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ABSTRACT 

 

ANCHOR CENTRIC VIRTUAL COORDINATE SYSTEMS IN WIRELESS SENSOR 

NETWORKS: FROM SELF-ORGANIZATION TO NETWORK AWARENESS  

Future Wireless Sensor Networks (WSNs) will be collections of thousands to millions of sensor 

nodes, automated to self-organize, adapt, and collaborate to facilitate distributed monitoring and 

actuation. They may even be deployed over harsh geographical terrains and 3D structures. Low-cost 

sensor nodes that facilitate such massive scale networks have stringent resource constraints (e.g., in 

memory and energy) and limited capabilities (e.g., in communication range and computational 

power). Economic constraints exclude the use of expensive hardware such as Global Positioning 

Systems (GPSs) for network organization and structuring in many WSN applications. Alternatives 

that depend on signal strength measurements are highly sensitive to noise and fading, and thus often 

are not pragmatic for network organization. Robust, scalable, and efficient algorithms for network 

organization and reliable information exchange that overcome the above limitations without 

degrading the network’s lifespan are vital for facilitating future large-scale WSN networks.  

This research develops fundamental algorithms and techniques targeting self-organization, data 

dissemination, and discovery of physical properties such as boundaries of large-scale WSNs without 

the need for costly physical position information. Our approach is based on Anchor Centric Virtual 

Coordinate Systems, commonly called Virtual Coordinate Systems (VCSs), in which each node is 

characterized by a coordinate vector of shortest path hop distances to a set of anchor nodes. We 

develop and evaluate algorithms and techniques for the following tasks associated with use of VCSs 

in WSNs: (a) novelty analysis of each anchor coordinate and compressed representation of VCSs; (b) 

regaining lost directionality and identifying a ‘good’ set of anchors; (c) generating topology 

preserving maps (TPMs); (d) efficient and reliable data dissemination, and boundary identification 

without physical information; and (f) achieving network awareness at individual nodes. 
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After investigating properties and issues related to VCS, a Directional VCS (DVCS) is proposed 

based on a novel transformation that restores the lost directionality information in VCS. Extreme 

Node Search (ENS), a novel and efficient anchor placement scheme, starts with two randomly placed 

anchors and then uses this directional transformation to identify the number and placement of anchors 

in a completely distributed manner. Furthermore, a novelty-filtering-based approach for identifying a 

set of ‘good’ anchors that reduces the overhead and power consumption in routing is discussed. 

Physical layout information such as physical voids and even relative physical positions of sensor 

nodes with respect to X-Y directions are absent in a VCS description. Obtaining such information 

independent of physical information or signal strength measurements has not been possible until now. 

Two novel techniques to extract Topology Preserving Maps (TPMs) from VCS, based on Singular 

Value Decomposition (SVD) and DVCS are presented. A TPM is a distorted version of the layout of 

the network, but one that preserves the neighborhood information of the network. The generalized 

SVD-based TPM scheme for 3D networks provides TPMs even in situations where obtaining accurate 

physical information is not possible. The ability to restore directionality and topology-based Cartesian 

coordinates makes VCS competitive and, in many cases, a better alternative to geographic 

coordinates. This is demonstrated using two novel routing schemes in VC domain that outperform the 

well-known physical information-based routing schemes. The first scheme, DVC Routing (DVCR) 

uses the directionality recovered by DVCS. Geo-Logical Routing (GLR) is a technique that combines 

the advantages of geographic and logical routing to achieve higher routability at a lower cost by 

alternating between topology and virtual coordinate spaces to overcome local minima in the two 

domains. GLR uses topology domain coordinates derived solely from VCS as a better alternative for 

physical location information. A boundary detection scheme that is capable of identifying physical 

boundaries even for 3D surfaces is also proposed. 

“Network awareness” is a node’s cognition of its neighborhood, its position in the network, and 

the network-wide status of the sensed phenomena. A novel technique is presented whereby a node 

achieves network awareness by passive listening to routine messages associated with applications in 
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large-scale WSNs. With the knowledge of the network topology and phenomena distribution, every 

node is capable of making solo decisions that are more sensible and intelligent, thereby improving 

overall network performance, efficiency, and lifespan. 

In essence, this research has laid a firm foundation for use of Anchor Centric Virtual Coordinate 

Systems in WSN applications, without the need for physical coordinates. Topology coordinates, 

derived from virtual coordinates, provide a novel, economical, and in many cases, a better alternative 

to physical coordinates. A novel concept of network awareness at nodes is demonstrated.  
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CHAPTER 01 

INTRODUCTION 

 

The availability of economical, low-power miniature processors and sensors integrated 

with wireless communication in a single chip has resulted in systems called Wireless Sensor 

Networks (WSNs). WSNs applications [114] cover a large number of domains spanning 

physiological, habitat and environmental monitoring, condition-based maintenance, smart 

spaces [107], military, precision agriculture, transportation, and inventory tracking [56]. 

WSNs differ considerably from current networked and embedded systems. Although WSNs 

share the large-scale and distributed nature of other networked systems such as the Internet, 

their resources and capabilities are extremely limited in comparison. Increasing computing 

and wireless communication capabilities will expand the role of the sensors from mere 

information dissemination to more demanding tasks as sensor fusion, classification, and 

collaborative target tracking. Moreover, since WSNs do not rely on any hard-wired 

communication links, nodes can be deployed in places without any pre-deployed 

communication infrastructure.   

Future WSNs can be envisioned consisting of hundreds to millions of nodes deployed in 

inaccessible terrains or structures, monitoring and interacting with environment for long 

periods of time. Due to the enormous size of such networks, use of costly and highly capable 

sensor nodes becomes infeasible. The main challenge with such large-scale WSNs is 

extending the lifespan of the entire sensor network while constructing intelligent data-
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accumulating systems. In the process of designing such systems, the following restrictions 

and constraints have to be considered: (a) limited energy, memory, computational 

capabilities, and communication bandwidth; (b) cost and complexity of any hardware 

integrated to each node such as GPS; and (c) susceptibility of measurements such as signal 

strength to conditions such as fading and noise and the corresponding errors. Advances in 

technology have produced a vast spectrum of sensor nodes with diverse capabilities. 

Examples spanning from low-end motes as Radio-Frequency Identification (RFIDs) units 

priced from $1 to $25, with very little memory (16 bits) [97], to high-end powerful motes 

such as Imote2 [61] with 32MB RAM, 13MHz to 416MHz processor (Marvell PXA271), 

which uses three AAA batteries, alleviate the challenge on researchers. Having scalable and 

less complex algorithms that are capable of structuring networks and supporting data 

dissemination under the hardware constraints opens up the path for a range of new 

applications in the area of cyber physical systems [80] as well as ubiquitous networks [80]. 

This research develops energy- and memory-efficient algorithms as well as techniques that 

do not require costly additional hardware, thereby facilitating such applications with high 

reliability.  

Virtual coordinates provide an economical alternative to geographical coordinates for 

routing and self-organization of large-scale WSNs. Geographical coordinate-based protocols 

such as Geographical Routing (GR) require physical location of nodes, which may be 

obtained by GPS or a localization algorithm [14]. Use of GPS is too costly and/or is 

infeasible for many applications. Moreover, localization using analog measurements such as 

signal strength and time delay is difficult and susceptible to noise, fading, and multipath 

interferences. Need for accurate power control and signal strength measurements increase the 



3 

 

hardware complexity as well as the cost. Even when geographic coordinates are available, 

routing is carried out using Line-of-Sight distance information derived from geographic 

coordinates. Hence, concave physical voids and concave boundaries in the network degrade 

the performance of GR schemes. Traditional Virtual Coordinate Systems (VCS) characterize 

each node by a coordinate vector consisting of the shortest path hop distances to a subset of 

nodes, named anchors. These anchors are a set of ordinary sensor nodes with no additional 

capabilities than the other nodes in the network. Coordinates can be obtained using a 

controlled/organized flooding mechanism initiated by the anchors. The number of anchors 

becomes the network’s dimensionality in the virtual coordinate space. Thus, VCS is a higher 

dimensional abstraction of a partial connectivity map of sensors. Features such as ease of 

generation and facilitation of connectivity-based routing without the need for geographical 

information make VCS an attractive scheme for large-scale, resource-starved WSNs. As the 

network’s connectivity information is embedded in VCs, the physical voids are transparent in 

virtual space.  

There are three major problems associated with VCS. First, the number of anchors required 

and their placement for a given network play a crucial role in the performance of VC-based 

routing algorithms. However, identification of the optimal number of anchors and their 

proper placement remain as major challenges. Under-deployment of anchors causes identical 

node coordinates, while over-deployment and improper placement worsen the local minima 

problem [23],[36], resulting in logical voidsError! Reference source not found.. A node unable to 

identify a neighbor closer to the destination than itself is called the local minima problem. 

Not having a proper distance estimation is the second issue. The most commonly used 

distance estimation is norm 2 without any justification. The third deficiency is due to the fact 
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that VCS lose the directional information related to the node positions. Thus, existing 

algorithms based on VCS are limited to routing, and it is difficult to use in many applications 

as target tracking, boundary detection, etc., where such directional information is crucial. In 

this research, we go beyond the traditional VCS approaches/algorithms and derive coordinate 

systems with directional properties that provide efficient replacement of physical coordinate 

systems for various applications. 

 This research significantly advances the VCS domain to state-of-the-art by developing 

fundamental results, efficient algorithms, and techniques to achieve reliable WSN 

organization and data dissemination techniques. The contributions of this research can be 

categorized into six main sectors: (a) compressed representation of VCS and novelty analysis 

of each anchor coordinate; (b) regaining lost directionality and identifying a ‘good’ set of 

anchors; (c) generating TPMs; (d) efficient and reliable data dissemination schemes; (e) 

boundary identification without physical information; and (f) self-evolving sensor nets, i.e., 

each node in the network starts learning about the network and becoming network aware.  

In traditional VCSs, an average of 6% of the nodes are used as anchors ; thus, when the 

network size scales the length of the VC, which is also used as node ID, the VC becomes 

significantly long. We proposed a compression scheme that provides a compressed 

representation of the VCS without degrading the original performance. Furthermore, a 

novelty filtering-based technique for evaluating the amount of novel information contained in 

an ordinate on the coordinate space created by the rest of the anchors is analyzed. This 

method can be used to identify unnecessary or inefficient anchors as well as good anchor 

locations, lowering overhead and power consumption in routing. 
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When a VCS is generated, the directionality information that allows characterizing 

relative and absolute node positions is lost due to the radial propagation of the ordinates. A 

Directional Virtual Coordinate System (DVCS) is proposed based on a novel nonlinear 

transformation that restores the lost directionality information in the VCS. The introduced 

virtual directionality alleviates the local minima issue present in the original VCS. The ability 

to specify cardinal directions based on vector-form representation and use of angle 

estimations among directions are radical changes from the traditional VC system approaches. 

Performance of VCS-based algorithms is highly dependent on the anchor selection. A novel 

anchor-placement scheme, based on directional transformation on two randomly selected 

anchors, called Extreme Node Search (ENS) is proposed. VCSs based on ENS anchors show 

significant improvement in underlying algorithms’ performance (routing, map generation, 

etc.) compared to that of VCSs generated using traditional anchor selection approaches. 

Physical layout information such as physical voids, boundaries, and even relative physical 

position of sensor nodes with respect to X-Y directions is absent in a VCS description, and 

obtaining the physical topology of such networks has not been possible until now. Two novel 

techniques to generate Topology Preserving Maps (TPMs) from VCS, based on Singular 

Value Decomposition (SVD) and DVCS, are presented. In addition, the proposed extension 

of SVD-based TPMs for 3D networks is applicable not only in WSN context but also in 

emerging nano-network applications[1][6] where obtaining a physical map is impractical.  

The impact of proposed TPM generation without localization is immense in developing 

new algorithms and concepts. A technique that combines the advantages of geographic and 

logical routing called Geo-Logical Routing (GLR) to achieve higher routability at a lower 

cost is designed. It uses topology domain coordinates, derived solely from virtual coordinates 
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(VCs), as a better alternative for physical location information. A novel routing scheme 

called Directional Virtual Coordinate Routing (DVCR), which illustrates the effectiveness of 

the DVCS, is proposed. DVCR significantly outperforms existing VCS routing schemes, 

while achieving performance similar to the geographical routing scheme, but without the 

need for node location information. A TPM of a network is an identification of the correct 

embedding out of all the possible embeddings in the higher dimensional virtual domain, 

which facilitates the identification of network’s internal and external boundaries without the 

need of physical location information. The proposed boundary detection is capable of 

identifying physical/event boundaries in 2D and 3D surfaces. Even though we illustrate the 

capability of the boundary detection using connectivity-based approach, this scheme can be 

used with physical information as well.  

The future of WSNs can be envisioned as networks that evolve over time, becoming 

smarter while improving the performance by learning and inferring information about the 

network and sensed phenomena based on information gleaned from ongoing packet 

transmissions. Finally, a novel concept of nodes achieving such network awareness by 

resorting to passive listening at individual nodes’ normal messages associated with data 

dissemination or network management in large-scale WSNs is discussed. With traditional 

methods, achieving network awareness requires costly localization integrated with global 

distribution of location information based on network flooding.  

Moving beyond the existing sensor network, applications such as cyber physical systems, 

smart grids, and ubiquitous networks, require adaptive, self-evolving, reliable algorithms. 

This research lays a solid foundation for such an algorithm development platform. 
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The flow of the dissertation is as follows: Chapter 02 discusses the problem statement of 

the research. A dimension reduction technique and novelty filtering based novel information 

measure for each anchor in VCSs are proposed in Chapter 03. Furthermore, Chapter 04 

discusses a transformation to regain the lost directionality in VCS. After investigating the 

properties of the proposed Directional Virtual Coordinate System (DVCS), a routing scheme 

that makes use of the directionality information, is discussed. Singular Value Decomposition 

(SVD) based TPM generation technique for 2D and 3D networks is addressed in Chapter 05, 

while Chapter 06 discusses energy efficient partial Multi-Dimensional Scaling based 

approach for TPM generation using RSSI-based VCSs. Anchor selection is one of the main 

challenges in VCS. Chapter 07 proposes a scheme called Extreme Node Search that provides 

a ‘good’ set of anchors, improving the performance not only in routing but also in TPM 

generation. Moreover, Chapter 07 proposes a less computationally complex DVCS-based 

TPM generation scheme as well. Applications of TPMs such as routing and boundary 

detection without the need for physical information are discussed in Chapter 08 and 09, 

respectively. A proposed routing scheme in Chapter 08, Geo Logical Routing, is a family of 

routing schemes that probabilistically combines the topological and virtual information to 

overcome the weaknesses in each other’s domain. A self-learning approach where each node 

learns and becomes aware of its environment without requiring an expensive and dedicated 

setup phase is discussed in Chapter 10. Finally, mathematical formulation of limitations in 

compressive sensing based phenomena reconstruction and its distributed implementation are 

addressed in Chapter 11. Chapter 12 summarizes and concludes the research work. 
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CHAPTER 02 

PROBLEM STATEMENT 

 

Many emerging Wireless Sensor Network (WSN) applications rely on networks of 

randomly deployed, wirelessly connected smart sensor nodes that are capable of self-

organizing and cooperatively monitoring physical and environmental phenomena. The size of 

a sensor node (mote) can be as small as a millimeter-scale object that consists of a small-

scale processor, memory, and radio. These smart networks (e.g., smart RFID networks, smart 

grids, etc.) and their spectrum of applications can be characterized by the network size and 

node capabilities such as communication range, memory, energy, and computational power. 

Thus, protocol design requirements and constraints vary depending on the target application. 

Subsection 2.1 discusses the variety of sensor nodes available, their limitations, and 

challenges in algorithm development. Subsection 2.2 addresses the importance of data 

dissemination and fusion and the existing challenges. Finally, Subsection 2.3 explains the 

problem statement and the research contributions. 

 

2.1 Limitations and Challenges in Sensor Networks 

The number of nodes in a sensor network may vary from hundreds to tens of thousands 

depending on the application. Future technology evolutions may result in networks with 

millions of nodes. Hence, algorithms for WSNs should be scalable in terms of performance 
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and complexity. For instance, routing/structuring algorithm’s communication, computation, 

and memory complexities should not drastically increase as the number of nodes increases. 

Also, in routing algorithms, routing performance should not degrade, and address the length 

of the addressing scheme should not grow significantly as the network’s size increases. 

Mostly the network size depends on the deployment area, transmission, and sensing coverage 

of a sensor node, as well as overall budget. Sensor nodes, in general, are considered to have 

low memory, low energy, and low computational capabilities. However, such characteristics 

are highly dependent on the application requirements, network size, and the associated 

budget.  

Sensor nodes that are currently available include RFIDs that are priced from $1 to $25, 

with very little memory (16 bits) [97], and TelosB [111][74] and Mica2 [60][74], which are 

priced around $99 with 10KB memory, 250 Kbps radio (CC2420), and a 16‐bit processor 

(MSP430). There are powerful motes such as Imote2 [61] with 32MB RAM and 13MHz to 

416MHz processor (Marvell PXA271). These low-end nodes are usually powered using AA 

or AAA batteries. Hence, the amount of energy available for processing and communication 

is strictly limited. It can be thought of as a tradeoff between the number of nodes and their 

capabilities, under the given budget constraints. Advancements in technology have enabled 

the existence of miniature and economical sensor nodes that are capable of sensing various 

types of physical and environmental conditions, data processing, and wireless 

communication. Large networks can be heterogeneous so that they contain a subset of nodes, 

which have larger memory, higher battery life, as well as higher computational capabilities. 

In this research, we are focusing on homogeneous, large-scale static sensor networks that 
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consist of low-capability sensor nodes that operate with AA batteries, such as MICA2 and 

TelosB. 

As mentioned earlier, most of the low-end sensor nodes are battery powered; therefore, in 

general it is important to limit power consumption of battery-operated devices in order to 

extend network’s life span. A sensor node consumes power for sensing, communicating, 

passive listing, and data processing. Of all the processes running on sensor nodes, 

data/control message transmission requires the most amount of energy. The cost of wirelessly 

transmitting 1 Kb of data for a distance of 100 meters, in terms of energy, is approximately 

the same as that for the execution of three million instructions by a processor of 100 million 

instructions per second per Watt [74]. Evolving power harnessing technologies will allow 

sensor nodes to renew their energy from solar sources, temperature differences, or vibration, 

providing more flexibility in energy conservative algorithm design. Under energy harvesting 

strategies, for a perpetual sensor node operation, it must satisfy [112],            

                  , where    and    are the generated and consumed average powers, 

respectively.  ,       and         are duty cycle, power consumptions when the node is idle 

and active, respectively. When   is large, (i.e., the node is active for a long period)    would 

be high. Hence    may not be sufficient for the long-term operation of the sensor node. Even 

with certain battery-operated devices, one may need to limit the peak power consumption. As 

stated in [112], a device with a coin-size battery restricted to consume 200 µW of power on 

the average, has a lifespan of 167 days, which is equivalent to half a year. In such cases, the 

power is limited, but nodes are able to pursue long-term strategies to enhance its lifetime. 

The time it takes to harvest energy required to transmit a packet is   /  , where    is the 

energy per packet and    is the power generated by the harvesting scheme. The duration that 



11 

 

a network is not available for sensing would grow at least linearly with the number of nodes, 

and it is inversely proportional to the harvested power.  

Though computer networks and sensor networks have some similarities, algorithms and 

protocols used in computer networks cannot be directly used in limited memory and low 

computational power environments. Thus, novel algorithms/protocols focused on WSNs 

need to be developed. For instance, storing complete routing tables in a sensor node is 

impractical. Hence, algorithms should be designed in such a way that they address memory 

and computational limitations while supporting large-scale networks. Most of the large 

sensor networks are randomly deployed [116]. In order to perform data dissemination in an 

efficient manner, networks need be organized. This is also important for other applications 

such as boundary identification, target tracking, malfunction monitoring of equipments, and 

habitat monitoring. Manual configuration is not practical due to the size and, in some 

applications, especially those related to military, due to security purposes. Hence, sensor 

nodes need to organize themselves, and self-organization should be performed in an efficient 

and distributed manner even in large-scale networks. 

 

2.2 Efficient and Reliable Network Self-Organization and Data Dissemination 

The ability to self-organize and route messages among sensor nodes is key to the 

deployment of future large-scale Wireless Sensor Networks (WSNs). Routing protocols [4] 

play a crucial role in information fusion and dissemination in WSNs. They can be broadly 

categorized as content-based routing and address-based routing [23]. The former uses 

content-based attributes in the packet to define the destination set [18], while the latter uses 

some sort of position information, physical or virtual, to identify or to reach the nodes. 
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Physical domain schemes rely on location or physical position information [4] obtained using 

localization algorithms or GPS. Equipping nodes with GPS is costly and infeasible for many 

applications. Localization based on parameters such as RSSI is error-prone and difficult for a 

network of millions or even hundreds of sensors. If location information is available, 

Geographic Routing (GR) schemes (also called position-based routing or Geometric Routing) 

[69] can be used. GR possesses the advantage of having directional information, but its 

performance is highly correlated with localization errors ‎[106]. GR also suffers from dead-

end problems, also known as local minima problems, due to physical voids. A local minima 

problem is simply when a node currently holding the packet is unable to find a closer 

neighboring node to the destination than itself. 

Virtual Coordinate System (VCS) is an alternative addressing scheme that does not 

require GPS or additional hardware for signal strength measurements. In VCS, each node is 

characterized by a   length vector, where each ordinate corresponds to the shortest path hop 

distance to a subset of nodes, called anchors. Therefore, the number of anchors becomes the 

networks’ dimensionality. This hop-based coordinate system is independent of noise and 

interference. Furthermore, VCS has connectivity information embedded in each ordinate, so 

VC routing is less susceptible to ‘local minima’ caused by physical voids.  

Performance of algorithms based on VCSs is highly sensitive to the number of anchors 

and their placement. The coordinates of a node may not be unique due to the insufficient 

number of anchors and/or their improper placement. The existence of nodes with identical 

coordinates degrades the routability, which is defined as the percentage of packets that 

successfully reach their intended destination. Although one can argue that proper anchor 

selection and placement prevent this problem, guaranteeing such a scenario is difficult and 
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challenging. In virtual domain routing, similar to its counterparts in physical domain, a 

packet is greedily forwarded to the closest neighbor to the destination. Greedy forwarding 

decisions are based on information locally available to a node, i.e., coordinates of its 

neighbors. However, the distance function from the current node to the destination does not 

monotonically decrease due to the imperfections of virtual space, causing local minima that 

degrade the routability. These minima are referred to as logical voids and are analogous to 

physical voids in the physical domain. As identified, improper anchor placement and 

over/under placement of anchors are the main causes for this local minima problem. While 

increasing the number of anchors decreases the likelihood of having multiple nodes with 

identical coordinates, it may increase the local minima encounters during routing. Finding the 

overall best anchor placement is extremely challenging and, even if found, it is not likely to 

eliminate the local minima problem except in a limited set of network topology classes as 1D 

networks and 2D full grids.  

 

2.3 Research Goal and Objectives 

The goal of this research is to facilitate the deployment of large-scale sensor networks 

and applications by developing and evaluating reliable, efficient algorithms and 

techniques that do not require physical localization of nodes. 

Moving beyond the discussed issues, VCSs also suffer from (a) loss of directionality and 

(b) lack of physical information such as relative position, voids, and boundaries in virtual 

domain. Thus, it is impossible to develop algorithms such as boundary detection, 

geographical routing, target tracking, etc., solely based on VCS. In contrast, if such 

information can be extracted from VCS, sophisticated algorithms that are based on physical 
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information can be replaced with location-free VCS-based approaches. Moreover, algorithms 

that combine the advantages of connectivity information from VCS and derived physical 

and/or directional information will outperform physical-information-based algorithms. With 

this knowledge and understanding of VCS issues and their causes, we state the objectives of 

this research and accomplishments under each objective as follows. 

 

1. Efficient, Scalable and WSN-Friendly, Virtual Coordinate System (VCS) Based 

Approaches for Self-Organization 

Virtual coordinate-based algorithms, such as those for routing, are significantly beneficial 

by having the connectivity information embedded in the VCs. As explained above, if the 

number of anchors is insufficient or if they are improperly placed, the network will suffer 

from identical coordinates and local minima problems. Finding the optimal number of 

anchors and the proper placement of anchors are difficult problems to solve, especially 

because they are interrelated. Furthermore, some of the anchors may carry redundant 

information for a given node pair, and others may provide incomplete information resulting 

in inaccurate distance values degrading routability. Higher numbers of anchors lessen the 

problem due to identical coordinates, yet it increases the overall energy consumption due to 

increased VC address, which is used as node ID, and packet length. None of the existing 

literature, to our knowledge, presents a method to identify the useful information content of 

each anchor and reduce the dimensionality of the virtual coordinate space, without degrading 

the performance of the original coordinate system while decreasing the energy consumption.   

A novel technique based on novelty filtering that quantifies the novel information content 

of each ordinate in the remaining space, thus identifying ‘good’ anchors for routing, is 
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proposed in Chapter 03. Moreover, as the network size increases, the number of anchors 

required also increases. The higher the coordinate length, the higher the energy consumption 

is. A compressed representation of VCS, which provides more or less the same or sometimes 

better performance in routing, is proposed in Chapter 03. 

 

2. Regaining Lost Directionality in VCS 

Inadequacies associated with VCS are due to the loss of directionality information and 

lack of information about the physical topology. A novel transformation with which the VCS 

can regain its lost directionality (notion of left/right or south/east) is proposed in Chapter 04. 

Thus, nodes acquire some sense of physical location to supplement the connectivity 

information embedded in the original VCS. No additional transmission cost is involved as 

each node can evaluate the directional coordinate values with VCs available locally. First, 

properties of directional domain are derived. The ability to specify cardinal directions and 

use angles is a radical change from the traditional VCS approaches. Acquiring directionality 

provides new information hitherto not available in VCS and empowers a new approach for 

designing a broad spectrum of WSN algorithms. The technique to identify ‘good’ anchors 

alleviating the issues in VCS, called Extreme Nodes Search (ENS), is one algorithm among 

the proposed DVCS-based algorithms that are discussed in Chapter 07. 

 

3. Restoring Physical Layout Information That are Absent in VCS 

Many of the problems associated with VCS are due to the lack of information about 

physical network. Physical layout information such as physical voids, relative physical 

positions of sensor nodes with respect to X-Y directions, and even explicit connectivity 
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information are absent in a VCS description. These difficulties can be overcome if 

information on physical topology is available. Combining VC information and position or 

direction information in one network essentially would combine the advantages of VC 

routing and geographic routing schemes. However, this has to be achieved without inheriting 

the disadvantages associated with obtaining location information or localization. Obtaining 

topological and directional information from VCS, i.e., VCS to Cartesian coordinate 

transformation, is challenging. Obtaining the physical topology of a network from the set of 

VCs has not been possible until now. We developed the theoretical basis and techniques to 

obtain a topology map that preserves the 2D as well as 3D physical topology of a sensor 

network, including the geographical voids and relative Cartesian directional information (see 

Chapters 05 and 06).  

A vector-based representation is proposed for the DVC domain, which is then used to 

introduce the concept of angles between virtual directions in the transformed domain. The 

ability to specify cardinal directions is a radical change from the traditional VC system 

approaches. A novel TPM generation scheme is developed by selecting two near orthogonal 

directions in DVCS, as proposed in Chapter 07. This new TPM generation scheme requires 

significantly less computations than the existing Principle Component Analysis based 

methods. 

 

4. Reliable Data Dissemination and Boundary Detection with Localization-Free 

Approaches 

Many difficulties associated with VCS-based schemes are attributable to the lack of 

information about the physical network. Layout information such as physical voids and 
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relative positions of sensor nodes with respect to X-Y directions is absent. Even though VCS 

is based on connectivity, explicit information on hop distances between any pairs of nodes is 

not available and is difficult to estimate. The absence of connectivity information, on the 

other hand, is the cause for local minima problems in physical domain routing. Combining 

connectivity information in VCS and position or direction information in a network would 

essentially combine the advantages of VC routing and geographic routing schemes 

overcoming the disadvantages in each other’s domains. 

 A family of routing schemes called Geographic-Logical Routing (GLR), which combines 

the topological coordinates solely derived from VCS and VC information to achieve 

significantly high performance in routability, is developed as discussed in Chapter 08. The 

proposed non-linear directional transformation that unlocks the directional information in 

VCS is further investigated and is used in routing. The developed routing algorithm 

(discussed in Chapter 04), called Directional Virtual Coordinate Routing, provides a 

significant improvement in routing over existing routing approaches for WSNs.  

Boundary detection plays a crucial role in information fusion and dissemination in 2D and 

3D WSN applications such as target tracking, plume tracking [64], forest fires, animal 

migration, underwater WSNs, and surveillance applications. Identifying the boundary is also 

often important for self-organization of networks. Any network has a specific embedding 

(configuration) and can have three different types of boundaries: (1) network’s outer 

boundary, (2) inner boundary, and (3) event boundary. Currently available boundary 

detection schemes that have been targeted exclusively for 2D networks can be broadly 

categorized into (1) physical information-based and (2) topological /connectivity 

information-based. The former uses the physical position of nodes to identify the boundary 
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while the latter uses topological/connectivity information of the network. Physical domain 

schemes rely on node location or physical position information obtained using localization 

algorithms or GPS. A connectivity domain description of a network can have more than one 

valid embedding, even though only one of them corresponds to the physical network. 

Identifying the correct embedding, which is the physical topology, solely based on the 

connectivity information is challenging. Due to such difficulties, there is no connectivity-

based approach available to identify boundaries of 3D surfaces, to the best of our knowledge. 

In Chapter 09, we propose a novel-connectivity-based approach for network and dynamic 

event boundary detection for 2D and 3D networks. 

 

5. Intelligent Sensor Networks by Self-Learning Approaches 

We envision future sensor networks as networks that evolve by long-term learning and 

inference, achieving over time increasing levels of network awareness, thus becoming 

smarter and better at what they do. We use the term “network/topology awareness” to 

indicate a node’s cognizance of the topology, shape, and boundary of the network and its 

position in that network. Upon initial deployment, the nodes would be quite oblivious of their 

environment, their location in the network, and the nature of the network that they belong to. 

The only information that the nodes are aware of is the number of neighbors they have and 

their IDs. Thus, a network has to rely on random routing schemes for data dissemination. In 

order to improve the reliability of data dissemination, network organization is critical. On the 

other hand, having an energy-consuming dedicated network organization phase in resource-

limited WSNs reduces the network lifespan. However, over time, the nodes listen to the 

information disseminated in the network and infer additional knowledge and state 
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information, leading the nodes and therefore the network to achieve network-awareness. In 

Chapter 10, we discuss our distributive scheme where nodes start learning from the packets 

that they forward until each node becomes network-aware. Then we investigated 

compressive-sensing-based approaches for a node to discover sensed phenomena in the 

network, thus making nodes phenomena-aware as we discuss in Chapter 11. 
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CHAPTER 03 

DIMENSION REDUCTION OF VIRTUAL COORDINATE SYSTEMS IN 

WIRELESS SENSOR NETWORKS 

 

3.1 Introduction 

Routing protocols for Wireless Sensor Networks (WSNs) can be broadly classified into 

physical coordinate-based and virtual coordinate-based schemes. Physical domain routing 

relies on the physical (geographic) position information for routing, e.g., as in geometrical 

routing [4]. Virtual domain (or logical) routing is based on a set of virtual coordinates that 

capture the position and route information, e.g., hierarchical/clustering schemes [4] and 

Virtual Coordinate (VC) based routing [22][23][81]-[101]. The focus of this work is to 

reduce dimensionality of Virtual Coordinate Systems (VCSs) and thus enhance the energy 

efficiency without degrading the routability. 

Virtual Coordinate based Routing (VCR) relies on a set of anchor nodes. The VCs of a 

node consist of the hop distance from the node to each of a set of M anchors. The cardinality 

of the coordinate is the number of anchors. The major advantage of VCR over physical 

domain routing is that connectivity information is embedded in the VCs; therefore, physical 

voids that degrade physical domain routing no longer exist in the virtual domain. Moreover, 

high routability can be achieved without requiring physical localization or GPS.  

Most of the VCR schemes [22][23][81]-[101] use Greedy Forwarding (GF) combined 

with a backtracking algorithm. In GF, a packet is simply forwarded to a neighbor that is 
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closer to the destination than the node holding the packet. VCs of nodes are used for distance 

evaluation between nodes as well as for node identification (ID).When a closer neighbor 

cannot be found, i.e., the packet is at a local minima, backtracking is employed to climb out 

of it. Existing anchor placement strategies [22][23][101] cannot guarantee unique IDs or 

100% Greedy Ratio (GR). GR is defined as the percentage of routing requests that can be 

completed using GF alone.  

The use of logical coordinates for routing has its own drawbacks. If the number of anchors 

is not sufficient or if they are not properly placed, the network will suffer from identical 

coordinates and local minima problems. As [34] and [36] explain, the anchors may cause 

local maxima in the distance function at their locations, and hence minima at other node 

locations. To avoid local minima problem in routing, most of the anchor placement 

techniques seek to select the furthest apart nodes as anchors in an attempt to push those to the 

network boundaries. Reference [101], for example, proposes to have all the perimeter nodes 

as anchors. However, identification of boundary nodes is not trivial, and it also consumes a 

lot of energy. Beacon vector routing uses a random set of nodes as anchors while GPS free 

coordinate assignment algorithm [22] uses the farthest apart triplet of anchors for routing. 

The latter solution results in having a large number of identical coordinates due to under 

deployment of anchors. Identification of farthest apart anchors also involves flooding the 

network several times. The anchor placement scheme in Logical Coordinate Routing [23] 

also follows the argument that anchors should be placed the farthest apart. In addition, the 

number of anchors required is network topology dependent. 

Finding the optimal number of anchors and the proper placement of anchors are difficult 

problems to solve, especially because they are interrelated. The evaluation of the distance 
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between nodes from their VCs is another challenge.    and    norms, typically used for 

distance evaluation, are accurate on orthogonal coordinate systems such as Euclidean space 

but not on radial VC systems. Furthermore, some of the anchors may carry redundant 

information for a given node pair, and others may provide incomplete information resulting 

in inaccurate distance values and degraded routability.  

Higher number of anchors lessens the problem due to identical coordinates, yet it 

increases the overall energy consumption due to increased address (node ID) and packet 

lengths. None of the existing literature, to our knowledge, presents a method to reduce the 

dimensionality of the virtual coordinate space, to preserve the performance of the original 

coordinate system while decreasing the energy consumption.  

Our contributions in this research are two-fold. The first is a method to evaluate the 

amount of novel information provided by a new anchor. As unnecessary anchors and poor 

anchor placement degrade the routability, this novelty parameter is useful in many ways, e.g., 

to determine good anchor positions and to remove redundant anchors. The second 

contribution is a coordinate-length reduction method based on Singular Value Decomposition 

(SVD) , which replaces the original VC of each node, i.e., the M-tuple with distances to each 

of the M anchors, with a reduced vector (an R-tuple, with R << M) that contains almost all 

the information contained in the original coordinate set. Due to the information conservation 

property of SVD, we are able to achieve a similar routability with new, lower-dimensional 

coordinates. The two steps are evaluated individually to assess their impact, and then we 

present results to demonstrate the net effect of the two steps combined. Using a reduced set 

of coordinates with minimal redundancy brings several benefits, including shorter message 

headers and less local minima, resulting in better routability and power efficiency. We also 
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present centralized and distributed realizations of the algorithms in Section 3.4. The 

centralized implementation of the two schemes, application of novelty to eliminate redundant 

anchors, and reducing dimensionality of the VCs all require global information while the 

proposed distributed, online implementation requires coordinates of the anchors only.  

Section 3.2 proposes a method to evaluate novelty of an ordinate in the subspace of 

remaining VCs. Section 3.3 and 3.4 discuss SVD-based method of reducing VS dimensions 

and dimension selection criterion respectively, while Section 3.5 explains the derivation of 

algorithms based on anchors’ VCs. Section 3.6 explains the centralized and distributed 

realizations of the algorithm and their complexities. Performance evaluation is in Section 3.7, 

with conclusions in Section 3.8.  

 

3.2 Novelty of a New Anchor 

Let the number of anchors in the network be M. Consider the selection of a node, 

randomly or by some scheme, to be the (M+1)
th

 anchor. We are interested in finding out what 

is novel in (M+1)
th

 dimension defined by anchor (M +1). Denote the subspace formed by the 

initial M anchors be SM. If we project (M+1)
th

 ordinate on to SM, it gives us the component of 

(M+1)
th 

ordinate that resides in SM. The other component, which is perpendicular to the SM, is 

the novel information in the (M+1)
th

 dimension. That projection is called complimentary 

projection or residual. We use the Novelty Filter Decomposition method to evaluate it [72]. 

Let the coordinate matrix of the network of N nodes, with respect to M anchors be  . Each 

row of the N  M matrix   represents a coordinate of a node, and each column of   is an 

ordinate with respect to an anchor. The orthonormal projection matrix [81] for the subspace 

SM is given by 



24 

 

                                                                                     (1) 

By definition    is an orthonormal matrix and      
  . Let      , a column vector, be 

the ordinate of the set of nodes with respect to (M+1)
th

 anchor. Projection of   on to the 

subspace formed by prior   anchors is given by 

                                                                        (2) 

Norm of       
        is the amount of information of    , that resides in the SM. 

Furthermore, complementary orthogonal projection matrix is defined as [72] 

          

Again by definition,    is an orthonormal matrix and      
 
. 

                                                                              (3) 

Equation (3) gives the residual of   which sits outside the SM. Therefore, norm of     

          gives us the novelty of the (M+1)
th

 anchor.       is 

           
 
                                                               (4) 

Even though our description considered the introduction of a new anchor, it can be used in 

VCS to: 

1. Identify a good subset of anchors that preserves or improves routability (Section 3.7 - C), 

2. Determine a terminating criterion for introducing anchors to a given network, and  

3. Identify good anchor locations. 
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3.3 Reducing Dimensionality of VCS 

Determining the optimal number of anchors and their placement for a given network is a 

critical problem for VCR. Different selections of M anchors typically result in different 

routabilities. Therefore, even if the coordinate generation is done in a central station, trying 

out different sets of anchors to identify the one with the best routability is an exhaustive 

procedure. Hence, having a method to reduce the dimension in such a way that the routability 

is unaffected due to this reduction is pragmatic in energy-limited WSN applications. If this is 

done at a central location, one can start with a large set of anchors and reduce dimensionality 

to meet the required criteria.  

We begin with the Singular Value Decomposition of   which is a                matrix 

with       . 

                                                                                  (5) 

where,     and   are    ,   , and     matrices respectively.   and   are unitary 

matrices, i.e.,            and            

  is a basis of our data set  . Then,     gives the coordinates of the data   under the new 

basis  . 

                                                                                               (6) 

     is the projection of   on to    i.e.,  . . Note that the dimensions of     is    . 

Therefore each node still has an M-length coordinate vector.  

In order to reduce the dimensions, we use the fact that   is a diagonal matrix where diagonal 

elements are non-negative singular values arranged in descending order. Coordinates from 

SVD in (6) can be rewritten as 
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                                                                                     (7) 

where      
   

and     are the i
th

 column of       and   respectively. Basically     is each 

column of   weighted by the corresponding diagonal element of  , i.e.,         the singular 

values as in (7). Therefore singular elements decide which ordinate has a significant 

contribution. We reduce the dimensionality by ignoring the less significant singular values of 

  

                                                                                           (8) 

                                                                                 (9) 

where      and      are the i
th

 column of   and   respectively.         is the new set of 

coordinates of the nodes and coordinate length is R < M. 

SVD compresses the original data set in an optimal way, so it cannot improve over 

original values. This leads us to a new problem. What should be the new dimension R so that 

routability is not degraded? We address this issue in the next section. 

 

3.4 Dimension Size Selecting Criteria 

Before evaluating the error due to reduction of the dimension from M to R, let us zero-pad 

     so that it is of the same size as      . Let us call zero-padded  ,   . Then the distance 

between       and   will be same as the distance between       and  , which is evaluated 

using Frobenius norm [120] as: 
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where    is zero-padded  .  is an orthonormal matrix. Orthonormal matrices induce 

rotations. Since Frobenius norm [120] is invariant for rotations, 

           
 

 
  

 

 

 
 
 
 
 
 
 
   

 
 

 
    

 

 

     
 
 
 
 
 
 

 

 

 

 

                  (10) 

the difference between the full SVD coordinates and dimension reduced coordinates are 

simply given by  

               
    
 
                                                                   (11) 

By defining a threshold value for the information loss in the transformation, we can get a 

value for the dimension  of the new coordinate system. 

 

3.5 Reducing Dimensionality Based on Anchors’ VC 

  in (5) is evaluated based on  , which is a     matrix that consists of VCs of the 

entire network. With sensor networks, it is crucial to reduce communication and computation 

overheads involved. This section presents a process to generate the transformation matrix   

with a much smaller subset of data of  ,     the     matrix corresponding to the 

coordinate set of only the M anchors. As M<<N, computation overhead is reduced 

significantly.  

Let the SVD of   be 

           
                                                             (12) 
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  is a basis for   . Note that    has the same size as   in (5). Following the same procedure 

as earlier 

                                                                                 (13) 

         is the SVD-based coordinate of the i
th

 node, and       is the i
th

 row of  , i.e., VC of 

i
th 

node. Each node can evaluate its SVD coordinate locally with the knowledge of   . In 

order to reduce the dimension, each node can estimate R following the same procedure 

explained in Section 3.4, based on   . 

              
   
                                                               (14) 

Moreover, the novelty analysis explained in Section 3.2 can be used to identify novelty of 

each anchor just using anchors’ VC set   . Let us define            
   as the coordinate 

vector of i
th

 anchor. Then projection matrix for the i
th

 anchor can be written as 

           
                                                              (15) 

where   is           . Hence complementary orthogonal projection matrix is          

      . Projection of         on to the subspace M-1 and complementary projection of  

        can be found following the same procedure explained in Section 3.2. Hence the 

novelty of each anchor on the remaining subspace can be estimated.  

 

3.6 Implementation in Sensor Networks 

Algorithms in sensor networks are in general implemented in a distributed manner. 

However, certain algorithms that are required to be executed only once per network may be 

implemented offline and results distributed to the nodes. Next we discuss the offline and 

online realization of the method. 
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A. Offline Realization 

As the following examples indicate, a centralized implementation does not diminish the 

value of the proposed methods for sensor networks. 

Ex. 1: For manual sensor node deployment, e.g., when a sensor network is deployed in a 

building, the reduced VCs can be pre-computed and each node preconfigured with its VCs. 

VCR will simplify routing and achieve very high routability in spite of geographical voids.  

Ex. 2: Consider a sensor network where the nodes are deployed randomly. Each node sends 

its neighbors information to a central station or a mobile base that traverses the region so that 

the adjacency matrix [121] of the network can be formed at the central station with the 

complexity of      . Reduced coordinates are computed using the algorithms in Sections 

3.2–3.4 implemented at the base station. Since adjacency matrix is available, reduced 

coordinates of cardinality R can be sent back to each node with an operation of complexity of 

     . Alternatively, the mobile station traverses the region distributing the coordinates to 

the nodes. Centralized implementation avoids multiple flooding in the network involved in 

traditional anchor generation phase [22][23]. 

 

B. Online Realization 

A distributed implementation of the above may be achieved as follows. The anchor-based 

VC generation is first carried out the traditional way, i.e., via flooding [4]. One of the 

anchors collects the set of anchors’ coordinates and generates   . It estimates R and sends 

first R columns of    to the rest of the nodes in the network with organized flooding 

mechanism, which requires      messages. Each node i can now generate                 

locally by simply multiplying its own coordinate by        .  
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3.7   Performance Analysis 

The performance of the proposed methods is evaluated next for three network topologies 

representative of a variety of networks: Figure 3.1 a) is a 496-node circular-shaped network 

with three holes in the middle of the network, Figure 3.1 b) is a uniformly distributed 30-by-

30 node grid with 100 missing nodes, and Figure 3.1 c) is an odd-shaped network with 550 

nodes. The communication range of a node in all three networks is unity. MATLAB
®
 2008b 

is used for our simulations. VCSs are generated purely based on the adjacency matrix [121]. 

