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ABSTRACT

RESOURCE MANAGEMENT IN

QOS-AWARE WIRELESS CELLULAR NETWORKS

Emerging broadband wireless networks that support high speed packet data with

heterogeneous quality of service (QoS) requirements demand more flexible and ef-

ficient use of the scarce spectral resource. Opportunistic scheduling exploits the

time-varying, location-dependent channel conditions to achieve multiuser diversity.

In this work, we study two types of resource allocation problems in QoS-aware wire-

less cellular networks. First, we develop a rigorous framework to study opportunistic

scheduling in multiuser OFDM systems. We derive optimal opportunistic scheduling

policies under three common QoS/fairness constraints for multiuser OFDM systems—

temporal fairness, utilitarian fairness, and minimum-performance guarantees. To im-

plement these optimal policies efficiently, we provide a modified Hungarian algorithm

and a simple suboptimal algorithm. We then propose a generalized opportunistic

scheduling framework that incorporates multiple mixed QoS/fairness constraints, in-

cluding providing both lower and upper bound constraints.

Next, taking input queues and channel memory into consideration, we reformu-

late the transmission scheduling problem as a new class of Markov decision processes

(MDPs) with fairness constraints. We investigate the throughput maximization and

the delay minimization problems in this context. We study two categories of fair-

ness constraints, namely temporal fairness and utilitarian fairness. We consider two
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criteria: infinite horizon expected total discounted reward and expected average re-

ward. We derive and prove explicit dynamic programming equations for the above

constrained MDPs, and characterize optimal scheduling policies based on those equa-

tions. An attractive feature of our proposed schemes is that they can easily be

extended to fit different objective functions and other fairness measures. Although

we only focus on uplink scheduling, the scheme is equally applicable to the downlink

case. Furthermore, we develop an efficient approximation method—temporal fair

rollout—to reduce the computational cost.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Unprecedented advances in wireless technology have been playing active roles in re-

defining our modern lifestyle. With the application of the third-generation wireless

technology, cellular systems now support interactive multimedia and high speed data

services. Besides making phone calls, we are now able to use cell phones to access

the Internet, conduct monetary transactions, send text messages, watch streaming

videos, etc.

According to a recent International Telecommunication Union (ITU) report [1],

till 2009 around six in ten people across the world use cell phones, compared to just

under 15 percent of the global population used cell phones in 2002. The size of the

annual wireless communication business in the United States has grown from $100

million to more than $50 billion in less than 15 years [2]. Meanwhile, WiFi access is

now widely supported in schools, hotels, airports, coffee shops, and many other public

areas. The number of WiFi hotspots in US has grown from only 15k in 2002 to over

100k in 2005. Cities like San Francisco and Philadelphia are creating citywide WiFi

networks.

With the advancement of wireless technologies, wireless networking has become

ubiquitous owing to the great demand of pervasive mobile applications. Some funda-

mental challenges exist for the next generation wireless network design, provisioning
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of heterogeneous type of services, etc. One of the fundamental characteristics of wire-

less networks is the time-varying and location-dependent channel conditions due to

multipath fading. A wireless channel can change rapidly and can be seriously affected

by the radio propagation parameters and interferences, thus the topology and link

characteristics are dynamically varying in wireless networks. The performance of a

wireless network is mainly restrained by the interferences and the time-varying nature

of wireless channels. The co-channel interference (CCI) is caused by users sharing

the same channel due to the multiple access in wireless networks. Due to the effects

such as multipath fading, shadowing, path loss, propagation delay, and noise level,

the signal-to-interference-noise-ratio (SINR) at a receiver output can fluctuate in the

order of tens of dBs. So how to overcome these difficulties and improve the system

performance has always been the central issue in wireless community.

Dynamic resource allocation is a general strategy to control the interferences and

enhance the performance of wireless networks. The basic idea behind dynamic re-

source allocation is to utilize the channel more efficiently by sharing the spectrum

and reducing interference through optimizing parameters such as the transmission

power, symbol transmission rate, modulation scheme, coding scheme, bandwidth, or

combinations of these parameters. Moreover, the network performance can be fur-

ther improved by introducing more diversity, such as multiuser, time, frequency, and

space diversity. In addition, cross layer approach for resource allocation can pro-

vide advantages such as low overhead, more efficiency, and direct end-to-end QoS

provision.

Moreover, there are other constraints such as fairness, heterogenous QoS provi-

sioning, and practical implementation constraints. Since each user pays the same for

his service, it is desirable to have fair resource allocation scheme. In order to provide

fair services to all users, we need to define the new fairness concepts. In this disserta-

tion, we consider three kinds of fairness—temporal fairness, utilitarian fairness, and
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minimum-performance guarantees. For various applications, the QoS requirements

can be very different. For example, voice payload is very sensitive for delay, data

payload requires low bit error rate (BER), and video payload has burst transmission.

Also, there are many practical constraints for wireless system implementation such as

maximal transmitted power, minimal throughput, computation capability, implemen-

tation cost, etc. So how to optimally allocate the resources under these constraints

has become an important wireless research topic.

Good scheduling schemes in wireless networks should opportunistically seek to

exploit the time-varying channel conditions to improve spectrum efficiency thereby

achieving multiuser diversity gain. However, the potential to transmit at higher

data rates opportunistically also introduces an important tradeoff between wireless

resource efficiency and level of satisfaction among individual users (fairness). For

example, allowing only users close to the base station to transmit at high transmis-

sion rate may result in very high throughput, but sacrifice the transmission of other

users. Such a scheme cannot satisfy the increasing demand for QoS provisioning in

broadband wireless networks.

Orthogonal frequency division multiplexing access (OFDMA) is a popular multiple

access and signaling scheme for wireless broadband networks. Adaptive modulation

techniques in OFDMA provide the potential to vary the number of transmitted bits

for a sub-channel, according to instantaneous sub-channel quality, while maintaining

an acceptable BER. Resource allocation for OFDMA networks has three major tasks:

sub-channel assignment, throughput allocation, and power control.

To enhance the system performance, we explore the multi-dimension diversity. By

using throughput control in MAC layer, we can apply multiuser diversity and time

diversity to allocate resources efficiently to different users over time according to their

channel conditions. By using OFDM technique, we can apply frequency diversity to

fully utilize the limited bandwidth. All these diversity can be combined together to
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combat the detrimental effects such as time varying channels, CCI, or heterogeneous

QoS requirements, etc.

Practical radio channels are commonly modeled as multipath Rayleigh fading

channels, which are correlated random processes. However, much of the prior work

on scheduling, is based on the relatively simple memoryless channel models. Finite-

state Markov channel (FSMC) models have been found to be accurate in modeling

such channels with memory. When channel memory is taken into consideration, the

existing work on memoryless channels does not apply directly. Also, much of the

previous work focused on “elastic” traffic, and assumed that the system has infi-

nite backlogged data queues, which is not always an appropriate assumption. This

assumption makes it impossible to consider the data arrival queues and further eval-

uate the system delay performance. The widely studied Markov decision processes

(MDPs) and the associated dynamic programming methodology provide us with a

general tool for posing and analyzing such sequential decision making problems with

an underlying Markov process.

In this dissertation, we will study several resource allocation problems in QoS-

aware wireless cellular networks. We first develop a rigorous framework to study op-

portunistic scheduling in multiuser OFDM systems. We derive optimal opportunistic

scheduling policies under three QoS/fairness constraints for multiuser OFDM systems.

We then propose a generalized opportunistic scheduling framework that incorporates

multiple mixed QoS/fairness constraints, including providing both lower and upper

bound constraints. Taking input queues and channel memory into consideration, we

reformulate the transmission scheduling problem as a new class of Markov decision

processes with fairness constraints. As an example, we investigate the throughput

maximization and the delay minimization objectives in this context. Furthermore,

we develop an efficient approximation method—temporal fair rollout—to reduce the

computational cost in implementation.
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1.2 Organization of This Dissertation

The organization of this dissertation is as follows:

In Chapter 2, we give the basic background knowledge. We overview the wireless

cellular communication systems from the history to the key techniques. The mobile

radio channel model is briefly discussed. Then we introduce the transmission schedul-

ing in wireless networks. we address the major challenges for wireless scheduling, and

explain the notion of fairness. Then, we briefly review the existing wireless transmis-

sion scheduling schemes. We also discuss the existing cross-layer design approaches

in this chapter. A critical issue of dynamic resource allocation is the cross-layer op-

timization over time-varying, heterogeneous environments. We outline the theory of

stochastic control that we will use in Chapter 5. In the end, we survey the related

work to this dissertation.

In Chapter 3, we investigate the application of opportunistic scheduling in mul-

tiuser OFDM systems. we develop a rigorous framework to study opportunistic

scheduling in multiuser OFDM systems. We derive optimal opportunistic scheduling

policies under three QoS/fairness constraints for multiuser OFDM systems—temporal

fairness, utilitarian fairness, and minimum-performance guarantees. To implement

these optimal policies, we propose a modified Hungarian algorithm and a heuristic

suboptimal algorithm, and compare them with non-opportunistic schemes via exten-

sive numerical experiments.

In Chapter 4, we consider the problem of downlink transmission scheduling with

general constraints. We start with considering the scheduling problems with both

minimum and maximum constraints. We derive the corresponding opportunistic

scheduling policies for the three long-term QoS/fairness constraints. Then we deal

with scheduling problems with multiple type mixed QoS/fairness constraints. Finally,

we develop a unified framework for generalized opportunistic scheduling problems

which accommodates all the aforementioned scheduling schemes.
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In Chapter 5, we consider the problem of fair scheduling of queued data trans-

missions in wireless heterogeneous networks. We deal with both the throughput

maximization problem and the delay minimization problem. Taking fairness con-

straints and the data arrival queues into consideration, we formulate the transmis-

sion scheduling problem as a Markov decision process with fairness constraints. We

study two categories of fairness constraints, namely temporal fairness and utilitar-

ian fairness. We consider two criteria: infinite horizon expected total discounted

reward and expected average reward. Applying the dynamic programming approach,

we derive and prove explicit optimality equations for the above constrained MDPs,

and give corresponding optimal fair scheduling policies based on those equations. A

practical stochastic-approximation-type algorithm is applied to calculate the control

parameters online in the policies. Furthermore, we develop a novel approximation

method—temporal fair rollout—to achieve a tractable computation. Numerical re-

sults show that the proposed scheme achieves significant performance improvement

for both throughput maximization and delay minimization problems compared with

other existing schemes.

