 6 -12.81% 2 

SC5 -1.13% 9 -2.64% 8 

SC6 -5.50% 2 -5.40% 4 

SC7 -4.38% 4 7.98% 12 

SC8 -2.21% 8 10.44% 14 

SC9 -2.92% 7 -3.16% 6 

SC10 -4.21% 5 -2.84% 7 

SC11 -5.20% 3 7.72% 11 

SC12 6.74% 11 -4.98% 5 

SC13 7.63% 15 8.57% 13 

SC14 6.97% 12 6.28% 10 

SC15 7.22% 13 12.36% 15 

We observed performance variation of nearly ~14% for the ‘‘m-bound’’ model and ~26% 

for the ‘‘d-bound’’ model comparing best-case vs. worse-case deployments. Service 

compositions for the ‘‘m-bound’’ application with random ensembles can be grouped into three 
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categories of performance: fast {SC2, SC4, SC6, SC7, SC9, SC10, SC11}, medium {SC3, SC5, 

SC8}, and slow {SC1, SC12, SC13, SC14, SC15}. Compositions with M and L components co-

located performed slower in all cases averaging 7.25% slower, about 1.7 s. When compositions 

had M and L co-located CPU time increased 14.6%, disk sector writes 18.4%, and network data 

sent/received about 3% versus compositions where M and L were separate.  Service isolation 

(SC7) did not provide the best performance for either model. SC7 was ranked 4th fastest for the 

‘‘m-bound’’ model and 12th for the ‘‘d-bound’’ model. The top three performing deployments 

for both model variants required only two or three VMs. Prior to testing the authors posited that 

isolating the application server (SC5), total service isolation (SC7), and isolating the geospatial 

database isolation (SC15) could be the fastest deployments. None of these deployments were top 

performers demonstrating our intuition was insufficient. Testing was required to determine the 

fastest component placements. We observed up to ~26% performance variation comparing 

component deployments while making no application changes only deployment changes.  This 

variation illustrates the possible consequences for ad hoc component placement. 

5.5.3. Provisioning variation testing 

IaaS cloud providers often do not allow user-level control of VM placement to physical 

hosts. The non-determinism of where VMs are hosted results in provisioning variation [16], [18], 

[20]. In the previous section we identified the best performing application component 

deployments. We had two primary motivations for provision variation testing. First, to validate if 

deploying VMs using isolated physical hosts was sufficient to identify the best performing 

component deployments. For example does one of the deployments (SC11A, SC11B, SC11C) 

provide fundamentally different performance than SC11? And second, to quantify the average 

performance change for provisioning variation configurations. Intuition and previous research 
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suggest that hosting multiple VMs on a single PM will reduce performance, but by how much? 

Table 5.8.  Provisioning Variation VM Tests 

 PM 1 PM 2  PM 1 PM 2 
SC2A [MDF] [L]  SC9B [M] [DL] [F]  

SC3A [MD] [FL]  SC9C [M] [DL] [F] 
SC4A [MD] [F] [L] SC9D [M] [F] [DL] 
SC4B [MD] [F] [L]  SC10A [MF] [DL]  

SC4C [MD] [F] [L] SC11A [MF] [D] [L] 
SC4D [MD] [L] [F] SC11B [MF] [D] [L]  

SC5A [M] [DFL]  SC11C [MF] [D] [L] 
SC6A [M] [DF] [L] SC11D [MF] [L] [D] 
SC6B [M] [DF] [L]  SC12A [ML] [DF]  

SC6C [M] [DF] [L] SC13A [ML] [D] [F] 
SC6D [M] [L] [DF] SC13B [ML] [D] [F]  

SC8A [M] [D] [FL] SC13C [ML] [D] [F] 
SC8B [M] [D] [FL]  SC13D [ML] [F] [D] 
SC8C [M] [D] [FL] SC14A [MDL] [F] 
SC8D [M] [FL] [D] SC15A [MLF] [D]  

SC9A [M] [DL] [F]    

There are 45 provisioning variations of the 15 component deployments described in 

Table 5.2 and tested in previous sections. Thirty-one of the configurations were tested using the 

twenty randomized 100-model run ensembles and KVM-based VMs with 4 GB memory 

allocation.  Test configurations are identified by their base service configuration id SC1–SC15 

and the letters A–D to identify provisioning variation configurations as described in Table 5.8. 

There were 14 variations of SC7 which represent the VM-level service isolation variants of 

component configurations described in Table 5.2. These were not tested because service isolation 

only adds overhead relative to their equivalents (SC1–SC6, SC8–SC15) as discussed in Section 

5.6 for RQ-3.  To compare performance, the provision variation deployments from Table 5.8 

versus SC1–SC15, we calculated averages for provisioning variation configurations having more 

than 1 provisioning variation deployment (e.g. SC11A, SC11B, SC11C, SC11D). Linear 

regression showed that component deployments performed the same regardless of 

provisioning variation (R
2
 = 0.956701, df = 13, p = 3.03・・・・10−

−−

−

10
), though they generally 

performed slower. Performance differences observed appeared to result from hosting multiple 
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VMs on physical hosts. On average performance for provision variation configurations was 2.5% 

slower. Configurations with 2 VMs averaged 3.05% slower, with 3 VMs 2.33% slower. 6 of 31 

configurations exhibited small performance gains: SC4A, SC6A, SC8C, SC11A, SC11C, and 

SC12A. Provisioning variation configurations which separated physical hosting of the M and L 

components provided an average improvement of 0.39% (10 configurations) whereas those 

which combined hosting of M and L were on average 3.93% slower. Performance differences for 

provisioning variation configurations are shown in Figure 5.4. 

 

Figure 5.4.  Provisioning Variation Performance Differences vs. Physical Isolation (KVM) 

5.5.4. Increasing VM memory 

In [12], the RUSLE2 model was used to investigate SOA scaling with components 

deployed on isolated VMs.  VMs hosting the M, F, and L components were allocated 2 GB 

memory, and the D component VM was allocated 4 GB.  To avoid performance degradation due 

to memory contention VM memory was increased to 10 GB, the total amount provided using 

individual VMs.  Intuitively increasing VM memory should provide either a performance 
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improvement or no change of performance.  20 runs of an identical 100-model run ensemble 

were repeated for the SC1–SC15 component deployments using 10 GB VMs.  Figure 5.5 shows 

performance changes resulting from increasing VM memory allocation from 4 GB to 10 GB for 

both the ‘‘m-bound’’ and ‘‘d-bound’’ applications.   

 

Figure 5.5. 10 GB VM Performance Changes (seconds) 

For the ‘‘m-bound’’ application using 10 GB VMs reduced average ensemble 

performance 0.727 s (~3.24%) versus using VMs with 4 GB. SC11 provided had the best 

performance, 6.7% faster than average component deployment performance for 10 GB VM ‘‘m-

bound’’ ensemble tests. This was half a second faster than with 4 GB VMs. SC1, total service 

combination, performed the slowest, 8.9% slower than average, 3.1 s longer than with 4 GB 

VMs. For the ‘‘m-bound’’ application only component deployments which combined M and L on 

the same VM experienced performance degradation.  Both M and L used the Apache Tomcat 

web application server, but L  used a 32-bit version for hosting Codebeamer and required the 

ia32 Linux 32-bit compatibility libraries to run on a 64-bit VM. The performance degradations 
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may have resulted from virtualization of the ia32 library as 32-bit Linux can only natively 

address up to 4 GB RAM. 

The ‘‘d-bound’’ application using 10 GB VMs performed on average 3.24s (2.46%) 

faster than when using 4 GB VMs. Additional VM memory improved database query 

performance. SC4 performed best at 12.5% faster or about 11.2 s faster. SC7, total service 

isolation, performed the slowest at 12.6% slower than average, equaling about 4.2s longer than 

tests with 4 GB VMs.  To verify that these results were not specific to repeated runs of an 

identical 100-model run ensemble using the Xen hypervisor, we also tested increasing VM 

memory allocation using 20 different ensembles and the KVM hypervisor. Results were similar 

for both cases. The ‘‘m-bound’’ model’s 15 component deployments performed on average 

342ms slower (−1.13%) with 10 GB VMs and the ‘‘d-bound’’ model performed 3.24s (2.46%) 

faster on average. Our results demonstrate that increasing VM memory allocation may result in 

unexpected performance changes in some cases exceeding +/−10%. For VM memory allocation, 

depending on the application, more may not always be better. 

5.5.5. Xen vs. KVM 

To compare performance differences between the Xen and KVM hypervisors we ran test 

sets using 20 different ensemble runs using 4 GB VMs and the ‘‘m-bound’’ application. Tests 

were repeated using both Xen and KVM hypervisors, random ensembles and the ‘‘d-bound’’ 

model. On average KVM ensemble performance was ~29% slower than Xen for the ‘‘m-bound’’ 

model, but ~1% faster for the ‘‘d-bound’’ model. The ‘‘d-bound’’ model was more CPU bound 

enabling performance improvement compared with Xen. The ‘‘m-bound’’ model had a higher 

proportion of I/O relative to CPU use and performed faster using Xen. ‘‘D-bound’’ ensemble 

tests using KVM required on average 4.35x’s longer than the ‘‘m-bound’’ model, while Xen ‘‘d-
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bound’’ runs were 5.7 x longer than ‘‘m-bound’’. The average performance difference between 

the Xen and KVM hypervisors for running both the ‘‘m-bound’’ and ‘‘d-bound’’ models using 

20 random ensemble tests is shown in Figure 5.6. 

 

Figure 5.6.  XEN vs. KVM Performance Differences, 4 GB VM Different Ensembles 

Resource utilization data was collected for the ‘‘m-bound’’ model for all component 

deployments (SC1–SC15) using 20 random 100-model run ensemble tests for the Xen and KVM 

hypervisors. Resource utilization differences and correlations are summarized in Table 5.9. 

Resource utilization for Xen and KVM correlated for all statistics. On average KVM used 35% 

more CPU time than Xen, but nearly an equal number of disk sector reads (98%), but performed 

far fewer disk sector writes (50%). KVM exhibited 1.8% more network traffic (bytes 

sent/received) than Xen. Increased CPU time for KVM may result from KVM’s full 

virtualization of devices where devices are entirely emulated by software. Xen I/O uses 

paravirtual devices which offer more direct device I/O. 
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Table 5.9. KVM vs. XEN resource utilization – randomized ensembles 

Parameter KVM Resource Utilization 

(% of XEN) 

R2 

 

p 

CPU time (sec) 135.2% 0.787769 .00001 

Disk sector reads 97.91% 0.804115 5.96•10-6 

Disk sector writes 50.48% 0.829572 2.38•10-6 

Network bytes rec'd 101.77% 0.999872 1.09•10-26 

Network bytes sent 101.85% 0.999874 9.61•10-27 

We used a simple linear regression to compare Xen and KVM performance of component 

deployments for the ‘‘m-bound’’ and ‘‘d-bound models. Deployments using 4 GB VMs for the 

‘‘m-bound’’ model with random ensembles were shown to perform similarly (R2 = 0.749912, df 

= 13, p = 0.00003).  Component deployment performance of Xen vs. KVM using the ‘‘d-bound’’ 

model performance did not correlate. Given KVM’s improved ‘‘d-bound’’ performance relative 

to Xen, this result was expected. Application performance using the KVM hypervisor appeared 

to be more sensitive than Xen to disk I/O. 

5.5.6. Service isolation overhead 

To investigate overhead resulting from the use of separate VMs to host application 

components the three fastest component deployments for the ‘‘m-bound’’ model were tested. 

Components were deployed using the SC2, SC6, and SC11 configurations with and without 

using separate VMs to host individual components.   

60 runs using the same 100-model run ensemble, and 3 test sets of 20 different 100-

model run ensembles were completed for each configuration. The percentage performance 

change resulting from service isolation is shown in Figure 5.7. For all but one configuration, 

service isolation resulted in overhead which degraded performance compared to deployments 

where multiple components were combined on VMs. The average overhead from service 

isolation was ~1%. For tests using different ensembles the observed performance degradation for 
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service isolation deployments was 1.2%, 0.3%, and 2.4% for SC2-SI, SC6-SI and SC11-SI 

respectively. The same ensemble test performance degradation was 1.1%, ~0.06%, and 1.4%. 

These results were reproduced using the KVM hypervisor with an average observed performance 

degradation of 2.4%. 

 

Figure 5.7.  Performance Overhead from Service Isolation (XEN left, KVM right) 

Although the performance overhead was not large, it is important to consider that using 

additional VMs incurs higher hosting costs without performance benefits. The isolated nature of 

our test design using isolated physical hardware, running no other applications, allows us to be 

certain that observed overhead resulted entirely from VM-level service isolation. This overhead 

is one of the tradeoffs for easier application tier-scalability with service isolation. 

5.5.7. Predictive model 

Resource utilization data was collected for CPU time, disk sector reads/writes, and 

network bytes sent/received as described in Section 5.1. We observed resource utilization 

variation for each of the deployments tested. Multiple linear regression (MLR) was used to build 

models to predict component deployment performance using resource utilization data to support 

investigation of RQ-4.   
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Multiple linear regression (MLR) is used to model the linear relationship between a 

dependent variable and one or more independent variables [53]. The dependent variable was 

ensemble execution time and the independent variables were VM resource utilization statistics 

including: CPU time, disk sector reads/writes, network bytes sent/received, and the number of 

virtual machines of the component deployment. The ‘‘R-squared’’ value, also known as the 

coefficient of determination, explains the explanatory power of the entire model and its 

independent variables as the proportion of variance accounted for. R-squared values were 

calculated for each independent variable using single linear regression.  Root mean squared 

deviation (RMSD) was calculated for each variable. The RMSD expresses differences between 

the predicted and observed values and serves to provide a measure of model accuracy. Ideally 

95% of predictions should be less than +/−2 RMSD’s from the actual value.  

A MLR model was built using resource utilization variables from the ‘‘m-bound’’ model 

using Xen 4 GB VMs with 20 different ensemble tests. All of our resource utilization variables 

together produced a model which accounted for 84% of the variance with a RMSD of only ~676 

ms (R2 = 0.8416, RMSD = 664.17 ms). Table 5.10 shows individual R2
 values for the resource 

utilization statistics used in a simple linear regression model with ensemble execution time to 

determine how much variance each explained. Additionally the average error (RMSD) is shown. 

The most predictive parameters were CPU time which positively correlated with ensemble time 

and explained over 70% of the variance (R2
 = 0.7171) and disk sector reads (R2

 = 0.3714) with a 

negative correlation.  Disk sector writes had a positive correlation with ensemble performance 

(R2
 = 0.1441). The number of deployment VMs (R2

 = 0.0444) and network bytes received/sent 

were not strong predictors of ensemble performance and explained very little variance.   
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Table 5.10.  Resource Utilization – Predictive Power 

Parameter R2 RMSD 

CPU time .7171 887.64 

# Disk sector reads .3714 1323.25 

# Disk sector writes .1441 1544.05 

Network bytes recv'd. .0074 1662.76 

Network bytes sent .0075 1662.68 

Number of VMs .0444 1631.44 

 

Table 5.11.  Deployment Performance Rank Predictions 

Composition Predicted Rank Actual Rank Rank Error 

SC1 12 15 -3 

SC2 2 2 0 

SC3 7 8 -1 

SC4 6 9 -3 

SC5 10 4 6 

SC6 9 10 -1 

SC7 4 5 -1 

SC8 8 7 1 

SC9 5 6 -1 

SC10 3 3 0 

SC11 1 1 0 

SC12 15 12 3 

SC13 14 14 0 

SC14 13 13 0 

SC15 11 11 0 

We applied our MLR performance model to predict performance of component 

deployments. Resource utilization data used to generate the model was reused to generate 

ensemble time predictions.  Average predicted ensemble execution times were calculated for 

each component deployment (SC1–SC15) and rank predictions were calculated. Predicted vs. 

actual performance ranks are shown in Table 5.11. The mean absolute error (MAE) was 462 ms, 

and estimated ranks were on average +/− 1.33 units from the actual ranks. Eleven predicted ranks 

for component compositions were off by 1 unit or less from their actual rank, with six exact 

predictions for SC2, SC10, SC11, SC13, SC14, and SC15. The top three performing 

deployments were predicted correctly in order. A second set of resource utilization data was 

collected for the ‘‘m-bound’’ model using 4 GB VMs and 20 random ensembles for SC1–SC15. 

This data was fed into our MLR performance model and observed MAE was only 324 ms.  The 
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average rank error was +/− 2 units. Seven predicted ranks were off by 1 unit or less from their 

actual rank, with three exact predictions. The top fastest deployment was correctly predicted for 

the second dataset.  

Building models to predict component deployment performance requires careful 

consideration of resource utilization variables.  This initial attempt using multiple linear 

regression was helpful to identify which independent variables had the greatest impact on 

deployment performance. Future work to improve performance prediction should investigate 

using additional resource utilization statistics as independent variables to improve model 

accuracy.  New variables including CPU statistics, kernel scheduler statistics, and guest/host load 

averages should be explored. The utility of neural networks, genetic algorithms, and/or support 

vector machines to improve our model should be investigated extending related research  [21], 

[27]–[29], [32], [37]. These techniques can help improve performance predictions if resource 

utilization data is not normally distributed. 

5.6.   CONCLUSIONS 

(RQ-1) This research investigated the scope of performance implications which occur 

based on how components of SOAs are deployed across VMs on a private IaaS cloud. All 

possible deployments were tested for two variants of the RUSLE2 soil erosion model, a 4-

component application. Up to a 14% and 25.7% performance variation was observed for the ‘‘m-

bound’’ and ‘‘d-bound’’ RUSLE2 models respectively. Significant resource utilization (CPU, 

disk, network) variation was observed based on how application components were deployed 

across VMs. Intuition was insufficient to determine the best performing deployments. Ad hoc 

worst case scenario component placements significantly degraded application performance 

demonstrating consequences for ignoring component composition. Component deployment using 
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total service isolation did not provide the fastest performance for our application.  Provisioning 

variation did not change the fundamental performance of component deployments but did 

produce overhead of ~ 2%-3% when two or more VMs resided on the same physical host. 

(RQ-2) Increasing VM memory allocation did not guarantee application performance 

improvements. Increasing VM memory to improve performance appears useful only if memory 

is the application’s performance bottleneck. The KVM hypervisor performed 29% slower than 

Xen when application performance was bound by disk I/O but slightly faster ~1% when the 

application was CPU bound. KVM resource utilization correlated with Xen but CPU time was 

35% greater when KVM was used to perform the same work.   

(RQ-3) Service isolation, the practice of using separate VMs to host individual 

application components resulted in performance overhead up to 2.4%. Though overhead may be 

small, the hosting costs for additional VMs should be balanced with the need to granularly scale 

application components. Deploying an application using total service isolation will always result 

in the highest possible hosting costs in terms of the # of VMs. 

(RQ-4) Resource utilization statistics were helpful for building performance models to 

predict performance of component deployments. Using just six resource utilization variables our 

multiple linear regression model accounted for 84% of the variance in predicting performance of 

component deployments and accurately predicted the top performing component deployments. 

Providing VM/application level resource load balancing and using compact application 

deployments holds promise for improving application performance while lowering application 

hosting costs.  To support load balancing and cloud infrastructure management, performance 

models should be investigated further as they hold promise to help guide intelligent application 



96 
 

deployment and resource management for IaaS clouds. 
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CHAPTER 6 

 

THE VIRTUAL MACHINE SCALER 

 
 
 

6.1.   INTRODUCTION 

The advent of modern multi-core CPUs, allow today’s compute servers to process many 

tasks in parallel.  These multi-core processors can provide increased performance for 

environmental modeling when: (1) model source code is architected to perform parallel 

computations to execute using multiple cores, or (2) multiple distinct related or unrelated model 

runs can be computed in parallel.  Service based computing involves hosting a computational 

engine to perform complex domain-specific calculations sometimes referred to as business logic 

or middleware.   Services operate using web based TCP ports and are therefore referred to as web 

services.  Deployment of environmental models as web services involves migration of the model 

computation from the user’s client computers to run in a centralized modern datacenter to reap 

the benefits of faster hardware and server scalability.  Users submit model service requests by 

describing the model parameterization including required inputs for the model run.  Many 

service requests can be processed in parallel.  Updating model code is made easier with a 

centralized deployment model.  We refer to deployment of scientific models as web services as 

modeling-as-a-service. 
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Infrastructure-as-a-Service (IaaS) is a type of web service.  Specifically, IaaS provides 

compute infrastructure, on demand, as a service, to end users.  IaaS is one of the fundamental 

service types enabled by cloud computing.  IaaS clouds allow service oriented applications 

(SOAs) to have elastic infrastructure where resource allocations can be scaled up or down in real 

time to meet application demand.  IaaS clouds provide ideal server infrastructure for providing 

modeling-as-a-service.  One key challenge of providing scientific modeling-as-a-service on 

demand to end users is the requirement to provide both good modeling performance and service 

availability.  Availability is the notion that the modeling service is always available to 

perspective users.  If a large spike in demand for a scientific model occurs, the modeling service 

should not reject new requests, but continue to accept and process them in a timely manner. 

As the number of CPU cores has increased in modern servers, the overall idle time has 

increased.  Today dual and quad processor servers can support 40+ individual processing cores.  

These cores frequently employ hyper-threading.  Hyper-threads provide two execution threads 

per CPU core, each of which with its own processor architectural state.  These hyper-threads, 

referred to as logical processors, can be individually halted, interrupted or directed to execute a 

specified program, independent from the other logical processor. Logical processors share 

execution resources, allowing one processor to borrow resources from the other if stalled waiting 

for I/O.  The benefit seen from CPU hyper-threading depends on the application’s balance of 

computation vs. I/O, but is often 30% or better.  Hyper-threading enables fast execution of many 

more model runs in parallel, enabling higher throughput than single threaded CPUs. 