We used random anchor placement, but the same methodology is valid for any other anchor 

selection method. For consistency, we use pure GF for routing; hence the results can be 

expected to hold for other routing algorithms, e.g., an improved GF scheme with 

backtracking. Routing is considered successful if the packet is routed to the exact destination, 

identified by a unique node ID. GR is evaluated using Monte Carlo simulation. GR is 

evaluated considering random source destination pairs. If a packet is routed to the destination 

using GF, then that packet is counted as routed. The average of all those routed packets to 

total packets is defined as the Greedy Ratio, i.e., 

              
                                  

                         
                                                         

 

A. Novelty Value in Anchor Placement 

    Novelty of anchors was evaluated using (4) by introducing one anchor at a time. In all 

three networks (see Figure 3.1), anchors introduced after about 15
th 

anchor do not contain 

significantly novel information. Furthermore, this method can be used to select a better 

anchor location for (M+1)
th

 anchor by defining a novelty threshold for an anchor. If the 
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novelty of (M+1)
th

 anchor is less than the threshold, we can change the position of the anchor 

until we find a ‘good’ anchor.  

 

Figure 3.1. Novelty measurement as # anchors increases up to 40 for a)Circular shaped 

network with three holes in the middle, b) Grid based network with 100 random missing 

nodes, and c) Odd shaped network. 

 

B. Dimensionality Selection Criteria and Performance of Reduced Coordinate System 

   Performance of new coordinates with reduced dimension given by SVD was evaluated and 

compared with the performance of original coordinate set. A good estimate for R in (8) was 
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obtained using (11) for centralized implementation without using a brute-force approach. 

Moreover, R for online implementation was obtained, as explained in Section 3.6. GR of the 

new coordinate system should be the same as or within a bearable margin compared to the 

original coordinate system for both implementations; hence, ultimate selection criterion of R 

is the GR difference, where GRs were obtained by Monte Carlo simulation. 

We did the simulation on the three networks in Figures 3.1 a), b), and c). In Figures 3.2 

a), b), and c), we have plotted, as the dimensionality of the new coordinate system varies, the 

following: 

1. Amount of information remaining after dimension reduction given by the dimension 

criteria in (11) using entire VC information,  

2. Singular value corresponding to each dimension using entire VC information,  

3. GR difference between original coordinate system and new coordinate system with 

corresponding dimension, 

4. Amount of information remaining after dimension reduction given by the dimension 

criteria in (11) using anchors’ VC information, and 

5. Singular value corresponding to each dimension using anchors’ VC information. 

It can be clearly seen from Figure 3.2 that the singular values are approximately the same 

as the GR difference, so we can avoid having a Monte Carlo approach to get GR difference. 

Moreover, centralized implementation and online implementation criteria curves are almost 

the same. For implementations, R is 10, 5 and 5, for the three networks respectively, based on 

Figure 3.2. 

As shown in Figure 3.3, in all 10 configurations with different random anchor 

placements, GR were almost the same for the original coordinate system with 40 anchors as 



33 

 

well as reduced coordinate system for R: 10, 5 and 5 respectively for both centralized and 

distributed applications.  

 

 

 

Figure 3.2. Selection of R for network  a) Figure 3.1 a),  b)Figure 3.1 b), and  c) Figure 3.1 c). 
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Figure 3.3. GF with entire anchor set (40 anchors) SVD based reduction with dim. 5 (SVD5 w/ entire 

VC ), anchor coordinate set based SVD reduction with dim. 5(SVD5 w/ Anchors VC ) a)  for Figure 

3.1 a),  b) for Figure 3.1 b), and  c) for Figure 3.1 c). 

 

C. Novelty-Based Anchor Selection Followed by SV-Based Compression 

Novelty values of anchors were used to select a good set of anchors out of the original 

anchor set, and that coordinate set from good anchors was further compressed using (8). 
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First, 40 random anchors were placed in the networks in Figures 3.1 a), b), and c). Novelty 

thresholds were defined based on the novelty value of i
th

 anchor on the 39-anchor subspace.  

 

 

 

Figure 3.4. GR with original coordinates (40 anchors), coordinates selected by novelty (Novelty w/ 

VCS), SVD-based reduction on selected coordinate set by novelty(SVD10), coordinates selected by 

novelty based on Anchors VC (Novelty w/ Anchors VC), and SVD-based  reduction on selected 

coordinate set by novelty based on Anchors VC(SVD10 Anchors VC) in network:  a) for Figure 3.1 a), 

b) for Figure 3.1 b), and c) for  Figure 3.1 c). 
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In the simulation, the subset of anchors with a novelty higher than 75% of the mean 

novelties of anchors was selected to define the ‘good’ anchor set. Proposed methods for 

offline and online implementations resulted in the same decision values. The number of 

anchors selected by novelty method, based on entire coordinate set and just the anchors’ 

coordinate set, for the three topologies in 15 simulation turns with random anchor 

placements, are tabulated in Table 3.1. Then the coordinates based on these selected anchors 

was further compressed as in (8). 

Table 3.1 

Maximum, Minimum And Average Novelty Based Coordinate Set Size With 40 Initial 

Anchors, in 15 Configurations of Networks in Figure 3.1. a), b), and c) 

Network Maximum dimension 

selected 

Minimum dimension 

selected 

Average dimension 

selected 

A 32 22 28 

B 35 18 26 

C 36 21 28 

 

The average size of coordinate sets selected by novelty method for networks in Figures 3.1 

a), b), and c) for both the implementations discussed were 28, 26, and 28 out of 40 

respectively. Using SVD compression, the numbers were further reduced to R= 10, 5 and 5 

respectively in online as well as in offline realizations. We have selected a general threshold 

for novelty just for illustrating the purpose of using the novelty information to filter good 

anchors. Threshold should be selected appropriately by observing the novelty plot of the 

anchors in each network individually. Even with the mean novelty threshold, in some of the 

cases selecting a subset of anchors improves the routability (see Figure 3.4). This can be 

explained by the fact that redundant anchors degrade the routability. Online and offline 

realizations give more or less the same performance. 
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3.8 Conclusions 

In virtual coordinate-based routing in sensor networks, the higher the number of anchors, 

higher is the communication overhead. Although higher number of anchors reduces the 

probability of having identical coordinate, it does not necessarily increase the routability. 

Therefore, a method of identifying ‘good’ anchors or anchor locations and coordinate size 

reduction is essential to improve routability and energy efficiency. The first contribution of 

this chapter, novelty estimation, can be effectively used to find the novel information content 

of anchor. Different 40-anchor configurations indicate that most of the routing information 

can be captured by about 15 anchors. Based on the novelty value of anchors in the network, 

an effective set of anchors can be selected. Our results for different configurations show that 

the coordinate length can be reduced from 40 to 28 on average, while maintaining Greedy 

Routability within a narrow margin. Moreover, the proposed novelty method can be used as a 

tool for network partitioning based on the effectiveness of anchors in each region. The next 

contribution is dimension reduction based on SVD. In the example networks, it reduced the 

cardinality of the virtual coordinates from 40 to 5, a change by a factor 8, resulting in 

significant efficiencies in packet length, and implicitly in energy consumption. Basically, 

SVD extracts prominent features and information in the original coordinates while removing 

the linear dependency in the original coordinate set, resulting in reduced dimensionality. 

Centralized and distributed implementations of the algorithms are discussed. 
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CHAPTER 04 

DIRECTIONAL VIRTUAL COORDINATE SYSTEMS FOR WIRELESS SENSOR 

NETWORKS 

 

4.1 Introduction 

Virtual Coordinate Routing (VCR) and Geographical Routing (GR) are two main classes 

of address-based routing schemes for WSNs. Geographical routing [4][69] relies on physical 

location information of nodes and directional information that can be derived from individual 

node locations. Obtaining location information, however, requires mechanisms like GPS, 

which are costly or infeasible in some applications, or localization algorithms, which are 

complex and error-prone as a result of their reliance on measurements such as RSSI or time 

delay. GR also suffers from poor routability in the presence of concave physical voids. 

Connectivity-based approaches provide an alternative solution to overcome weaknesses 

associated with location determination and geographical voids. VCR [22][23][36] uses a 

Virtual Coordinate System (VCS) that characterizes each node by a coordinate vector of size 

M, consisting of the shortest hop distance to each of a set of M anchors, which may be 

generated using network wide flooding [23]. The number of anchors becomes the networks’ 

dimensionality. 

Routing in virtual domain has two phases. Most of the VCR schemes [22][23][113] use 

Greedy Forwarding (GF) combined with a back-tracking algorithm. In GF, a packet is simply 
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forwarded to a neighbor that is closer to the destination than the packet-holding node. Virtual 

Coordinates (VCs) of nodes are used for distance evaluation between nodes as well as for 

node identification (ID). Distance is estimated using either L
1
 or L

2 
norm based on VCs; such 

values are often unreliable estimates of the distance as the contributions due to different 

anchors are not orthogonal. When a closer neighbor cannot be found, i.e., the packet is at a 

local minima, backtracking is employed to climb out of it.  

Performances of VCR and anchor placement are highly correlated. Anchors may be 

selected randomly [36] or by selecting nodes with specific properties, e.g., by selecting all 

the perimeter nodes [101]. When a message reaches a local minima, an expanding ring search 

is performed in [101] until a closer node is found or TTL (Time-To-Live) expires. In Virtual 

Coordinate assignment protocol (VCap), the coordinates are defined based on three anchors 

[22]. At local minima, VCap causes a packet to follow a rule called local detour. In Logical 

Coordinate based Routing (LCR) [23], backtracking is used when GF fails at a local minima. 

Aligned virtual coordinate system (AVCS) [82] re-evaluates VCs by averaging its own 

coordinates with neighboring coordinates to overcome local minima. In Axis-based Virtual 

Coordinate Assignment Protocol (ABVCap) [113], 5-tuple VC is assigned to each node 

corresponding to longitude, latitude, ripple, up, and down. All these VCR protocols rely 

mainly on Greedy Forwarding (GF), followed by a backtracking scheme to overcome local 

minima. Convex Subspace Routing [36], in contrast, selects dynamically changing subsets of 

anchors to provide convex distance surfaces for routing. 

VCS has its inherent advantages and disadvantages. VCS is a connectivity-based, higher 

dimensional transformation of WSN, resulting in some attractive properties such as 

considerably high routability without any geographical information, effectiveness of 
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connectivity information embedded in VCs, and insensitivity to physical voids and to 

localization errors. Physical domain to virtual domain transformation is many to one as VCs 

are insensitive to directions, which is one main cause of identical coordinates and local 

minima. If an adequate number of anchors are not appropriately deployed, it may also cause 

the network to suffer from identical coordinates and local minima [36], resulting in 

logical/virtual voids. Identification of the optimal number of anchors and proper anchor 

placement remains a major challenge [36]. 

Inadequacies associated with VCS are due to loss of directionality information and the 

lack of information about physical network topology. This chapter proposes, for the first 

time, novel transformation with which the VCS can regain its lost directionality, thus 

acquiring some sense of physical location, to supplement the connectivity information 

embedded in original VCS. No additional transmission cost is involved, as each node can 

evaluate the directional values with VCs available locally. Acquiring directionality provides 

new information, hitherto not available in VCS, facilitating a new approach for designing a 

broad spectrum of WSN algorithms. A technique to identify ‘good’ anchors alleviating the 

issues in VCS discussed in [36], novel routing schemes and generating Topology Preserving 

Maps (TPMs) with lower cost compared to the proposed scheme in [37] are among potential 

applications of Directional Virtual Coordinate Routing (DVCS). As an example, we illustrate 

a deterministic algorithm for routing in a constrained tree topology, based on new, 

transformed coordinates in directional virtual space. To our knowledge, no deterministic 

algorithms have been developed before using the VC domain. 

In sum, the contribution of this research can be listed as below: 

1. Novel concept of transforming directionless VCS to directional VCS 
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2. Properties in the new directional VCS and deterministic routing in a constrained tree 

network 

3. Directional Virtual Coordinate Routing (DVCR) - Routing in directional VCS 

The proposed routing scheme in directional virtual space, called Directional Virtual 

Coordinate Routing (DVCR), is compared with CSR ‎[36] and LCR ‎[23]. Moreover it is 

compared with a geographical routing scheme called Greedy Perimeter Stateless Routing 

(GPSR) ‎[69] which makes greedy forwarding decisions until it fails, for example due to a 

geographical void, and attempts to recover by routing around the perimeter of the void. 

DVCR outperforms CSR and LCR with a noticeable value, achieving more or less the similar 

performance as GPSR. 

Section 4.2 explains the new transformation of VCS to directional VCS. In Section 4.3, a 

deterministic routing based on directional coordinates in a simple tree is discussed. A novel 

routing protocol is proposed in Section 4.5. Performance evaluation is in Section 4.6. Finally, 

Section 4.7 concludes the contribution of this research. 

 

4.2 Directionless Virtual Space to Directional Virtual Space Transformation 

As a virtual coordinate corresponds to the distance to a particular anchor, the physical 

domain to virtual domain transformation is many to one. The coordinate propagates 

concentrically around the anchor, thus losing the directional information. Consequences of 

this mapping include identical coordinates and local minima encountered in routing ‎[36]. A 

novel transformation of VCs to regain the directionality lost is proposed next. The notations 

used are summarized in Table 4.1.  
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Table 4.1 

Summary of the Notations used in Chapter 4 

Notation Description 

  Number of network nodes  

           Node i, Destination, Source 

  Number of anchors 

         Anchor set (a subset of  ) 

      Minimum hop distance between node    and    

[             ] Node Ni’s VC 

                 

          
  

Node Ni’s transformed VC 

      Distance between     and    in transformed domain 

  Neighbors set 

        Node that forward the packet to current node 

        Node that current node will forward the packet 

 

First consider a 1D network where one can easily visualize the concept behind the 

transformation. Table 4.2 contains the VCS for the 1D network shown in Figure 4.1 with 

respect to two anchors    and     which are      hops apart (8 hops in Figure 4.1). Note 

that        propagates symmetrically from the corresponding anchor, thus losing 

directionality. Even though               provides the sense of directionality for the 

region between anchors, as can be seen in Table 4.2, it remains constant outside the region 

bounded by anchors, thus failing to provide directional information. Conversely,        

       has a constant value in between the anchors, but linearly varies elsewhere. By 

combining those, a node    is characterized using                that is defined as,  

               
 

      
                                                                 (1) 

              , as shown in Table 4.2, maps the nodes’ VC                linearly to the 

real axis with positive and negative values with center at the midpoint of    and   , 
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providing directional information in the virtual domain. The term 
 

       
 normalizes the 

distance to provide a unit difference of the ordinate between two adjacent nodes.  

 

Figure 4.1. 1D network with two anchors    and   . 

 

Prior VC-based routing schemes such as LCR ‎[23] encountered local maxima at anchors 

even for this simple linear array ‎[36], but with this transformation, the local minima problem 

is overcome completely.  

Table 4.2 

Example VC transformation Steps in 1D Network shown in Figure 4.1 

Node ID                                          

     2 1 0 1 2 3 4 5 6 7 8 9 10 

     10 9 8 7 6 5 4 3 2 1 0 1 2 

          -8 -8 -8 -6 -4 -2 0 2 4 6 8 8 8 

          12 10 8 8 8 8 8 8 8 8 8 10 12 

             -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

 

Furthermore, one can now view each node as a point in a vector space. Define,          as 

the unit vector in      direction, which is named as a virtual direction. Ordinate in Figure 

4.1 can be written in the form: 

                                                                                                          (2) 

Now consider a 2D sensor network. Select two coordinates of node   :       and      , 

with respect to anchors,    and   . Then the magnitude of the virtual distance vector 

component in the      direction is given by 
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                                                              (3) 

Since there are   ordinates available,   
  different virtual directions (though not 

orthogonal to each other) may be specified and can be evaluated locally at each node. Some 

of the properties in this directional Virtual Space are discussed next. Each transformed 

domain ordinate can be written in the form: 

                                                                                               (4) 

where                  is the vector representation of the transformed ordinate of      and 

        is the virtual direction obtained by     . We can also define the virtual distance 

between two nodes    and    in this direction to be 

                                                                                            (5) 

Figure 4.2 shows the 2D extension of the transformation to a grid network. Transformed 

coordinates are given by         ,         ], providing directionality and dividing the grid 

into four quadrants. 

 

Figure 4.2. (a) Physical map of the grid and (b) Directional domain map,          Vs.         , of 

2D grid. 
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Property 1: Consider a 2D network with two anchors    and   , which are       hops apart, 

the transformation                
 

      
      

       
   partitions the network into 

two sections with positive and negative ordinates. Moreover, the nodes that are equidistance 

in terms of hops to    and    have                 . 

Proof: Consider the transformation in Eq. (3). The nodes with             have positive 

transformed ordinates while nodes with             have negative transformed ordinates. 

Nodes with            have zero ordinates in the transformed domain. QED 

By randomly or systematically selecting more anchor pairs, the network can be partitioned 

based on the sign of each ordinate as in a four-quadrant Cartesian coordinate system. 

Partitioning networks based on the sign is demonstrated in Section 4.5. The relationship of 

(3) allows the derivation of distance and coordinate relationships that in turn allow for 

systematic, and even deterministic, methods for routing using VCs. To our knowledge, this is 

the first instance of use of VCs this way. We illustrate the use of the directional information 

using a simple example next. A routing algorithm based on DVCS is presented and evaluated 

in Section 4.5.  

 

4.3 Routing in Directional Virtual Domain 

In this section, we demonstrate how it is possible to exploit properties of DVCS to 

develop strategies to identify routing paths, which was not feasible with directionless VCS. 

For the example presented in this section, that of a simple tree, a DVCS-based deterministic 

routing protocol can be used to guarantee 100% routability. This direction-based method can 
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be considered as a foundation for developing relationships to discover routing paths in more 

complex topologies. 

Consider a Constrained Tree (CT) network with branches extending to both the sides off 

one main trunk (backbone). Assume that the maximum degree of a node is three, i.e., no two 

branches occur at same point, and there are no branches off branches (see Figure 4.3). CT 

network topologies fit well in environments such as mine-shafts and pipeline distribution 

systems. The traditional VCR schemes, such as LCR and CSR, cannot guarantee 100% 

routability in these networks. Consider the network shown in Figure 4.3, where a packet is to 

be sent from node           to           . In this case, the packet will be forwarded to 

     in Greedy Forwarding based on VCs, whereas the correct neighbor to forward the 

packet is     .  

 

Figure  4.3. Constrained tree network with two anchors    and   . 
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Property 2: In a CT, the gap between any two adjacent nodes in a branch is constant, and 

uniquely dependent on the junction node. Specifically, for a branch off node    

             , the gap is given by 

                                                                                   (6) 

Proof: Junction node coordinates are unique. Consider the junction node                 . 

A positive integer   which makes                    =             does not exist. 

Hence the gap in each branch given by (6) is unique. QED 

 

Property 3: In a CT, only the members of the backbone                  satisfies 

                                                                                                  (7) 

Proof: This can be proven by the characteristics of VC. QED 

 

Property 4: In a CT, junction node                  can identify the members on its 

branch and how many hops that each member of the branch is away from itself. 

Proof: As in property 2, a gap in a branch is unique and is known by the branching node. 

Assume a node                  is a member of the branch from junction   . Then 

virtual ordinates of    satisfies                 and               .   can be 

found as in (6). Thus     , the number of hops to the backbone from    can be calculated. 

Consider another junction node                      with gap in its branch   . There 

does not exist a positive integer   and   , which satisfy                 
    and 

               
   . Hence    exists only in the branch of   . QED 
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Theorem 1: In a tree with branches on two sides off one main trunk, with no branches off 

branches, with node degree   3, 100% routability can be achieved with two anchors placed, 

one at each extreme of the trunk. 

Proof: If the destination is on the same branch as the source, the source can ascertain it by 

evaluating the gap between itself and its neighbor, and it can forward the packet toward or 

away from branch node correctly. Otherwise, the routing is performed in two steps. Initially, 

the packet is routed to the junction node where the current node holding branch connects to 

the backbone. Then the packet is routed to the destination from the junction node, but the 

current node should find out the coordinates of the junction node. Consider Figure 4 3. Let 

the current node be    and destination be   . The distance between anchors,        in (7) is 

known and (6) is simply the difference between the current node and the neighbor. Therefore 

the VC of the branching node       ,        can be found. Thus    , the number of hops to 

the backbone, can be found. If   and       ,        are known, a packet can reach the 

backbone, i.e., node              , and then it can be routed to the destination. Any junction 

node can identify whether    is in its branch or not. If    is a member of the branch, the 

junction node will forward the packet to its neighbor on the branch. If    is not a member of 

its branch, the junction node will forward the closest neighbor, excluding the neighbor on the 

branch, to   . QED 

   and    need not be at corners but we should make sure all the branches are in between 

   and   . Moreover, if the number of nodes in-between    and    is odd, and if there is a 

branch at the middle point, all the nodes in that branch will have zero ordinate (see proof of 

Property 1); this can be avoided by assuring hop distance between    and    to be even 
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when anchor    is selected. Furthermore, in a tree with branches on two sides (provided 

branches are off one main trunk), when there is a branch off a branch, it can be treated as a 

sub-constrained tree network, hence the need to add exactly one additional anchor. Routing 

should be done in each sub- constrained tree based on corresponding anchors. This will allow 

us to get the number of anchors needed for any tree, i.e., any graph without cycles. A simple 

adjustment can be proposed if there are two branches at the same node. After generating VCS 

with respect to anchors    and   , members of the backbone and branching nodes that have 

two branches can identify themselves. After that, junction nodes with two branches can add 

one more bit to the coordinate of the nodes in one of the branches to indicate whether it’s the 

upper or lower branch. This newly added bit can be used to prevent identical coordinates in 

the upper and lower branches. Theorem 1 holds for the network after the small adjustment. 

Moreover, as observed, the same approach can be applied in a tree network with degree 3. 

 

Figure  4.4.  Constrained tree with branches in a branch, which can be modeled as a sub constrained 

tree. 

4.4 Simulation Results: Partitions in Directional Virtual Space  

The effectiveness of the directional domain is evaluated in five representative examples of 

a variety of networks, as shown in Figure 4.5: (a) spiral-shaped network with 421 nodes, (b) 

a grid-based network with 100 randomly missing nodes (800 nodes), (c) a 496-node, circular-
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shaped network with three physical voids/holes, (d) a network of 343 nodes mounted on 

walls of a building, and (e) odd-shaped network with 550 nodes. Communication range of a 

node in all five networks is unity. MATLAB
® 

2009b was used for the computations.  

As stated in property 1, the sign of each ordinate in transformed domain is used to identify 

different sectors of the network. In the networks shown in Figure 4.5, three randomly 

selected anchors,     ,and    were placed. Then, using the transformation given in (3), the 

new coordinates,                                          were generated by each node 

locally. Based on the sign of each ordinate in the directional coordinate, i.e., 

positive/negative, different sections were colored as shown in Figure 4.5. Since three 

anchors’ ordinates are used for transformation, cardinality in transformed domain is 3 (  
 ). 

Hence the maximum possible sign combinations in the network is   . As in Figure 4.5, not 

all the sign combinations exist but existing combinations clearly partition the network. 

  

4.5 Directional Virtual Coordinate Routing (DVCR) 

In this section, we present a novel routing scheme based on transformed coordinates. In a 

network with   randomly selected anchors, a node can evaluate its transformed coordinates 

of cardinality     
  locally. Let the transformed current node coordinate be    

                and that of the destination be                   . L
2
 distance 

between    and    is using transformed coordinates is  

                             
                                                         (8) 
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Figure 4.5. Partitions of (a) Spiral shaped network with 421 nodes, (b) A grid based network with 100 

randomly missing nodes (c) A 496-node circular shaped network with three physical voids/holes, (d)  

A network of 343 nodes mounted on walls of a building (e) Odd shaped network with 550 nodes, 

based on the sign of the ordinates in transformed domain created by three randomly selected anchors 

        . Transformed domain has three ordinates generated by        ,        , and         

pairs. 

 

The packet is forwarded to a neighbor using Greedy Forwarding (GF). To overcome the local 

minima, the minima node performs an approximate hop distance estimation from itself and 

also from neighbors as explained next, based on (9), (10) and (11). The assumption is that L
1
 

in transformed domain (see (5)) is a good representation of the hop distance. Hence there 

exists a neighbor which has lower hop distance (estimated) to destination. For this 

estimation, two directional ordinates are sufficient.  

Define the ordinate difference set       between current node    and all the neighbors 

     as 

                                                                                        (9) 

Since there are     number of neighbors, size of       is the same as that of    . Consider 

      with respect to         . Let     and    , be             and             

respectively. Then the approximate hop distance between    and    is represented with 

respect to         , 

(a) (b) (c) (d) (e) 
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                                                                                     (10) 

Similarly     and     is obtained following the same method with respect to another ordinate 

        . Another representation of the approximate hop distance between    and    with 

respect to         , 

                                                                                    (11) 

By solving (10) and (11), the approximate hop count from current node to destination, 

which is    , can be estimated. This can be repeated for neighbors set   to get the hop 

distances from neighbors to destination. Packet will be greedily forwarded to the neighbor 

selected by this hop count approximation. Algorithm of the routing protocol can be 

summarized as in Figure 4.6. 

 

4.6 Performance of Directional Virtual Coordinate Routing 

The performance of proposed Directional Virtual Coordinate Routing (DVCR) scheme is 

evaluated next, for the five networks introduced in Figure 4.5. Performance of DVCR is 

compared with two virtual coordinate-based routing schemes, Logical Coordinate Routing 

(LCR) ‎[23] and Convex Subspace Routing (CSR) ‎[36], and a geographic routing scheme, 

Greedy Perimeter Stateless Routing (GPSR) ‎[69]. Five randomly selected nodes, serving as 

anchors in order to illustrate the performance of proposed routing scheme, are independent of 

the anchor placement. In LCR implementation, we assumed that the entire path traversed is 

available at each node so that backtracking can be perfectly performed avoiding any loops; 

that is, the implemented case is the best case of LCR and is not achievable in practice due to 
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the cost involved in transmitting the required information. Time-To-Live (TTL) of the packet 

is set to 100 hops.  

  

Input: VCS 

Output: Closest neighbor to destination 

while (      ||         ) % TTL- Time-To-Live 

                                              % Calculate the transformed domain distance 

from Neighbors set K to destination excluding  

                      and           

                      %Current distance to desination 

 

    if                            

              if        

                    ROUTED 

              else % if identical coordinates 

                    Find     for    and                         and pick the closest neighbor. 

If no closer neighbor exists routing fails 

              end                                 

    elseif             

                        =                    

                   = 
      

 
                      

                         =  
      

 
      

     elseif              %Local minima 

                    Find     for    and                         and pick the closest neighbor. 

If no closer neighbor exists routing fails 

     end 

end 

Figure 4.6. Pseudo code of DVCR algorithm. 

 

Average routability, average path length that packets traversed, and average energy 

consumption per successfully delivered packet are used as the performance metrics. Average 

routability evaluation considers all source-destination pairs, i.e., each node generated a set of 

( -1) messages, with one message for each of the remaining node as destination.  
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                          = 
                                              

                                
               (12) 

                         = 
                                                    

                                
            (13) 

Note that the average path length calculation includes the path lengths for unrouted messages 

as well.  

In order to have a fair estimation of the energy consumption, average energy consumption 

per successfully routed packet was defined as 

                                                          

      
                   

     
                                                               (14) 

where    is average energy per byte. For all the routing schemes, a fixed packet length of 12 

bytes was assumed, with 4 bytes each for destination ID, current node ID and VC/Physical 

coordinates. The random anchor placement performance was averaged over five random 

anchor configurations.  

Performance comparison in terms of      ,      and      are as shown in Figure 4.7. 

With random anchor placement, the proposed scheme DVCR outperforms CSR and LCR 

with      to shortest distance path length (  ) ratio close to unity.  

Also it outperforms GPSR in spiral and grid with missing nodes and achieves almost the 

same performance in the rest of the networks. Even though DVCR achieves a higher       

,      (see Figure 4.7 (c)) is less than that of GPSR while very close to      of CSR and 

LCR. It is important to note that GPSR relies on accurate location information, achievable 

via expensive hardware such as GPS, or localization schemes subject to significant 
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complexity and estimation errors. The importance of directionality information was 

illustrated by the performance of DVCR and anchor selection mechanism. More importantly, 

the required number of anchors is 5, which is a significantly lower number compared to the 

anchors used in other literature, to achieve       over 95%. And the proposed scheme does 

not require any costly anchor placement, though proper anchor placement increases the 

routability of DVCR, as observed. 

 

Figure 4.7. (a)       (b)     (c)      of CSR, LCR, GPSR and DVCR with 5 randomly placed 

anchors in Spiral, 30 by 30 node Grid with 800 nodes, Circle with 3 holes, building and odd 

networks. 

 

4.7 Conclusions 

A simple and novel transformation is proposed for virtual coordinates that, for the first 

time, allow VCS to recover directionality lost during the coordinate generation, thereby 

significantly increasing the effectiveness of virtual coordinate systems in routing. The issues 

such as identical coordinates and local minima are mainly caused by the loss of directionality 

in virtual coordinate system generation mitigated in the directional domain. Regained 

directions are called virtual directions. Network partitioning and routing in special cases of 

tree networks are some of the properties discussed.  



56 

 

Directional space contains the inherent connectivity information while sense of directions 

of the node arrangement, which provides a good environment for routing. The proposed 

routing scheme, Directional Virtual Coordinate Routing (DVCR), outperforms Convex 

Subspace Routing (CSR) and Logical Coordinate Routing (LCR) with 38.9% and 44.6% 

average increment in average routability over five network types respectively, in 1.35 

average path length to shortest path length ratio with five randomly selected anchors, which 

is less than 1.5% of nodes.  

Effective anchor placement strategy and topology map generation by selecting nearly 

orthogonal virtual directions are under investigation.  
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CHAPTER 05 

TOPOLOGY PRESERVING MAPS – EXTRACTING LAYOUT MAPS OF 

WIRELESS SENSOR NETWORKS FROM VIRTUAL COORDINATES 

 

5.1     Introduction 

Virtual coordinates provide an economical alternative to geographical coordinates for 

routing [4] and self-organization of large-scale Wireless Sensor Networks (WSNs). 

Geographical coordinate-based protocols such as Geographical Routing (GR) require 

physical location of nodes, which may be obtained by GPS or a localization algorithm. Use 

of GPS is infeasible or too costly for many applications, while localization using analog 

measurements such as signal strength and time delay is difficult and prone to errors ‎‎[91]‎[93]. 

Signal strength is susceptible to noise, fading, and interferences due to multipath and other 

devices. The need for accurate power control and signal strength measurements contributes 

to increased hardware complexity, as well as cost. Routing is carried out using directional 

information derived from geographic coordinates, and hence concave physical voids in the 

network degrade the performance of GR schemes. Virtual Coordinate Systems (VCS) 

characterize each node by a coordinate vector consisting of the shortest path hop distances to 

a set of anchors‎‎ [22]‎[23][101]. These anchors are a set of ordinary sensor nodes with no 

additional capabilities. Coordinates can be obtained using a controlled/organized flooding 

mechanism ‎[79] initiated by the anchors. VCS is a higher dimensional abstraction of a partial 
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connectivity map of sensors. It has several properties, such as ease of generation, and 

facilitating connectivity-based routing without the need for geographical 

information ‎[22][23][34]‎[36]‎[91] that make it attractive for large-scale or resource-starved 

WSNs. The number of anchors becomes the network’s dimensionality in the virtual 

coordinate space. As the network’s connectivity information is embedded in Virtual 

Coordinates (VCs), the physical voids are transparent in Virtual Space (VS). However, VCs 

lose the directional information related to node positions. The number of anchors required 

and their placement for a given network play a crucial role in the performance of VC-based 

routing. However, identification of the optimal number of anchors and proper anchor 

placement remain major challenges. Under-deployment of anchors causes identical node 

coordinates, while their over-deployment and improper placement worsen the local minima 

problem, resulting in logical voids ‎[23].  

Many disadvantages associated with VCS in comparison to geographical coordinate 

systems are due to the lack of information about physical network topology and layout. As 

each virtual ordinate propagates radially away from the corresponding anchor, the directional 

information of a node with respect to the anchor is lost. Thus physical layout information 

such as physical voids, relative physical direction information of sensor nodes with respect to 

X-Y positions, and even explicit connectivity information among pairs of nodes are absent in 

a VCS description. The above information can be revealed if the physical topology map is 

available. With both, partial connectivity information that is embedded in VCs and position 

or direction information as in geographical coordinates can be used to overcome the 

disadvantages in each other’s domains. However, physical topological information has to be 
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achieved without inheriting the disadvantages associated with obtaining physical location 

information or localization.  

Obtaining a topology map resembling the physical layout topology of a network from the 

set of VCs that is based only on hop distances to a small set of anchors has not been possible 

up to now. In this research, we present the theoretical basis and techniques to obtain 

Topology Preserving Maps (TPMs) that contain the topology of a network and physical 

features, including its geographical voids, boundary profiles and relative Cartesian 

directional information. TPMs overcome many of the disadvantages of VCS compared to 

geographical coordinate systems but without inheriting its disadvantages, whilst preserving 

all the advantages of connectivity-based VCs. 

Topology preserving maps preserve the neighborhood information. In addition, they are 

rotated and/or distorted versions of the real physical node maps to account for connectivity 

information inherent in VCs. Therefore, the topological coordinates provided by the 

proposed method are a good substitute for geographical coordinates for many applications 

that depend on connectivity and location information. In fact, the topological coordinates, in 

conjunction with VCs from which it is derived, have been demonstrated to be better than 

geographical coordinates for routing due to significantly enhanced routing performance ‎[39]. 

Boundary node identification for proper anchor placements ‎[22]‎[23][101], backbone 

identification ‎[126], and recognition of geographic voids are among other examples that can 

significantly benefit from TPMs. The results presented here demonstrate the ability to 

determine and visualize the structural characteristics of large-scale WSNs in both 2D and 3D. 

The ability to do such visualization without the need for analog measurement capability at 

nodes will be invaluable for future large-scale nanosensor networks [1][6] as well. Even 
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though we focus on WSN context here, the technique is applicable to a broader class of 

networks. 

This research presents a novel technique for obtaining TPMs of 2D and 3D networks from 

the hop distances to a small set of nodes. Next, Section 5.2 reviews the background. After 

presenting the theoretical foundation for obtaining TPMs in Section 5.3, we also refine the 

method to reduce its complexity. A performance evaluation metric for topology maps is 

presented in Section 5.4. In Section 5.5, we discuss the results of three alternatives for TPM 

generation, with different computational and communication complexities. Section 5.6 

addresses implementation issues. Finally, Section 5.7 discussed the future work and 

concludes our work.  

 

5.2    Background 

We briefly review the related work on use of geographical and virtual coordinates, and 

localization techniques for generating geographic coordinates and maps for which proposed 

TPMs are a competitive, economical replacement. The term TPMs has been used in contexts 

outside sensor networking, such as multi-dimensional data organization. Though some of 

them are not directly applicable to WSNs, we review the most relevant ones to place the 

proposed scheme in context. 

 

A. Geographic Routing (GR) vs. Virtual Coordinate Routing (VCR) 

In Geographic Routing, the physical location of nodes is used for node addressing as well 

as for routing. A packet is forwarded in the direction of the destination, and thus GR gets 

disrupted by geographical voids. Concave voids are especially difficult to overcome. Greedy 
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Perimeter Stateless Routing (GPSR)‎‎ [69] makes greedy forwarding decisions until it fails, 

e.g., due to a geographical void, and attempts to recover by routing around the perimeter of 

the void. Greedy Other Adaptive Face Routing (GOAFR) ‎[68] is a geometric ad-hoc 

algorithm combining greedy forwarding and face routing to overcome the local minima 

issue. Greedy Path Vector Face Routing with Path Vector Exchange GPVFR/PVEX ‎[77] is 

similar to ‎[68] but it requires the network’s planar graph. 

VC-based schemes, where each node is characterized by a coordinate vector corresponding 

to hop distances to a set of anchors, uses a distance measure in VCS to identity the node for 

packet forwarding. VCR scheme in ‎[101], for example, uses all the perimeter nodes as 

anchors. When a packet reaches a local minima, an expanding ring search is performed until 

a closer node is found or TTL expires. In Virtual Coordinate assignment protocol (VCap), the 

coordinates are defined based on hop distances ‎[22]. At local minima, VCR causes a packet 

to follow a rule called “local detour”. In Logical Coordinate-based Routing (LCR) ‎[23], 

backtracking is used when greedy forwarding fails at a local minimum. Aligned virtual 

coordinate system (AVCS) ‎[82] re-evaluates VCs by averaging a node’s own coordinate with 

neighboring coordinates in an attempt to overcome local minima. Convex Subspace 

Routing ‎[36] overcomes the local minima by using a subset of anchors for routing and by 

dynamically changing the subset to provide convex distance surfaces for routing. In Axis-

Based Virtual Coordinate Assignment Protocol (ABVCap) ‎[113], each node is assigned a 5-

tuple VCs corresponding to longitude, latitude, ripple, up, and down. Existing VCR protocols 

rely mainly on Greedy Forwarding (GF), followed by a backtracking scheme to overcome the 

local minima issue. Geo-Logical Routing (GLR) ‎[39] is a novel routing scheme that 

combines the advantages of VCS and TPM proposed in this research to overcome 
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disadvantages of each others’ domain, thus impressively outperforming existing VCR 

schemes as well as GPSR which requires physical coordinates. 

 

B. Localization  

We focus on relative localization techniques, as global localization is realizable through 

relative localization and the actual positions of a subset of nodes or physical anchors. 

Centralized and distributed algorithms are available for relative localization. Distributed 

algorithms use Received Signal Strength Indication (RSSI), Radio Hop Count, Time 

Difference of Arrival, and Angle of Arrival for relative localization. RSSI uses signal 

strength to estimate the distance between nodes while Radio Hop Count uses hop distance. 

The latter uses a probabilistic correction equation to approximate the hop distance to real 

distance ‎[14]‎[115]. Disadvantages of RSSI measurement include sensitivity to terrain ‎[93] 

and large variations due to fading and interference. The relationship between RSSI and 

distance is very difficult to predict indoors  as well as in complex outdoor environments due 

to absorption and reflection of signals and propagation characteristics over different terrains. 

No robust and scalable algorithms are available for localization of nodes deployed on 

surfaces of complex 3D structures. An RSSI measurement-based distributed algorithm using 

triangulation for localization of 2D and 3D WSNs is proposed in ‎[127].‎ 

Centralized algorithms for localization of 2D networks include Semidefinite Programming 

(SDP) and MDS-MAP ‎[14]‎[102]. Former algorithm develops geometric constraints between 

nodes, represents them as linear matrix inequalities (LMIs), and then simply solves for the 

intersection of the constraints. Unfortunately, not all geometric constraints can be expressed 
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as LMIs that preclude the algorithm’s use in practice. MDS-MAP is Multi-Dimensional 

Scaling (MDS) based on connectivity information.  

The localization scheme in ‎[76] first identifies the boundary nodes of the network, and 

then, using several rounds of network flooding by boundary nodes, selects a subset of nodes 

as landmarks. Next, Delaunay triangles are generated based on Voronoi cells formed with 

landmarks, which again requires network flooding by landmarks. Finally, the network layout 

is discovered based on the landmarks’ locations. The landmark population has to be dense for 

the Delaunay triangles to be rigid, thus increasing the communication cost. Moreover, 

boundary nodes need to be identified accurately without physical information, and an 

incremental algorithm is required to combine the Delaunay triangles.  

Factors that contribute to errors in localization include inaccuracies in distance estimate, 

the position calculation, and the localization algorithm ‎[91]. How the localization error 

propagates and accumulates in a network is illustrated in ‎[91] in terms of geographic 

distribution of the error, correlation, mean error, and probability distribution of the error. 

This study shows that routability of Geographic Routing (GEAR)  falls significantly and the 

percentage of deliveries to wrong destinations increases as the percentage error in 

localization increases.  

As both VCS and topology maps are generated based on hop distance, they are not affected 

by fading or signal strengths. Further, they do not rely on analog measurements such as RSSI 

or time delay, and thus do not have cumulative errors that affect the performance, as 

networks scale. 
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C.  Other Topology Preserving Maps 

The TPMs discussed in this research deviates from the localization maps. The relative 

localization schemes expect the relative distances to be accurate. Thus, given the absolute 

position of a subset of nodes, global localization is realizable. In contrast, in topology maps, 

what is important is the topology preservation, not the physical distances. The derived 

topology should be homeomorphic (topologically isomorphic) to the physical layout of the 

sensor network; that is, between two topological spaces, there has to be a continuous inverse 

function. In our case, it is a mapping, which preserves the topological properties of the 

physical network topology.  

In the context of analysis of high-dimensional data, unsupervised learning algorithms have 

been proposed that use eigen-value decomposition for obtaining a lower dimensional 

embedding of the data. Here we discuss four such schemes: Multi-Dimensional Scaling 

(MDS), Local Linear Embedding (LLE), Isomap, and Laplacian Eigenmaps (LE) ‎[16]. None 

of these methods is designed for, nor is suitable for, resource-starved WSNs.  

Multi-Dimensional Scaling (MDS) ‎[102]‎[109] is a commonly used statistical technique in 

information visualization for exploring similarities or dissimilarities in higher dimensional 

data from the complete distance matrix (similarity matrix)    which is defined as the matrix 

of all the pair-wise distances between points/nodes.            , where   is the number of 

nodes in the network and     is the distance from node   to node   with         ,    and 

     . In general     can be any distance metric, but there is a possibility for the algorithm 

to fail if     is not the Euclidean distance. Generating   based on hop distances requires all 

the nodes in a WSN to serve as anchors, an extremely expensive proposition that calculates 

and stores information about the distances between each pair of nodes. If such information 
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were available at each node, 100% routing could be achieved just by following the ordinate 

corresponding to the destination, i.e., without the need for the topology map. MDS is 

therefore not practical or applicable for generating TPMs of WSN. Our novel method, based 

on Singular Value Decomposition (SVD), generates topology maps of 2D and 3D networks, 

using a set of   anchors, where          being the number of nodes.  

Isomaps ‎[115] are an extension of MDS to geodesic distance-based topology map 

generation. Again, the geodesic distances are actual distances among nodes, which require 

expensive error prone distance estimators such as RSSI or Time of Arrival (TOA). 

Furthermore, if a node has the information of entire network, 100% routability is achievable 

without the need for a topology map. Moreover, LLE and LE both use an iterative approach 

to preserve the neighborhood distances, the realization of which is infeasible in an energy-

limited WSNs. 

All four schemes rely highly on physical distances between all the possible pairs of nodes, 

and thus require localization approaches. Accuracy of both central and distributed 

implementations of localization is highly sensitive to channel fading and signal to noise ratio 

(SNR).  

 

5.3    Topology Preserving Maps for 2D and 3D WSNs 

A novel technique for obtaining a representation that closely resembles the physical layout 

of a sensor network from its VC set is presented next. The objective is to characterize each 

node with a       coordinate pair, or         in case of 3D WSNs, that results in a TPM that 

is homeomorphic to the network’s physical layout, and preserves information about node 

connectivity, physical layout, and physical voids. 
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Subsection A develops the technique by starting with the VCs of all the nodes to obtain a 

TPM. Subsection B discusses the extension of TPMs to 3D networks. A significantly more 

efficient version of the technique that uses information of only a small subset of nodes to 

evaluate the transformation matrix is presented in Subsection C. Finally, Subsection D 

proposes a method of calculating node’s Cartesian coordinates with lower computational 

complexity. Notations used in the text are summarized in Table 5.1. 

Table 5.1 

Notations Used In Chapter 5 

Notation Description 

N Set of nodes  

 =|N | Number of network nodes 

   N Node i  

A ⊂ N Set of anchor nodes  

  |A | (    ) Number of anchors  

    A           anchor  

      Minimum hop distance between nodes   ,    

     Virtual coordinate matrix of the entire network  

                   ] VCs of Node     

           VCs of a subset of nodes 

    
        principle component of    

       , 

           

Topological coordinate matrix of a 2-D network 

Topological coordinate matrix of a 3-D network 

                        

                               

Topological coordinates of node    of a 2-D network 

Topological coordinates of node    of a 3-D network 

       , 

           

Physical coordinates of a 2-D network 

Physical coordinates of a 3-D network 

  

 

A. 2D topology preserving maps from VCs 

Consider a 2D sensor network with   nodes and   anchors. Thus, each node is 

characterized by a VC vector of length  . Let   be the     matrix containing the VCs of 

all the nodes, e.g., the i
th

 row corresponds to the  -long VC vector of the i
th

 node, and j
th
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column corresponds to the virtual ordinate of all the nodes in the network with respect to j
th

 

anchor. Therefore,  

          

 
 
 
 
 
 
                          
                          

 
                          

 
                           

 
 
 
 
 

 

where       is the hop distance from node    to anchor   . For sensor network 

applications, it is generally desirable to have only a small subset of nodes as anchors, i.e., 

   . The 2D network has an  -dimensional representation under the VC transformation. 

The main goal thus is to extract the 2D representation of the network from this M-D space.  

