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Matched Subspace Detectors
Louis L. Scharf, Fellow, IEEE, and Benjamin Friedlander, Fellow, IEEE

and the noise is MVN with mean ScjJ and covariance R =
a 2R o:

where J-L = 0 under H o and J-L > 0 under H 1• This is the
standard detection problem wherein the polarity of the signal
x is assumed known. Near the end of Section V we replace
H1 : J-L > 0 with H1 : J-L -I- 0 in order to model problems
where polarity is unknown.

We shall assume that the signal x obeys the linear subspace
model

II. DETECTION PROBLEMS

The detection problems to be studied in this paper may
be described as follows. We are given N samples from a
real, scalar time series {y(n), n = 0,1, 00" N - I} which
are assembled into the N-dimensional measurement vector
Y = [y(O),y(I),oo.,y(N _1)]T. Based on these data, we
must decide between two possible hypotheses regarding how
the data was generated. The null hypothesis Ho says that the
data consist of noise tI only. The alternative hypothesis H 1

says that the data consist of a sum of signal J-LX and noise tI;

that is,

(2.2)

(2.1)

t < N-p

(2.3)

Y=J-LX+tI

x=H(J,

tI : N[ScjJ, a
2Ro], S E IRN x t

, cjJ E IRt
,

R o > 0 E IRN x N
.

to include subspace interferences. These problems involve
unknown parameters in the mean and covariance of a mul
tivariate normal (MVN) distribution. For each problem in the
class, we establish invariances for the GLR and find that they
are identical to the natural invariances for the problem. We
show that a monotone function of the GLRT equals one of
the uniformly most powerful invariant (UMP-invariant) tests
derived in [1]. This means that the GLRT is itself UMP
invariant. In addition to tying up the theories of invariance and
the GLRT, our results generalize and extend previous work on
these problems published in [1]-[6].

We begin our development by establishing the invariances
of the GLRT in the MVN problem. We then specialize our
results for structured means in order to derive UMP-invariant
GLRT detectors for matched subspace filtering in subspace
interference. The GLRT produces an UMP-invariant detector,
which is CFAR if the noise variance is unknown. As we shall
find, the optimum detector may be interpreted as a null steering
or interference rejecting processor followed by a matched
subspace detector.
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I. INTRODUCTION

THE matched filter, or more accurately the matched signal
detector, is one of the basic building blocks of signal

processing; however, in many applications the rank-I matched
signal detector is replaced by a multirank matched subspace
detector. In fact, the matched subspace detector is really the
general building block, and the matched signal detector is a
special case. In sonar signal processing, the matched subspace
detector is called a matched field detector.

In [I], one of the authors developed a theory of matched
subspace detectors based on the construction of invariant
statistics. In this paper we extend this work in two ways. First,
we include structured interference in the measurement model,
and second we use the principle of the generalized likelihood
ratio test (GLRT) to derive matched subspace detectors. By
studying the invariance classes for these GLRT's, we are
able to establish that the GLRT's are invariant to a natural
set of invariances and optimum within the class of detectors
which share these invariances. This establishes once and for
all the optimality of the GLRT for solving matched subspace
detection problems and answers "no" to the question, "can
the GLRT be improved upon?" This result holds for all finite
sample sizes, thereby improving on the standard asymptotic
theory of the GLRT.

Our program in this paper is to derive GLRT's for the
class of problems studied in [1], [4]-[6] and generalize them

Abstract-In this paper we formulate a general class of prob
lems for detecting subspace signals in subspace interference and
broadband noise. We derive the generalized likelihood ratio
(GLR) for each problem in the class. We then establish the
invariances for the GLR and argue that these are the natural
invariances for the problem. In each case, the GLR is a maximal
invariant statistic, and the distribution of the maximal invariant
statistic is monotone. This means that the GLR test (GLRT) is
the uniformly most powerful invariant detector. We illustrate the
utility of this finding by solving a number of problems for de
tecting subspace signals in subspace interference and broadband
noise. In each case we give the distribution for the detector and
compute performance curves.
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In this case the interference subspace (8) is the rank-2
subspace above with cosine and sine columns.

The likelihood function for this MVN distribution is

l(p,a2 ; y ) = (27ra2)-N/2exp{ - 2~21Inll~} (2.7)

(2.8)

o ] [ACOS¢]
sin:wo A sin ¢ .

sin(N - I)wo
[

co~wo
8e/> =

cos(N - I)wo

III. LINEAR ALGEBRAIC PRELIMINARIES

When we say that the signal x obeys the linear subspace
model x = HO, we are saying that the vector x E IRN actually
lies in a p-dimensional subspace of IRN which we denote
(H). The subspace (H) is the range of the transformation
H. It is spanned by the columns of the matrix H. These
columns comprise a basis for the subspace, and the elements
of 0 = (fh (h ... (}p)T are the coordinates of x with respect to
this basis. Similarly, the interference 8e/> lies in at-dimensional
subspace of IRN

. This subspace, spanned by the columns of
8, is denoted (8).