Chapter 6 summarizes the major contributions of this dissertation and outlines

proposals for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we provide an outline of the background knowledge which we utilize to

develop our results, and review the related work. The organization of this chapter is

as follows: in Section 2.1, we overview the nowadays wireless cellular communication

networks from the history to the key techniques. Section 2.2 briefly discuss the mobile

radio channel model. In Section 2.3, we present an introduction of the transmission

scheduling in wireless networks. We first address the challenges for wireless schedul-

ing, and introduce the notion of fairness. Then, we briefly review the existing wireless

transmission scheduling schemes, including opportunistic scheduling. Section 2.4 ex-

plains the cross-layer design approaches. For enhancing the end-to-end quality of

links, different layers of communication protocol should be coordinated together by

cross-layer design. Section 2.5 briefly outlines the theory of stochastic control that

we will utilize in Chapter 5. Finally, Section 2.6 surveys the related work in the field.

2.1 Overview of Wireless Cellular Communication

Networks

Over the past two decades, wireless communications have witnessed an explosive

growth, and have become pervasive much sooner than anyone could have imagined [3].

Wireless networks are expected to be the dominant and ubiquitous telecommunication

tools in the next few decades. The widespread success of cellular and WLAN systems
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prompts the development of advanced wireless systems to provide other information

services beyond voice, such as telecommuting, video conferencing, interactive media,

etc., at anyplace, anywhere, anytime. To satisfy growing demands of heterogeneous

applications, the future wireless networks are characterized by broadband, high data

rate capabilities, integration of services, flexibility, and scalability. Many technical

challenges yet remain to achieve these requirements because of the adverse natures

of wireless channels.

2.1.1 Evolution of Wireless Cellular Communication Systems

The cellular era just started thirty years ago with the operation of the first generation

(1G) analog cellular radio systems in 1980s and each year their subscribers increased

at a very fast rate. The representing 1G standard systems include Advanced Mobile

Phone Service (AMPS) [4] in the United States, Nordic Mobile Telephones (NMT)

in Europe, Total Access Communication Systems (TACS) in the United Kingdom,

and Nippon Telephone and Telegraph (NTT) in Japan. All the 1G systems used

analog frequency modulation (FM) for speech, and frequency shift keying (FSK)

for signaling, and the access technique used was frequency division multiple access

(FDMA).

In the 1990’s, the second generation (2G) wireless cellular systems began to be

introduced. Various 2G systems have been deployed around the world. Leading the

pack are Global System for Mobile communications (GSM) deployed in Europe and

Asia, IS-54/136 and IS-95 standards in North America, and Personal Digital Cellular

(PDC) systems in Japan.

GSM was the first universal digital cellular system with modern network features

extended to each mobile user. First deployed in Europe, now it is the most widely

adopted standard for cellular radio systems throughout the world. The 2G systems
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provide digital speech and short message services (SMS) with higher spectrum effi-

ciency. Most 2G standards use time division multiple access (TDMA) as the access

technique, except for IS-95, which is based on code division multiple access (CDMA).

2.5G is a transition step between 2G and 3G cellular wireless technologies. 2.5G

provides some of the benefits of 3G (e.g. it is packet-switched) and can use some of

the existing 2G infrastructure in GSM and CDMA networks. There have been several

deployments of 2.5G across the world. In the USA, the 2.5G extension to CDMA

systems are known as 1xEV-DO and 1xEV-DV. General packet radio service (GPRS)

and Enhanced Data rate for GSM Evolution (EDGE) have been used by major GSM

operators.

The third generation (3G) standard is currently being pushed as the new global

standard for cellular communications. 3G networks enable network operators to offer

users a wider range of more advanced services while achieving greater network ca-

pacity through improved spectral efficiency. Services include wide-area wireless voice

telephony, video calls, and broadband wireless data, all in a mobile environment.

The first commercial 3G network was launched by NTT DoCoMo in Japan in 2001.

Till December 2007, 190 3G networks were operating in 40 countries were operating

in 71 countries, according to the Global mobile Suppliers Association (GSA). 3G

networks are based on the ITU family of standards under the International mobile

telecommunications 2000 (IMT-2000). IMT-2000 family includes three major radio

interfaces: W-CDMA, CDMA2000, and TD-CDMA/TD-SCDMA.

The 4G (also known as Beyond 3G) [5] wireless systems represent the next com-

plete evolution in wireless communications. It will be a complete replacement for

current networks and be able to provide a comprehensive and secure all-IP solution

where voice, data, and streamed multimedia can be given to users on an “anytime,

anywhere” basis, and at much higher data rates than previous generations. The pro-

posed principal technologies for 4G networks include OFDM, smart antenna, Turbo
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codes, IPv6, and etc. Technologies considered to be early 4G include Flash-OFDM,

the 802.16e (mobile WiMAX), and HC-SDMA.

2.1.2 Key Techniques of Wireless Cellular Communication Systems

In this subsection, we go over some key techniques of a wireless cellular system. We

concentrate on the topics like modulation, channel coding, diversity, power control,

admission control, multiple access, OFDM and OFDMA, and cellular concept.

Modulation

Modulation is the process of encoding information to form a message source in

a manner suitable for transmission. It generally involves translating a base band

message signal (called the source) to a bandpass signal at frequency that is much

higher than the baseband frequency. The bandpass signal is called the modulated

signal and the baseband message signal is called modulating signal. Modulation may

be done by varying the amplitude, phase, or frequency of a high frequency carrier in

accordance with the amplitude of the message signal. Demodulation is the process

of extracting the baseband message from the carrier so that it may be processed and

interpreted by the intended receiver (called the sink) [3].

For digital modulation techniques, the performance of a modulation scheme is

often measured in terms of bandwidth efficiency and power efficiency. Bandwidth

efficiency describes the ability of a modulation scheme to accommodate data within

a limited bandwidth. The popular bandwidth efficient modulations are M-ary PAM,

M-ary FSK, M-ary PSK, M-ary QAM, CPM, and MSK. Power efficiency is the abil-

ity of a modulation technique to transmit digital message with limited power. The

popular power efficient modulations are M-ary orthogonal modulation and M-ary bi-

orthogonal modulation. In addition to the efficiencies, other factors, such as robust-

ness to nonlinear amplifier, performance in fading condition, and cost of transceiver,

etc. also influence the choice of digital modulation.
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Adaptive modulation is a promising technique to increase the data rate that can

be reliably transmitted over fading channels. For this reason, some forms of adap-

tive modulation are being proposed or implemented in the next generation wireless

systems. The basic premise of adaptive modulation is a real-time balancing of the

link budget in flat fading through adaptive variation of the transmitted power level,

symbol transmission rate, constellation size, BER, or any combination of these pa-

rameters. Thus, without wasting power or sacrificing BER, adaptive modulation

provides a higher average link spectral efficiency (bps/Hz) by taking advantage of

fading through adaptation [6].

Channel error control coding

Channel error control coding arose from the seminal contribution in communi-

cation theory made by Shannon [7] that establishes fundamental limits on reliable

communication, and presents the challenge of finding specific families of codes that

achieve the capacity limit. Channel coding adds redundancy in the transmitted mes-

sage so that if instantaneous errors occur in the received signal, the receiver can

detect the errors or the data still can be recovered. The channel encoder is located

between the source encoder where user’s digital message sequence is produced and

the modulator where the signal is modulated for transmission in the wireless channel.

There are two main types of channel codes, namely block codes, convolutional

codes. The commonly used block codes are Hamming codes, Hadamard codes, Golay

codes, cyclic codes, BCH codes, Reed-Solomon Codes, etc. Convolutional codes are

the most widely used channel codes in practical communication systems. The main

decoding strategy for convolutional codes is based on the Viterbi algorithm.

In the last decade, significant work has been done on the newly found Turbo

coding/decoding [8]. Turbo coding can potentially achieve performance that is close

to the Shannon capacity limits at the expense of complexity. The current 3G cellular

systems employ turbo codes for relatively long (e.g., larger than 300 bits) block length
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messages.

Diversity

Diversity is a powerful communication technique that provides significant wireless

link improvement with little added cost. It is a method for improving the reliability

of a message signal by utilizing two or more communication channels with different

characteristics. Diversity plays an important role in combating fading and co-channel

interference and avoiding error bursts. It is based on the fact that individual channels

experience different levels of fading and interference. Multiple versions of the same

signal may be transmitted and/or received and combined in the receiver. Diversity

techniques may exploit the multipath propagation, resulting in a diversity gain. A

simple example can explain the diversity concept: If one radio path undergoes a deep

fade, another independent path may have a strong signal, so the transmitted signal

can still be correctly received.

The popular diversity methods are listed as follows:

• Frequency diversity

Frequency diversity is implemented by transmitting information on several fre-

quency channels or spread over a wide spectrum to combat frequency-selective

fading. A good example is OFDM modulation. OFDM modulation exploits

frequency diversity by providing simultaneous modulation signals with error

control coding across a large bandwidth, such that if a particular frequency

undergoes a fade, the composite signal from all frequencies will still be demod-

ulated.

• Space diversity

Space diversity, also known as antenna diversity, is an important diversity tech-

nique, where the signals received from spatially separated antennas have essen-

tially uncorrelated envelops for antenna separations of one half wavelength or
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more. Space diversity reception methods can be classified into four categories:

selection diversity, feedback diversity, maximal ratio combining, and equal gain

diversity.

• Time diversity

Time diversity repeatedly transmits information at time spacings that exceed

the coherence time of the radio channel, so that multiple repetitions of the signal

will be received with independent fading conditions, thereby providing diversity.

Before it is transmitted, a redundant forward error correction code is inserted

and the message is spread in time by means of interleaving to resist burst errors.

Rake receiver for CDMA systems is an application of time diversity by exploring

the redundancy in the received signals over multipath channels.

