A Parallel Algorithm for Singular Value Decomposition
as Applied to Failure Tolerant Manipulators

Tracy D. Braun, Anthony A. Maciejewski, and Howard Jay Siegel

Parallel Processing Laboratory
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285 USA

{tdbraun, maciejew, hj}@ecn.purdue.edu

Abstract

The system of equations that govern kinematically
redundant manipulators 1s commonly solved by finding
the singular value decomposition (SVD) of the corre-
sponding Jacobian matriz. This can require consider-
able amounts of time to compute, thus a parallel SVD
algorithm minimizing execution time is sought. The
approach employed here lends itself to parallelization by
using Guwens rotations and information from previous
decompositions. The key contributions of this research
wnclude the presentation and implementation of a new
variation of a parallel SVD algorithm to compute the
SVD for a set of post-fault Jacobians. Results from im-
plementation of the algorithm on a MasPar MP-1 and
an IBM SP2 are provided. Specific issues considered for
each tmplementation include how data is mapped to the
processing elements, the effect that increasing the num-
ber of processing elements has on execution time, and
the type of parallel architecture used.

1. Introduction

The singular value decomposition (SVD) of a ma-
trix is a fundamental matrix decomposition that pro-
vides information useful for a wide range of applica-
tions (e.g., feature extraction, data reduction, and low
rank approximation [11]). In many of these applica-
tions, rapid computation of the SVD is necessary, e.g.,
when the SVD is used for solving the systems of equa-
tions for real-time motion control of robotic manipula-
tors. Consider the kinematics of a manipulator with n

This research was supported in part by Sandia National Labora-
tories under contract number AL-3001 and by the DARPA/ITO
Quorum Program under NPS subcontract numbers N62271-
97-M-0900, N62271-98-M-0217, and N62271-98-M-0448. T. D.
Braun was also supported by a Purdue Benjamin Meisner Fel-
lowship. The MasPar MP-1 was provided and supported in part
by the National Science Foundation under grant number CDA-
9015696.

Joints operating in m dimensions. Let & € JR™ specify
the manipulator’s end-effector velocity, § € IR™ denote
the joint velocities of the manipulator, and J € IR™*"
be the manipulator Jacobian matrix. The kinemat-
ics of the manipulator can then be represented by the
equation £ = J #. The ability to compute this SVD
in real time would allow for singularity avoidance and
evaluation of dexterity.

In general, techniques for computing the SVD of an
arbitrary matrix involve iterating an unknown number
of times until a data-dependent convergence criterion
is met. Therefore, the number of operations required is
not known a priori and guaranteeing real-time compu-
tation of the SVD is difficult. However, for this applica-
tion the current Jacobian matrix, J(¢), can be regarded
as a perturbation of the previous Jacobian matrix, i.e.,
J(t) = J(t—At) + AJ(t). Knowledge of this previous
state can be used to decrease computational complex-
ity during calculation of the current SVD [8, 9].

This article defines a new approximation technique
based on research performed in [13] for real-time anal-
ysis of the SVD for single locked-joint failures of a
manipulator. The performance of this approximation
technique is analyzed on two different parallel architec-
tures: an SIMD MasPar MP-1 [1] and an MIMD IBM
SP2 [16]. Specific issues considered for each implemen-
tation include how data is mapped to the processing
elements, the effect that increasing the number of pro-
cessing elements has on execution time, and the type
of parallel architecture used. Case studies, such as the
one presented here, are a necessary step in developing
software tools for mapping an application task onto a
single parallel machine, and for mapping an application
task onto a heterogeneous suite of parallel machines,
where different types of machines are present [10].

The remainder of this article 1s arranged as follows.
The SVD procedure from [8] is reviewed in Section 2.
Section 3 describes the new SVD approximation tech-
nique. Section 4 examines different mappings of this

technique onto parallel machines. The results summa-
rized in Section b are obtained from the MasPar MP-1
implementations. The results from the IBM SP2 imple-
mentations are discussed in Section 6. Finally, Section
7 reviews the approximation technique and the appli-
cation study results.

2. Background Information

For a matrix J € R™*" let U € IR™*™ de-
note an orthogonal matrix of output singular vectors,
V € IR"*" represent an orthogonal matrix of input sin-
gular vectors, and X be a nonnegative diagonal matrix.
Then, the SVD of J is defined as the matrix factoriza-
tion J = U X VT, where the diagonal elements of ¥,
referred to as the singular values and denoted g, are
typically ordered so that o1 > o2 > ... > o, > 0.
It is assumed for the remainder of this paper that
m < n.