Together, the columns of the concatenated matrix (H8)
span the(p + t)-dimensional subspace (H8). This subspace
is illustrated in Fig. 2. The typical orthogonal projection of
y E IRN onto (H8) is denoted PH8Y, where PH8 is the
projection

We expect I (y) to be greater than one whenever the parameters
(PI,ai) better model y than do the parameters (Po, 0'5)·

The detection problem outlined here applies to the detection
of lines or modal signals in broadband noise and narrowband
inteferences or to the detection of propagating fields (whether
planar or not) in propagating interferences and broadband
noise. Then the matrix H is a matrix of Vandermonde columns
or of autoregressive impulse responses. The matrix 8 may be
a Vandermonde matrix, one of the matrices illustrated in the
following examples, or almost anything which characterizes
structured noise.

Example i-Detection in Unknown Bias: When there is an
unknown bias added to a measurement, then we may say
y = I-£x+v where v: N[b1, 0'21]. The bias is b1 = (bb ... b)T
with b unknown. In this case, the interference subspace (8) is
the rank-I subspace (1).

Example 2-Detection in Sinusoidal interference: When
there is a sinusoidal interference of known frequency but
unknown amplitude and phase, St = Acos(wot - ¢) =
Acos¢coswot+Asin¢sinwot, then we may say y = I-£x+v
where v : N[8e/>, 0'21]. The interference is

which is a function of (P, 0'2) with the data y playing the role
of a parameter. For any two values (PI' ar) and (Po, 0'5), the
likelihood ratio is defined to be

l( ) - I(PI,ar;y)
u - ( 2)'I Po, 0'0; y

< H> : rank-p signal subspace

<HS >~ orthogonal subspace

(b)

(a)

i E <S>

< S> rank-t interference subspace

!1x -----.,~+)_-__+(+)_-___.,.

X E <H>

The component I-£HO is an information-bearing signal that
lies in the subspace (H), and the component 8e/> is an
interference that lies in the subspace (8). The noise n =
y - I-£HO - 8e/> = v - 8e/> : N[O, 0'21] is additive white
Gaussian noise. The subspaces (H) and (8) are not orthogonal
(i.e. H T 8 =I 0), but they are linearly independent, meaning
that there is no element of (H) which can be written as a
linear combination of vectors in (8). Linear independence is
much weaker than orthogonality. We assume that H and 8 are
each full-rank matrices, meaning that (H) and (8) are each
full-rank subspaces.

Fig. I illustrates the detection problem two ways: first, as a
communication problem of detecting a signal when a channel
adds background noise and structured interference and second,
as an algebraic problem of determining which subspaces of
IRN better model the measurement y. In the second illustration,
the problem is to determine whether y is more probably
described by signal plus noise plus interference or by noise
plus interference. The signal subspace (H) and the interference
subspace (8), illustrated in Fig. I, are generally of dimension
greater than 1. When these subspaces are very close, then the
resolution of hypotheses is difficult.

The probability density function for the MVN vector y is

j(y;p,a2
) = (27ra2)-N/2 exp{ - 2~211nlln (2.5)

where y is the variable of the function and P= (1-£0, e/» is the
parameter of the density. The noise n is

Fig. 1. Illustrating the detection problem: (a) Detecting a signal in inter
ference plus additive noise; (b) resolving a measurement into signal plus
interference plus noise.

We shall assume that H, 8, and Ro are known, although
we will offer some ways to relax this assumption in our
conclusions. Without loss of generality, we assume that Ro =
I. Then the detection problem is a test of distributions:

Ho : y : N[8e/>, 0'21] vs HI : y : N[I-£HO + 8e/>, 0'21]. (2.4)

n = y - I-£HO - 8e/>. (2.6) (3:1)
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(3.5)

PHS = EHS + ESH

=PS+P~PGP~

PG~PP.LH = P~EHS'
S

These quadratic forms are fundamental to our study of the
GLRT.

Note: Whenever the subspace H is the rank-l matrix x, then
PkS is P~S = p~pbp~ = P~(I - EHs}pf, where
P G is the rank-I orthogonal projector PG = PPsx =

P~x(xTP~X)-lxTP~ and EHS is the rank-l oblique pro

jector EHS = x(xTP~X)-lxTP~. These are the projectors
that arise in the study of known-form signal detection prob- .
lems.

The corresponding identity for PkS is

Pks = I -PHS = I -PS -p~PGP~

= p~pbp~ = P~(I - EHS)P~, (3.6)

Note that P~ - Pks is just the projection

P~ - Pks = p~PGP~ = P~EHSP~, (3.7)

(3.6) and (3.7) are key identities. They will allow us to write
quadratic forms in measurements Y as follows:

yT(p~ - Pks)Y = yTp~PGP~y = yTp~EHSP~y

yTpkSY = yTp~pbp~y = yTp~(I - EHS)P~y,

(3.8)

We will simplify our notation by defining the matrix G =
P~H, the subspace (G) = (P~H), and the projector PG =
P p.LH' Then we may summarize our decomposition of PHS
as S

null spaces of PPSH and Ps are (P~H)-1- and (S)-1-:

PPSH = P~H(HTp~H)-IHTp~ = P~PPsHP~

Ps = S(STS)-IST. (3.4)

(3.2)

<s>

(ii)decomposttion of < HS >

.•......
--------~ p. y

•••••• HS

.'