• Space-time diversity

Multiple-input-multiple-output (MIMO) systems employing multiple transmit

and receive antennas will inarguably play a significant role in the development

of future broadband wireless communications. By taking diversity of the larger

number of propagation paths between the transmit and receive antennas, the

detrimental effects of channel fading can be significantly reduced. It has been

shown that MIMO systems offer a large potential capacity increase compared

to single antenna systems. To exploit this diversity, a considerable number

of MIMO modulation and coding methods, also known as space-time coding

(STC), have been proposed.

• Multiuser diversity

In multiuser communications, different users have different channel conditions

because they are located in different locations and experience different fadings.

By adaptively assigning resources such as time slots, frequency subchannels, we

can take advantage of this channel diversity, which is called multiuser diversity.
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Multiuser diversity stems from channel diversity including independent path

loss and fading of users.

Power control

In wireless systems, the received power represents signal strength to the desired

receiver, but also interference to all other users. Power control is intended to provide

each user an acceptable connection by eliminating unnecessary interference. The

elegant work of Yates [9] abstracts the important properties of various power control

algorithms and presents a unified treatment of power control. While power control

is widely implemented in CDMA systems, such as IS-95, it has also been shown to

increase the call carrying capacity for channelized systems, such as TDMA/FDMA

systems [10]. Furthermore, beyond the conventional concept of power control as a

means to eliminating the “near-far” effect, power control is also an effective resource

management mechanism. It plays an important role in interference management,

channel-quality/service-quality provisioning, and capacity management [10–12].

Admission control

Empirical studies have shown that a typical user is far more irritated when an

ongoing call is dropped than a call blocked from the very beginning. Hence, the

purpose of admission control is to admit as many users as possible to maximize the

revenue of the system while maintaining a certain level of quality of service (QoS) for

ongoing connections. A new call is admitted if and only if its QoS constraints can

be satisfied without jeopardizing the QoS constraints of existing calls in the network.

An admission control decision is made using a traffic descriptor that specifies traffic

characteristics and QoS requirements. Admission control is closely coupled with other

resource allocation schemes, such as dynamic channel allocation, power control, and

mobility prediction, etc. Furthermore, admission control becomes more challenging

in the content of supporting multimedia services with different and multi-faceted QoS

requirements in a wireless environment.
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Multiple access

Multiple access is used to allow many mobile users to share a common medium

for communications. The sharing of spectrum is required to achieve high capacity by

simultaneously allocating the available bandwidth to multiple users.

Frequency division multiple access (FDMA), time division multiple access

(TDMA), and code division multiple access (CDMA) are the three major access

techniques used to share simultaneously the limited bandwidth of radio spectrum in

a wireless communication system. These multiple access techniques have been widely

used in current wireless communication systems such as GSM, IS-95, cdma2000, and

DECT.

FDMA assigns individual frequency bands or channels to individual subscribers.

These channels are assigned on demand to users who request service. During the

period of the call, no other user can share the same frequency band. TDMA systems

divide the radio spectrum into time slots, and in each time slot only one subscriber is

allowed to either transmit or receive. TDMA systems transmit data in a buffer-and-

burst method, thus the transmission for any subscriber is noncontinuous. CDMA

systems allow many subscribers to simultaneously access a given frequency alloca-

tion. User separation at the receiver is possible because each subscriber spreads the

modulated waveform over a wide bandwidth using unique spreading codes. There

are two basic types of CDMA, direct-sequence CDMA (DS-CDMA) and multi-carrier

CDMA (MC-CDMA). Analog cellular systems (1G) use FDMA. TDMA and CDMA

techniques are implemented in both 2G and 3G digital cellular systems.

By using the antenna signal processing technique, space division multiple access

(SDMA) separates users’ signals in different direction of arrivals(DOA). With SDMA,

multiple users with different DOA are able to communicate at the same time using

the same channel. In addition, the antenna can collect transmission powers from

multipath components, combine them in an optimal manner, suppress interferences
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from other users, and improve the received SINR. Consequently, less power is required.

In random access protocols, the channels are utilized by users attempting to access

a single channel in an uncoordinated manner. Consequently, the transmissions are

due to collisions by multiple users. Many packet radio (PR) access techniques are

developed to handle the collisions. PR is very easy to implement, but has low spectral

efficiency and may have delays. Some of the available PR access techniques are Aloha,

carrier sense multiple access (CSMA), carrier sense multiple access with collision

detection (CSMA/CD), data sense multiple access (DAMA), and packet reservation

multiple access (PRMA) [13].

OFDM and OFDMA

To provide high-data rate service, wideband transmission is necessary. In a wide-

band single-carrier system, we face the problems of frequency-selective-fading and

inter-symbol-interference (ISI). Furthermore, to make high-rate-data service afford-

able, a higher spectrum efficiency has to be achieved.

Frequency division multiplexing (FDM) is a technology that transmits multiple

signals simultaneously over a single transmission path, such as a cable or wireless

system. Each signal travels within its own unique frequency range (carrier), which is

modulated by the data message(text, voice, video, etc.).

OFDM divides the data stream into multiple substreams to be transmitted over

different orthogonal subchannels centered at different subcarrier frequencies. The

number of substreams is chosen to make the symbol time on each substream much

greater than the delay spread of the channel or, equivalently, to make the substream

bandwidth less than the channel coherence bandwidth. This insures that the sub-

streams will not experience significant ISI.

OFDM is a promising transmission technique [14,15] to combat ISI over multipath

fading channels and provide efficient frequency utilization. This technique shows a

great promise for high-speed wireless/ wireline data communications. A properly
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coded and interleaved OFDM system is reported to exceed the performance of many

other existing systems.

The discrete implementation of OFDM is sometimes called multi-carrier or discrete

multi-tone modulation (DMT). It has been widely used in many applications, includ-

ing Digital Audio Broadcasting (DAB) in Europe, high-speed digital subscriber lines

(HDSL), asymmetric digital subscriber lines (ADSL), wireless LANs (IEEE 802.11a,

802.16), and ultra wideband (UWB) systems [13]. It is also a promising modulation

schemes of choice proposed for many future cellular networks such as 4G and cognitive

radio systems.

OFDMA [16] is an OFDM based multi-access technique, which has been pro-

posed as the wireless access and signaling scheme in several next generation wireless

standards. In OFDMA, the available spectrum is divided into multiple orthogonal

narrowband subchannels and information symbols are transmitted in parallel over

these low-rate subchannels. This method results in reduced ISI and multipath delay

spread, thus improvement in capacity and attainable data rates. The rationale is that

the fading on each individual subchannel is independent from user to user, so that

adaptive resource allocation gives each their “best” subchannels and adapts optimally

to these channels.

Cellular concept

The cellular concept offers very high capacity in the limited available spectrum by

applying many low power transmitters, which provide coverage to a small portion of

the service area. In a cellular system, a large coverage area is broken into many small

geographic areas called cells. Each cell is assigned with a small proportion of the

total channels, and the adjacent cells are assigned with different groups of channels.

The same group of channels can be reused in the cells that are enough far away so

that the transmitted powers are attenuated enough and the interferences between

cells are minimized. The cellular wireless networks provide a method to use limited
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spectrums to serve a large number of users by reusing the channels throughout the

coverage region [17].

Channels are assigned to different cells to efficiently utilize the spectrum by fixed

or dynamic policies. In a fixed channel assignment, each cell is allocated a certain set

of channels and each cell handles its own channel allocation independently, which is

simple for implementation and fits a network with spatially uniform traffic density.

In a dynamic channel assignment, the network will allocate a channel to a cell at call

setup. The minimum allowable distance between co-channel cells and traffic density

is considered in order to minimize the probability of blocking.

Handoff occurs when a mobile leaves the coverage area of a cell and enters the

coverage area of another cell. In channelized wireless system, different radio channels

will be assigned during a handoff, which is called hard handoff. In CDMA system

such as IS-95, the assigned channel to user is not changed, but a different base station

is selected for communication. This kind of handoff is called soft handoff.

2.2 Mobile Radio Propagation Model

The mobile radio channel places fundamental limitations on the performance of wire-

less communication systems. The three basic propagation mechanisms which impact

propagation in a mobile communication system are reflection, diffraction, and scat-

tering [3]. Reflection occurs when a propagating electro-magnetic wave impinges

upon an object that has very large dimensions compared to the wavelength of the

propagating wave. Diffraction occurs when the radio path between the transmitter

and receiver is obstructed by a surface that has sharp irregularities (edges). Scatter-

ing occurs when a medium through which the wave travels consists of objects with

dimensions that are small compared to the wavelength, and where the number of

obstacles per unit volume is large. Scattered waves are produces by rough surfaces,

small objects, or by other irregularities in the channel.
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Therefore, modeling the radio channel has been one of the most difficult parts of

mobile radio system design. The statistical models are applied based on measure-

ments. In this section, we briefly describe the three major propagation models that

reflect the impact of these three basic propagation mechanisms.

Power-law propagation

Path loss is caused by propagation loss, where the signal is attenuated due

to the distance between the transmitter and the receiver. Both theoretical and

measurement-based propagation models indicate that the average received signal

power decreases logarithmically with distance, whether in outdoor or indoor envi-

ronments. The average large-scale path loss for an arbitrary transmitter-receiver

separation is expressed as a function of distance by using a path loss exponent. For

example, in the famous Lee’s model [18], the path loss lp in (dB) is

lp = K + 10α log10(d)− α0,

where d is the distance between the transmitter and receiver, α is the path loss factor,

α0 is a correction factor used to account for different base station and mobile station

(MS) antenna heights, transmit powers, and antenna gains, and K is a constant,

which has different values in different environments.

Log-normal shadowing

In addition to path loss, the average received signal power may be affected by

shadowing from large obstacles, such as trees, buildings, or mountains. An explana-

tion for log-normal shadowing is as follows. Consider the received signal to be the

result of the transmitted signal passing through or reflecting off some random number

of objects such as buildings, hills, and trees. The individual processes each attenuate

the signal to some degree and the final received value is thus the product of many

transmission efficiency factors. Therefore, the logarithm of the received signal equals

the sum of a large number of factors, each expressed in decibels (dBs). As the num-

ber of factors becomes large, the central limit theorem shows that the distribution of
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the sum can be modeled as a Gaussian distribution under fairly general assumptions.