The most common technique for computing the SVD
of a matrix is the Golub-Reinsch algorithm [6]. How-
ever, when attempting to parallelize this method, there
are two disadvantages. First, it is not straightforward
to incorporate information from the SVD of a per-
turbed matrix to update the SVD. Secondly, the al-
gorithm is relatively sequential in nature.

While there have been several parallel SVD algo-
rithms written and implemented on various machine
architectures [3, 5, 7, 14], they make no assumptions
about the form of the matrix being decomposed. For
this work, the fact that the current Jacobian matrix is
a perturbation of the previous Jacobian matrix can be
exploited by applying Givens rotations [6] to ultimately
orthogonalize the columns of the Jacobian [8].

In particular, consider an orthogonal matrix V', gen-
erated by successive Givens rotations, that results in
JV = B, where B € IR™*", and the columns of B are
orthogonal. The matrix B can be decomposed into two
matrices, one orthogonal and one diagonal. Decompos-
ing B in this way, into an orthonormal matrix (U) and
a diagonal matrix (X) results in B = UX. This is ac-
complished by letting the columns of U, u;, be equal
to the normalized versions of the columns of B, b;, and
then defining the diagonal elements of X to be equal to
the norm of the columns of B, i.e.,

The result is the SVD of J, as given above.

The critical step in the above procedure is deter-
mining the orthogonal matrix V that will orthogonal-
ize the columns of J. This V matrix is constructed
as a product of Givens rotations, each of which is de-
signed to orthogonalize two columns. Consider the

t-th and j-th columns of an arbitrary matrix A. Post-
multiplication by a Givens rotation results in two new
columns, a} and af, given by

a; = a; cos(¢) + a; sin(¢), a = aj cos(¢) — a;sin(¢)(2)

The constraint that these columns be orthogonal re-
sults in cos(¢) and sin(¢) terms that are calculated
using formulas in [12]. These formulas are based on
the following quantities p, ¢, and ¢:

p= aZ»Taj, qg=ala; — a]Taj, and ¢ = /4p? + ¢%2. (3)

For the case when ¢ > 0,

cos(¢) = V(¢ +4q)/(2¢), sin(¢) =p/(c-cos(¢)) (4)

and when ¢ < 0,

sin(¢) = sgn(p)y/(c—q)/(2c)
cos(¢) = p/(c-sin(¢)) (5)
where sgn(p) = 1 if p > 0, and sgn(p) = —1 if

p < 0. The two sets of formulas are given so that ill-
conditioned equations resulting from the subtraction of
nearly equal numbers can always be avoided.

The preceding discussion describes a single Givens
rotation that will orthogonalize two columns of a given
matrix. The single Givens rotation to orthogonalize
columns ¢ and j is denoted QZ For a matrix with

n columns, n(n — 1)/2 I'OtatiOI]lS are required to or-
thogonalize each possible pair of columns. This set of
n(n—1)/2 rotations is referred to as a sweep [6]. Mul-
tiple sweeps are generally required to obtain an orthog-
onal matrix because subsequent rotations may destroy
the orthogonality produced by previous rotations. The
V' matrix can therefore be computed as the series of

sweeps such that V' = H#sweeps (H?:_f H?:i+1 Q”)

The disadvantage to this approach is the fact that
the number of sweeps required to orthogonalize the
columns of J is usually not known beforehand. How-
ever, this problem can be circumvented by considering
the current Jacobian matrix to be a perturbation of the
previous Jacobian, i.e., J(t) = J(t — At) + AJ(t).
Using this information, it was shown that a good ap-
proximation for the current SVD could be obtained
from the previous SVD information in a single sweep

if AJ is small [8]. That is, using

B(t) ~ J() x V(L — Al) (6)

and applying one sweep of Givens rotations, the current
SVD can be found. Therefore, in this work, V' is calcu-

lated using V(t) = V(t — At) x (H?;f [Qij) .

Thus, the previous V matrix is updated using only a
single sweep. Because it is known a priori that only
one sweep of rotations will be performed, the algorithm
does not have to iterate until convergence, and the
computational complexity of the algorithm is greatly
reduced.