Singular Value Decomposition (SVD) ‎[72] of   is denoted as 

                                                                                      (1) 

where     and   are    ,    , and     matrices respectively.   and   are 

unitary matrices, i.e.,            and           . SVD extracts and packages the 

salient characteristics of the dataset   providing an optimal basis for  . Moreover   is an 

optimal basis of   , i.e.,   spans R
M

.  

Let us consider the Principle Components (PCs) of   

                                                                                        (2) 

     is a     matrix that describes each node with a new set of  -length coordinate 

vectors. It gives the coordinates for the data in   under the new basis  . As   is a diagonal 

matrix with diagonal elements being the singular values of   arranged in their descending 

order, elements in   provide unequal weights on columns of  . Using the unitary property of 

 , it is also the projection of   on to   ‎[72], i.e.,  
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                                                                                      (3) 

The columns of     , i.e., the PC values of the VC set are arranged in the descending order 

of information about the original coordinate set. The 1
st
 PC captures the highest variance of 

the data set, and each succeeding component has the highest variance possible under the 

constraint that it be orthogonal to the preceding components. 1
st
 PC is considered 

indispensable in most SVD based techniques, as it contains the most important and 

discriminating information. However, in case of VCs, discarding 1
st
 PC makes it possible to 

recover the layout of the network. This is due to 1
st
 PC inheriting the resultant convex shape 

associated with the dominant concentrically increasing property of individual VCs. Appendix 

A shows how the convex nature of individual VCs causes the convexity of 1
st
 PC. 

 

Figure 5.1.  a) Circular network of 707 nodes with 15 anchors;  b) - d) First three PCs      
   

 ,      
   

 

,and      
   

   plotted against the phisical positions. Randomly selected anchors are marked in red 

cirlcles. 
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Figure 5.2.  a) Odd shaped network with 550 nodes with 15 anchors;  b) - d) First three PCs      
   

 ,  

    
   

 ,and      
   

 plotted against the phisical positions. Randomly selected anchors are marked in red 

cirlcles. 

 

 

Figure 5.3.  Nature of principal component directions derived from virtual coordinates. 

 

Figures 1 and 2 show for two different networks, the physical layout and the first three PCs, 

i.e., columns of      given by (3), plotted against the corresponding physical positions of the 

nodes. The initial triplet of SVD coordinates are the dominating  

d 
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coordinates, while the rest, as observed in ‎[37], are similar to Fourier basis vectors with far 

less significant amplitudes.  

The set of VCs have the connectivity information embedded in it, though it has no 

directional information. All the nodes that are   hops away from the j
th

 anchor have   as the 

j
th

 ordinate. Each ordinate propagates as a concentric circle centered at the corresponding 

anchor, while the angular information is completely lost. Thus we can expect the most 

significant ordinate based on SVD, i.e., first column of      to be a radially distributed 

vector, which will not provide information to distinctly identify different nodes (see Figure 

5.1 (b)) and Figure 5.2 (b)). As SVD provides an orthonormal basis, 2
nd

 and 3
rd

 ordinates are 

orthogonal to 1
st
 ordinate while being perpendicular to each other as illustrated in Figure 5.3. 

This leads to the fact that the second and third columns of      provide a set of two-

dimensional Cartesian coordinates for node positions, unencumbered by the dominant radial 

information in VCs, which was captured by the first column. Thus instead of the    

coordinates of a row of      to characterize a node, the second and third columns can be 

used as Cartesian coordinates, i.e.,  

             
        

                                                                 (4) 

where     
    is the j

th
 column of                is the Cartesian coordinate matrix of the 

entire node set, i.e., its i
th 

row,           , is used as the Cartesian coordinates of i
th

 node. By 

construction of SVD coordinates, the second and third basis vectors form an orthogonal 

Cartesian plane for the network, and we assert that corresponding ordinates give us an 

approximate set of Cartesian coordinates for the TPM. The most fascinating fact is that these 

Cartesian coordinates are estimated without having any kind of physical directional or 

positioning information beyond the radial information (hop distance) with respect to the 
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anchors. Thus obtained, the TPM reflects the original topological characteristics of the 

network. One can even identify features such as physical voids that were not apparent in the 

VC-based description. 

We now illustrate the procedure using as an example the T-shaped network of 10 nodes 

shown in Figure 5.4 (a). Physical coordinates [       and virtual coordinate matrix   with 

respect to anchors A, C, E, and J are given in Table 5.2. SVD evaluation of   as in (1) 

provides   as, 

   

                     
                            
                        
                                

  

     can now be evaluated using (3), and thus topological coordinates of nodes are given 

by (4).      
        

     is tabulated in Table 5.2 and plotted in Figure 5.4 (b).            

              

B. 3D topology preserving map from VCs 

Sensor networks may be deployed within 3D volumes, 3D surfaces, or a combination of 

those. Here we consider sensors deployed on a 3D surface, which may even wrap around,  

 

Figure 5.4. a) Physical map of a T-shaped example network; b) Topology map of the network in a). 

A 

C 

E 

J 

A 

C 

E 

J 
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Table 5.2 

Physical coordinates, Virtual Coordinates and Topological coordinates for the network in Figure 

5.4(a) 

ID       P      

A C E J     
   

     
   

     
   

     
   

 

A 1 6 0 2 4 7 -6.62 4.06 2.83 0.82 

B 2 6 1 1 3 6 -5.74 3.46 1.41 -0.12 

C 3 6 2 0 2 5 -4.87 2.87 0.00 -1.05 

D 4 6 3 1 1 6 -5.74 3.46 -1.41 -0.12 

E 5 6 4 2 0 7 -6.62 4.06 -2.83 0.82 

F 3 5 3 1 3 4 -5.76 1.10 0.00 -0.76 

G 3 4 4 2 4 3 -6.66 -0.66 0.00 -0.47 

H 3 3 5 3 5 2 -7.55 -2.43 0.00 -0.19 

I 3 2 6 4 6 1 -8.45 -4.19 0.00 0.10 

J 3 1 7 5 7 0 -9.35 -5.96 0.00 0.39 

 

thus affecting virtual coordinate propagation in complex ways. Consider the uniform 

cylindrical surface shown in Figure 5.5 (a) on which 900 nodes are deployed. Figures 5.6 (a)-

(d) show the plots of the first four PCs for each node in the network. They are denoted by 

    
        

        
     and     

    respectively. As SVD provides an orthonormal basis, 

2
nd

, 3
rd

, and 4
th

 PCs are orthogonal to 1
st
 ordinate while being perpendicular to each other. 

Fascinatingly, the salient feature of the VCS, i.e., the radial propagation of coordinates is 

captured by the 1
st
 PC as observed in 2D case. Thus removing it from further  

 
Figure 5.5.  a) A network on a cylindrical surface (900 nodes) Randomly selected  20 anchors are 

marked in red cirlcles; b) topology map of a) 
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Figure 5.6.  First four PCs a)     
   

 ; b)      
   

 ; c)     
   

;   and d)      
   

 of a cylindrical network plotted as 

a color map on the surface of the network. 

 

Table 5.3 

Computational Complexity and Memory Usage Comparison ( N  M )   

Method Full SVD implementation with   EVD method of estimating   of   

# 

Computations  

               ‎[58]                        

8 3 ‎[58] 

Memory 

usage 

                )                           

 ) 

 

consideration allows us to uncover linear patterns embedded in the VC set. As seen in Figure 

5.6 (b), the second PC varies along the height of the cylinder, thus it can be used to obtain the 

Z coordinate for the topology map. More interestingly, 3
rd

 and 4
th

 PCs, which can be taken as 

X and Y coordinates, directionally distribute in such a way that they are orthogonal to each 

other while being normal to 2
nd

 PC. The resulting TPM is illustrated in Figure 5.5 (b). TPM 

generation on 3D surfaces can thus be done by ignoring the first PC and by taking 2
nd

, 3
rd

, 

and 4
th

 columns of      to provide a set of three-dimensional (3D) Cartesian coordinates. 

Therefore, topological coordinates of node    can be written as   

(a) (b) 

(c) (d) 
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       =       

          
          

                  (5)         

where      
        is j

th
 PCs of node   . Note that the above result holds for 3D volumes as 

well. The first PC in that case will propagate radially outward from the center of the volume, 

as opposed to from the center of the area in case of 2D networks.  

 

C. Generation of Cartesian coordinate set using VCs of a subset of nodes 

Cartesian coordinates for 2D TPM are obtained by multiplying the node’s VC by   as in 

(3) and (4) (and as in (5) for 3D TPMs).   is based on  , the     matrix that consists of 

VCs of all the nodes. In sensor networks, it is crucial to reduce communication and 

computation overheads. This section presents a process to generate the transformation matrix 

  with only a small subset of rows of  , thus significantly reducing the computation 

overhead.  

Let   be the sub-matrix of   corresponding to an appropriately selected set of   nodes 

(rows). Let the SVD of   be 

          
                                                                          (6) 

  is    , where   is the number of anchors.   ,     and    are    ,     and 

    matrices respectively. If   is selected appropriately,    can serve as a substitute, or at 

a minimum a good approximation, for   for TPM generation. Note that    has the same size 

as   in (1) and is also unitary. Following the same procedure as earlier, we use 

                                                                                              (7) 

The Cartesian coordinates for TPMs of 2D and 3D networks can be written as 
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                                                         (8) 

respectively. 

While there are many possible ways to select the subset of nodes, we use the following two 

simple options in this research: 

1. Use the set of   anchor nodes (  =   ) 

2. Use a set of   randomly selected nodes (    ) 

As        , significant savings in overhead can be achieved, and results presented 

later demonstrate that the impact on accuracy is negligible.   

    is a basis of R
M

.    is also a basis for R
M 

even though it is based on subset of 

coordinates. Therefore, we can write 

       

where   is a rotation matrix. If the selected subset of coordinates is a good representation 

of the entire  , similar TPMs can be generated, as demonstrated in Section 5.5, with a 

significantly low amount of computational, memory, and communication complexities.  

 

D. A computationally efficient implementation  

Computational power and memory available at a sensor node is limited. Conventional SVD 

calculation of             which involves computing   ,    and  , has approximately 

                operations ‎[58]. Also the memory requirement is approximately 

the sizes of  ,   and   that is (           ). In this section, we present a 

technique for further enhancing the efficiency of the computation necessary for 2D and 3D 

TPM generation. Note that   is a byproduct of SVD and is not necessary for topology map 

computation. The Eigen-value decomposition (EVD) based approach ‎[72] to evaluate matrix 
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  not only allows us to implement the TPM generation in a distributed manner, but also 

completely avoids generating matrix  , thus reducing the computational complexity and 

memory requirement compared to those for SVD. From (1), (3), and (4),      
   , the  th

 

column of      is given by 

    
                     

                                                        (9) 

               ] is the coordinate vector of the node i. Also      is the j
th 

basis 

vector/column of  .       for 2D networks, while         for 3D networks. Thus,      

and      are sufficient to evaluate 2D Cartesian coordinates             of node i. 3D 

networks require     ,      and     . Define   as  

               

                                                                       (10) 

  is an     symmetric matrix. This is an eigenvalue problem ‎[72]. Therefore, let us 

solve, 

                                                                          (11) 

  is an eigenvector of   that is a column of  . Eigen values   can be found by solving  

                                                                         (12) 

The eigenvectors, corresponding to second and third largest eigenvalues, provides the 

second and third columns of  . Now             (                  for 3D case) can be 

evaluated locally without calculating the entire   matrix. Also      is not evaluated at all, 

which reduces the memory consumption significantly. Therefore the memory consumption is 

upper bounded by           ). Number of computations required for this method of 

calculating   is upper bounded by           ‎    , which are the computations 
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associated with the calculation of entire   and  . Since    , this method is significantly 

less complex compared to the full SVD implementation (see Table 5.3). For example, if the 

number of anchors in the network is set to        , which is reasonable based on our 

experience, the upper bound of computations required with this method is only 0.99% of the 

computations required for a full SVD-based calculation with (3) and (4), indicating a 

significant reduction in complexity. 

 

5.4 A Metric for Evaluating 2D Topology Preservation  

Evaluating the degree of topology preservation of the sensor node maps generated is 

essential for investigating the effectiveness of the proposed scheme. While visual inspection 

can provide preliminary evidence of its effectiveness, a formal metric is needed for 

quantifying the accuracy. A quantitative parameter to express the error provides a framework 

to compare and improve different mapping techniques. An effective metric should be able to 

capture and quantify the failures to preserve the topology of the real node map and the 

neighborhoods. Such a metric is not currently available. Here we develop a metric that can be 

used for this purpose. 

A method based on the coloring of nodes is used in ‎[98] to show whether a neighborhood 

has been altered in the topology map. In ‎[98] and ‎[115], error is quantified as the difference 

of the positions in the actual physical map and the topology map, and the residual variance, 

respectively. The focus of our research is TPMs based on hop distances. The requirement is 

that the map from calculated         set is homeomorphic to the physical layout and 

preserves information about node connectivity, physical layout, and physical voids. Thus the 
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actual physical distance is not of significance, and the metrics in ‎[98] and ‎[115] are not 

appropriate.  

Consider as an example, a 1D network with six nodes numbered 1 to 6, as in Figure 5.7 (a). 

Figures 7 (b) and (c) show two derived maps that need to be evaluated. If all the nodes are in 

same order as in initial topology then the Topology Preservation Error must be 0%. Node 3 

in Figure 5.7 (b) has flipped two node positions. The error metric should identify the number 

of out-of-order nodes as well as the degree of the error/node flips (one node and two node 

positions respectively for Figure 5.7 (b)).  

Consider a 1D network with   nodes and define an indicator function      where 

      
                                                        
                                                       

                

            

Then, number of out of order pairs =                   

The total number of possible pairs in an   node network is   
 . We define the following 

metric: 

                                  
              

  
                                                     (13) 

 

 

Figure 5.7. (a) A network, (b) a topology map of (a) with a node flip, and (c) a topology map of (a) 

with 180
0
 rotation. 
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For the network in Figure 5.7 (b),   = 6 and  

                             
                      

             

 

Nodes 1 and 2 are in the right position compared to the rest while node 3 is shifted by two 

positions. Moreover, nodes 4 and 5 flipped their positions by one. Therefore, there are four 

total node flips, and    is 13.3%. A TPM is invariant to rotations. Thus, for Figure 5.7 (c), 

where nodes are just reversed,     has to be zero. To handle such cases, the two lines being 

compared need to be adjusted for any rotations.  

To extend     equation to 2D topologies, we evaluate the 2D topology by considering all 

contiguous line segments in two orthogonal directions (say      and    ) of the physical map.  

Let us assume there are α lines in      direction and β lines in     direction in the network, then  

                                                          
                

   
  

 

                    (14) 

    are nodes in each horizontal line and each line has    nodes. Similarly, error in vertical 

direction is evaluated as 

                                                     
                

   
  

 

                       (15) 

    are nodes in each vertical line and each has    nodes. The overall Topology 

Preservation Error,      can be defined as: 

     
                                 

   
  

     
  

 

                                                    (16) 
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5.5 Results 

The performance of the proposed TPM generation is evaluated next using three 2D 

examples and two 3D examples representative of a variety of networks. MATLAB
® 

2009b 

was used for the computations. 

 

A. TPMs of 2D networks  

Figures identified as (a) in Figures 5.8-10 show the physical maps of the three 2D networks 

considered: an odd-shaped network with 550 nodes (Figure 5.8 (a)), a 496-node circular 

shaped network with three physical voids/holes (Figure 5.9 (a)), and a network of 343 nodes 

on walls of a building (Figure 5.10 (a)). The communication range of a node in all three 

networks is unity. Detailed specifications of these networks are available at ‎[21]. Topology 

maps are generated based on methods summarized in Table 5.4. 

Unless otherwise indicated, the results shown correspond to fifteen randomly placed 

anchors in each of the networks. Building network in Figure 5.10(a) has just three anchors. 

Figures 5.8-10 (b) show TPMs constructed based on (4), using entire VC set of each network. 

Therefore TPMs in Figures 5.8-10 (b) use input data matrices of sizes 550 15, 496 15 and 

343 3 respectively (Case 1, Table 5.4). Figures 5.8-10 (c) are the topology maps created 

using only the anchors’ coordinate set, that is, using (7) and (8) based on the input data 

matrices    of size 15 15, 15x15, and 3 3 respectively (Case 2, Table 5.4). Topology maps 

in Figures 5.8-10 (d) are created based on coordinates of 10 randomly selected nodes; the 

corresponding sizes of    are 10 15, 10 15 and 10 3 respectively (Case 3, Table 5.4). For 

the purpose of comparison, Figures 5.8-10 (e) consider all the nodes in the network to be 

anchors, corresponding to   of sizes 550 550, 496 496, and 343 343 
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Figure 5.8. a) Odd shaped network with 550 nodes and 10 random anchors;         is generated based on b) 

Case 1: entire VC set, c) Case 2: anchors’ coordinate set, d) Case 3: randomly selected nodes’ coordinate set, 

and e) Case 4: coordinate set with all the nodes are anchors, f) MDS 

 
Figure 5.9. a) Circular network with 3 physical voids with 496 nodes and 10 random anchors;         is 

generated based on b) Case 1- entire VC set, c) Case 2: anchors’ VC set d) Case 3: randomly selected nodes’ 

VC set and e) Case 4: VC set with all the nodes are anchors f) MDS 
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Table 5.4 
Four Different Topology Map Generation Approaches for WSNs of N nodes and M Anchors 

Case Description Size of input data matrix  

1         from       

2         from        

3         from        

4         from                

 

Table 5.5 
ETP  For Topology Maps In Figure 5.8-10. 

     (%) 

Figure Case 1 Case 2 Case 3 Case 4 

Figure 5.8 (a) 1.6777 1.5894 1.5011 1.4570 

Figure 5.9 (a) 0.3605 1.0698 0.4884 0 

Figure 5.10 (a) 0.1315 0.1315 0.1315 0.0376 

 

respectively for the three networks (Case 4, Table 5.4). Case 3 is more efficient in terms of 

memory consumption and computational complexity. Finally, we compare our results with 

those of MDS-MAP method proposed in ‎[102] shown in Figures 5.8-10 (f). For MDS, data 

from the complete distance matrix    which is defined as the matrix of all the pair-wise 

distances between points/nodes, is required.            , where   is the number of nodes 

in the network and     is the distance from node   to node  . As proposed in ‎[102],     can be 

either geodesic distance or hop distance between   and  . For this comparison, we use hop 

distances to generate MDS-MAP, thus VCS requires all the nodes to be anchors. A TPM for 

the circular network of Figure 5.1 (a) can be found in ‎[37]. 

Figures 8-10 clearly demonstrate the effectiveness of the proposed method in generating 

TPMs. Starting just with VCs, without explicit knowledge of geographical information, the 

generated topology maps have captured significant features, such as the physical voids and 

boundaries of the original network. A key observation we can draw from Figures 5.8-10 is 

that the constructed topology maps are nonlinearly scaled and rotated compared to the  
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Figure 5.10. a) Network in a building with 343 nodes and 3 anchors;         is generated based on 

b) Case 1- entire VC set, c) Case 2- anchors’ coordinate set d) Case 3- randomly selected nodes’ 

coordinate set and  e) Case 4- coordinate set with all the nodes are anchors f) MDS 

 

actual network map. Yet, the original and constructed maps are topologically isomorphic. In 

contrast to previous cases, the topology maps of Figure 5.10 (b), (c), and (d) are simply 

rotated and linear scaled versions of the original. In this network, we used only three anchors 

that were manually selected. The physical voids present in Figure 5.10 (a) are well preserved. 

Even though the map in Figure 5.10 (e) was obtained using all the nodes as anchors, its shape 

is deformed compared to Figure 5.10 (b)-(d); however, in terms of neighborhood 

preservation, Figure 5.10 (e) is better. For example, one of the L-shaped rooms in the 

building network (Figure 5.10 (a)) is distorted in the topology maps of Figures 5.10 (b)-(d). 

In Figure 5.10(e) the L-shape is deformed, but the neighborhood of that L-shaped room is 

preserved. Case 4 is presented here only for the purpose of comparison. If all nodes are 

anchors, a very expensive proposition for WSNs, the need for TPMs does not arise for many 
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applications, such as routing. Obtaining MDS-MAPs shown in Figure 5.8-10 (f) require the 

hop distances from each node to every other node. A major disadvantage is that it is not 

feasible to implement MDS in a distributed manner due to the extremely high 

communication cost associated with generating the distance matrix, which consists of the 

distance between every pair of nodes. In fact, if such information is available at each node, it 

can be used to achieve 100% routability without the need to generate TPMs. 

Moreover, from topology maps in Figure 5.10, we can draw the valuable conclusion that 

good anchor placement can significantly reduce the number of anchors required for topology 

map generation. It is topology-preserving to a very high degree as intended. It can be clearly 

seen that Figure 5.10 (b)-(d) is very close to the original map, indicating that an appropriately 

placed small number of anchors can produce very accurate topology maps. This reveals the 

possibility of obtaining even physically representative layout maps with the appropriate 

selection of anchor nodes for a certain class of networks. Furthermore, our later research 

in ‎[86] demonstrates that TPMs can be obtained even under large communication ranges. 

ETP (in (16)) for the different topology maps is presented in Table 5.5. Note that the error 

in all the cases is less than 2%. The best performance in terms of ETP was achieved when all 

the nodes were selected as anchors for the networks in Figure 5.8-10. Case 4 (Table 5.5) acts 

as a lower bound for the ETP for each network. 

Even though SVD-based TPM generation started with a VC set where there is no 

directionality information, the resultant topology map has directional information that can be 

used for routing in many ways. For example, to avoid logical voids in VC routing, organized 

random routing and geographic routing in virtual space may be used ‎[39]. Moreover, as we 

discussed in Section 5.2, there are other VCSs ‎[82]‎[113], which are derivatives of hop 
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distance based VCS used here. Results of applying the proposed TPM generation method to 

two such systems, ABVCap ‎[113] and Aligned VCS ‎[82], are presented in Appendix B. 

 

B. TPMs of 3D networks 

In this section we present the 3D TPMs generated using the proposed scheme. Two 

example networks deployed on 3D are considered as shown in Figure 5.11 (a) and Figure 

5.12 (a): 

a. T-joint (3D surface network): A pipeline structure joining two perpendicular 

cylinders in a T-joint. There is a hole in one of the cylinders (see Figure 5.11 (a)). Each 

cylinder has a unit radius and a height of 7 units. It is covered with 1642 nodes, each with a 

communication range of 0.4. 50 randomly selected nodes (i.e., 3% of the nodes) served as 

anchors.  

b. 3D volume network: It consists of a solid sphere of radius 4 with a cylindrical hole, 

mounted on two perpendicularly crossed cylinders with height 10 and radius 2 (see Figure 

5.12 (a)).  The entire volume is filled with 3827 nodes, each with a communication range of 

0.5. 50 randomly selected nodes (i.e., less than 1.5% of the nodes) served as anchors. 

TPMs of the corresponding physical topologies are shown in Figure 5.11 and 12. The 

results clearly demonstrate the effectiveness of the TPM generation for sensor networks 

deployed on 3D surfaces and in 3D volumes. Moreover, it indicates that the maps can be 

obtained using a very small number of random nodes serving as anchors.   
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5.6 Realizations, Applications and Extensions  

The major contribution of this research is the technique described and evaluated above for 

the generation of TPMs. Subsection A briefly addresses the realization details of the TPM 

algorithm in a static WSN. Routing is a crucial operation in WSNs. Subsection B discusses 

how WSN routing can benefit from TPMs. Subsection C discusses the impact of network 

dynamics on TPMs. 

 

A. Off-network and In-network realization of TPM  

First, let us consider the case where the TPM computation is done at a central node. There 

are many scenarios where a centralized implementation is feasible or even preferable. In a 

sensor network where the nodes are randomly deployed (e.g., dropped from a plane), it may 

be necessary and useful for the command center to obtain a map of the sensor node 

deployment indicating geographic voids, boundaries, etc. In this case, each node may send 

information about its neighbors to a base or a central station. The adjacency matrix of the 

network is formed based on the nodes connectivity information, which can be gathered with 

the worst-case complexity of       where N is the number of nodes in the network. Then 

the procedures explained in Section 5.3 can be used to generate an effective and accurate 

TPM, since there is no computational or memory limitations at the base station. Moreover, if 

necessary, the map can be broadcast back to the individual nodes, together with the 

transformation matrix (  or   ), an operation of worst-case complexity of      . Note that 

redistributing 2
nd

 and 3
rd

 columns of   or    is sufficient for a node to calculate its 

topological coordinate. Generating coordinates at a central station avoids multiple flooding in 

the network ‎[22]‎[23]. 
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Figure 5.11. 3-D Surface network, consisting of two perpendicular cylinders (T joint)  (1642 nodes, 

50 randomly selected anchors): a) Physical layout;   b) TPM. 

 

Figure 5.12. 3-D Volume network, consisting of a sphere standing on two crossed cylinders. Sphere 

has a hole in it. (3827 nodes and 50 randomly selected anchors): a) Physical layout;   b) TPM. 

 

Table 5.6 

Performance Comparison  of GLR, LCR, CSR and GPSR with 10 anchors ‎[39] 

Routing scheme 

Avg. routability% 

Circle with voids (Figure 5.10 a) Building network(Figure 5.9 a) 

GLR 94.6 89.3 

LCR 56.5 49.7 

CSR 87.3 75.4 

GPSR 93.8 97.4 

 

A distributed implementation of the above may be achieved as follows. The anchor-based 

VC generation is first carried out the traditional way, via flooding ‎[AJ10]. Following that, the 

anchors broadcast their coordinates, which requires       messages. Since the sub-matrix 

(a) (b) 

(a) (b) 
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( =  ) of all the anchors’ coordinates is now available at each node,  , every node can 

generate    (using (7)) and compute its own             locally by simply multiplying its own 

coordinates by 2
nd

 and 3
rd

 columns of      

 

B. TPM-based routing 

In static WSNs, the VC generation needs to be done less frequently or perhaps only once 

during initialization. Therefore, topological coordinates also need not be updated frequently. 

Thus, the cost incurred in calculating Cartesian coordinates may be more than compensated 

by efficiency gains in terms of performance during long-term operation. For example, as 

illustrated in ‎[39], Geo-Logical Routing (GLR) scheme that uses both VCS and TPM to 

overcome disadvantages in each other’s domains outperforms the physical information-based 

routing scheme, Greedy Perimeter Stateless Routing (GPSR)‎[69]. Table 5.6 summarizes the 

performance of GLR, the geographic coordinate-based scheme GPSR, and two VCS-based 

routing schemes, namely Convex Subspace Routing (CSR) and Logical Coordinate Routing 

(LCR). Routability is evaluated over all possible source-destination address pairs. Additional 

details of GLR algorithm is available in ‎[39]. 

 

C. TPM for dynamic networks 

Network dynamics that cause changes in connectivity among nodes pose a challenge for 

VC-based approaches, as VC values depend on the connectivity of the network. Examples of 

such conditions include node failures, the introduction of new nodes, and change in 

connectivity due to mobile nodes. TPMs presented here capture the physical layout 

information of the network, i.e., the topological coordinates corresponds to the physical 
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position of a node, albeit on a somewhat distorted layout. When a node (or even an anchor) 

fails, the already calculated topology coordinates (TPCs) of a node still remain valid for the 

topology map. Thus, any algorithm relying on TPCs can continue to function even though the 

underlying VCs may no longer be valid. This can be considered as an advantage of using the 

TPCs instead of the VCs, as VCs have to be regenerated to accommodate the change in 

connectivity.  

Introduction of new nodes or mobility of nodes that cause major changes in network 

topology can render prior TPM inaccurate, thus requiring its re-computation. If the change in 

the connectivity pattern is completely localized, it may be possible to estimate the TCs of a 

new node based on some localized computations involving its immediate static neighbors. 

Evolution and evaluation of TPMs for such environments is under investigation. 

 

5.7 Discussion 

This section addresses the convexity of first principle component of an anchor-based VCS 

and the applicability of proposed TPM generation scheme for other existing virtual 

coordinate systems.  

 

A. Convexity of the first principle component  

Being the distance to the corresponding anchor from a node, by definition each VC radially 

increases around the corresponding anchor. Due to the fact that 1
st
 principle component (PC) 

captures the salient dominant features of the dataset, its magnitude variation over the network 

is always convex; due to the possibility of having a positive or negative sign, the actual shape 

of 1
st
 PC variation is either convex or concave.  
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Figure 5.13: VCS corresponding to two anchors in a 1D network. 

 

We demonstrate the convexity of magnitude first on a simple 1D network, and then extend 

it to a 2D full grid. Let the VCS with respect to   anchors of a 1D network, as illustrated in 

Figure 5.13, be                                    . By definition, each virtual 

coordinate with respect to anchor   :  
                    

  is a convex function with 

respect to the node position   .  

The 1
st
 PC can be written as 

    
                           

 
 
 
 
 
 
                          
                          

 
                          

 
                           

 
 
 
 
 

                
                            

(17) 

      is a linear combination of the set of convex functions                  . 

Reference ‎[92] proves that the direction of 1
st
 PC, i.e.,      goes through the centroid of the 

data points. Since                 lie in the 1
st
 orthant of the multidimensional space all the 

time, its centroid is also in the 1
st
 orthant. Hence      is a unit vector with either all positive 
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coefficients or all negative coefficients. Without loss of generality, one can say that (17) is 

the addition of   convex functions and thus 1
st
 PC is also a convex function.  

A similar argument can be made for the 2D full grid, since virtual coordinates with respect 

to anchor    is a 2D convex surface. Moreover, all the ordinates lie in the 1
st
 orthant. Hence 

for a 2D grid,      is a unit vector with either all positive or all negative coefficients resulting 

in a sum of convex functions, which is convex. Therefore, 1
st
 PC is convex for a 2D full grid 

as well. 

 

B. TPM in from other VCS 

The use of proposed TPM generation technique with other virtual coordinate systems 

derived from hop distances is demonstrated next using two such schemes, ABVCap ‎[113] 

and Aligned VCS‎ [82].  

Axis-Based Virtual Coordinate Assignment protocol (ABVCap)‎ [113] characterizes each 

node by a 5-tuple consisting of longitude, latitude, ripple, up, and down. These entries are 

specified relative to virtual lines identified in the network as follows. Initially, three anchors 

(     ) are selected based on VCap anchor selection. A fourth anchor,   , is selected such 

that it is furthest away from   and equidistance from   and  . Based on hop distances to 

these four anchors, i.e., VCS of (        ), ‎[113] proposes a scheme to generate a new 

coordinate system with directionality. Generation of 5-tuple (longitude, latitude, ripple, up, 

down) involves several additional network floodings. Figure 5.14 (a) shows an example 

network used in ‎[113] with ABVCap-VCS. One notable property of ABVCap-VCS is that 

some nodes have more than one VC tuple assigned to them. Either one of the tuples has to be 

selected for each node, which introduces unnecessary complexity to identify the proper tuple 
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for topology map generation, or multiple positions in TPM will be assigned to the same node 

based on different coordinate tuples. The TPM shown in Figure 5.14 (b) is generated using 

our scheme based on VC tuples identified in bold in Figure 5.14 (a). Figure 5.14 (c) indicates 

multiple positions created for node 12 due to its multiple coordinates in ABVCap. As 

ABVCap-based VCS does not have concentrically increasing property, 1
st
 PC and 2

nd
 PC 

provide the TPM. While this demonstrates the applicability of TPM for ABVCap, we note 

that essentially the same information can be obtained simply by applying the method to a 

simple VCS without having to undergo overhead required to generate ABVCap.  

 

Figure 5.14:  a) An example network with its ABVCap VCS ‎[113];  b) TPM only with ABVCap 

coordinates in bold black, ;c) TPM with all possible ABVCap coordinates of node 12; and  d) TPM 

from Aligned Virtual Coordinates. 
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Aligned VCS ‎[82] proposes a modification for VCS to alleviate the local minima problem 

simply by replacing the VCs of each node with the average of the node’s and its neighbors’ 

VCs. Thus we have used the VCS w.r.t (        ) of Figure 5.B.1 (a) to evaluate aligned 

VCS as in ‎[82]. The TPM from the corresponding aligned VCS is shown in Figure 5.B.1 (d). 

Since aligned VCs are also radial in nature, the radial component can be removed using the 

1
st
 PC, and the 2

nd
 and 3

rd
 PCs provide the Cartesian coordinates. These results indicate the 

applicability of the proposed TPM generation technique to other virtual coordinate systems 

as well. 

 

5.8 Conclusions  

We presented a novel and a fundamental technique for generating topology preserving 

maps from virtual coordinates for 2D and 3D (both surface and volume) WSNs. As 

demonstrated, the transformation matrix for converting the virtual (logical) coordinates to a 

set of topological Cartesian coordinates can be obtained using the virtual coordinates of a 

very small set of nodes. Results show that a remarkable 2D topology preservation error (    

) ≤ 2% is achievable with a small number of anchors.  

TPMs may also be used in lieu of physical maps for many applications and WSN 

protocols ‎[39]. While there are certain applications for which the exact sensor location is 

necessary, for others that do not need such information, TPM presents a robust, accurate, and 

scalable alternative for physical map generation or localization. Sensor network applications 

of topology preserving maps are diverse and vast; examples include routing, localization, 

boundary node identification, and effective anchor placement. Having VCs as well as 
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approximate Cartesian coordinates (which can now be derived from VCs) can significantly 

enhance the routing mechanisms. 

 We envision many applications of the proposed TPM extraction methodology in other 

types of networks as well as in multidimensional graphs, e.g., for dimension reduction, 

visualization, and information extraction. Methods to compensate for the distortion of the 

maps compared to physical maps, and techniques that use derived Cartesian coordinates and 

the topology map to improve self-organization and routing protocols, are also under 

investigation. 
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CHAPTER 06 

PMDS: PARTIAL MULTI-DIMENSIONAL SCALING FOR SENSOR NETWORKS 

 

6.1 Introduction 

Routing plays a crucial role in data dissemination and fusion in Wireless Sensor Networks 

(WSNs). Though physical/geographic information-based routing ‎[69] is popular in WSN 

context, the cost of acquiring physical information based on GPS is expensive and infeasible 

in most WSN applications. However, the same performance can be achieved under relative 

localization ‎[14]. Applications such as target tracking, surveillance applications, boundary 

detection, etc., requires relative or global localized information of the network. Time of 

Arrival, Angle of Arrival, RSSI, and Triangulation are among existing relative localization 

techniques. Not only the energy consumption and cost associated with localization but also 

sensitivity to fading and SNR are among the main disadvantages of using physical 

information-based coordinate systems in large WSNs. 

Dimension reduction schemes ‎[16]‎[39]‎[109] preserve the neighborhood information. In 

addition, though they are rotated and/or distorted versions of the real physical node maps, 

most of the important physical properties such as boundaries and voids are preserved. 

However, most of the available dimensional reduction schemes are infeasible in WSN 

context due to high memory requirement, intensive computational complexity, and high 
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communication cost involved in data acquisition. 

Multidimensional Scaling (MDS) ‎[109] is a mathematical technique that is capable of 

generating lower dimensional embedding of the network, given the entire Line of Sight (LoS) 

distance matrix among all the nodes. This lower dimensional embedding is called topology 

map of the network. The main disadvantage of using MDS is attaining the distance matrix, 

which is extremely energy-consuming in WSN context, and if such information is available 

at a node, the network can achieve 100% routability without generating the lower 

dimensional map. Moreover, storing such information at a resource-starving node, especially 

when the network is large, is not pragmatic. 

This research proposes energy- and memory-efficient Partial MDS (PMDS) approach, 

which is feasible in WSN context, based on Virtual Coordinate System (VCS) ‎[22]‎[37]. VCS 

characterizes each node by vector of cardinality  , which is simply the shortest path 

geodesic or hop distance to subset of nodes called anchors. The main difference of PMDS 

compared to MDS is that the former achieves relatively localized network with the distances 

to 1% of the network nodes, which are randomly chosen. Furthermore, performance of 

PMDS is analyzed using both LoS and geodesic distances. Offline as well as inline 

implementations are discussed. Performance is compared with Topology Preserving Maps 

(TPMs) in ‎[39]. 

 

6.2 Methodology 

This section discusses the proposed algorithm Partial Multi-Dimensional Scaling (PMDS). 

Consider a WSN of   nodes. Subset of   nodes where     are selected either uniformly 

at random or from the boundary ‎[22] or are based on existing anchor selection scheme‎ [69].  
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Figure 6.1.  Example network with   as an anchor.   is a node which is             

geodesically apart from  . 

 

Traditional VCS is based on hop distances. However, as in this research, the concept of VCS 

is extended to RSSI-based shortest path geodesic distances to a set of anchors. Consider the 

example network in Figure 6.1. Node S is four hops away from anchor  , while the geodesic 

distance between   and   is              , where    is the shortest geodesic gap 

between two nodes estimated using RSSI. The collection of these distance vectors is given by 

    matrix  . Subsection A discussed the PMDS on the entire matrix    while Subsection 

B proposes partial MDS based on only anchors’ distance matrix. 

 

A. Partial MDS 

Virtual Coordinate System (VCS) of all the nodes in the network w.r.t.   anchors are 

available and given by       where  

       ;                                                                                  (1) 

    is either geodesic or hop distance from node   to anchor  . As the first step, evaluate 

     
 

 
   
 ;                                                                               (2) 

Then the matrix is ‘centered’ by removing column-wise and row-wise mean using centering 

matrices 

        
 

 
        

                                                                               (3) 
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                                                                               (4) 

Using row- and column-wise centering matrices    and   ,   is centered. 

                                                                                                    (5) 

 

From the Singular Value Decomposition (SVD) 

                                                                                                  (6) 

The PMDS-based Principle Components (PCs) generate as 

                                                                                                 (7) 

 

Figure 6.2.  (a) 496-node circular network with three physical voids (b)TPM using  SVD on RSSI 

based VCS with 15 anchors (c) TPM using MDS on RSSI based entire VCS with 3 anchors (d) 

TPM using anchors VCs only 
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Note that Eq. (7) is different from the traditional MDS approach. First and second PCs are 

used as the physical coordinates of nodes. 

                 
   
     
   
                                                                        (8) 

 

B. Partial MDS from anchors’ distance matrix 

Generating matrix   at a node in WSN is not pragmatic. Hence, relative coordinates 

generation, from the distances between anchors only, is discussed next. Consider a matrix 

    matrix    where 

           ;                                                                          (9) 

      is the distance between anchor    and   . Following the steps from (2) to (5), centered 

matrix can be generated as 

                                                                                        (10) 

where    is the squared distances of   . Then the PCs are generated by 

          
                                                                              (11) 

                                                                                             (12) 

Again, Eq. (12) is different from the conventional MDS approach. The relative physical 

coordinates given in (8) and be obtained and rewritten as 

                     
   
     

   
                                                                     (13) 

where,    is the distance vector at node  , [  
   
   
   

] are the first and second columns of   , 

and                 is the relative physical coordinates of node  . Computational complexity 

of performing MDS on     matrix is       while the presented MDS on anchor’s 

distance matrix, which is     , is      . 
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6.3 Realization of the Topology Map Generation 

In this section, we consider the realization of the algorithm in wireless sensor networks.  

First, consider a sensor network where the nodes are randomly deployed, and it is 

necessary to obtain a map of the node deployment indicating geographic voids at a central 

node. There are many scenarios where a centralized implementation is feasible or even 

preferable. In this case, each node may send information about its VC to a base or a central 

station. Thus, the above procedure (Section II-A) can be used to get a map of the network at a 

 
Figure 6.3.  (a) 496-node circular network with three physical voids,  (b)TPM using RSSI based 

VCS,  (c) TPM using MDS, and  (d) TPM using anchors VCs only 
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significantly lower cost compared to that of MDS approach. If necessary, the map can be 

broadcast back to the individual nodes, together with the transformation matrix  , an 

operation of transmission complexity of     . Generating coordinates at a central station 

avoids multiple flooding in the network caused by distributed implementation of the same 

algorithm. 

A distributed implementation of the above may be achieved as follows. The anchor-based 

distance evaluation, in terms of geodesic distance, is carried out the traditional way initially, 

via flooding. Following that, the anchors broadcast their coordinates, which requires 

      messages. Now that all the anchors’ coordinates array is available at each node, each 

node i can generate        (11) and (12)), and evaluate its own                 locally by 

simply multiplying its own coordinate by     

 

6.4 Results 

The performance of the proposed methods is evaluated using a 496-node circular-shaped 

network with three physical voids as shown in Figure 6.2 (a). MATLAB
®
 2011a was used for 

the computations. Communication range of a node is 1.5 units and the maximum 

neighborhood size of a node is 8.  

Two application scenarios are discussed: (1) set of nodes with high transmission 

capabilities as anchors and (2) subset of network nodes as anchors, thus anchors do not have 

any additional capabilities (Subsection C). Moreover, the proposed PMDS is compared with 

SVD-based Topology Preserving Maps ‎[39], which are briefly discussed in Subsection A. 

Topology Preservation Error        introduced in ‎[39] is used as the performance 
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evaluation metric.      simply evaluates the percentage number of node flips in the entire 

topology map compared to its physical map. 

 

A. Topology Preserving Maps (TPMs) 

TPM scheme proposed in ‎[39] uses one hop distance-based VCS while we apply the 

technique on LoS and geodesic distances based VCSs. SVD of matrix   is evaluated without 

centering the matrix 

          
                                                                                        (14) 

Then the projection of   on to basis    is calculated 

                                                                                              (15) 

Since the matrix   is not centralized, 1
st
 principle component has captured the radial 

feature of the VCS. Therefore, 2
nd

 and 3
rd

 principle components are used as the coordinates 

of TPM 

             
        

                                                                       (16) 

                     

B. Set of powerful nodes as anchors 

Assume there is a set of nodes that can transmit signals to the entire network, serves as 

anchors, and are used only for the purpose of localization during the network setup phase. 

Thus, each sensor node can estimate the LoS distance from itself to the anchors based on the 

RSSI. Collected estimates of each node’s VC can be used to get the TPM at a central station 

as discussed in Section III. Figure 6.2 (b) shows the performance of SVD-based TPMs, based 

on 15 anchors. Next, Figure 6.2 (c) is corresponding to a map constructed based on Partial 

MDS given in Eq. (8) using entire   matrix for all the nodes in the network. However, the 
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noticeable fact is that number of anchors is just three. More interestingly, Figure 6.2 (d) 

indicates the inline implementation where the map is derived from just anchors distance 

matrix of    . As given in Table 6.1, the average topology preserving error (   ) in Partial 

MDS maps are zero while that of SVD-based offline and inline implementations are 0.02% 

and 0.2% respectively.  

 

C. Subset of network nodes as anchors  

Next, we consider a subset of nodes in the network as anchors; thus, anchors do not have 

any additional capabilities. As in the traditional VCS generation, selected anchors flood the 

network. Then the rest of the nodes in the network develop geodesic distance-based VCS.  

Table 6.1 
Topology Preservation Error for Figure 6.2 and Figure 6.3 

    % 

Offline Inline 

SVD PMDS SVD PMDS 

Set of powerful nodes as anchors 0.02 0.0 0.2 0.0 

Subset of nodes as anchors 1.06 0.82 1.96 1.6 

 

Fifteen anchors are randomly placed. Partial MDS- and SVD-based topology map of the 

offline implementation that is based on the entire VCS is as shown in Figure 6.3 (a) and (b) 

respectively.    % (Topology Map Error) is estimated by averaging the error for 10 random 

anchor configurations.    % for PMDS- and SVD-based offline implemented maps are 

0.82% and 1.06% respectively. Figure 6.3 (c) and (d) show the TPMs of inline 

implementation of PMDS- and SVD-based approaches, with    % of 1.96% and 1.6% 

respectively. Based on the    % performance, we can conclude that the performance of 

PMDS-based TPMs is better than that of the SVD-based approach. 
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In-network implementation of conventional MDS is not pragmatic mainly because, if a 

node contains the entire network distance matrix, it can track the path to destination without 

requiring any complex routing scheme. Both inline and offline implementation costs are 

significantly higher than the proposed PMDS because, in conventional MDS, every node 

floods the network for distance matrix evaluation. Hence the transmission complexity is 

     . In contrast, proposed PMDS transmission complexity for distance matrix evaluation 

alone is      . Since the distance among all the nodes is required for MDS, the memory 

requirement is       while that for PMDS is        

 

6.5 Conclusion 

Partial Multi-Dimensional Scaling (PMDS) is a pragmatic and Wireless Sensor Network 

(WSN) friendly approach of achieving topology-preserving maps, without requiring physical 

information. In contrast to MDS, PMDS uses geodesic distances to a subset of nodes in the 

network. Thus, computational, memory, and communication complexity PMDS are 

significantly lower than those of MDS, especially when it comes to large WSNs. 