PHS=EHS+ESH

PHS=PS+Pp.LH·
S

~f---"""'~-l------ <H>

(i) decomposttion of R N

~__......;.:..:.:- <H>

<8>J.

As illustrated in the figure, this projection may be decomposed
with respect to the subspaces (H) and (S) in two different
ways:

Fig. 2. Signal and interference subspaces, and various projections onto them.

In the first of these decompositions, the orthogonal pro
jection PHS is resolved into oblique projections EHS and
ESH, where E H S and ESH have respective range spaces
(H) and (S) and respective null spaces (S) and (H):

EHS = H(HTp~H)-IHTp~

E S H = S(STpkS)-ISTPk

EHSH=H; EHSS=O

ESHS = S; ESHH = O. (3.3)

That is, any vector Y E (HS) may be written as Y =
HO+ S4J = PHSY = (E H S + ESH)Y'

The second decomposition resolves PHS into the orthog-
onal projections PS and P PSH' The subspace (P~H) is

the subspace spanned by columns of the matrix P~H; the
projector P~ projects onto the subspace (S)-1-. Geometrically,

the subspace (P~H) is the part of (H) which is unaccounted
for by the subspace (S), when (H) is resolved into (S)ffi(S)-1-.
The ranges of PPSH and Ps are (P~H) and (S), and the

IV. THE GLRT AND ITS NATURAL INVARIANCES

The question we pose is this: "What can we say about the
(generalized) likelihood ratio when unknown parameters are
replaced by maximum likelihood estimates (MLE's) of them?"
In other words, what kinds of invariances does the estimated
likelihood ratio have, and how is it distributed? As we shall
see, these questions underlie a systematic discussion of the
GLRT, its invariances, and its optimality.

When, the parameters ({3i' an are replaced by their
MLE'S({3i' on, then the corresponding MLE of the likelihood
ratio is called the generalized likelihood ratio (GLR):

i( ) = l(~I,ui;y)
y l({30,u5;y)

_(27l"Ui)-N/2 { 1, 2 1, 2
- 27l"u2 exp - -2'2 IIn1112+ -2'2 Iln oI12}'o a 1 ao

(4.1)
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When (J2 is unknown, then 0-; = -k Iinill~. Then it will be
convenient to replace the GLR by the (N/2)-root GLR

We shall have more to say about these MLE's shortly. When
(J2 is known, then there is no need to estimate (J2, and it will
be convenient to replace the GLR by the logarithmic GLR

Note that /31 = (iji), ;p), whereas /30 = (0, '</», with ;p differing
under HI and Hi; Thus, in this formula, 'h and no are the
MLE's

Ho : y : N[S</>, (J2 I] versus HI: y : N[ltx + S</>, (J21).

(5.1)

We are testing the hypothesis that the mean of the distribution
lies in the intersection of the subspace (xS) and the positive
half-line of the subspace (x).

MLE' s.o The noise defined in (2.6) is

V. KNOWN SIGNAL IN SUBSPACE

INTERFERENCE AND NOISE OF KNOWN LEVEL

The problem here is to test Ho : y = S</> + n versus
HI : y = Itx+S4>+n where It> O. The signal x is known, the
subspace interference S</> lies in the rank-t subspace (S), and
the noise n is drawn from the normal distribution N[O, (J21)

with (J2 known. We may write the detection problem as a test.
of distributions:

(4.2)

nl = y- [LHO - s;p
no = y - s;p.

L ( ) = (i( ))2/N = Iinoll~
2 y y Ilnlllr (4.4) n = y - [x,S] [~l (5.2)

These two forms will play a key role in our studies of
invariance. Although it is a slight abuse of terminology, we
shall refer to L 1 (y) and L 2 (y) as GLRs.

The GLRT.o The generalized likelihood ratio test (GLRT)
is a natural extension of the Neyman-Pearson likelihood ratio
test:

The MLE's for n are, following (4.2)

nl = y- lx,S] [~~]

no = y - s;Po· (5.3)

(5.4)

</>( ) = { 1 '" HI, L(y) > TJ
YO", n.; L(y) < TJ

PPA = supEHo</>(Y) = supP[L(y) > TJIHo] (4.5)

where L(y) is L 1 (y) or L 2(y), depending on whether or not (J2

is known. The function </>(y) selects HI when the GLR L(y)
exceeds a threshold TJ. The sup in (4.5) is the sup over all
parameters ({3, (J2) under H o. When the distribution of L(y)
is known under H o, then the threshold TJ may be set to give a
desired constant false alarm rate (CFAR) PPA. The probability
of detection is

The subscripts on the estimates remind us that the estimates
are dependent upon the hypothesis.