The shadowing term s(k) (dB) is modeled as a zero-mean stationary Gaussian process

with autocorrelation function given by

E(s(k)s(k +m)) = σ2
oξ

vT/D
d ,

where ξd is the correlation between two points separated by a spatial distance D

(meters), and v is velocity of the mobile user.

Fading

In wireless channel, reflections from small scatterers generate multiple replicas of

the transmitted signal with different delay, phase, and amplitudes at the receiver.

The constructive or destructive combination of these multipath signals causes signal

strength fluctuation or fading. A typical time response for a multipath fading channel

is shown in Figure 2.1.

If the delay spread of the received signal is significantly smaller than the sym-

bol interval, fading only causes amplitude fluctuations. When there is no specular

component in the received signal, fading can be modeled by a Raleigh distribution:

p(r) =
r

σ2
exp(− r2

σ2
).

When there are scattering components as well as a dominant path, the received

signal amplitude has a Ricean distribution:

p(r) =


r
σ2 e

− r2+A2

2σ2 I0
(
Ar
σ2

)
A ≥ 0, r ≥ 0

0 r ≤ 0,

where I0 is the Bessel function of first kind and zero-order, and A denotes the peak

amplitude of the dominant signal.

If the difference in time of arrival from different paths is larger than a fraction of

symbol interval, in addition to fluctuations in amplitude, fading will cause frequency

selective distortion as well. Received signal due to multipath signals is given by

r(t) = A
L∑
l=1

√
αlu(t− τl)e

j(−2πfτl) + n(t),
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Figure 2.1: Received signal strength as a function of time for vehicle velocity at 10
mph.

where n(t) is the thermal noise, and τl is the delay associated with the lth path.

In the meanwhile, random movement of scatters or mobile will cause doppler

spread. If the mobile or scatterers are moving with speed v, the doppler shift is given

by fd =
v
λ
. If the doppler spread is larger than a fraction of signal bandwidth, fading

can bring variation in channel response or time-selective fading. The received signal

with delay and doppler shift is

r(t) = A
L∑
l=1

√
αlu(t− τl)e

j(2πfd cosϕlt−2πfτl) + n(t),

where ϕl is the angle between the path direction and the velocity vector.

In summary, radio propagation can be roughly characterized by three nearly inde-

pendent phenomena: path-loss variation, slow log-normal shadowing, and fast multi-

path fading. Path losses vary with the movement of mobile stations. Slow log-normal
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shadowing and fast multipath fading are time-varying with different timescales. Also

the interference a user received due to other transmissions is time-varying. Fur-

thermore, background noise is also constantly varying. All these contribute to the

time-varying characteristics of a radio channel and motivate the need for scheduling

technologies.

2.3 Transmission Scheduling in Wireless Networks

It is always not easy to achieve QoS in wireless networks due to several properties: un-

predictable radio link properties as discussed above, node mobility, limited energy, and

interference from transmitters and receivers. Therefore, transmission scheduling tech-

nologies play an important role in meeting QoS requirements for wireless networks. In

this section, first, we present the resource allocation schemes and scheduling policies

for wireline networks. Second, we address the characteristics and challenges for trans-

mission scheduling in wireless networks. Third, we explain the important notion of

fairness in network engineering and review some fairness concepts. Then, we briefly

review the existing transmission scheduling schemes for wireless networks, including

opportunistic scheduling, which is one of the major motivations for our research in

the dissertation.

2.3.1 Scheduling in Wireline Networks

In wireline networks, resource allocation schemes and scheduling policies play impor-

tant roles in providing service performance guarantees, such as throughput, delay,

delay-jitters, fairness, and loss rate [19]. There are basically two types of scheduling

disciplines: work-conserving and non-work-conserving. A work-conserving server is

never idle when there is a packet to be sent. A non-work-conserving server will delay

a packet until it is eligible, even when the server is idle.

Examples of work-conserving scheduling disciplines are: Delay Earliest-Due-Date

(Delay-EDD), Virtual Clock, Fair Queuing (FQ), Weighted Fair Queuing (WFQ), and
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Worst-case Fair Weighted Fair Queueing (WF2Q). However, with work-conserving

disciplines, the traffic pattern is distorted inside the network due to fluctuations

in the network load. For services that require guaranteed performance, the more

important performance index is the end-to-end delay bound rather than the aver-

age delay. This is the major motivation for non-work-conserving scheduling policies.

Several non-work-conserving disciplines have been proposed for packet switching net-

works [19]: Jitter Earliest-Due-Date (Jitter-EDD), Stop-and-Go, Hierarchical Round

Robin (HRR), and Rate-Controlled Static Priority (RCSP). In addition to the chal-

lenge of providing service performance guarantees, scheduling disciplines must be

simple and scalable to be implemented in real networks due to the size of wireline

networks.

2.3.2 Challenges for Transmission Scheduling in Wireless Networks

Different assignments of the wireless resource can affect the system performance dra-

matically, hence, resource allocation and scheduling policies are critical in wireless

networks. However, an important point to note is that the resource allocation and

scheduling schemes from the wireline domain do not carry over directly to the wireless

domain thanks to the wireless channels’ unique characteristics [20],

• Channel conditions are time-varying.

• Network performance depends on channel conditions and transmission tech-

niques.

• If the same resource is given to different users, the resultant network perfor-

mance (e.g., throughput) could be different from user to user.

In wireless networks, the channel conditions of mobile users are time-varying. As

discussed in Section 2.2, radio propagation can be roughly characterized by three

phenomena. Path losses vary with the movement of mobile stations. Slow log-normal
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shadowing and fast multipath fading are time-varying with different time-scales. Fur-

thermore, a user receives interference from other transmissions, which is time-varying;

and background noise is also constantly varying. Hence, mobile users perceive time-

varying channel conditions, and these variations for each user may be independent

of one another. SINR (signal to interference plus noise ratio) is a common measure

of channel conditions. Apart from SINR, BER and FER (frame error rate) are also

used as measure of channel conditions.

Since channel conditions are time-varying, users experience time-varying service

quality and quantity. For voice users, better channel conditions may result in better

voice quality. For packet data service, better channel conditions (or higher SINR) can

be used to provide higher data rates using rate adaption techniques. Research had

shown that cellular spectral efficiency can be increased by a factor of two or more if

users with better channel conditions are served at higher data rates [6]. Procedures

to exploit this are already in place for all the major cellular standards: adaptive mod-

ulation and coding schemes are implemented in TDMA, and variable spreading and

coding are implemented in CDMA. In general, a user is served with better quality

and/or a higher data rate when the channel condition is better. Hence, good schedul-

ing schemes should be able to exploit the variability of channel conditions to achieve

higher utilization of wireless resources.

The performance (e.g., throughput) of a user depends on the channel condition it

experiences, hence, we will expect different performance when the same resource (e.g.,

time-slots) is assigned to different users. For example, consider a cell with two users.

Suppose that user 1 has a good channel, e.g., it is close to the base station. User 2

is at the edge of the cell, where the path-loss is significant and the user experiences

larger interference from adjacent cells. If the same amount of resource (power, time-

slots, etc.) is assigned, it is likely that the throughput of user 1 will be much larger

than that of user 2.
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2.3.3 Fairness

The notion of fairness in network engineering is totally different from any respected

definition of fairness from philosophy or the social sciences. The issue of fairness has

been an important component in the design of optimal network flow control since

it has been shown that there exist situations where a given scheme might optimize

network throughput while denying access to a particular (or a set of) user(s). Loosely

speaking, fairness can be thought of as a situation in which no individual class or

user is denied access to the network or overly penalized. The Nash equilibrium or

competitive equilibrium can be shown to be a point where no user is denied access

to the network and in particular if the performance objectives are the same then it

corresponds to equal throughput for each class [21]. However, fairness is difficult to

quantify in the absence of a proper framework. Fairness criteria may have different

implications in wireline and wireless networks. Next we will review several important

fairness concepts.

Max-min fairness

The objective of max-min fairness is to maximize the minimum performance of

each user can obtain under the practical constraints. Max-min fairness basically relies

on the following principle: In the domain of feasible resource allocation, one user’s

(user 1) performance cannot be increased without decreasing some other user’s (user

2) performance such that user 1’s performance is better than user 2’s. The compact-

ness and convexity of the feasible region imply that such a max-min solution exists

and is unique. However, the max-min fairness criterion gives an absolute priority to

the user with bad conditions, which in turn will reduce the system performance.

Proportional fairness

A fairness criterion which favors the users with bad conditions less emphatically,

is proportionally fair [22].

25



Definition 2.1 A feasible resource allocation vector xs for user s is proportionally

fair, if and only if for any other feasible resource allocation vector x′
s, the sum of

relative change is not positive, i.e.,

Σs
x′
s − xs

xs

≤ 0.

The physical meaning of proportional fairness is that an increase in the allocation of

network resources for one user must be compensated by corresponding decreases in

the allocations of one or more other users. Proportional fairness presents a tradeoff

between the overall throughput and each user’s throughput.

Utilitarian fairness

Utilitarian fairness means that each user gets a certain share of the overall sys-

tem capacity. Two extreme cases of utilitarian fairness is the system throughput

maximization and max-min throughput fairness. The only objective of the system

throughput maximization is to maximize the overall system throughput “greedily”

regardless the performance of each individual user. In other words, each user is guar-

anteed zero percent of the system throughput. In this case, a small number of users

with very good channel conditions may consume all the resource and starve other

users. The objective of the max-min throughput fairness is to maximize the mini-

mum throughput of all users. Let N be the number of users in the system. Each user

is guaranteed 1/N portion of the system throughput. This objective is “strictly” fair.

However, when there exist users with very poor channel conditions, to achieve max-

min throughput fairness will cause the significant system performance penalty [20].