It has become difficult for a single operating system instance to fully utilize so many 

cores.  To support service scalability, modern multi-core servers support server virtualization.  

Virtualization allows a single physical server to host many virtual machines (VMs).  VMs are 
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implemented using a software program known as the hypervisor which supports sharing the 

physical computer’s processor(s), network and disk resources.   Each virtual machine has its own 

operating system instance providing isolation.  Server virtualization provides partitioning of 

server resources with the overall goal of increasing utilization.  Increasing server utilization 

supports datacenter consolidation as redundant idle servers can be removed saving physical 

space and electricity.  Popular virtualization hypervisors include kernel-based VMs (KVM), Xen, 

and the VMware ESX hypervisor. [1]–[3]. 

Historically the components of multi-tier SOAs were deployed on one or more physical 

servers as in figure 6.1.  In a cloud based setting, SOAs are now deployed across a set of virtual 

machine images (figure 6.2) instead of being consolidated on a single physical server.  Multiple 

VM instances can be provisioned for each application tier using these virtual machine images 

enabling the application infrastructure to scale based on service demand. 

 

Figure 6.1.  Traditional Service Oriented Application Deployment 
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Figure 6.2.  IaaS Cloud Service Oriented Application Deployment 

Environmental models can be deployed as web services to IaaS clouds using Amazon’s 

public IaaS cloud Elastic Compute Cloud application programming interface (EC2-API.).  The 

EC2-API enables programmatic management of IaaS clouds enabling dynamic management of 

the server infrastructure used to host model services [66].  The EC2 API is supported to varying 

degrees by most open source private clouds including: Apache CloudStack [67], Eucalyptus [46], 

OpenNebula [68], and OpenStack [69]. 

To support environmental modeling using IaaS Cloud application scaling and 

infrastructure management, we have developed the Virtual Machine Scaler (VM-Scaler), a 

REST/JSON-based web services application.  VM-Scaler supports IaaS cloud infrastructure 

management for environment modeling as part of the US Department of Agriculture and 

Colorado State University’s Cloud Services Innovation Platform (CSIP) [70].  VM-Scaler’s 

support of model infrastructure scalability for CSIP has been evaluated using the Revised 

Universal Soil Loss Equation – Version 2 (RUSLE2) [41], and the Wind Erosion Prediction 

System (WEPS) [71] as described in Lloyd [72].  RUSLE2 and WEPS are the US Department of 
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Agriculture–Natural Resource Conservation Service standard models for soil erosion used by 

over 3,000 county level field offices across the United States.  RUSLE2 and WEPS are used to 

provide soil erosion modeling services to end users.  RUSLE2 contains both empirical and 

process-based science that predicts rill and interrill soil erosion by rainfall and runoff.  RUSLE2 

was developed primarily to guide natural resources conservation planning, inventory erosion 

rates, and estimate sediment delivery.  The Wind Erosion Prediction System (WEPS) is a daily 

simulation model which outputs average soil loss and deposition values for selected areas and 

periods of time to predict soil erosion due to wind. WEPS consists of seven sub-models 

including: weather, crop growth, decomposition, hydrology, soil, erosion, and tillage. 

CSIP provides a common Java-based framework for providing REST/JSON based 

modeling-as-a-service to end users.  VM-Scaler harnesses the Amazon EC2 API to support 

scaling server infrastructure and management of the underlying clouds to enable modeling-as-a-

service [66].  VM-Scaler currently supports Amazon EC2, and Eucalyptus versions 3.1 and 3.3.  

VM-Scaler provides cloud control while abstracting the underlying IaaS cloud and can be 

extended to support any EC2 compatible cloud (figure 6.3).  VM-Scaler provides a platform for 

supporting scalable environmental model services and supports: (1) profiling resource 

requirements of modeling workloads, (2) experimentation with hot spot detection schemes, (3) 

investigation of VM management/placement approaches, and (4) development of custom model 

request scheduling/proxy services.  The remainder of this chapter describes features provided by 

VM-Scaler which help support environmental modeling services using public, private, and 

hybrid IaaS cloud resources. 

6.2.   THE VIRTUAL MACHINE SCALER 

VM-Scaler is a REST/JSON Java-based web application installed to any web application 
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container such as Apache Tomcat or Glassfish.  VM-Scaler can be hosted by a virtual machine 

(VM) or physical machine (PM) having network connectivity to the managed cloud.  Upon 

initialization VM-Scaler probes the host cloud and collects metadata including location and state 

information for all PMs (private clouds only) and VMs.  An object model is constructed in 

memory to represent the state of the cloud.  The Eucalyptus implementation also determines the 

Eucalyptus round-robin VM launch sequence to identify which node is expected to receive the 

next VM launch request.  VM-Scaler service requests are formulated using JSON objects.  

Service specific JSON objects are used to describe meta-data for the requested operations.  VM-

Scaler is easily extensible to support new services as needed.  Table 6.1 describes existing VM-

Scaler services. 

 

Figure 6.3.  VM-Scaler Cloud Abstraction 
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Table 6.1.  VM-Scaler Services 

 

6.2.1. Resource Utilization Data Collection 

An agent is installed to all infrastructure VMs and PMs (if accessible) to send resource 

utilization (RU) data to VM-Scaler at fixed intervals.  The default interval is 15-seconds.  The 

RU data collection agent is extensible and presently collects resource utilization statistics for 

(18) parameters as described in table 6.2.  RU data is used to calculate resource use for: (1) the 

last 15-second interval, (2) the previous one minute average, and (3) a historical lifetime average.  

One minute averages are presently used to perform hot spot detection. (see section 2.4) 

6.2.2. Model Workload Resource Utilization Check-pointing 

VM-Scaler supports resource utilization checkpoint for environmental model workloads.  

Resource utilization check-pointing can be used to obtain the total resource utilization profile for 

a modelling workload.  RU profiles can help determine the required machine resources to 
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accomplish similar modeling workloads.  RU profiles help quantify the heft or weight of 

modelling workloads in terms of the resource requirements needed to execute.  RU profiles 

quantify resource usage for all eighteen resource utilization statistics described in table 6.2.  

Understanding the total CPU time, disk, and network I/O required for a batch of modelling is 

particularly useful if looking to schedule many similar model runs as is the case for calibration or 

monte carlo simulations. 

Table 6.2.  Resource Utilization Statistics 

Statistic Description  

P/V CPU time CPU time in ms 

P/V cpu usr CPU time in user mode in ms 

P/V cpu krn CPU time in kernel mode in ms 

P/V cpu_idle CPU idle time in ms 

P/V Contextsw Number of context switches 

P/V cpu_io_wait CPU time waiting for I/O to complete 

P/V cpu_sint_time CPU time servicing soft interrupts 

V Dsr Disk sector reads (1 sector = 512 bytes) 

V Dsreads Number of completed disk reads 

V Drm Number of adjacent disk reads merged 

V Readtime Time in ms spent reading from disk 

V Dsw Disk sector writes (1 sector = 512 bytes) 

V Dswrites Number of completed disk writes 

V Dwm Number of adjacent disk writes merged 

V Writetime Time in ms spent writing to disk 

P/V Nbr Network bytes sent 

P/V Nbs Network bytes received 

P/V Loadavg Avg # of running processes in last 60 sec 

6.2.3. Scaling Tasks 

VM-Scaler provides horizontal scaling of application infrastructure by increasing the 

allocated number of VMs to service a particular tier of a multi-tier SOA.  When application hot 

spots are detected one or more VMs can be launched in parallel in response.   A service request 

is issued to describe the requested scaling task using a JSON object.  The JSON object identifies 

the base VM, the initial VM which provides implementation of a particular application tier.  The 

JSON object includes a VM-type meta-data tag to identify VMs launched to support the tier.  An 

image-id identifies which virtual machine image to launch in response to hot spots.  The VM-
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size attribute specifies the size and type for new VMs, for example m1.xlarge, m2.4xlarge.  An 

access key is included and also the host zone/region and the VM security group are identified. 

Three additional configurable scaling parameters include: min_time_to_scale_again , 

min_time_to_scale_after_failure , and max_VM_launch_time .  Min_time_to_scale_again  

provides a time buffer before scaling again, allowing time to consider the impact of recent 

resource additions.  This parameter helps to eliminate the ping-pong effect described in [7] and is 

equivalent to Amazon Scaling Group cool-down periods [73].  Max_VM_launch_time  provides a 

maximum time limit before terminating launches that appear to have stalled.  This supports 

handling launch failures by reissuing stalled launch requests.  Min_time_to_scale_after_failure  

provides an alternate wait time when VM launch failures occur. 

6.2.4. Hot Spot Detection 

VM-Scaler supports both resource utilization threshold and application performance 

model-based hot spot detection.  Threshold based scaling is triggered when resource utilization 

variables exceed configured thresholds.  This application agnostic approach is reactive to current 

system conditions and supports experimentation because the hot spot detection scheme can 

remain constant while VM scheduling algorithms or the application being tested are changed.  

By default scaling thresholds can be specified for one-minute averages of: maximum CPU time, 

minimum CPU idle time, maximum number of context switches, and maximum load average.  

Application performance model hot spot detection uses trends in resource utilization to predict 

average model execution time.  Predictions are made for average model execution time for 1, 2, 

and 3 time steps in the future where a time step is 15 seconds.  Scaling thresholds trigger hot spot 

detection when future predicted model execution time exceeds set values. 
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6.2.5. Least-Busy VM Placement 

For Eucalyptus private IaaS clouds, VM-Scaler supports controlling the placement of 

new VM’s to specific physical hosts.  New VM launches can specify a specific host, use the 

default host provided by Eucalyptus round-robin, or harness VM-Scaler’s Least-Busy VM 

placement algorithm.  VM placement to the Least-Busy physical machine is based on using our 

BusyMetric which aggregates total host resource utilization to determine the best candidates for 

hosting new VM’s by quantifying host busyness [72].  The busy metric double weights CPU 

time for environmental modelling since most models are CPU-bound in nature.  Disk sector 

reads/writes, network bytes received/sent and host occupancy are also included in the Busy 

Metric calculation.  Busyness is quantified relative to the observed maximum system value for 

each resource utilization measure. Maximums are determined through stress testing. 

For example: 
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Each additional VM hosted linearly increases the value of the Busy-Metric by: 

��01 	23��.��	4	5.�7�8                                                          (3) 

 

The Busy-Metric provides an approach to rank available capacity of physical host machines.  

Our goal has been to develop a general metric which supports new VM placements based on 
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quantifying the total shared load of private cloud host machines.  Many variations of our busy 

metric are possible by using unique resource variable weights based on specific resource 

requirements of different environmental models.   

6.2.6. Model Request Job Scheduling 

VM-Scaler supports using the Busy-Metric described in section 2.4 to perform model run 

scheduling/proxy services.  Incoming model requests can be routed to the Least-Busy VM.  This 

provides an alternative to both round-robin load balancing and least-connection load balancing.  

Round-robin load balancing is supported using the HAProxy load balancer [51], by evenly 

distributing model requests to the pool of modelling-engine VMs.  Least-connection load 

balancing supported by HAProxy, distributes model requests by evenly balancing the number of 

active concurrent sessions at each modelling engine VM at any given time.  VM-Scaler’s Least-

busy load balancing routes incoming model requests to run on the modelling engine VM with the 

most available resources as quantified using the Busy-Metric.  Least-Busy job scheduling is a 

black-box job scheduler which does consider details of the model parameterization to perform 

the scheduling.  Future work plans to investigate the development of white-box job schedulers 

which harness model parameterization details of incoming model requests to predict model 

resource and execution time requirements before execution.  Harnessing predictions should 

improve model execution scheduling and reduce model execution times by minimizing server 

idle time during model workload execution which occurs between scheduled jobs that presently 

goes to waste. 

6.2.7. VM Pools 

VM-Scaler supports VM pools to support recycling VMs in cases when the launch 

latency time is high.  For environmental modelling, VM launch latency is the time required to 
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launch and initialize a new modelling engine VM before it is ready to perform model 

computations.  Launch latency time varies based on the type and size of the VM image, as well 

as the host cloud and its underlying hardware.  For example, on Amazon EC2, using faster VM 

types such as c3.xlarge generally enables more rapid VM launch and initialization times 

compared to slower instance types such as m1.large.  Similarly, on a private cloud, VM instance 

types assigned more computational and memory resources typically initialize more rapidly.  

Launch latency will vary by cloud and the specifics of the VM being provisioned and should be 

benchmarked to establish baseline time requirements for dynamic scaling. 

When dynamically scaling the modelling tier of an SOA it may be necessary to rapidly 

increase the number of worker VMs in response model demand.  To support dynamic scaling 

when new VMs cannot be launched fast enough, VMs can be prelaunched and reserved for later 

use using VM-Scaler VM pools.  Prelaunched VMs are referred to as spare VMs.  A key cost / 

performance trade-off concerns identifying the number of spare VMs to allocate versus the 

supported magnitude of model service demand spikes.  When too many spare VMs are 

provisioned hosting costs are high, but scalability performance is excellent.  Conversely when 

too few spare VMs are provisioned the model service may become slow, unavailable, or crash in 

response to demand spikes. 

VM pools help support the use of Amazon public cloud spot instances for environmental 

modeling.  Amazon Spot instances are low-cost VMs which are billed at a fluctuating auction 

price rather than the standard going rate.  Prices may be as low as 1/8 to 1/9 the cost of full 

dedicated instances with the caveat being these instances may terminate at any instant when the 

bid price is exceeded due to heavy demand.  Amazon spot instances have very long launch 

latency times since two separate Amazon EC2 operations are required to provision a VM.  An 
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initial call places a spot market bid, and if the bid is successful a VM launch operation occurs.  

For CSIP, launch latency times of 4-5 minutes per VM is not unusual.  With such long launch 

latency times dynamic scaling using amazon spot instances is generally not practical without 

prelaunching VMs. 

VM pools also support reusing VM instances for dynamic scaling in lieu of Amazon’s 

billing model.  Amazon bills hourly for VM usage.  Even if a VM is only needed for 1 minute, 

the user is charged for an entire hour.  For dynamic scaling it is useful then to recapture idle VMs 

for the duration of the billing cycle in case there is a future opportunity for use. 

6.3.   SUMMARY AND CONCLUSIONS 

By harnessing infrastructure-as-a-service cloud computing, server infrastructure 

supporting environmental model services can dynamically scale based on user demand to 

deliver: (1) high availability, (2) high throughput (requests/second) and (3) fast model execution 

times.   

In this chapter we have presented the VM-Scaler, a cloud agnostic autonomic resource 

manager which supports infrastructure management for multi-tier service oriented applications.  

VM-Scaler supports dynamic infrastructure scaling for both new and legacy environmental 

models supporting their deployment as web-based model services enabling model computation 

“as-a-service”, on demand, for users.  VM-Scaler supports model service scalability on both 

private and public clouds by providing key features including: resource utilization data 

collection, model workload resource utilization check-pointing, dynamic scaling tasks, hot spot 

detection, Least-Busy VM placement, Job Scheduling, and VM pools.  VM-Scaler supports 

many features in-gratis which are typically pay-for-use infrastructure services in public clouds 
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including resource utilization data collection and dynamic scaling.  The utility of VM-Scaler has 

been demonstrated in support of the USDA’s Cloud Services Innovation Platform (CSIP) and 

development remains ongoing. 
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CHAPTER 7 

 

IMPROVING VM PLACEMENTS TO 

 

MITIGATE RESOURCE CONTENTION AND HETEROGENEITY 

 
 
 

7.1.   INTRODUCTION 

Supporting scientific modeling computational services, introduces resource management 

challenges. These challenges must be addressed when deploying model services to 

Infrastructure-as-a-Service (IaaS) clouds.  Given that scientific models are often computationally 

bound, dynamic scaling of server infrastructure is required to address model service demand 

spikes.  For example a legacy Fortran process based scientific model whose code is primarily 

sequential might fully occupy a single CPU core for 10 minutes for an individual model run.  It 

is often not practical to refactor the legacy model code due to resource or model design 

limitations to obtain significant performance improvements [74].  If an insufficient number of 

CPU cores are provisioned frequent context switching can interrupt model service execution and 

greatly degrading performance.  Hosting model services using IaaS clouds enables server 

resources to be easily provisioned reducing computation interruptions from CPU context 

switching.  Before the advent of cloud computing’s support of resource elasticity through server 

virtualization, hosting scientific model services required extensive allocations of physical 

hardware.   

IaaS cloud resource management challenges for scientific model services can be broken 

down into three primary concerns:  (1) Determining WHEN infrastructure should be 

provisioned? (2) Determining WHAT infrastructure should be provisioned? and (3) Determining 

WHERE infrastructure should be provisioned?   
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WHEN server infrastructure should be provisioned to address service demand is 

informed by hotspot detection [6].  Determining when to scale-up resources is complicated by 

the latency of virtual machine (VM) launches.  In some cases, the time required to provision and 

launch new infrastructure exceeds the duration of demand spikes [7].   By predicting future 

demand, server infrastructure can be pre-provisioned.  Load prediction can be difficult 

particularly for applications with stochastic load behavior.  Care must be exercised as poor 

predictions can result in overprovisioning and higher hosting costs, or underprovisioning and 

poor performance.   

WHAT server infrastructure should be provisioned concerns the size and type (vertical 

scaling) and quantity (horizontal scaling) of VM allocations.  Vertical scaling involves 

modifying resource allocations of existing VMs.  Altering VM resource allocations including 

CPU core, memory, disk, and network bandwidth may alleviate poor performance.  When 

vertical scaling is unavailable, or insufficient to address service demand, horizontal scaling can 

be used.  Additional service capacity is provisioned by launching new VMs and the service 

workload is balanced across the expanded pool of VMs.  A key challenge lies in determining 

how many VMs should be provisioned, and with what resource allocations?   

WHERE server resources should be provisioned is abstracted by Infrastructure-as-a-

Service (IaaS) clouds.  Representing VMs as tuples and using them to pack physical machines 

(PMs) can be thought of as an example of the multidimensional bin-packing problem that has 

been shown to be NP-hard [14].  Consequently in practice simplified heuristic based approaches 

to VM placement are typically used.  Two types of VM placement schedulers common to private 

IaaS clouds include greedy and round-robin.  Greedy allocation deploys all VMs to a single PM 

first.  When the host’s resources are exhausted another PM is selected and the process is 
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repeated.  Greedy allocation packs resources tightly, enabling maximum energy savings without 

regard to VM/application performance.  Round-robin placement distributes VMs to each PM in 

succession, balancing the VM hosting load across the cluster.  Round-robin placement typically 

provides better VM performance by reducing resource contention at the expense of higher 

energy requirements.  Using round-robin placement, all PMs in the cluster receive a portion of 

the VM hosting load, eliminating potential for idle machines to operate in power saving modes 

[19]. 

In a public IaaS cloud setting the user is abstracted from explicit control of VM host 

location (WHERE) and how specific VM types are implemented (WHAT).   

WHERE VMs are provisioned in a public cloud is not only uncontrollable, but difficult to 

discern as well [16].  End user determination of VM location and co-location remains an open 

challenge.  Previous efforts using heuristics to infer VM co-residency and launching probe VMs 

for exploration are both expensive and only partially effective at determining VM locations [17].  

Resource contention from VM multi-tenancy has been shown to degrade performance and is of 

concern for cloud-based scientific modeling [16], [18]. 

WHAT hardware is used to implement public cloud VM types has been shown to vary, as 

VM-types (e.g. Amazon EC2 m1.large) have been shown to use different hardware 

implementations over time [10], [11].  Public clouds abstract VM hardware implementation 

details enabling data center upgrades to seamlessly enable lower energy costs over time.  Prior 

research has demonstrated performance variance resulting from heterogeneous implementations 

of a single VM type as great as 30% for a web application.  The magnitude of this performance 

variation is significant and deems attention for scientific modeling in the cloud. 
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7.1.1. Research Questions 

The following six research questions are investigated: 

Private IaaS : 

RQ-1: What performance implications result from VM placement location when dynamically 

scaling scientific model services? How important is VM placement for scaling in 

response to increasing service demand?  

RQ-2: How do resource costs (# of VMs) vary when dynamically scaling model service 

applications as a result of VM placement location? 

RQ-3: How important is VM placement location when scaling with different VM sizes (# of 

CPU cores)?  Does the granularity of provisioned resources change the importance of 

making good VM placements? 

RQ-4: How do performance and resource cost implications of VM placement location vary 

under different cluster load scenarios?  Is VM location more important when there is 

more/less contention for resources? 

Public IaaS : 

RQ-5: Currently, how prevalent is public cloud VM-type implementation heterogeneity?  

What are the performance implications resulting from VM-type implementation 

heterogeneity for model service hosting? 

RQ-6: What are the performance implications of hosting scientific modeling workloads on 

worker VMs having high cpuSteal measurements?  How effective is using cpuSteal to 

identify worker VMs with high resource contention due to multi-tenancy (e.g. noisy 

neighbors)? 
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7.1.2. Research Contributions 

In this chapter we propose multiple techniques to improve public and private IaaS cloud 

infrastructure management for hosting scientific modeling services.  Through empirical 

evaluation we quantify the benefits of these techniques by demonstrating model performance 

improvements and reduced hosting costs.  Our results are generalizable and of interest to any 

practitioner hosting service oriented applications in the cloud.   