If we proceed as if It is unconstrained to be non-negative,
then the MLE's for [L and ;p are obtained by writing ExSY
as x[L and E SxY as S</> [8]:

[L = (xTp~X)-lxTP~y

;PI = (STpiS)-ISTpiy

;Po = (STS)-ISTy.

Invariance of the GLRT.o We shall say that the GLRT is
T-invariant if the GLR L(y) is invariant to transformations
T E T:

L(T(y)) = L(y); T E T.

(4.6)

(4.7)

The estimate [L is distributed as N [It, (J2 (xTP~x) -1] under

HI, and the estimates ;Pi are distributed as N [</>, (J2 (STS) -1 ]

and N [4>, (J2 (STpiS) -1] under their respective hypotheses.
This makes them ML, MVUB, etc. (see Chapter 3 in [1]).

If we now enforce the constraint that [Ll ~ 0, then the
MLE's are

The corresponding MLE's for the noises nl and no are

GLR.o With these results for the estimated noises, we may
write the logarithmic GLR as

By studying the invariance class T, we gain geometrical in
sight into the mathematical structure of the GLR. Furthermore,
we will be able to show that, of all detectors that are invariant
T, the GLRT is the uniformly most powerful (UMP). This is
the strongest statement of optimality that we could hope to
make about a test of Ho versus HI, meaning that the GLRT
cannot be improved upon by any detector which shares its
invariances. We will argue that the invariances are so natural
that no detector would be accepted which did not have them.

With these preliminaries established, we now undertake
a study of four closely related problems, ranging from the
detection of known-form signals in subspace interference and
Gaussian noise to the detection of subspace signals in subspace
interference and Gaussian noise of unknown level.

(5.5)

[L>O

[L>O

(5.6)
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(5.1l)

< p ~x > "signal subspace"

<P~ x>ol . orthogonal subspace

Fig. 3. Invariances of the GLRT for detecting known signal in subspace
interference and noise of known level.

less than or equal to zero. The random variable (I-IP Pi: x y
S

is distributed as follows:

~ Pp.L x y: N[!!' Ppol xx, Ppol ]. (5.10)
(I S (I S SX

Therefore, (I-2yTPpol y is chi-squared distributed with one
SX

degree of freedom (the rank of P pol x) and noncentrality
S

parameter >.2 [l ]:

1 T 2 2
2 Y Ppolxy: XI(>' )
(I S

2 JL2 T JL2 T J..x =2 x PpolxX = 2 X PSx.(I S (I

With these results, we see that the GLR LI(y) has a mixed
distribution which we write as

(5.8)

(5.16)

(5.15)

(5.14)

(5.13)

(5.12)

LI(y) > 11
L 1(y) :S 11

¢(y) = { 1", HI,
0", Ho,

PFA = (1-,(0))(1- p[xi(O) :S 11])

PD = (1-,(JL)) (1- p[Xi(>.2) :S 11])

,(JL) = P[N[~(xTp~x)I/2, 1] :S 0]
2

>.2 = JL2 X T P~x.(I

This is the familiar matchedfilter, censored to be nonnegative.
The distribution of ((l2XTP~x)-1/2XTP~y is N[>., 1].

Therefore, the GLRT

The noncentrality parameter>.2 is the SNR in units of power.
We lend a different interpretation to L I (y) by noting that it

is a monotone function of p. This means that we may replace
the logarithmic GLR L I (y) by the monotone function (there
is no need to invent a new notation)

xTpJ.. x 1/2
LI(y) = max [0, (f ) p]

= max [0, ( 1 J.. )1/2xTp~y].
(l 2XTPSX

is uniformly most powerful (UMP) invariant for testing Ho
versus HI. This is the strongest statement of optimality we
could hope to make about a detector of H o versus HI. The
false alarm and detection probabilities are

That is, z = L I (y) has discrete probability mass of ,(JL) at
z = 0 and continuous probability (1 - ,(JL))xi (>'2) on the
positive real axis. The distribution of L I (y) is monotone in
the parameter JL ~ 0, so by the Karlin-Rubin theorem [7] the
GLRT

Invariances: The GLR L I (y) is invariant to transfonna
tions T E ~, where ~ is the set of rotations and translations
of y in the space (P~x)J... However, since translations sub
sume rotations and translations, we say that the GLR is
invariant to translations in the space (P~x)J... This (N - 1)
dimensional subspace is illustrated in Fig. 3. Why is LI(y)
invariant-Zj? Because (t(Ty) = (t(y +.!!.) = P(y) whenever
i: E (P~x)J.. and LI(Ty) = LI(y +.!!.) = LI(y). These
invariances are illustrated in Fig. 3. Furthermore, if

{

0, P:s 0
LI(y) =

~[yTp~y _ yTp~sY], P> 0

{

0, P:S 0

- ~yTPP-sxY' P > 0

P = (x Tp~X)-lxTP~y. (5.7)

LI(YI) = L I (Y2)' then there exists a transformation T E ~
such that Y2 = T(YI)' This makes the logarithmic GLR a
maximal invariant statistic [7], meaning that every ~ -invariant
test of H o versus HI must be a function of LI(y).