3. Algorithm Descriptions

Jacobians of size m = 6 and n = 7 were chosen be-
cause they represent the minimum size for a redundant
manipulator in three dimensions and manipulators of
this size are commercially available. However, the al-
gorithms presented are completely general and can be
used for arbitrary values of m and n.

The goal of this study is not only to find the
SVD of 6 x 7 Jacobians, but also to find the SVD
of these Jacobians after a single joint fault has oc-
curred in the manipulator. It is assumed that this
single joint fault can be detected by the manipula-
tor and the joint locked into position. Therefore, the
Jacobian for the post-fault manipulator, /J, becomes
IJ = 1[d1ja - js-104s41 -+ jn |, where joint f has
failed and the column j¢ is replaced with j; = 0. The
information from the post-fault Jacobians can then be
used in several ways, including trajectory planning for
maintaining maximum failure tolerance [13].

The approximation technique described below for
finding the SVD of these post-fault Jacobians was im-
plemented on two different parallel machines, the Mas-
Par MP-1 and the IBM SP2. The use of a parallel
implementation can be justified by the following rea-
sons. (1) This analysis extends to larger arms and to
multiple arm systems. (2) This work can be extended
to combinations of multiple joint failures. (3) Some
systems might require real-time control and recovery
capabilities where large amounts of information would
be continually computed and stored.

Figure 1 shows the first algorithm, the basic single
sweep approximation [17]. In step 1, the previous V
matrix and the current J matrix are used to calculate
a good initial estimate for the current B matrix. It is
assumed in step 2 that the use of the previous decom-
position information allows the algorithm to converge
in a single sweep. Step 3 then provides the current
singular values through straightforward computations.

Notice that if B = UX is substituted into (6), the
algorithm in Figure 1 can be represented by the equa-
tion

J@) V(i —At) = U(t) Z(t). (7)

The PTPF, previous time post-fault, approximation

technique assumes that the decomposition information

available from the previous time period includes post-
fault matrices. That is, to compute the current post-
fault singular values, /%(t), for the current post-fault
Jacobian, 7 J(t), the previous post-fault matrix, 7V (¢ —
At), is used in (7). Thus, the PTPF approximation
technique can be represented by the equation

g vie—Aan ~ Tuw) @) . (8)

Figure 2 shows the modifications required to the
algorithm from Figure 1 to compute the PTPF ap-
proximation. Using this notation, f = 0 represents
the calculation of the pre-fault SVD, i.e. the SVD
for the Jacobian with no columns zeroed out, and
f=1,...,nrepresent the n post-fault Jacobians with
column 1,...,n zeroed out, respectively. Given that
computing J(t) is simply replacing j; with jz = 0,
and the assumption that / V(¢ — At) is available from
the previous time period, each iteration of the for all
f loop is independent of previous iterations. Thus, on
a parallel machine with enough processors, the entire
algorithm could be performed concurrently where each
processor would only have to perform the (shorter) al-
gorithm from Figure 1.

The disadvantage to the PTPF technique is the time
dependency. If the time interval At is increased be-
tween decompositions, the performance of the PTPF
approximation deteriorates. If At is very large it may
be preferable to use V(¢) as an approximation for
FV(t). The trade-off between these two approxima-
tions is examined in [2].

4. Parallel Mappings Considered

Parallel architectures generally consist of several
processing elements (PEs). A PE is a combination of
a processor and a memory module, allowing the pro-
cessor fast access to the local memory. This section
presents methods for efficiently distributing the data
and computations of the single sweep SVD algorithm
among the PEs of a parallel architecture.

For the remainder of this paper, it may be assumed
that n = 8. This 1s accomplished by appending a
column of zeros to the Jacobian matrix, and will not
change the resulting singular values or increase execu-
tion time (because of symmetry and concurrent opera-
tions).

The PTPF algorithm is based on the single sweep
SVD algorithm from Figure 1. Therefore, this section
focuses on methods to efficiently implement that algo-
rithm on a parallel architecture, with the goal of de-
creasing overall execution time. Specifically, three data
mapping techniques are summarized: 1CPP, 2CPP,
and column segmentation (details in [2]).

One column per PE (1CPP). From the algo-
rithm in Figure 1, notice that no inter-PE communica-
tion is required in step 1 if each PE has one column of
V', a copy of the entire Jacobian matrix, and one col-
umn of B. In step 3, single-column operations can also
be performed simultaneously on n PEs. The columns
of U and the singular values of ¥ are computed from
the corresponding columns of B. Again, no inter-PE
communications are required.