The primary contributions described in this chapter include: 

Private IaaS : 

1. We present the Least-Busy VM placement/job scheduler (Section 4.2).  The Least-Busy 

scheduler harnesses our Busy-Metric to quantify the aggregate load (CPU/disk/ network) 

on each physical host in a private cloud (Section 4.1).  Our Busy-Metric supports VM 

placement/job scheduling decisions to hosts with the most available capacity.   

2. We conduct an empirical evaluation to investigate the implications of VM placement on 

model service performance when scaling infrastructure to meet dynamically increasing 

service demand.  We quantify service performance and hosting cost (# of VMs) 

implications of round-robin and Least-Busy VM placement (Section 6).  Additionally 

implications of host VM size (# of CPU cores) and effects of shared cluster load for VM 

placement for dynamic scaling are studied (Section 7).   

Public IaaS: 

3. We investigate model service performance implications of public cloud VM-type 

heterogeneity for hosting scientific model services.  We quantify model service 

performance variance to evaluate the importance of the trail-and-better approach [10] for 
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hosting scientific modeling workloads (Section 8). 

4. We investigate the utility of the cpuSteal CPU metric at detecting resource contention in 

a public cloud.  We propose the “CpuSteal Noisy Neighbor Detection Method” (NN-

Detect) to identify worker VMs with significant resource contention from noisy 

neighbors (Section 5.3).  We quantify model service performance degradation of worker 

VMs with noisy neighbors to demonstrate potential for performance improvements if 

NN-Detect is used to prune noisy VMs from worker pools (Section 9). 

5. We demonstrate our Least-Busy approach to distribute model service requests across 

worker VMs in a public cloud.  We demonstrate performance improvements vs. least-

connection load balancing (Section 7.5). 

7.2.   BACKGROUND AND RELATED WORK 

7.2.1. Private Cloud VM-Placement 

Amazon’s public cloud implements the Elastic Compute Cloud (EC2) application 

programming interface (API) enabling programmatic control of resource elasticity.  The EC2 

API is supported by many open source cloud VIMs.  Scientific model services applications can 

harness the EC2 API to enable scalability using private and/or public cloud resources.  Private 

clouds can provide base application infrastructure with demand bursts serviced using public 

cloud resources (hybrid cloud).  Private clouds providing implementations of the EC2 API 

include: Apache CloudStack [67], Eucalyptus [46], OpenNebula [68], and OpenStack [69].   

All private IaaS clouds provide similar mechanisms for provisioning VMs on demand.  

Eucalyptus supports greedy and round robin VM placement schemes [46].  VM deployment can 

be localized to specific clusters or subnets using security groups and availability zones.  Apache 

CloudStack provides “fill first” VM placement, equivalent to greedy allocation, and “disperse” 
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mode, equivalent to round-robin [67].  OpenStack provides two primary VM schedulers known 

as fill-first and spread-first.  Fill-first, equivalent to greedy placement, packs VMs tightly onto 

PMs.  Spread-first distributes VMs across PMs in round-robin fashion, but schedules VMs on 

PMs having the highest number of available CPU cores and memory first.  OpenStack supports 

filters which enable VMs to be co-located or separated as desired to achieve specific VM 

deployments.  OpenNebula provides both a “packing” policy, equivalent to greedy placement, 

and a “striping” policy equivalent to round-robin [68], [75].  Additionally, custom “rank” 

expressions are supported which calculate hosting preference scores for each PM.  When a VM 

launch request is received, the PM with the highest score is delegated as host.  Scores are 

recalculated for each VM launch request.  Eight system variables can be used in custom rank 

expressions, none of which include resource load parameters describing CPU, disk or network 

utilization.  Supported variables include: hostname, total CPUs, free CPUs, used CPUs, total 

memory, free memory, used memory, and hypervisor type.   

Of the stock VM schedulers offered by private IaaS cloud software, none support load 

aware VM placement across physical hosts.  Only capacity parameters such as # of CPUs, 

available memory and disk space are considered to ensure VM allocations have sufficient 

resources to run.  To better support dynamic scaling of scientific model services applications, 

VM schedulers should consider resource utilization across physical resources to improve 

application performance and cluster load balancing. 

7.2.2. Dynamic Scaling 

Previous research on dynamic scaling in the cloud has investigated WHEN to scale 

including work on autonomic control approaches and hotspot detection schemes   [21], [27]–

[29], [31].  These and other efforts additionally focus on WHAT to scale in terms of vertical and 
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horizontal scaling [26], [64].  Investigations on WHERE to scale have largely focused on 

task/service placement [30], [32] or supporting VM live migration for load balancing [31], [76], 

[77] or energy savings via VM consolidation across physical hosts [14], [31], [77]–[79].   

Kousiouris et al. benchmarked all possible configurations for different task placements 

across several VMs running on a single PM [32].  Their approach did not consider VM 

scalability, but focused on modeling to predict performance of task placements on already 

provisioned VMs.  In [30], Bonvin et al. proposed a virtual economy which models the economic 

fitness of web application component deployments across server infrastructure.  Server agents 

implement the economic model on each node to ensure fault tolerance and adherence to SLAs.  

Bonvin’s approach allocated web server components, not VMs, at the application level (e.g. 

PaaS). Scaling up an application was supported by adding hosting capacity or migrating existing 

components to “more economical” servers.   

Wood et al. developed Sandpiper, a black-box and gray-box resource manager for VMs 

[15].  Sandpiper provides hotspot detection to determine when to vertically scale VM resources 

or perform live migration to alternate hosts.  Sandpiper’s VM-scheduling and management 

algorithms were designed to oversee VM migration and server partitioning.  Horizontal scaling 

for dynamic scaling was not supported.  Andreolini et al. proposed VM management algorithms 

which support determining WHEN and WHERE to perform VM live migration [78].  Their 

algorithms harness VM load profiles to detect hotspots and PM load profiles to determine 

candidate hosts.  Andreolini’s algorithms were only by simulation and their approach did not 

consider dynamic scaling or placement of new VMs. 

Beloglazoc and Buyya proposed adaptive heuristics to support live migration of VMs to 
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achieve power savings while adhering to SLAs [14].  They evaluated their approach using 

simulation but did not consider dynamic scaling or placement of new VMs.  Roytman et al. 

proposed algorithms to consolidate VMs to achieve power savings while minimizing 

performance losses in [79].  Their approach reduced performance degradation as much as 52% 

compared with existing power saving consolidation algorithms but was limited to placement of 

single core VMs.  The authors mention for their algorithms to schedule VMs which share CPU 

cores, new approaches to characterize resource contention are necessary.   

Xaio et al. developed a skewness metric, an aggregate measure of VM resource 

utilization.  Skewness reflects how balanced VM placements are across cloud PMs [77].  They 

combined their skewness metric with hot spot detection to perform VM live migration to achieve 

better load balancing and to consolidate workloads onto fewer servers for energy savings when 

possible.  Mishra and Sahoo identified problems with the use of aggregate resource utilization 

metrics for VM placement and proposed a series of different metrics to address orthogonal 

problems [76].  They did not evaluate their approach and admit their heuristics may not be 

efficient to implement in practice.  Of the reviewed methods, none (1) specifically address VM 

placement for dynamic scaling in a private cloud, or (2) evaluate implications for hosting 

dynamically increasing scientific model service workloads. 

7.2.3. Scientific Modeling on Public Clouds 

Ostermann et al. provided an early assessment of public clouds for scientific modeling in 

[80].  They assessed the ability of 1st generation Amazon EC2 VMs (e.g. m1.*-c1.*) to host 

HPC-based scientific applications.  They identified that EC2 performance, particularly network 

latency, required an order of magnitude improvement to be practical and suggested that scientific 

applications should be tuned for operation in virtualized environments.  Other efforts highlight 
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the same challenges regarding EC2 performance and network latency for scientific HPC 

applications [81]–[83].   

Schad et al. [18] demonstrated the unpredictability of Amazon EC2 VM performance 

caused by contention for physical machine resources and provisioning variation of VMs.  Using 

a Xen-based private cloud Rehman et al. tested the effects of resource contention on Hadoop-

based MapReduce performance by using IaaS-based cloud VMs to host worker nodes [16].  

They investigated provisioning variation of different deployment schemes of cloud-hosted 

Hadoop worker nodes and observed performance degradation when too many worker nodes were 

physically co-located.   

Farley et al. demonstrated that Amazon EC2 instance types had heterogeneous hardware 

implementations in [11].  Their investigation focused on the m1.small instance type and 

demonstrated potential for cost savings by discarding VMs with lesser performant 

implementations.  Ou et al. extended their work by demonstrating that heterogeneous 

implementations impact several Amazon and Rackspace VM types [10].  They found that the 

m1.large EC2 instance had four different hardware implementations (variant CPU types) and 

different Xen CPU sharing configurations.  They demonstrated ~20% performance variation on 

operating system benchmarks for m1.large VM implementations.  They provided a “trail-and-

better” approach where VM instances upon launch are benchmarked, and lower performing 

implementations terminated and relaunched.  They demonstrated cost savings through better 

performance when on demand EC2 instances are used for 10 hours or more. 

Providing infrastructure elasticity for service oriented applications by launching new 

VMs when resource deficits are first detected is challenging.  In [7], Kejariwal reports on scaling 
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techniques at Netflix used in Amazon EC2.  Some Netflix application components required pre-

provisioning up to thirty minutes in advance due to long application initialization times.  

Kejariwal describes techniques used at Netflix to profile historical service demand to predict 

future load requirements.  Load prediction is required to support prelaunching resources in 

advance to enable ample initialization time.  Determining if scientific model services exhibit 

predictable usage patterns to support infrastructure preprovisioning is likely a domain specific 

question, and an area for future research. 

7.3.   THE VIRTUAL MACHINES SCALER 

To investigate infrastructure management techniques and support hosting of scientific 

modeling web services we developed the Virtual Machine (VM) Scaler, a REST/JSON-based 

web services application [84].  VM-Scaler harnesses the Amazon EC2 API to support application 

scaling and cloud management and currently supports Amazon’s public elastic compute cloud 

(EC2), and Eucalyptus 3.x clouds.  VM-Scaler provides cloud control while abstracting the 

underlying IaaS cloud and is extensible to any EC2 compatible cloud.  VM-Scaler provides a 

platform for conducting IaaS cloud research by supporting experimentation with hotspot 

detection schemes, VM management/placement, and job scheduling/ proxy services. 

Upon initialization VM-Scaler probes the host cloud and collects metadata including 

location and state information for all PMs and VMs.  An agent installed on all VMs/PMs sends 

resource utilization statistics to VM-Scaler at fixed intervals.  Collected resource utilization 

statistics are described in [13], [85]. The development of VM-Scaler extends and enables further 

our previous work investigating the use of resource utilization statistics for guiding cloud 

application deployment. 
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VM-Scaler supports horizontal scaling of application infrastructure by provisioning VMs 

when application hotspots are detected.  One or more VMs can be launched in parallel in 

response to application demand. To initiate scaling, a service request is sent to VM-Scaler to 

begin monitoring a specific application tier.  VM-Scaler monitors the tier and launches additional 

VMs when hotspots are detected.  VM-Scaler handles launch failures, automatically reconfigures 

the proxy server, and provides application specific configuration before adding new VMs to a 

tier’s working set. Tier-based scaling in VM-Scaler is conceptually similar to Amazon auto-

scaling groups [73]. 

VM-Scaler supports both resource utilization threshold and application performance 

model-based approaches to hotspot detection.  To evaluate For Least-Busy VM placement 

resource utilization threshold hotspot detection is used.  Scaling is triggered when preconfigured 

thresholds are exceeded for specific resource utilization variables.  This approach is reactive to 

current system conditions and is application agnostic.  This eliminates bias and supports 

experimentation because the hotspot detection approach remains constant while evaluating 

different VM scheduling algorithms using different model service applications. 

Three configurable timing parameters are provided to support autonomic scaling: 

min_time_to_scale_again , min_time_to_scale_after_failure , and max_VM_launch_ time .  

Min_time_to_scale_again  provides a time buffer before scaling again, allowing time to consider the 

impact of recent resource additions.  This parameter helps to eliminate the ping-pong effect 

described in [7] and is equivalent to Amazon Scaling Group cool-down periods [73].  

Max_VM_launch_time  provides a maximum time limit before terminating launches that appear to 

have stalled.  This supports handling launch failures by reissuing stalled launch requests.  

Min_time_to_scale_after_ failure  provides an alternate wait time to improve scaling 
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responsiveness when VM launch failures occur. 

VM-Scaler supports multiple VM placement schemes on Eucalyptus private clouds.  

These include Least-Busy VM placement, Eucalyptus native placement (round-robin or greedy), 

and fixed VM placement to a specific host. 

7.4.   PRIVATE IAAS CLOUD HOSTING 

7.4.1. Busy-Metric 

The Busy-Metric ranks resource utilization by calculating total CPU time (cputime), disk 

sector reads (dsr), disk sector writes (dsw), network bytes sent (nbs), and network bytes received 

(nbr) for all VMs and PMs.  Each resource utilization parameter is normalized to 1 by dividing 

by the observed maximums of the physical hardware.  CPU time is double weighted to assign 

more importance to free CPU capacity.   

A VM capacity parameter is included to prevent too many VMs from being allocated to a 

single host.  Busy-Metric scores of the physical host increase linearly for each additional VM 

hosted at a rate described using equation 3.  The rate increases faster for hosts with fewer CPU 

cores.  Incorporating this parameter enables Busy-Metric to favor hosts having the fewest guest 

VMs.  When PMs host fewer guests the degree of hypervisor level context switching required to 

multiplex resources is reduced.  This practice should help reduce virtualization overhead.   

Agents installed on all VMs and PMs are configured to send VM-Scaler resource 

utilization data every 15 seconds.  One second averages using the last minute of data samples 

were used to calculate the Busy-Metric.  Observed values for each parameter are divided by 

approximate one second maximum capacities of the physical hardware determined through 

testing. 
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Each additional VM hosted linearly increases the value of the Busy-Metric by: 
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The Busy-Metric provides an approach to rank available capacity of physical host 

machines.  Our goal has been to develop a general metric to support VM scheduling based on the 

total shared load on PMs.  Many Busy-Metric variations are possible.  Our goal has not been 

to develop the perfect metric, but to investigate implications of VM placement for dynamic 

scaling. 

Algorithm 1 Sequential VM Launch 
  1:if (hotspot and current_time >  
  min_time_to_scale_again) or (recent_failure and  
  current_time > min_time_to_scale_after_failure)  
  then 
  2:      PM � Least-BusyPM{ All_PMs } 
  3:      Launch(VM on PM)  
  4:      while VM is launching do 
  5:          if current_time > max_VM_launch_time then 
  6:               recent_failure � true  
  7:              exit  
  8:          end if 
  9:      end while 
10:      perform_application_specific_config(VM) 
11:end if 
 

 

7.4.2. Least-Busy VM Placement 

Using our Busy-Metric, we implemented a VM scheduler using Eucalyptus which places 

new VMs on the least busy physical hosts (Algorithm 1).  When a VM launch request is received 
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Busy-Metric values are calculated for all physical hosts.  New VMs are launched on hosts having 

the lowest resource utilization rankings. 

 

Algorithm 2 Parallel VM Launch 
  1:Unused_PMs � { All_PMs }  
  2:while All VMs are not placed do 
  3:    PM � Least-BusyPM{ Unused_PMs } 
  4:    BM_PM � Busy-Metric(PM) 
  6:    if (BM_PREV != null) then 
  7:        /* Schedule NON-First VM */ 
  8:        if ((BM_PM - BM_PREV) > MIN_DIST_NEXTBUSY 
      AND BM_PREV < DOUBLE_SCHEDULE_MAX) then 
  9:            /* Distance too far, schedule PM again */ 
10:            AddToLaunchQueue(PM_PREV, VM) 
11:            /* Forget prev PM - don’t reschedule */ 
12:            BM_PREV � null  
13:        else 
14:            /* Next PM not busy, schedule there */  
15:            AddToLaunchQueue(PM, VM) 
16: Unused_PMs � Unused_PMs – PM 
17: BM_PREV � BM_PM 
18: PM_PREV � PM 
19:        end if 
20:    else 
21:    /* Schedule First VM */ 
22:        AddToLaunchQueue(PM, VM) 
23:        Unused_PMs � Unused_PMs – PM 
24:        BM_PREV � BM_PM 
25:        PM_PREV � PM 
26:    end if 
27:end while 
 

To support launching multiple VMs in parallel we developed a parallel VM launch 

algorithm (Algorithm 2), to spread VM launches accordingly based on PM Busy-Metric scores.  

Two distance thresholds are used to double schedule launches on a single PM or spread them 

across multiple Least-Busy PMs.  Launching more VMs in parallel than the available number of 

PMs is not presently supported.  If the distance between the Least-Busy host and the second 

Least-Busy host exceeds the MIN_DIST_NEXTBUSY threshold then two VMs are launched on 

the Least-Busy host.  No more than two VMs will be launched in parallel on a single PM for a 

given scaling task.  If a PM’s Busy-Metric exceeds the DOUBLE_SCHEDULE_MAX threshold 

then the PM is considered too busy to support launching more than 1 VM and doubling 

scheduling is avoided.  Our parallel launch algorithm respects that launching multiple VMs on a 

single host can produce undesired load spikes, but this is acceptable if the next Least-Busy PM is 
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sufficiently busier than the Least-Busy PM. 

Eucalyptus version 3.x does not natively support launching VMs on a specific host.  VM 

launches are supported using either round-robin (spread-first) or greedy (fill-first) launch.  To 

circumvent this limitation a workaround approach was employed to achieve specific worker VM 

placements based on round-robin placement without modifying Eucalyptus.  The effectiveness of 

our workaround is demonstrated by our evaluation of Least-Busy VM placement for dynamic 

scaling discussed in sections 6 and 7. 

7.5.   PUBLIC IAAS CLOUD HOSTING 

7.5.1. VM Type Implementation Heterogeneity 

Previous research has demonstrated that hardware implementations of public cloud VM 

types change over time [10], [11].  Additionally, several hardware implementations of the same 

VM type may be offered at the same time each with different performance characteristics.  When 

hosting scientific modeling workloads on public clouds we are interested in understanding the 

implications of VM type implementation heterogeneity.   

VM-Scaler provides VM pools, collections of VMs of the same machine image type (e.g. 

AMI).  Pools support prelaunching VMs to address launch latency for dynamic scaling and VM 

reuse when modeling workloads do not exceed the minimum billing cycle time increment.  For 

Amazon EC2, instance time is billed hourly.  It is advantageous to retain VMs for the full billing 

cycle time increment to maximize opportunities for potential reuse.   

To investigate implications of VM type heterogeneity, VM-Scaler provides type 

enforcement capabilities equivalent to the trail-and-better approach for VM pools.  VM pool 

creation supports a “forceCpuType” attribute which when specified forces matching of the 
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backing CPU type for member VMs in a pool.  This CPU type enforcement incurs the expense of 

launching and terminating unmatching instances.  In Amazon EC2, discarded VMs are billed for 

1-hour of usage.  We harness CPU type enforcement feature to investigate type heterogeneity 

implications for model service performance and describe our results in section 8. 

7.5.2. Identifying Resource Contention with cpuSteal 

Resource contention in a public cloud can lead to performance variability and 

degradation in a shared hosting environment [16], [18].  CpuSteal registers processor ticks when 

a VM’s CPU core is ready to execute but the physical host CPU core is busy performing other 

work.  The core may be unavailable because the hypervisor (e.g. Xen dom0) is executing native 

instructions or user mode instructions for other VMs.  High cpuSteal time can be a symptom of 

over provisioning of the physical servers hosting VMs.   

On the Amazon EC2 public cloud which uses a variant of the Xen hypervisor, we observe 

a number of factors which produce CpuSteal time.  These include: 

1. Processors are shared by too many VMs, and those VMs are busy. 

2. The hypervisor kernel (Xen dom0) is occupying the CPU. 

3. The VM’s CPU time share allocation is less than 100% for one or more cores, though 

100% is needed to execute a CPU intensive workload.  

In the case of 3, we observe high cpuSteal time when executing workloads on Amazon EC2 

VMs which under allocate CPU cores.  A specific example is the m1.small and m3.medium 

VMs.  In spring of 2014, we observed that the m3.medium VM type is allocated approximately 

60% of a single core of the 10-core Xeon E5-2670 v2 CPU at 2.5 GHz.  Because of this 

underallocation, all workloads executing at 100% on m3.medium VMs exhibit high cpuSteal 
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because they must burst and use unallocated CPU time to reach 100%.  These burst cycles are 

granted only if they are available, otherwise cpuSteal ticks are registered.  CpuSteal is the only 

CPU metric specifically related to virtualization. 

7.5.3. CpuSteal Noisy Neighbor Detection Method 

We investigate the utility of cpuSteal as a means to detect resource contention from “noisy 

neighbors”.  Noisy neighbors are busy co-located VMs, which compete for similar resources that 

can adversely impact performance.  We propose the following “CpuSteal Noisy Neighbor 

Detection method” (NN-Detect): 

Step 1. Execute processor intensive workload across pool of worker VMs. 

Step 2. Capture total cpuSteal for each worker VM for the workload. 

Step 3. Calculate VM average cpuSteal for the workload (cpuStealavg). 

To determine if a worker VM has noisy neighbors cpuStealVM should be at least 2 x 

cpuStealavg.  Additionally a workload specific minimum cpuSteal threshold is required.  This 

threshold should be determined by benchmarking representative workloads and observing 

cpuSteal.  The minimum number of cpuSteal ticks to identify worker VMs with noisy neighbors 

will depend on characteristics of the computational workload (how CPU bound is it?) and its 

duration.  We describe the evaluation of NN-Detect using the WEPS model as the computational 

workload in section 9. 