The subspace (P~x) is the space where the signal x lies

after it has passed through the null steering operator P~. Any
component of the measurement y that lies in the subspace
orthogonal to (P~x) is-and should be-invisible to the
matched subspace filter P p.L . Therefore, the invariances of

SX
L I (y) are, indeed, the natural invariances for this problem.

Optimality and Performance: The logarithmic GLR LI(y)
is the unique invariant statistic for testing H o versus HI in
the sense that every ~ -invariant test of H o versus HI must
be a function of it. The logarithmic GLR has a mixed discrete
continuous distribution because of the way it is defined with
respect to p. The distribution of the matchedfilter statistic Pis

JL = 0 under H o
. JL > ounder HI.

The probability that P :S 0 is therefore

,(JL) = P[P:S 0] = P[N[~(xTP~X)I/2, 1] :S 0]. (5.9)

The notation P [N[m, (12] :S 0] denotes the probability that
a normal random variable with mean m and variance (12 is
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(5.21)

PPA = 1 - P [xi(O) :::; 7]]
PD = 1 - p[xi(oXZ

) :::; 7]].

For this problem, the MLE's no and nl remain unchanged
from Section V, but now the estimated variances are O'r =
IlnlW/N and 0'5 = IlnoW/N. (These results for O'r and o'~
are obtained by differentiating log-likelihood or by positing
them and then using a variational argument.)

GLR: The N /2-root GLR is

H o : y: N[Sfj>,azI] versus HI : y: N[J-lX + Sfj>,azI];

u > 0, aZunknown. (6.1)

VI. KNOWN SIGNAL IN SUBSPACE

INTERFERENCE AND NOISE OF UNKNOWN LEVEL

The problem here is to test

The false alarm and detection probabilities are

These results apply to the detection of rank-1 signals whose
polarity can be changed by a reflection mechanism. As this
problem is a special case of the more general problem to be
treated in Section VII, we defer its more complete discussion
until then. The results of this section generalize the results of
[1], [5]-[6].

L1(y)

( 1 yl2 T
cr2x TPlX x

p,.l
S

1

/
.:-- l--........... :..:./

9 .... /

8 .> i.../ j ...../ V
7 / / i/ i/ I

6
Pra ~IO -I V 10-2 1:/10' .{~--1 J hc Ls

/ / Li / /
/ ,./ .i· I / v

/ : i/" L/ /
i../ ... " .../ /

I _••' f··:·····r_.::_·l.•~~ 1/

Detector diagram.

oo

y--~

0.2

~ O.

~ o.

~ 0.5

C

! 0.4

!<i 0.3

o.

Fig. 5.

o.

o.

10 12 14 16 18 20

SNR[dBI

Fig. 4. ROC for known signal in subspace interference and noise of known
level.

is UMP-invariant with false-alarm and detection probabilities

(6.5)

(6.4)

(6.3)

(6.2)

fl>o

fl> 0.

fl>O{

a,

Lz(y) = yTPsPgPsY
yTPSPGPSY'

where P G is the projector P G = P Psx' The GLR may also

be written as

We now call L z(y) - 1 simply L z(y) and use the identities of
(3.6) and (3.7) to write this GLR as

It is actually more natural to reference Lz(y) to unity, in which
case the monotone function Lz(y) - 1 may be written

(5.19)

(5.18)

(5.17)

PPA = 1 - P[N[O, 1] :::; 7]], 7] > °
PD = 1- P[N[oX, 1] < 7]]

oX = !!:.(xTPSx)l/Z.
a

1 T
Ll(y) = 2 Y Pp.lxY'

a S

This statistic is invariant to T E 'Ii, and it has monotone
likelihood ratio. Therefore, the test

is UMP-invariant. The distribution of L l (y) is chi-squared
with one degree of freedom and nonconcentrality parameter
oXz:

The parameter oX is the SNR in units of voltage; oXZis the signal
energy after it has passed through the null-steering operator
PS'

The receiver operating characteristics (ROC's) for this de
tector are given in Fig. 4, and the detector diagram is given
in Fig. 5. Note the interference rejecting filter Psfollowed
by a matched filter.

Note: When the test H o versus HI is replaced by the two
sided test HI : J-l i- °versus HI : J-l = 0, then the constraint
that ih > °is not enforced. The logarithmic GLR is then

(5.20)

where ExS is the oblique projection

E ( TpJ.. )-1 TpJ..xS = x x SX x S· (6.6)



2152 IEEE TRANSACfIONS ON SIGNAL PROCESSING, VOL. 42, NO.8, AUGUST 1994

With these results we see that the GLR L 2 (y) has a mixed
distribution, which we write as

(6.15)

(6.13)

(6.14)

(6.11)

L 2 (y) = max[O, f)].