Performance comparison based on topology preservation error, a metric that captures the 

number of node flips due to lower dimensional embedding, shows that maps generated using 

PMDS are better than that of maps generated using the existing scheme, Topology Preserving 

Maps. 
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CHAPTER 07 

ANCHOR SELECTION AND TOPOLOGY PRESERVING MAPS IN WSNS – A 

DIRECTIONAL VIRTUAL COORDINATE BASED APPROACH 

 

7.1 Introduction  

Virtual Coordinate Systems (VCS) provide a compelling alternative for 

structuring/organizing Wireless Sensor Networks (WSNs) without the need for location 

information. In virtual domain, each node is represented by a   dimensional vector of virtual 

coordinates, consisting of shortest path hop distances to   nodes, named anchors. They are 

different from anchors used in physical position-based localization schemes in that anchors 

for VCS are not localized and have the same capabilities as any other node in the network. A 

major advantage of connectivity information-based VCS over physical position-based 

systems is that they completely avoid the cost, complexity, and uncertainties associated with 

node localization using GPS or distance estimations. GPS-equipped nodes are expensive, are 

not energy efficient, and are not feasible in some applications ‎[14]. The alternative is to use 

analog measurements, such as Receiver Signal Strength Indicator (RSSI) or Time of Arrival 

(TOA) ‎[14], to estimate distances to other nodes and thereby obtain node positions. These 

analog measurements encounter uncertainties and complexities due to multipath fading, 

scattering, interference, and poor line-of-sight, which are difficult to overcome in many 

indoor and outdoor environments. VCS thus outcompetes geographical location-based 
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schemes in large WSNs by facilitating the use of nodes with simpler hardware. VCS also 

possess the advantage of having connectivity information implicitly embedded in node 

coordinates generated based on hop distances.  

VCS is a WSN-friendly self-organization strategy that provides routing schemes with 

performance, comparable to alternatives that require costly localization ‎[4]‎[22][23][36][41]. 

VC-based routing (VCR) schemes generally use greedy forwarding, in which a packet is 

forwarded to the neighbor closest to the destination. The distance between two nodes for this 

purpose is typically calculated using L
2
 norm in VC space. Early VCR schemes such as 

LCR ‎[23] and CSR ‎[36] differ in the way they deal with local minima or logical voids in this 

space and the way backtracking is done.  

As each Virtual Coordinate (VC) propagates in the network concentrically from the 

corresponding anchor, VC systems appear to lose the sense of (cardinal) directionality that is 

present in geographic coordinate-based systems. Two recent developments go a long way 

toward overcoming this hurdle by recovering or regenerating directional information lost in 

VCs. The first is the methodology for generating Topology Preserving Maps (TPMs) for 

WSNs using VCS [38]. TPMs and the associated Topology Coordinates provide a powerful 

alternative for physical maps and location information. TPMs preserve the neighborhood 

information, boundaries, voids, and even the general shape of networks, but they have neither 

the exact coordinates nor the distances of the physical layout. TPM and VCS are combined in 

a routing scheme called Geo-Logical Routing ‎[39], which generally outperforms even the 

exact physical location-based routing scheme, Greedy Perimeter Stateless Routing 

(GPSR) ‎[69]. The second development is the VC to Directional Virtual Coordinate (DVC) 

transformation we proposed in ‎[41], which embeds virtual directions within a network. The 
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routability is significantly enhanced by using such directional information in conjunction 

with VCS ‎[41].  

 The number of anchors and their placement, i.e., the anchor selection, is the key factor 

affecting the performance of any VCS-based algorithm, including those for routing ‎[23]‎[36] 

and TPM generation ‎[37]. Under-placement of anchors results in identical coordinates for 

different nodes. In general, the routability increases and the likelihood of identical 

coordinates decreases with the increase of number of anchors. But, as ‎[36] indicates, over-

placement of anchors may degrade routing performance. Not only that, the higher the number 

of anchors, the higher the VC generation cost and the higher the length of address field in 

packets, causing higher energy consumption.  

Determining the optimal number of anchors for a network, however, is not trivial. Further 

complication is due to the fact that the number of anchors and their optimal placement are 

highly correlated. Adding the (n+1)
st
 anchor to the optimal placement of n anchors does not 

in general result in the optimal placement of (n+1) anchors. A ‘good’ set of anchors provide 

high routability, while improper placement of the same number of anchors may cause 

excessive routing failures due to local minima ‎[23][36][41][37] and nodes with identical 

coordinates ‎[22]‎[36]. When the node currently holding the packet is unable to find a neighbor 

that is closer than itself to the destination, the packet is said to be at a local minima. How 

internal anchors cause local minima that impact routing is addressed in ‎[36], which explains 

the importance of placing the anchors on the boundary. Existing VC-based Routing (VCR) 

schemes use a costly backtracking phase to overcome such local minima, yet packet delivery 

is not guaranteed. Schemes in ‎[22]‎[23]‎[101] attempt to place anchors as far apart as possible, 

or on the boundary. Those schemes are expensive to implement, and do not guarantee to 
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achieve the stated goal. Not all boundary nodes are ‘good’ anchors, either. Discovering 

boundary nodes without any localization is not straightforward ‎[128]. Boundary detection for 

the placement of anchors also increases the cost of VCS generation as it involves multiple 

network floodings ‎[22]‎[23]‎[101]. To manage this complexity, many existing schemes 

determine apriori, the number of anchors to be placed, e.g., a certain percentage of the nodes, 

and then attempt to place them on boundary or space them far apart ‎[22]‎[23]‎[128]. Thus 

determination of the number of anchors together with their placement remains a major 

challenge. No holistic solutions that determine both the number of anchors and their 

placement simultaneously based on the network topology exist.  

The first contribution of this research is a simple, efficient, and also a very effective 

scheme for anchor placement. The proposed Extreme Node Search (ENS) algorithm 

simultaneously determines both the number of anchors and their locations. The anchor nodes 

selected in general are extreme nodes of the network. Nodes at corners of a network and 

nodes that are furthest apart are examples of extreme nodes. ENS is a completely distributed 

scheme that allows a node to self-identify whether it is an anchor or not. It exploits the 

directionality introduced to VCS by the Directional Virtual Coordinate Systems (DVCS) 

approach ‎[41]. The quality of anchors selected is evaluated based on improvement of 

routability achieved with Greedy Forwarding (GF) and existing VCR schemes: Directional 

Virtual Coordinate Routing (DVCR) ‎[41], Convex Subspace Routing (CSR) ‎[36], and 

Logical Coordinate Routing (LCR) ‎[23]. The performance of these schemes with anchors 

selected by ENS is also compared with Greedy Perimeter Stateless Routing (GPSR) ‎[69], a 

geographical coordinates-based scheme that requires the knowledge of nodes’ geographic 

coordinates. Results presented for several representative networks demonstrate that ENS 
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anchor selection not only improves the routing performance of existing VCS-based routing, 

but also improves the quality of TPMs generated based on ‎[37]. In the process of developing 

and providing insight to the anchor placement, we also derive additional properties, including 

the notion of angle between two vectors in DVC space. If two vectors have ~ 90
0
 angle 

between them, they provide a good set of Cartesian axes which can also be used to get a good 

network map. This is the second contribution of this research. The proposed TPM technique 

is computationally less complex than that in ‎[37], which is based on singular value 

decomposition. The notion of specifying cardinal directions and use of angles, introduced in 

this research for the first time, is a radical change from the traditional VC system approaches. 

This, we believe, will significantly enhance the ability to exploit VCs for networking.  

Section 7.2 discusses work related to anchor placement and VCS-based routing. Then 

Section 7.3 derives two basic properties of DVCS for a full grid. ENS-based on DVCS is 

discussed in Section 7.4, followed by performance evaluation in Section 7.5. Section 7.6 

discusses existing TPM generation technique for WSNs. Section 7.7 proposes and evaluates 

TPM based on DVCS. Finally, Section 7.8 concludes the research.  

 

7.2 Anchor Selection and Routing in Virtual Coordinate Systems 

Though good anchor placement is critical for VCS performance, only a few schemes are 

available for discovering good anchor locations. Anchor placement scheme in ‎[101] proposes 

placing them on the WSN boundary, assuming that the boundary nodes are known. But most 

existing boundary identification schemes require physical localization, which is expensive. 

Virtual Coordinate assignment protocol (VCap) ‎[22] proposes generating a virtual 
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Table 7.1  

Notations Used In Chapter 7 

Notation Description 

  Number of network nodes  

   Node i  

  Number of anchors (    ) 

         Set of Anchors  

      Minimum hop distance between nodes   ,    

                   ] Node    s VC 

      Node   ’s Directional VC 

  
   

   th coordinate of DVCS  

        Unit vector of the directional coordinate w.r.t. anchor    and    

    Angle between   
   

and   
   

 

       Set of nodes in    s h-hop neighborhood 

    Displacement between node    and    in DVCS  

 

topology based on a total of three furthest apart for the entire network. In general, multiple 

nodes flood the network when self-election of anchors is aimed at optimization of prior 

coordinates. Moreover, this results in a large number of nodes with identical coordinates. 

Logical Coordinate-based Routing (LCR) ‎[23] combines an anchor placement strategy 

together with GF. Again, the anchor placement scheme attempts to select the furthest apart 

nodes, but the number is not restricted to three. A backtracking (BT) algorithm is used when 

a packet reaches local minima. The mode of data packets, GF/BT, is kept in the packet 

header while their recently visited nodes are kept in a distributed manner at intermediate 

nodes. Strategies for evaluating anchors and VCS dimensionality reduction are presented 

in ‎[38].  

Single anchor-based VCS called Spanning Path Virtual Coordinate System (SPVCS) 

in ‎[84] uses a depth-first search algorithm starting from the root node for coordinate 

generation. Best performance is achieved when the anchor or the root node is placed at the 
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center, as it provides a balanced spanning tree. Convex Subspace Routing (CSR) 

algorithm ‎[36] moves dynamically among different subspaces of VCS to avoid local minima. 

Directional Virtual Coordinate Routing (DVCR) ‎[41] is a routing scheme based on 

Directional VCS (DVCS) in which a node uses DVCS-based greedy forwarding when 

possible. At a local minima, an approximation for hop distance based on two directional 

coordinates is used for next node selection.  

 

7.3 Properties of Directional VC Space  

Consider a 2D network with   nodes and   anchors. VCS of the network characterizes 

the node    by [             ], where           is the shortest path hop distance from 

node    to anchor     The notations used is summarized in Table 7.1. 

Each coordinate of DVCS is obtained using a pair of anchors in VCS. The pair of VCs of 

node    with respect to    and   , [     ,        is transformed to the corresponding 

directional virtual coordinate (DVC) of node    as ‎[41]: 

                     
       

                                                     (1) 

This transformation basically introduces directionality to the space, i.e.,                

spans negative and positive values, with zero at the midpoint between the two anchors. This 

restores the directionality lost in original VCs, which corresponds to positive values 

propagating radially away from each anchor. Therefore, a vector notation can now be 

introduced. Let         be the unit vector in virtual direction from    to    in the virtual 

domain. The vector component of node    in DVCS in the direction           i.e., from 

anchor    to       ‎[41] 
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                                                                                (2) 

               is the magnitude in the direction of            

The displacement from nodes    to    (with respect to the coordinate defined by    and 

   , denoted by    , is therefore  

                                                                  (3) 

Two properties of DVCS are derived next for a full rectangular grid network as shown in 

Figure 7.1 in which each node communicates with four neighbors. This simple case provides 

insight into the directional coordinates and helps explain the principles behind the anchor 

placement algorithm. Even though the assumptions are not compatible with general 

networks, with odd shapes, voids, etc., the results still can be used as a first order 

approximation to analyze such networks. 

 

Figure 7.1. VCs of    and its neighbors on a grid with two anchors    and   . 

Property 1: In a full rectangular grid, when two anchors are placed furthest apart on a 

connected line  , the displacement between any two adjacent nodes on a line parallel to   

(line   ) is a constant that is greater than unity for each line. Moreover neighbors on a line 

perpendicular to   (line   ) have a constant displacement that is less than unity for each line.  
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Proof: Consider nodes on line    passing through nodes   ,    and    in Figure 7.1. The four 

neighbors of node    are   ,   ,   , and   . Latter two neighbors, with DVCs        

    2    1     2 2/2  1 2 and     1+    2 (    1     2+2) /2  1 2 

respectively, are on a line parallel to the line through anchors. As the sum of the two 

VCs,            , of any node on the line is fixed, the displacements     and     evaluated 

using (4) are the same: 

   =                                                                        (4) 

Now consider the other pair of neighbors,    and   , on line   , with DVCs        

                             and                                     

respectively. The displacements     and     (from (2)) are the same:  

        
             

     
 

             

           
                                    (5)  

where,    is the node at the crossing point for a given vertical line on which    lies and the 

line through the anchors as shown in Figure 7.1. QED. 

Next we define extreme node and property 2, which will be used to identify ‘good’ anchors. 

Definition: A node is an extreme node if it is at a local minimum/maximum within its h-hop 

neighborhoods in its DVC system generated w.r.t two given anchors. 

Note that minima occur due to negative values in DVCs. 
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Property 2: In a full rectangular grid, an internal node cannot be an extreme node. 

Proof: Let any two anchors be   and   . Without loss of generality, consider the 

transformation at    and its 1-hop neighborhood (      ) given by (1). If the node    is a 

middle node, then there exist neighbor nodes with VCs                  , where   is 1 

or 0. Thus, directional coordinate of any of the neighbors can be expressed as 

      
                 

                    

                                         

Thus   ’s coordinate is neither a minimum nor maximum. In contrast, if    is an extreme 

node the only possibility for the neighboring VCs is                  . Again   is 0 or 

1. Neighbors’ coordinates from (1),  

      
                 

                    

                                         

If            , where   is 1,   is at a maximum while if             then    is at a 

minimum. When   is zero, i.e., under identical coordinate situation, both nodes with identical 

coordinates               are at minima/maxima. QED. 

Now consider the circular network with three physical voids in Figure 7.2. Let {  } be the 

sets of lines that are parallel to line L joining the anchors, i.e., those in        direction, and 

{  } be the set of lines that are perpendicular to  , i.e., those perpendicular to        direction. 
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We identify {  } based on the gap between neighbors given by (4) of Property 1. {  } lines 

are identified using (5). Figure 7.2 clearly illustrates that nodes can identify the {    and 

{    lines they are on with a high degree of accuracy. Only 65 out of 496 nodes cannot 

identify their    ,     position accurately. This illustrates that the results for full rectangular 

grid can serve as a good first order approximation. Gray squares are the 65 discordant nodes 

not compatible with the first order approximation.  

 

Figure 7.2.      and {    lines of a circular network with three physical voids where anchors are at A 

and B. Only the even numbered lines in the two directions are shown for clarity. 

 

7.4 Extreme Node Search (ENS) - An Anchor Selection Algorithm  

Anchor placement has a critical impact on the performance of any VCS-based routing 

algorithm. Determining the optimal number of anchors and their placement are open 

problems. The fact that the two problems are interdependent makes their solution even more 

challenging. Optimum number of anchors can be defined as the minimum set of anchors that 

provide unique VCs for each node and facilitate 100% success in routing using shortest 

length paths. In this section we propose a simple but effective anchor placement scheme, 
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Extreme Node Search (ENS), that attempts to assign extreme nodes, such as furthest apart 

and corner nodes of the network as anchors. Results below show that the selected extreme 

nodes are almost always situated far apart if not furthest apart. 

 

Figure 7.3. Scatter plot of DVCS coordinate for two sample networks to identify extreme nodes for 

anchors. Initial anchor pair is (A1,A2), color corresponds to DVCS value,  and  highlighted nodes are 

the identified extreme nodes. 

 

Inputs: Neighbors set of   ;           ,  

Output: ENS anchor candidate 

Step 1 - Two random nodes initiate floodings to generate a VCS 

Step 2 -  Each nodes locally generates its DVCS using (1)  

Step 3 - Each node checks whether it is a local minimum/maximum in h-hop neighborhood: 

  If              <             ;              

    is an anchor 

  End 

OR 

  If              >             ;              

    is an anchor 

  End 

Step 4 – Selected anchor nodes generate the VCS 

Figure 7.4. ENS anchor selection algorithm at a node. 

The strategy uses a pair of anchors, which may be randomly selected, to generate a DVC 

at each node. Figure 7.3 indicates the scatter plot of DVC by the initial pair of randomly 

A1 

A2 
A2 

A1 
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selected anchors for two example networks, which can be used to identify maxima/minima, 

i.e., the extreme points of the network. 

 

Figure 7.5. (a) Spiral shaped network with 421 nodes, (b) a 496-node circular shaped network with 

three physical voids/holes, (c) A grid based network with 100 randomly missing nodes, (d) a network 

of 343 nodes mounted on walls of a building, and (e) odd shaped network with 550 nodes. 

 

ENS consists of three steps. First, two randomly selected nodes (A1 and A2 in Figure 7.3) 

flood the network, thus characterizing each node by two VCs. Then each node evaluates the 

corresponding DVC using (1). Third, each node evaluates whether it is a local 

minima/maxima in DVCs, within its h-hop neighborhood,        .   is an important 

parameter that we can use to restrict the identified anchors. If it is a local maxima or minima 

in the neighborhood, the node decides to become an anchor of the network. Now a new VCS 

is generated using these new anchor nodes. ENS is summarized in Figure 7.4.  

Initially selected anchors can also supplement the selected anchors to be used for routing, 

if necessary. Another fact to notice is that ENS determines the anchor locations as well as the 

number of anchors for a given network. 

 

A 

B C 

D 

E 

B 
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7.5 Effectiveness of ENS Anchors 

In this section, the performance and the effectiveness of the anchor placement is 

investigated. Five examples, shown in Figure 7.5, represent a variety of network topologies: 

(a) spiral-shaped network with 421 nodes; (b) a 496-node, circular-shaped network with three 

physical voids/holes ‎[37]; (c) a 30x30 grid network with 100 randomly missing nodes (800 

nodes); (d) a network of 343 nodes mounted on walls of a building [38]; and (e) an odd-

shaped network with 550 nodes [38] were used for performance evaluation. Communication 

range of a node in all five networks is unity. MATLAB
®
 2010b was used for the 

computations. We use a 4-hop neighborhood, i.e.,    , for selecting extreme nodes. 

The nodes colored in red in Figure 7.5 are those identified by the algorithm as the extreme 

nodes, i.e., local minima/maxima in a 4-hop neighborhood. Thus, they become the anchors 

for VCS generation. For all the networks except for those in Figures 7.5 (b) and (d), these 

very same nodes are identified with a high probability by the scheme irrespective of the 

initial selection of the two random anchors. The five red nodes in Figures 7.5 (b) and (d) are 

for a particular selection of the initial two nodes. This can be attributed to the fact that Figure 

7.5 (b) has a circular boundary, resulting in many possible candidates for extreme nodes. For 

Figures 7.5 (b) and (d), the number of anchors selected varies between 3-8 and 3-10 

respectively for different initial anchor selections.  

 

A. Improvement in Greedy Forwarding  

Greedy Forwarding (GF) is the underlying mechanism on which existing VC routing 

schemes ‎[22]-‎[41] are based. The percentage of packets successfully routed to the destination 
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is called the Greedy Ratio (GR). A good anchor placement is one that enables high GR; thus, 

it is a good measure to evaluate the effectiveness of an anchor placement strategy. GR is 

evaluated for anchors selected by the ENS and is compared with that for several other 

strategies in Figure 7.6. Other anchor placement schemes include: (a) anchors selected 

anywhere in the network uniformly at random and (b) anchors selected from the boundary 

nodes (again uniformly at random, similar to that in ‎[22]‎[23]) for the network in Figure 

7.5(e). The tolerance bars in Figure 7.6 indicate the maximum and minimum variation of GR 

for different random anchor configurations for anchor placement schemes in (a) and (b) 

above. GR increases from 46.9% to 84.9% as the number of randomly selected anchors from 

anywhere in the network varies from 5 to 50. As the number of boundary anchors increases 

from 5 to 50, GR increases from 54.5% to 90.7%. GR for the five anchors selected by ENS, 

i.e., as in Figure 7.5 (e), is 93.3%, achieving higher routing performance with just five 

anchors. Note that the horizontal axis of Figure 7.5 has no significance for the ENS as it 

comes up automatically with maximum five anchors. None of the other schemes can achieve 

a similar performance even with 50 anchors. We have included results only for network in 

Figure 7.5 (e) due to limited space. Results for other network configurations also demonstrate 

a similar improvement. 

To evaluate whether the anchor placement provided by ENS can be improved upon, next 

we add random nodes from the boundary as additional anchors beyond the five already 

selected. GR, which is 93.3% for the selected five anchors, increased gradually to 95.5% 

when the total number of anchors is 50 anchors (five selected anchors from ENS and 45 

randomly selected boundary nodes). Thus additional 45 anchors provide just 2% increment in 

routability. This indicates that anchors from ENS are able to identify the most efficient set of 
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anchors while guaranteeing high routability. Finally GR is evaluated using ENS selected 

anchors in DVCS-based GF. In other words, greedy decision is based on L
2
 distance 

estimation using entire DVCS. As opposed to VCS, DVCS-based GF achieves 99.3% GR 

under anchors from ENS. Also, DVCS-based GF outperforms VCS-based GF under any 

anchor placement scheme which is an indication of the effectiveness of DVCS. 

 

Figure 7.6. Comparison between, greedy ratio of randomly selected anchors from the 

boundary/anywhere in the network and that of five anchors selected from ENS for the network in 

Figure 7.5(e). 

 

In evaluating any anchor placement scheme, it is extremely important to consider the 

impact on communication and computation complexity associated with the number of 

anchors. For   anchors, the VC generation complexity, i.e., the number of packets needed to 

generate the VCS, is      . The length of address field is     . Not only does the ENS 

select anchors in the range of 2-10 for the given networks in Figure 7.5, the routability 

performance with these few anchors is better than that with 50 anchors (randomly selected or 

selected on the boundary), resulting in an order of magnitude reduction in complexity while 

achieving better performance. Selection of anchors on the boundary normally requires apriori 
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knowledge of boundary nodes or use of a boundary node identification scheme that 

significantly adds to the complexity. Proposed scheme overcomes this hurdle simply relying 

on the DVCS generated from two random anchors to identify the anchor placement. 

Table 7.2 

       and      of DVCR, CSR, LCR and GPSR 

  Five  random  

anchors 

With ENS anchors  

 

GPSR    CSR LCR DVCR CSR LCR DVCR 

Spiral       49.97 46.9 92.7 61.66 67.3 95.9 49.1 

        0.64 0.64 1.13 0.81 0.9 1.1 1.65 

Grid       61.89 49.7 93.7 87.55 52.9 99.0 89.5 

        0.81 0.78 1.3 0.95 0.7 1.07 1.05 

Circle W 

holes 

      43.5 39.7 90.5 84.02 75.5 96.9 93.8 

        0.6 0.69 1.6 1.01 0.9 1.21 2.46 

Building      % 45.7 40.8 95.4 80.14 59.5 98.7 97.3 

        0.65 0.62 1.39 1.06 0.8 1.18 1.43 

odd NW      % 70.7 66.0 93.7 99.92 93.0 100 94.4 

        0.88 0.8 1.3 1.03 1.00 1.00 1.2 

 

B. Improvement in existing routing schemes  

Having considered the effectiveness of the proposed anchor placement strategy on GF, the 

next question is whether the existing VC-based routing schemes benefit by the ENS-based 

anchors. Thus we evaluate the performance of three existing routing schemes, namely 

Convex Subspace Routing (CSR) ‎[36], Logical Coordinate Routing (LCR) ‎[23], and 

Directional Virtual Coordinate Routing (DVCR) ‎[41]. A comparison is done with ENS-based 

anchor selection vs. five randomly selected anchors in terms of average routability (       

and average path length (      defined as  

      =
                                              

                                
                                      (6) 

     =
                                                    

                                
                          (7) 
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Average routability evaluation considers all source-destination pairs, i.e., each node 

generated a set of ( -1) messages, with one message for each of the remaining nodes as the 

destination. For random anchor placement,       and     are averaged over 10 different 

anchor placement configurations.    is the shortest hop distance from source to destination, 

i.e., ideal path length. The routabilities for networks in Figure 7.5 are tabulated in Table 7.2 

for random and ENS-based anchor placements. Since CSR requires a minimum of three 

anchors, for the spiral network, two initial randomly selected anchors were also used for 

routing in addition to two anchors selected by ENS. Moreover in our implementation of 

LCR, perfect backtracking capability is assumed by saving entire path traversed by each 

packet at the intermediate nodes. Thus LCR routability reported is more optimistic than that a 

practical implementation would yield.  

Not only do the ENS-selected anchors improve the routability of the existing schemes, it 

also finds shorter paths (see Table 7.2). Routability improvement of CSR is on average 

28.4% while that of LCR is 21%. DVCR is improved by 5%. With the anchors from ENS, 

DVCR outperforms geographical routing scheme, Greedy Perimeter Stateless Routing 

(GPSR) ‎[69], by 13.4% averaged over all the networks. Unlike GPSR, which requires 

expensive localization, DVCR relies solely on logical coordinates.  

 

C. Parameter tuning in ENS  

The number of anchors chosen depends on the neighborhood size h. For instance, consider 

the building network in Figure 7.5 (d) where ENS identifies six anchors when a 4-hop 

neighborhood (h=4) is used. For an 8-hop neighborhood (   ), ENS identifies only three 
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anchors, which are marked as A, B, and C in Figure 7.5 (d). The performance of A, B, and C 

is more or less the same as that with all the ENS anchors. For instance, average routability of 

DVCR       using A, B, and C is 98.8% with 1.23        . The main conclusion is 4-hop 

neighborhood provides a set of anchors with good performance, but there exists fewer 

number of anchor configuration, which provides more or less the same performance under 

proper choice of h. 

 

7.6 Related Work: Topology Preserving Maps 

This section briefly discusses the topology preserving map generation proposed in ‎[37]. 

Consider a WSN with   nodes, with each node characterized by a vector of VCs, with 

distance to each of the   anchors (    ). Let   be the     virtual coordinate matrix 

of the network. Singular value decomposition of   is 

                                                                                         (8) 

where,  , and    are    , and     unitary matrices respectively and   is a   

  matrix where elements        are called singular values. Each node thus can be 

represented by its Principal Components (PC), given by     : 

                                                                                       (9) 

The second and third columns of      provide a set of 2D Cartesian coordinates for node 

positions on a topology preserving map, i.e.,   

                
        

                                                              (10) 
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where     
    is i

th
 column of     , and            is the topological coordinate pair of i

th
 

node. Topology Preserving Error (ETP) is defined as the % of nodes out of order/flipped 

compared to the original network. Results in Section 7.7 show that the anchors from ENS 

significantly improve the topology preserving maps proposed in ‎[37] in terms of ETP. 

 

7.7 Topology Preserving Maps from Directional Virtual Coordinates 

Consider the DVCS of a full rectangular grid with two anchors    and    in Figures 7.7 

(a) and (b). The virtual directions of          for different j and k are indicated by the arrows. 

As each DVC is generated based on two anchors, it is possible to transform the   virtual 

coordinates to up to   
  DVCs. In practice, however, only a small number of anchor pairs are 

needed to characterize a network in DVC domain ‎[41]. 

 

A. Angle between directional coordinates 

As a DVCS contains multiple coordinates pointing in different virtual directions, it is 

useful to define the angle between different directions. Let    be the      matrix 

containing the entire DVCS, where   is the number of nodes in the network and       
 is 

the cardinality in DVC domain. The column   
   

 corresponds to the i
th

 coordinate. The k
th

 

row         represents the DVC tuple of node   . Consider two coordinates in DVCS, 

  
   

and   
   

 of the entire network. The angle between  th 
and  th

 coordinates is defined as 

   =   =          
   
 
 

  
   

   
   
    

   
                                      (11) 
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where    
   
      

   
 
 

  
   

. Consider the example network in Figure 7.8 in which eight 

anchors are selected in pairs to form four DVCs. The i
th

 row of   is, 

                                                          ], thus columns one through 

four correspond to four virtual directions         ,         ,         ,and         . The angles 

between different pairs of columns of    from (11) are    ,      and     are 46.22
0
, 90

0
 and 

133.77
0
 respectively. If two of these vectors are orthogonal, they can be used to generate a 

2D topology map of the network. For instance in      in Figure 7.8 corresponding to vectors 

        ,          is 90
0
 and so is that between (         ,          ).  

 

Figure 7.7. DVCS coordinates with respect to anchor pairs: (a) A1, A2, and b) A3,A4, for a 9x9 

rectangular grid. Arrow indicates the direction of the unit vector. 

 

Some of the angles between directional coordinates of Figure 7.9 (a) are tabulated in 

Table 7.3. Anchors are selected using ENS. For example anchors A, C, and D provide three 

directional coordinates where the directions intersects and form a triangle. The addition of 

the angles       (94.9
0
),       ( 16.7

0 
) ,       (68.4

0
) is ~180

0
. 
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Figure 7.8. Example to illustrate the angles between different unit vectors         ,         ,         ,and 

         

 

B. In-Network realization of angle estimation 

Angle evaluation in (11) results in the angle between two datasets corresponding to two 

selected directional coordinates. If a subset of data points, which is a good representation of 

the entire data set, is selected for two coordinates, still the angular evaluation should hold. 

Thus anchors VCS,      can be used for estimation of angles between two directions. First 

each node evaluates the DVC matrix    corresponding to  . i
th 

column of      
   

 is a 

subset of data points of i
th

 coordinate of DVCS   
   

. Therefore, the approximate angle 

between  th 
and  th

 coordinates can be evaluated as, 

    =    =          
   
 
 

  
   

   
   
    

   
                                         (12) 

where    
   
      

   
 
 

  
   

. The error of this approximation is defined as 
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   for Figure 7.9 (a) is 0.08 and for Figure 7.5 (b) is 0.066, indicating that the in-network 

realization provides sufficiently accurate results for practical purposes. Worst case 

transmission complexity of informing the anchors VCS to the entire network is      , 

which is required by proposed DVCS- and SVD-based in-network realization of TPM 

approaches.  

 

C. DVCS-based Topology Preserving Maps 

With the definition of an angle between two DVCS, next we propose a new method for 

TPM generation based on the angles between different DVCs. The basic concept is that near 

orthogonal directions of DVCS provide a good set of axis for obtaining a topology map of 

the network. For example the TPM of the network in Figure 7.9 (a) is shown in Figure 7.9 

(b). The map in Figure 7.9 (b) is based on coordinates (                 ) which has 

       86
0

 (Table 7.3). The resulting topology preserving error     ‎[37] is 1.32%. Figure 7.9 

(c) is the TPM using the SVD-based scheme as in ‎[37], but with anchors selected by ENS, 

while Figure 7.9 (d) is the TPM from SVD on VCS generated using randomly selected 10 

anchors, exactly as proposed in ‎[37]. ETP for the former is 0% while the latter is 2.49% 

averaged over 10 random anchor placement configurations, which clearly indicate the 

effectiveness of anchor selection of ENS. TPM generated from DVCS has less ETP compared 

to that with SVD on a VCS with randomly selected anchors. 
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Similarly TPM for Figure 7.10 (a) generated from near orthogonal DVCs (      = 

94.12
0
), corresponding to anchor pairs (D,B) and (A,C), is shown in Figure 7.10 (b). With an 

ETP of 0.407%, it achieves better accuracy than the TPM generated from SVD with random 

anchor placement described in [38] with ETP of 1.5116%, averaged over 10 random anchor 

placement configurations (see Figure 7.10(d)). Again, the ENS-based anchor selection 

improves the TPM generated with SVD-based approach, as in Figure 7.10(c), reducing ETP to 

0.1279%. 

 

Figure 7.9. (a) Odd network. Anchors identified by ENS are indicated in red, (b) TPM using near 

orthogonal DVCs;, (c) SVD based TPM using the VCS generated using anchors identified by ENS, 

and (d) SVD based TPM using the VCS generated using 10 randomly placed anchors. 
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Figure 7.10. (a) Circular network with voids. Subset of anchors identified by ENS are indicated in 

red, (b) TPM using near orthogonal DVCs, (c) SVD based TPM using the VCS generated using 

anchors identified by ENS, and (d) SVD based TPM using the VCS generated using 10 randomly 

placed anchors. 

 

Table 7.3 

Some of the angles between coordinate-pairs in Figure 7.9(a) 

 



130 

 

Performance of both TPM generation techniques highly depends on the anchor selection 

and the number of anchors. Hence, the ENS reduces the transmission, memory, and 

computational complexities of both TPM approaches, providing impressive ETP. 

 

7.8 Conclusion 

Performance of virtual coordinate-based algorithms depends heavily on the number of 

anchors and their placement. We proposed a novel strategy that identifies the extreme nodes 

in a network as anchors, and thereby minimizes the impact due to local minima problem. 

Many of these extreme nodes lie on the boundary and are also spaced far apart. Performance 

evaluation demonstrates that ENS results in significant improvement in performance in terms 

of Greedy Ratio in Greedy Forwarding with an order of magnitude less anchors compared to 

randomly placed anchors even on the boundary. It also significantly improves the routability 

and path lengths of existing VC domain routing schemes, Convex Subspace Routing (CSR), 

Logical Coordinate Routing (LCR) and Directional Virtual Coordinate Routing (DVCR). 

Fascinatingly, with the proposed anchor selection, DVCR outperforms geographic routing 

scheme Greedy Perimeter Stateless Routing (GPSR), in spite of latter’s use of node location 

information. Properties of DVCS domain were investigated by introducing a vector notation. 

By selecting two directions that are orthogonal to each other, we demonstrated the creation of 

a topology map of the network. The new DVC-based approach for topology map generation 

involves significantly lower computation complexity compared to existing schemes. 

An advantage of nodes knowing TPM and topology coordinates is that even when some 

nodes, including anchors, fail in the network, the topological coordinates need not be 
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recalculated. Topological coordinates approximate the physical layout coordinates, albeit 

with distortions to take into account connectivity. Physical coordinates do not depend on the 

existence of other nodes, while traditional virtual coordinates have to be recalculated to 

maintain their validity. Topological coordinates, while initially calculated based on virtual 

coordinates, maintain a valid topological representation even when a moderate number of 

nodes fail. Another consequence of the work presented in this research is the ability to 

specify cardinal directions and use angles in VC domain. This is a radical change from the 

traditional VC system approaches, which we believe will significantly enhance the ability to 

exploit VCs for networking.  
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CHAPTER 08 

GEO-LOGICAL ROUTING: UNIFIED VIRTUAL AND TOPOLOGICAL SPACE 

ROUTING  

8.1 Introduction 

Algorithms for self-organization and data dissemination among sensor nodes play a crucial 

role in performance and lifespan of large-scale Wireless Sensor Networks (WSNs). Routing 

techniques for data dissemination/fusion can be broadly categorized as content-based routing 

and address-based routing ‎[23]. The former uses content-based attributes in the packet to 

define the destination set ‎[35], while the latter uses some sort of position information, 

physical or virtual, to identify or reach the nodes. Physical domain schemes rely on location 

or physical position information ‎[14] obtained using localization algorithms or GPS. 

Equipping nodes with GPS is costly and infeasible for many applications, with indoor WSNs 

and underwater WSN being examples. Localization based on parameters such as RSSI is 

error-prone and difficult to use in large-scale networks and crowded terrains. If location 

information is available, Geographic Routing (GR) schemes (also called position-based 

routing or Geometric Routing) ‎[49]‎[65][81] can be used. GR possesses the advantage of 

having directional information, but its performance is highly correlated with localization 

errors ‎[101]. GR also suffers from dead-end problems, also known as local minima problems, 

due to physical voids. Local minima problems occur when the node currently holding the 

packet does not have a neighbor closer to the destination than itself to forward the packet.  
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Figure 8.1. An example physical map to illustrate the effectiveness of combining physical and virtual 

(connectivity) information for routing. 

 

Virtual Coordinate-based Routing (VCR) attempts to overcome the disadvantages of 

physical domain schemes by characterizing nodes using connectivity-based geodesic distance 

(in terms of hops), instead of position information and corresponding Line of Sight (LoS) 

distance. In VCR, a subset of nodes is selected as anchors ‎[22]‎[23][36]‎[82]. These selected 

anchors, in contrast to anchors in localization schemes, do not have any additional features 

than the rest of the nodes. Each node is characterized by a VC vector consisting of minimum 

hop distances to each of the anchors. Like GR, most VCR schemes also use Greedy 

Forwarding (GF), where the packet is forwarded to the neighbor that is closest to the 

destination with respect to some distance function evaluated in virtual domain. Distance is 

typically calculated using L1 or L2 norms. Although VCs have the connectivity information 

embedded in the ordinates, the cardinal directionality information (north, east, X, Y, etc.) is 

lost. Physical voids become transparent in virtual domain. However, the local minima 

problem still arises in the virtual domain ‎[36]. The problem is exacerbated due to over/under 
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deployment and improper placement of anchors. Identification of the optimal number of 

anchors and proper anchor placement remain major challenges for VCR. 

 

A. Problem definition  

Many difficulties associated with Virtual Coordinate System (VCS) based schemes are 

attributable to lack of information about the physical network. Layout information such as 

physical voids and relative positions of sensor nodes with respect to X-Y directions are 

absent. Even though VCS is based on connectivity, explicit information on hop distances 

between pairs of nodes is not available and is difficult to estimate. Absence of connectivity 

information, on the other hand, is the cause for local minima problems in physical domain 

routing. Combining connectivity-based information in VCS and position or direction 

information in a network essentially would combine the advantages of VCR and GR schemes 

overcoming the disadvantages in each other’s domain. Consider the simple example network 

in Figure 8.1, with source node S and destination D. If physical coordinates are used for LoS 

distance evaluation, neighbors N1 and N2 of S have higher distances to D than S. Thus, there 

is a local minima at node S in physical domain. Nevertheless, based on the VCS generated 

using anchors A1 and A2, virtual distance from N1 to D is less than that of S to D. Thus, the 

minima in the physical domain can overcome using VCS. Similarly, when the packet is at 

N4, using VCS-based GF in VC domain, N4 fails to find a closer neighbor to destination than 

N4 itself. In contrast, based on the physical information N4 can identify A2 as its neighbor, 

which is closer to D than it is. This simple example illustrates cases where local minima in 

one domain can be overcome by using information from the other domain. However, simply 

using physical coordinates to supplement virtual coordinates is not an acceptable option, as it 
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would entail inheriting all of the disadvantages associated with obtaining physical 

coordinates, which the virtual coordinates were used to get rid of at the first place. With the 

above background, we define our problem as: 

Given a network with a virtual coordinate system   wrt   anchors,  

1) Generate appropriate substitution for the physical information, i.e., topological 

information, without using any means of physical information.  

2) Merge the virtual and topological information to achieve high data dissemination 

performance at least as in physical coordinate routing with low energy consumption. 

  

B. Contribution 

This research proposes a family of routing schemes called Geographic-Logical Routing 

(GLR), which combines the topological coordinates that solely derived from VCS and VC 

information to achieve significantly high performance in routability. 

The proposed novel approach uses topology coordinates (TCs) that are derived using 

existing Topology Preserving Map generation technique ‎[37], derived using virtual 

coordinates instead of geographic information. This way, we are able to merge the 

advantages of physical and logical routing schemes without inheriting their disadvantages. 

No such routing scheme currently exists. Geographic-Logical Routing scheme transforms the 

set of VCs to a set of Cartesian coordinates (topological coordinates) ‎[37] and switches 

between Geographic Routing based on topological coordinates and Logical Routing that uses 

virtual coordinates to achieve high routability performance. We demonstrate that the 

topology coordinates and maps are actually more useful than geographic coordinates and 
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maps for WSN routing. TCs inherit the connectivity information; thus, TCs-based next node 

selection to forward the packet is more accurate than that of the geographic coordinates.  

Switching between TCs and VCs to overcome local minima can be performed in various 

ways. We present a family of routing schemes, α-GLR, where a node selects either TC or VC 

mode for next node selection with probability α and change the mode overcoming local 

minima. Performance evaluation of two such schemes, 0-GLR and 1-GLR, are presented. 

Performance evaluation, in terms of routability, average path length, and energy consumption 

in various complex network shapes demonstrate that the proposed GLR schemes, 1-GLR and 

0-GLR, clearly outperform two existing VCR schemes, namely Logical Coordinate Routing 

(LCR) ‎[23] and Convex Subspace Routing (CSR) ‎[36]. Moreover, GLR achieves higher 

routability than the geographic routing (GR) scheme, Greedy Perimeter Stateless Routing 

(GPSR)‎‎[69] in all but one of the networks considered, without the need for localization/GPS. 

Results also show that with strategic anchor placement, e.g., with Extreme Node Search 

(ENS) algorithm, higher routability than that with randomly selected anchors can be achieved 

with very few anchors. 

Section 8.2 reviews related routing protocols. Characteristics of topology maps and its 

effectiveness in GF are discussed in Section 8.3. GLR scheme is proposed in Section 8.4. 

Section 8.5 evaluates the performance of GLR and Section 8.6 concludes the work. 

 

8.2 Related Work 

In this section, existing work on geographic routing and virtual coordinate routing is 

briefly discussed. 
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A.  Geographic routing  

Greedy Perimeter Stateless Routing (GPSR) ‎[69] is a GR scheme that employs GF until a 

packet comes across a local minima. Then the algorithm recovers local minima issue by 

routing along the perimeter of the void using right-hand rule, where packets are routed 

counterclockwise along the edges of voids. There are many topologies for which the right-

hand rule does not work or is less efficient than its dual, the left-hand rule. The difficulty is 

that the information to make the proper decision is not in generally available at the nodes. 

GEAR (Geographical and Energy Aware Routing) uses GF with an associated cost for each 

node to allow the packet to be forwarded around holes and also to distribute the routing load 

among the nodes. Compass routing ‎[67] routes packets out of local minima by routing along 

the faces intersected by the line segments between the source and the destination. To avoid 

loops in face routing, a planar graph of the original network graph is required. A two-tier 

geographic routing protocol presented in ‎[103] initially employs a modified version of GF 

where a packet is passed to the neighbor that is closest to destination, without comparing it 

with current distance to destination, to get out of a local minima. To avoid looping, a node 

that has a single neighbor marks itself as a blocked node. Blocked nodes do not participate in 

packet forwarding. Path Vector Face Routing in ‎[77] is simply a GF scheme based on face 

information.  

A method to locate and bypass holes is proposed in ‎[49], which develops a local rule, 

named TENT rule, so that each node can ascertain whether it is a local minima. A distributed 

algorithm, BOUNDHOLE, helps packets get out of the stuck nodes. In Hole Avoiding In 

advance Routing protocol (HAIR) ‎[65], the data packet attempts to avoid meeting local 

minima in advance. Protocols in ‎[49] and ‎[65] are associated with high memory requirements 
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and transmission costs, as this identification of local minima has to be repeated for each 

destination. Moreover, a local minima on the way to one destination need not to be a local 

minima for another, thus local minima node information has to be stored separately for each 

destination. Reference ‎[123] proposes Detour Routing based on Quadrant Classification 

(DRQC), to reduce the occurrence of the local minima problem by avoiding sending packets 

to the nodes which could have the local minima problem. In DRQC, each node knows the 

physical positions of its 2-hop neighbors, and then each node decides its state: negative for 

local minima problem or positive for local minima problem.  

Geographic routing schemes ‎[57] rely on knowledge of physical location of sensor nodes. 

Equipping nodes with GPS increases cost, energy consumption, and complexity. An 

alternative is to use a localization algorithm to estimate relative physical coordinates ‎[14]. 

The accuracy of both central and distributed implementations of localization is highly 

sensitive to channel fading and signal to noise ratio (SNR). Localization errors occur in the 

distance estimation and the position calculation. A study of propagation of errors in 

localization in ‎[91] demonstrates how routability and effectiveness of geographic routing 

scheme, GEAR [103], deteriorates with localization errors. As both VCS and topology 

coordinates used by GLR presented in this research are based on hop distances, it is not 

affected by fading or signal strengths. Further, they do not rely on analog measurements such 

as RSSI or time delay, and thus do not have cumulative errors that affect the performance, as 

networks scale. 
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B. Virtual Coordinate Based Routing 

VC-based routing (VCR), also referred to as logical routing, has received much attention 

recently as it is more feasible in WSNs, insensitive to localization errors, and is capable of 

achieving high routability without the cost and complexity associated with localization. Some 

representative VC-based routing protocols are discussed next. 

Scalable coordinate-based routing algorithm ‎[101] uses a set of perimeter nodes as 

anchors. GF is used until a local minimum is reached, and then an expanding ring search is 

performed until a closer node is found or Time-To-Live (TTL) expires. In Virtual Coordinate 

assignment protocol (VCap) ‎[22], a virtual space is generated for the entire network using 

three farthest apart anchors. An insufficient number of anchors causes the problem of nodes 

having identical coordinates. As a solution, a packet is delivered to a zone of nodes with 

identical coordinates, and then the final destination is sought using a proactive ID-based 

approach. Logical Coordinate based Routing (LCR) ‎[23] uses GF followed by a backtracking 

scheme based on furthest apart anchor placement. It requires each node to keep the history of 

recent nodes that the packet visited so that it can backtrack.  