Step 2, however, presents a disadvantage for this one
column per PE (1CPP) distribution. Let the parallel
execution of a Givens rotation on all n/2 column pairs
by the PEs be defined as a rotation step. Then, a min-
imum of n — 1 rotation steps must be performed to
generate all n(n — 1)/2 possible column pairings. The
1CPP approach used here performed inter-PE commu-
nications for two data items during each rotation step
(step 2): one to exchange columns to form a new col-
umn pair and compute p, and another to exchange a]T a;
to calculate ¢. The 1CPP communication pattern used
formed all possible column pairings using only n — 1
column transfers [17].

Two column per PE (2CPP). A two column per
PE (2CPP) approach that distributes pairs of columns
of V and B to n/2 PEs was also implemented. This
2CPP approach reduces the frequency and complexity
of the inter-PE communications. For the 2CPP ap-
proach, step 1 and step 3 are performed concurrently
without any inter-PE communications, similar to the
1CPP approach.

Using the 2CPP approach, the first rotation step
of step 2 can also be performed without any inter-PE
communications. In contrast to the ICPP method, the
2CPP method only requires one inter-PE communica-
tion in between each rotation step so that each PE can
obtain a new column pair for orthogonalization. Thus,
the n — 1 rotation steps of step 2 can be performed
with only n — 2 inter-PE communications, where each
communication 1s a new column b;.

Although it is obvious that step 1 and step 3 of the
single sweep SVD algorithm will take twice as long to
compute using the 2CPP distribution versus the 1CPP
distribution, the 2CPP implementation does not re-
quire twice as much total time to execute. The highest
percentage of the total execution time for the single
sweep SVD algorithm is spent performing step 2, where
2CPP has the advantage of fewer communications. The
2CPP technique implemented is based on a procedure
from [17]. Different 2CPP procedures can be found in
[5, 9, 14].

Column segmentation. A goal of this study is to
extract as much parallelism as possible from both the
algorithms and the target machines to reduce execu-

tion time. The technique described here divides each
column vector of the B and V matrices into r segments,
where 7 1s a power of two. This variable r represents
the column segmentation of the data (and operations)
among PEs and increases the total number of PEs used
by a factor of ». Values of » € {1, 2, 4, 8} were imple-
mented. (Some column segments will therefore contain
zeros as padding because m = 6 is not a power of two.
This does not hinder performance because all the op-
erations performed for the r = 8 case would still be
required if r = 6.)

This segmentation of the column data does not
interfere with the inter-PE column transfers for the
1CPP and 2CPP methods. Column transfers simply
take place between PEs containing the same segment
number. Inter-PE communication also occurs among
PEs containing different segments of the same column.
More details concerning the implementation of column
segmentation are in [2].

5. SIMD Architecture Experiments

This section presents the parallel implementations
of the PTPF algorithm on an SIMD (single instruction
stream, multiple data stream) architecture. The SIMD
machine used in this study was a MasPar MP-1 system
[1] with 16,384 PEs located at Purdue University.

The MP-1 provides two different high-speed PE
interconnection networks, the X-Net and the global
router. The X-Net connects a PE to its eight nearest
neighbors and provides fast communications for PEs
in close proximity. The global router is a multistage
interconnection network that connects clusters of PEs

and 1s faster for communications between PEs that are
further apart.

There are four different implementations of the
PTPF algorithm for the MP-1, based on two differ-
ent design options: data distribution (1CPP or 2CPP)
and interconnection network selection (X-Net or global
router). Fach implementation also utilized column seg-
mentation for r € {1, 2, 4, 8}.

To take advantage of as much parallelism as possible
in the global router implementations, only one PE per
global router cluster was used to reduce contention. In
contrast, implementations using the X-Net selected a
collection of PEs that were all adjacent, to keep inter-
PE distances short and inter-PE communications fast.

For step 1, each PE contains the entire J matrix,
and only a segment (for r > 1) of each column of V, so
matrix multiplies are performed as concurrent vector—
vector multiplies. This creates an m x 1 vector of par-
tial sums on each PE which is then combined to gen-
erate the desired result. A recursive doubling scheme

could be used for adding these partial sums together.
However, a slightly more efficient method for this case
(where PEs only transfer and operate on column seg-
ments) called segment combining [2] was used.