L 2 (y) = (N - t - 1)1/2f)2

[(xTP~x)l/i/a][J,

[yTP~PbP~y/(N - t _ 1)a2]1/2'

We may lend a different interpretation to the GLR L 2 (y)
by noting that it is a monotone function of f); that is,

Furthermore, f) < 0 iff [J, < O. This means that L 2 (y) may
be replaced by

PFA = (1 -,(0)) (1- P[FI,N-t-I(O) ::; 17])
Po = (1-,(0)) (1 - P[FI,N_t_I()..2) ::; 17])

,(0) = PN[o, 1] ::;0]

2 J.L2 T .1.
).. = 2'x PSx. (6.12)

a

is UMP-invariant for testing Ho versus HI. The false alarm
and detection probabilities are

that is, Z = L2(y) has discrete probability mass of ,(J.L) at
Z = 0 and continuous probability (1-,(J.L))FI,N_t_I()..2) on
the positive real axis. The distribution of L 2(y) is monotone
in J.L ~ 0, so the GLRT

plane of <ptx >.1-

<ptx >.1- : orthogonal subspace

Invariances: The GLR L 2 (y) is invariant to transforma
tions T E Tz, where Tz is the set of rotations in (P~x).l..

(rotations around (P~x)) and scalings , > 0 illustrated in
Fig. 6. That is, L 2(T y) = L 2(y). Furthermore, if L 2(Y2) =
L 2(YI), then there exists aTE Tz such that Y2 = T(YI)'
(Fig. 6 is geometrically convincing, but a rigorous proof
requires an algebraic proof.) This' makes the GLR L 2 (y) a
maximal invariant statistic.

Again, the subspace P~x is the subspace where the signal
x lies after it has passed through the null-steering operator
P~. The ratio of energies that define L2 (y) are-and ought
to be-invariant to rotations around this subspace and to seal
ings, because scalings are what introduce unknown variances.
Therefore, the invariances of L 2 (y) are, indeed, the natural
invariances for this problem.

Optimality and Performance: The (N/2)-root GLR L 2(y)
is the unique invariant statistic for testing Ho versus HI. The
distribution of the statistic [J, is the distribution given in (5.8),
and the probability that [J, ::; 0 is given in equation (5.9).
The statistics a-IPGP~y and a-IPbP~y are distributed
as follows:

Fig. 6. Invariances for £2(Y).

a-IPGP~Y: N[~PGP~x,PGP~]

a-IPbP~y : N[O,PbP~]. (6.7)

<P tx > : "signal subspace"

It is easy to see that these two statistics are independent. This
means that the following quadratic forms are independent X2

random variables:

(6.8)

This means that the ratio is F-distributed with degrees of
freedom (1, N - t - 1) [1]:

yTP~PGP~y. 2

(yTP~PbP~y)/(N _ 1) . FI,N-t-I().. ). (6.9)

The noncentrality parameter )..2 is defined in (5.20).

The statistic f) is the ratio of a N[(J.L/a)(xTP~x)I/2, 1]
random variable and an independent, scaled square root of a
XTv -t-I (0) random variable. This makes f) a t-distributed ran
dom variable with parameters (1,N - t - 1) and noncentrality
parameter )... The UMP-invariant detector may therefore be
written

¢(y) = {1 '" HI, L 2 (y) > 17 (6.16)
0", tt.; L 2 (y) ::; 17
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Fig. 7. ROC curves for known signal in subspace interference and noise of Fig. 9. Invariances for £1.
unknown level.

the problem is to test the hypotheses

y

Fig. 8. Detector diagram.

n; : y : N[ScP, (J21]

versus y: N[BO + ScP,(J21], IIOII~ > O.

For this problem, the MLE's no and nl are

nl = (1 - PBS)y = PksY

no = (1 - Ps)y = P~y.

GLR: The GLR Ll(y) is

(7.1)

(7.2)

The false alarm and detection probabilities are

PPA = 1 - P[tl,N-t-l(O) ~ 17]

PD = 1 - P[tt,N-t-l('x) ~ 17]. (6.18)

The ROC curves are given in Fig. 7, and the detector diagram
is given in Fig. 8. In Fig. 7, the probability of false alarm
is fixed at PPA = 0.01, and the sample size is varied from
N = 2 to N = 32 in powers of 2. The normal ROC curve is
plotted for reference. Note that the detector of Fig. 8 uses an
interference rejecting filter followed by a matched filter in the
top branch and a noise power estimator in the lower branch.
In fact, y Tp~pt;P~y/(N - 1) is a maximum likelihood
estimator of (J2. The results of this section generalize results
of [1]-[2], [5]-[6].