Temporal resource-sharing fairness

Temporal fairness means that each user is guaranteed a certain portion of the re-

source, i.e., time-slots. Note that temporal resource-sharing fairness is different from

the utilitarian fairness. In wireline networks, when a certain amount of resource is

assigned to a user, it is equivalent to granting the user a certain amount of through-

put/performance value. However, the situation is different in wireless networks, where
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the amount of resource and the performance value are not directly related (though

closely correlated). By limiting the resource of each individual user, a user is guaran-

teed a certain throughput (based on its channel conditions). Resource consumed by

a user can be directly connected with the price the user should pay. Premium users

will obtain better services in a stochastic sense.

Minimum-performance guarantees

From a user’s viewpoint, a direct QoS is defined in terms of minimum-performance

guarantees. In this case, each user is guaranteed a minimum-performance require-

ment. This type of QoS constraint is desirable for users, but difficult for the system

where feasibility is a major concern.

2.3.4 Scheduling Schemes in Wireless Networks

Various scheduling schemes and associated performance problems have been widely

studied in wireline networks [23, 24]. However, as mentioned above, scheduling

schemes from the wireline domain do not directly carry over to wireless systems

because wireless channels have unique characteristics not found in wireline channels.

Transmission scheduling for wireless networks has recently attracted a lot of at-

tention. First, scheduling policies of wireline networks are extended to wireless net-

works, by taking into account the bursts of errors in wireless channels. To elaborate, a

wireless channel can be modeled by a two-state Markov chain also called the Gilbert-

Elliot model [25, 26]. In this model, the channel at any time is assumed to be either

in “good” state or “bad” state. Using such a channel model, various wireless fair

scheduling policies have been proposed [27–29]. These efforts provide various degrees

of performance guarantees, including short-term and long-term fairness, as well as

short-term and long-term throughput bounds. A good survey of these algorithms can

be found in [30]. The common limitation of these works is that channels are mod-

eled as either “good” or “bad,” which is too simple to characterize realistic wireless
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channels, especially for data services.

The IS-856 system has been developed at Qualcomm to provide a versatile wireless

Internet solution [31]. This system is also known as High Data Rate (HDR) [32]. The

first fundamental design choice of HDR is to separate the services by including two

interoperable modes: that is, 1x mode for voice and low-rate data and 1xEV mode

for high-rate data services. In 1xEV mode, a single user is served at any instant

(e.g, time-multiplexed CDMA); therefore avoiding power sharing and allocating the

entire access point (e.g., base station) power to the user being served. The IS-856

systems use the proportional fairness scheduler. An access point always transmit at

full power achieving very high peak rates for users that are in a good coverage area.

An access terminal, on a slot-by-slot basis (1.67 ms), measures the pilot strength, and

continuously requests an appropriate data rate based on the channel conditions.

In [33–35], the authors study scheduling algorithms for the transmission of data to

multiple users. Both delay and channel conditions are taken into account. Roughly

speaking, the algorithm can be described as:

argmax
i

ρiWiRi,

where Wi is the head-of-the-line packet delay for user queue i, Ri is the channel capac-

ity, and ρi is some constant. The proposed scheduler achieves throughput optimality,

defined as follows [33]: a scheduling algorithm is throughput optimal if it is able to

keep all queues stable if this is at all feasible to do with any scheduling algorithm.

Furthermore, the authors of [34] prove the following result: to maximize the system

throughput with minimum-throughput requirements, there exists some constant ci

such that one should choose a user with the maximum value of ciRi. In these papers,

however, there is no discussion on how to obtain the values of ci or how feasibility

plays a role. Furthermore, in [36, 37], the authors study an exponential rule:

argmax
i

ρiRi exp

(
aiWi

β +W
η

)
,
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where Wi is the queue length (or waiting time), and W is the average queue length

(or waiting time) over users. Using the exponential rule, when all queues are filled to

similar capacity, the channel condition plays a significant part. On the other hand, if

one queue is much longer than others, then the queue length becomes dominant and

the longer queue gets a higher chance to transmit. Hence, this algorithm balances

the tradeoff between queue length and throughput. The exponential rule is also

throughput optimal.

The authors of [38] investigate a scheduling algorithm to maximize the minimum

weighted throughput of users. The objective function is given by

maximize min
i

lim
N→∞

E

(
N∑
t=1

1{i}Ri(t)

)
,

where Ri(t) is the rate of user i at time t, 1{i} = 1 if time-slot t is assigned to user i,

and zero otherwise. The optimal solution is

argmax
i

ciRi(t),

where ci can be interpreted as the shadow price or reward, whose value depends on

the distributions of Ri. The authors also propose an adaptive algorithm to determine

the parameters ci, and study the transient behavior.

In [39], the authors study scheduling problems for real-time traffic with fixed

deadlines. Scheduling in a time-slotted system is considered; the capacity of the

channel is time-varying; and the BS can estimate the channel of the current time-

slot. The users achieve different QoS based on the unit prices that they are willing

to pay. The objective of the base station is to maximize the revenue of the base

station. The scheduling is preemptive and the base station obtains a partial revenue

if a request is served partially. The unit price of a request is a non-increasing function

of the time. The offline optimal scheduling scheme is shown to be NP-complete if

only one user can be assigned to a time-slot. The authors then propose a greedy

algorithm that chooses the request with the largest revenue in the current time-slot

29



to serve. The authors show that the greedy algorithm is 1/2 competitive against the

offline optimal algorithm. Further, they show that no deterministic online algorithm

can achieve a competitive ratio higher than 1/2. (This does not mean that the greedy

algorithm will always do better than other deterministic online algorithms.) Then

the authors extend the work to various scenarios such as multi-carrier case, the case

where a single slot can be shared by several users, and the case where the price is a

non-increasing function of the total data that has been served to this request.

Downlink scheduling in CDMA systems for data transmission is studied in [40].

The work considers a performance metric called “stretch”, which is defined as the

delay experienced by a packet normalized by its minimum achievable delay. The

stretch can be considered as normalized delay. A near optimal, offline, polynomial

time algorithm is proposed to minimize the maximum stretch under the assumption

of continuous rates, and various online algorithms for continuous/discrete-rates are

studied.

In [41], the authors investigate scheduling algorithms for uplink scheduling in

CDMA. They assume that the system operates in TD/CDMA mode, with time-

slotted scheduling of transmissions, assisted by periodic feedback of channel and/or

congestion information through control channels. One of their observations is that it

is advantageous on the uplink to schedule “strong” users one-at-a-time, and “weak”

users in larger groups. This contrasts with the downlink where one-at-a-time trans-

mission for all users has been shown to be the preferred mode.

In [42], the authors study transmission schemes for time-varying wireless chan-

nels with partial state information. A finite-state Markov chain is used to model

the channel, and channel information is only available at the end of the time-slot if

the transmission occurs during the time-slot. It is assumed the channel transmis-

sion matrix is unknown. The objective is to minimize a discounted infinite-horizon

cost function, which can be used to indicate the balance between power cost and
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throughput. An example of the cost function is:

C(g, s) =

 c0 s = 0

c1s+ c2Pe(gs) s > 0,

where g is the state, s is the transmission power, and Pe is the error probability. The

resulting optimal solution is a threshold back-off scheme: suppose a packet transmis-

sion occurs during the last time-slot and the channel state is known. If the current

minimum cost is greater than c0 (no transmission cost, penalizes a scheme for placing

too much emphasis on energy efficiency), then the system keeps silent for a certain

number of time-slots, and then resumes transmission. The optimal transmission power

is the power that minimizes the current cost function. The paper studies the effects

of channel memory with partial state information, while the result may depend on

the accuracy of the POMDP (Partially Observable Markov Decision Process) channel

models and the estimation of transmission matrix.

Opportunistic scheduling exploits the channel fluctuations of users. Hence, the

larger the channel fluctuation, the higher the scheduling gain. Thus a natural ques-

tion to ask is what we should do in environments with little scattering and/or slow

fading. In [43], the authors use multiple transmission antennas to “induce” channel

fluctuations, and thus exploit multiuser diversity. Consider a static channel (static

in the time-scale of interest) and N multiple transmission antennas. Let hni(t) be

the channel gain from antenna n to user i at time t. At time t, x(t) is multiplied

by
√

an(t)e
jθn(t) and transmitted at antenna n, i = 1; · · · ;N , where

∑N
n=1 an(t) = 1

to preserve the total transmission power. Here, an(t) and θn(t) are random variables

used to “induce” channel fluctuation. Each user feeds back the overall SINR of its

“induced” channel to the base station. The base station selects the user with a largest

peak value of SINR to transmit according to a certain scheduling rule. When there

are a large number of users, the base station can always find a user with its peak

SINR to transmit. Hence, the system performance is asymptotically as good as a
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solution with an optimal beam-forming configuration, while using only the overall

SINR as feedback. Note that the optimal beam-forming configuration is: an = |hni|2∑N
n=1 |hni|2

n = 1, · · · , N

θn = − arg(hni) n = 1, · · · , N,

which requires individual channel information (amplitude and phase) from each an-

tenna.

However, the potential to transmit at higher data rates opportunistically also

introduces an important tradeoff between wireless resource efficiency and level of

satisfaction among individual users (fairness). For example, allowing only users close

to the base station to transmit at high transmission rate may result in very high

throughput, but sacrifice the transmission of other users. Such a scheme cannot

satisfy the increasing demand for QoS provisioning in broadband wireless networks.

To solve this problem, Liu et al. described a framework for opportunistic schedul-

ing to exploit the multiuser diversity while at the same time satisfying three long-

term QoS/fairness constraints—temporal fairness, utilitarian fairness, and minimum-

performance guarantees [20, 44–46].

Opportunistic scheduling exploits the variation of channel conditions, and thus

provides an additional degree of freedom in the time domain. Moreover, it can be

coupled with other resource management mechanisms to further increase network

performance. In the literature, opportunistic scheduling is also referred as multiuser

diversity [43]. Occasionally, these two terms may have slightly different meanings.

An example is the case where there is only one user in the system and the objective

is to minimize transmission power while maintaining a certain data rate.

2.4 Cross Layer Design

It is well known that the success of today’s Internet has been based on indepen-

dent and transparent protocol design in different layers, a traditional network design
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approach that defines a stack of protocol layers. According to the Open System In-

terconnection (OSI) reference model, a communication system can be divided into

seven layers from top to bottom: Application, Presentation, Session, Transport, Net-

work, Data Link, and Physical Layers. Using the services provided by the lower layer,

each protocol layer deals with a specific task and provides transparent service to the

layer above it. Such an architecture allows the flexibility to modify or change the

techniques in a protocol layer without significant impact on overall system design.