Step 2 performs one sweep of rotations on the
columns of B and V. To do this, all possible combina-
tions of pairs of columns of B and V' must be formed.
This makes step 2 the most communication-intensive
step, especially for the 1CPP distribution. The 1CPP
method requires n— 1 column transfers and n—1 scalar
transfers per sweep. The 2CPP approach only requires
n — 2 column transfers per sweep, one after each ro-
tation step. Both approaches also required additional
communications for column combining, performed here
by full recursive doubling because only the final sum
(and not each segment) was important.

Step 3 of the SVD algorithm normalizes the columns
of the B matrix to obtain the singular values, as well
as the columns of the U matrix, according to (1). Full
recursive doubling was repeated for obtaining the final
results.

Experimental timing results for the 1CPP, 2CPP,
X-net, and global router implementations were exam-
ined. Only instructions directly relating to computa-
tion or communication of the algorithms were timed.
Procedures such as file I/O were not timed to reduce
possible disruption by events beyond the control of the
programmer, e.g., operating system interrupts.

The timings presented represent the average time to
calculate the SVDs of all eight /.J matrices correspond-
ing to one 6 x 7 Jacobian matrix. This average is taken
over 1000 different randomly generated matrices. (The
generation of these matrices is discussed in [2].) Even
though the MP-1 is an SIMD machine, meaning it op-
erates synchronously and there should be no variation
in timings, averages were still taken because of data
conditional execution of statements within the code.

Figure 3 shows a direct comparison between the
1CPP and 2CPP distribution execution times on the
MP-1 for the global router PTPF approximation. The
execution times are grouped in terms of the number
of PEs available. Recall that in some cases data was
padded with zeros, because m was not a power of two.

From Figure 3, when comparing cases that have an
equal number of PEs available, the 2CPP method has
a higher degree of column segmentation so there are
more combining operations. Thus, the communication
time for the 2CPP method is greater than the 1CPP
method. The 2CPP method requires more PE enabling
and disabling statements than the 1CPP method.

Comparing computation times (without communi-
cation times), the 2CPP technique should be faster
than the 1CPP method. The 2CPP method is more

conducive to the pair-wise operations of the rotation
steps and avoids some of the redundant calculations
the 1CPP method must perform. The exception to
this observation occurs for 128 PEs because the data
was padded with zeros.

There is a decrease in total execution times as a re-
sult of increasing the number of PEs. However, execu-
tion times improved less as more PEs were added. This
implies that the use of column segmentation was bene-
ficial, but provides diminishing returns as the columns
were segmented into smaller and smaller pieces. For the
64, 128, and 256 PE cases, the differences in computa-
tion times were not enough to overcome the differences
in communication times, and the 1CPP technique had
the faster total execution times.

A comparison of the X-Net and global router re-
sults revealed that the global router implementations
achieve the faster execution times. The computation
times between the X-Net and global router implemen-
tations were nearly equivalent, as one would expect.
However, given the communication patterns and ma-
trix sizes of this application, and the ability to select
the enabled PEs; the global router implementations
provided better performance than the X-Net imple-
mentations in each case.

In all of the cases examined on the MasPar MP-1, in-
creasing the number of processors improved execution
times. The amount of improvement varied among the
different techniques examined. More detailed results
for each case can be found in [2].

6. MIMD Architecture Experiments

The parallel implementation of the PTPF algorithm
on a MIMD (multiple instruction stream, multiple data
stream) architecture. FEach PE in a MIMD machine
stores its own set of instructions and data in its local
memory module. This allows for asynchronous, multi-
ple threads of control, because PEs may contain unique
sets of instructions.

The IBM SP2 is a scalable distributed memory
MIMD parallel supercomputer [16]. The interconnec-
tion network in the SP2 is a multistage interconnection
network based on the SP2 High-Performance Switch
[16]. Message passing for this study used a C-based im-
plementation of the Message Passing Interface (MPI)
[15]. Simulation results were obtained using only thin
nodes [16], with submachine sizes of one, two, four,
eight, and 16 PEs.

Only two implementations on the SP2 were exam-
ined: 1CPP and 2CPP. The biggest difference between
the MP-1 and the SP2 implementations was the use of
MPI on the SP2. Another difference between the MP-

1 and SP2 implementations was the number of PEs
available. The SP2 has fewer than (n x r x (n + 1))
PEs available, so for most cases, the outer PTPF loop
cannot be performed concurrently with all values of f,
as it was on the MP-1.