Aligned Virtual Coordinate System (AVCS) ‎[82] modifies the node’s VCs by replacing it 

with the average of itself and neighboring nodes’ coordinates as a solution to logical voids. 

Spanning Path Virtual Coordinate System (SPVCS) in ‎[84] uses a single anchor, and 

coordinates are created based on the depth-first search algorithm starting from root node. 

Placing the anchor or the root node at the center gives the best performance, as it can provide 

a balanced spanning tree. The Axis-Based Virtual Coordinate Assignment Protocol 

(ABVCap) ‎[113] is a method of constructing a VCS where each node is assigned a 5-tuple 

virtual coordinate corresponding to longitude, latitude, ripple, up, and down. An improved 
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ABVCap ‎[113], Axis Based Virtual Coordinate Assignment Protocol (ABVCap_uni) ‎[81] for 

WSNs with unidirectional links introduces an eight tuple coordinate vector with entries: 

longitude, latitude, ripple, up, down, ring-initiator, ring-number, and ring-order of each node. 

Performance evaluation of ABVCap_uni shows that delivery rate increases as the number of 

nodes increases and that average path length is lower than that of ABVcap. Transmission 

complexity increases as the new coordinates are generated in both ABVCap_uni and 

ABVCap. Convex Subspace Routing (CSR) protocol in ‎[36] uses a fundamentally different 

approach from others by dynamically moving to different convex subspaces of VCS to avoid 

local minima. A triplet of anchors is used at a time to define the convex subset, which is used 

for GF until a local minima occurs. Then a different triplet is selected to move to a different 

subspace without a local minima at current location.  

Performance of VCS-based algorithms is highly sensitive to a number of anchors and their 

placement. Extreme Node Search (ENS), a novel and effective anchor placement scheme 

proposed in ‎[40], demonstrates significantly improved performance over state-of-the-art. 

ENS starts with two randomly placed anchors and then uses a Directional Virtual Coordinate 

(DVC) transformation ‎[40], which restores the lost directionality in traditional VCS, to 

identify anchor candidates in a completely distributed manner. Note that DVC transformation 

is purely distributive and does not require any additional communication or information. 

 Radial propagation of anchors causes the local minima and identical coordinates. No 

scheme has been proposed, so far, in which advantages of GR and VCR are combined to 

overcome each other’s weaknesses. This can be attributed to the fact that incorporating 

geographic coordinates incur a significant cost as discussed above in Subsection 8.2.A. The 

GLR routing scheme presented below overcomes this and is able to go back and forth 
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between virtual and physical modes as the packet encounters local minima in one domain. 

Proposed routing scheme is compared with two VCR schemes, CSR ‎[36], LCR ‎[39], and the 

GR scheme GPSR ‎[69] in Section 8.4. 

Table 8.1 

Notations Used in Chapter 8 

Notation Description 

  Number of network nodes  

     Node i (current node) 

   Destination 

  Number of anchors 

                 

    

Anchor set 

   Anchor which is closest to the destination 

    Minimum hop distance between node    and    

              

                

(                 ) 

Virtual Coordinate Set (Topological Coordinate Set) of the 

entire network 

    - ith
 column of   Ordinate w.r.t. anchor Ai in VCS 

     = [                ] 

i
th
 row of   

Node Ni’s VC 

                       

           

Node Ni’s 2D topological coordinate 

      Distance between     and   in virtual domain 

      Distance between     and   in 2D topological domain 

  Set of neighbor nodes 

   Anchor closest to the destination 

        Node that forwarded the packet to current node 

        Node that current node forwards the packet to 

 

8.3 Topological Coordinates from Virtual Coordinate System 

Proposed Geo-Logical Routing (GLR) first extracts a set of 2D topology coordinates 

suitable for geographic routing from the VCs. The topology coordinates contain the 

information such as relative positions of nodes, shapes of boundaries and voids, etc. GLR, 
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therefore, switches between topological and virtual coordinate spaces to overcome 

physical/logical voids in each domain, thus achieving enhanced routability compared to both 

VCR and GR schemes that it combines.  

 

A. Topology Preserving Maps‎[37] 

Consider a WSN with   nodes, with each node characterized by a vector of VCs, with the 

hop distance to   anchors (    ). VC of node    is therefore [                   , 

where      is the minimum hop distance between node    and anchor   . Notations used are 

summarized in Table 8.1.  

Let   be the     virtual coordinate matrix of the network. Singular Value 

Decomposition ‎[72] of   is 

                                                                             (1) 

where  ,  , and   are    ,    , and     matrices respectively.   and   are unitary 

matrices, i.e.,           and          .   is a diagonal matrix with singular values as 

its diagonal elements arranged in descending order. SVD extracts and packages the salient 

characteristics of the dataset    providing   as an optimal basis for  . Moreover   is an 

optimal basis of   .i.e.   spans   . Then,      give the coordinates for the data   under the 

new basis  . Elements in   provides unequal weights on columns of  . Each node thus can 

be represented by its Principal Components (PC), given by     : 

                                                                       (2) 

The set of VCs have the connectivity information embedded in it, though it loses 

directional information. All the nodes that are     hops away from the   
  

 anchor have     
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as the jth ordinate. As each ordinate propagates as concentric circles centered at the 

corresponding anchor, the angular information is completely lost. The first principle 

component, i.e., the first column of     , contains this dominant radial information. As SVD 

provides an orthonormal basis, 2nd and 3rd ordinates are orthogonal to 1st ordinate while 

being perpendicular to each other. Thus, the second and third columns of      provide a set 

of 2D Cartesian coordinates,        , for node positions on a topology preserving map 

(TPM), i.e.,   

                
        

       =        
            

                                 (3) 

where,     
    is i

th
 column of      and      is i

th
 column of  . Moreover            and 

     are the topological coordinate and virtual coordinate of i
th

 node respectively. A detailed 

analysis of this method for obtaining TPMs is provided in ‎[37]. In fact, instead of using the 

full     coordinate set for  , only the coordinates of the anchors (       ), or a 

small subset of nodes, (       ), can be used for the calculation of the topological 

coordinates. As illustrated in ‎[37], it is possible to obtain a good approximation for   in (2) 

based only on the coordinates of the set of anchors or those of a small set of random nodes, 

giving rise to several pragmatic implementations in sensor networks ‎[37]. Each node 

essentially needs to be provided with first three columns of   for the computation; therefore 

a computationally less complex approach based on eigenvalue decomposition is explained 

in ‎[37]. 

In many ways, the TPM is a better candidate for geographic routing than the original 

physical map, as the former is based on actual connectivity information rather than the node 
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position. Another advantage of topological domain over the physical domain is that in 

topological domain VC information is also available. A comparison between physical 

information and topological information in Greedy Forwarding (GF) is discussed next 

(Subsection B).  

 
Figure 8.2. (a) Spiral shaped network of 421 nodes, (b) Circular network of 496 nodes with three 

voids, (c) A 30 by 30 node grid with 100 randomly missing nodes, and (d) Network in a building with 

343 nodes. Red circles indicate anchors with ENS anchor placement. 

 

B. Effectiveness of physical and topology-based Cartesian coordinates in packet 

forwarding 

We already asserted that, in many ways, the TPM is a better candidate for geographic 

routing than the original physical map, as the former is based on actual connectivity 

information rather than the node position. A set of coordinates is good for routing if it results 

in accurate forwarding decisions. In other words, how accurately does the distance evaluation 
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identify a closer neighbor (termed as ‘correct’ neighbor in (10)) to the destination than the 

current node? This can be quantitatively evaluated using  

                                

                                               

                                         
                         

 (10) 

Several factors have to be taken into account to understand the significance of topological 

coordinates, including the fact that it is not just a substitute for physical coordinates. 

Topological coordinates are a significantly better option for routing and self-organization in 

terms of cost as well as performance. Four representative benchmark sensor-nets ‎[21] 

ranging from 421 to 800 nodes shown in Figure 8.2 are used for performance evaluation. 

Each node has maximum four neighbors while the communication range is unity. Topology 

Map depends on the anchor placement. Thus random anchor placement and existing anchor 

placement called Extreme Node Search (ENS, briefly explained in Subsection 8.2.B) are 

used in the comparison. ENS identifies farthest apart corner nodes, if any, as anchors as 

indicated by highlighted nodes in Figure 8.2. In random anchor placement, the number of 

anchors,    varied from 5 to 20. 

Table 8.2 

Probability of Selecting the Correct Neighbor Based on Topology Coordinates and Physical 

Coordinates for the Networks in Figure 8.2 

 Probability of Selecting Correct Neighbor 

Network Topology Topology Coordinates Physical Coordinates 

M=20 M=15 M=10 M=5 ENS** 

Spiral 0.66 0.63 0.63 0.65 0.68 0.43 

Circle with voids 0.64 0.61 0.62 0.52 0.60 0.54 

Sparse Grid 0.64 0.64 0.6 0.56 0.63 0.61 

Building Network 0.84 0.80 0.78 0.72 0.84 0.83 

** See Figure 8.2, ENS anchors are circled in red 
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Figure 8.3. Flow chart of Geo-Logical Routing at a node    

 

Table 8.2 shows the probability of a node selecting the correct neighbor to forward the 

packet based on L
2
 distance metric using physical- and topology-based Cartesian coordinates. 

Topology maps generated with 10 randomly selected anchors have the capability of selecting 

the correct next neighbor as accurately as with physical coordinates for the networks in 

Figure 8.2. The results clearly indicate that topology-based coordinates are more effective (or 

as effective in the worst case), in selecting the correct neighbor to forward the packet in 

Greedy Forwarding compared to physical coordinates. With strategically placed anchors 
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(highlighted using circles in Figure 8.2), using ENS that demonstrates better performance 

with as few as two anchors for Figure 8.2 (a), four anchors for 3 (c) and 3 (d), and five for the 

Figure 8.2 (b). This is a remarkable result, indicating that expensive localization procedures 

are unnecessary for the purpose of routing packets. Many other self-organization tasks can 

use topology coordinates instead of geographical coordinates.  

The energy consumption in generating the topological coordinates is significantly lower 

than that in generating physical coordinates. Creating VCs involve a single flooding for each 

anchor, and each collecting coordinates from a set of small number of random nodes. For 

instance, generating anchor coordinates for   anchors require   network floods. Extreme 

Node Search (ENS) ‎[40] provides a small set of nodes,      , as anchors, thus the cost of 

flooding is reduced. Physical localization, in contrast, depends on analog measurements. 

Signal strength measurements require specific hardware capabilities at each node, while time 

delay requires accurate clock synchronization. Analog measurements have to be repeated to 

obtain reliable estimates and are susceptible to noise, fading, and even remaining power 

(battery level). The errors propagate cumulatively with localization algorithms. It has been 

demonstrated elsewhere that even a small error and ignoring the impact of errors of location 

information has a drastic effect on routability. For example, with Geographic Routing, 

GEAR [103], the routability performance falls below 50% when the distances estimation 

inaccuracy is 6% ‎[101]. Also, note that we have used a regular grid-based placement and 

perfect location estimates that are very favorable to routing using physical coordinates. These 

considerations have significantly biased the results in favor of the physical coordinates, and 

the values are likely to be much less favorable under more realistic conditions. 
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The next section discusses the proposed routing algorithm, Geo-Logical Routing, which 

combines the topological information and virtual coordinate information to overcome local 

minima issue. 

 

8.4 Generalized Physical and Virtual Space Routing: Geo-Logical Routing 

Let the topological coordinates of node    be             and that of the destination    be 

             The L
2
 topological line-of-sight distance between any node    in the network and 

the destination is 

      
            

 
            

 
                           (5) 

As virtual coordinates have the connectivity information embedded in the coordinates, one 

expects the virtual domain distance estimation to yield the hop-based geodesic distance. A 

perfect estimate here will result in 100% routability and optimum path length. However, a 

proper distance metric that consistently provides such an estimate in virtual space is not 

known. L
1
, L

2
 and higher norms are typically used ‎[23][36][113]. Here we use L

2
, thus the 

distance between a node and the destination in the virtual domain is estimated by 

                   
  

                                           (6) 

The imperfections of the distance function are due, in part, to the fact that the different 

ordinates of VC are not orthogonal to each other. This imperfect distance estimate as well as 

improper anchor placement causes local minima in logical space. 
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A node identifies itself as a local minima in topological or virtual domain if its distance to 

the destination is lower than the distances from each of its neighbors to the destination. 

Distance evaluation is performed based on the current mode of routing. If the packet is routed 

based on topological coordinates then the local minima is identified by        

           , where      , and       are distance from current node to destination and 

neighbor(s) to destination based on topological coordinates. If the mode is VC-based routing, 

then the packet is at a local minima if                   , where       and       are 

distances from current node to the destination and neighbor(s) to the destination based on 

VCs. Exact destination is identified by unique node IDs. Given that the local minima in 

physical, topological, and virtual spaces are unavoidable, and that we are able to derive 

topological information from VCs, the proposed Geo-Logical Routing scheme uses one space 

to overcome the minima in the other space. At local minima, the node changes the routing 

domain that it is currently operating in (from virtual to topological and vice versa). On rare 

occasions, when the node is a local minima in both the domains, we use properties of VCS to 

escape and travel away from that minima. This third phase of routing involves sending the 

packet to the anchor closest to the destination. The property of VCS proposed below help 

achieve this. 

 

Property 1: In a connected network of   nodes, there is a path between any two nodes via 

any anchor. Furthermore, a packet can be routed from any node to any anchor with 100% 

routability through the shortest (optimum path).  

Proof: Any two nodes having a path via an anchor in a connected network is self-explanatory. 

Let the ordinate of any node   , with respect to the anchor    be   . There exists a neighbor 
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to node Ni who has the ordinate of one less, i.e.,       . The new node in turn can find a 

neighbor a distance       , and so on, resulting in the packet reaching the anchor in    

hops.  QED 

The closest anchor to the destination is selected so that the distance from the chosen 

anchor to the destination is at its minimum, so the possibility of a local minima occurring in 

the path from the anchor to destination is minimized. 

The closest anchor in hop distance to the destination is determined based on the 

destination’s VC. Since the destination’s VC is [                   ], the closest anchor to 

the destination is determined by 

   
      
  

                                                                       (7) 

The routing scheme switches among three modes: a) TC, which uses topology-based 

coordinates and       from (5) for distance; b) VC, which uses virtual coordinates and 

distance function       from (6); and c) AM (Anchor Mode), which routes toward selected 

anchor closest to the destination using    from (7).  

Combining TC and VC information creates a family of routing schemes,  -GLR, where   

is the parameter that defines the probability of using TC and VC mode. This research 

discusses 0-GLR and 1-GLR that combine the topological and virtual information in two 

significantly different approaches. The basic flowchart of 1-GLR and 0-GLR is in Figure 8.3. 

Routing stops when the packet has reached the destination or the TTL expires in both the 

algorithms. 1-GLR and 0-GLR illustrates two extremes of selecting TC and VC for routing. 

In the former, each node that receives a packet uses the mode that the previous packet-

forwarding node used with probability one, while in the latter, every node uses TC mode with 
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probability 1 (i.e., keep the previous mode with probability 0). In both the routing schemes 

proposed, 1-GLR and 0-GLR, every node saves the predecessor and successor nodes’ 

information in order to prevent loops. The packet header contains a field that indicates the 

current mode of routing (TC, VC, or AM).  

 

A. 1-GLR 

The source node initiates routing in TC mode. The packet continues to be routed in this 

mode until it reaches a local minima in the topology space, at which time the mode is 

changed to VC mode. Then the packet is routed in VC mode until it encounters a local 

minima. At a local minima in VC, the mode is changed to TC. Afterwards, if the packet is 

trapped in a local minima, TC mode is changed to AM in which the packet is sent to the 

anchor closest to the destination. Once the anchor is reached, the anchor node switches back 

to VC mode. Algorithm is as shown in Figure 8.4 in Appendix. 

 

B. 0-GLR 

Every node initiates next node selection in TC mode. When a node fails to find a closer 

node based on TC, then the mode changes to VC. If the packet encounters local minima in 

VC mode as well (at the same node), then the packet is routed using the AM mode in which 

the packet is sent to the anchor closest to the destination based on corresponding ordinate. 

Once the anchor is reached, mode is again set to TC. Details of the algorithm are as in A.1 in 

Appendix. 

It is important to note that many more variations of this algorithm are possible for 

switching among different modes, such as moving only a certain distance toward closest 
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anchor in AM mode before switching, or switching between TC and VC modes more 

frequently or probabilistically. The particular algorithms considered in this research produce 

significant performance gains with straightforward switching mechanisms. 

  Detailed algorithm of 0-GLR and 1-GLR is as Figure 8.4. 

INPUT: VCs, TCs, of             and    

OUTPUT: Closest node to destination from         

while (      ||         ) 

     if (Mode = = AM ) 

        if    = =    

             if      { call 1-GLR} 

             elseif       { call 0-GLR} 

              end                

        else 

               Send the packet toward  the anchor    closest to    

        end 

     elseif (Mode = =TC) 

                                             % Calculate the topological distance from 

Neighbors set K to    excluding         and          

                     %Current distance to desination 

     elseif (Mode = = VC) 

                                            % Calculate the virtual distance from Neighbors 

set K to destination excluding         and         

                     

     end 

 

        if   = ={} %If there is no neighbor excluding                 

              Set Mode= AM   % Shift to Anchor Mode 

        else 

            if                            

                if        

                    ROUTED 

                else % if identical coordinates 

                   if      { call 1-GLR} 

                   elseif       { call 0-GLR} 

                   end  

                end                                 

            elseif             

                        =                    
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                   = 
      

 
                      

                         =  
      

 
      

                    if      { Set Mode = TC} 

                    end 

            elseif              %Local minima, change the mode 

                    if      { call 1-GLR} 

                   elseif       { call 0-GLR} 

                   end 

            end 

        end 

    end 

end 

Function y = 1-GLR() 

                switch Mode % current mode at a minima 

                        case VC                             

                           Set Mode=TC % Shift to topology mode 

                        case TC                             

                            Set Mode= AM % Shift to anchor mode 

                        case AM                             

                            Set Mode= VC % Shift to VC mode 

                end                                         

Function y = 0-GLR() %Always starts from TC mode 

                switch Mode % current mode at a minima 

                        case TC                            

                           Set Mode= VC % Shift to VC mode 

                       case VC 

                            Set Mode= AM % Shift to anchor mode  

                        case AM 

                            Set Mode= TC %  Shift to topology mode 

                    end                                         

Figure 8.4. Pseudo code of GLR algorithms. 

 

8.5 Performance of GLR 

The performances of 1-GLR and 0-GLR are evaluated next and are compared with two 

virtual coordinate-based routing schemes, Logical Coordinate Routing (LCR) ‎[23] and 
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Convex Subspace Routing (CSR) ‎[36], as well as the geographic routing scheme Greedy 

Perimeter Stateless Routing (GPSR) ‎[69].  

Logical Coordinate Routing ‎[23] scheme has two phases, GF and backtracking, when a 

local minima is encountered. To support the backtracking phase, each node has to store the 

information of message ID and at least the immediate neighboring node that the packet was 

forwarded. In LCR implementation, we assumed that the entire path traversed by the packet 

is available at each node so that backtracking can be perfectly performed, avoiding any loops. 

Therefore, the implemented case is the best case of LCR and is not achievable in practice due 

to the cost involved in transmitting the required information.  

Convex Subspace Routing (CSR) ‎[36] selects three anchors at a time for GF. The 

selected triplet encloses current node and destination, forming a triangular subspace to 

provide convex distance function from current node to destination. Routing terminates when 

there is no triplet of anchors to enclose the current node and destination. There are two 

disadvantages: at least three anchors are required, and anchors should be placed in such a 

way that triangular subspaces cover the network.  

In the implementation of GPSR‎ [69], the packet is routed based on GF until a physical 

void is met. After that, the node follows the right-hand rule, which selects the node with 

smallest angle to the line connecting current node and destination in clockwise direction. 

Then the next node will start routing in GF mode. This is slightly different from the original 

GPSR scheme ‎[69]. In the original scheme, as a physical void encounters, the mode of the 

packet changes to right-hand rule until it discovers a node that is closer to the destination 

than the node that initiated the right-hand rule mode. As we observed in Section 8.5, our 

implementation achieves on average 5% routing improvement and significant stability in the  
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Figure 8.5. Average Routability of  GLR with random and ENS anchor placement (GLR-R,GLR-ENS 

respectively), LCR, CSR and GPSR in (a) Spiral network,  (b) Circular network with 3 voids,  (c) 

Sparse grid with 100 missing nodes, and (d) building network. GLR-ENS and GPSR are independent 

from the random anchor placement. 

 

 
Figure 8.6. Average Path length of  GLR with random and ENS anchor placement (GLR-R,GLR-ENS 

respectively), LCR, CSR and GPSR in (a) Spiral network,  (b) Circular network with 3 voids,  (c) 

Sparse grid with 100 missing nodes and (d) building network. GLR-ENS and GPSR are independent 

from the random anchor placement. 
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Figure 8.7. Average Energy consumption of  GLR with random and ENS anchor placement (GLR-

R,GLR-ENS respectively), LCR, CSR and GPSR in  (a) Spiral network,  (b) Circular network with 3 

voids, (c) Sparse grid with 100 missing nodes and (d) building network. GLR-ENS and GPSR are 

independent from the random anchor placement. 

 

path length as the TTL increases; thus, we have used our implementation of GPSR for 

comparison. Three options with differing complexity and accuracy are available for input 

dataset   for computing      in (2) ‎[37]: a) the entire set of N×M VCS, b) the     matrix 

based on anchor’s coordinates only, and c)     matrix based on a randomly selected 

coordinate set of   nodes, as briefly discussed in Section 8.3. The first is the most complex 

approach in terms of the computation and communication cost. When the number of random 

nodes selected is fewer than the number of anchors, c) is the most efficient. We use this 

simplest and most computationally and communication wise efficient option with only the 

coordinates of ten (      randomly selected nodes. 

We use four CSU benchmark networks ‎[21] that are representative of a variety of 

networks (see Figure 8.2). The number of nodes range from 400 to 800. A MATLAB
®
 2010b 
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based simulator was developed for the computations. In selecting options for the different 

protocols, we have favored the competitor schemes so that we can demonstrate the 

effectiveness of GLR even under such conditions. The physical topologies in Figure 8.2 have 

four or fewer neighbors in a grid-like placement, and the communication range of a node in 

all four networks is set to unity. Time-To-Live (TTL) is set to 100 hops in all the routing 

schemes, unless otherwise stated.  

This placement highly favors the GPSR scheme since the grid-like placement reduces 

looping and supports the right-hand rule based local minima overcome strategy. For example, 

the circular network with convex-shaped voids (Figure 8.2 (b)) can be significantly warped if 

more random positions are allowed within the communication range, and many such cases 

will introduce other concave physical voids that need to be overcome. However, actual 

positions are altered, preserving the original connectivity, resultant VCS will remain the 

same. Thus, actual distance between nodes, on the other hand, has no effect on the TPM as 

long as the corresponding nodes are within the communication range. Therefore, all such 

implementations correspond to the same VCS, thus the same topology map. Moreover, the 

performance would remain unchanged in GLR.  

Average routability, average path length, and average energy consumption are the 

performance evaluation metrics used. Average routability evaluation considers all source-

destination pairs, i.e., each node generated a set of (   ) messages, with one message for 

each of the remaining node as the destination.  

                           
                                               

                                 
                               (8) 
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                 (9) 

Note that the      calculation includes the path lengths for unrouted messages as well. 

                                                                

                   

     
      (10) 

  is the average energy consumption per bit transmission. Moreover,       and      are 

estimated as in (8) and (9). Since    and p           are assumed to be fixed, 

     
    
     

 

Compression of GLR with LCR, CSR, and GPSR contains below sectors:  

1) Performance variation based on the number of anchors and the anchor placement 

scheme: Anchor placement is a crucial factor when deciding the performance of VCS 

thus quality of TPM. Hence, investigating the effect of the number of anchors and their 

placement in GLR is crucial. Two different anchor placement schemes are considered: 

random placement (Subsection A) and Extreme Node Search (ENS) based placement 

(Subsection B).       as in (8),      as in (9) and      as in (10) are the parameters 

used for comparison. 

2) Performance as the sparsity/node density of the network varies (Subsection C): 

Estimating the performance in dense as well as sparse networks is a good performance 

estimation to observe the uniformity in routing performance under different network 

properties. Moreover, TTL may play an important role in performance of routability in 

sparse networks. 



159 

 

3) Performance under node failures (Subsection D): Capturing the behavior in real WSNs, 

we evaluate the performance of GLR as the network nodes fail as an indicator of fault 

tolerance of GLR. 

 

A. Performance of 0-GLR and 1-GLR random anchor placement  

This section focuses only on the performance comparison based on random anchor 

placement. GPSR performance is independent of the number of anchors, as it uses physical 

coordinates. Figures 8.5 and 6 show the routability and the path lengths, respectively, 

averaged over ten random anchor placement configurations. Corresponding energy 

consumption is shown in Figure 8.7. Error bars indicate the maximum and minimum values 

in 10 simulation runs. 

Performance of 0-GLR is about 2%-5% higher than that of 1-GLR in terms of average 

routability, path length, and energy consumption under random anchor placement, as shown 

in Figure 8.5-7 (a-c). However, in the building network (see Figure 8.5 (d)), 1-GLR 

outperform 0-GLR in average of 5% in routability. As the number of anchors is increased, 

the routability of GLR schemes increase on average by ~10% in sparse grid with 100 missing 

nodes, spiral, and network in the building, while that in circular network with voids is 23%. 

Both 0-GLR and 1-GLR outperforms existing logical coordinate-based routing schemes, 

LCR and CSR, with just five randomly selected anchors in all the four networks. For 

instance, in the building network, both the GLR schemes outperform LCR and CSR by 40% 

in each with five anchors; 40% and 15% with 10 anchors; 30% and 15% with 15 and 20 

anchors. The average path length estimation includes the path lengths traversed even for 

packets are not routed correctly. Implemented LCR with complete path history, for example, 
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discards the packets when it cannot route the packet further without looping, resulting in a 

smaller contribution toward path length, even though the actual shortest path length is much 

higher. The ‘shortest path’ corresponds to an ideal case path length. Higher routing 

percentages can be achieved only by routing such difficult packets, resulting in longer 

average path lengths. The performance for the case when there are exactly 10 random 

anchors is summarized in Table 8.3. 

Since GLR schemes are clearly better than that of LCR and CSR, next we compare the 

performance of GPSR and GLR schemes. 0-GLR and 1-GLR outperform GPSR in circular 

network with three voids, spiral network, and in the sparse grid with missing nodes in terms 

of average routability and path length when there are more than 10 randomly placed anchors 

in the network as in Figures 8.5-6 (a-c) and Table 8.3. Backtracking scheme is used in GPSR, 

i.e., the right-hand rule is ideal for the structure in building the network, thus the performance 

of GSPR is superior in building the network (see Figure 8.5 (d)). One reason for GPSR to fail 

in building the network in Figure 8.5 (d) is that when it routes along the perimeter, it may 

take longer paths, resulting in expiration of TTL. In building the network, GPSR achieves 

97.3% routability vs. 89.3% for GLR schemes on average. Moreover, the average shortest 

path length ratio of GPSR is 1.4, where that of GLR schemes is 1.5.  

Energy consumption per successful routability is shown in Figure 8.7. Energy 

consumption of both the GLR schemes is comparatively low when the number of anchors is 

above 10. The energy consumption in spiral and circular networks is higher in GPSR than 

that in the rest of the schemes as shown in Figures 8.7 (a-b).  
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B. Performance of 0-GLR and 1-GLR with ENS anchor placement 

With ENS-based anchors, more accurate topology maps are achievable with a 

significantly low number of anchors ‎[40]. For the example networks considered, ENS-based 

anchors used for both 1 and 0 GLR-ENS rely only on two anchors for Figure 8.2 (a), four for 

3 (c) and 3 (d), and 5 for Figure 8.2 (b). Note that the X-axis is not applicable for GLR-ENS 

schemes. As shown in ‎[40], Greedy Routing performance in VC domain is improved due to 

the ENS-based anchors, which indicates that ENS provides a ‘good’ set of anchors that 

enhance performance in both TPM and VCS domains. Thus, GLR schemes under ENS 

anchors achieve higher routability with lower path length as shown in Figures 8.5 and 5. 0-

GLR-ENS and 1-GLR-ENS achieve more or less the same routing performance in all four 

networks, significantly outperforming LCR, CSR, and GPSR. As summarized in Table 8.4, 

0-GRL-ENS and 1-GLR-ENS accomplish routability over 98% for the circular network with 

three voids and sparse grid with missing nodes, with path length to shortest path length ratio 

of 1.4 and 1.2 respectively. Achieving routability of 92.4% and 93.4% for spiral network and 

network in the building correspondingly with only two and four anchors is remarkable. As 

shown in ‎[40], routability of LCR and CSR under ENS anchors is  61.7% and 67.3% in  the 

spiral network, 87.5% and 52.9% in the grid with 100 missing node, 84% and 75.5% in the 

circular network with voids, and 80.1% and 59.5% in the network in building. Since CSR 

requires at least three anchors, for the spiral network where there are just two anchors 

selected by ENS, two additional random anchors were used for CSR and LCR performances. 

Thus, proposed GLR schemes achieve significantly higher routabilities in the same networks 

under ENS anchors. Moreover, energy consumption comparison as in Figure 8.7, GLR-ENS 
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schemes show significantly efficient energy performance than that of GPSR in all the four 

networks.  

Next, we estimate the fraction of usage of TPM information in routing. Since every node 

starts routing in TC mode, the usage of TPM information in 0-GLR is 100%. Table 8.5 

indicates that packets are forwarded by 1-GLR in the TC mode most of the time (72-86%), in 

VC mode 7-18% of the time, and in AM less than 10% of the time. This is a good indicator 

to illustrate that the higher routing performance achieved by GLR is due to the fact that it 

uses TPM information most of the time for the decision-making, and GLR combines the 

TPM and VCS information, overcoming the disadvantages in each domain.  

Table 8.3 

Performance Comparison between GLR, LCR, CSR and GPSR with 10 Random anchors 

 Topology – Figure 8.2 

Performance 

Parameter Spiral Circle with voids Sparse Grid 

 

Building Network 

% of nodes as 

anchors 2.4 2.0 1.25 

 

2.9 

Avg. Routability 

1-GLR 93.9 94.6 93.4 87.1 

0-GLR 96.01 95.25 96.74 82.7 

LCR 57.5 56.5 60 49.7 

CSR 89.2 87.3 84.3 75.4 

GPSR 49.1 93.8 89.6 97.4 

Avg. Path Length 

Shortest path  36.1 20.3 20.7 22.8 

1-GLR 41.8 28.3 28.1 36.3 

0-GLR 39.3 26.5 24.3 38.9 

LCR 25.9 15 16.3 15 

CSR 43.7 26 26 26.4 

GPSR 59.8 50.1 21.8 32.7 
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Table 8.4 

Performance of  GLR When Anchors are Strategically Placed using ENS 

Topology 

Figure 8.2  

Avg. Routability % Avg. Path Length              
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Spiral 92.4 97.5 42.9 42.6 1.2 1.2 

Circle with 

voids 

98.6 99.8 23.5 23.2 1.2 1.1 

Sparse Grid 99.8  99.9 22.5 21.8 1.1 1.1 

Building 

Network 

90.0 92.3 36.5 34.5 1.6 1.5 

  

 Table 8.5 

Active Percentile of each mode in Routing 

Topology 

Figure 8.2  

Topological Coordinate mode  Virtual Coordinate mode Anchor 

Mode 

Spiral 79.4% 12.7% 7.9% 

Circle with 

voids 

86.0% 7.0% 7.0% 

Sparse Grid 75.0% 17.9% 7.1% 

Building 

network  

72.6% 17.7% 9.7% 

 

 

Figure 8.8. Performance of 0-GLR-ENS, 1-GLR-ENS and GPSR original (GPSR-org and GPSR our 

implementation (GPSR) as the network sparsity vary in a sparse grid. TTL is 100. 
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C. Performance of 0-GLR and 1-GLR with network sparsity and TTL 

It is clear from the performance evaluation discussed in Subsection A and B that GLR-

ENS schemes outperform both VCS-based schemes, LCR and CSR. Though GLR 

performance using over 15 random anchors achieves more or less the same performance as 

GLR schemes with ENS anchors, the latter is significantly energy efficient especially in VCS 

generation. Thus this point onwards, our focus is on the performance comparison between 

physical information-based routing and GLR-ENS. Next, the sustainability of performance of 

GLR-ENS and GPSR as the network sparsity varies under different TTLs is evaluated in the 

sparse grid (Figure 8.2 (c)).  

In Figure 8.8, GPSR original scheme ‎[69] and our modified implementation of GPSR (see 

Section 8.5(c)) are compared as the sparsity increases. Unlike in the original GPSR, in our 

implementation, the packet is routed based on GF until a physical void is met. After that, the 

node follows the right-hand rule to overcome the void. Then, the next node starts routing 

based on GF mode. Modified implementation achieves in average 10% routability 

improvement while achieving significant stability in the path length used compared to those 

of original GPSR. Thus, comparison of GLR is done against the modified implementation of 

GPSR. 

For each sparsity configuration, TPM was re-evaluated. As it can be seen in Figure 8.8, 

both GLR-ENS schemes achieve superior performance over GPSR as the sparsity increases. 

In addition, 0-GLR-ENS and 1-GLR-ENS routability performance degrade by 0.1% per each 

missing node. After that, in Figure 8.9, performance of GPSR and GLR-ENS are evaluated as 

the TTL increases, keeping the sparsity of the grid fixed at 100 missing nodes. As shown in 
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Figure 8.9, GPSR routability does not improve, even though TTL is increased. Both GLR-

ENS attain over 98% routability with just 100 hops TTL, hence performances of GLR-ENS 

were not re-evaluated for different TTLs. Figure 8.9 indicates the levels of routability of 0 

and 1 GLR-ENS under TTL 100. 

D. Performance of GLR under node failures 

In this section, we are evaluating the performance of 1-GLR-ENS, 0-GLR-ENS, and 

GPSR under node failure environment in WSN. For GLR algorithms, initially VCS is 

generated for a sparse grid with 100 missing nodes. Then nodes generate their TC based on 

this VCS. After that, 30 nodes have been removed uniformly at random as failure nodes. 

VCS is not re-evaluated. Then average routability (as in (8)) and path length (as in (9)) are 

estimated and tabulated as in shaded row shown in Table 8.6. Next, another 30 nodes were 

removed uniformly at random at a time until total failed/removed nodes are 150. 

Performance, after removing 30 nodes at each turn, is tabulated in Table 8.6. Note that, 

routability as well as path length performance is evaluated, keeping the initially generated 

VCS and TCs unaltered after reach node removal, capturing the effect of node failure 

scenario. Similarly, in GPSR scheme, nodes assumed to be having exact physical positions 

initially. Removal of nodes does not affect the position information of the remaining nodes. 

Performance of GPSR is also evaluated after removing 30 nodes at a time. All the 

performances tabulated in Table 8.6 are averaged over five network configurations. On 

average, both GLR-ENS performances are higher than that of GPSR: up to 16% of the 

network nodes fail. Nevertheless, as we observed, GLR-ENS path length drastically increases 

as compared to the GPSR under node failures. 
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Topological coordinates are a cost-effective and good representation of the physical 

coordinates of the nodes. Thus, as the nodes fail in the network, it does not affect the 

topological positions of the available nodes. In contrast, connectivity-based VCSs will be 

significantly affected. Hence, updating VCS is necessary under network dynamics, which is 

under investigation. 

 
Figure 8.9. Performance of 0-GLR-ENS, 1-GLR-ENS, and GPSR when the TTL vary.  Sparsity of 

the grid is 16.7%. 

 

Intensive analysis of performance in terms of routability, path length, and energy 

consumption as the number of anchors, TTL and sparsity vary, indicating that combining 

VCS and topological coordinates leverages the advantages of both the domains while 

mitigating the drawbacks of the same by outperforming VCS-based as well as physical 

information-based routing schemes. This also proves that TPM is a good substitute for 

position information in routing.  

 

8.6 Conclusion  

Geo-Logical Routing is the first scheme to combine the advantages of logical and 

geographic information in routing. It uses topological coordinates (TCs) obtained from 

Virtual Coordinates (VCs) and VC-based routing to overcome the deficiencies associated 
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with local minima problem in physical and logical domains. However, the overhead and 

uncertainty associated with node localization is avoided since the proposed scheme is 

independent from physical information. Cartesian coordinate estimation is using a SVD-

based algorithm that uses VCs to produce a topology map. Topology-based Cartesian 

coordinates derived are more effective for geographic routing than the physical geographical 

coordinates, because topological maps preserve neighborhood information as well as 

connectivity information. 

Table 8.6 

Performance Comparission between 1-GLR-ENS, 0-GLR-ENS, and GPSR under node failures 

 Initial # nodes 800 Initial # nodes 750 Initial # nodes 700 
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Average Routability % 

0 99.9 99.8 90.8 98.1 99.8 78.2 90.4 95.5 53.2 

30 91.6 91.8 79.8 87.0 88.6 67.5 50.8 52.2 37.4 

60 74.6 73.0 68.2 61.6 62.3 48.5 35.2 35.1 32.56 

90 55.0 52.1 51.7 40.2 37.8 33.7 25.1 24.1 27.2 

120 36.3 33.1 41.2 26.0 23.7 23.2 18.3 19.1 19.4 

150 25.0 22.2 30.5 18.5 17.5 20.9 10.0 9.3 4.9 

Average Path Length  

0 21.8 22.5 21.8 24.5 24.1 25.2 35.8 33.7 23.6 

30 29.4 29.7 24.3 37.6 37.4 25.5 67.9 68.1 25.8 

60 44.6 46.0 23.6 58.0 58.7 26.3 79.6 82.1 27.8 

90 60.8 63.5 23.9 73.7 76.4 27.2 86.8 89.0 24.2 

120 77.3 79.8 29.0 85.2 87.6 25.3 96.7 97.0 27.1 

150 85.1 88.0 30.4 91.5 92.5 26.5 97.8 98.8 13.0 

 

This research proposes a family of routing schemes called α-GLR, where α is the 

probability of selecting TC or VC for routing. We realized two instances, 1-GLR and 0-GLR, 

which combines topological and virtual information in two different ways. Proposed GLR 
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schemes significantly outperform the existing VC-based routing schemes, Convex Subspace 

Routing and Logical Coordinate Routing. As illustrated, the strategic anchor placement 

scheme, Extreme Node Search (ENS), further improves the performance of GLR with about 

five anchors on average. Even under conditions favorable to physical coordinate-based 

routing, i.e., no localization errors and grid-like node placement, GLR outperforms 

geographic scheme GPSR in 3 out of 4 CSU Sensor-Net benchmarks. A building network 

where the GPSR performance seems to be better than GRL is one very favorable for 

geometric routing; still, GRL routability without costly, error-prone localization and with 

only four anchors there is noteworthy.  

The novel concept of combining topological domain routing and virtual domain routing 

opens the path for designing novel adaptive routing protocols that operate in multiple 

coordinate domains. It is important to note that many variations of GLR algorithm can be 

developed, such as (1) moving only a certain distance toward the closest anchor in AM mode 

before switching and (2) tuning the parameter α to switch between TC and VC modes. 

Evaluation of such generalized GLR strategies is part of the ongoing work. 
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CHAPTER 09 

ON TOPOLOGY MAPPING AND BOUNDARY DETECTION OF SENSOR AND 

NANONETWORKS DEPLOYED ON 2D AND 3D SURFACES 

 

9.1 Introduction  

The cost and size trends of nodes for networks of wireless devices, such as active and 

passive RFIDs, sensor nodes, and nano devices point to future networks where nodes in 

massive quantities are deployed over different structures and areas for monitoring 

infrastructure and environment. Consider for example, an oil pipeline, a boiler, or a bridge 

that needs to be monitored for corrosion, temperature distribution, or structural integrity. 

Tiny sensors capable of wireless communication and minimal computation capability can be 

deployed in massive quantities on their surfaces. As another possible application, consider a 

suit for an astronaut or a firefighter made with a smart fabric containing an irregular mesh of 

(nano) sensors. Obtaining the surface maps of such network deployments would have many 

potential applications. In fact, if such topology maps could be obtained quickly, it may even 

be possible to follow the motions made by the person wearing the suit of smart fabric. A 

second important problem related to such systems is the boundary identification. The 

boundary may correspond to the physical boundary of the network, or even an event 

boundary such as the one marking the boundary of a corroding patch of a pipeline.  
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This research presents, for the first time, a technique for obtaining topology maps of a 

network of nodes deployed over a 3D surface. The technique does not involve measuring 

signal strengths or time delays, which are costly and often impractical to implement in large-

scale applications. Furthermore, they are susceptible to noise, fading, non-uniform 

attenuations and reflections (due to different types of materials and surfaces involved, lack of 

line of sight communication, etc.), factors that are difficult to overcome even in 2D wireless 

sensor networks. The proposed topology map generation involves only counting the number 

of hops a message has to pass through in getting from a set of randomly selected or 

strategically placed nodes (called anchors) to each of the nodes. As such, it is not affected by 

many of the obstacles related to techniques that rely on analog measurements. We then use 

these topology maps for the detection of boundaries, such as internal and external boundaries 

of a network, or even boundaries of events detected by multiple network nodes.  

In topological domain, a network can have more than one valid embedding [90] in contrast 

to that in the physical domain. The actual embedding is one out of many, but identifying the 

correct embedding solely based on the connectivity information is challenging. Hence 

topological information-based boundary identification captures a union of boundary nodes in 

every embedding. Thus, the actual set of boundary nodes is a subset of it. Our topology 

preserving map based approach successfully identifies the correct network embedding 

without the use of physical information. Hence this approach is more pragmatic in WSN and 

similar applications. 2D topology preserving map generation is discussed in [37]. This 

research discusses the generation of topology preserving maps of 3D surface network for the 

first time and also develops a boundary detection strategy for 2D and 3D surface networks 

based on the topology maps. 
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A network has a specific embedding and can have three different types of boundaries 

which the scheme presented in this research aims at detecting. First is network’s outer 

boundary, which consists of a unique subset of nodes. Second is an inner boundary, which 

depends on the network’s node density as well as nodes’ communication range. For example, 

consider a network with a lake in the middle. If the communication range is large enough to 

communicate with the nodes at the other end of the lake, there is no physical void in the 

network. Last type of boundary is an event boundary. For example, events such as target 

tracking or forest fires have dynamic event boundaries, while an underground chemical 

plume may have relatively static boundaries that change very slowly over time [64].  

In Section 9.2, the related work is discussed. Next in Section 9.3, methodology of 3D 

topology preserving surfaces is proposed. Section 9.4 shows the results from 3D topology 

preserving surfaces. Then, inner, outer, and event boundary recognition of 2D and 3D 

networks are discussed in Section 9.5. Section 9.6 evaluates the performance of the proposed 

boundary detection algorithm, while Section 9.7 concludes our work. 

  

9.2 Related Work 

A. Topology Preserving Maps 

Topology preserving map (TPM), in the present context, refers to a map of a network that 

preserves the connectivity topology of a network while capturing the physical properties of 

the network, such as its shape, internal and external boundaries, and their relationships. 

While true 3D spatial models or 2D geographical maps with exact coordinates of nodes can 

be used to capture this information accurately, generation of such models and maps is very 

expensive. Alternatives for generating the geographical or physical maps include use of GPS, 
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which is not practical under many circumstances, e.g., when nodes are tightly packed, nodes 

have to be inexpensive, or when deployed on complex structures where GPS reception is not 

available. Another option is to use a localization algorithm [14], which requires measurement 

of parameters such as signal strength (RSSI), which is error-prone, difficult, and may even be 

impossible to use in certain structures containing many metal surfaces, such as refineries. 

Another method is to use the time delay to estimate distances. This requires synchronization 

of clocks, something that may not be feasible in harsh environments with multipath, or at 

inexpensive nodes subject to conditions such as temperature changes. This leaves very few 

practical alternatives. 

 Recent research [37] provides an intriguing approach for generating topology maps for 

2D networks by generating a virtual coordinate set based on hop distances. In a Virtual 

Coordinate System (VCS), a node is identified by a vector containing its distances, in hops, 

to a set of nodes called anchors [36]. A VCS maps the physical network into a logical 

coordinate system with the dimension of that logical space equal to the number of anchors. 