7.6.   PERFORMANCE IMPLICATIONS OF VM PLACEMENT FOR DYNAMIC 

SCALING 

7.6.1. Experimental Setup 

To evaluate dynamic scaling for scientific model services in support of RQ-1 and RQ-2 
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presented in section 1, we harness two environmental model services implemented within the 

Cloud Services Innovation Platform (CSIP) [70], [86].  Both model services represent diverse 

applications with varying computational requirements.  CSIP has been developed by Colorado 

State University with the US Department of Agriculture (USDA) to provide environmental 

modeling web services.  CSIP provides a common Java-based framework which supports 

REST/JSON based service development.  CSIP services are deployed using the Apache Tomcat 

web container [45].   

We investigate dynamic scaling for two environmental model web services: the Revised 

Universal Soil Loss Equation – Version 2 (RUSLE2) [41], and the Wind Erosion Prediction 

System (WEPS) [71].  RUSLE2 and WEPS are the US Department of Agriculture–Natural 

Resource Conservation Service standard models for soil erosion used by over 3,000 county level 

field offices across the United States.  RUSLE2 and WEPS are used within CSIP to provide soil 

erosion modeling services to end users.  RUSLE2 was developed primarily to guide natural 

resources conservation planning, inventory erosion rates, and estimate sediment delivery.  The 

Wind Erosion Prediction System (WEPS) is a daily simulation model which outputs average soil 

loss and deposition values for selected areas and times to predict soil erosion due to wind.  

RUSLE2 was originally developed as a Windows-based Microsoft Visual C++ desktop 

application.  WEPS was originally developed as a desktop Windows application using Fortran95 

and Java.  RUSLE2 and WEPS are deployed as REST/JSON based web services hosted using 

Tomcat.  RUSLE2 and WEPS are good candidates to prototype scientific model services scaling. 

Their legacy model implementations are analogous to many legacy scientific models which 

might utilize IaaS cloud computing as a means to provide scalable model services.  Both models 

consist of a multi-tier architecture including a web application server, geospatial relational 
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database, file server, and logging server.   

Table 7.1.  Rusle2/WEPS Application Components 

Component RUSLE2 WEPS 

M Model Apache Tomcat 6.0.20, 
Wine 1.0.1, RUSLE2, 
OMS3 [43] [44] 

Apache Tomcat 6.0.20, 
WEPS 

D Database Postgresql-8.4, PostGIS 
1.4, soils data (1.7 
million shapes), 
management data (98k 
shapes), climate data 
(31k shapes),  
4.6 GB total for 
Tennessee 

Postgresql-8.4, PostGIS 
1.4, soils data (4.3 
million shapes), 
climate/wind data (850 
shapes), 17GB total, 
western US data. 

F File server nginx 0.7.62 file server, 
57k XML files (305MB), 
parameterizes RUSLE2 
model runs.  

nginx 0.7.62 file server, 
291k files (1.4 GB), 
parameterizes WEPS 
model runs.   

L Logger Codebeamer 5.5, 
Apache Tomcat (32-bit), 
Ia-32libs  

Redis 2.2.12  
distributed cache server 

RUSLE2 and WEPS model service components are described in Table 7.1.  To load 

balance model service requests we used HAProxy, a high performance load balancer [51], to 

redirect modeling requests across the active pool of M worker VMs.  HAProxy, installed on a 

PM, provides public service endpoints. 

7.6.2. Hardware Configuration 

We conducted scaling tests using a Eucalyptus 3.1.2 IaaS private cloud deployed across 

nine SUN X6270 blade servers interconnected by a Giga-bit VLAN.  Each blade server had dual 

Intel Xeon X5560-quad core 2.8 GHz CPUs, 24GB ram, and dual 15000rpm HDDs.  The host 

operating system was Ubuntu 12.04 Linux (3.2.0-29) 64-bit server.  The Xen hypervisor version 

4.1.2 provided VMs in paravirtual mode.  VM guests ran Ubuntu Linux 9.10 (2.6.31) 64-bit 

server.  Six blade servers were used as Eucalyptus node-controllers to host VMs.  One blade 

server hosted the Eucalyptus cloud-controller, cluster-controller, walrus server, and storage-

controller services.  Eucalyptus managed mode networking was used to support network 

isolation of VMs using private VLANs.  A separate blade server generated the modeling work 
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load. Another blade server acted as a client for file transfers to create background network 

activity for shared load testing. 

Random test generation was used to generate 10,000 unique RUSLE2 and 1,000 WEPS 

test cases.  RUSLE2 tests used geospatial data from the state of Tennessee.  WEPS tests accessed 

data primarily from Kansas and Colorado where soil erosion due to wind is a large 

environmental concern.  For scaling tests, individual WEPS model runs were terminated after 10 

minutes.  This was necessary because some randomly generated WEPS runs required more than 

30 minutes to execute. 

7.6.3. Test Configurations 

To investigate model service performance implications for RQ-1 and RQ-2 we used a 

fixed simulated shared cluster load.  We generated an artificial load across the six PMs used to 

host VMs.  To investigate RQ-1 and RQ-2, tests were performed using the “medium load” 

shared cluster load described in Table 7.5.  The table shows shared load characteristics and initial 

corresponding Busy-Metric scores for the physical hosts.  Our goal was to simulate potential 

public cloud load conditions where users compete for server resources.  Custom scripts generated 

load activity.  CPU load was created for a specified number of cores by performing continuous 

math computations.  Disk load was created by continuously reading, writing, or copying a text 

file.  To force the system to continuously reread the file, cache clearing was performed.  To 

create network load a VM image file was constantly transferred to/from a non-cloud blade 

server.  Sftp’s “-l” flag was used to control the transfer bandwidth.   

Table 7.2 describes VM size, modeling request rates, and request rate increments for RQ-

1 and RQ-2 scaling tests.  An exponential distribution based random sleep function spaced 
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individual model requests to simulate a Poisson distribution.  This supported random request 

arrival while achieving the desired constant request rate.   

Table 7.2.  VM Scaling Tests for RQ-1 and RQ-2 

VM size 
Mem(MB)/ 

Disk(GB) 

RUSLE2 

Req Rate 

WEPS 

Req Rate 

Increment 

RUSLE2 

Increment 

WEPS 

2-core 1024 / 3 .5-16/sec  .1-1/sec .25/15s .025/15s 

4-core 2048 / 3 1-16/sec .1-1/sec .5/30s .05/30s 

8-core 4096 / 3 2-16/sec .1-1/sec 1/min .1/min 

Scaling thresholds for hotspot detection were increased linearly for 2-core, 4-core, and 8-

core VM tests.  The intent was to use scaling thresholds relative to the number of VM CPU 

cores.  Figure 7.1 provides a quartile plot of RUSLE2 vs. WEPS execution times.  WEPS model 

runs consume nearly 100% of a CPU core for their duration averaging from 80-100 seconds 

compared to a few seconds for RUSLE2 runs.  RUSLE2 features very short model execution 

time, more I/O, and context switching.  Both workloads exhibit different resource use behavior 

providing for two fairly different test systems. 

For RUSLE2, hotspot detection was performed by monitoring resource utilization of the 

initial worker VM as individual model execution times were short (2s average) and homogenous.  

Load was evenly balanced across worker VMs using HAproxy round-robin load balancing [51].  

This approach was insufficient for WEPS, as model runs had twice the variance and were much 

longer in duration.  For WEPS hotspot detection we calculated average CPU time, CPU idle 

time, and number of context switches for the entire pool of worker VMs and launched additional 

worker VMs when averages exceeded the scaling thresholds. 
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Figure 7.1.  RUSLE2 vs. WEPS Model Execution Time Quartile Box Plot 

7.6.4. Experimental Results 

Sixty RUSLE2 and sixty WEPS scaling test sets were completed to support investigation 

of RQ-1 and RQ-2 from section 1.  Scaling tests were conducted twice, once using Least-Busy 

VM placement and again using round-robin VM placement. Individual test sets included ~6500 

RUSLE2 model runs and 300 WEPS model runs.  A total of over 800,000 model runs were 

completed.  For 2-core VM WEPS testing, sequential VM launches were insufficient to achieve 

good results.  To add resources more rapidly three 2-core VMs were launched in parallel.   

 

Figure 7.2. Least-Busy VM Placement (RQ-1 & RQ-2): 

Percentage Normalized Performance Improvement 
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Table 7.3 shows statistical significance from t-tests calculated to determine if 

performance means for scaling performance with Least-Busy were different from round-robin.  

Normalized performance improvements of Least-Busy VM placement relative to round-robin are 

shown in figure 7.2.  RUSLE2 model service performance improved by 16% on average using 

Least-Busy VM placement, while WEPS performance improved 12%.  Least-Busy demonstrated 

its largest differential performance for RUSLE2 with 2-core VM tests (29.3% faster, 3.2 hrs. 

cputime savings/scaling test), and WEPS for 8-core tests (19.1% faster, 1.6 hrs. cputime 

savings/scaling test).  Least-Busy VM placement enabled better model performance for all tests.  

Table 7.3.  Scaling Test Results for RQ-1 and RQ-2 

VM size 
RUSLE2 WEPS 

2-core 

VMs 

lb<rr 

p=.014 

df=18.2 

lb<rr 

p=.162 

n.s. 1 

4-core 

VMs 

lb<rr 

p= 0.065 

df = 22.7 

lb<rr 

p= .035 

df = 24.65 

8-core 

VMs 

lb<rr 

p=.017 

df=24.5 

lb<rr 

p=.00003 

df=33.796 

 

Figure 7.3.  Least-Busy VM Placement (RQ-1 & RQ-2): 

Percentage Normalized Cost Savings (# VMs) 

Figure 7.3 shows the normalized resource cost savings in percentage of VM allocations.  
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Least-Busy VM placement supported execution of the modeling workload with fewer resources.  

RUSLE2 required on average 3.2% fewer VMs and WEPS 2.2%.  The most economical 

deployment used 2-core VMs for RUSLE2 (28.92 avg. cores) and 4-core VMs for WEPS (30.56 

avg. cores).  Least-Busy VM placement enabled hosting modeling workloads with fewer 

VMs and total CPU cores.  Less physical server capacity was required for hosting while 

faster modeling performance was achieved. 

7.7.   IMPLICATIONS OF VM SIZE AND SHARED CLUSTER LOAD FOR 

DYNAMIC SCALING 

7.7.1. Experimental Setup 

 

Figure 7.4.  CPU Utilization WEPS and RUSLE2 Model Services 

Table 7.4.  Scaling Tests for RQ-3 and RQ-4 

VM size 
no-load medium-load high-load 

2-core VMs 20 scale tests 20 scale tests -- 

4-core VMs 20 scale tests 20 scale tests 20 scale tests 

8-core VMs 20 scale tests 20 scale tests 20 scale tests 

To investigate RQ-3 and RQ-4 from section 1, dynamic scaling tests were conducted 

using the RUSLE2 and WEPS model services described in section 6.1.  CPU utilization for 

WEPS and RUSLE2 model workloads is depicted in figure 7.4.  WEPS model runs are largely 
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CPU bound occupying approximately 84% of the CPU during execution, while RUSLE2 runs 

only occupy approximately 38%.  To investigate implications of VM placement relative to VM 

size (RQ-3) all scaling tests were repeated using 2-core, 4-core, and 8-core VMs under three 

different shared cluster load scenarios.  Performance implications of shared cluster load (RQ-4) 

for dynamic scaling are investigated using the three shared load scenarios described in table 7.5.  

These shared load scenarios are referred to as no-load (nl), medium-load (ml), and high-load (hl).  

Initial cluster Busy-Metric values under test loads are provided in the table. 

Table 7.5.  Shared Cluster Load 

Cloud Node R2 WEPS CPU Disk Network Busy-Metric 

h
ig

h
-l

o
a

d
 (

h
l)
 PM-1  M D 6 cores@25%   .241 

PM-2  D L L 12 cores@25%   .475 

PM-3  F    ↑ @100% .424 

PM-4  M F 3 cores@25%  ↓ @100% .249 

PM-5    R/W@100%  .264 

PM-6   6 cores@25% W@ 100%  .571 

m
e
d

-l
o

a
d

 (
m

l)
 PM-1  M D 2 cores@25%   .083 

PM-2  D L L 4 cores@25%  ↑ @20% .285 

PM-3  F  6 cores@25%   .240 

PM-4  M F 5 cores@25%  ↓ @20% .240 

PM-5   2 cores@25%   .082 

PM-6   4 cores@25%   .156 

n
o

-l
o

a
d

 (
n

l)
 PM-1  M D    .038 

PM-2  D L L    .074 

PM-3  F     .038 

PM-4  M F    .003 

PM-5      .003 

PM-6      .003 

7.7.2. Test configurations 

Table 7.4 describes tests completed to investigate RQ-3 and RQ-4.  All tests were 

repeated using Least-Busy VM placement and round-robin VM placement.  160 test sets of 6,500 

RUSLE2 model runs and 160 test sets of 300 WEPS model runs were performed with the 

increasing request rates described previously in table 7.2.  A total of over 2,000,000 individual 

model service requests were performed.  2-core VM high-load tests were not performed because 

under medium-load our cluster struggled to cope. 
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7.7.3. Experimental Results 

Table 7.6 shows statistical significance from t-tests comparing model service 

performance of Least-Busy vs. round-robin VM placement for RUSLE2.  Table 7.7 shows t-test 

results for the WEPS model.  Normalized performance improvements of Least-Busy VM 

placement compared with round-robin are shown in figure 7.5.  Using normalized performance 

enables the graph to depict performance for both RUSLE2 and WEPS.   

Table 7.6.  RUSLE2 Scaling Performance (RQ-3) and (RQ-4) 

VM size 
no-load medium-load high-load 

2-core 

VMs 

lb>rr 

p=0.032 

df=26.397 

lb<rr 

p=.014 

df=18.2 

-- 

4-core 

VMs 
n.s. 

lb<rr 

p= 0.065 

df = 22.7 

lb<rr 

p=.006 

df=8.1 

8-core 

VMs 

lb<rr 

p=.016 

df=32.9 

lb<rr 

p=.017 

df=24.5 

lb<rr  

p=.011 

df=28.8 

Table 7.7.  WEPS Scaling Performance (RQ-3) and (RQ-4) 

VM size 
no-load medium-load high-load 

2-core 

VMs 

 

n.s.1 

 

 

n.s. 1 

 

-- 

4-core 

VMs 

lb<rr 

p=.006 

df=15.087 

lb<rr 

p= .035 

df = 24.65 

n.s. 

8-core 

VMs 
n.s. 

lb<rr 

p=.00003 

df=33.796 

n.s. 
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Figure 7.5.  Least-Busy VM Placement (RQ-3 & RQ-4): 

Percentage Normalized Performance Improvement. 

Averaging across all tests, RUSLE2 model service response time improved 13% using 

Least-Busy VM placement.  The average WEPS performance improvement was 5.3%.  Least-

Busy exhibited its fastest differential performance gain for RUSLE2 on 4-core high-load tests 

(41.5% faster, 4.9 hrs. cputime savings), and WEPS for 8-core medium-load tests (19.1% faster, 

1.6 hrs. cputime savings).  Least-Busy VM placement enabled better model service performance 

for all but 2-core no-load tests.  With no shared cluster load launching VMs using round-robin 

placement is initially very fast.  For 2-core scaling tests, launching many more VMs combined 

with overhead from our Eucalyptus VM placement work around led to slower Least-Busy 

performance. 
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Figure 7.6.  . Least-Busy VM Placement (RQ-3 & RQ-4):     

Percentage Normalized Cost Savings (# VMs) 

Figure 7.6 shows the normalized resource cost savings in percentage of VM allocations.  

Least-Busy VM placement supported execution of the modeling workload with fewer resources.  

RUSLE2 required on average 3.4% fewer VMs and WEPS 1.6%.  The most economical 

deployment used 2-core VMs for RUSLE2 and 4-core VMs for WEPS.  Least-Busy VM 

placement led to lower cost deployments in most cases.  Hosting our modeling workload using 

Least-Busy VM placement required fewer total VMs on average than round-robin when 

comparing normalized VM launch counts across all tests for RUSLE2 (p=.01846 , df=320) and 

WEPS (p=.03786, df=250). 

Loosening the static RU scaling thresholds may be necessary for better WEPS 

performance.  For 4-core no-load WEPS tests we doubled the min_cpu_idle  threshold from 140 to 

280 and observed WEPS performance improvements of 14.4% for Least-Busy and 28.1% for 

round-robin.  Least-Busy provided 15.9% better performance using the 140 min_cpu_idle  scaling 

threshold vs. round-robin.  Both approaches provided near identical performance at the 280 

min_cpu_idle  scaling threshold.  Overall stress from hosting the WEPS workload was higher than 

RUSLE2 resulting in 15% slower average VM launch times reducing responsiveness of dynamic 
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scaling.  This illustrates a tradeoff between workload intensity and scaling responsiveness 

in small cluster settings. 

For both models, smaller VMs were able to execute the workload using fewer total CPU 

cores, though performance suffered somewhat.  RUSLE2 2-core VMs serviced the workload 

while occupying 37% fewer CPU cores than 8-core VMs, and WEPS 4-core VMs serviced the 

workload with 17% fewer CPU cores freeing these resources for other tasks. 

 

Figure 7.7.  VM Launch Times (seconds) (RQ-3 & RQ-4): 

Least-Busy vs. Round-Robin VM Placement 

7.7.4. VM Launch Performance 

Average VM launch times are shown in figure 7.7.  Our results show that under no-load, 

VM launch times appear similar for Least-Busy and round-robin.  2-core WEPS tests launched 

three VMs in parallel.  This produced longer VM launch times in cases where the Least-Busy 

PM launched multiple VMs simultaneously. For 4-core and 8-core high-load tests Least-Busy 

exhibited higher average VM launch times than round-robin but supported faster average model 

execution times.  Least-Busy prioritizes CPU utilization 2 to 1 vs. disk/network I/O.  Least-Busy 

selected hosts with more CPU capacity but simulated I/O on these hosts slowed VM launches.  

Once launches were complete, these PMs with less CPU contention supported faster model 
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execution times. 

7.7.5. Busy-Metric Testing on Amazon EC-2 

We harnessed our Busy-Metric it to perform WEPS model request job scheduling on 

Amazon EC2.  We executed 12 sets of 1,000 WEPS runs each where VM-Scaler provided proxy 

services to schedule incoming modeling requests across a pool of 76 2-core m2.xlarge worker 

VMs.  This provided an application agnostic approach to job scheduling similar to HAProxy load 

balancing [51].  For evaluation we compared our Least-Busy job scheduling performance with 

HAProxy least connection load balancing using the exact same configuration.  With least 

connection load balancing HAProxy monitors the number of active sessions and distributes new 

sessions evenly.  We observed that Least-Busy job scheduling reduced WEPS average model 

execution time 1.6% vs. HAProxy least connection.  Statistical significance of this performance 

improvement is confirmed by t-test (df=.049, df=22.99). 

7.7.6. Analysis 

Supporting dynamic scaling for our modeling service workloads using VMs with fewer 

cores proved challenging as many more VMs had to be rapidly launched on our small cluster 

stressing system disk and network resources.  For WEPS 2-core tests launching VMs in parallel 

increased overhead and degraded performance illustrating tradeoffs between cluster size, launch 

overhead, and application performance. For 2-core medium-load tests, nearly continuous 

sequential VM launches were required for RUSLE2 to cope with demand. WEPS model 

execution times nearly doubled with 20% of runs timing out after 10 minutes. Parallel VM 

launches helped our WEPS 2-core VM configuration achieve performance similar to 4-core 

configurations. 
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Our results demonstrate that VM placement location was most important when: (1) 

scaling under stress either from launching many VMs, or (2) when coping with high cluster load.  

We observed VM launch latency increase with shared cluster load making it more difficult to 

provide resource elasticity on demand. 

7.8.   PERFORMANCE IMPLICATIONS OF VM-TYPE HETEROGENEITY 

7.8.1. Experimental Setup 

To investigate performance implications of VM-type heterogeneity for model service 

performance (RQ-5), we launched 50 VMs of each type to test for the presence of type 

implementation heterogeneity.  When heterogeneity was detected, we launched 50 more VMs for 

a total of 100.  In [10], VM type heterogeneity is described for m1.small, m1.large, and 

m1.xlarge across all Amazon EC2 east subregions.  We extended previous work by testing type 

heterogeneity for 1st generation VM types (m1.medium, m1.large, m1.xlarge, c1.medium, 

c1.xlarge), 2nd generation types (m2.xlarge, m2.2xlarge, and m2.4xlarge) and 3rd generation 

types (c3.large, c3.xlarge c3.2xlarge, m3.large).  Tests were performed in May and July of 2014 

using two Amazon regions: us-east-1c and us-east-1d.  Type heterogeneity was determined by 

inspecting Linux’s /proc/cpuinfo.  We then investigated model service performance implications 

for the two most heterogeneous types detected.  WEPS and RUSLE2 model service per-

formance tests were conducted using pools of 5 VMs for each type variant.   We repeated 10 

trials of 100 WEPS runs and 660 RUSLE2 runs using these type-fixed pools to determine 

average model service execution time.  

We did not investigate VM type heterogeneity for very small VMs which do not receive 

100% of a full CPU core allocation such as the bursting VMs (e.g. t1.small) and 1-core VMs 

(e.g. m1.small, m3.medium).  These VM types provide insufficient throughput for good model 
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service performance. 