For the sections of the algorithms that were based
on the single sweep SVD algorithm, the MP-1 and SP2
implementations were very similar. Because of the lim-
ited number of PEs available, and the high MPI over-
heads observed, two additional techniques were added
to the MIMD portion of the study, namely an eight
column per PE (8CPP) and a four column per PE
(4CPP) method. The 8CPP method executes entirely
on one PE with no inter-PE communications. The
4CPP method executes on two PEs, each holding four
columns, by performing two exchanges, each contain-
ing two columns. The 8CPP and 4CPP techniques did
not use column segmentation.

Because of their asynchronous operation, there 1is
usually a large variance in timing information from
MIMD machines. The timings recorded once again rep-
resented the time to calculate the SVDs of all eight /.J
matrices corresponding to one matrix, taken as the av-
erage time over 1000 different matrices.

Comparing the 8CPP, 4CPP, 2CPP, and 1CPP dis-
tributions of the PTPF algorithm, the communication
times dominated the total execution time of the algo-
rithms on the SP2. This is because of the large over-
head associated with MPI communications [18]. When
using MPI, the time required for setup and initializa-
tion of each communication is relatively large. If only
small sets of data are being transferred, the overhead
can easily require more time than the actual transfer
of data. The best case on the IBM SP2 turned out to
be the 8CPP case, which used just one matrix per PE,
and only half of the available PEs.

Comparing timing results between the IBM SP2
and the MasPar MP-1, the relative strengths of each
machine become apparent. The MP-1 is a well bal-
anced machine with computation and communication
instructions requiring about the same amount of time
to execute. In contrast, the SP2 has superior com-
putational speed but relatively slow communications
when using MPI. In most cases, communication times
on the MP-1 using the global router were equal to or
less than the corresponding SP2 implementations us-
ing MPI. However, the SP2 communication times were
generally less than X-Net communication times. The
advantage in computation time goes to the SP2 which
defeated the MP-1 in every instance. This can be at-
tributed in part to the SP2 being a newer machine and
having better processor technology available at its time
of design and construction. In general, the total exe-

cution times for the SP2 were faster than the MP-1.
7. Summary

The system of equations used for the kinematic con-
trol of robotic manipulators is frequently represented
by a Jacobian matrix. One method for solving this
system of equations is based on computing the SVD
of the Jacobian matrix. This study uses a technique
developed in [8] that exploits the well-behaved nature
of the SVD and finds approximations to the SVD in a
single sweep. This technique has been extended to cal-
culate approximations for the SVD of the full, pre-fault
Jacobian matrix and the set of single locked-joint, post-
fault Jacobian matrices. These procedures can provide
a basis for the real-time control of kinematically re-
dundant manipulators and also provide fault tolerance
information useful for real-time singularity avoidance
and error recovery.

Experiments were conducted for the PTPF approx-
imations on commercial SIMD and MIMD architec-
tures, the MasPar MP-1 and IBM SP2. For these ex-
periments, data layout and network selection were com-
pared. Timing results from the MP-1 revealed that the
1CPP, global router method provided the fastest over-
all execution times. The 8CPP method provided the
fastest results on the SP2 because of the high overhead
involved with communications. Increased column seg-
mentation was an effective method for reducing com-
putation times on the MP-1 but not on the SP2. All
of the methods studied here can be extended to larger
analyses, including multiple joint failures, systems of
multiple arms, or computation of several fault toler-
ance measures, all of which would require high levels
of parallelism to accomplish in real time.

Acknowledgments - The authors thank Muthu-
cumaru Maheswaran, Mitchell D. Theys, and Bill
Whitson for their valuable comments.

References

[1] T. Blank, “The MasPar MP-1 architecture,” IEEE
Compcon, Feb. 1990, pp. 20-24.

[2] T. D. Braun, Parallel Algorithms for Singular Value
Decomposition as Applied to Failure Tolerant Manip-
ulators, Thesis, School of Electrical and Computer En-
gineering, Purdue University, West Lafayette, IN, Dec.
1997.

[3] R. P. Brent, F. T. Luk, and C. Van Loan, “Computa-
tion of the singular value decomposition using mesh-
connected processors,” Journal of VLSI and Computer
Systems, Vol. 1, No. 3, 1985, pp. 242-270.

[4] B. Champagne, “SVD-updating via constrained per-
turbations with applications to subspace tracking,”

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

30th Asilomar Conference on Signals, Systems and
Computers, Nov. 1996, pp. 1379-1385.