However, this strict layering architecture may not be efficient for wireless networks

when heterogeneous traffic is served over a wireless channel with limited and time

varying capacity and high BER [47]. Efficiently utilizing the scarce radio resources

with QoS provisioning requires a cross-layer joint design and optimization approach.

Better performance can be obtained from information exchanges across protocol lay-

ers [48]. In this section, we briefly discuss three kinds of cross layer designs that are

of great research interests recently.

MAC layer and PHY layer

The media access control (MAC) layer is a sublayer of data link layer. It provides

addressing and channel access control mechanisms that make it possible for several

terminals or network nodes to communicate within a network.

The physical (PHY) layer deals with signals, and provides a service to communi-

cate bits. The concern of PHY layer is to transmit raw bits over a communication

channel. The design issues largely deal with mechanical, electrical, and timing inter-

faces, and the physical transmission medium, which lies below the physical layer.

Because wireless channels are shared for different users, one user’s transmission

power is the interference for other users. Moreover in order to fully utilize the mul-

tiuser diversity, different users’ rates should be controlled in such a way to optimize

the overall system performance. So how to consider the resource allocation such as
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rate adaptation between MAC layer and PHY layer is essential for wireless commu-

nication design. Most of our research works are focused on this type of cross layer

design.

Application layer, MAC layer, and PHY layer

The application layer contains a variety of protocols that are commonly needed by

users. The most popular application payloads for wireless networks are voice, video,

and data. For voice payload, the concern is subjective perception which is affected

by the transmission delay and source encoder rate. So MAC layer and PHY layer

controls are important means to guarantee the recovered voice packet qualities. For

video transmission, the transmission is very bursty because of different frames and

different video contents. The variable rate transmission over the lower layers can

substantially improve the system performances. For data transmission, the reliability

reception of data streams is the most important design issue. Therefore, powerful

channel coding or ARQ is necessary for this type of application.

Network layer and PHY layer

The network layer determines how packets are transferred from source to desti-

nation, which is called routing. A wireless ad hoc network consists of a collection

of wireless nodes without a fixed infrastructure. Each node in the network serves

as a router that forwards packets for other nodes. Each flow from the source to the

destination traverses multiple hops of wireless links. Compared with wireline net-

works where flows contend only at the router with other simultaneous flows through

the same router, the unique characteristics of multi-hop wireless networks show that,

data stream flows also compete for shared channel bandwidth if they are within the

transmission ranges of each other. This presents the problem of designing an appro-

priate topology aware resource allocation algorithm, so that contending multi-hop

flows share the scarce channel capacity, while the total system performance is opti-

mized [49].
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2.5 Markov Decision Processes

Problems of sequential decision making under uncertainty are common in manufac-

turing, computer and communication systems. Many such decision-making problems

can be formulated as Markov Decision Processes (MDPs). In these systems, an un-

derlying Markov chain specifies the behavior of the system. However, the chain has

the property that its transition law depends on the action chosen by the decision

maker as well as the state of the system at each time step. MDPs originated in the

study of stochastic optimal control and operations research [50] and have remained

a key problem in those areas ever since. More recently, MDP models have gained

recognition in such diverse fields as ecology, economics, artificial intelligence (AI),

and communication engineering.

2.5.1 Markov Decision Process Formulation

A Markov Decision Process is a framework containing states, actions, rewards (or

costs), transition probabilities and the decision horizon for the problem of optimizing

a stochastic discrete-time dynamic system. The dynamic system equation is

xt+1 = ft(xt, ut, wt), t = 0, 1, · · · , T,

where t indexes a time epoch; xt is the state of the system; ut is the action to be

chosen at time t; wt is a random disturbance which is characterized by a conditional

probability distribution P (·|xt, ut); and T is the decision horizon. We denote the set

of possible system states by S and the set of allowable actions in state i ∈ S by

U(i). Usually, we can assume S, U(i), and P (·|xt, ut) do not vary with t. We further

assume that the sets S and U(i) are finite sets, where S consists of n states denoted

by 0, 1, . . . , n− 1.

If, at some time t, the system is in state xt = i and action ut = u is applied, we

incur a stage reward g(xt, ut) = g(i, u), and the system moves to state xt+1 = j with
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probability pij(u) = P (xt+1 = j|xt = i, ut = u). pij(u) must be given a priori or may

be calculated from the system equation and the known probability distribution of the

random disturbance. g(i, u) is assumed bounded.

Consider the infinite horizon expected total discounted reward problem, where

there is a discount factor less than one. Given an initial state x0, we want to find

a policy π = {µ0, µ1, . . .}, where µt : S → U , µt(i) ∈ U(i), for all i and t, that

maximizes the expected total discounted reward function

Jπ(i) = lim
T→∞

Eπ

[
T−1∑
t=0

αtg(xt, µt(xt))

∣∣∣∣∣X0 = i

]
,

where Eπ represents expectation given that a policy π is employed, α is the discount

factor with 0 < α < 1. A stationary policy is an admissible policy of the form

π = {µ, µ, . . .}.

The methodology for solving MDPs is dynamic programming, based on Bellman’s

“Principle of Optimality”: “An optimal policy has the property that whatever the ini-

tial state and initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision” [3]. This principle is

often expressed by a system of equations called Bellman’s optimality equations.

Therefore, under certain assumptions, the optimal expected reward-to-go function

satisfies the Bellman’s optimality equations

Jπ∗(i) = max
u∈U(i)

[
g(i, u) + α

n−1∑
j=0

pij(u)Jπ∗(j)

]
,

and in fact there is a unique solution of this equation. The optimal policy is implicitly

specified by the above Bellman’s optimality equation through the expression

π∗(i) = argmax
u∈U(i)

[
g(i, u) + α

n−1∑
j=0

pij(u)Jπ∗(j)

]
.

The above two equations can be used to determine the optimal policy and its expected

reward.
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Two basic dynamic programming methodologies for solving infinite horizon MDPs

are policy iteration and value iteration. Policy iteration includes a sequence of policy

evaluation and policy improvement at each iteration. For problems with a total

reward criterion, each policy evaluation corresponds to calculating the expected long-

term reward (reward-to-go) from each state by solving linear equations with the same

number of equations as the number of states; for problems with an average reward

criterion, the evaluated rewards are the average rewards and differential rewards,

instead of reward-to-go. Each policy improvement step involves choosing an action for

each state, where the action is “greedy” with respect to the evaluated rewards. Value

iteration calculates successively the optimal reward-to-go for total reward problems,

or the optimal average reward and differential rewards, by turning the optimality

equations into update rules; the process continues until the difference between two

sequential values of the evaluated rewards is within some error bound.

2.5.2 Approximate Dynamic Programming

Both policy iteration and value iteration work well when an MDP model has a small

or moderate size, measured by the number of states and number of actions. In many

systems, however, MDP models are very large. When the number of states is very

large, there would be heavy storage and computational burdens due to the large num-

ber of reward-to-go functions and the large size of the transition probability matrix

in the MDP model. As the number of states increases linearly, the computational

requirement increases exponentially, which leads to the so-called “curse of dimension-

ality”. When there are a large number of actions available in each state, the greedy

search algorithm may lead to another form of “curse of dimensionality”.

This has motivated a broad class of approximation methods that involve more

tractable computation, but yield suboptimal policies, which we refer to as approximate
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dynamic programming (ADP) methods [51]. It is based on replacing the reward-to-

go function Jπ in the right-hand side of the Bellman’s optimality equation by an

approximation J̃π. There are two categories of approaches for selecting or calculating

the functions J̃π:

Explicit reward-to-go approximation

Here J̃π is computed offline in one of a number of ways. One approach is to solve

(optimally) a related simpler problem, obtained for example by state aggregation or by

some form of enforced decomposition. The functions J̃π are derived from the optimal

reward-to-go functions of the simpler problem. Another approach is by introducing a

parametric approximation architecture, such as a neural network or a weighted sum of

basis functions or features. The idea here is to approximate the optimal reward-to-go

Jπ with a function of a given parametric form J̃π(i) = Ĵπ(i, ri), where ri is a parameter

vector. This vector is tuned by some form of heuristic method (as for example in

computer chess) or some systematic method (for example, of the type provided by

the neuro-dynamic programming and reinforcement learning methodologies, such as

temporal difference and Q-learning methods [51]).

Implicit reward-to-go approximation

Here the values of J̃π are computed online as needed, via some computation of

future rewards, starting from these states (optimal or suboptimal/heuristic, with or

without a rolling horizon). We will focus on three popular schemes.

Rollout, where the reward-to-go of a suboptimal/heuristic policy (called the base

policy) is used as J̃π. This reward is computed as necessary in whatever from

is most convenient, including by online simulation. The suboptimal policy ob-

tained by rollout is a one-step lookahead policy, with the optimal value function

approximated by the value function of a known base policy π. The salient feature

of the rollout algorithm is its reward-improvement property : the rollout policy

is no worse than the performance of the base policy. In many cases, the rollout
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policy is substantially better than the base policy [52,53].

Open-loop feedback control (OLFC), where an optimal open-loop computation

is used, starting from the state i (in the case of perfect state information) or the

conditional probability distribution of the state (in the case of imperfect state

information).

Model predictive control (MPC), where an optimal control computation is used

in conjunction with a rolling horizon. This computation is deterministic, possi-

bly based on a simplification of the original problem via certainty equivalence.

2.5.3 Constrained Markov Decision Processes

The MDPs discussed above consider only a single objective (criteria). On the other

hand, there might exist several possibly conflicting objectives requiring a strategy

that mediates between them. This is a common situation in communication networks,

project management, robot control, and etc. Instead of introducing a single utility

that is to be maximized (or cost to be minimized) that would be some function (e.g.

some weighted sum) of the different objectives, we consider a situation where one

type of reward is to be maximized while keeping the other types of rewards above

some given bounds. Therefore, our control problem can be viewed as a constrained

optimization problem over a given class of policies [54–57].