7.8.2. Experimental Results 

VM-type heterogeneity observations made on Amazon EC2 are reported in table 7.8.  

VM types with no heterogeneity are not shown in the table.  This does not imply that type 

heterogeneity is not possible for these types now or in the future: it simply means for our tests, 

none was detected.  Our tests revealed implementation type heterogeneity for 1st and 2nd 

generation VMs.  We are not expressly interested in quantifying exact heterogeneity amounts as 

these will change.  As CPUs continue to evolve even 3rd generation EC2 VMs will likely be 

implemented using more core dense and power thrifty CPUs in the future. 

Table 7.8.  Amazon VM Type Heterogeneity 

VM type 
Region Backing CPU Backing CPU 

m1.medium us-east-1c 
Intel E5-2650 v0 

8c,95w,96% 

Intel Xeon E5645 

6c,80w,4% 

m2.xlarge us-east-1c 
Intel Xeon X5550 

4c, 95w, 48% 

Intel Xeon E5-2665 v0 

8c, 115w, 42% 

m1.large us-east-1d 
Intel Xeon E5-2650 v0 

8c,95w,74% 

Intel Xeon E5-2651 v2 

12c,105w,19% 

m1.large us-east-1d 
Intel Xeon E5645 

6c,80w,7% 
-- 

m2.xlarge us-east-1d 
Intel Xeon E5-2665 v0 

8c, 115w,78% 

Intel Xeon X5550 

4c, 95w, 22% 

Compared to Ou et al.’s results [10], we observed that many CPU types reported in 2011 

and 2012 have been replaced with lower power, core-dense CPUs, marking a trend towards their 

adoption.  For example, the m1.xlarge VM is now implemented using 12-core Intel Xeon E5-

2651s.  Using high core density CPUs should help reduce resource contention while enabling 

server real estate to expand.  Previous m1.large VMs implemented using AMD Opteron’s 

consumed as much as 42.5 watts per core, where today m1.large Intel Xeon E5-2651 v2 

implementations require only 8.75 watts per core.  This amounts to just ~20% the previous 

power requirement.   
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We observed substantial type heterogeneity for the m1.large and m2.xlarge VMs 

implemented in two EC2 subregions.  Model service performance implications are shown in 

figure 7.8.  For m1.large VMs, model performance was slower using the Intel Xeon E5-2650-v0 

backed implementation.  Average model service response time for RUSLE2 was 108%, and 

109% for WEPS versus the Intel Xeon E5645 backed m1.large.  For Intel Xeon E5-2665-v0 

backed m2.xlarge VMs, model service performance was 114% for RUSLE2 and 104% for 

WEPS respectively versus the Intel Xeon X5550.  Ironically, newer CPUs provided lower 

performance than their legacy counterparts in both cases. 

 

Figure 7.8.  VM Type Heterogeneity Performance Variation 

7.9.   DETECTING RESOURCE CONTENTION WITH CPUSTEAL 

7.9.1. Experimental Setup 

To investigate the utility of cpuSteal for detecting resource contention from VM multi-

tenancy (RQ-6) we proposed our “CpuSteal Noisy Neighbor Detection Method” (NN-Detect) in 

section 5.3.  To evaluate NN-Detect we used the WEPS model as our test workload since it is 

more CPU bound than RUSLE2 (figure 7.4). 

For step-1, we first tested for the presence of cpuSteal by launching 50 VMs for each 

VM type listed in table 7.9.  Exceptions included: 8-core c1.xlarge (25 VMs), 1-core m1.medium 
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and 1-core m3.medium (60 VMs).  We repeated 4 test sets of approximately 1,000 WEPS runs.  

Model runs were distributed evenly using HAProxy round-robin load balancing across all 

available CPU cores of the worker VM pool.  Each CPU core received approximately 20 model 

runs to execute. 

Table 7.9.  Amazon EC2 CpuSteal Analysis 

VM type Backing  

CPU 

Average R2 

linear reg. 

Average 

cpuSteal 

per core 

% with 

Noisy 

 Neighbors 

us-east-1c 

c3.large-2c E5-2680v2/10c .1753 2.35 0% 

m3.large-2c E5-2670v2/10c - 1.58 0% 

m1.large-2c E5-2650v0/8c .5568 7.62 12% 

m2.xlarge-2c X5550/4c .4490 310.25 18% 

m1.xlarge-4c E5-2651v2/12c .9431 7.25 4% 

m3.medium-1c E5-2670v2/10c .0646 17683.21 n/a 

c1.xlarge-8c E5-2651v2/12c .3658 1.86 0% 

us-east-1d 

m1.medium-1c E5-2650v0/8c .4545 6.2 10% 

m2.xlarge-2c E5-2665v0/8c .0911 3.14 0% 

The question we sought to answer was, is there a pattern to cpuSteal behavior across 

worker VMs over time?  We collected individual VM cpuSteal ticks for the 4 test sets (step-2).  

We then took VM cpuSteal values from each test set and used linear regression to test if one set’s 

outcome could predict cpuSteal for future test sets.  The averaged R2 values from these 

comparisons appear in table 7.9.  R2 is a measure of prediction quality that describes the 

percentage of variance explained by the regression.   The important discovery here is that a fair 

degree of the variance is explained for some VM types. We observe that previous VM cpuSteal 

behavior is useful at predicting future cpuSteal in the public cloud.  This relationship was 

observed for 4 VM types (m1.large, m2.xlarge, m1.xlarge, m1.medium) at (R2 > .44), and as 

high as R2=.94 for m1.xlarge.   

Some important observations here include: (1) a complete set of tests for one VM type 

required up to 5 hours to complete.  Throughout this time, trends in cpuSteal remained consistent 
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to produce our statistically significant model service performance differences described in table 

7.9.  And, (2) in most cases when cpuSteal could not be predicted over time, it was because it 

was nonexistent:  essentially in these cases cpuSteal values were too low to be discerned from 

low-level noise! 

We next calculated average cpuSteal for the pool of VMs and used the average to 

determine a threshold level at which to classify a worker VM as having noisy neighbors (step-3).  

For WEPS, in addition to needing at least 2x average cpuSteal, worker VMs required a minimum 

threshold of approximately 12 cpuSteal ticks per CPU core.  Below this threshold level the 

amount of cpuSteal becomes too low to distinguish noisy neighbors.  We sorted cpuSteal values 

for all worker VMs and checked for VMs exceeding the thresholds.  When no worker VMs 

exceeded these thresholds for a given type (e.g. c3.large), cpuSteal was not useful at detecting 

potential performance degradation.  In these cases there simply was not enough multi-tenancy 

present.  Table 7.9 shows the “% Noisy Neighbors” identified with by NN-Detect.  Cases without 

multi-tenancy primarily occurred on VMs hosted by new highly dense 10 and 12-core CPUs.  

(e.g. c3.large, m3.large, m3.medium, c1.xlarge).   This observation is intuitive.  Modern 10 and 

12 core Intel Xeon CPUs all feature hyperthreading and new servers often have dual or quad 

CPUs per server.  By increasing the number of available hyperthreads in a dual-CPU server from 

16 (X5550) to 48 (E5-2651) the incidence of multi-tenancy should be cut to ¼ the previous 

amount.  Such advances in hardware help mitigate public cloud resource contention until future 

usage increases to consume this additional capacity. 

7.9.2. Experimental Results 

We compared the performance of high cpuSteal worker VMs with low cpuSteal VMs 

using small 5-VM pools.  We executed 10 sets of 100 WEPS runs, and 10 sets of 660 RUSLE2 
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runs on both a high, and low cpuSteal VM pool.  Normalized performance degradation from 

worker pools with high cpuSteal is shown in table 7.10.  Performance of the low cpuSteal VM 

pool is normalized to 100%.  Across 4 VM-types we observe model service performance 

degradation up to 18% for WEPS and 25% for RUSLE2 using m1.large VMs.  Statistically 

significant (p > .05) performance differences are observed for m1.large, m2.xlarge, and 

m1.medium VMs.  The average performance degradation for both RUSLE2 and WEPS was 9%. 

Table 7.10. EC2 Noisy Neighbor Model Service Performance Degradation 

VM type 
Region WEPS RUSLE2 

m1.large 

E5-2650v0/8c 
us-east-1c 

117.68% 

df=9.866 

p=6.847·10-8 

125.42% 

df=9.003 

p=.016 

m2.xlarge 

X5550/4c 
us-east-1c 

107.3% 

df=19.159 

p=.05232 

102.76% 

df=25.34 

p=1.73·10-11 

c1.xlarge 

E5-2651v2/12c 
us-east-1c 

100.73% 

df=9.54 

p=.1456 

102.91% 

n.s. 

m1.medium 

E5-2650v0/8c 
us-east-1d 

111.6% 

df=13.459 

p=6.25·10-8 

104.32% 

df=9.196 

p=1.173·10-5 

7.10.   CONCLUSIONS 

Optimizing performance of scientific model services hosted on private and public clouds 

requires awareness of modeling resource requirements and careful management of cloud-based 

virtual infrastructure.   

To improve model services hosting in private clouds we developed the Least-Busy VM 

placement scheduler.  Least-Busy uses a flexible Busy-Metric to determine CPU, disk, and 

network I/O utilization of all physical hosts and virtual guests in a private cloud.  The Least-

Busy VM scheduler harnesses this metric to make load-aware VM placements.  We demonstrate 

performance improvements up to 41% (RUSLE2) and 19% (WEPS) using our load-aware Least-

Busy VM placement scheduler to host dynamically increasing model service workloads.  (RQ-
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1).  Using our Least-Busy VM placement scheduler enables hosting these workloads with up to 

17% fewer VMs for RUSLE2 and 9% fewer for WEPS (RQ-2).   

Hosting dynamically increasing workloads using large VMs (e.g. 8 CPU cores) is not 

resource efficient (RQ-3).  Our results demonstrate hosting RUSLE2 workloads using 2-core 

VMs required 37% fewer CPU cores, and hosting WEPS workloads with 4-core VMs required 

33% fewer CPU cores than with 8-core VMs.  Careful VM placement is needed when hosting 

workloads with a high shared cluster load (RQ-4).  In these settings Least-Busy VM placement 

provided performance gains up to 41% for RUSLE2 and ~3% for WEPS while utilizing fewer 

CPU cores to host modeling workloads. 

For public cloud hosting of model services, the trial-and-better approach can improve 

model service performance and lower hosting costs.  Using Amazon EC2 we achieve up to 14% 

WEPS model performance improvement (m2.xlarge) and 9% performance improvement 

(m1.large) (RQ-5) by harnessing VM-type heterogeneity.   

To address public cloud resource contention for model service hosting we provide the 

CpuSteal Noisy Neighbor Detection Method (NN-Detect).  Using NN-Detect we demonstrate 

how trends in VM cpuSteal measurements can be harnessed to identify worker VMs with high 

resource contention from noisy neighbors.  Using NN-Detect we identify worker VMs with 

model service performance degradation up to 18% for WEPS and 25% for RUSLE2 (RQ-6). 

Abstraction of physical hardware using IaaS clouds leads to the simplistic view that 

resources are homogenous and scaling can infinitely provide linear increases in performance.  

Our results demonstrate how careful VM placement in private clouds, and trail and better 

evaluation of VMs in public clouds, mitigate resource contention and address hardware 
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heterogeneity to deliver performance improvements.  Our results contribute key infrastructure 

management techniques which help improve scientific model service performance while 

reducing hosting costs in both public and private clouds. 
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CHAPTER 8 

 

HARNESSING RESOURCE UTILIZATION MODELS 

 

FOR COST EFFECTIVE INFRASTRUCTURE ALTERNATIVES 

 
 
 

8.1.   INTRODUCTION 

Deploying service oriented applications (SOAs) to Infrastructure-as-a-Service (IaaS) 

clouds requires selection of both the type and quantity of VMs adequate for workload hosting.  

Public IaaS clouds offer a wide array of VM appliance types featuring different hardware 

configurations.  These VM appliance types provide fixed allocations of CPU cores, system 

memory, hard disk capacity and type (spindle vs. solid state), and network throughput allocation.  

By focusing on providing a limited number of VM types, cloud providers can leverage 

economies of scale to improve performance and availability of VM types in hardware 

procurement and management.  Given an ever increasing number of VM types offered by public 

cloud vendors, it is becoming increasingly difficult to make informed choices for SOA 

deployment.  For example, at the time of this writing Amazon EC2 and HP Helion offer 34 and 

11 predefined VM types respectively, each with different CPU, memory, disk, and network 

bandwidth allocations available for different costs.   

Quantifying the performance expectations of cloud resources is difficult.  Amazon EC2 

and HP Helion’s clouds use qualitative “compute units” to describe relative processing 

capabilities of VMs.  Amazon EC2 describes VM performance using elastic compute units 

(ECUs), where one ECU is stated to provide the equivalent CPU capacity of a 1.0-1.2 GHz 2007 

AMD Opteron or Intel Xeon processor.  An HP Cloud Compute Unit (CCU) is advertised to be 

roughly equivalent to the minimum power of 2/13th of one logical core (a hardware hyper-
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thread) of an Intel 2.6 GHz 2012 Xeon CPU.  Recently, Amazon has stopped directly marketing 

ECUs for its 3rd generation VM-types, though ECUs are still listed in the management console 

interface [8].  Additionally, Amazon employs approximate categories of expected network 

throughput. They include: very low, low (250 Mbps), moderate (500 Mbps), high (1000 Mbps), 

and 10 Gigabit.   

Not only do cloud vendors offer a diverse array of VM-types, investigations have shown 

that VM types are often implemented using heterogeneous hardware resulting in performance 

variance [10], [11].  Ou et al. identified no less than five hardware implementations of the 

m1.large Amazon VM-type in 2011, with performance variance up to 28% [10].  Ou also 

observed the use of different CPU time sharing allotments to implement the m1.large VM type.  

In some cases, Amazon EC2 multi-core VMs were found to not receive 100% allotments of 

every core.  Using CPU benchmarking techniques we confirmed this phenomenon by observing 

variant CPU core allocations of the 4-core m1.xlarge backed by the Intel Xeon E5-2650 v0 @ 

2.0 GHz.   Maximum observed CPU utilization could not be made to exceed 100%, 100%, 95%, 

and 75% CPU for each respective core.   

Beyond VM type heterogeneity challenges, previous research has demonstrated how 

resource contention from multi-tenancy on VM hosts results in SOA performance variance and 

degradation [32], [40], [64], [80].  Provisioning variation, the uncertainty of the physical location 

of VMs across physical hosts, also has been shown to contribute to application performance 

variance and degradation [13], [16].  

In summary, determining the best VM type for SOA hosting is complicated by: (1) a 

plethora of vendor provided VM-types, (2) vague qualitative descriptions of VM capabilities, (3) 
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heterogeneous vendor hardware and hypervisor configurations, and (4) performance variance 

from resource contention and provisioning variation across shared hardware.   Given these 

challenges, a practitioner’s effectiveness at employing only intuition to make architectural 

choices which balance performance and cost tradeoffs for SOA deployment is increasingly in 

doubt. 

8.1.1. Workload Cost Prediction Methodology 

Making informed choices regarding VM deployments for SOA hosting requires both (1) 

characterization of the workloads and (2) benchmarking the performance capabilities of 

available VM types.  In this paper, we present a workload cost prediction methodology that 

harnesses both to support determination of infrastructure requirements for achieving equivalent 

performance for SOA workloads.   

To develop our approach we focus on hosting workloads consisting of a large number of 

individual service requests.  We focus on achieving equivalent total execution time for the entire 

workload, irrespective of individual service request execution times.  This enables the use of low 

cost, low throughput VMs to achieve total workload performance equivalent to using high 

throughput VMs.   

Our approach supports determining the type and quantity of VMs to achieve 

equivalent workload performance.  We consider SOA hosting using VM pools consisting of a 

single VM type.  We do not investigate using pools with mixed VM types.  We believe the utility 

of mixing VM types would be only to achieve some degree of vertical scaling in a public cloud.  

Vertical scaling is useful, for example, when the optimal infrastructure deployment of 4-core 

VMs for a given workload is determined to be 22 cores.  With vertical scaling this workload 
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could be hosted using five 4-core VMs, and one 2-core VM of similar processing speed.   

Identifying multiple potential infrastructure configurations that achieve equivalent performance 

enables practitioners to select the most economical VM type for SOA workload hosting.  

Infrastructure costs can be calculated for each VM type by multiplying fixed or spot market 

prices by the predicted quantity of VMs to derive monetary costs.  These cost predictions can 

then be compared to determine the most cost effective virtual infrastructure to provide the 

required quality of service for SOA workloads.  

Unlike related work in cost optimization for cloud workloads we do not assume that 

application workloads are identical [87]–[89].  We profile representative SOA workloads and 

build predictive resource utilization models.  These models convert resource requirements from a 

selected base VM type to alternate VM types needed to achieve equivalent performance.  We 

investigate:  (1) the efficacy of our methodology at resource profile prediction for different VM 

appliance types, (2) the ability of our methodology to determine the required number of VMs to 

achieve equivalent performance using different VM appliance types, and (3) the efficacy of our 

methodology at determining the most economical cost predictions using different VM types. 

We focus our analysis on service oriented applications where individual service requests 

are executed independently in parallel.  Our evaluation involves analysis of several 

environmental science applications deployed as web services.  We do not investigate SOA 

workloads where individual service requests are largely parallel, though we suspect our approach 

is still applicable as long as representative workloads are used to train our predictive models.  

We first considered cloud application performance modeling using resource utilization 

statistics in [85].  We harnessed this approach to predict performance of various component 
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compositions across VMs in  [13], [33].  These efforts have demonstrated how intuition is 

insufficient to determine the best performing componentVM compositions, and quantified the 

resulting performance variance of ad hoc deployments.  We then built the VM-Scaler application 

to more easily facilitate resource utilization profiling of large scale application deployments in 

both private and public cloud settings [84].  The workload cost prediction methodology 

presented in this paper builds on all of our previous work. 

8.1.2. Research Questions 

This paper investigates the following research questions: 

RQ-1: [equivalent performance] How can equivalent SOA workload performance be achieved 

across different virtual machine types by harnessing resource utilization profiles of 

SOA workloads?   

RQ-2: [profile prediction] How effectively can we predict individual workload profile resource 

utilization variables across VM types?  Specifically, how well can we predict: CPU-

user-time, CPU-kernel-time, CPU-idle-time, and CPU-IO-wait-time? 

RQ-3: [profile scaling] When scaling up the number of VMs, how can we account for changes 

in the SOA workload resource utilization profile variables?  Specifically, what changes 

occur and, how do we accommodate them for: CPU-user-time, CPU-kernel-time, CPU-

idle-time, and CPU-IO-wait-time? 

8.1.3. Research Contributions 

In this paper we present our workload cost prediction methodology to predict hosting 

costs of SOA workloads harnessing resource utilization models.  Our methodology provides 

infrastructure configuration alternatives that provide equivalent performance allowing the 
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most economical infrastructure to be chosen.  Our methodology supports: (1) characterization 

of workload requirements, (2) predicting the required number of VMs of a given type required to 

host workloads, while (3) ensuring equivalent performance is achieved.   

To support development of our workload cost prediction methodology we additionally 

contribute: 

1. A novel resource checkpointing scheme that supports profiling SOA workload resource 

utilization for jobs executing across VM pools. 

2. A research application of Ou et. al’s trial-and-better approach [10] to normalize VM 

pools to ensure every VM has an identical backing CPU to support SOA workload 

profiling in a multitenant public cloud. 

Our resource utilization checkpointing scheme supports profiling application resource 

utilization across VM pools.  This enables us to quantify the composite resource utilization for 

the 19 resource utilization variables described in table 8.1.  We synchronize collection of 

resource utilization data to the nearest second to ensure profiles reflect resource use for only the 

SOA workload being benchmarked.  We know of no similar effort, which collects the breadth of 

resource utilization statistics with one second synchronization for workloads executing across 

large pools of VMs. 

Our research represents a novel application of trial-and-better approach to homogenize 

public cloud infrastructure for supporting experimentation.  We argue that all public cloud 

research should use trial-and-better to reduce heterogeneity of tested resources.  Trial-and-

better provides an important tool to reduce variance of measurement and testing in public clouds. 
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8.1.4. Chapter Organization 

The remainder of this paper is organized as follows: Section 2 provides an overview of 

related research for approaches that support cost optimization for cloud-based infrastructure and 

workload deployment.  Section 3 describes our workload cost prediction methodology to achieve 

equivalent SOA workload performance using different VM appliance types.  This section 

addresses RQ-1 and discusses our use of Linux CPU time accounting principles for our workload 

cost prediction methodology.  In Section 4 we describe our use of environmental science SOAs 

to validate our methodology.  We introduce VM-Scaler and the concept of SOA workload 

resource utilization checkpointing.  Hardware and test configurations are discussed.  Section 5 

presents results of our evaluation and analysis of our workload cost prediction methodology in 

support of RQ-2 and RQ-3.  Section 6 summarizes our findings and contributions, and Section 7 

discusses future work. 

8.2.   BACKGROUND AND RELATED WORK 

Research on cloud economics and application hosting costs can be broken down into 

efforts focused on demand based pricing models (spot markets), and investigations on the cost 

implications of infrastructure management and scaling approaches.  