H. Chuang and L. Chen, “Efficient computation of
the singular value decomposition on a cube connected
SIMD machine,” Supercomputing ’89, Nov. 1989, pp.
276-282.

G. H. Golub and C. F. Van Loan, Matrix Compu-
tations, Second Edition, Johns Hopkins University
Press, Baltimore, MD, 1989.

F. T. Luk, “A triangular processor array for comput-
ing singular values,” Linear Algebra and its Applica-
tions, Vol. 77, No. 5, 1986, pp. 259-273.

A. A. Maciejewski and C. A. Klein, “The singular
value decomposition: Computation and applications
to robotics,” The International Journal of Robotics
Research, Vol. 8, No. 6, Dec. 1989, pp. 63-79.

A. A. Maciejewski and J. M. Reagin, “A parallel al-
gorithm and architecture for the control of kinemati-
cally redundant manipulators,” IEEE Transactions on
Robotics and Automation, Vol. 10, No. 4, Aug. 1994,
pp. 405-414.

M. Maheswaran, T. D. Braun, and H. J. Siegel, “Het-
erogeneous distributed computing,” To appear in En-
cyclopedia of Electrical and Electronics Engineering,
J. G. Webster, ed., John Wiley & Sons, New York,
NY, 1999.

M. S. Moonen and B. R. L. de Moor, ed., SVD and
Signal Processing, III: Algorithms, Architectures, and
Applications, Elsevier Science, New York, NY, 1995.

J. C. Nash, Compact Numberical Methods for Com-
puters: Linear Algebra and Function Minimisation, A.
Hilger, Bristol, UK, 1979.

R. G. Roberts and A. A. Maciejewski “A local measure
of fault tolerance for kinematically redundant manip-
ulators,” IEEE Transactions on Robotics and Auto-
motion, Vol. 12, No. 4, Aug. 1996, pp. 543-552.

D. E. Schimmel and F. T. Luk, “A new systolic array
for the singular value decomposition,” in Advanced
Research in VLSI, C. E. Leiserson, ed., MIT Press,
Cambridge, MA, 1986, pp. 205-217.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra, MPI: The Complete Reference, MIT Press,
Cambridge, MA, 1995.

C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C.
A. Bender, D. G. Grice, P. Hochschild, D. J. Joseph,
B. J. Nathanson, R. A. Swetz, R. F. Stuckel, M. Tsao,
and P. R. Varker, “The SP2 high-performance switch,”
IBM Systems Journal, Vol. 34, No. 2, 1995, pp. 185—
204.

R. R. Ulrey, A. A. Maciejewski, and H. J. Siegel, “Par-
allel algorithms for singular value decomposition,”
Eighth International Parallel Processing Symposium
(IPPS °94), Apr. 1994, pp. 524-533.

7. Xu and K. Hwang, “Modeling communication over-
head: MPI and MPL performance on the IBM SP2,”
IEEE Parallel and Distributed Technology, Vol. 4, No.
1, Spring 1996, pp. 9-23.

step 1:

step 2:

step 3:

(seconds)

ime

t

calculate initial estimate for B from J and
previous V', using (6)

for all column pairs (,5) of B do

/* one sweep */

calculate p, ¢, and ¢ using (3)
calculate cos(¢) and sin(¢), using (4) or (5)

perform rotation on columns ¢ and j of B,
similar to (2)
perform rotation on columns ¢ and j of V,
similar to (2)

end for

calculate X from B, using (1)
calculate U from B and X, using (1)

Figure 1. High-level single sweep SVD algo-
rithm using Givens rotations to find the fault-
free SVD, based on [17].

forall f € {0, 1, ..., n} do

/* failure in joint f */

/* f = 0 represents no fault */

perform single sweep SVD algorithm on /.7
end for

Figure 2. High-level algorithm for finding the
post-fault SVD using the PTPF approximation
technique.

0.050

2CPPr=1 O communication time

@ computation time

0.045
0.040
2cPP
0.085 7 r=2 1CPP
0.030 ot
' 2cPP

| r=4
0025 1ICPP 2CPP

| =2 r=8 1CPP
0.020 r=4 1CPP
0.015 r=8
0.010 1
0.005
0.000 L — — —

32 64 64

128 128 256 256 512
number of PEs available

Figure 3. Comparison between 1CPP and
2CPP average execution times for the Mas-
Par MP-1 global router PTPF approximation,
in terms of number of PEs available (not nec-
essarily used).