A constrained Markov Decision Process (CMDP) is similar to a Markov Decision

Process, with the difference that the policies are now these that verify additional

constraints. That is, to determine the policy π that:

max
π

Jπ(i) subject to Dk
π(i) ≥ Vk, k = 1, . . . , K,

where Vk, k = 1, . . . , K are some given constants; Jπ and Dk
π, k = 1, . . . , K are some

reward criteria related to the policy π.
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Several methods have been explored to solve the above CMDPs. The first one,

based on on a Linear Program (LP), was introduced by Derman [54]. It is based on

the fact that a CMDP can be shown to be equivalent to a LP, whose decision variables

correspond to the occupation measure. There is a one-to-one correspondence between

the optimal solutions of the LP and the optimal policies of the CMDP. This method is

quite efficient in terms of complexity of computations, and in the amount of decision

variables, and hence memory requirements for calculating the value of the CMDPs.

A second method was introduced by Beutler and Ross [58] for the case of a single

constraint, and is based on a Lagrangian approach. It allowed them to characterize

the structure of optimal policies for the constrained problem, but it does not provide

explicit computational tools. A third method, also based on an LP, was introduced by

Altman and Shwartz [59] and further studied by Ross [60]. It is based on some mixing

(by time-sharing) of stationary deterministic policies (these are policies that depend

only on the current state and do not require randomization). A similar LP approach

was later introduced by Feinberg [57] for finite MDPs (finite state and action spaces),

where the mixing is done in a way that equivalent to having an initial randomization

between stationary deterministic policies. These approaches require in general a huge

number of decision variables. However, there are special applications where this LP

can have an extremely efficient solution.

2.6 Related Work

Next generation wireless networks, which support high-speed packet data while pro-

viding heterogeneous QoS guarantees, require flexible and efficient radio resource

scheduling schemes. Transmission scheduling for wireless networks has attracted a

lot of recent attention [27–30,61]. In contrast to wireline networks, one of the funda-

mental characteristics of wireless networks is the time-varying and location-dependent

channel conditions due to multipath fading.
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From an information-theoretic viewpoint, Knopp and Humblet showed that the

system capacity is maximized by exploiting inherent multiuser diversity gain in the

wireless channel [62]. The basic idea is to schedule a single user with the best instan-

taneous channel condition to transmit at any one time. Technology based on this idea

has already been implemented in the current 3G systems: HDR [32] and high-speed

downlink packet access (HSDPA) [63].

Good scheduling schemes in wireless networks should opportunistically seek to

exploit the time-varying channel conditions to improve spectrum efficiency thereby

achieving multiuser diversity gain. However, the potential to transmit at higher

data rates opportunistically also introduces an important tradeoff between wireless

resource efficiency and level of satisfaction among individual users (fairness). For

example, allowing only users close to the base station to transmit at high transmis-

sion rate may result in very high throughput, but sacrifice the transmission of other

users. Such a scheme cannot satisfy the increasing demand for QoS provisioning in

broadband wireless networks.

To solve this problem, Liu et al. described a framework for opportunistic schedul-

ing to exploit the multiuser diversity while at the same time satisfying three long-

term QoS/fairness constraints—temporal fairness, utilitarian fairness, and minimum-

performance guarantees [44–46]. In that work, only a single user can transmit at each

scheduling time. The authors of [62] show that this is optimal for single-channel sys-

tems such as TDMA. However, the same is not the case for multiple-channel systems.

Opportunistic scheduling exploits the channel fluctuations of users. In [43], the

authors use multiple “dumb” antennas to “induce” channel fluctuations, and thus

exploit multiuser diversity in a slow fading environment. The authors of [64] show

that with multiple antennas, transmitting to a carefully chosen subset of users has

superior performance.

The authors of [27, 28] extend the scheduling policies for wireline networks to

41



wireless networks to provide short-term and long-term fairness bounds. However,

they model a channel as being either “good” or “bad,” which may be too simple

in some situations. In [34, 35, 65], the authors study wireless scheduling algorithms

when both delay and channel conditions are taken into account. Scheduling with

short-term fairness constraints is also discussed in [44, 66]. In [32, 67], the authors

present a scheduling scheme for the Qualcomm IS-856 (also known as HDR: High

Data Rate) system. Their scheduling scheme exploits time-varying channel conditions

while satisfying a certain fairness constraint known as proportional fairness [22]. For

a detailed survey of wireless scheduling techniques, see Section 2.3.4.

OFDM is a popular multiaccess scheme widely used in DVB, wireless LANs (e.g.,

802.16, ETSI HIPERLAN/2), and ultra wideband (UWB) systems [13]. It is also a

promising modulation scheme of choice proposed for many future cellular networks

such as cognitive radio systems [14,15]. To enhance spectrum efficiency, the spectrum

pooling system allows a license owner to share underutilized licensed spectrum with

a secondary wireless system during its idle times [15]. A preferred transmission mode

of the secondary system is OFDM due to its inherent flexibility. In [68], the authors

discuss the desired properties in designing physical layers of cognitive radio systems

and claim that the modulation scheme based on OFDM is a natural approach that

satisfies the desired properties.

The resource management problem in OFDM systems has attracted a lot of re-

search interest [69, 70]. In [69], the authors propose an algorithm to minimize the

total transmission power with minimum-rate constraints for users. Specifically, the

algorithm allocates a set of subcarriers to each user and then determines the number

of bits and transmission power on each subcarrier. In [70], the authors study the prob-

lem of dynamic subcarrier and power allocation with the objective to maximize the

minimum of the users’ data rates subject to a total transmission power constraint. All

these studies show that dynamic resource allocation (in terms of bit, subcarrier, and
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power) schemes can achieve significant performance gains over traditional static allo-

cations (such as TDMA-OFDM and FDMA-OFDM). However, none of the schemes

described above exploit multiuser diversity. For delay-insensitive data service, we can

expect to reap long-term performance benefits by exploiting multiuser diversity.

Recently, there has been significant interest in opportunistic scheduling and fair-

ness issues for multiple-channel systems [71–75]. In [73], the authors consider a total-

throughput maximization problem with deterministic and probabilistic constraints for

multiple-channel systems. In [75], the authors consider opportunistic fair scheduling

in downlink TDMA systems employing multiple transmit antennas and beamforming.

In [76], the authors introduce cross-layer optimization for OFDM wireless net-

works. The interaction between the physical (PHY) layer and media access control

(MAC) layer is exploited to balance the efficiency and fairness of wireless resource

allocation. The authors consider proportional and max-min fairness.

Although there has been considerable recent efforts on proportional fairness

scheduling for multiple-channel systems [43, 77, 78], to the best of our knowledge

there is currently no work considering multiuser OFDM systems with the three QoS

fairness constraints we mentioned above. Therefore, in Chapter 3, we propose an

opportunistic scheduling framework for multiuser OFDM systems under three long-

term QoS/fairness constraints—temporal fairness, utilitarian fairness, and minimum-

performance guarantees. We build on Liu’s work by going from the single-channel to

the multiple-channel case. We show how the system performance can be optimized

by serving multiple users simultaneously over the different subcarriers.

Practical radio channels are commonly modeled as multipath Rayleigh fading

channels, which are correlated random processes. However, much of the prior work

on scheduling, including [44–46], is based on the relatively simple memoryless channel

models. Finite-state Markov channel (FSMC) models have been found to be accurate

in modeling such channels with memory [79]. When channel memory is taken into
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consideration, the existing work on memoryless channels does not apply directly.

Also, much of the previous work focused on “elastic” traffic [22], and assumed that

the system has infinite backlogged data queues, which is not always an appropriate

assumption. This assumption makes it impossible to consider the data arrival queues

and further evaluate the system delay performance.

The widely studied MDPs and the associated dynamic programming methodology

provide us with a general framework for posing and analyzing problems of sequential

decision making under uncertainty [80–82]. Constrained Markov decision processes

have been studied mostly via linear programming and Lagrangian methods [54–57].

However, the present dynamic programming approach does not directly treat long-

term fairness constraints—we show later how such constraints represent the users’

fairness guarantees.

In [60], the authors considered a Markov decision problem to maximize the long-

run average reward subject to multiple long-run average cost constraints. A linear

program produces the optimal policy with limited randomization. In [83], the au-

thors considered controlled Markov models with total discounted expected losses.

They used a dynamic programming approach to find optimal admissible strategies,

where admissibility means meeting a set of given constraint inequalities. The solu-

tion in their approach is a function of a probability distribution and the admissible

expected loss, and randomization is allowed. In [84], the authors derived the dynamic

programming equations for discounted cost minimization problems subject to a sin-

gle identically structured constraint. The equations allowed them to characterize the

contraction-type structure of optimal policies, but the authors did not provide exact

solution schemes and explicit computational tools for their approximation.

On the other hand, because of the notorious “curse of dimensionality,” even ex-

act solution schemes, such as value iteration and policy iteration, often cannot be

applied directly in practice to solve MDP problems. This has motivated a broad
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class of approximation methods that involve more tractable computation, but yield

suboptimal policies, which we refer to as approximate dynamic programming (ADP)

methods [51]. For example, Bertsekas and Castanon proposed an approximate ap-

proach called rollout for deterministic and stochastic problems that are usually com-

putationally intractable [52,53].
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CHAPTER 3

OPPORTUNISTIC SCHEDULING FOR OFDM

SYSTEMS WITH FAIRNESS CONSTRAINTS

In this chapter, we consider the problem of downlink scheduling for OFDM sys-

tems.Opportunistic scheduling exploits the time-varying, location-dependent channel

conditions to achieve multiuser diversity. Previous work in this area has focused on

single-channel systems. Multiuser OFDM allows multiple users to transmit simul-

taneously over multiple channels. Here, we develop a rigorous framework to study

opportunistic scheduling in multiuser OFDM systems. We derive optimal oppor-

tunistic scheduling policies under three QoS/fairness constraints for multiuser OFDM

systems—temporal fairness, utilitarian fairness, and minimum-performance guaran-

tees. Our scheduler decides not only which time-slot, but also which subcarrier to

allocate to each user. Implementing these optimal policies involves solving a maximal

bipartite matching problem at each scheduling time. To solve this problem efficiently,

we apply a modified Hungarian algorithm and a relatively simple suboptimal algo-

rithm. At last, we compare our schemes with non-opportunistic schemes via numerical

experiments.