Amazon introduced spot virtual machine instances as a method to sell unused datacenter 

capacity in late 2009.  Spot instances enable bidding for spare public cloud capacity by granting 

resources to users whose bids exceed current spot prices.  When demand spikes, user VMs 

whose bid price falls below the current market price are terminated instantly, freeing capacity for 

higher bidders. Spot instances are ideal for executing computational workloads for scientific 

modeling where the time of execution is less important than completing the workloads at 

minimum cost.  Spot instances were harnessed to conduct our research. 
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A number of efforts have investigated spot instance pricing and similar demand based 

pricing mechanisms [88]–[91].  These efforts employed modeling to predict or set prices.  Yi et 

al. investigated the use of job checkpointing as a mechanism to reduce job costs executed using 

spot instances [88].  Their approach was limited to supporting jobs with fixed execution times 

and was evaluated by simulation using spot price histories.  Andrzejak et al. developed a model 

which supports users by providing bid suggestions while considering resource availability, 

reliability, performance, and resource costs [89].  Their approach was limited to compute 

intensive, embarrassingly parallel jobs whose computation is easily divided. 

Other efforts primarily have focused on infrastructure management to minimize hosting 

costs [10], [11], [87], [92]–[94].  In [95], Galante and E. de Bona provide a survey of recent 

research on cloud computing elasticity.  They identify 28 works which consider elasticity for 

infrastructure, platform, and application hosting.  Of these only one study [87], focused on cost 

optimization of application hosting and scaling.   

In [87] Sharma et al. describe Kingfisher, a management system supporting cost-aware 

application hosting and scaling for IaaS clouds.  Kingfisher determines the most cost effective 

approach to transition existing application infrastructures to target infrastructures to meet service 

level agreements (SLAs).  Transitions considered include vertical and horizontal scaling, as well 

as VM live migration.  Kingfisher was evaluated using Amazon’s public cloud and a local 

private XEN-based cloud.  Kingfisher assumes that each VM can service a fixed volume of 

incoming requests and that all requests require the same resources to process.   

In [92], Leitner et al. developed an SLA-aware client side request scheduler which 

minimizes “aggregate” hosting costs by balancing both price and SLA requirements.  They 
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evaluated their approach by simulation using workload archival data to test how their scheduler 

responds.  They compared the aggregate costs of their algorithms with: (1) the minimum 

infrastructure (1 VM for all requests), (2) the maximum infrastructure (1 VM for each request) 

and (3) a bin-packing approach which fully packs existing resources before allocating additional 

VMs.  Their approach provided the lowest aggregate costs but their bin packing approach did not 

address infrastructure launch latency.    

Simarro et al. provide a cost aware VM-placement scheduler which seeks to reduce 

infrastructure costs by provisioning VMs across cloud data centers having the lowest 

infrastructure prices [93].  Their schedulers use price forecasts to predict pricing trends to 

support the most economical infrastructure placements.  Their approach reduced infrastructure 

costs but did not address network latency and performance issues resulting when application 

infrastructure is simultaneously provisioned across different data centers.  

In [94] Villegas et al. provide a performance and cost analysis of provisioning and job 

scheduling policies in the cloud.  They assessed policies from recent literature for their analysis 

using two private clouds and Amazon EC2.  They found that statically provisioned virtual 

infrastructure delivered better performance, but was up to 5Xs more costly.   Conversely 

dynamically provisioned infrastructure provided lower hosting costs but with performance 

caveats resulting from infrastructure launch latency similar to [7].  This key cost versus 

performance tradeoff for infrastructure provisioning highlights the need for good hot spot 

detection and load prediction techniques [6]. 

Farley et al. demonstrated that Amazon EC2 instance types had heterogeneous hardware 

implementations in [11].  Their investigation focused on the m1.small instance type and 
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demonstrated potential for cost savings by discarding VMs with less performant 

implementations.  Ou et al. extended their work by demonstrating that several Amazon and 

Rackspace VM types exhibit heterogeneous implementations [10].  They identified four different 

implementations of the m1.large VM on Amazon EC2 with varying performance.  Performance 

variations were attributed to the use of different backing CPUs and XEN scheduler 

configurations.  They harnessed this heterogeneity by developing a “trial-and-better” approach to 

test new instances and discard poor performing instances.  The authors demonstrated cost 

savings for long running jobs as a result of faster job execution.  For our work we adopt Ou’s 

“trial-and-better” approach to improve homogeneity of VM profiling.   

Previous research investigating cost implications of IaaS clouds has focused on spot 

market analysis [90], [91], pricing/bid support [88], [89], cost-aware VM scheduling [87], [93], 

[94], and job placement schemes [92], [94].  For the surveyed approaches workloads were 

assumed to be heterogeneous.  None of the approaches specifically support diverse workloads 

with varying resource requirements (e.g. CPU and I/O)  [87]–[89].  Conversely, we provide a 

workload cost prediction methodology which harnesses SOA workload profiles and VM 

benchmarking to capture the unique resource requirements of diverse workloads.  Our 

methodology provides equivalent workload performance using different VM types and supports 

cost savings by identifying infrastructure alternatives. 

8.3.   RESOURCE UTILIZATION MODELS FOR COST PREDICTION 

Our resource utilization based approach for SOA workload cost prediction focuses on 

achieving equivalent performance for diverse SOA workloads.  For the purposes of our 

evaluation in section 5, we consider equivalent performance to require executions of the same 

workload to complete within +/- 2 seconds of the observable wall clock time.  Our SOA 
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workloads represent discrete sets of individual service requests which are executed in parallel 

across virtual infrastructure.  We are not concerned with response time of individual service 

requests, but rather the total workload execution time.  In fact, we expect individual requests to 

perform slower on VM-types having slower CPU clock speeds. 

For SOA workloads, we observe service execution times for individual service requests 

can range from being normally distributed to exponentially distributed.  These exponentially 

distributed workloads tend to waste computational resources due to imbalances in the execution 

times of service requests running in parallel.  In these cases most of the workload completes 

while the fully provisioned virtual infrastructure is mostly idle as a few remaining runs complete.  

In these scenarios, it is ideal to schedule long running service requests first to optimize costs 

when service request duration can be anticipated in advance and if workloads are submitted in a 

batch.  We note this behavior and the potential optimization for service requests scheduling 

within a workload. 

8.3.1. Workload Equivalent Performance 

Given SOA workloads, we predict the workload resource utilization requirements for 

pools of distinct virtual machine types.  For example, we have 3 pools: one consisting of 

c3.xlarge VMs, another m1.xlarge, and a third c1.medium.  Our methodology supports 

determining the required number of virtual machines to provide equivalent workload 

performance using these different VM pools.   

Our technique harnesses Linux CPU time accounting principles to account for all 

available time across the pool of VMs servicing the workload.  Workload wall clock time can be 

determined by summing all CPU resource utilization variables across the VM pool and dividing 
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by the total number of CPU cores. 

Workload time=
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Table 8.1.  Resource utilization variables tracked by VM-Scaler 

RU variable Description  

cpuUsr CPU time in user mode  

cpuKrn CPU time in kernel mode  

cpuIdle CPU idle time  

cpuIoWait CPU time waiting for I/O to complete 

cpuIntSrvc CPU time servicing interupts 

cpuSftIntSrvc CPU time servicing soft interrupts 

cpuNice CPU time executing prioritized processes (user mode) 

cpuSteal CPU ticks lost to other virtualized guests 

contextsw Number of context switches 

dsr Disk sector reads (1 sector = 512 bytes) 

dsw Disk sector writes (1 sector = 512 bytes) 

nbs Network bytes sent 

nbr Network bytes received 

dsreads Number of completed disk reads 

drm Number of adjacent disk reads merged 

readtime Time in ms spent reading from disk 

dswrites Number of completed disk writes 

dwm Number of adjacent disk writes merged 

writetime Time in ms spent writing to disk 

loadavg Avg # of running processes in last 60 sec 

Eight resource utilization variables contribute to the observed wall clock time.  These 

eight variables described in table 8.1 include: cpuUsr, cpuKrn, cpuIdle, cpuIoWait, cpuIntSrvc, 

cpuSftIntSrvc, cpuNice, and cpuSteal.  We use resource utilization checkpointing, a feature of 

our VM-Scaler cloud infrastructure management application described in section 4.2, to capture 

the workload resource utilization.  A checkpoint is created at the start of workload execution and 

used to determine the total resource utilization when the workload concludes.  Resource 

utilization sensors on the VMs send resource utilization data to VM-Scaler.  All VMs run 

Linux’s Network Time Protocol daemon (ntpd) to synchronize clock times.  VM-Scaler collects 

this resource utilization data and ensures the samples are synchronized at the beginning and end 
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of workload execution.  

Of the eight resource utilization variables, cpuUsr and cpuIdle account for the majority of 

the time.  For our SOA workload evaluation described in section 5, approximately 93.22% of 

c3.xlarge SOA execution time is accounted for by cpuUsr or cpuIdle.  CpuUsr represents the 

total amount of computation required by the workload.  Through extensive testing, we observe 

that cpuUsr time remains generally the same regardless of the number VMs used to host the 

workload.  Introducing additional VMs into the VM pool adds to the total overhead from 

background Linux processes and the resource utilization sensor. This overhead is relatively 

constant and can easily be accounted for.  CpuIdle represents the unused time where CPU cores 

have been provisioned but remain idle.  Workloads exhibiting high CpuIdle time demonstrate 

parallel execution inefficiencies.  This indicates significant resource waste in the service 

implementation.  Applications concerned about cloud hosting costs should be architected to 

decrease CpuIdle time.   

CpuKrn is the time a workload spends executing kernel mode instructions.  When 

executing SOA workloads across VMs, we found the ratio of time spent in kernel mode is 

similar, with slightly more CpuKrn time occurring on VMs with slower I/O.  For our evaluation 

in section 5 CpuKrn is the third greatest contributor to workload execution time at approximately 

5.72%.  CpuIntSrvc and CpuSftIntSrvc represent time spent servicing system interrupts and is 

generally small.  CpuNice is time spent executing prioritized processes in user mode.  This is 

rare, and only occurs when SOAs employ process prioritization in an attempt to gain a larger 

share of the CPU.     

CpuSteal is an important, though unusable metric.  CpuSteal registers processor ticks when a 
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virtual CPU core is ready to execute, but the physical core is busy and unavailable.  The CPU 

may be unavailable because the hypervisor is executing native instructions (e.g. XEN Dom0) or 

other co-located VMs are currently “stealing” the CPU.  The difficultly with this measure is that 

ticks are only registered when execution should occur, but is unable to.  These ticks, 

unfortunately, do not adequately account for the missing time.  When workloads exhibit high 

CpuSteal time, Linux CPU time accounting does not work.  On the VM there is essentially 

“missing time”, which is the gap between accounted for time and actual time.  There are a 

number of factors which cause CpuSteal time to occur.  These include: 

1. Processors are shared by too many VMs, and those VMs are busy 

2. The hypervisor is occupying the CPU 

3. The VM’s CPU core time share allocation is less than 100%, though 100% is needed for 

a CPU intensive workload 

In the case of 3, we observe high CpuSteal time when executing workloads on Amazon EC2 

VMs which under allocate CPU cores as described earlier in section 1.  A specific example of 

this is the m1.small [10] and m3.medium VMs.  In spring of 2014, we observed that the 

m3.medium VM type is only allocated 1 core of a 10-core 2.5 GHz Xeon E5-2670 v2 CPU with 

an approximate 60% timeshare. The m3.medium is advertised to provide 3 ECUs.  Because of 

this significant CPU under allocation, all workloads executing on m3.medium VMs exhibit high 

CpuSteal time making time accounting inaccurate.  If the degree of cpuSteal in these scenarios 

remains relatively constant, it should be possible to buffer time calculations to compensate for 

the missing clock ticks. 
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8.3.2. Workload Cost Prediction Methodology 

The steps of our workload cost prediction methodology for cost calculation are outlined 

in table 8.2. 

Table 8.2. Workload Cost Prediction Methodology 

Step 
Task 

0 Train RU models: MVMtype1, .. MVMtype-j 

1 
Profile workload:  RUw(VM-base) � (W) on n x VMbase 

n=base #VMs 

2 
Convert: RUw(VM-base) �  (Mall) � RUw{n x VMtype1, .. n x VMtype-j}, 

n=base #VMs, j=number VM types 

3 
Scale profiles:  RUw{n x VMtype1, .. n x VMtype-j}, n=n to n+x 

n=base #VMs, x = scale up #VMs 

4 
Select profile: perf(VMbase)={perf(n x VMtype1),.. perf(n x VMtype-j)} 

n=#VMs w/ equivalent performance 

5 Minimize cost: Select min{cost(VMtype1), .. cost(VMtype-j)} 

Step 0 – train resource utilization models 

In this initialization step, VM-type specific resource utilization models are trained using 

SOA representative workloads.  SOA workload training data is collected for each VM type being 

considered.  Infrastructure configurations use the same number of CPU cores, though not 

necessarily the same number of VMs for each VM type.  For example, to collect training data 

when the VMbase is 4 x c1.xlarge  Amazon VMs (32 total cores), 8 x 4-core m1.xlarge  

VMs (32 total cores) and 16 x 2-core m1.large  VMs (32 total cores) should be used.   

If there is a domain related set of SOAs then a single set of resource utilization (RU) 

models (Mall) may be trained.  This increases the range of resource utilization scenarios the 

models are exposed to and offers the potential to predict resource requirements for new models 

with similar performance requirements.  The evaluation of our methodology described in section 

5 takes this approach.   

RU models are trained using stepwise multiple linear regression.  One model is trained 
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for each VM type being considered.  Each model converts RU data from VMbase to one of the 

alternate VM types: VMtype(i).  We trained RU models using the R statistical package. 

Step 1 – profile workload resource utilization 

A base VM-type, VMbase, is used to support our prediction methodology.  Representative 

samples of SOA workloads are profiled using VMbase.  For our workloads (W) we collect the 

total resource requirements (RUw) across the set of (n) VMs, where n is the number of VMbase 

VMs provisioned.  

Step 2 – convert resource utilization profile 

The workload resource utilization profile RUw(VM-base) is converted using VM-type 

specific resource utilization models (Mall).  Multiple linear regression is used to train (Mall) 

models.  These performance models (Mall) generate “predicted” resource utilization profiles, 

(RUw(VM-type(1..j))), for n VMs for each possible VM type (1..j).  These profiles (RUw(VM-type(1..j))) 

represent the resource utilization to execute the workload (W) with n VMs.  However, we know 

based on the VM’s performance rating (e.g. ECUs, CCUs, GHz, etc.) of VMbase vs. each possible 

VM type (1..j) that n VMs are likely insufficient for equivalent performance.  We address scaling 

from n to n+x VMs in step 3. 

To simplify the cost prediction methodology, it is best to select VMbase to be either a very 

fast or slow offering  so that all other VM types can be scaled in the same direction for 

equivalent performance.  The number of VMs (n) must be scaled up (or down) depending on the 

VM type of VMbase. 

Step 3 – scale resource utilization profile 

To identify infrastructure configurations that provide equivalent workload performance to 
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RUw(VM-base), we scale resource utilization profiles RUw{n x VMtype1, .. n x VMtype-j} from n to 

n+x VMs, where x is the maximum quantity of VMs over n required for equivalent performance.  

For our investigations described in sections 4 & 5, we observed x values of approximately 2 to 4. 

We suspect x will be larger in situations where the performance difference between VMbase and 

the slowest/fastest alternate VM-type is large. 

To scale our resource utilization profiles RUw{VMtype1, ..  VMtype-j} from n to n+x VMs, 

we address how individual profile variables change when more VM resources are added to 

execute the workload.  This is RQ-3 from section 1.  We investigate two different approaches: 

Resource Scaling Approach 1 (RS-1) and Resource Scaling Approach 2 (RS-2).  For scaling 

CPU-bound SOA workloads, effort is focused on scaling up cpuUsr and cpuKrn time.  For 

RS-1, we only scale cpuUsr and cpuKrn because they account for most of the system time 

(98.94%).  If scaling workloads are I/O bound, it becomes important to address scaling of 

cpuIoWait.   For RS-2, we additionally include cpuIoWait scaling.  These approaches exhibit an 

effort vs. accuracy tradeoff.  More accuracy can generally be obtained with greater effort.  From 

a research perspective, we investigate how much accuracy is required (RQ-3). 

RS-1: APPLICATION AGNOSTIC 

Resource Scaling Approach 1 (RS-1) is agnostic to the SOA being scaled.  For RS-1 idle 

SOA VMs are benchmarked in isolation to determine their idle resource consumption.  Idle VMs 

have an active resource utilization sensor sending data to VM-Scaler and typical background 

Linux server processes.  The observed cpuUsr time represents the overhead for adding VMs to 

the pool.  Each VM type is tested separately to benchmark background task resource 

consumption.  The average number of background cpuUsr ticks per second is then determined.  
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This background overhead rate is used to scale cpuUsr based on workload duration for Step 3.  

For RS-1 the remaining parameters are converted though not scaled up in the profile: cpuKrn, 

cpuIoWait, and cpuSftIntSrvc.  These parameters account for only a small fraction of the total 

system time, and represent primarily background activity not directly related to the SOA 

workload.  Table 8.3 shows RS-1 scaling of cpuUsr with cpuKrn conversion but no scaling for 

the WEPS SOA (described in 4.1) with a c3.xlarge VMbase and VMtype(i) of m1.xlarge. 

RS-2: APPLICATION AWARE HEURISTIC 

Resource Scaling Approach 2 (RS-2) attempts to address application specific 

characteristics of how resource utilization profiles change when resources are scaled up.  A set of 

scaling runs is conducted using sample workloads for each SOA scaling from n to n+x.  The 

average percentage change as a result of scaling up by 1 VM for each resource utilization 

parameter is calculated for cpuUsr, cpuKrn, and cpuIoWait.  This average percentage change for 

each variable is then used to scale the application specific profiles to account for how each 

application’s resource utilization changes relative to the application agnostic approach. 

Step 4 – select resource utilization profile 

Once SOA workload resource utilization profiles have been converted to alternate VM 

types (step 2), and scaled up or down (step 3), the final step is to select the profile which 

provides equivalent SOA performance. An illustration of the selection problem appears in table 

8.3.  The first row represents converted profile output from step 2.  We harness equation 1 to 

solve for cpuIdle time.  With only 5 VMs cpuIdle is negative!  With the specified “wall-time 

goal” for equivalent performance, there is not enough physical time to execute the workload.  

Each additional VM increases the total number of available clock ticks.  However, it is 
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insufficient to select the first line where cpuIdle is not negative.  To achieve equivalent 

performance for SOA workloads there has to be extra cpuIdle time to account for overhead, 

context switching, I/O, etc.  

We need an approach which estimates when enough cpuIdle time is available to provide 

equivalent performance to VMbase.  We describe two alternative profile selection approaches: 

Profile Scaling Approach 1 (PS-1) and Profile Scaling Approach 2 (PS-2) to estimate the 

required cpuIdle time for equivalent performance. 

Table 8.3.  Scaling Profiles RS-1 & RS-2 

RS-1 (WEPS c3.xlarge � m1.xlarge) 

VMs / cores 
wall time-

goal 

available 

clock ticks 
cpuUsr cpuKrn cpuIdle 

5 / 20 96.774s 193548 219561 10642 -38536 

6 / 24 96.774s 232258 220622 10642 -888 

7 / 28 96.774s 270967 221684 10642 36760 

8 / 32 96.774s 309677 222745 10642 74409 

9 / 36 96.774s 348386 223807 10642 112057 

10 /40 96.774s 387096 224868 10642 149705 

RS-2 (WEPS c3.xlarge � m1.xlarge) 

VMs / cores 
wall time-

goal 

available 

clock ticks 
cpuUsr cpuKrn cpuIoWait cpuIdle 

5 / 20 96.774s 193548 219561 10642 1867 -38536 

6 / 24 96.774s 232258 221822 10856 2005 -2440 

7 / 28 96.774s 270967 224107 11074 2153 33619 

8 / 32 96.774s 309677 226416 11297 2312 69638 

9 / 36 96.774s 348386 228748 11524 2483 105618 

10 /40 96.774s 387096 231104 11755 2667 141556 
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PS-1: APPLICATION AGNOSTIC 

Profile Selection approach 1 (PS-1) is agnostic to the SOA being scaled.  For PS-1 we 

convert the cpuIdle time from n x VMbase to n x VMtype-j.  We know there must be more than n x 

VMtype-j cpuIdle time after scaling to achieve equivalent performance.  We also expect more 

cpuIdle to be required than simply the converted cpuIdle time value for n VMs.  We need to 

know cpuIdle time with n + x VMs.  For PS-1 we derived a simple linear function to determine a 

percentage to increase cpuIdle time for each additional VM.  Our equation is derived by 

calculating the average observed % growth in cpuIdle time for all SOAs when scaling up with 

m1.xlarge 2 ECU VMs.  We then assumed 0% growth for the VMbase of c3.xlarge (3.5 ECUs), 

and linear growth based on the VM’s number of ECUs to derive the linear scaling equation:  

���FGH�%J$>%
K =	−6.5715	QRST + 23                         (2) 

Our equation expresses percentage growth as a number from 1 to 100, and supports 

increasing cpuIdle time faster for slower VM deployments.  From SOA workload testing we 

observe that slower VMs require more cpuIdle to achieve equivalent performance.  This 

approach to scale cpuIdle for profile selection is application agnostic.  We take advantage of 

ECUs already being a normalized measure of CPU performance.  If ECUs were unavailable a 

similar approach using CPU clock speed could be derived though we would need to compensate 

for generational improvements in CPU performance.  For example a 2012 Intel Xeon CPU at 2.5 

GHz is somewhat faster than a 2010 Xeon at the same clock rate.  Table 8.3 shows PS-1 

selection as the dark grey row.  PS-1 and PS-2 identify the same row in the scaling profile 

example. 
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PS-2: APPLICATION AWARE HEURISTIC 

Our second profile selection approach (PS-2) attempts to address application specific 

characteristics relating to cpuIdle time when infrastructure is scaled up.  We convert the cpuIdle 

time from VMbase to VMtype-j.  After conversion, we scale the required cpuIdle time for selection 

using the SOA specific average percentage change in cpuIdle from application scaling test 

observations.  This approach does not assume all SOA cpuIdle requirements scale the same, but 

applies an application specific scaling factor to support determination of required cpuIdle time.  