Since this mapping is based on geodesic distances, VCS have connectivity information 

embedded in the coordinates while it loses the directionality information, i.e., north or south 

(cardinal directions), left or right (egocentric directions) [34]. As each ordinate propagates as 

concentric circles centered at the corresponding anchor, the angular information is 

completely lost. In [37], a singular value decomposition based transformation is provided that 

generates a set of 2D Cartesian coordinates for node positions. The topology preserving map 

generated using these coordinates in fact can capture the geographic features and is even 

better than an actual physical map with exact (x,y) coordinates for the purpose of routing and 

self-organization of a network [132]. This current research presents, for the first time, a 
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technique for generating such topology preserving maps of networks deployed on 3D 

surfaces.  

B. Network boundary detection  

The ability to self-organize and route messages among sensor nodes is key to the 

deployment of future large-scale Wireless Sensor Networks (WSNs). Boundary detection 

plays a crucial role in information fusion and dissemination in 2D and 3D WSN applications 

such as target tracking, plume tracking [64], forest fires, animal migration, underwater 

WSNs, and surveillance applications [51]. Currently available schemes can be broadly 

categorized as physical information-based and topological/connectivity information-based 

boundary detection in 2D networks [24][30][31]. The former uses physical position of nodes 

to identify the boundary while the latter uses topological/connectivity information of the 

network for the detection. Physical domain schemes rely on node location or physical 

position information [14] obtained using localization algorithms or GPS. Localization based 

on parameters such as RSSI is error-prone and difficult for a network of thousands or even 

millions of sensors. Equipping nodes with GPS is costly and infeasible for many 

applications. A decentralized localized algorithm used to identify the perimeter nodes using 

barycentric technique on neighborhood information [54]. In [32], sensor nodes remotely 

collect data about various points on the boundary and estimate the boundary along with the 

confidence intervals using a regression relationship among sensor locations and the distances 

to the boundary. Voronoi and neighbor-embracing polygon-based localized boundary 

detection approach is discussed in [129], while [89] proposes a localized perimeter detection 

algorithm which incorporates the angle between nodes for dense networks. A localized 

algorithm for 3D boundary detection based on unit ball fitting followed by a reinforcement 
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algorithm named isolated fragment filtering is presented in [132] for a network with known 

node locations.  

The main challenge of boundary identification in the topological domain, which is based 

on connectivity information, is discovering the correct valid mapping of the physical map to 

the connectivity-based map. Each valid embedding has a boundary. Boundary detection 

proposed in [51] uses the shortest path to identify a course and those nodes connect 

themselves through local flooding, hence the algorithm suffers from high communication 

cost. In [55], nodes identify patterns called flowers. If a flower exists, the node is an internal 

node. In an extension of this work in [90], nodes try to identify a family of patterns by 

defining a set of rules. If a node satisfies the defined set of rules, then it is an internal node. 

An isocontours-based hole boundary detection scheme is proposed in [52]. This algorithm 

requires significant computational power.  

The 2D and 3D boundary detection scheme proposed in this research is also a topology 

information-based approach. Since we use topology preserving map of the network, the 

correct embedding of the network can be identified. Furthermore, virtual coordinates together 

with derived topology coordinates provide connectivity as well as location mappings. Thus, 

the results of the identification are impressive compared to the existing connectivity-based 

approaches.  

 

C. Event boundary detection 

The goal of event boundary detection is to detect the profile or the contour of a region or a 

surface over which the event has occurred. Examples of events include spread of a chemical 

plume [64], or contour of a segment of field which needs application of fertilizer. [30] 
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proposes a novel algorithm for detecting event boundaries based on a Gaussian mixture 

model. The main disadvantages are the uncertainty associated with the probabilistic 

prediction and the complexity. Three different schemes to identify the event boundaries are 

proposed in [24]. The three approaches are based on localized algorithms, namely statistical 

approach, classifier-based approach, and image-processing approach. A median-based 

localized approach is presented in [31] for faulty sensor identification and fault-tolerant event 

boundary detection. A noise-tolerant algorithm for event and event boundary detection based 

on moving averages to eliminate noise effects in evenly distributed localized WSNs is 

presented in [66]. In this research, we use the relationships from topology maps to do event 

boundary detection.  

Table 9.1 

Notations Used in Chapter 9 

Notation Description 

  Number of network nodes  

     Node i (current node) 

  Number of anchors 

         Minimum hop distance between node    and    

       node    as a vector of    virtual coordinates 

                     Anchor set 

     

 

Virtual Coordinate  Set for Transformation Computation  

                 , 

                     

Topological Coordinate Set in 2D 

Topological Coordinate Set in 3D 

                        

                                 

           

Node Ni’s 2D (3D) topological coordinates 

      Distance between nodes     and   in 2D topological domain 

  
    Neighbors set of node   

        Area of the triangle        

  Semi-perimeter of the triangle 
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9.3 Topology Preserving Maps of 3D Surfaces 

Consider a network with   nodes. Denote the i
th

 node by           . A VC system is 

used in which each node is characterized by a vector of virtual coordinates denoting the 

distances to each of a set of   anchors (     ).            denotes the m
th

 

anchor. Note that an anchor is one of the   nodes, but we use    for clarity. Let          

denote the hop distance between nodes    and              is zero when      , otherwise 

it is a positive integer. A node    is thus identified by the vector of   virtual coordinates 

given by 

                                                                                 (1) 

 where          is the number of hops from    to the m
th

 anchor   . The notations used are 

summarized in Table 9.1.  

A VCS maps the physical network into a logical coordinate system. The dimension of the 

logical space is equal to the number of anchors. Depending on the number of anchors and the 

anchor placement, it may be a many-to-one mapping. Thus, an adequate number of anchors 

are needed to prevent ambiguities. Since this mapping from connectivity to VCs is based on 

geodesic distances, VCs have connectivity information embedded in the coordinates. As the 

anchor coordinates propagate in concentric circles outwards from each anchor, the VCs lose 

explicit directionality information, i.e., cardinal directions (north vs. south, etc.) as well as 

egocentric directions (left vs. right, etc.). Formation of the topology maps requires the 

recovery of this low-dimensional information from the high-dimensional VCs. 

Let   be the     matrix containing the virtual coordinate of the nodes of the network. 

Let the singular value decomposition of   be 

                                                                                   (2) 
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where   ,   and   are    , N  , and     matrices respectively.   and    are unitary 

matrices, i.e.,             and            . Each node in   thus can be represented by 

its Principal Components (PC) vector, given by    , where  

                                                                                  (3) 

In order to obtain the topology preserving map, we use transformed values of VCs of the 

nodes in the network to this new set of axis, which corresponds to the principal components 

of P.  

 

Figure 9.1: A network on a cylindrical surface (900 nodes) 

Consider the uniform cylindrical surface shown in Figure 9.1 on which 900 nodes are 

deployed. Although the nodes are equally placed on a grid, our experiments show that the 

node distribution is not important as long as the entire surface is covered, and the network is 

not disconnected. Figures 9.2 (a)-(d) show the plots of the first four PCs for each node in the 

network. They are denoted by PSVD
(1)

, PSVD
(2)

, PSVD
(3)

, PSVD
(4)

 respectively. PC values of a data 

set is such that the first component has as high a variance as possible, i.e., it accounts for as 

much of the variability in the data as possible, and each succeeding component has the 

highest variance possible under the constraint that it be orthogonal to the preceding 

components.  
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The set of VCs has the connectivity information embedded in it, though it loses 

directional information. As each ordinate propagates as concentric circles centered at the 

corresponding anchor, the dominant component correspond to this radial propagation. Thus, 

the most significant ordinate based on SVD, i.e., first column of      shown in Figure 9.2 (a) 

contains radial information. One can observe that it exhibits minima on the band at the center 

of the cylinder, with the value increasing as the point of interest nears top or bottom of the 

cylinder. As the cylinder is a symmetric structure in X and Y directions, there is no variation 

of the value along a horizontal cross-section of the cylinder. This is consistent with the 

observations made for 2D networks in [37], where the first PC has a concave shape as it 

propagates outward radially, somewhat like an individual VC.   

As SVD provides an orthonormal basis, 2
nd

, 3
rd

, and 4
th

 PCs are orthogonal to 1
st
 

ordinate while being perpendicular to one another. Observe in Figure 9.2 (b) that the second 

PC varies along the height of the cylinder, thus it can be used to obtain the Z-coordinate for 

the topology map. More interesting are the distributions of the third and fourth components. 

Note that the lines joining minima and maxima of the third component on any horizontal 

plane are perpendicular to the corresponding line in the fourth component. Given the fact that 

the 2
nd

, 3
rd

, and 4
th

 components are orthogonal to each other, and that the radial information 

related to VC propagation is contained in the 1
st
 component which we ignore, these three PCs 

provide an orthogonal set of axis in the physical domain. Thus, the second, third, and fourth 

columns of                 provide a set of 3D Cartesian coordinates for node positions on 

a 3D topology preserving map, i.e., 

                   
        

        
       =        

          
          

                     (4). 

The topology map for this cylinder is given in Figure 9.3.  
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Thus the VCs of any node given by (1) can be transformed to the PC axis obtained in (2) 

using 

                                                                   (5) 

Let         
    denote the j

th
 element of the vector          .  Then the 3D topology 

coordinates of    is given by 

                        
            

            
                                           (6) 

Note that we need only the      unitary matrix   to convert the virtual coordinates of a 

point to it topological coordinates. The    matrix decomposed in (2) is a     matrix 

containing the virtual coordinates of all the nodes of the network. However, it is possible to 

compute an effective   with just a small number of VCs. Thus instead of using the     

matrix,   corresponding to a subset of nodes is used. As noted in [37] for 2D networks, in the 

case of 3D surfaces also, the set of   nodes selected for SVD may consist of all the nodes 

(    , only the anchor nodes (    , or a selection of   (       nodes that are 

strategically placed or randomly selected. Different options provide different computation 

and communication overhead vs. accuracy tradeoffs. But nodes can perform the singular 

value decomposition of selected random set of nodes or set of anchors coordinates to acquire 

the matrix    

          
                                                                                    (7) 

Thus the topology coordinates can be obtained from (5) using    instead of   . Also 

noteworthy is the fact that only the second, third, and fourth columns                  of 

matrix   are needed, and therefore the use of SVD computation is not necessary. Eigenvalue 

decomposition can be used to obtain vectors    
      

      
     without calculating entire 
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matrices    and    reducing the computational complexity from            

         to                (upper bound). Former is the computational complexity of 

entire SVD decomposition while the latter is the complexity of complete eigenvalue 

decomposition.  

 

Figure 9.2: Different SVD components for cylinder: a)     
   

 , b)      
   

 , c)     
   

   and d)      
   

 

 

Figure 9.3: Topology Generation of a cylinder (900 nodes) 
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9.4 Results – 3D Topology Preserving Maps 

In this section we evaluate the topology preserving maps generated using the proposed 

scheme. Two example networks deployed on 3D surfaces are considered as shown in Figure 

9.4: 

a. T-joint: A pipeline structure joining two perpendicular cylinders in a T-joint. Each 

cylinder has a radius 2.54 unit, height 16 units, and is covered with a grid of 512 nodes, 

each with a communication range of 1. 20 randomly placed anchors were used. 

b. Cylinder with a hole: A cylinder of radius 2.54 and height 24 with a hole through it (two 

aligned voids on the surface on opposite sides) is covered with 490 nodes, each with a 

communication range of 0.5. 15 randomly placed anchors were used.  

Topology preserving maps of the corresponding physical topologies are shown in Figures 

9.5 and 6. The results clearly demonstrate the effectiveness of the topology preserving map 

generation for network deployed on 3D surfaces.  

 

 

Figure 9.4. Examples 3D surfaces: a) Two perpendicular cylinders (T joint); (b) A cylinder with a 

hole (two voids on opposite ends).  
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Figure 9. 5.  Two views of the topology preserving maps for the network on the 3-D surface of  T-

joint structure. 

 
Figure 9.6: Two views of the topology preserving map of a network deployed on the cylinder with a 

hole. 

 

9.5 Sensor Network Boundaries 

Next we address the identification of the nodes forming the network boundary. Consider 

the example network in Figure 9.7 (a). Each node can communicate with its one-hop 

neighbors and up to four neighbors are possible (north, south, east, and west). Whether the 

node A belongs to the boundary or not is not clear-cut, and it depends on the way boundary 

nodes are defined. We define the boundary of a network as the set of nodes that has a 

contribution toward the outer bound of the network communication (can also be interpreted 

to mean sensing) coverage. Hence the identified boundary nodes need not to be connected in 
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the communication topology. In this example, nodes B and C belong to the boundary while A 

does not. Consider the coverage by the entire network as in Figure 9.7 (b). If the outer 

physical loop of the coverage is considered, then the nodes that have contributed to this loop 

are boundary nodes. The outer boundary and the inner boundary of the network are as 

indicated in Figure 9.7 (c). Network boundary is a function of a nodes’ communication range 

and node density of the network. Boundary nodes in the 3D case can be defined the same 

way.   

 

Figure 9. 7. Example network:  (a) Sensor network deployed in an area with a lake, (b) Outer bound 

of the coverage of the network nodes, and (c) Defined network boundary 

 

First, the detection of boundaries in 2D networks is considered, and then the algorithm is 

extended to 3D network surfaces. 
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A. 2D network boundary detection 

Consider a 2D network with   nodes, with each node characterized by a vector of VCs, 

with distance to each of the   anchors (     ). Let   be the     matrix of the virtual 

coordinates and      be the topological coordinate set of the network. How the nodes can 

acquire its topological coordinates locally, in the case of 2D networks, is explained in [37].  

In a connected network, any node has one or more neighbors. Let the node, which is to be 

tested for a boundary node, be    . Assume it has   neighbors denoted by   
        . 

If     or 2,    is a boundary node. When   is 3 or greater, an algorithm is required to 

check whether    is a boundary node or not. 

Consider the case where    has three neighbors. Let the topological coordinates of    

be            . 

 

Figure 9. 8: Relationship between a) an internal node and its neighbors and b) a boundary node and its 

neighbors. 
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B. Network boundary detection algorithm 

If    is an internal node, area of            is the same as the total area enclosed by 

          ,           , and           . If    is an external node, area of            

is lower than the total area enclosed by           ,           , and           . Figure 

9.8 illustrates this relationship.  

This can be easily extended to the case with a higher number of neighbors by simply 

considering the corresponding polygon, or even three neighbors at a time. In the latter case, 

each triplet should identify it as a boundary node. Area of a polygon can be calculated in 

terms of triangles. In this research, we consider the relationship in terms of the triangle for in 

the boundary detection. 

Triangular area calculation 

Denote the area of any triangle created by node    ,     and                  . Let the L
2
 

distances between    ,       and     based on topological coordinates be        , 

        , and         respectively. Then  

                                                                                   (8)                                      

where S is the semi perimeter of the triangle  

  
 

 
                                                                                       (9) 

The L
2
 distance between any two nodes    and     in the network based on their 

topological coordinates is 
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                                                                     (10) 

The boundary detection algorithm is summarized in Figure 9.9. 

INPUT:VCS of neighbors 

OUTPUT:   is a boundary node or not 

Algorithm for identifying whether Ni is a boundary node: 

  If     
         

  is a boundary node 

Elseif      
       

For all possible neighbor triplets                
    

 If                                                 OR          OR           

OR           == 0 

              is a boundary node candidate 

 Elseif                                            

              is an internal node  

            Stop checking 

 Elseif                                            

  If            AND           AND           ~= 0   

  

                                  is an internal node  

   Stop checking 

  Elseif            OR           OR           == 0 

     is a boundary node candidate 

                           End 

 Elseif                                           

     is a boundary node candidate 

 End 

End 

If   is a boundary node candidate for all  triplets of neighbors in   
   

 Then 

   is a boundary node 

End 

End 

Figure 9. 9: Pseudocode of boundary detection  algorithm. 

 

C. Boundary detection in 3D surfaces 

When we consider WSNs on 3D surfaces, the distance between two nodes may be the 

curvilinear distance between them and not the Line-of-Sight (LoS) distance. But our 
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boundary detection algorithm operates in a one hop neighborhood, and hence the LoS 

distance is a reasonable approximation sufficient for decision making. L
2
 is used to 

approximate for the curvilinear distance. However, all three coordinates are used for distance 

evaluation in 3D domain by simply incorporating L
2
 based 3D distance calculation in area 

evaluation. 

 

 D. Event boundary detection  

The previous section addressed the detection of the network boundaries. However, the 

algorithm can be extended easily for the detection of event boundaries, i.e., the boundary of 

set of nodes detecting a certain event. Such boundary detection is critical in many 

surveillance applications. In order to address this problem, the nodes will treat an event 

detecting neighbors as ‘existing’ and others as ‘non-existing’ neighbors. Then the same 

algorithm is applied to the ‘existing’ neighbors set.  

 

E. Complexity 

Dominant memory and computational complexities of the algorithm are related to the 

memory and CPU usage involved with topological coordinate generation. Once the topology 

coordinates are known, the computational complexity is        
   while the memory 

complexity is        . 
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9.6 Simulation Results: Network and Event Boundary Detection 

 

A. Network inner and outer boundary identification 

The performance of proposed algorithm is evaluated next. We use the five example networks 

that are representative of a variety of networks. The number of nodes range from 300 to 800. 

The networks are (a) a spiral network, (b) a circular network with a C-shaped concave void, 

(c) a circular network with three voids, (d) a square network with an E-shaped void, and (e) 

an odd-shaped network. MATLAB
®
 2009b based simulator was used for the computations. 

Two performance-evaluating metrics that capture the accuracy of boundary identification and 

the error in boundary identification are evaluated:  

                                           
                                     

                              
   

                                       
                                   

                                     
   

In the simulation, a single hop neighborhood was considered. Results for boundary 

detection are shown in Figure 9.10. As can be clearly seen for networks in Figures 9.10 (a)-

(e), it is zero value for   and 100% for  . This demonstrates the effectiveness of the proposed 

scheme and the effectiveness in using of the topology preserving maps in detecting the correct 

network boundary. 

B. Event boundary detection 

In this section, the effectiveness of the algorithm in event boundary detection is analyzed. 

We simulated the case where there is an event where the boundary changes with time, e.g., a 

forest fire or a chemical plume . Proposed algorithm identifies and tracks the event boundary  
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Figure 9.10:  Boundary detection results for different network shapes: (a) a spiral network, (b) a 

circular network with a C shaped concave void, (c) a circular network with three voids, (d) a square 

network with an E shaped void, and (e) an odd shaped network. 
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Figure 9. 11: An example of event boundary detection 

 

Figure 9. 12: Two different views of the 3D boundary identification of two perpendicular cylinders 

with no void (a), (b). 

 

Figure 9.13: Two different views of the 3D boundary identification of cylinder with holes: (a), (b). 
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as illustrated in Figure 9.11. The value of    of event boundary detection is zero, but the 

A% is 90%, when averaged over the three cases in Figure 9.11 (a), (b), and (c). 

 

C. Boundary detection of 3D topologies 

Next, we apply the boundary detection algorithm for the two networks considered in 

Section 9.4. The results are illustrated in Figures 9.12 and 13, respectively, for the T-joint and 

the cylinder with holes (cylinder with no voids had 900 nodes and 20 anchors, T-joint 

cylinders had 256 nodes and 20 anchors, and cylinder with two voids had 490 nodes and 15 

anchors). The algorithm is able to detect the boundaries with A= 100% accuracy, and E= 0%. 

 

9.7 Conclusion 

An algorithm is presented for the generation of topology preserving maps of networks 

deployed on 3D surfaces. It uses virtual coordinates without the need for expensive and 

unreliable localization techniques. To our knowledge, no such algorithm exists. The main 

advantage of the proposed topology map is that it does not rely on localization based on GPS 

or other schemes. As the physical properties can be acquired from the topology map, and it is 

also based on the connectivity of the communication topology, a topology preserving map is 

more appropriate compared to physical map for many WSN applications. Routing and self-

organization schemes actually perform better with topology maps than geographical maps for 

2D networks [132]. The same can be expected to hold true for many 3D network protocols 

related to routing and self-organization. An example is the boundary detection scheme 

presented above. It illustrates that boundary nodes can now be detected with just the topology 
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coordinates without the need for physical coordinates or resorting to analog measurements. It 

has to be noted that the boundary detection scheme presented is applicable in the topological 

coordinate domain as well as in the physical coordinate domain. We are currently working on 

a complex 3D surface structure modeled after a unit of pipes with multiple joints present in a 

refinery facility. We expect the results to be finalized in time for inclusion in the final 

research.  
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CHAPTER 10 

NETWORK-AWARENESS VIA SELF-LEARNING AT WIRELESS SENSOR 

NODES 

10.1 Introduction 

The cost and size trends of sensor nodes, ranging from motes to active/passive RFIDs, 

point to future large-scale sensor-actuator networks where nodes in massive quantities will be 

deployed for monitoring and interacting with infrastructure and environment. Large-scale 

networks of nanosensors ‎[5] and nanorobots ‎[59] ‎[118] exhibiting swarm behaviors ‎[20] also 

present many intriguing applications related to healthcare, military, and infrastructure. 

Realization of the full potential of these technologies requires advances in theory, techniques, 

and algorithms that facilitate deployment of large-scale intelligent networks. Many of the 

current approaches for sensor networking have been developed considering a two-stage 

deployment process: the set up/organizing phase and the operational phase. Algorithms for 

network organization such as localization, clustering, and topology pruning in general do not 

evolve based on long-term learning, nor are replaced/switched based on knowledge that can 

be inferred during long-term operation.  

We envision future sensor networks that evolve by long-term learning and inference, 

achieving over time increasing levels of network and sensed phenomena awareness, thus 

with time becoming smarter and better at what they do. We use the term “network/topology 

awareness” to indicate a node’s cognizance of the topology, shape, and boundary of the 
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network and its place in that network. Upon initial deployment, the nodes would be quite 

oblivious of their environment, their individual place in the entire network, and the nature of 

the network that they belong to. However, over time, the nodes listen to the information 

disseminated in the network and infer additional knowledge and state information, leading 

the nodes and therefore the network to achieve network-awareness. In this research we take a 

step toward realizing such a vision with a learning approach that relies on information 

gleaned from ongoing packet transmissions (associated with routine network functions) to 

allow nodes to develop network-awareness over time.  

In contrast to the traditional approaches where sensor networking algorithms aim to adapt 

the network to variations within limited contexts such as power availability, achieving 

network awareness allows networks to even switch from initial simple algorithms to more 

efficient and effective algorithms that require knowledge about the structure, connectivity, 

and shape of the network. Although a dedicated setup phase appears to be an option for 

achieving awareness, such a setup phase can be quite costly and, in certain cases, may not 

even be feasible. For example, when nodes operate by scavenging power from the 

environment, such as from ambient electromagnetic energy or vibrations ‎[71], the amount of 

power (energy per unit time) a node can spend is severely limited. However, such nodes will 

be able to operate over very long time periods at this limited power level. A dedicated 

learning phase to achieve network awareness under such conditions can require a long initial 

time period during which the network is not available for the sensing task. With an evolving 

approach, the network attempts to carry out the sensing tasks with its current level of 

abilities, but becomes more effective with long-term learning.  
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A self-learning methodology is proposed for building a network in which nodes start 

operating in a network-oblivious form and, over time, infers knowledge and awareness of the 

network, its position in the network, as well as physical environment by listening to ongoing 

activities. With the proposed approach, the learning process at an individual node moves 

beyond sampling and storing information for subsequent table look-up or direct exchange of 

control information, as is the case of many traditional protocols, to actually inferring new 

knowledge from such directly available information.  

Consider a newly deployed network of nodes, such as a set of nodes spread in an area. The 

nodes can find out about its immediate neighbors, but for carrying out its intended high-level 

application, it has to set up an infrastructure or rely on an infrastructureless routing protocol. 

We consider the latter case with use of random routing. Note that even in a structured 

network that has undergone a set-up phase, identifying sources/sinks for information of 

interest and dissemination of information involves random routing protocols such as rumor 

routing or diffusion ‎[4]. While carrying out the application, the nodes develop a Virtual 

Coordinate System (VCS) specification based on information gleaned from packets that pass 

by ‎[23]‎[36]. Furthermore, each node keeps on learning about the network by making use of 

the source and destination addresses of the packets that it can hear. Each node, and thus the 

network, goes through three stages in gaining the network-awareness: (a) ascertaining virtual 

coordinates (VCs), (b) inference of topological coordinates (TCs) from VCs, and (c) 

formation of a map of the network within each node, containing information about other 

nodes, boundaries, and shapes. Information required for this evolution to occur is obtained by 

gleaning information about network nodes from ongoing packet transmissions.  
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Achieving network-awareness with existing methods would require node localization ‎[4] 

integrated with flooding-based global distribution of the location information. Such a 

network set-up phase is cost-prohibitive in terms of packet transmissions and energy, and 

thus network-awareness has not received much interest in sensor networking. Topology 

awareness, with proposed evolutionary approach, is achieved without the need for costly and 

error-prone localization with analog measurements such as RSSI or time delay followed by 

network-wide distribution of such location information. Furthermore, as the VCs emerge via 

learning, the network can even switch to available VCS-based algorithms ‎[23]‎[36]. As 

learning proceeds and nodes start gaining TCs, nodes can then switch to much more efficient 

algorithms that use topological as well as physical information such as routing 

schemes ‎[4]‎[39] and boundary detection ‎[42]. Once such a topology map is available, a node 

can identify where it and other nodes are with respect to the overall phenomenon being 

sensed, a feature useful in applications such as tracking chemical plumes.  

The research includes results pertaining to the performance of the proposed self-learning 

scheme. The rates at which nodes acquire VCs and generate TCs are investigated. The effect 

of network parameters such as the number of nodes, and Time-To-Live (TTL) of the packets 

on performance is evaluated using 2D and 3D sensor networks. Consistency of topology 

maps generated independently by different nodes is investigated.  

The rest of the research is organized as follows: Section 10.2 discusses related work. Then 

Section 10.3 explains how VCs are ascertained by the nodes and the learning-based strategy 

for topological map generation. Section 10.4 evaluates the performance. Section 10.5 

addresses possible applications of the scheme, and Section 10.6 concludes our work.  
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10.2 Related Work and Background 

 We note that no scheme exists in literature for achieving network-awareness. Thus, in 

Section 10.2.A, we address existing literature related to use of learning techniques for 

resolving other specific sensor networking challenges. Section 10.2.B examines localization 

and routing schemes that incorporates network-learning approaches. Sections 10.2.C and 

10.2.D review the background information on random routing schemes and VCS used for the 

proposed scheme. 

 

A. Application-dependent learning schemes 

An algorithm for distributed classification in sensor networks based on different 

classification types is presented in ‎[45], which describes the sensed values as a Gaussian 

Mixture, and uses a machine-learning approach for classification. A scheme for allocation of 

limited resources such as energy and bandwidth in sensor networks, Self-Organizing 

Resource Allocation (SORA) ‎[88], defines a virtual market in which nodes sell goods such as 

sensor readings or data aggregates in response to costs that are pre-programmed. Nodes take 

actions to optimize their profit subject to energy budget constraints. Using reinforcement 

strategies, the nodes adapt their operation over time in response to feedback from payments. 

A pattern-recognition-based event detection scheme is proposed in ‎[12], in which the 

individual sensory measurements of sensor nodes are integrated into high-level event patterns 

to recover the state of the monitored environment. Having a costly training stage is common 

to all these schemes.  
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B. Learning-based localization and routing  

Ambient Beacon Localization (ABL) ‎[73] uses mobile sensors equipped with GPS to 

localize by exploiting their ambient physical environment. All nodes initially proceed 

through a bootstrapping phase that is computationally intensive to initialize their classifiers, 

which subsequently changes to adapt to the sensing phenomenon. ABL combines machine 

learning and free range beacon-based techniques to relate sensor data of known locations 

called ambient beacon points (ABPs). Supervised learning algorithms are used to allow 

mobile sensors to recognize ABPs. 

Q-routing ‎[19] is a routing algorithm based on reinforcement learning. Based on the 

packet transmission, each node develops a delivery time function that each node tries to 

minimize over its neighborhood. As destinations may vary, ‎[19] proposes to train a neural 

network such that it will predict the next node to transmit the packet. The amount of 

information required and time taken for training the neural network is high, especially when 

many different destinations and sinks are involved. Reference ‎[44] focuses on routing data to 

multiple, possibly mobile sinks. This algorithm is similar to that in ‎[19] and uses a 

reinforcement-learning approach. A major disadvantage is that each different destination 

requires the network to learn again. A supervised learning-based approach is used in ‎[119] to 

predict link quality, which is useful for routing. The supervised-learning approach, however, 

requires a large set of samples to train the model, and it needs to be trained again when link 

qualities change with time. Reference ‎[95] presents an application of gradient ascent 

algorithm for reinforcement learning to a complex domain of packet routing in network 

communication. It is too computationally intensive for WSNs routing, especially as learning 

has to be repeated for each different destination.  
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In contrast to the schemes listed above, the method presented in this research engages in 

the learning process while carrying out the normal network functionality, and thus departs 

from the requirement of a separate and costly destination and source-dependant training 

phases. Moreover, the proposed learning scheme is not based on a specific application or a 

specific node/sink.  

As the proposed scheme relies on random routing, VC generation, VC-based routing, and 

topology coordinate generation, their essential components are described next.  

 

C. Random routing  

Random routing algorithms where packets are forwarded according to a random selection 

made at a node are known for their simplicity and lack of a setup phase. Even in a structured 

network that has undergone a setup phase, identifying sources or destinations for information 

of interest and information dissemination often involve random routing. Many random 

routing protocols have been described in literature ‎[4]‎[17]‎[18]. In this research we use rumor 

routing ‎[18] as the scheme used for source or sink search. In rumor routing, a node selects a 

random neighbor as the next hop. Two types of randomly routed packets, called event agents 

and queries, exist. When a group of nodes experiences an event, each node probabilistically 

decides to send out a packet, called an event agent or simply an agent, informing the rest of 

the nodes in the network. On the other hand, if a node is looking for specific information 

about the sensed physical phenomenon, it sends out a packet called a query, requesting 

information. At each node, agents and queries are forwarded to randomly selected neighbors. 

To prevent a packet from circulating indefinitely, a packet is associated with a finite Time-

To-Live (TTL), initialized at the source node with a maximum number of hops ( ) the 



200 

 

packet is allowed to traverse in the network. Moreover, each node that an agent or a query 

visits keeps a record about the event for future retrieval by a query, thus an agent and a query 

do not have to meet at a particular node at the same time. When the agent (query) meets 

query (agent) or a node, which has the information, a path is discovered between source(s) 

and sink nodes. In order to increase the probability of the path discovery, source (sink) nodes 

may send out more than one agent (query). 

 

D. Virtual coordinate systems and routing 

Virtual Coordinate based routing (VCR), also referred to as logical routing, has received 

much attention recently as it is more economical and efficient in WSNs than schemes based 

on physical location information, insensitive to localization errors, and achieves routability 

comparable to or even better than geographical routing schemes ‎[69], but without the cost 

and complexity associated with localization.  

Consider a network with   nodes in which a subset of   nodes is designated as anchors. 

These anchors are different from the anchors in physical position-based localization schemes 

in that VCS based anchors are un-localized and have the same capabilities as any other node 

in the network. Anchors may be selected randomly, or by an anchor placement mechanism. 

Each anchor floods the network so that each node in the network can evaluate the shortest 

distance, in terms of number hops, to each of the anchors. A node that is     hops away from 

the   
  

 anchor will have     as the j
th

 coordinate. Thus i
th

 node is characterized by the VC 

vector,      = [                ] of cardinality    A few representative VC-based routing 

protocols are discussed next. 
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Scalable coordinate-based routing algorithm ‎[101] uses a set of perimeter nodes as 

anchors. GF is used until a local minimum is reached, and then an expanding ring search is 

performed until a closer node is found or Time-To-Live (TTL) expires. In VC-assignment 

protocol (VCap) ‎[22], virtual space is generated for the entire network with three farthest 

apart anchors. Insufficient number of anchors causes the problem of nodes having identical 

coordinates. As a solution, a packet is delivered to a zone of nodes with identical coordinates 

and then the final destination is sought using a proactive ID-based approach. Logical 

Coordinate based Routing (LCR) ‎[23] uses GF followed by a backtracking scheme based on 

a furthest apart anchor placement. Convex Subspace Routing (CSR) protocol ‎[36] uses a 

fundamentally different approach from the other schemes by dynamically moving to different 

convex subspaces of VCS to avoid local minima. A triplet of anchors is used at a time to 

define the convex subset, which is used for GF until a local minima occurs. Topology 

Preserving Map (TPM), in ‎[37], refers to a map of a network obtained from VCs that 

preserves the connectivity topology of a network while capturing the physical properties of 

the network such as its shape, internal and external boundaries, and their relationships. 

According to ‎[37], topology maps may be used in lieu of geographic coordinates for routing. 

Geo-Logical Routing ‎[39] combines the advantages of topological domain ‎[37] as well as in 

virtual domain overcoming local minima in each other’s domain. 

 

10.3     Network-awareness from Randomly Routed Network Traffic 

This section presents a scheme for nodes in such a network to develop network-awareness 

via long-term learning. Consider a deployment of a set of sensor nodes that are initially 

oblivious to network connectivity and topology. Only information that a node is aware of the 
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network is its own ID and its neighbors’ IDs. Unlike conventional learning approaches 

discussed in Sections 10.2.A-10.2.C, this proposed method does not require a dedicated 

training phase based on training data, or flooding and retraining for each new source/sink 

pair. Each node goes through three stages in achieving network-awareness: (a) ascertaining 

the VCs (Section 10.3.A), (b) inferring TCs (Section 10.3.B), and (c) formation of a network 

map (Section 10.3.C). The notations used in the research are summarized in Table 10.1. 

Table 10.1 

Notations Used in Chapter 10 

Notation Description 

  Number of network nodes  

   Node i (current node or node under consideration) 

      Source, Destination 

  Number of anchors 

       Set of nodes in    s h-hop neighborhood 

                

    and       

    Virtual Coordinate Set of the entire network 

     = [                ] i
th
 row of   , corresponds to   ’s VCs.  

      = [        
 
      

 
   ] i

th
 row of    , corresponds to   ’s approximated VCs via 

learning.  

     i
th
 column of   , ordinate w.r.t. anchor    in VCS. 

                      Topological Coordinate Set of the network 

   Error in    with respect to   

H Number of hops in Time-To-Live (TTL) 

E Energy per hop packet transmission  

I Number of packets that have already traversed the network 

   Threshold on number of packets heard by a node without any 

VC updates before it can start using its VC. Termination 

criterion of self-learning VCS generation phase 

   Threshold on number of unique VCs that have to be gathered 

by a node to generate topological coordinates 

       Matrix of unique nodes’ virtual coordinates 

  Original length of the packet in Bytes 
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Figure 10.1. An example network indicating the virtual coordinate propagation in the VC developing 

stage. Network has 7 anchors. 

 

A. Virtual coordinate generation via self-learning  

The proposed self-learning strategy for VC generation is discussed next. At initial 

deployment, a network node    can discover its set of one-hop neighbors       . The 

random routing scheme described in Section 10.2.4 is assumed to be used by sensing 

application initially for dissemination and discovery of sensed information, although many 

other strategies, random or otherwise, can be used for this purpose. Different nodes send out 

packets, i.e., agents/queries, on random routes as illustrated in Figure 10.1.  

The mission of the VC learning process is for each node to ascertain the shortest path hop 

distances to the anchors. A node decides on its own to become an anchor with a certain 

probability   . VC-based routing and topology mapping can be successfully carried out with 

randomly selected 2-5% of the nodes as anchors ‎[23]‎[37], thus a value   <0.05 suffices. 
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% Algorithm at a node for random routing based virtual coordinate propagation. Any node that 

relays or passively hears a packet updates its estimates for virtual coordinates  

INPUTS: 

          stored anchor ID of anchor   at node  

% Set of anchor IDs stored at node 

       stored hop distance to anchor    at a node    % Set of hop distance estimates to 

anchors at node 

         =[  ];  :anchor ID of anchor    in the packet  

% Set of anchor IDs stored in packet 

         =[  ];   :hop distance to anchor Ak in the packet % Set of hop distances to 

corresponding anchors in packet header 

OUTPUT: 

 Estimated VC,       = [        
 
      

 
   ] of a node    

1 For all anchor IDs NOT already saved in node    
2     Create a new entry for Anchor ID and hop count 

3 End 

4 For all anchor IDs already saved at node 

5  %if the received VC is less 

6 If      >             +1 

7                   =             +1 

8              Reset                  % Have updates 

9 %if the Stored VC is less 

10 Elseif      <             +1 

11             Set                    % No updates 

12 %update the packet VC iff the node is to relay packet 

13         

14            If    is a relaying node 

15                                    =       +1 

16            End  

17 %if the Stored VC and received VC are the same 

18 Elseif        ==            +1 

19  Set                    % No updates 

20 End 

21 End 

22 If                 = =1 for all ordinates 

23 %count the number of consecutive packets for which there is no updates  

24 Counter =Counter +1; 

25 Elseif                 = = 0 

26 % reset  Counter if not consecutive 

27 Counter = 0 

28 End 

29 %Node assumes its VCs is correct when    number of packets have been received without  

updates 

30 If             

31 Stop updating VC 

32 End 

Figure 10.2. Algorithm for VC estimation at a node. 
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Figure 10.3. Format of a packet in WSN with the added information of VCS. Length of the VCS vary. 

 

Alternatively, a set of nodes may be pre-designated to become anchors. When an anchor 

node    receives a packet (an agent or a query) for relaying or if it generates one,    

appends a tuple {   ID,      } containing its self ID and a hop count field to the packet, and 

forwards the packet to a randomly selected neighbor from       . Each forwarding node 

increments       by one.        is the distance from    to  the current node along the path 

traversed. It is an upper bound for the shortest hop distance between the two nodes, and the 

lowest value of such bounds from multiple packets converges to a good estimate for the hop 

distance to the anchor nodes. Moreover, if a packet containing hop count to   , passes 

through    then    will append its ID and hop distance to the packet as {    ID,       ,    ID, 

     } to begin generating ordinates with respect to   . Packet format is illustrated in Figure 

10.3.  

 When a node receives a packet with anchor ID and hop count tupples, for instance {    

ID,       ,    ID,      }, it updates the estimated distance corresponding to each such anchor 

as follows. If it is the first time the node hears about a particular anchor, it stores the anchor 

ID and corresponding hop count received incremented by one hop (see lines 1-3 in Figure 

10.2). If the node already has a hop count corresponding to a particular anchor, the new value 

is stored only if it is less than the existing value for the hop count (see lines 6-7 in Figure 

10.2). Then the node adds one hop to the hop count(s) in the packet and forwards it to a 
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neighbor (see lines 14-16 in Figure 10.2). When a node forwards a packet to a neighbor, the 

rest of the neighbors passively listening to the channel will also update their coordinates (see 

line 6-21 in Figure 10.2).  

Initially the coordinates received by nodes,          
 
      

 
    , are not the shortest path 

distances to the anchors, but as many packets traverse the network, the nodes keep on 

updating the ordinates, and the values converge to the shortest path distances to anchors, i.e., 

[                ]. For instance, consider the sample network with seven anchors   , …, 

   as shown in Figure 10.1. Assume node    originates a packet and randomly forwards it to 

a neighbor. When the anchor    receives the packet, it appends the tuple {  ,0} and 

forwards it to a neighbor. When the same packet goes to anchor    and it does not has 

information received about     it will store the distance to anchor   , i.e. {   ,2+1}. Then it 

updates the distance to    as {  ,3}, appends {   ,0} and forwards to a neighbor as in 

random routing protocol. Each node maintains a vector          
 
      

 
     and updates it 

based on the path information that it receives until it gains the actual VC 

[                ], i.e., the shortest hop distance from node itself to anchors. Moreover, 

green nodes are the neighbors of the nodes visited by the packet. Not only having the nodes 

that relay the packet but also such nodes that hear the packet update their estimates speeds-up 

the learning process. 

Now the critical question is how a node figures out whether it has converged to the correct 

ordinates. A node starts using the VCs after it forwards    number of packets and not having 

VC updates consecutively; this is discussed in detail in Section 10.4. Implementation of the 

criterion is in line 22-32 in algorithm in Figure 10.2. 
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%Algorithm implemented at each node to evaluate its topological coordinates. 

INPUT 

               %Node   , stores    number of unique source and destination VCs in 

an array                
OUTPUT 

     ,     ,      for TPM at    
1 If                   

2                        
 End  

3  %Check whether the destination and/or source are a new entries 

4 For                     
5 If                        

6            %Not a new entry  

7 Elseif                        

                           %Not a new entry 

8 End 

9 End 

10 %If destination is a new entry 

11 If              

12                                          
13                                                     
14 If                   

15        ready to generate TP coordinates; 

16                                                                 
17 End 

18 End 

19 %If destination is a new entry 

20 If              

21                                    
22                                                     
23 If                    

24       ready to generate TP coordinates; 

25                                                                      
26 End 

27 End 

28 %If node has R number of nodes’ VC, it will generate topological coordinates. 

29 if  TP_Coordinates_ready(  )==1 

30 %TC generation -  get the matrix Q which is     

31                    
32                 
33 %------Topological coordinate of node   --------- 
34 %For a 3D network 

35                        
               

36 %For a 2D Network 

37                     
          

38 End 

Figure 10.4. Topological coordinate generation algorithm implemented at each node. 
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Proposed VC-learning scheme is not merely an alternative for flooding. Nodes gain the 

ability to infer based on what they receive or what they hear, by intelligent decision-making 

capability. When the entire network has the VCS available, the network nodes switch from 

random routing to using VCS-based routing schemes (discussed in Section 10.2.4) that are 

much more efficient and effective. The source address and destination address in packets 

now will contain VCs.  

 

B. Distributed self-generation of topological coordinates from virtual coordinates 

Once the VCs are estimated, moving another step forward, self-learning process at a node 

turns to develop TC of the network via listening to ongoing transmissions. This allows the 

network nodes to move from VC-based algorithms to more sophisticated TC-based 

algorithms.  

With each node characterized by a vector of VCs, with distance to each of the   anchors 

(     ), the next step is for each node to develop a linear transformation that translates 

the VCs of a node to the corresponding coordinates on a topology map. Let   be the      

VC matrix of the network. Reference ‎[37] proposes three possible options of generating TCs 

of the network: (a) based on  , the entire VCS; (b) based on VCs of anchors; and (c) based 

on VCs of a randomly selected set of nodes. In this research we use (c), VCs of    nodes. 

Let the      matrix of the VCs be    Using Singular Value Decomposition on  ; 

       

where   and   are unitary matrices of size       and     respectively and   is a 

matrix with singular values as diagonal entries. Second and third colomns of basis   are used 

to generate the TC of node    , i.e.,  
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                                                    (1) 

     is the VC of      
   and      are second and third column vectors of basis  .  

 

Figure 10.5. (a) Circular network with 496 nodes. (b) Network deployed on a 3-D surface (T joint) 

Each cylinder has a radius 2.54 units, height 16 units, and is covered with a grid of 512 nodes. (c) A 

network of 343 nodes mounted on walls of a building. Three anchors are manually placed at three 

corners as shown. Figure 10.4. Topological coordinate generation algorithm implemented at each 

node. 

As a node forwards or hears packets, it stores    number of unique destination and 

source addresses as matrix  . Once the required number entries are available, an individual 

node can generate its own matrix  , thus the transformation for converting VCs to topology 

coordinates. Note that in this case, since every node has VCs of a different set of nodes,   

matrix at different nodes is not the same. 

In the ideal case, when   matrices at all the nodes are good representative samples of the 

entire network’s VCS, hence,   of    can expect to be a rotated version of   of node   .  

Reference ‎[37] addresses the TPM generation in 2D networks. To generate the topology 

maps of 3D networks, we extend the scheme using 
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                                                    (2) 

 The algorithm implemented at node    is summarized in Figure 10.4. Line 1-27 is the 

implementation of a node collecting unique source and destination VCs. TC generation is as 

in line 28-38. 

Computational complexity of SVD-based evaluation of                for 2D 

networks ‎[37] and                     for 3D networks at node    can be significantly 

reduced by using eigenvalue decomposition. The complexity in evaluating the full   matrix 

using eigenvalue decomposition is an upper bound on this computation complexity. Thus, 

upper bound for number of computations is           
   ‎[37] while that for memory 

usage is             , where    is the number of node addresses used for   matrix 

estimation. Note that we require just second and third column of matrix  . 