VII. SUBSPACE SIGNAL IN SUBSPACE

INTERFERENCE AND NOISE OF KNOWN LEVEL

This problem is a generalization of the problem solved in
Section V. The signal /-LX is replaced by the signalltBO, where
(B) is a rank-p subspace. Now, as the elements of 0 may be
positive or negative, we do not constrain ItBO to lie in any
particular orthant of (B). Therefore, It is absorbed into 0 and

(We have used the identity of (3.7).) The identical quadratic
forms yP~PGP~y and yTPGY are generalized energy de

tectors. Recall that G = P~B.
Invariances: The GLR Ll(y) is invariant to transforma

tions T E T3 that rotate y within (G) (or around (G)1-) and
add a (bias) component in (G)1-. Furthermore, if Ll(Yl) =
Ll(Y2)' then there exists a transformation T E T3 such that
Y2 = T(Yl)' This makes the logarithmic GLR a maximal
invariant statistic, meaning that every T3-invariant test of Ho
versus HI must be a function of it.

The space (G) is the space where x = HO lies after it
has passed through the null-steering operator P~. As 0 is
unknown and unconstrained, the signal to be detected can lie
anywhere in (G). No signal of constant energy in (G) should
be any more detectable than any other, so Ll(y) should be
invariant to rotations in (G). The detector is-and should
be-invariant to measurement components orthogonal to (G).
These natural invariances for this problem are illustrated in
Fig. 9.
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Ho

Therefore, the quadratic form L1(y) = -J,yTP~PGP~y is
X2 distributed [1]:

0.9

0.8

i 0.7

0.6

'"0g: 0.5

~

~ 0.3
0

0.2

0.1

0
0 10 12 14 16 18 20

SNR[dB]

Fig. 10. ROC curves for detecting subspace signal in subspace interference
and broadband noise of known variance.

(7.5)

(7.4)
Ho

Optimality and Performance: The logarithmic GLR L1(y)
is the unique invariant statistic for testing H o versus HI. It is
a quadratic form in the projection operator P~PGP~. This
quadratic form may be thought of as the norm-squared of the
statistic PGP~y, which is distributed as

This distribution is monotone in the noncentrality parameter
A2 , meaning that the test

yT

interference matched subspaci
rejection filter

energy
computation

(7.6)

Fig. I I. Detector diagram.

is UMP-invariant for testing H o versus HI. Its false alarm
and detection probabilities are

The ROC curves for the GLRT are given in Fig. 10, and the
detector diagram is given in Fig. 11. In Fig. 10, the probability
of false alarm is fixed at PPA = 0.01, and the dimension of the
subspace (H) is varied from p = 2 to P = 8 in steps of 2. The
normal ROC is plotted for reference. Note that the detector
of Fig. 11 decomposes into a subspace filter for interference
rejection, a subspace filter matched to the remaining signal,
and an energy computation. These results generalize the results
of [1], [3], [5]-[6].

It is natural to reference L2(y) to unity, in which case the
m~motone function L 2 (y) - 1 is

(8.3)

(8.2)

L 2(y) is therefore

(7.7)

PPA = 1 - P[X;(O) ::; 77]

PD = 1 - P[X;(A 2
) s 77].

VIII. SUBSPACE SIGNAL IN SUBSPACE

INTERFERENCE AND NOISE OF UNKNOWN LEVEL

This problem is a generalization of the problems solved in
Sections VI and VII. The signal f.LX is replaced by the signal
f.LHfJ, and the noise level a 2 is unknown. The parameter f.L is
absorbed into fJ, and the problem is to test the hypotheses

H o : Y : N[ScP, a 21] versus HI : Y : N[HfJ+ ScP, a 21] ;
IlfJll~ > 0, a 2 unknown. (8.1)

For this problem, the MLE's are those of (7.2). The GLR

(We have used the identities of (3.6) and (3.7).) In what follows
we shall call L 2(y) - 1 simply L 2(y).

Invariances: The GLR L 2 (y) is invariant to transforma
tions T E 4 that rotate in (G) (or around (G)J..) and
non-negatively scale y, as illustrated in Fig. 12. They leave
the angle v invariant. Furthermore, if L2(YI ) = L2(Y2)' then
Y2 = T(YI) for some T E 4. This makes L 2(y) a maximal
invariant statistic.

Again, (G) is the subspace where x lies after it has passed
through the null-steering operator P~. The detector should be
invariant to rotations in this space for the reasons given in
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Fig. 12. Invariances for £2.
Fig. 13. ROC curves for detecting subspace signal in subspace inlerference
and broadband noise of unknown level; p = 2 and N is variable.

The parameter s is the dimension of (S).1, namely s = N -t >
p, the number of dimensions of IRN not occupied by (S),
and p is the dimension of (G) = (P~H). The noncentrality
parameter A2 is

Furthermore, the random vectors P~PGY and P~P'by are
uncorrelated (and therefore independent in this multivariate
normal case) by virtue of the fact that p~PGP~P'b =

PGP'b = 0:

EPGP~(y - HfJ)yTP~P'b = PGP~P~P'b = O. (8.5)

(8.10)

PFA = 1 - P[Fp,s-p(O) ::; 'TI]
PD = 1 - P[Fp,s_p(A2

) ::; 'TI].