Table 8.3 shows PS-2 selection as the dark grey row.   

Step 5 – minimize cost 

Once profile selection has identified the number of VMs for equivalent performance using 

alternate VM types, we can then calculate infrastructure costs.  Cost can be determined by 

multiplying the required number of VMs by fixed or spot market prices to determine deployment 

costs.  The lowest priced infrastructure can be selected for SOA workload execution while 

maintaining equivalent performance. 

8.4.   EXPERIMENTAL INVESTIGATION 

8.4.1. Environmental Modeling Services 

To evaluate our workload cost prediction methodology and investigate the research 

questions presented in section 1, we harness six environmental science SOAs from the Cloud 

Services Innovation Platform (CSIP) [70], [86].  These six SOAs represent a diverse array of 

applications with varying computational requirements and architectures.  CSIP has been 

developed by Colorado State University with the US Department of Agriculture (USDA) to 

provide environmental modeling services.  CSIP provides a common Java-based framework for 



171 
 

REST/JSON based service development.  CSIP services are deployed using the Apache Tomcat 

web container [45].  Our six SOAs include:  the Revised Universal Soil Loss Equation – Version 

2 (RUSLE2) [41], the Wind Erosion Prediction System (WEPS) [71], two versions of the Soil 

Water Assessment Tool for modeling interactive channel degradation (SWAT-DEG) [96], [97], 

the Comprehensive Flow Analysis LOAD ESTimator (CFA-LOADEST) [98], [99], and the 

Comprehensive Flow Analysis Load Duration Curve (CFA-LDC) [100].   

RUSLE2 and WEPS are the USDA–Natural Resource Conservation Service standard 

models for soil erosion used by over 3,000 county level field offices.  RUSLE2 (Windows/MS 

Visual C++) contains empirical and process-based science that predicts rill and interrill soil 

erosion by rainfall and runoff.  The Wind Erosion Prediction System (WEPS) is a daily 

simulation model which outputs average soil loss and deposition values to predict soil erosion 

due to wind. WEPS (Linux/Java/Fortran) consists of seven sub models for weather, crop growth, 

decomposition, hydrology, soil, erosion, and tillage.  M, D, F, and L components used by 

RUSLE2 and WEPS are described in table 8.4.  All other tested SOA workloads used only M 

and L components.  Resource profiling occurred only on M VMs.  One VM was statically 

allocated for D, F, and L components. 

Table 8.4.  Rusle2/WEPS SOA Components 

Component RUSLE2 WEPS 

M Model 
Apache Tomcat 6, Wine, 
OMS3 [43], [52] 

Apache Tomcat 6 

D Database 

Postgresql-8.4, PostGIS 
1.4: soils (4.3m shapes), 
mgmt (98k shapes), 
climate (31k shapes), 4.6 
GB total (Tennessee) 

Postgresql-8.4, PostGIS 
1.4, soils (4.3m shapes), 
climate/wind (850 
shapes), 17 GB total 
(western US data) 

F File server 

nginx file server, 
57k XML files (305MB), 
parameterizes RUSLE2 
model runs.  

nginx file server, 291k 
files (1.4 GB), 
parameterizes WEPS 
model runs.   

L Logger 
Redis - distributed cache 
server 

Redis - distributed cache 
server 
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Two variants of SWAT-DEG (Fortran/Linux) were used.  A deterministic version 

simulates stream down-cutting and widening while also outputting a flow duration curve and 

cumulative stream power.  A stochastic version supports Monte Carlo model calibration for 

model uncertainty encountered within nature for river restoration/rehabilitation projects. SWAT-

DEG stochastic invokes SWAT-DEG deterministic repeatedly to perform calibration runs and 

performs Map-Reduce operations.  Individual runs are distributed to M worker VMs to perform 

local computations which are later reduced.  The reduce phase was largely sequential, resulting 

in a heavy parallel computation phase followed by a largely sequential reduction phase. 

CFA-LOADEST (Windows/FORTRAN) estimates the amount of constituent loads in 

streams and rivers given a time series of stream flows and constituent concentrations.  Estimation 

of constituent loads occurs in two steps, the calibration procedure and the estimation procedure 

based on statistical methods.  CFA-LDC (java) graphs Weibull plotting position ranks of river 

flows on a scale of percent exceedance. Graphing flow values in this way allows for a quick 

visualization of the variability of flow for different flow regimes. 

8.4.2. The Virtual Machine (VM) Scaler 

To facilitate performance profiling of virtual infrastructures for hosting SOA workloads 

we developed the Virtual Machine (VM) Scaler, a REST/JSON-based web services application 

[84].  VM-Scaler harnesses the Amazon EC2 API to support application profiling and cloud 

infrastructure management and currently supports Amazon’s public cloud (EC2) and private 

clouds running Eucalyptus 3.x.  VM-Scaler provides cloud control while abstracting the 

underlying IaaS cloud and can be extended to support any EC2 compatible virtual infrastructure 

manager.  Key features are provided to support workload management and IaaS cloud research.  

Features include: hotspot detection, dynamic scaling, VM management and placement, job 
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scheduling and proxy services, VM workload profiling, and VM worker pools. 

Upon initialization VM-Scaler probes the host cloud and collects metadata including 

location and state information for all VMs and physical hosts (private IaaS only).  An agent 

installed on each VM sends resource utilization data to VM-Scaler at fixed intervals.  Collected 

resource utilization variables are described previously in table 8.1.  Application and load 

balancer configuration is performed automatically as needed to support workload execution and 

profiling tasks.  VM-Scaler builds on previous research investigating the use of resource 

utilization variables for guiding cloud application deployment [13], [85]. 

VM-Scaler supports group management of VMs using a construct known as a “VM 

pool”.  Common operations can be applied to pools in parallel to support flushing memory 

caches, restarting the web container, checkpointing resource utilization and running scripts.  

Pools support reuse of VMs for multiple workloads as VMs can be returned to the pool after job 

assignment.  For Amazon’s public cloud, VMs are billed for a minimum of one hour.  This 

coarse-grained billing cycle makes it advantageous to retain VMs for at least one hour for 

potential reuse.  Pools maintain a minimum number of members and can be instructed to spawn 

new VMs in anticipation of future demand to help alleviate VM launch latency. 

8.4.3. Resource Utilization Checkpointing 

VM-Scaler supports collection of resource utilization data across the pool of worker VMs 

providing SOA workload execution.  A simple script installed on each VM sends VM-Scaler 

resource utilization data at preconfigured intervals.  VM-scaler’s checkpoint service is called to 

mark the start time for workload execution. Upon job completion, the total resource utilization 

for all VMs involved in the workload execution is computed from the checkpoint.  VMs make 
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use of the network time protocol daemon to synchronize RU data collection to the nearest 

second.  Resource utilization checkpoints allow for a composite view of the total resource 

consumption of an SOA workload.  This novel feature helps characterize diverse SOA workloads 

whose execution is distributed across an array of VMs. Composite resource utilization profiles 

can be harnessed to examine SOA workload characteristics, resource use efficiency, perform 

analysis, and to build models to support infrastructure and cost prediction. 

8.4.4. Hardware Configuration 

We develop and evaluate our methodology to achieve equivalent SOA workload 

performance using different VM types using Amazon’s public elastic compute cloud (EC2).  

Amazon offers a diverse array of VM types, as well as spot instances which enabled this research 

to be conducted at a low cost in a public cloud environment with real world multi-tenancy 

challenges. VM types used in the evaluation of our workload cost prediction methodology are 

described in table 8.5.  We selected VMbase to be the c3.xlarge.  This third generation VM from 

Amazon provides 4 cores at 3.5 ECUs per core.  The c3 VMs are known as “compute” optimized 

instances, as they are configured with better CPUs but less memory and disk storage capacity.  

Third generation VMs are all equipped with solid state storage disks, though most are smaller in 

capacity than previous first and second generation spindle disks.  For our investigation we 

benchmark all SOA workloads using a pool of 5 x c3.xlarge VMs.  Using our workload cost 

prediction methodology we investigate what is required to achieve equivalent SOA performance 

using m1.xlarge, c1.medium, m2.xlarge, and m3.xlarge VMs. 

8.4.5. Test Configurations 

We train our VM-type resource utilization models (MVMtype1, .. MVMtype-j) using 

workloads from six CSIP applications as described in table 8.6.  Distinct training workloads were 
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used to train models, while other unique workloads were used for validation.  These models 

support conversion of resource utilization profiles from one VM-type to another.  We train 

models to convert cpuUsr, cpuKrn, cpuIdle, and cpuIoWait resource utilization between VM 

types.  We could also construct models to convert cpuIntSrvc, cspuSftIntSrvc, cpuNice, and 

cpuSteal.  However, for our SOA workloads, these resource utilization variables are shown to 

have very little impact on total wall clock time.   

 

Table 8.5.  Equivalent Performance Investigation VM Types, Networking, and Backing CPUs 

VM type CPU cores ECUs/core RAM Disk Cost/hr. 

c3.xlarge 4 3.5 7.5 GB 2x40 GB SSD 30¢ 

m1.xlarge 4 2 15 GB 4x420 GB 48¢ 

c1.medium 2 2.5 1.7 GB 1x350 GB 14¢ 

m2.xlarge 2 3.25 17.1 GB 1x420 GB 41¢ 

m3.xlarge 4 3.25 15 GB 2x40 GB SSD 45¢ 

VM type Network I/O Backing CPU 

c3.xlarge High-1000 Mbps Intel Xeon E5-2680 v2 @ 2.8 GHz 

m1.xlarge Moderate-500 Mbps Intel Xeon E5-2650 v0 @ 2.0 GHz 

c1.medium Moderate-500 Mbps Intel Xeon E5-2650 v0 @ 2.0 GHz 

m2.xlarge Moderate-500Mbps Intel Xeon E5-2665 v0 @ 2.4 GHz 

m3.xlarge High-1000 Mbps Intel Xeon E5-2670 v2 @ 2.5 GHz 

Table 8.6.  SOA Workloads 

 CSIP SOA Test cases 

per workload 

# training 

workloads 

Avg. duration 

5 x c3.xlarge 

WEPS  100 10  96.6 s 

RUSLE2  800 10 104.6 s 

SwatDeg-Stoc  10 users x 150 sims 10 133.6 s 

SwatDeg-Det 500 10 13.5 s 

CFA-LOADEST 500 10 99.6 s 

CFA-LDC 500 10 103.7 s 

In section 3.1, we discussed the challenges cpuSteal presents in accounting for wall clock 
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time.  We have chosen to avoid these challenges by selecting SOA workloads and VM type 

configurations which exhibit very low cpuSteal time.  It should be noted that it was not difficult 

to avoid these cpuSteal challenges for this work.  Accounting for cpuSteal time may be possible 

by investigating the use of offset values to account for missing clock ticks in the presence of 

relatively constant cpuSteal. 

Figure 8.1 illustrates the resource utilization of our CSIP SOA workloads on 5 x c3.xlarge 

4-core VMs.  25% cpuUsr is equivalent to exercising one core at 100% for the duration of the 

SOA workload.  The figure demonstrates that these six workloads are primarily CPU bound but 

vary widely as to how effectively they exercise available cores.  WEPS and SWATDEG-

deterministic were most effective at using available cores.  RUSLE2 and SWATDEG-stochastic 

appear to continuously exercise from 1 to 2 CPU cores. CFA-LOADEST and CFA-LDC appear 

to utilize less than one CPU core.  The balance between cpuUsr time and cpuIdle time illustrates 

how well a given workload performs computations in parallel.  Adding increasingly more 

resources to largely sequential workloads provides little performance benefit as described by 

Amdahl’s Law.  VM-Scaler’s resource utilization checkpointing supports profiling the parallel 

efficiency of SOA workloads.  Figure 8.1 illustrates the range of efficiencies we observed for our 

6 modeling SOAs. 
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Figure 8.1.  CSIP SOA Workload Resource Utilization 

This figure shows the diversity of resource utilization of the SOA workloads  
used to evaluate our workload cost prediction methodology. 

Between individual training and validation SOA workloads, all application services were 

stopped, caches cleared, and services restarted.  The Linux virtual memory drop_caches function 

was used to clear caches, dentries, and inodes.  Clearing caches served to negate training effects 

resulting from reusing test cases. 

8.5.   EXPERIMENTAL RESULTS 

8.5.1. Resource Utilization Profile Prediction 

Training resource utilization models which convert SOA workload profiles between VM 

types requires execution of SOA training workloads.  We executed these workloads using 

isolated dedicated M VMs.  Resource utilization checkpointing enabled profiling data to be 

collected with minimum overhead.  The effectiveness of our methodology is confirmed by the 

high statistical predictably of key resource utilization variables using linear regression.  A linear 

regression of cpuUsr for m1.xlarge vs. c3.xlarge provides R
2
 of .9924 when trained with our 

6 CSIP SOAs.  This relationship is shown in figure 8.2.  Clusters of data can be seen in groups 

which represents our distinct SOA workloads. 
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Figure 8.2.  CpuUsr c3.xlarge � m1.xlarge linear regression:  

This figure shows how linear regression nicely fits cpuUsr data explaining  
most variance observed in our data demonstrated by the high R2 value. 

Using linear regression we tested if the same approach was viable to predict cpuKrn, 

cpuIdle, and cpuIoWait, the most important variables which account for wall clock time.  We 

observed good, though lower R2 values for these predictions.  To refine our predictions we then 

applied stepwise multiple linear regression (MLR).  We fed stepwise-MLR every available 

resource utilization variable from table 8.1 to construct MLR models for cpuUsr, cpuKrn, 

cpuIdle, and cpuIoWait.  Stepwise MLR begins by modeling the dependent variable using the 

complete set of independent variables and iterates by dropping the least powerful predictor based 

on significance for each step.  This enables testing various combinations until the best fit model 

which explains the most variance (R2) is found.  The resulting MLR models had either 7 or 8 

independent variables.  The independent variables having the highest significance and use for 

these models besides the variable being predicted include (in decreasing order): dsw, cpuCtxtSw, 

dskWrts, cpuSteal, and cpuKrn.  R2 values for our resource utilization variable conversion 

models are shown in table 8.7. 
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Table 8.7.  Linear Regression Models for VM-type Resource Variable Conversion 

RU variable adjusted R2 

m1.xlarge LR 

adjusted R2 

m1.xlarge MLR 

adjusted R2 

c1.medium MLR 

cpuUsr .9924 .9993 .9983 

cpuKrn .9464 .989 .9784 

cpuIdle .7103 .9674 .9498 

cpuIoWait .9205 .9584 .9725 

  
adjusted R2 

m2.xlarge MLR 

adjusted R2 

m3.xlarge MLR 

cpuUsr .9987 .9992 

cpuKrn .967 .9831 

cpuIdle .9235 .9554 

cpuIoWait .9472 .9831 

To test the effectiveness of combining six different SOAs into a single MLR model to 

convert resource utilization variables across VM-types we inspected regression residual plots.  A 

regression residual plot for the cpuUsr c3.xlarge � m1.xlarge model is shown in Figure 8.3.  

Good residual plots show points randomly dispersed around the horizontal X axis.  This indicates 

linear regression is appropriate for the data; otherwise, a non-linear model is more appropriate.  

Figure 8.3 shows a nice random distribution of predictions.  We do note on the tails of our 

residual plot cpuUsr is more often under or over predicted.  This effect causes poor cpuIdle 

predictions for SWATDEG-det discussed later in section 5.3.  This behavior suggests creating 

separate resource utilization prediction models for different workload types.  SWATDEG-det 

workloads were only 1/10 as long in duration as the majority of our SOAs explaining reduced 

quality in model output. 
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Figure 8.3.  CpuUsr c3.xlarge � m1.xlarge residuals plot: 

This figure shows the residual plot  of our cpuUsr linear regression  
model.  Predictions are randomly distributed around  the X-axis  

indicating that linear regression is appropriate for dataset 

Using linear and multiple regression we achieve significantly positive results at resource 

variable conversion across VM-types enabling us to harness this approach for SOA workload 

VM-type profile prediction (RQ-2). 

8.5.2. Resource Utilization Profile Scaling 

In section 3.2 we proposed our workload cost prediction methodology.  After profiles are 

converted, we must scale up the profiles to determine the required number of VMs for an 

alternative type to achieve equivalent performance.  We have designed two methods to support 

resource scaling referred to as RS-1 (application agnostic) and RS-2 (application aware 

heuristic).  We evaluate their effectiveness by scaling 2 validation workloads for each of our 6 

SOAs.  We predict the required number of VMs to host our workloads with performance 

equivalent to 5 x c3.xlarge VMs using m1.xlarge, c1.medium, m2.xlarge, and m3.xlarge VM 
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pools.  

We discovered that our CFA-LOADEST and CFA-LDC workloads did not scale 

properly.  When additional VMs were added to their VM pools, total workload execution time 

either remained the same or increased!  This explains why these SOAs exhibit very high cpuIdle 

time as shown in figure 8.1.  Consequently, our workload cost prediction methodology predicted 

equivalent performance with 5 or 6 alternate typed VMs.  This was an accurate prediction 

because indeed there was no improvement in workload execution time when the VM pools were 

scaled.  We used CFA-LOADEST and CFA-LDC resource utilization data for training our RU 

(MVMtype1, .. MVMtype-j) models for RQ-2, but not for validation. 

For our evaluations, we assume equivalent SOA workload performance as the ability to 

execute the workload within ± 2 seconds total wall clock time of the alternate infrastructure. 

For RS-1 we profiled idle CSIP M VMs in isolation to determine their background CPU 

usage.  We observed the cpuUsr overhead per wall clock second and added the relative amount 

to cpuUsr to scale SOA workload profiles in an application agnostic way.  For RS-1, we do not 

scale cpuKrn, cpuIoWait, and cpuSftIntSrvc.  We use VM-type converted values but do not scale 

them further.  We make 64 evaluations, 8 each for scaling with m1.xlarge, c1.medium, 

m2.xlarge, and m3.xlarge profiles, with one evaluation each with PS-1 and PS-2.  RS-1 

supported VM prediction with a mean absolute error of .391 VMs per prediction.  RS-1 led 

to scaling profiles that produced 20 under predictions and only 4 over predictions.  Of the  

prediction errors only 1 had a prediction error of 2 VMs.  All other predictions were off by only 

1 VM. 

For RS-2 we conducted two workload scaling tests for each SOA and averaged the 

percentage increase for cpuUsr, cpuKrn, and cpuIoWait resulting from scaling the number of M 
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VMs.  To generate scaled profiles we increase these resource utilization variables by this 

percentage for each VM added.  For 2-core VMs we always scale using 2 VMs at a time since 

our VMbase c3.xlarge has 4 cores.  For RS-2 we made the same 64 evaluations, 8 for scaling with 

m1.xlarge, c1.medium, m2.xlarge, and m3.xlarge, twice with PS-1 and PS-2 respectively.  RS-2 

supported VM prediction with a mean absolute error of .328 VMs per prediction.  RS-2 led 

to scaling profiles that produced 17 under predictions and only 4 over predictions.  All prediction 

errors were off by one VM only. 

RS-1 and RS-2 represent heuristic-based approaches to scaling the resource utilization 

profile and provide potential solutions to (RQ-3).  RS-1 has the advantage of being SOA 

agnostic and very simple to implement.  SOA specific scaling data is not required to scale 

resource profiles.  However, predictions were about ~17% less accurate. 

8.5.3. Profile Selection for Equivalent Performance 

In addition to scaling converted resource utilization profiles, determining equivalent 

infrastructure performance requires a method to select the resource utilization profile from the 

set of scaled profiles.  It is not sufficient to simply select the first profile that has non-negative 

cpuIdle time.  A healthy surplus of cpuIdle time is necessary for most SOAs to achieve 

equivalent performance.  In section 3.2, we proposed two heuristic based approaches to resource 

utilization profile selection for equivalent performance: PS-1 (application agnostic) and PS-2 

(application aware).   

For SWATDEG-det m1.xlarge evaluations, we observed that our multiple linear 

regression model over predicted cpuIdle time.  We believe this prediction error occurred because 

the average SWATDEG-det workload execution time was only 1/10th of the other SOAs.  This 
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caused our regression model to over predict cpuIdle time which prevented profile selection.  In 

this case, to correct the SWATDEG-det cpuIdle prediction error we used raw c3.xlarge cpuIdle 

values for profile selection.   

PS-1 uses a simple linear equation to scale cpuIdle time as the VM pool is scaled.  The 

initial cpuIdle value is taken from the VM-type resource utilization conversion.  Equation 2 

(section 3.2, PS-1) is then used to grow cpuIdle for each additional VM added.  The output value 

represents the cpuIdle threshold for profile selection.  Linux CPU time accounting principles are 

used to calculate the available cpuIdle time.  The first profile which exceeds the threshold is 

selected to determine the minimum number of VMs required for equivalent performance.  PS-1 

supported VM prediction with a mean absolute error of .375 VMs per prediction.  PS-1 led 

to profile selections that produced 19 under predictions and only 4 over predictions.  Of the 

prediction errors only 1 had a prediction error off by 2 VMs.  All other predictions were off by 

only 1 VM. 