 

C. Topology map from virtual coordinates 

Each node will now attempt to construct its own view of the network, in essence a map of 

the network nodes becoming network-aware, i.e., gaining the knowledge of the position of 

the node with respect to other nodes, the boundary of the network, the location and shapes of 

voids, etc. An example of a useful map for a node to acquire would be the physical map of 

the network. However, obtaining such a map requires resorting to distance measurements 

(via GPS, RSSI, or flight delay) and broadcasting such information. Network-awareness can 

be gained using other non-linear mappings as well, for example, birds-eye views and fish-eye 

views are real-life examples of distorted, yet practically useful maps. Our approach produces 
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a topology map that provides a distorted view of the physical map, yet is more useful for 

tasks such as routing as it is based on connectivity. 

As discussed above, a node    is able to generate its own  , and therefore convert the any 

given VC tuple to the corresponding TCs. Next step then is for each node to develop a view 

of the network and its place in the network, essentially generating its own map of the 

network. As a node learns the VCs corresponding to the sources and destinations that are 

embedded in the packets it relays or it overhears, it adds those to its network topology map. 

Thus with time, the topology map of the network at each node will gradually build up, 

thereby increasing its awareness of the network. 

In practice, the TPMs generated at different nodes would be different from each other due 

to the fact that   is not unique. However, what is important for network awareness is the 

consistency among the maps at different nodes. We evaluate the consistency among the maps 

in the next section.  

As the topological map is generated based on the source and destination addresses of 

routine network packets that each node hears or forwards, no additional transmission cost or 

energy is spent for topology map generation.  

 

10.4   Performance Analysis of Self-learning Scheme 

The performance of the proposed scheme for network-awareness is evaluated next. 

Section 10.4.A presents the effectiveness and efficiency of VC generation using self-learning 

during the random routing phase. Section 10.4.B demonstrates the major outcome of this 

work, that of nodes becoming aware of network topology and its place in the topology. 

Section 10.4.C uses routing as an example to demonstrate how performance of the network 
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improves as nodes become topology aware. Three networks representative of different 

applications shown in Figure 10.5 are used for the evaluation: a) a circular network with 

three voids ‎[37], b) a sensor network deployed on a 3D surface, and c) a network deployed 

along the walls in a building ‎[37]. MATLAB
®
 20011a was used for the computations. In all 

the networks, a node has a communication range of one unit, resulting in up to four neighbors 

per node. Though a real sensor network implementation would have been the ideal 

evaluation, the proposed scheme is applicable in large WSNs where the number of nodes 

required is over 500, thus the real implementation is expensive. 

 

A. Self-learning based VC generation 

Only the results corresponding to the circular network in Figure 10.5 (a) are presented for 

the purpose of evaluating the convergence of [         
 
   
       ] to VCs, as the 

observations for the other two networks are consistent. In addition to the configuration shown 

in Figure 10.5 (a) with 496 nodes, we also consider two networks with similar shape with 

1081 and 2048 nodes respectively to evaluate the scalability. Corresponding to a probability 

0.02 at which a node decides to become an anchor, 10, 20, and 40 randomly selected nodes 

served as anchors for the networks with 496, 1081, and 2048 nodes respectively. Randomly 

selected source nodes were considered to emulate circulation of packets in the network 

searching for information using random routing. As explained in Section 10.3.A, such 

packets cause the nodes to generate the VCs. Convergence of this distributed process is 

evaluated using the number of packets it takes for the nodes to learn the VCs and the 

accuracy of the generated VCs. Figure 10.6 illustrates the error in evolved VCs (  ) compared 

to correct VCs ( ), averaged over each node and anchor, defined as 
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                           (3) 

   is simply an indication of average hop error in a VC at a node. In the circular network 

with voids containing 496 nodes, the error of approximated VCS,    approaches zero after 

about 200 rumors with TTL 100 have traversed in the network. When TTL is 10 times lower, 

the same network requires over 1500 packets to achieve error free VCS, i.e.,     . Figure 

10.6 gives the number of packets required to get error-free VCS under different TTLs. All 

these cases confirm the ability of the nodes to converge to the set of VCs by self-learning.  

 

Figure 10.6. Error in entire VCS of the network (  ) averaged over 10 configurations as the number 

of packets traverse in the network increases. Network with 496 nodes and 10 anchors. 

 

Figure 10.7. Number of packets required for all the nodes to generate error free VCS averaged over 

10 different configurations as TTL varies. Network has 10,20 and 40 anchors respectively for N=496 

, 1081 and 2048. 
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Figure 10.8. Error in VCS vs. number of packets forwarded by each node without any VC updates   , 

averaged over 10 anchor placements. 

 
Figure 10.9. Percentage of nodes in VC mode vs. the number of packet traversed in the network 

averaged over 10 random anchor placements. TTL is 100. 

 

TTL has to scale with the network size for packets to be able to span the network. Thus, 

we set TTL to be proportional to the diameter of the network, i.e.,  . For the rest of the 

simulations, TTL for networks of  , 496, 1081, and 2048 are set to 100, 150, and 200 

respectively. From Figure 10.7, the number of packets required to get accurate VCS for the 

networks of size 496, 1081, and 2048 are 232, 397, and 830 with the selected TTLs, 

respectively. 



215 

 

The next challenge is how a node can determine on its own whether it has correct VCs, 

since the proposed self-learning scheme is implemented in a distributed fashion. When the 

number of consecutive packets a node has heard that did not cause any updates of its VC 

estimates, exceeds a threshold   , a node assumes that it has correct VCs. In order to decide 

a value for   , the variation of error in generated VCS (  ) vs.    is evaluated for three 

different network sizes in Figure 10.8. It can be seen that there exists a    for which    goes 

to zero. For    at 30, all the three networks achieve almost error-free VCS. When a node has 

determined that it has accurate VCs, it switches to the VC mode of operation.  

Variation of the percentage of nodes in the VC mode with the number of packets 

transmitted in the network under different    settings is illustrated in Figure 10.9. Moreover, 

scalability is examined using networks of sizes 496, 1081, and 2048, for     10, 20, and 30. 

Consider the network of 496 nodes. When    changes from 10 to 30, the number of packets 

required for all the nodes to get into VC mode is more or less the same. As observed in 

Figure 10.8, the larger    is, the smaller the error in VCS evaluated using Eq. (3). A network 

of size 496 requires around 300 packets for all the nodes to get their VCS, while for 1081 

nodes, the number of packets required is around 400. Moreover, a network of size 2048 

requires about 700 packets to achieve 100% VC mode nodes.    is set to 30 in the rest of the 

simulations because at    is 30; the error of the generated VCS (from Figure 10.9) is 0.0001, 

0.002, and 0.004 in 496, 1081 and 2048- node networks.  

Next, we consider the additional energy consumption due to lengthening of packets due to 

the additional field of anchor IDs and hop count required by the learning scheme.  
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Figure 10.10. Topology preserving map development at a sample node (identified by color red).  

Number of anchors is 10 and total number of nodes is 496. TTL of a packet is 100. 
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Figure 10.11. Topology preserving map development at a node of a 3D T-joint assuming it store the 

destination topology coordinate of every destination node that goes through it. Number of anchors is 

10 and total number of nodes is 512.TTL of a packet is 100. 

 

The traditional method for VC generation involves multiple flooding, and the communication 

complexity is of the order of      , where   is the number of anchors and   is the number 

of network nodes. In the proposed scheme, there are no additional packets involved in VC 
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generation since VCS is generated using routine network traffic. Energy consumption of 

traditional VC generation is         , where   is the energy consumption per packet. In 

the evolving VC generation, the probability of a packet visiting all the anchors within its TTL 

is very low. The probability of a node becoming an anchor is 
 

 
. Packet with TTL = H visits 

  nodes. Hence the expected number of anchors that a packet visits is      . So the 

expected number of bytes padded to a packet is       , assuming one byte per anchor 

ID and one for its ordinate. 

 

B. Evolution of topology awareness in self-learning networks 

As explained above, when a node decides that its VCs have converged, based on the 

number of packets that passes by without any update to its VCs, it enters the VC mode, i.e., it 

is capable of using any VCS-based algorithm. One such is TPM generation. A node in this 

mode identifies itself using its VCs, and thus packets generated by this node contain the VCs. 

Each node that hears a packet with VCs can store the corresponding VCs locally to create an 

entry for the matrix   required for topology coordinate calculation. A node collects    

unique virtual addresses from the packets that it forwards or hears. The results presented 

below use      . As explained in Section 10.3.C, eigenvalue decomposition of   matrix 

yields                                             can now be used to convert any VC 

specification, including its own, to the corresponding topology coordinates using Eq. (1) for 

2D and Eq. (2) for 3D networks. 
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The node is now in possession of a transformation capable of generating topology 

coordinates from the VCs of any node. Thus, the node listens to ongoing packet 

transmissions to gather VCs corresponding to different nodes, calculate the corresponding  

 

Figure 10.12. Topology preserving map development at a node of a 3D T-joint assuming it store the 

destination topology coordinate of every destination node that goes through it. Number of anchors is 

10 and total number of nodes is 512.TTL of a packet is 100. 
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topology coordinates, and add them to the topology map of the network. The map at a node 

initially starts with    nodes but will expand, accommodating new nodes that it comes to 

know of. Figure 10.10 illustrates the evolving view of the topology map at one of the nodes 

in the circular network with three voids, which is representative of what happens at each 

node. As time evolves, the node finds out about more and more nodes, and the topology map 

completes. The variation of the percentage of nodes known to the observing node Vs. the 

number of packets that have traversed the network is shown in Figure 10.13.  

 
Figure 10.13. Variation of percentage number of nodes at the observing node Vs. number of network 

packets, for circular network with 3 voids (N=h 496, M=10, H=10). 

 

Next, the effectiveness of the proposed learning scheme is illustrated for the 3D network ( 

T-joint of Figure 10.5 (b)) and the 2D building network (Figure 10.5 (c)). The T-joint is 

illustrative of an example such as a sensor network for monitoring the structural integrity of a 

junction in an oil pipeline or a tunnel. Each cylinder has radius 2.54 units, height 16 units, 

and is covered with a grid of 512 nodes, each with a communication range of 1. Ten 

randomly placed anchors were used, and TTL set to 100 hops. Different stages of topology  
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Figure 10.14. (a-b) Two view of TPMs at two randomly selected nodes after 20000 packets 

disseminate in the network (c-d) Common set of nodes that two randomly selected nodes have (e-f) 

Set of common boundary nodes at two randomly selected nodes. Nodes on the inner boundary have 

the same order, which indicates the maps are consistent. 

map development at a randomly selected node are illustrated in Figure 10.11, as the number 

of packet transmissions accumulate over time. The percentage of nodes that have been 

mapped by the observing node is as shown in Figure 10.13. The third example is a network 

deployed along the foundation or walls of a building, consisting of 343 nodes. Three anchors 
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are manually placed at three corners (see Figure 10.5 (a)). Though these three anchors 

provide a good topology map for the building as in ‎[37], random placement of anchors also 

gives the correct topology map. A map at a random node evolves as illustrated in Figure 

10.12. All the three examples clearly illustrate how a network of sensors can be deployed and 

allowed to develop topology awareness without requiring much overhead. 

Initially no node had any idea of its position, the neighbors’ positions, or the network 

topology. The only information it knew about the network was how many neighbors it had 

and the neighbor IDs. Nevertheless, with the proposed scheme, nodes now are aware of their 

position in the overall network, the shape of the network and its topology. All this has been 

achieved without a dedicated setup phase requiring its own packet exchange, but by listening 

to ongoing transmissions and inferring information about the nodes and the network.  

 

C. Topology map consistency between two nodes 

 As explained, TPMs at two nodes are different, and the nodes available on the map are 

not the same. The question then is whether the different nodes have a consistent picture of 

network. We examine this next. Figure 10.14 (a) and (b) show the TPMs at the two randomly 

selected nodes after 20000 packets have propagated in the network. Not only the orientation, 

but also the number of nodes available at each node is different since each node relays/hears 

a different set of packets. Figures 10.14 (c) and (d) capture the set of nodes that are common 

to both the maps. Note that Figures 14 (a), (c), and (e) illustrate the map at one node, and 

Figures 14 (b), (d), and (e) are the corresponding views at the second node. As described in 

Section 10.3.C, topology maps at different nodes can be different but still be useful. Fish-eye 
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views of an area from two different vantage points could be vastly different, yet would be 

useful. Our approach also produces topology maps that provide somewhat distorted views of 

the physical map depending on the vantage points (node); however, they are useful for tasks 

such as routing as it is based on connectivity. Figures 10.14 (e) and (f) illustrate the subset of 

nodes that are not only common to each of the maps (as in Figures 14 (c) and (d)), but are 

also on the boundaries of the network as determined by each node. Then, in order to illustrate 

the consistency of the map, we have selected one inner boundary and used the node IDs to 

identify them on the two maps. As in Figure 10.14 (e), as the inner boundary is traversed 

counter-clockwise, the order of the common boundary nodes is 

{1,4,3,2,6,8,10,11,14,15,17,18,20,21,24,22,23,19,16,13,12,9,7,5,1}. As can be seen in Figure 

10.14 (f), the order of the inner boundary at the other node is the same. This illustrates and 

justifies our claim that maps at two random nodes are consistent. Since nodes take the 

decisions locally, for example for routing, it is sufficient to have topologically consistent 

maps.  

 

D. Energy consumption and compatibility with power harvesting schemes 

In this section, we address several scenarios in which a self-learning strategy for network 

awareness is more desirable compared to achieving network awareness with a dedicated 

setup phase. A dedicated setup consists of two phases: a) a VC-generation phase involving 

multiple flooding, with communication complexity of the order of      ; and b) a phase in 

which VCs of each of the nodes is distributed to other nodes to calculate the VC to TC 

transform and generate the map, with communication complexity of the order of      . 

Instead of all these additional messages, the proposed scheme piggybacks small amount 
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information, anchor IDs and hops, on each routine packet. Consider the additional energy 

consumption due to this increase of packet length. The probability of a node becoming an 

anchor is    . As a packet with TTL =   visits   nodes, the expected number of anchors 

that a packet visits can be approximated by       . Assuming one byte per anchor ID and 

one for its ordinate, the expected number of bytes padded to a packet is        . Let the 

original packet length be   bytes. Therefore, percentage increase in the amount of energy 

consumption during the learning stage due to padding is given by   
 

 
  

 

 
     . For the 

network with 496 nodes shown in Figure 10.5 (a), with 2% of nodes as anchors and a TTL of 

100, the percentage incremental cost due to self-learning per packet is 
 

 
 , and even this 

small increase occurs during only the self-learning stage.  

Although one can conceive a dedicated setup phase for achieving network awareness, 

there are many situations where such an implementation is not desirable or even feasible. An 

example is the emerging class of power-limited networks, as opposed to traditional battery-

operated networks in which the total energy was considered the limiting factor. WSNs will 

be deployed in regions that are difficult to access and so the sensor nodes must be 

autonomous and independent in terms of energy. Recent advances in power-harnessing 

schemes ‎[70]‎[112] remove a technical barrier for long-term deployment of sensor networks. 

Under energy-harvesting strategies, for a perpetual sensor node operation, it must be such 

that                         , where    and    are the generated and consumed average 

powers respectively.  ,       and         are duty cycle, power consumptions when the node 

is idle and active. When   is large, i.e., the node is active for a long period,    would be high. 

Hence    may not be sufficient to power the sensor node’s operation. Even with certain 
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battery-operated devices, one may need to limit the peak power consumption. As stated 

in ‎[112], a device with a coin-size battery restricted to consume 200 µW of power on 

average, lifetime can be extended to a maximal 167 days, which is equivalent to half a year. 

In such cases the power is limited, but nodes are able to pursue long-term strategies to 

enhance its capabilities. 

A dedicated learning phase to achieve network awareness under power-limited conditions 

can require a long initial period during which the network is not available for the sensing 

task. The time it takes to harvest energy to transmit a packet is   /  , where    is the energy 

per packet and    is the power generated by harvesting scheme. The duration that a network 

is not available for sensing would grow at least linearly with the number of nodes, and it is 

inversely proportional to the harvested power. With an evolving approach, the network 

carries out the sensing tasks with its current level of abilities, but becomes more effective 

with long-term learning. 

Even with a dedicated setup phase, there are circumstances in which a network may not 

benefit fully from the available structural information. Completion of a setup phase allows a 

message going from source to a destination to find a shorter path compared to random 

routing. Yet, the destination (node needing information) or event (node that has information) 

still has to be discovered using a scheme such as random routing. Only a few exceptions for 

this exist in which the destination is known apriori, e.g., a fixed-base station. In cases where 

each event involves only a very few message exchanges, it takes a significant amount of time 

to compensate for energy used in a structuring phase. However, if the event triggers multiple 

message transfers after the first discovery message, those subsequent transfers can follow 

shorter paths, significantly benefiting from the structuring information.   
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10.5 Topology Awareness – Applications 

During TC generation, a node initially gains knowledge of neighbors’ relative positions. 

Note that now the decision-making capability is higher than during the initial state, when 

nodes were completely oblivious. After that, the node expands its awareness beyond the 

neighborhood, transforming from neighborhood-aware state to become network-aware. Now 

the node can become aware of the boundary nodes and physical holes in the network that 

prevent those nodes from sensing or routing through certain areas. By conditioning the map 

with sensed data, even dynamic events and their boundaries can be identified. The overall 

effort of the scheme is to dramatically improve the distributed decision-making capability of 

individual nodes, and by the network as a whole. Below we consider two examples that can 

directly benefit from the proposed scheme. 

 

Figure 10.15. Variation of percentage number of nodes in the topological domain as the number of 

packets generated in the network varies. 
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A.  Routing in a self-learning environment 

Efficient routing is the key to efficient data dissemination, and therefore for any sensor 

network application. Routing algorithms ranging from random routing to coordinate-based 

routing can significantly benefit from topology awareness. Random routing schemes depend 

on the rendezvous of queries seeking data and agents carrying information about events. 

Queries and agents follow random paths in the network, with the expectation of visiting a 

node visited by its counterparts. With the presence of a topology map within a node, it is 

possible to direct such queries to dense regions (market places), junctions, or certain 

geometric features, thereby increasing their rendezvous probability, and thus significantly 

enhancing the efficiency.  Alternatively, with the availability of TPMs, they may be sent in 

straight lines or some geometric pattern to maximize the rendezvous probability. Straight line 

rumor  routing and market place random routing are examples that can significantly benefit 

from the proposed approach, without having to resort to physical node localization. Even 

partial topology maps, i.e., when a node does not have information about the entire network, 

can still be beneficial. With the development of a topology map within a node, the node now 

has information about the network boundary and obstacles between it and any other node, 

and therefore is capable of mapping the best path from it to any other node on the map very 

accurately.  

Above we discussed how the different routing schemes could benefit from network 

awareness. Next, we illustrate how a node can upgrade the routing algorithm, i.e., switch to 

better and more efficient ones, as it goes through different learning stages. From random 

routing, network develops VCS. Now, it can use VCS-based routing schemes. Moving 

further along, the nodes can generate TCs. Having both TCs and VCs provide the ability to 
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achieve very high routability by using one domain to overcome the voids in the other 

domain. Geo-Logical Routing (GLR) scheme ‎[39] switches among three modes: a) TC, 

which uses topology-based coordinates where TC is used for distance evaluation; b) VC, 

which uses VCs and distance, is based on VCS; and c) AM, which routes toward selected 

anchor   , which is closest to the destination. The source node initiates routing in TC mode. 

The packet continues to be routed in this mode until it reaches a local minima in the topology 

space. Then, the mode is changed to VC mode. If a packet comes across a node, which is a 

local minima in VC mode, the packet is routed using the AM mode in which the packet is 

sent to the anchor closest to the destination. Further detail can be found in ‎[39].  

 

Figure 10.16. Variation of percentage average routability of the learning network as the number of 

packets in the network varies. 

 

Figure 10.15 illustrates the routability performance improvement that can be achieved by 

changing the routing algorithm as nodes reach different stages of learning. For this 

evaluation, circular network with 496 nodes (for Figure 10.15 (a)) and 1081 nodes (for 

Figure 10.15 (b)) are used. Routability of the network is defined as, 

              
                                              

                                
                       (4)  
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In the proposed self-aware network routing, which is initially based on VCS will gradually 

transform to topology map based routing, GLR achieving significantly high performance 

compared to VCS-based routing. Since the network is self-evolving, a node may even switch 

to VCS algorithm prior to the convergence of VCS. We already examined error due 

termination criteria of VCS learning using Figure 10.9. To consider the impact of such an 

error, we compare the cases where a node with a certain error    in VCS starts using VCs for 

routing and one without error in Figure 10.15. When the number of packets is zero, the 

network uses only VCS-based routing. While any VC-based routing proposed in literature 

may be used, the simulation is based on GLR, excluding the TC mode. In the simulation, 

nodes generate TCs when it collects       VCs or source/destinations. As it can be seen 

from Figure 10.15, during this transient period, a fraction of the network nodes use VC-based 

routing while rest uses GLR. It can be clearly seen that routing performance is more or less 

the same when    is zero and    not zero, which indicates that learning network may tolerate 

small percentage of error in VCS. Moreover, overall routability improves by 25% for both 

the network sizes due to upgrading the routing scheme from VCS-based routing to TPM-

based routing.  

Finally, Figure 10.16 shows the percentage of nodes in the topological mode as the 

number of packets in the network vary, thus those nodes use GLR-based neighbor selection. 

The rest of the nodes is in VC mode and uses VC-based greedy forwarding.  

 

B.  Limitations and extensions of self-learning scheme 

This section discusses briefly the flexibility and possible extensions of the learning 

algorithm under node failures and node mobility.  
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The algorithm for network-awareness relies on a set of nodes becoming anchors, and 

each such anchor inserting a count in each header of packets it forwards. Although it is used 

only during the VC development, it does consume network resources and requires 

modification of packets. However, this overhead can be eliminated as explained next, if one 

is willing to spend a longer time for achieving network-awareness. This is done by using the 

TTL field as a counter for the purpose of VC generation. A packet in a WSN generally 

carries the source address as well as a TTL field. Consider initializing TTL to zero at the 

source node, so the packet can be dropped when a certain threshold is reached. This counter 

is an estimate of the distance to the source node of that packet and, as in the case discussed 

above, will converge over time to the actual shortest distance. However, it is also important 

to note that M need not be the same at each node for the purpose of topology map generation, 

thus providing a significant degree of flexibility and efficiency, as well as the opportunity to 

speed up the learning process. This scheme does not require modification of fields of the 

packet header. It allows for a completely passive listening-based learning process. Other 

strategies can also be developed that trade off overhead and learning time in different ways.  

Node failures, including those of anchors, have an effect on the VCs when the shortest 

path between two nodes is altered due to the node failure. Though TPM is generated based 

on the VCS, it is a representation of the physical map of the network. Therefore the topology 

map of remaining nodes is not affected by the failure of a node, even that of an anchor. In 

fact, this is a major advantage of TCs over VCs, even though the former is derived from the 

latter. Thus, node failures that occur after the network has gone through the first stage of the 

learning process will have very little impact on the network awareness. The presence of dead 
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nodes on the TPM can lead to wrong decisions; however, the means for handling such cases 

exist, for example, by associating a time-out for node entries on the TPM.   

Another interesting challenge is learning in a network where a fraction of nodes is 

mobile. If the network contains a significant fraction of nodes that are stationary, network 

awareness can be achieved only with respect to those nodes. An ongoing study ‎[63] uses the 

centroid of the static neighborhood of a mobile node as its VC and TC without degrading the 

overall routing performance. In cases where the time intervals related to significant physical 

movements are larger compared to the time it takes the network to generate topology maps, 

the scheme described can be used repeatedly to achieve network awareness in mobile 

networks. In fact, network awareness would be very useful for generating desired swarm 

behaviors on 2D and 3D mobile robot and nano-robot networks. Realizing this requires 

further investigation.  

Finally, we address the question of applying the proposed learning scheme to massive 

networks in the scale of trillions of nodes. Today’s localization and other network structuring 

algorithms are not pragmatic for such networks. As the learning time increases rapidly with 

the number of nodes, the key to achieving topology awareness in such networks lies in 

hierarchical organization. Such networks can be partitioned into regions or clusters in such a 

way that nodes in each region are mapped to a single VC. The network awareness can be 

generated at cluster level for the entire network, i.e., each cluster will know the positions of 

different clusters and their relationship to one another. Combining such inter-cluster 

awareness with intra-cluster node awareness, better scalability can be achieved. Thus, nodes 

can get a sketch of the network, which will provide sufficient information of the network 

voids, boundaries, etc. This is also under investigation. 
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10.6 Conclusions 

This research presented a novel scheme that allows nodes in a distributed sensor network 

to acquire network-awareness by listening and reasoning based on network activities over 

time. As network-awareness develops, the nodes individually and the network collectively 

are able to switch to more sophisticated algorithms for functions such as routing, sensing and 

fusion. Network-awareness at nodes can revolutionize the implementation of many 

application level algorithms as well.  

The effectiveness of the scheme was demonstrated using 2D and 3D sensor networks. 

Routing was used as an example to illustrate how the overall performance can benefit from 

node awareness. As nodes gain the knowledge of network topology using the VCS, 

performance of routing improves by 25%. In fact, by storing a complete topology map, for 

example as a bit map to minimize memory consumption, it is possible to identify the source 

to destination paths completely and accurately, and thus achieving 100% routability.  

This work is a step towards future sensor networks that evolve over time, becoming 

smarter by learning and inferring information about the network, based on information 

gleaned from ongoing packet transmissions.  
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CHAPTER 11 

RECOVERY BOUNDS AND PHENOMENA AWARENESS IN WSNS –  

A COMPRESSIVE SENSING BASED APPROACH 

 

11.1      Introduction 

The novel theory of Compressive Sensing (CS) is an emerging mathematical approach 

with a significant potential to recover functions using a few samples/measurements. It 

attempts to reconstruct certain signals/images from highly incomplete samples. CS is based 

on the empirical observation that most of the signals can be represented by a sparse 

expansion under a suitable basis or a frame. 

Compressive Sensing ‎[28]‎[26] is posed as recovering an n-dimensional signal vector   ( 

   ), that is  -sparse in its sparse representation with   (    ) number of samples y ( 

    ) which are linear combinations of the signal vector   given by      . With given   

and  , this under-determined system is solved for   as 

                                                                                             (1) 

where      is the L
1
 norm. A (      ) is called the sensing/measurement matrix/frame. In 

applications where the sparse representation of the function is defined by a basis, such as 

Fourier or Cosine,   is defined by the selected basis. Most of the theoretical bounds in CS are 

derived based on the Restricted Isometric Property (RIP) of the sensing matrix  . RIP 
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requires every combination of support of   many columns of   to be well conditioned and 

written as 

           
          

             
 
                                            (2) 

where   is called Restricted Isometric Constant (RIC) and is specific for the support of  . If 

  is a subset of samples of   and   has a sparse representation in a known domain  , the 

problem can be re-written as 

                                                                          (3) 

Consequently, the measurement matrix A = R  . R is a subset of rows of identity matrix 

selected under a probability mass function (pmf). As      is an orthonormal basis, RIP of   

is achieved via  . 

The goal is to recover the sparse representation of the function/signal in a transformed 

domain. Thus, two main design criteria emerge: the choice of the basis/frame and the row 

selection scheme. The basis/frame is chosen to have a sparsest possible representation. The 

row selection scheme essentially is the sampling scheme. Reference ‎[100] derives the 

probability of failure and the minimal number of samples required, when the measurement 

matrix is constructed by drawing rows from an orthonormal basis according to a so-called 

orthogonalization measure defined next. 

Let  ⊂    be endowed with a probability measure  . Moreover,   is an orthonormal 

system of complex-valued functions on  . 

For         , if 

 
 
                     

        
        

                                             (4) 
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then   is said to be an orthogonalization measure. The fundamental idea behind 

orthogonalization measure is that it selects rows from a basis in such a way that the resultant 

sub-matrix has orthogonal columns satisfying (2), resulting in a measurement matrix with 

high recovery performance. The widespread favor for uniform distribution to draw rows is 

due to its orthogonalization property. In this research, we generalize the result in ‎[100] for 

any row selection scheme from any basis not requiring to satisfy orthogonalization property 

in (4). 

In certain cases, a sparse representation in a common basis as Fourier or Cosine may not 

be available, and it may be hard to form an orthonormal basis producing a satisfactory 

sparsity level. As pointed out in ‎[11] frames provide a more flexible and convenient 

alternative to bases. It is shown that finite frames play a central role in the design of both 

sparse representations and compressed sensing methods. Moreover, it has been proven that 

frames with small spectral norm and/or small worst-case coherence, average coherence, or 

sum coherence are well-suited for making measurements of sparse signals. 

In general, applications of CS span network topography, face recognition, image recovery, 

and sparse signal recovery. Proposed bounds are applicable in the area of sparse signal 

recovery. For instance, images and musical notes are sparse in Wavelet and Cosine basis, 

respectively. A few example scenarios where CS can be used in Wireless Sensor Network 

(WSN) applications are discussed next. The hydrologic study by USDA-ARS Great Plains 

Systems Research (Fort Collins, Colorado) has 110ha of a winter wheat and fallow strip 

cropping system ‎[85], where soil measurements are collected using sensors mounted on a 

pickup truck. Traditional CS would demand uniformly at-random samples over the field, 

which is un-realizable to achieve with a truck. Moreover, Intel's Wireless Vineyard ‎[10] uses 
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ubiquitous computing for agricultural monitoring, data collection relies on data mules, which 

are small devices carried by people/dogs/robots that communicate with the nodes and collect 

data. Again, samples are not collected in a uniformly at-random manner. Thus, the proposed 

theoretical formulation is of much use in such scenarios.  

We formulate generalized mathematical limitations to use a sampling scheme of choice 

under a preferred basis or a frame. Mathematical bounds found so far have been limited to 

uniform sampling under the Fourier basis. We derive three main results under this relaxation: 

1. Recovery failure probability, 

2. Minimum number of measurements/samples needed, and 

3. Measurement overhead on the number of measurements/samples required for use of non-

orthogonalization measure. 

The rest of the research is organized as follows: Section 11.2 presents the related work. 

Section 11.3 derives recovery bounds of CS-based phenomena discovery under relaxed 

constraints on sampling distribution. Application of RW-based sampling in WSNs is 

proposed in Section IV and evaluated in Section V. Section VI concludes this research. 

 

11.2 Related work 

This section briefly discusses the CS-based approaches for data aggregation and 

localization in WSNs. Conventionally, measurement matrix   gives   uniformly at-random 

number of linear combinations of samples. Uniform random sampling based CS recovery in 

DCT and wavelet domains are addressed in ‎[96]. Nevertheless, the proposed approach lacks 

the required mathematical justifications for using CS in DCT and wavelet domains, which we 

provide in the research. Reference ‎[87] focuses on binary sparse event discovery using the 
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Bayesian detection. However, their performance decays as the signal-to-noise ratio (SNR) 

approaches 20dB. Reference ‎[124] investigates minimizing the network energy consumption 

through joint routing and compressed aggregation where uniformly at-random samples are 

routed to a sink through a tree-based structure. An energy efficient compressed sensing 

scheme for wireless sensor networks using spatially localized sparse projections is proposed 

in ‎[75]. Here, measurements were obtained from clusters of adjacent sensors in order to 

reduce transmission cost. Single dimension function recovery in underwater sensor networks 

is discussed in ‎[47], where function is assumed to be sparse in Fourier domain and sensors 

send their information directly to the base station in a uniformly at-random manner. Different 

from the above, ‎[104] proposes spatial domain sparse function recovery at a sink using RW-

based linear combination of the sensed values. The drawback of this scheme is, the larger the 

size of the network, the larger the number of RW-based linear combinations required.  

A CS for manifold learning protocol (CSML) is proposed in ‎[48] for localization in 

wireless sensor networks. Each sensor transmits a subset of distance measurements to a 

central node. Then the central node recovers the full pair wise distance matrix through an L
1
-

minimization algorithm. A CS-based approach for sparse target counting and positioning 

scheme is proposed in ‎[130]. The proposed greedy matching pursuit algorithm (GMP) 

in ‎[130] complements the well-known signal recovery algorithms in CS theory and proves 

that GMP can accurately recover a sparse signal with a high probability. 

All the applications discussed above share two comment factors: uniformly at-random 

sampling and recovery at a base/central station. The focus of this research is smooth function 

discovery using a transformation. Thus, in uniformly sampled sensor values need to be sent 

to a BS. Why don't we make use of the sensed information lie on the path, which uniformly 
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sampled sensed information travel to BS? Additionally, sensor nodes must be placed/selected 

uniformly in order to collect samples of the phenomena uniformly at-random, which is not 

practical in most of the real applications. We propose RW-based sampling, and also make it 

feasible to discover the phenomena centralized as well as distributed. Moreover, we 

rigorously justify the validity of the problem formulation. 

 

Table 11.1 

Notation and Description Used in Chapter 11 

Notation Description 

   Total number of samples of a function 

  2D phenomena 

  Vectorized phenomena 

  Transformed   

  Subset of samples of   

       Number of samples required in uniform (non-uniform) row selection 

  Measurement matrix 

  Sparsity of   

  Support of              

   Sub-matrix constructed by selecting columns from  A  on  S 

  Restricted Isometric Constant (RIC) for sparsity  s 

  Row selection matrix 

  Transformed domain basis 

  Space of    

  Bound on the largest element of basis   

     Inner product between the  i
th 

and  j
th
 column of   

          when     

  Off-diagonal elements of inner product of    over generalized sampling 

   Deviation from normalized inner product of     from   

  Power used in RIP condition 

  Change in     due to generalization 

  Upper bound on   
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11.3 Recovery Bounds for Sparse Function Recovery with Non-orthogonalization 

Measure 

Most of the transformed domain sparse function recovery schemes assume that the spatial 

domain function is sampled uniformly at-random, which corresponds to selecting rows of a 

basis under the uniform distribution. Many also assume a sparse representation in the Fourier 

basis, as uniformly selected Fourier basis rows satisfy the required conditions of the existing 

theorems ‎[100]. However, this may not be the case with real-world applications. Gathering 

samples uniformly at random may not be pragmatic. In addition, Fourier basis may not 

produce a satisfactorily sparse representation, requiring consideration of other bases or 

frames. Thus, we investigate the case where the rows of a basis of interest are drawn from an 

arbitrary distribution, relaxing the requirements imposed on basis and sampling distribution 

in existing theorems. This section formulates the following recovery bounds associated with 

CS-based recovery under relaxed constraints: 

1. Recovery failure probability, 

2. Minimum number of measurements/samples needed, and 

3. Measurement overhead on the number of measurements/samples required for use of non-

orthogonalization measure. 

Notations used in the derivations and theorems are tabulated in ‎Table 11.1.  

 

A. Recovery failure probability 

Let   with support   be the signal to be recovered. The support of the signal vector is the 

set of non-zero elements in  .  , the number of non-zero elements, in other words sparsity of 

 , is the cardinality of  . Failure of recovery of a signal with support   is viewed as   being 
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unable to satisfy RIP. In this case, RIP implies that any sub-matrix formed by   number of 

columns of   corresponding to  , referred as    being nearly orthonormal, i.e., 

     
 
                                                                       (5) 

here      denotes column wise normalized    and   is the RIC. The probability with which 

the above is unable to be satisfied is defined as the probability of failure,  . 

         
 
                                                               (6) 

 

Theorem 1: A signal with sparsity   in a transformed domain under a basis   with at most    

samples will perfectly recover with probability of (1-  ) for: 

             
    

        
                                                     (7) 

where   is the failure probability,   is the RIC, elements of   is bounded by   and    is a 

constant determined by the sampling scheme. 

Proof: A general normalized system   on  
 

 can be written as 

 
 
                          

          

        
                                                  (8) 

where   is a probability measure and      . If   is an orthogonalization measure,     

       (See (4)). Let                  , then, expected value of     
  

      
                                                                          (9) 

     
                                                                   (10) 

where    is a set of arbitrary indices and I is the identity.   is the off-diagonal elements of 

     
   and it is a critical term when the sampling scheme and the basis do not follow the 

condition for orthogonalization measure given by (4). Recovery performance is degraded due 
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to nonzero  , thus, requiring additional number of samples to achieve similar recovery 

properties such as probability of failure, error in recovered function, etc. 

The general form of the RIP condition is given in (2) can be re-arranged to: 

  
   

 ⊂              
  

                                                          (11) 

From Markov Inequality the probability of failure is bounded above by; 

       
 
            

  

 
                                                  (12) 

where      is: 

        
 
      

 

 
                                                  (13) 

Substituting for   from (9) 

     
 

  
   

         
     

    
 

 

   
 

  
   

         
   

    
 

 

      
 
              

                                                                                                                                               (14) 

where    is the number of measurements. Using Lemmas 6.7 and 6.18 in ‎[100], 

                                                                (15) 

where    : 

    
 

   
 
 

                                                       (16) 

and    , 

       
                                                        (17) 

Note that   is the noise generated due to violation of the condition for orthogonalization 

measure given by (4).   vanishes, as in the case of ‎[100], where the sampling is an 

orthogonalization measure. By solving for    
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                                         (18) 

Let, 

      
  

 
 

 

  
 

 

 
                                              (19) 

Substituting    (18) in (12) and rearranging terms as in Proposition 6.5 in ‎[100], gives us 

our first results: the failure probability  . 

      
 
      

 
      

 

          
    

       
                                     (20) 

where   is bound on the L
2
 -norm of rows of   , and    is the number of measurements 

needed under relaxed constraints. QED 

 

B. Minimum number of samples required 

The minimum number of samples required in order to achieve a predefined success 

probability is derived next. 

 

Theorem 2: The minimum number of measurements needed    to recover an  -sparse signal 

in a transformed domain, where the basis is  , with probability (1-  ) is 

   
      

  
    

     

 
                                                          (21) 

where   is the RIC,      is bounded by   and      is a constant determined by the sampling 

scheme. 

Proof: From (20): 

    
 

          
    

       
                                                       (22) 

Rearrange (22) to obtain (21). QED 
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A class of functions can be defined with the same sparsity. Hence (21) provides a lower 

bound for the number of samples required to reconstruct the original function with a success 

probability of (1-  ) . 

 

C. Measurement overhead due to use of a non-orthogonalization measure 

When rows from an orthonormal basis are selected not necessarily at an orthogonalization 

measure, more samples may be required to achieve similar performance, than if otherwise. 

These extra measurements are termed “penalty” paid due generalization. 

Theorem 3: A signal s-sparse in a basis   that can be perfectly recovered with   samples 

under an orthogonalization measure with probability (1-  ); under a non-orthogonalization 

measure will require   , given by: 

     
  

 
 
 

                                                                     (23) 

where   is a constant corresponding to an orthogonalization measure,    corresponds to a non-

orthogonalization measure and 

  

 
  

         

     
                                                                 (24) 

and       
        . 

Proof: Let   be the number of samples required sampling under an orthogonalization 

measure and          from (19). To find the measurement overhead (the fraction of extra 

measurements) in relaxing the orthogonalization constraint, we observe the following 

relationship when both the methods achieve identical    

 

  
     

 

     
  

    

 
 

  

   
                                                               (25) 



244 

 

       
  

 
 
 

                                                               (26) 

The term  
  

 
 
 

 is referred to as the multiplicative measurement overhead of generalization. 

From ‎[100]   
     

 
 and since   is bounded by  ,  

     
         

     
 
 

                                                               (27) 

which completes the proof. QED 

 

11.4 Compressive Sensing Under Random Walk-Based Sampling in Discrete Cosine 

Domain 

The main contribution of this research is the derivation of the bounds for the relaxed 

restrictions to be satisfied by the sampling scheme and the transformed domain basis to 

construct a measurement matrix. In Section 10.3, we derived failure probability, minimum 

number of measurements needed, additional number of measurements required due to 

relaxing constraints on sampling scheme and basis. We now evaluate the above-derived 

bounds under random walk sampling of Discrete Cosine Basis. 

 

A. Why Discrete Cosine Basis? 

Theorem 1, operating on a basis where the signal is sparsest, provides highest recovery 

probability for a given number of measurements. Therefore, when it comes to a WSN 

deployment for sensing real-world physical phenomena, the Discrete Cosine Transform 

(DCT) of the phenomenon is rather promising. As ‎[7] points out, the DCT achieves nearly 
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optimal energy compression, comparable to Karhunen-Loeve transform, yielding the fewest 

coefficients, i.e., the sparsest representation, of natural signals. 

 

B. Why Random Walk as the sampling scheme? 

Random Walk is one of the simplest motion models. The concept behind random routing, 

which is the basis for a large number of routing algorithms for WSNs ‎[8], is similar that of 

RW or Brownian motion: each node randomly selects a neighbor and forwards the received 

message. Rumor routing ‎[18] is an example of RW routing protocol, in which messages such 

as agents and queries, also called rumors randomly traverse the network. Even when the 

network is structured and deterministic routing is possible, random routing schemes play a 

crucial role in WSNs in discovery of resources and disseminating information, especially in 

the absence of a base station that acts as a global repository for such information. Moreover, 

RW motion models are applicable for the case where samples are collected by a carrier. 

However, using RW routing to gather a set of uniformly scattered measurements from a 

sensor field is rather inefficient. Making the messages traverse in a RW manner, while 

collecting measurements along the path it traverses is a more practical approach. However, 

such will not result in a uniform selection of measurements. 

 

C. Implementation: Random Walk-based phenomena discovery 

This section discusses the details of the RW-based phenomena discovery algorithm for the 

centralized and the distributed realizations. 
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Centralized Realization of Phenomena Awareness: 

In centralized implementation, the network has a base station (BS) with a higher 

computational capacity. There are many scenarios where a centralized implementation is 

feasible or even preferable ‎[10]. In this setup, we assume there is a carrier, a 

robot/vehicle/animal, collecting sensed information while traversing the network on a RW. 

At the end, the carrier either returns or transmits the collected data to the BS. Then BS will 

form and solve the CS problem to recover the phenomenon. Under similar conditions, 

forcing the carrier to collect samples uniformly at random is not pragmatic. 

 

Figure 11.1: RW based sample collection on an example grid 

 

Distributed Realization of Phenomena Awareness: 

A node becoming phenomena-aware in a distributed way is crucial for many future 

ubiquitous sensor/actuator network applications. This phenomena awareness may be 

achieved using messages that continuously disseminate in the network for even/destination 

discovery or other management purposes. Let   be the vectorized 2D-sensed phenomena. 
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Then each node has a corresponding entry in  . For simplicity, we assume nodes are 

numbered in ascending order from the top left corner to bottom right corner (see Figure  

INPUT: Sensed samples of the phenomena 

OUTPUT: Recovered phenomena 

1:       number of collected samples 

2:                 

3:                  

4: if        then 

5:  for           do 

6:   for           do 

7:    if        then 

8:                   

9:    else 

10:            

11:                      
        

   
  

12:    end if 

13:   end for 

14:  end for 

15:                       

16:                   % inverse DCT of   

17: else % more samples required 

18:  for           do % check whether   is a new sample 

19:   if     ==     then 

20:    flag    1 

21:   end if 

22:  end for 

23:  flag    0 

24:  if flag == 0 then 

25:             

26:           

27:  else 

28:   flag   1 

29:  end if 

30: Forward the packet to a neighbor to which packet has not been previously forwarded 

31: end if 

 

Figure 11.2: Distributed Phenomena Discovery – Algorithm implemented at a node 
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11.1), which is used as the node ID and as well the index in   . In a localized network, 

physical position information of nodes can be used to organize  . If the network is not 

localized, a hash function can be used to map an actual node ID to index range of          . 

 

Figure 11.3: Variation of    and number of samples used when (a) s=2 (b) s=3 (c) s=4 

 

 Consider the example grid network in Figure 11.1, where a message generated by node 8 

starts traversing the network in a RW manner while disseminating information it gathered so 

far at the nodes it visits. When a node receives a message, it stores the content in the message. 

Then the node piggybacks its node ID and the measurement to the message and forwards to a 

randomly selected neighbor. For instance, node 15 receives the message [ID_8, T_8, ID_9, 
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T_9] from node 9. Node 15 then stores the message, appends its node ID ID_15 and 

measurement T_15, and transmits to a neighbor. When a node accumulates a sufficient 

number of samples,   , for recovery, possibly after visits by multiple packets, the node can 

construct the entire phenomena with a certain error. According to Theorem 2, we expect    

to be bounded by    . However, in practice    may be defined based on    required in the 

recovered function, which will result in a lower value compared to the theoretical value. 

Function recovery algorithm implemented at each node is explained in Figure 11.2. 

 

11.5 Performance Evaluation of Phenomena Discovery from Random Walk-Based 

Samples 

Temperature distribution of State of Alabama ‎[25] during August averaged between 1951 

and 2006 was selected to demonstrate the effectiveness of the RW-based phenomena 

discovery (see Figure 11.3 (a)). There are 7653 data points in total in a grid structure where 

we assume 7653 sensors are deployed. Each node is capable of communicating with its 

immediate four neighbors, i.e., communication range is one.  