The ROC curves for the GLRT are given in Figs. 13 and
14, and the detector diagram is given in Fig. 15. In Fig. 13,
the probability of false alarm is fixed at PFA = 0.01, the
dimension of the subspace (H) is p = 2, and N is varied
from N = 8 to N = 64 in powers of 2. The ROC for
the X2 distributed matched subspace detector is plotted for
reference. In Fig. 14, the probability of false alarm is fixed
at PFA = 0.01, the number of measurements is fixed at
N = 16, and the subspace dimension is varied from p = 2
to P = 8 in steps of 2. The normal ROC is plotted for
reference. The detector of Fig. 15 decomposes into a subspace
filter for interference rejection, a subspace filter matched to
the remaining signal, and an energy computation, divided by
the same operations with the matched subspace filter replaced
by an orthogonal (or "noise") subspace filter. These results
generalize the results of [1], [5]-[6].

In summary, the GLRT is UMP invariant for detecting sub
space signals in subspace interferences and background noise
whenever the noise is MVN. The conclusion holds whether
or not the noise variance is known. When the interference
is absent, then P~H = H and the GLRs are yTPHY
and yTPHy/yTPHY' which are distributed as X;(A2

) and
Fp N_p(A2 ) as discussed in [1]. The parameter A2 is then

, 2

A2 = ;;'xTx.

is UMP-invariant for testing Ho versus HI. Its false alarm
and detection probabilities are

where F denotes an F -distribution with parameters p and s - p.
This distribution is monotone in A2 ~ 0, so the GLRT

(8.6)

(8.7)

(8.4)

This means that the quadratic forms ~ yTP~PGP~y and
~ yTP~P'bP~y are independent X2 random variables:

~ yTp~PGP~y : X;(A2
)

(T

1 Tp.1p.1 r: 2 ()2 Y S G sy: Xs- p 0 .
(T

Section VII, and it should be invariant to scalings that intro
duce unknown variances. These are the natural invariances for
the problem.

Optimality and Performance: The (N/2)-root GLR is the
unique invariant statistic for testing Ha versus HI. It is
the ratio of quadratic forms in P~PGP~ and P~P'bP~.
Each of the quadratic forms may be thought of as a norm
squared of a statistic PGP~y or P'bP~y. These statistics
are, respectively, distributed as

The GLR ((s - p)/p)L2 is distributed as

s - p L
2
(y) : {Fp,s_p(A2

) under HI
p Fp,s-p(O) under u.,

IX. CONCLUSIONS

(8.8) The generalized likelihood ratio test (GLRT) is a standard
procedure for solving detection problems when (nuisance)
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Fig. 14. ROC curves for detecting subspace signal in subspace interference
and broadband noise of unknown level; p is variable and N =8.

parameters of the underlying distribution are unknown. Typi
cally, nuisance parameters are things like bias, amplitude and
phase of sinusoidal interference, noise variance, and so on.
These parameters are of no intrinsic interest, but they defeat
our efforts to state properties of optimality if we proceed along
conventional lines.

The GLRT is easy to derive, and sometimes its distribution
can be determined. In these cases, a detection threshold may be
set to achieve a constant false alarm rate (CFAR). In spite of its
tractability as a bootstrapping technique for solving detection
problems, the GLRT has been difficult to characterize in terms
of its optimality properties for the class of problems studied
in this paper. In fact, it has not been clear whether or not the
GLRT has any optimality properties at all for this class. So the
question has remained, "can the GLRT be improved upon?"

In this paper we have constructed GLRT's for four detection
problems which span a large subset of the practical detection
problems encountered in time series analysis and multisensor
array processing. For each class of problems we have derived
the GLRT and established its invariances. Then we have drawn
on the theory of invariance in hypothesis testing to establish
that, within the class of invariant detectors which have the
same invariances as the GLRT, the GLRT is uniformly most
powerful (UMP) invariant. This is the strongest statement of
optimality one could hope to make for a detector. For each
class of problems, the invariances of the GLRT are just the
invariances one would expect of a detector that claims to be
optimum. The conclusion is that the GLRT cannot be improved
upon for the classes of problems studied in this paper.

The geometrical interpretation of our results is this: Think
of the plane < S >.1. in Fig. 2 (i) as a backplane onto which

Fig. 15. Detector diagram.
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that remains in the data. This filter is usually called a matched
subspace filter or matched field filter. The energy of the filter
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rank subspaces of £2 which are spanned by Fourier bases,
wavelet bases, and the like. Then all of the formulas of this
paper go through, with the formulas for P~, PG, Pa' EHS,
and E SH replaced by their £2analogs. This produces a theory
of GLRT's that can be implemented in subbands of £2. The
details of this extension will be reported in future work.
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