For PS-2 we conducted two SOA specific scaling tests and averaged the observed 

percentage increase in cpuIdle time.  The initial cpuIdle value is taken from the VM-type 

resource utilization conversion.  The required cpuIdle time is increased by the SOA specific 

percentage to establish a threshold for profile selection.    The first profile that exceeds the 

threshold is selected to determine the minimum number of VMs required for equivalent 

performance.  PS-2 supported VM prediction with a mean absolute error of .344 VMs per 

prediction.  PS-2 led to profile selections that produced 18 under predictions and only 4 over 

predictions.  All prediction errors were off by one VM only. 

PS-1 and PS-2 represent heuristic-based approaches to selecting the correct resource 

utilization profile which will provide equivalent SOA workload performance and provide 
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potential solutions to (RQ-1).  PS-1 has the advantage of being SOA agnostic and very simple to 

implement.  SOA specific scaling data is not required.  Predictions supported by our application 

agnostic approach PS-1 were ~9% less accurate, which is to be expected.   

Table 8.8.  Equivalent Infrastructure Predictions – Mean Absolute Error (# VMs) 

SOA / VM-type PS-1 (RS-1) PS-2 (RS-1) PS-1 (RS-2) PS-2 (RS-2) 

WEPS .5 .5 .5 .5 

RUSLE2 .25 0 .125 .125 

SWATDEG-STOC .75 .5 .5 .625 

SWATDEG-DET .25 .375 .125 .125 

m1.xlarge .375 .25 .25 .25 

c1.medium .875 .625 .5 .625 

m2.xlarge .25 .25 .25 .25 

m3.xlarge .25 .25 .25 .25 

Average .4375 .34375 .3125 .34375 

In Section 3.2 we proposed three alternatives for resource scaling and profile selection 

each with increasing implementation costs though offering improved accuracy.  Mean absolute 

error (# VMs) for our SOA infrastructure predictions using our resource scaling and profile 

selection heuristics is summarized in table 8.8.  The combination of PS-1 and RS-2 together 

provided the most accurate predictions with a mean absolute error of only .3125 VMs per 

prediction.  For resource scaling and profile selection, the application agnostic approaches had 

slightly more error but were easy and fast to implement with no scaling tests required.  Our 

evaluation demonstrates improvement with an application specific approach.  We posit that 

training regression models proposed for RS-3 and PS-3 will provide even greater accuracy in 

exchange for the effort. 
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Table 8.9.  Hourly SOA Hosting Cost Predictions with Alternative VM-types 

SOA 
m1.xlarge c1.medium m2.xlarge 

WEPS $3.84 $2.24 $2.46 

RUSLE2 $3.84 $2.24 $2.46 

SWATDEG-Stoc n/a $1.96 $2.46 

SWATDEG-Det $3.84 $2.52 $2.87 

Total $11.52 $8.96 $10.25 

 m3.xlarge Total error 

WEPS $2.70 -$.76 

RUSLE2 $2.70 $0 

SWATDEG-Stoc $2.70 -$.86 

SWATDEG-Det $2.70 +$.13 

Total $10.80 -$1.49 (3.59%) 

8.5.4. Cost Prediction 

We next evaluated our workload cost prediction methodology’s ability to predict actual 

workload costs for infrastructure which provides equivalent performance.  For this evaluation we 

consider one hour of SOA workload execution using m1.xlarge VMs for WEPS, Rusle2, and 

SwatDeg-det, and one hour of SOA workload execution using c1.medium, m2.xlarge, and 

m3.xlarge VMs for WEPS, Rusle2, SWATDEG-stoc, and SWATDEG-det.  We allocated the 

number of VMs required to achieve equivalent workload performance relative to 

VMbase=c3.xlarge.  We omit m1.xlarge SWATDEG-stoc testing because our models predicted 

c3.xlarge equivalent performance could not be achieved using the m1.xlarge VM type, and 

testing verified this outcome!  We apply the fixed instance prices from table 8.5.  The results of 

this evaluation appear in table 8.9.  These cost predictions are based on our application specific 

PS-2/RS-2 approach.  The total error column represents the cost prediction error.  Error results 

from under predicting the number of VMs required for equivalent SOA performance.   A perfect 

cost prediction methodology accurately predicts hosting costs for alternate VM types with no 

error.  Our workload cost prediction methodology produces a cost estimate only 3.59% 

below the actual hosting cost for equivalent performance using alternate VM types.  Our 

results demonstrate how different VM-types offer a range of economic outcomes for SOA 
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workload hosting (25% cost variance). 

8.6.   CONCLUSIONS 

This paper describes our workload cost prediction methodology to support hosting SOAs 

using any virtual machine type to provide equivalent performance.  Our cost prediction 

methodology provides cost effective architecture alternatives for diverse SOA workloads.  

Armed with infrastructure decision support, system analysts are better able to balance cost and 

performance tradeoffs of SOA deployments.   

 (RQ-1) Harnessing Linux time accounting principles and VM-type resource predictions, 

our approach predicts the required infrastructure to achieve equal or better workload 

performance using any VM type.  (RQ-2)  Multiple linear regression is shown to support 

prediction of key resource utilization variables required for Linux time accounting.  Strong 

predictability is found with coefficients of determination of R2=.9993, .989, .9674, .9585 for 

cpuUsr, cpuKrn, cpuIdle, and cpuIOWait respectively when converting Amazon EC2 VM 

resource utilization from the c3.xlarge VM-type to m1.xlarge.  (RQ-3) A series of resource 

scaling heuristics were tested to scale up resource utilization predictions from n to n+x VMs.  

Profile selection heuristics were then tested to support determining infrastructure required to 

provide equivalent or better performance.  The efficacy of these heuristics to predict the required 

number of VMs to host SOA workloads while providing equivalent performance was shown to 

be as low as .3125 VMs (PS-1 / RS-2). 

We implement a novel resource utilization checkpointing technique which enables 

capturing composite resource utilization profiles for SOA workloads executed across VM pools.  

We applied the Trial-and-Better approach [10] to normalize the CPUs backing VMs in our study 
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to reduce resource profile variance from VM implementation heterogeneity.   Given these 

profiles we demonstrate the use of linear regression to convert SOA resource utilization profiles 

to alternative VM types.  We offer heuristics to scale our predicted profiles and support 

infrastructure decisions for equivalent SOA workload performance.   Our workload cost 

prediction methodology provides mean absolute error as low as .3125 VMs, and hosting cost 

estimates to within 3.59% of actual. 

In closing we predict all of the following will change: (1) VM-types offered by public 

cloud providers, (2) price for these VMs, and (3) the performance levels they provide.  Our 

workload cost prediction methodology helps demystify the plethora of VM types offered by 

cloud vendors and supports future changes.  Our approach is generalizable to any VM-type and 

helps to clarify ambiguous performance rankings (e.g. ECUs, CCUs) with a quantitative 

statistically backed approach which combines both application profiling and VM benchmarking. 

8.7.   FUTURE WORK 

As future work we propose Resource Scaling Approach 3 (RS-3), and Profile Selection 

Approach 3 (PS-3).  Both approaches should provide additional accuracy by training SOA 

workload specific models beyond the heuristics present in section 3.2   

RS-3: SCALING MODELS 

Resource scaling approach (RS-3) involves training a set of models, one each for cpuUsr, 

cpuKrn, cpuIoWait, and cpuSftIntSrvc using resource utilization data collected when scaling 

infrastructure for SOA workloads.  Scaling models incorporate resource utilization parameters 

and the number of CPU cores as dependent variables.  One set of models is required for each 

VM type.  The models can then be trained using multiple linear regressions or an alternate 
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machine learning technique.  This approach should provide high accuracy with more testing 

effort.  

PS-3: CPUIDLE SCALING MODELS 

Our third profile selection approach (PS-3) involves training a set of models with scaling 

runs to predict how cpuIdle time increases as infrastructure is scaled up.  These cpuIdle models 

incorporate all resource utilization variables from table 8.1 and the number of CPU cores for 

scaled deployments as dependent variables.  One cpuIdle model is required for each VM type.  

These models can then be trained using multiple linear regressions or an alternate machine 

learning technique.  This approach should provide high accuracy with more testing effort.   

An interesting extension for this work involves developing an approach to predict 

resource requirements (CPU time, disk I/O, etc.) for SOA workloads based on scientific model 

service parameterization.  It is possible to analyze the model parameterizations to characterize 

the expected duration and computing requirements for service quests before they execute.  We 

have attempted initial trials using the WEPS model and have achieved R2=~.5 using multiple 

linear regression using only a subset of the model parameters.  This white box approach to 

predict workload resource requirements would enable initial workload profiling (Step 1) to be 

eliminated.  Service requests could be analyzed, not run, to predict workload execution costs and 

deployment infrastructure.  Developing this approach requires harnessing domain specific 

characteristics of service requests and there will likely be limitations to the ability when training 

models to accurately predict model service behavior.   

For resource scaling and profile selection we have only tested 2 of the 3 proposed 

approaches.  An extension to our work involves training regression models using representative 
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SOA workloads.  Resource scaling approach 3 (RS-3) would involve training models to predict 

how cpuUsr, cpuKrn, and cpuIoWait scale for particular SOAs.  Profile selection approach 3 

(PS-3) would involve training models to predict when ample cpuIdle time is present to achieve 

equivalent workload performance.  Logistic regression may be helpful to train RS-3 models. 

Our workload cost prediction methodology has been designed to use homogeneous VM 

pools where all VMs in the pool are the same type (e.g. m1.xlarge, c3.xlarge, etc.)  An extension 

involves investigating what is necessary to achieve equivalent workload performance using VM 

pools with multiple VM types.  One application for mixed pools involves provisioning partial 

VMs.  If a workload runs optimally using 3.25 x 8-core c1.xlarge VMs, we would not provision 4 

x c1.xlarge VMs.  Instead to save costs, 3 x c1.xlarge VMs, and an additional VM of an alternate 

type would be provisioned.  Another application for mixed pools occurs when insufficient 

resources are available to provision an entire VM pool using a single type.  This scenario may be 

uncommon in public cloud settings, but quite possible in private clouds.  When a particular 

resource is exhausted we would investigate achieving equivalent workload performance by 

provisioning the remainder of the pool using one or more alternate VM types. 

For step 5 of our workload cost prediction methodology, we currently apply fixed values 

of spot market prices to estimate infrastructure costs when spot instances are used.  This 

approach assumes that spot pricing remains stable for the duration of the SOA workload.  

Depending on the workload duration and spot market price volatility fixing spot prices may be 

sufficient for good cost estimation.  However, future work could investigate application of spot 

market price prediction models such as those discussed in [91], to further improve spot instance 

infrastructure cost estimates.  
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Future research should investigate tradeoffs of resource utilization model training when 

estimating costs for multiple SOA workloads.  Grouping vs. separating workload profiling data 

for training models should be investigated.  Which scenarios are best for combining diverse and 

dissimilar SOA workload profiles? And what limitations are encountered? 

As future work, VM-Scaler can be extended to automate our workload cost prediction 

methodology.  Extensions would include: implementation of application profiling, integration of 

R based resource utilization regression models [54], and implementation of resource scaling and 

profile selection heuristics. 
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CHAPTER 9 

 

CONCLUSIONS AND FUTURE WORK 

 
 
 

9.1.   CONCLUSIONS 

This dissertation has investigated key resource management challenges encountered 

when migrating hosting of service oriented applications (SOAs) to Infrastructure-as-a-Service 

(IaaS) clouds.  While much has been made about the advantages of IaaS cloud computing, this 

dissertation identifies significant resource management challenges that must be addressed for 

promises to come to fruition.  Key IaaS cloud resource management challenges can be broken 

down into three overarching questions.  We must address:  WHEN to provision infrastructure, 

WHAT infrastructure to provision, and WHERE infrastructure should be provisioned to ensure 

service availability and responsiveness.  This dissertation describes methodologies for improving 

both application availability and responsiveness while minimizing hosting costs in terms of 

required infrastructure (# of VMs) and monetary commitments ($).   

Each chapter of this dissertation addresses one or more unique resource management 

challenges.  This dissertation has sought to concretely demystify cloud computing to address 

performance variance from heterogeneous resource implementation, VM placement uncertainty, 

provisioning variation, and the ubiquity of vague resource descriptions.  When taken together, 

this dissertation provides a comprehensive study of these challenges that constitutes a seminal 

work supporting practitioners in deploying SOAs to IaaS clouds.   

The following assertions are made regarding the overarching dissertation research 

questions (DRQs) presented earlier in Section (1.2).  Detailed discussion can be found in each 
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question’s respective chapter. 

DRQ-1: [Chapter 3] Application migration to IaaS clouds must address component composition 

to reduce resource contention for shared resources of physical host machines.  Scaling up 

infrastructure to address increasing service demand requires tuning application infrastructure 

parameters (e.g. number of database connections, number of worker threads) in addition to the 

quantity and size of VMs.  

DRQ-2: [Chapter 4] The best resource utilization variables- that predict performance of 

applications deployed to IaaS clouds- vary based on the specific resource profiles of applications.  

The best predictors for CPU bound applications include: CPU user time, CPU kernel time, and 

the number of completed disk writes.  Additionally, the number of context switches, disk sector 

reads, and completed disk reads support performance predictions for I/O bound applications.  

Step-wise multiple linear regression and artificial neural networks are preferred techniques for 

training performance models given application resource utilization data. 

DRQ-3: [Chapter 5] Component composition across VMs impacts an application’s resource 

utilization profile by creating or alleviating resource contention.  (See figure 5.1)  Optimal 

performance requires mediation of resource contention.  Intuition alone is insufficient to predict 

the best deployments when applications consist of more than 3 components.  The degree of 

performance variance resulting from component composition depends upon each application’s 

unique profile characteristics.  Performance variance of at least 15-25% is expected. 

DRQ-4: [Chapter 7] When dynamically scaling infrastructure to address demand spikes, careful 

VM placement to the least busy physical hosts in a private cloud improves application 

performance by at least 10-15% compared to round robin VM placement.  The degree of the 
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performance improvement is impacted by the magnitude of the shared load across physical host 

machines as well as the size of the cloud (# of physical host machines).  Temporary increases in 

resource contention occur when multiple VMs are launched simultaneously on the same physical 

host from spikes in disk I/O operations required to provision resources.  Careful VM placement 

supports dynamic scaling for SOA hosting using fewer VMs and CPU cores, freeing capacity for 

other uses. 

DRQ-5: [Chapter 7] Trends in CPU Steal clock ticks support detection of resource contention 

and noisy neighbor VMs in public cloud settings.  Performance loss from noisy neighbor 

interference is reproducible across virtual infrastructure in public cloud settings for several 

hours.  We describe a 3-step process to identify noisy neighbors in Section 7.5.3.  SOA 

workloads executed on VMs with resource contention from noisy neighbors results in 

performance degradation of at least 10-25%.   

DRQ-6: [Chapter 8] Section 8.3 describes a workload cost prediction methodology to support 

identification of infrastructure alternatives capable of providing equivalent performance based on 

Linux time accounting principles and resource utilization modeling techniques.  Infrastructure 

predictions are achieved with an average mean absolute error of only .3125 VMs for hosting 4 

different SOA workloads using 4 different VM types on Amazon EC2. (Section 8.5)  This low 

mean absolute error supports cost predictions ($) to within 3.59% of actual. 

9.2.   CONTRIBUTIONS 

This dissertation makes three primary contributions to advance Infrastructure-as-a-

Service (IaaS) cloud resource management to support application migration to clouds.  A more 

detailed discussion of the research contributions of this dissertation appears in chapter 1, section 
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3. 

In Chapter 4, we introduce resource utilization modeling to support performance 

prediction of SOA workloads deployed across IaaS cloud infrastructure.  Harnessing SOA 

resource utilization data to make predictions has proven very valuable for: (1) finding the best 

component compositions for initial SOA deployment (Chapter 5), and (2) determining 

infrastructure alternatives which provide equivalent performance to support service availability 

and responsiveness while minimizing hosting costs (Chapter 8). 

In Chapter 7, we provide the Least-Busy VM scheduler that improves resource elasticity, 

service availability, and responsiveness in private cloud settings.  Least-Busy supports VM 

placement to the least busy physical machines in a cluster.  Least-Busy helps improve SOA 

responsiveness and availability when dynamically scaling the number of VM instances.  

Additionally we demonstrated the utility of our Least-Busy approach to perform job scheduling 

in both public and private cloud settings.  (Section 7.7.5) 

In Chapter 8, we present our workload cost prediction methodology.    Our methodology 

harnesses Linux time accounting principles and resource utilization models to provide 

infrastructure alternatives which provide equivalent application performance for hosting SOAs 

using various virtual machine types on public and private IaaS clouds.  Given infrastructure 

alternatives, cost comparisons can easily be made to determine the most cost effective hosting 

infrastructure. 

9.3.   FUTURE WORK 

9.3.1. White Box Resource Utilization Prediction 

An extension to work described in Chapters 4 and 5 involves harnessing scientific model 
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parameterization variables to predict and model service execution time and individual resource 

utilization profile variables.  A preliminary investigation of this concept was made using the 

WEPS model.  Multiple linear regressions were performed using key model parameters from 

WEPS modeling requests.  These regressions predicted model execution time while explaining a 

fair amount of variance (R2=~.5).  This technique if developed further should also support 

prediction of individual resource utilization variables (e.g. cpuUsr, cpuKrn, cpuIdle, cpuIoWait, 

etc.).  This enables the entire application resource utilization profile to be predicted without 

running actually running any SOA workloads.   This would support application of our workload 

cost prediction methodology (Chapter 8) to best determine how to deploy workloads without 

performing initial profiling runs (Step 1).   

Another use of white box prediction includes development of a job placement scheduler 

that harnesses service execution time and resource requirement predictions.  Two optimizations 

are possible of job placement decisions.  Job placement can optimize for minimum hosting 

footprint of SOA workloads (# of VMs), or maximum throughput given a fixed number of 

resources.  Such a job scheduler could optimize job placement of long running service requests 

by not scheduling requests to worker VMs which are already busy, and are predicted to remain 

so.  Job requests which require specific types of resources (e.g. network I/O, CPU, or disk I/O) 

could be scheduled to worker VMs having availability of these specific resources.   

In Chapter 7, we demonstrated how job placement to Least Busy worker VMs can 

provide job scheduling which improves upon haproxy least connection load balancing [51].  We 

expect our proposed white box prediction extensions will improve job placement and 

management of available resources even further.    
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9.3.2. Public Cloud Resource Contention Study 

In Chapter 7, we presented our cpuSteal based Noisy Neighbor Detection Method (NN-

Detect).  As future work we propose an extended empirical evaluation of this methodology. An 

expanded investigation should be performed to further study resource contention in public cloud 

settings.  This investigation should span multiple months, cloud availability regions (e.g. us-east-

1a, us-east-1c in Amazon EC2), and VM types.  How resource contention varies throughout the 

day, days of the week, months of the year, by region, and VM type should be studied.  This 

investigation would seek to answer the following questions: 

-  Are there any patterns to public cloud resource contention which might be harnessed to 

improve infrastructure management to support performance improvement and/or reduced 

hosting costs for SOAs? 

- Do patterns extend across cloud regions? VM types? public cloud providers? 

This proposed effort has the potential to identify and contribute towards the development 

of new mechanisms to locate resource contention and noisy neighbors to further enhance 

NN-Detect. 

9.3.3. Workload Cost Prediction Methodology 

In Chapter 8, we describe our workload cost prediction methodology.  Many extensions to 

this work are possible including: 

• VM-Scaler support 

VM-Scaler could be extended to automate application of the workload cost prediction 

methodology.  Support for profiling representative workloads to train a set of resource utilization 

prediction models for cpuUsr, cpuIdle, cpuKrn, and cpuIoWait for Step 0 would be included.  
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Building the initial set of predictive models using representative SOA workloads is likely the 

most complex step.  Additionally the profile conversion (Step 1) and resource scaling heuristics 

(Step 2) and profile selection heuristics (Step 3) are likely easily automated once predictive 

models are built in Step 0.  Automation of cost predictions involves the simple application of 

current market prices to infrastructure predictions (Step 4). 

• Predictive Models to Support Resource Scaling and Profile Selection  

Future work could implement predictive models to better support resource scaling (Step 2) and 

profile selection (Step 3).  These predictive models are SOA specific, but it is expected that they 

will provide greater accuracy. 

• Workload cost prediction using mixed resources 

Our workload cost prediction methodology presented in Chapter 8 predicts required resources 

using VM pools of a single VM type.  Future work should extend our approach to support using 

VM pools with multiple VM types.  A compelling use case for mixed VM pools occurs when the 

optimal infrastructure for hosting an SOA splits a large multiple core VM.  For example if an 

optimal SOA hosting infrastructure requires 3.25 x 8-core c1.xlarge VMs, provisioning 4 x 

c1.xlarge VMs (32 cores) is not necessary and will likely involve additional expense.  The 

recommended infrastructure using a mixed pool might consist of 3 x c1.xlarge VMs (24 cores) 

and 1 x c1.medium VM (2 cores). 

• Integration and development of spot market price models to enhance cost predictions  



198 
 

Presently cost predictions for our workload cost prediction methodology apply fixed market 

prices to determine infrastructure prices.  An extension involves using spot market pricing 

models which harness historical pricing data to support prediction of future market prices.  These 

models should provide better long term estimations of infrastructure cost. 
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