Table 11.2 

Number of Measurements Needed For    of 1% 

  – sparsity Theoretical Empirical 

2 606  635 

3 1048 1450 

4 1458 1700 

 

Let us consider a scenario where a rumor (message) originated at (0,0) with TTL 4000, 

disseminated into a network of 7653 nodes. Note that due to the possibility of revisiting to 

the same node, the rumor will not be able to collect 4000 unique samples. The reconstruction 

error   , of the recovered function is defined as: 
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                                                 (28) 

where    is the total number of samples in the function, which is the same as total number 

of sensors in the network.    and     are the k
th

 sample of the original function and the 

reconstructed function respectively. Percentage reconstruction error    (28) is used as the 

metric of performance evaluation.    indicates the average error in reconstruction if the 

sample value is 100. 

Table 11.2 lists theoretical and empirical values for the number of measurements needed 

to obtain an   of 1%, for sparsities 2, 3, 4. Based on the samples collected by the rumor, 

recovery error with the samples used for reconstruction was plotted as in Figure 11.3 for 

three sparsity cases: 2, 3, and 4. Red dashed lines indicate the theoretically estimated  , 

which is a satisfactory lower bound for the samples required for recovery.  

Pre-analysis of temperature distribution in Figure 11.4 (a) was performed first. If the 

function to be reconstructed is sparse in DCT domain, the number of non-zero coefficient 

should be less. The number of non-zero coefficients defines the sparsity. 3183 DCT 

coefficient out of 7653 in total was required to reconstruct the temperature function in Figure 

11.4 (a) allowing 0.1% error, implying that even in DCT domain, the selected phenomena is 

not sparse as expected. Although such natural phenomena can be approximated by a sparse 

representation with only a few non-zero coefficients, in our simulation we aim to recover the 

original dataset, not an approximation. Both the centralized and distributed phenomena 

discoveries are discussed. MATLAB
®
 2011a implementation of L-1 magic ‎[99] is used for 

both centralized and distributed phenomena discovery. 
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Figure 11.4:(a)Average temperature distribution of State of Alabama in August. 7653 sensors in total 

are available, (b) Reconstructed image based on 2583 samples collected by a single carrier and (c) 

Reconstructed image at randomly selected node when 1056 samples were collected by that node 

 

A. Performance of Phenomena Discovery at the Base Station 

As explained earlier, the base station is assumed to be at (0,0). A carrier (robot) collects 

sense information and node IDs while moving from one node to another in a RW of step size 

one. The maximum number of steps that the carrier will take is set to 4000 when there is a 

single carrier. Note that revisiting to the same node twice is allowed in the simulation, thus 

the carrier will collect less than 4000 samples. Figure 11.4 (b) shows an example recovery 

under RW sampling at a BS when 2583 samples were available. In reality, the true sparsity of 

the phenomenon is unknown. Therefore, the actual number of samples needed is 

undetermined. In Figure 11.5 we demonstrate the variation of    with the number of samples 

used. The variation of error as the number of carriers is doubled also plotted in the same 

figure.  

Each carrier has the TTL 2000. As can be seen, performance in terms of    is more or less 

the same in the case of single or double carrier case. Even though collecting samples under 

uniform distribution is difficult in practice, we have used the recovery error under uniform 

sampling as a comparison. Error performance under RW sampling is about 0.2% less than 

that of under uniform sampling, when 2000 samples are available. 
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Figure 11.5: Variation of average error with number of samples used for reconstruction in 

centralized recovery. Single carrier with 4000 steps in total and two carriers with 2000 steps per each 

were used 

 

Figure 11.6: Variation of average error with number of samples used for reconstruction in a 

distributed manner. Evaluation is after 1000 messages with 300 TTL disseminated in the network. 

 

B. Performance of Distributed Phenomena Discovery  

Phenomena discovery in WSNs in a distributed manner is discussed for the first time. We 

envision future WSNs that evolve over time and become aware of the sensed phenomena. 

Distributed implementation of phenomena awareness may provide advantages to an array of 

applications. Ubiquitous networks, random routing protocols are some instances. Networking 

vehicles with one another and with an infrastructure that gives drivers information on the 
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situation beyond their field of vision and warns them about accidents or traffic jams is 

another example. 

For the distributed phenomena awareness implementation and evaluation, the same 

temperature data set is used. In a WSN where there is no fixed BS, random routing is used 

for event and sink discovery ‎[18]. Those messages can be used to make the network learn 

about the phenomena being observed. Note that we used carriers in phenomena discovery at 

a BS while the distributed implementation uses packets disseminated in the network. In the 

simulation, 1000 messages with TTL 300 are generated at a randomly selected node in the 

network and traversed following a RW. Rumors may revisit the same node but rumor will 

carry only unique samples. A view of the phenomena at a randomly selected node, which has 

collected 1056 samples from the rumors that passed through it, is given in Figure 11.4 (c). 

Figure 11.6 shows the average error    in the recovered phenomena at different nodes. When 

there are multiple nodes with the same number of samples collected, the mean    is taken. 

Fluctuation in mean    can be observed in Figure 11.6, since different nodes have different 

set of samples that may result in different    . 

 

Figure 11.7: Convergence rate of nodes achieving phenomena awareness in a distributed 

implementation when messages has TTL 300 and 600 
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Next, we consider the convergence of the entire network achieving phenomena awareness 

in a distributed implementation. Figure 11.7 shows the rate of nodes achieving phenomena 

awareness under two different TTL values. From Figure 11.6 we conclude that a node needs 

at least 1000 samples to become aware of the sensed phenomena with an    of less than 2%. 

When the TTL is 300, at least 1200 messages need to be disseminated in the network, while 

when TTL is doubled then the required number of messages is less than 400. Note that the 

network considered has 7653 nodes. If the traditional way of uniform sampling is used for 

entire network to become aware of the phenomena, 1000 randomly selected nodes need to 

flood the network, which leads to at least 7653000 transmissions. Nevertheless, the proposed 

approach achieves a similar    map with at least 240000 transmissions, which provides at 

least 31.8% reduction in transmission cost. 

 

11.6  Conclusion 

A rigorous mathematical formulation of compressive sensing (CS) was presented. 

Recovery bounds: probability of failure, minimum number of samples needed, and 

measurement overhead due to sampling under a probability measure that is not necessarily an 

orthogonalization measure, were derived. Unlike the classical uniformly at random sampling, 

the model we proposed is capable of estimating recovery bounds for many pragmatic 

sampling schemes for phenomena recovery in a suitable transformed domain. These 

mathematical bounds provide insight into the performance under different sampling schemes 

in different transformed domains. Effectiveness of bounds was illustrated using sparse 

function recovery in Discrete Cosine domain under Random Walk (RW) based sampling. 

Proposed theoretical formulation predicts that functions with sparsity 2, 3, and 4 can be 
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reconstructed with 606, 1048, and 1458 minimum number of samples respectively out of a 

total of 7653 measurements, while simulations show the actual average samples required to 

be 635, 1450, and 1700, respectively, indicating a close relationship. 

Based on the theoretical foundation and moving beyond the traditional way of uniform 

sampling based CS for function recovery, we also illustrated how RW-based sampling can 

lead to phenomena awareness at different sensor locations, with minimal additional overhead. 

Central as well as distributed phenomena awareness was illustrated based on RW-based 

sampling of a large-scale distributed phenomenon, the temperature distribution over the State 

of Alabama. Performance bounds for CS-based phenomena discovery using a frame, an over-

complete basis, instead of an orthogonal basis and other practical sampling schemes that 

accurately captured by motion models are under investigation. 
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CHAPTER 12 

SUMMARY AND FUTURE WORK 

 

We envision future wireless senor networks as collections of large number of sensor 

nodes, which are capable of sensing, wirelessly communicating, and information processing, 

deployed over vast terrains or on complex structures for years--learning, adapting to, and 

exploring the physical world. Sensor networks that combine sensing and actuation will be a 

critical component of many emerging cyber physical and ubiquitous networking applications, 

including healthcare, navigation, rescue, intelligent transportation, social networking, and 

gaming. Many such networks will be deployed in inaccessible or large terrains; thus, the 

lifespan will be heavily dependent on efficient data fusion and dissemination algorithms. The 

algorithms and techniques developed for such networks must operate under the constraints of 

low memory, limited energy/power, and low computational capability.  

WSN “organization and structuring” commonly refers to developing a coordinate system, 

which contains the information required for data exchange, routing, node location 

identification, and boundary detection. Such coordinate systems may contain the information 

of directionality and connectivity, providing each node a virtual or an actual position. In 

large-scale networks, the only information that a node may contain upon deployment is its 

own identifier and neighbors’ identifiers. Target tracking, habitat monitoring, underground 

plume tracking, underwater sensor networks, military surveillance applications, and 
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healthcare applications are examples where networking, data fusion, and sensing algorithms 

can significantly benefit from the nodes having knowledge about their own coordinate and 

network structure. Currently available organization schemes can be divided into two main 

categories: physical information-based structuring and virtual information-based structuring. 

Geographic Coordinate System (GCS) is an example for the former and Virtual Coordinate 

Systems (VCS) and hierarchical addressing schemes such as clustering are examples for the 

latter. 

Geographic/Physical Coordinate System (GCS) is a commonly used coordinate system in 

WSN context. Developing GCS requires costly equipment such as Global Positioning 

System (GPS) or signal strength measurements, of which the latter is error-prone due to the 

measurement noises introduced by the medium. Received Signal Strength Indication (RSSI), 

radio hop count, time difference of arrival, and angle of arrival are few such error-prone 

measurements. Moreover, GPS is infeasible in some WSN applications such as in indoor, 

underwater, forest, and metropolitan sensor networks. Thus, alternative coordinate systems 

that are independent from physical coordinates are proposed. 

VCSs assign each node a virtual position, which captures the sense of relative position 

and/or connectivity of the actual network without the need for physical information. For 

many applications, especially those involved in data dissemination, what nodes actually need 

to be aware of is the relative position based on connectivity rather than the actual position. In 

fact, in the absence of anchors or erroneous information of actual anchor positions in GCS, 

nodes are oblivious to their real positions. Hence, it is not necessary to obtain costly actual 

coordinates, and a coordinate system that has relative information can provide an economical 
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alternative for WSN algorithms. Due to the above reasons, the concept of VCSs shows great 

promise as a structuring scheme in WSN applications.  

 

12.1 Research Contributions 

In this research, we developed several techniques and algorithms to overcome the 

limitations and disadvantages associated with traditional VCS-based approaches due to lack 

of directionality and physical layout information. In addition, we also address the problem of 

determining the number and the placement of anchors in a unified manner. The main 

contributions of this research can be summarized as: (a) novelty filtering and Singular Value 

Decomposition (SVD) based techniques for ‘good’ anchor identification and compressed 

representation of VCS, (b) a transformation to obtain Directional Virtual Coordinate System 

(DVCS) that restores the lost directionality in VCS and the applications of DVCSs, (c) 

Topology Preserving Map (TPM) generation techniques that produce network maps with 

important physical features such as physical voids and boundary information, without the 

need for geographic information, (d) localization-free routing and boundary-detection 

schemes, and (e) distributed self-learning algorithms for each node to infer the information of 

its position and the rest of the nodes’ relative positions in the network. Each of the above 

contributions is described next. 

The number of anchors and their placement play a crucial role in the performance of VCS-

based algorithms. Moreover, the length of the coordinate, local minima problem, and 

identical coordinate problem are directly correlated with the anchor placement. Properties 

and issues of VCSs are investigated, and then a novelty filtering-based technique to identify 

and quantify the importance of each anchor was proposed. This technique can be used to 
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select ‘good’ anchors from any underlying anchor selection scheme. The higher the size of a 

network, the larger the number of anchors required. Thus, the virtual address length of each 

node increases with network size. A VCS compression scheme based on SVD was proposed. 

Performance of data dissemination was not affected when using the proposed address 

compression technique.  

Virtual coordinate systems do not have the cardinal direction information of nodes. A 

transformation that regains the lost directionality in VCS was proposed. The novel coordinate 

system generated under this transformation is called Directional Virtual Coordinate System 

(DVCS). Vector representation and angular estimation among virtual directions radically 

changed the use of VCS in WNSs. With these directional properties, for the first time it is 

possible to consider deterministic algorithms for routing in the virtual domain. We illustrated 

the benefits and the use of DVCS using a constrained tree network as an example. 

A novel routing scheme called Directional Virtual Coordinate Routing (DVCR), which 

takes advantage of the Directional Virtual Coordinate domain, was proposed. DVCR 

significantly outperforms existing VCS routing schemes such as Convex Subspace Routing 

(CSR) and Logical Coordinate Routing (LCR), while achieving performance similar to the 

geographical routing scheme Greedy Perimeter Stateless Routing (GPSR) without the need 

for node location information. 

Extreme Node Search (ENS) selects an effective and ‘good’ set of anchors based on a 

directional ordinate derived using two initial random anchors. ENS achieves significant 

performance improvement of greedy ratio in greedy forwarding with a significantly less 

number of anchors compared to that of randomly placed anchors, even on the boundary. 
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Fascinatingly, with the proposed anchor selection, DVCR outperforms GPSR in spite of the 

use of node location information in the latter. 

Two schemes that are capable of extracting maps containing physical characteristics and 

topological features were developed. First scheme is based on SVD while the other is based 

on identifying near orthogonal directions in DVCS. Prior to this work, the details of 

networks’ physical boundaries, voids, shape, etc., were considered lost in VCSs. The most 

significant feature of TPM is preservation of topology/neighborhood. The derived TPMs, 

ideally, should be homeomorphic (topologically isomorphic) to the physical layout of the 

sensor network, i.e., between two topological spaces there has to be a continuous inverse 

function. Thus, given the absolute position of a subset of nodes, global localization is 

realizable based on a non-linear transformation. The derived maps are close to the above 

ideal situation. Hence, TPMs is a geographical information free, relative map generation 

scheme that is based on VCS. The generalized SVD-based TPM generation scheme for 3D 

networks produces topology maps even in situations where obtaining accurate physical 

information is impossible, due to signal interference and complexity of triangulation in 3D. 

Discovery of the TPM generation techniques that generate a map with important physical 

information embedded in it now provides the ability to develop algorithms without requiring 

physical information. Geo-Logical Routing (GLR) is a novel technique that brings the best of 

geographic domain and virtual domain to achieve higher routability at a lower cost. TPMs 

provide a better low-cost alternative for location information. Performance evaluation 

indicates that GLR significantly outperforms existing VC routing schemes: Convex Subspace 

Routing (CSR), Logical Coordinate Routing (LCR), and geographic scheme GPSR as well. 

Moreover, GLR achieves outstanding routing performance with lower path length compared 
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to that of LCR, CSR, and GPSR. Proposed GLR scheme provides a unified framework for 

localization free, low-cost, and efficient family of routing schemes. 

A novel method of identifying boundaries of sensor networks deployed on 2D and 3D 

surfaces was presented. VCS is a connectivity-based higher dimensional representation of the 

network where the network can have more than one embedding, making boundary 

identification challenging. TPM generated from VCS of a network is an identification of the 

correct embedding, which is the actual physical map, out of all the possible embeddings in 

the connectivity domain. The boundary detection scheme proposed based on 2D and 3D 

TPM is simple, energy-efficient, and computationally less intensive. Moreover, the proposed 

algorithm can be used with physical coordinates as well. The use of TPM-based boundary 

detection scheme for detecting dynamic event boundaries, such as those in plumes, in a 

distributive manner is also illustrated.  

A node aware of the sensed phenomena of the network is useful in network management 

and data dissemination. ‘Phenomena awareness’ is either the Base-Station (BS) or any node 

discovering the monitoring phenomena. Moving beyond traditional uniform sampling-based 

Compressive Sensing (CS) for function recovery, we take the first step towards forming 

mathematical foundation, acquiring phenomena awareness for large-scale WSNs. We derived 

function reconstruction failure probability and minimum number of samples needed for any 

pragmatic sampling scheme under any suitable basis, which so far has been limited to 

uniform sampling in the Fourier domain. The extra number of samples required to achieve 

the same performance as uniform sampling is also obtained. The distinguishable novelty of 

our work is the deviation from the traditional uniform sampling, which makes it feasible to 

implement phenomena discovery at individual nodes distributive manner eliminating the 
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constraints of the sampling scheme. The number of samples required, energy efficiency, and 

error in recovered phenomena show that random walk-based sampling is similarly effective 

as uniform sampling in CS recovery. This makes our proposed scheme a practical solution in 

applications where uniform sampling is less economical and infeasible. 

So far, we have described the developed algorithms that are capable of routing, structuring 

via topology map generation and data fusion, keeping the computations and communications 

to a minimum, and optimizing the energy consumption in order to expand the lifespan of the 

WSNs. We envision future sensor networks that evolve by long-term learning and inference, 

achieving over time increasing levels of network and sensed phenomena awareness, thus 

with time becoming smarter and better at what they do. We use the term network/topology 

awareness to indicate a node’s cognizance of the topology, shape, and boundary of the 

network and its place in that network. Algorithm and techniques such as TPM, boundary 

detection, and GLR described above provide the ability towards achieving such a vision. 

 A method for achieving network awareness at individual nodes via self-learning, with 

which wireless sensor nodes become cognizant of the network topology, network boundaries, 

and individual node positions in the network was proposed. Network awareness can 

significantly increase the flexibility, performance, and functionality of WSNs and facilitate 

intelligent distributed algorithms. We proposed a learning scheme, whereby the nodes, 

initially oblivious to their position in network as well as to network topology, gradually infer 

such information by listening to routine network traffic. The method works by individual 

nodes gleaning the hop distances to a set of nodes to build a VCS from which each node 

infers its own view of the network in the form of a TPM. Evaluation of this self-learning 

strategy demonstrates the convergence of each learning stage, the gradual development of 



263 

 

network-awareness at a node with both 2D and 3D WSNs, and consistency among TPMs 

generated via independent self-learning at individual nodes. Routing is used as an example to 

demonstrate how the network can progressively switch to more and more effective 

algorithms as network awareness develops within nodes. 

 

12.2 Future Work 

More recently, Cyber Physical Systems (CPS) have emerged as a promising direction to 

enrich human-to-human, human-to-object, and object-to-object interactions in the physical 

world as well as in the virtual world.  CPSs exploit the physical information collected by 

multiple diverse WSNs to bridge real and cyber spaces. CPS applications significantly 

benefit from the proposed economical and scalable algorithms for structuring, data 

dissemination, as well as achieving network awareness. However, several areas should be 

further investigated and improved. Several possible future extensions are listed next.  

In order to increase the accuracy and scalability of topology preserving maps, non-linear 

transformation techniques such as curvilinear component analysis can be investigated. 

Another possible solution is to partition the network, generate TPM of partitions, and stitch 

the map of the partitions together. The approach of network partition and stitching not only 

makes the TPM accurate but also it makes the TPM generation scheme scalable. Some 

applications require exact physical information. Thus, identifying a transformation to achieve 

actual physical information from TPM with the knowledge of partial physical information is 

significantly more efficient than existing localization schemes.  

VCS based strategies provide a promising approach for routing in 3D or higher 

dimensional networks such as Internet. Existing physical information-based routing schemes 
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fail in 3D. Moreover, acquiring physical information itself is a challenge due to high 

interference. In contrast, connectivity information-based VCS and TPM are more appropriate 

and effective for routing in higher dimensional spaces.  

In reality, the network connectivity is not static due to node failures, etc. Moreover, there 

can be a fraction of mobile nodes in the network or in some cases  all the nodes may be 

mobile. Hence, VCS should be adaptive to such environments to avoid regeneration of VCS. 

Furthermore, natural networks as Internet exhibit scale-free structure where VCS may require 

a large number of anchors to overcome identical coordinates. Thus existing VCS approaches 

should either be modified or adapt to the network type. 

Current TPM are generated using hop distance based VCS. One can investigate coordinate 

systems that have hop distances to anchors as well as physical properties that nodes sense as 

additional coordinates. This new matrix is called as similarity matrix rather than a coordinate 

system. TPM of this matrix will contain not only the connectivity information but also the 

physical phenomena that the network is observing. Such systems will be useful in social 

networking and P2P networks, where one can define the similarity of two nodes (users) 

based on their connectivity distance, activities/ groups/ hobbies, etc.  

Moving beyond, the existing sensor network applications, cyber physical systems, smart 

grids, and ubiquitous networks, require adaptive, self-evolving, as well as reliable algorithms. 

In essence, this research laid a firm foundation to use of VCS in WSN applications without 

the need for physical coordinates and to achieve a novel concept of network awareness.  
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APPENDIX A 

CSU BENCHMARK NETS AND THEIR VIRTUAL COORDINATE GENERATION 

     MATLAB codes for four example CSU benchmark networks (a) sparse grid (grid with missing 

nodes), (b) circle with three circular voids, (c) network in a building, and (d) spiral shaped network 

followed by VCS generation are given next. Physical coordinates of these networks can be found at 

http://www.cnrl.colostate.edu/Projects/VCS/. 

 

A.1 Sparse grid 

 
% INPUT: Grid size N,number of missing nodes , DEAD is the % symbol of a 

missing node.  

% OUTPUT: Network node arrangement and the flag of 1 if connected. 

 

function [Grid ConnectedFlag] = gridwithholes(DEAD,N,HOLES) 

K=0; 

for I= 1: HOLES 

    holesTemp=int8((N-3)*rand(1,2))+2; 

    if K==0 

        K=1; 

            holes(2*K)=holesTemp(1); 

            holes(2*K-1)=holesTemp(2); 

    else 

        SameholesFlag=1; 

        while (SameholesFlag) 

            Flag=0; 

            for index=1:K 

                if holes(2*index)==holesTemp(1) && holes(2*index-

1)==holesTemp(2)                     

                    Flag=1; 

                    break; 

                end 

            end 

             

            if Flag==1 

                holesTemp=int8((N-1)*rand(1,2))+1; 

            else 

                SameholesFlag=0; 

            end 

        end                          

            K=K+1; 

            holes(2*K)=holesTemp(1); 
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            holes(2*K-1)=holesTemp(2);         

    end 

     

end 

  

Grid=ones(N,N);% grid of N by N 

for i=1:2:2*HOLES-1 

    Grid(holes(i+1),holes(i))=DEAD;               

end 

     

if HOLES>0 

    ConnectedFlag=connectivity(N,HOLES,holes,Grid,DEAD); % check whether 

the resultant network is connected 

else 

    ConnectedFlag=1; 

    holes=0; 

end 

 

A.2 Circle with voids 
 
% INPUT: size of the network.  

% OUTPUT: Network node arrangement and the flag of 1 if connected. 

 

function [Grid ConnectedFlag]= circlewithholes(N) 

 

C=N/2;C1=10;C21=22;C22=15;C31=10;C32=20; %Center locations of the circles 

Grid=zeros(N,N); 

z=4;z1=N/2;z2=6; 

for x=1:N; 

 for y=1:N;  

     if (x-C)^2+(y-C)^2<=z1^2 &&(x-C1)^2+(y-C1)^2>z^2 && (x-C21)^2+(y-

C22)^2>z2^2 && (x-C31)^2+(y-C32)^2>z^2 

         Grid(x,y)=1; 

     end 

 end 

end  

ConnectedFlag=connectivity(N,HOLES,holes,Grid,DEAD); % check whether the 

resultant network is connected 

 

 

A.3 Building network 
 
% INPUT: Grid size N ,number of missing nodes , DEAD is the symbol used 

for a missing node.  

% OUTPUT: Network node arrangement and the flag of 1 if connected. 

 
function [Grid ConnectedFlag]= Building(DEAD,N,HOLES) 

 

z=1; 

if HOLES>0 

    for x=2:4 

        for y=2:10 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 
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        end 

    end 

    for x=6:10 

        for y=2:10 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

  

    for x=12:16 

        for y=12:20 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=18:20 

        for y=12:20 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=12:15 

        for y=2:5 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

        for x=17:20 

        for y=2:5 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

        end 

    for x=22:29 

        for y=2:5 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end             

    for x=12:17 

        for y=7:10 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

   for x=19:23 

        for y=7:10 

            holes(2*z)= y; 
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            holes(2*z-1)= x; 

            z=z+1; 

        end 

   end 

   for x=25:29 

        for y=7:10 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=22:29 

        for y=12:14 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=22:29 

        for y=20:22 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

     end 

    for x=22:29 

        for y=24:26 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=22:29 

        for y=28:29 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end   

    for x=2:6 

        for y=12:16 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=2:6 

        for y=18:23 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=2:6 

        for y=25:29 



280 

 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

   for x=8:10 

        for y=12:19 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

   end 

   for x=8:10 

        for y=21:24 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=8:10 

        for y=26:29 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end   

    for x=12:15 

        for y=22:29 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=17:20 

        for y=22:24 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

    for x=17:20 

        for y=26:29 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

     

    for x=7 

        for y=12:16 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 



281 

 

     

    for x=11 

        for y=7:10 

            holes(2*z)= y; 

            holes(2*z-1)= x; 

            z=z+1; 

        end 

    end 

end 

  

Grid=ones(N,N);% grid of N by N 

  

for i=1:2:2*HOLES-1 

    Grid(holes(i+1),holes(i))=DEAD;               

end 

    % connectivity check 

if HOLES>0 

    ConnectedFlag=connectivity(N,HOLES,holes,Grid,DEAD)  

else 

    ConnectedFlag=1; 

    holes=0; 

end 

 

A.4 Spiral network 
 
% INPUT: Grid size N  

% OUTPUT: Network node arrangement and the flag of 1 if connected. 

 
function [Grid ConnectedFlag]= spiral(N) 

 

t = linspace(0,4*pi,1000); 

Grid=zeros(N,N); %grid of N by N 

sh=N/2; 

for a=0:0.1:3 

 x = round((t+a).*cos(t))+sh; 

 y = round((t+a).*sin(t))+sh; 

 for i=1:length(x) 

    Grid(x(i),y(i))=1; 

 end 

end 

ConnectedFlag=connectivity(N,HOLES,holes,Grid,DEAD)  

 

A.5 VCS generation 
 
% INPUT: Adjacency matrix Net of N nodes. Anchor nodes are given by vector 

Anchor  

% OUTPUT: VCS  

 
function CC= VCS(Net,N,Anchor) 

 

CoordinateSet=zeros(N,N); 

Dummy=1000;% change the diagonal elements to a large value 

for i=1:N 

    CoordinateSet(i,i)=Dummy; 

end 
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for x=1:N 

    for y=1:N 

        if Net(x,y)==0 

            CoordinateSet(x,y)=Dummy; 

        end 

    end  

end 

 

flag=0;T=1; 

CoordinateSet(Anchor,Anchor)=0; 

index=Anchor; 

Stack(1)=index; 

n=1;p=1;k=1; 

PreIndex=Anchor; 

Lp=2;a=1;setFlag=0; 

PreIndex(1)=index; 

num=0; 

 

for j=1:N % colomns         

        for i=1:N % rows      

            if Net(i,index)==1 % ie there is a connection 

                if n>1 

                    for x=1:length(Array) 

                        if Array(x)==i 

                            setFlag=1; 

                            break; 

                        end 

                    end 

                    if setFlag ~= 1 

                        setFlag=0; 

                        Array(n)=i; 

                        n=n+1; 

                        num=num+1; 

                    else 

                        setFlag=0; 

                    end 

                elseif n==1 

                    Array(n)=i; 

                    n=n+1; 

                    num=num+1; 

                end 

                CoordinateSet(i,index)=CoordinateSet(index,PreIndex(a))+1;                 

            end 

        end 

        a=a+1; 

        PreIndex(Lp:Lp+num-1)=index; 

        Lp=Lp+num; 

        num=0; 

         

        if ~isempty(Array) && p <= length(Array) 

            while T==1 

                for q=1:length(Stack) 

                    if Array(p)~=Stack(q) 

                        flag=1; 
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                        T=0; 

                        break; 

                    elseif Array(p)==Stack(q)  

                        a=a+1; 

                        p=p+1; 

                        break; 

                    end 

                end 

            if flag == 1 

                T=0; 

            end 

            end 

            if flag == 1 

                index=Array(p); 

                Stack(length(Stack)+1)=Array(p); 

                p=p+1; 

                T=1; 

                flag=0; 

            end 

        else 

            clear Array 

            n=1;            

        end                 

end 

CC=min(CoordinateSet'); % Return VCS         
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APPENDIX B 

SIMULATOR FOR TOPOLOGY MAP GENERATION, DIRECTIONAL VIRTUAL 

COORDINATE GENERATION AND ROUTING ALGORITHMS 

     MATLAB codes for topological coordinate generation proposed in Chapter 5 (B.1), Directional 

Virtual Coordinate Generation discussed in Chapter 4 (B.2), Directional Virtual Coordinate Routing 

discussed in Chapter 4(DVCR, B.3) and Geo-Logical Routing proposed in Chapter 8 (GLR, B.4) are 

given next. 

 

B.1 Topological coordinates generation 

 
% INPUT - virtual coordinate system  

% OUTPUT – topological coordinates 

[U,S,V]=svd(VCS); 
PC=U*S; 

Psvd=[PC(2,:), PC(3,:)]; 
 

B.2 Directional Virtual Coordinates 
 
% INPUT-Virtual coordinate system 

% OUTPUT - Directional virtual coordinate system 

count=0; 
for i=1:Anchor_NO-1 

for j=i+1:Anchor_NO 
            count=count+1; 
            AGrid(count,:)=NewAnchors([VCS(i,:); VCS(j,:)]); 
            AGrid(count,:)= AGrid(count,:)./abs(VCS(i,AnchorArray(i))-

VCS(i,AnchorArray(j)))/2; 
end 

end 

 
function A= NewAnchors(Grid) 
for i=1:max(size(Grid)) 
    AplusB(i)=Grid(1,i)+Grid(2,i); 
    AminusB(i)=Grid(1,i)-Grid(2,i); 
    A(i)=AplusB(i)*AminusB(i); 
end 
 

B.3 Directional Virtual Coordinate Routing - DVCR 
 
% INPUT - DVCS, source, destination 
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% OUTPUT- successfully routed or not and path length 

if dest_reached==0 % destination not reached 

    indx=1; 

    for x=1:N 

        if Net(x,currentNode)== 1 && PrevNodeArray(currentNode)~=x  && 

PrevFWDNodeArray(currentNode)~=x  

            neighbors_Dest(indx)=Grid_Destanse(x); 

            Array(indx)=x;%store the index of the node 

            indx=indx+1; 

        end 

    end 

    if indx==1 

        i=0; 

        for xneigh=1:N 

            if Net(xneigh,currentNode)== 1 % 

                i=i+1; 

                neighCoord1(i)=Grid(1,xneigh);% neighbors coordinate array 

                diffArray1(i)=neighCoord1(i)-Grid(1,currentNode); 

                neighCoord2(i)=Grid(2,xneigh);% neighbors coordinate array 

                diffArray2(i)=neighCoord2(i)-Grid(2,currentNode); 

                nei(i)=xneigh; 

            end 

        end 

  

        a1=min(abs(diffArray1)); 

        b1=max(abs(diffArray1)); 

        a2=max(abs(diffArray2)); 

        b2=min(abs(diffArray2)); 

        k=1; 

        for j=1:length(nei) 

            L1=abs(Grid(1,Dest)-Grid(1,nei(j))); 

            L2=abs(Grid(2,Dest)-Grid(2,nei(j))); 

            h1(k) =(L1*b2 - L2*b1)/(a1*b2 - a2*b1); 

            h2(k) =-(L1*a2 - L2*a1)/(a1*b2 - a2*b1); 

            k=k+1; 

        end 

  

        [~,ID]=min(abs(h1)+abs(h2)); 

        PrevFWDNodeArray(currentNode)=nei(ID); 

        PrevNodeArray(nei(ID))=currentNode; 

        currentNode=nei(ID); 

    else 

        [value1 index1]=min(neighbors_Dest);% get the minimum Distanced 

neighbor 

        [value2 index2]=max(neighbors_Dest);% get the maximum Distanced 

neighbor  

        terminator= Grid_Destanse(Dest); 

  

  

        if (value1-terminator)==0 

            %check whether neighbor is the destination 

           a=1; 

  

            for c=1:length(neighbors_Dest)                                 

                if value1==neighbors_Dest(c) && c==Dest                                   
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                    dest_reached=1;                               

                    break; 

                end 

            end 

            if dest_reached==0 

                i=0; 

                for xneigh=1:N 

                    if Net(xneigh,currentNode)== 1  % 

                        i=i+1; 

                        neighCoord1(i)=Grid(1,xneigh);% neighbors 

coordinate array 

                        diffArray1(i)=neighCoord1(i)-Grid(1,currentNode); 

                        neighCoord2(i)=Grid(2,xneigh);% neighbors 

coordinate array 

                        diffArray2(i)=neighCoord2(i)-Grid(2,currentNode); 

                        nei(i)=xneigh; 

                    end 

                end 

  

                a1=min(abs(diffArray1)); 

                b1=max(abs(diffArray1)); 

  

                a2=max(abs(diffArray2)); 

                b2=min(abs(diffArray2)); 

                k=1; 

                for j=1:length(nei) 

                    L1=abs(Grid(1,Dest)-Grid(1,nei(j))); 

                    L2=abs(Grid(2,Dest)-Grid(2,nei(j))); 

                    h1(k) =(L1*b2 - L2*b1)/(a1*b2 - a2*b1); 

                    h2(k) =-(L1*a2 - L2*a1)/(a1*b2 - a2*b1); 

                    k=k+1; 

                end 

  

                [~,ID]=min(abs(h1)+abs(h2)); 

                PrevFWDNodeArray(currentNode)=nei(ID); 

                PrevNodeArray(nei(ID))=currentNode; 

                currentNode=nei(ID); 

  

            else 

                currentNode=Dest; 

                if NoOfHops>TTL 

                    success=success+1; 

                end 

            end 

  

            NoOfHops=NoOfHops+1; 

        elseif value1<=value2 %compare min Distance of neighbor with 

current Destance 

            DestCurrent=Grid_Destanse(currentNode); 

  

            if value1<= DestCurrent % if there exist a neighbor with lower 

Destance 

  

                a=1; 
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                for c=1:length(neighbors_Dest)                                     

                    if value1==neighbors_Dest(c)                                         

                        pool_nodes(a)=Array(c); 

                        a=a+1; 

                    end 

                end 

  

                II=ceil(length(pool_nodes)*rand(1)); 

                min_neighbors=pool_nodes(II); 

                PrevFWDNodeArray(currentNode)=min_neighbors; 

                PrevNodeArray(min_neighbors)=currentNode;      

                currentNode=min_neighbors; 

                NoOfHops=NoOfHops+1; 

            else %if there is no neighbor with lower Destance 

                i=0; 

                for xneigh=1:N 

                    if Net(xneigh,currentNode)== 1 && 

PrevNodeArray(currentNode)~=xneigh  && 

PrevFWDNodeArray(currentNode)~=xneigh % 

                        i=i+1; 

                        neighCoord1(i)=Grid(1,xneigh);% neighbors 

coordinate array 

                        diffArray1(i)=neighCoord1(i)-Grid(1,currentNode); 

                        neighCoord2(i)=Grid(2,xneigh);% neighbors 

coordinate array 

                        diffArray2(i)=neighCoord2(i)-Grid(2,currentNode); 

                        nei(i)=xneigh; 

                    end 

                end 

  

                a1=min(abs(diffArray1)); 

                b1=max(abs(diffArray1)); 

  

                a2=max(abs(diffArray2)); 

                b2=min(abs(diffArray2)); 

                k=1; 

                for j=1:length(nei) 

                    L1=abs(Grid(1,Dest)-Grid(1,nei(j))); 

                    L2=abs(Grid(2,Dest)-Grid(2,nei(j))); 

                    h1(k) =(L1*b2 - L2*b1)/(a1*b2 - a2*b1); 

                    h2(k) =-(L1*a2 - L2*a1)/(a1*b2 - a2*b1); 

                    k=k+1; 

                end 

  

                [~,ID]=min(abs(h1)+abs(h2)); 

                PrevFWDNodeArray(currentNode)=nei(ID); 

                PrevNodeArray(nei(ID))=currentNode; 

                currentNode=nei(ID); 

                NoOfHops=NoOfHops+1; 

            end   

        elseif value1>value2 

            i=0; 

            for xneigh=1:N 

                if Net(xneigh,currentNode)== 1 % 

                    i=i+1; 
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                    neighCoord1(i)=Grid(1,xneigh);% neighbors coordinate 

array 

                    diffArray1(i)=neighCoord1(i)-Grid(1,currentNode); 

                    neighCoord2(i)=Grid(2,xneigh);% neighbors coordinate 

array 

                    diffArray2(i)=neighCoord2(i)-Grid(2,currentNode); 

                    nei(i)=xneigh; 

                end 

            end 

  

            a1=min(abs(diffArray1)); 

            b1=max(abs(diffArray1)); 

  

            a2=max(abs(diffArray2)); 

            b2=min(abs(diffArray2)); 

            k=1; 

            for j=1:length(nei) 

                L1=abs(Grid(1,Dest)-Grid(1,nei(j))); 

                L2=abs(Grid(2,Dest)-Grid(2,nei(j))); 

                h1(k) =(L1*b2 - L2*b1)/(a1*b2 - a2*b1); 

                h2(k) =-(L1*a2 - L2*a1)/(a1*b2 - a2*b1); 

                k=k+1; 

            end 

  

            [~,ID]=min(abs(h1)+abs(h2)); 

            PrevFWDNodeArray(currentNode)=nei(ID); 

            PrevNodeArray(nei(ID))=currentNode; 

            currentNode=nei(ID); 

            NoOfHops=NoOfHops+1; 

        end   

    end 

  

clear neighbors_Dest;clear Array;clear pool_nodes;clear neighCoord1;clear 

neighCoord2;clear diffArray1;clear diffArray2;clear h1;clear h2;clear nei 

  

else % destination reached 

  

    success=success+1; 

    minimaFlag=1; 

    break; 

end 

 

B.4 Geo-Logical Routing - GLR 
 
%input- VCS, TCS, source, destination, Output- successfully routed or not 

and path length 

if dest_reached==0 % destination not reached                    

    indx=1;Noneighborflag=1; 

    for x=1:N 

        if Net(x,currentNode)== 1 && PrevNodeArray(currentNode)~=x  && 

PrevFWDNodeArray(currentNode)~=x % %  

            if Grid_distanse(x)>=0 

                neighbors_dist(indx)=Grid_distanse(x); 

                Array(indx)=x;%store the index of the node 

                indx=indx+1; 
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                Noneighborflag=0; 

            end 

        end 

    end 

  

    if Noneighborflag==1             

        % send the packet to anchor 

        [currentNode 

Hops]=GreedyFwdBacktracking(N,currentNode,Ai,Net,DistAnchor); 

        NoOfHops=NoOfHops+Hops; 

        Grid_distanse=Grid_distanseVC; 

    else 

  

    neighbors_dist; 

    [value1 index1]=min(neighbors_dist);% get the minimum distanced 

neighbor 

    [value2 index2]=max(neighbors_dist);% get the maximum distanced 

neighbor  

    terminator= Grid_distanse(Dest); 

  

    if (value1-terminator)==0 

        %check whether neighbour is the destination 

        for x=1:N 

            if Net(x,Array(index1))== 1 && x==Dest %sum(abs(Grid(:,x)-

Grid(:,Dest)))==0 

                dest_reached=1;%destination reached                        

            end 

        end 

        if Array(index1)==Dest %sum(abs(Grid(:,x)-Grid(:,Dest)))==0 

                dest_reached=1;%destination reached                         

        end 

  

        for c=1:length(neighbors_dist)                                 

            if value1==neighbors_dist(c) && c==Dest %sum(abs(Grid(:,c)-

Grid(:,Dest)))==0                                   

                dest_reached=1;                               

                break; 

            end 

        end 

        if dest_reached==0 

            PrevNodeArray=zeros(size(Grid_distanse1)); 

            PrevFWDNodeArray=zeros(size(Grid_distanse1)); 

            switch BackTrack 

                case 0 

                    Grid_distanse=Grid_distanseVC;                                             

                    BackTrack=1;                                         

                case 1 

                    Grid_distanse=Grid_distanse1;                                            

                        BackTrack=2; 

                case 2 

                    a=1;                                 

                    for c=1:length(neighbors_dist)                                     

                        if value1==neighbors_dist(c)                                         

                            pool_nodes(a)=Array(c); 

                            a=a+1; 
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                        end 

                    end 

  

                    II=ceil(length(pool_nodes)*rand(1)); 

                    min_neighbors=pool_nodes(II); 

                    PrevFWDNodeArray(currentNode)=min_neighbors; 

                    PrevNodeArray(min_neighbors)=currentNode;    

                    currentNode=min_neighbors; 

                    NoOfHops=NoOfHops+1; 

                    BackTrack=3; 

                case 3 

                    [currentNode 

Hops]=GreedyFwdBacktracking(N,currentNode,Ai,Net,DistAnchor); 

                    NoOfHops=NoOfHops+Hops; 

                    Grid_distanse=Grid_distanseVC; 

                    BackTrack=0; 

            end 

        else 

            currentNode=Dest; 

            if NoOfHops>TTL 

                success=success+1; 

            end 

            NoOfHops=NoOfHops+1; 

        en 

    elseif value1<=value2 %compare min distance of neighbor with current 

distance 

        DistCurrent=Grid_distanse(currentNode); 

        if value1<= DistCurrent % if there exist a neighbor with lower 

distance                                 

            a=1;                                 

            for c=1:length(neighbors_dist)                                     

                if value1==neighbors_dist(c)                                         

                    pool_nodes(a)=Array(c); 

                    a=a+1; 

                end 

            end 

            II=ceil(length(pool_nodes)*rand(1)); 

            min_neighbors=pool_nodes(II); 

            PrevFWDNodeArray(currentNode)=min_neighbors; 

            PrevNodeArray(min_neighbors)=currentNode;    

            currentNode=min_neighbors; 

            DistCurrent=Grid_distanse(currentNode); 

            NoOfHops=NoOfHops+1; 

        else %if there is no neighbor with lower distance 

            PrevNodeArray=zeros(size(Grid_distanse1)); 

            PrevFWDNodeArray=zeros(size(Grid_distanse1)); 

            switch BackTrack 

                case 0 

                    Grid_distanse=Grid_distanseVC;                                             

                    BackTrack=1;                                         

                case 1 

                    Grid_distanse=Grid_distanse1;                                            

                        BackTrack=2; 

                case 2 

                    a=1;                                 
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                    for c=1:length(neighbors_dist)                                     

                        if value1==neighbors_dist(c)                                         

                            pool_nodes(a)=Array(c); 

                            a=a+1; 

                        end 

                    end 

                    II=ceil(length(pool_nodes)*rand(1)); 

                    min_neighbors=pool_nodes(II); 

                    PrevFWDNodeArray(currentNode)=min_neighbors; 

                    PrevNodeArray(min_neighbors)=currentNode;    

                    currentNode=min_neighbors; 

                    NoOfHops=NoOfHops+1; 

                    BackTrack=3; 

                case 3 

                    [currentNode 

Hops]=GreedyFwdBacktracking(N,currentNode,Ai,Net,DistAnchor); 

                    NoOfHops=NoOfHops+Hops; 

                    Grid_distanse=Grid_distanseVC; 

                    BackTrack=0; 

            end 

        end   

    elseif value1>value2 

        PrevNodeArray=zeros(size(Grid_distanse1)); 

        PrevFWDNodeArray=zeros(size(Grid_distanse1)); 

            switch BackTrack 

                case 0 

                    Grid_distanse=Grid_distanseVC;                                             

                    BackTrack=1;                                         

                case 1 

                    Grid_distanse=Grid_distanse1;                                            

                        BackTrack=2; 

                case 2 

                    a=1;                                 

                    for c=1:length(neighbors_dist)                                     

                        if value1==neighbors_dist(c)                                         

                            pool_nodes(a)=Array(c); 

                            a=a+1; 

                        end 

                    end 

  

                    II=ceil(length(pool_nodes)*rand(1)); 

                    min_neighbors=pool_nodes(II); 

                    PrevFWDNodeArray(currentNode)=min_neighbors; 

                    PrevNodeArray(min_neighbors)=currentNode;    

                    currentNode=min_neighbors; 

                    NoOfHops=NoOfHops+1; 

                    BackTrack=3; 

                case 3 

                    [currentNode 

Hops]=GreedyFwdBacktracking(N,currentNode,Ai,Net,DistAnchor); 

                    NoOfHops=NoOfHops+Hops; 

                    Grid_distanse=Grid_distanseVC; 

                    BackTrack=0; 

            end 

    end  
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    end 

  

  clear neighbors_dist;clear Array;clear pool_nodes;clear 

neighbors_XYdist; 

  

else % destination reached 

  

    success=success+1; 

    minimaFlag=1; 

    break; 

end 