This chapter is organized as follows. In Section 3.1, we give the motivation for

our work. The system model is described in Section 3.2. In Section 3.3, we derive

opportunistic scheduling policies under various fairness constraints, and prove their
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optimality. In Section 3.4, we address some implementation issues, including control

parameter estimation and the assignment problem that arises in implementing these

policies. An optimal algorithm and an efficient suboptimal algorithm are proposed

here. In Section 3.5, we present the numerical results to illustrate the performance of

our policies. Finally, concluding remarks are given in Section 3.6.

3.1 Motivation

Emerging broadband wireless networks which support high-speed packet data with

different quality of service (QoS) demand more flexible and efficient use of the scarce

spectral resource. In contrast to wireline networks, one of the fundamental char-

acteristics of wireless networks is the time-varying and location-dependent channel

conditions due to multipath fading. From an information-theoretic viewpoint, Knopp

and Humblet showed that the system capacity can be maximized by exploiting in-

herent multiuser diversity in the wireless channel [62]. The basic idea is to schedule

a single user with the best instantaneous channel condition to transmit at any one

time. The technology has already been implemented in the current 3G systems, i.e.,

1xEV-DO [31] and high-speed downlink packet access (HSDPA) [63]. The idea has

also recently been adopted in cognitive radio systems which are novel intelligent wire-

less communication systems providing highly reliable and efficient communications by

exploiting unused radio spectrum [85,86].

OFDM is a popular multiaccess scheme widely used in DVB, wireless LANs (e.g.,

802.16, ETSI HIPERLAN/2), and UWB systems [13]. It is also a promising mod-

ulation scheme of choice proposed for many future cellular networks such as cogni-

tive radio systems [14, 15]. OFDM divides the total bandwidth into many narrow-

band orthogonal subcarriers, which are transmitted in parallel, to combat frequency-

selective fading and achieve higher spectral utilization. OFDMA, a multiuser version
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of OFDM, allows multiple users to transmit simultaneously on the different subcar-

riers [16].

Good scheduling schemes in wireless networks should opportunistically seek to

exploit the time-varying channel conditions to improve spectrum efficiency thereby

achieving multiuser diversity gain. However, the potential to transmit at higher

data rates opportunistically also introduces an important tradeoff between wireless

resource efficiency and level of satisfaction among individual users (fairness). For

example, allowing only users close to the base station to transmit at high transmis-

sion rate may result in very high throughput, but sacrifice the transmission of other

users. Such a scheme cannot satisfy the increasing demand for QoS provisioning in

broadband wireless networks.

To solve this problem, Liu et al. described a framework for opportunistic schedul-

ing to exploit the multiuser diversity while at the same time satisfying three long-term

QoS/fairness constraints [44–46]. In that work, only a single user can transmit at each

scheduling time. The authors of [62] show that this is optimal for single-channel sys-

tems such as TDMA. However, the same is not the case for multiple-channel systems.

In this chapter, we propose an opportunistic scheduling framework for multiuser

OFDM systems. We build on Liu’s work by going from the single-channel to the

multiple-channel case. We show how the system performance can be optimized by

serving multiple users simultaneously over the different subcarriers. We focus on the

downlink of an OFDM system. We derive our opportunistic scheduling policies under

three long-term QoS/fairness constraints—temporal fairness, utilitarian fairness, and

minimum-performance guarantees, which are similar in form to those of [46], but

adapted to the setting of multiuser OFDM systems. We also state optimality condi-

tions under each of these constraints. In particular, our scheduler decides not only

which time-slot, but also which subcarrier to allocate to each user under the given

QoS/fairness constraints. A stochastic approximation algorithm is used to calculate
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Figure 3.1: Downlink scheduling over multiuser OFDM system

the control parameters online in the policies. To search over the optimal user subsets

efficiently, we apply a modified bipartite matching algorithm. We also develop an effi-

cient, low-complexity suboptimal algorithm—our experimental results illustrate that

this algorithm achieves near-optimal performance.

3.2 System Model

In this section, we describe the system model, assumptions, notation, and formulation

of the scheduling problem.

The architecture of a downlink data scheduler for a single-cell multiuser OFDM

system is depicted in Figure 3.1. There is a base station (transmitter) with a single an-

tenna communicating with N mobile users (receivers). Each user has different channel

conditions over different subcarriers. By inserting pilot symbols in the downlink, the

users can effectively estimate the channels. Every user should report its channel-state

information over every subcarrier to the base station. All the channel-state informa-

tion is sent to the subcarrier and bit allocation scheduler in the base station through
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feedback channels from all mobile users. The scheduling decision made by the sched-

uler is conveyed to the OFDM transmitter. The transmitter then assigns different

transmission rates to scheduled users on corresponding subcarriers. The scheduler

makes decisions once every time-slot based on the channel-state information and the

control parameters for fairness guarantees.

We assume that the base station knows the perfect channel-state information for

each user over each subcarrier. The channel conditions for different users are usually

independently varying in a multiuser system. Owing to frequency-selective fading,

one user may experience deep fading in some subcarriers, but relatively good in other

subcarriers. By dynamically assigning users to favorable subcarriers, the overall per-

formance of the network can be increased from the multiuser diversity. In practice,

requiring “perfect” channel-state information results in significant feedback overhead

burden, which might be difficult to implement. We can view our current work as

providing fundamental performance bounds on what is achievable with channel feed-

back.

The OFDM signaling is time-slotted. The length of a time-slot is fixed and the

channel does not vary significantly during a time-slot. The length of a time-slot in

the scheduling policy can be different from an actual time-slot in the physical layer.

It depends on how fast the channel conditions vary and how fast we want to track

such changes.

We assume that there is always data for each user to receive, i.e., the system

has infinite backlogged data queues. We also assume that the transmission power

is uniformly allocated to all subcarriers. In principle, performance can be improved

further by allocating a different power level to each subcarrier. In a system with

a large number of users, this improvement could be marginal because of statistical

effects [43].

In this work, we will focus on scenarios with large numbers of users, or heavy-traffic
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systems, where the number of users is greater than the number of available OFDM

subcarriers. These scenarios can be regarded as an extreme situation for OFDM. But

it is important to determine the impact of a large number of users, such as in [43].

Our goal is to maximize the system performance by exploiting the time-varying and

frequency-varying channel conditions while maintaining certain QoS/fairness con-

straints.

Let i = 1, . . . , N be the index of users, and k = 1, . . . , K be the index of sub-

carriers. Let ωt
i,k be the instantaneous performance value that would be experienced

by user i if it were scheduled to transmit over subcarrier k at time-slot t. The ωt
i,k

comprise a N × K matrix, denoted as ωt. Usually, the better the channel condi-

tion of user i over subcarrier k, the larger the value of ωt
i,k. Throughput (in term of

data rate bits/sec) is the most straightforward form of a time-varying and channel-

condition-dependent performance measure. For convenience, the reader can think of

throughput as the performance measure in this chapter. However, our formulation

applies in general.

Let Ā = (A1, A2, . . . , AK) represent a scheduling action, which is a vector of the

indices of the users scheduled over allK subcarriers. The decision rule πt(·), which is a

function of ωt, specifies which action be chosen, i.e., πt(ωt) = Āt = (At
1, A

t
2, . . . , A

t
K),

where the value of At
k is the index of the user scheduled over subcarrier k at time

t. We call π(·) = {π1(·), π2(·), . . . , πt(·), . . .} ∈ Π a policy, where Π is the set of all

scheduling polices. Note that a policy may involve a time-varying rule for deciding

scheduling actions. We are only interested in so-called feasible policies, those that

satisfy specific QoS/fairness requirements (described in the next section).

Let UT
i (π) be the average throughput of user i up to time T , and RT

i (π) the
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average resource consumption of user i up to time T , i.e.,

UT
i (π) =

1

T

T∑
t=1

K∑
k=1

ωt
i,k1{At

k=i}, i = 1, . . . , N,

RT
i (π) =

1

T

T∑
t=1

K∑
k=1

1{At
k=i}, i = 1, . . . , N,

where 1A is the indicator function of the event A, i.e., 1A takes value 1 if A occurs,

and is 0 otherwise.

Let UT (π) =
∑N

i=1 U
T
i (π); i.e., U

T (π) is the average overall throughput up to time

T . Then we define

U(π) = lim sup
T→∞

UT (π),

which can be considered as the asymptotic best-case system performance of policy π.

Using the above notation, our goal can be formally stated as: find a feasible

policy π that maximizes the system performance U(π) while maintaining certain

QoS/fairness constraints. In the following section, we derive optimal policies for three

categories of scheduling problems, each with a unique QoS/fairness requirement.

3.3 Opportunistic Scheduling under Various Fair-

ness Constraints

Good scheduling schemes should be able to exploit the time-varying channel condi-

tions of users to achieve higher utilization of wireless resources, while at the same

time guarantee some level of fairness among users. Fairness is central to scheduling

problems in wireless systems. Without a good fairness criterion, the system perfor-

mance can be trivially optimized, but might prevent some users from accessing the

network resource. In this section, we will study scheduling problems under three fair-

ness criteria for multiuser OFDM systems—temporal fairness, utilitarian fairness, and

minimum-performance guarantees. These categories of fairness are adopted from [46]

and are extended to multiuser OFDM systems. It turns out that the form of the

optimal policies here bear a resemblance to those of [46].
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3.3.1 Temporal Fairness Scheduling

A natural fairness criterion is to give each user a certain long-term fraction of time,

because time is the basic resource shared among users. The problem of multiuser

OFDM scheduling with temporal fairness can be expressed as:

max
π∈Π

U(π) (3.1)

subject to lim inf
T→∞

RT
i (π) ≥ ri, i = 1, . . . , N,

where ri denotes the minimum time-fraction that should be assigned to user i, with

ri ≥ 0 and
∑N

i=1 ri ≤ 1. Recall that RT
i (π) is the average resource consumption of

user i up to time T . The ris are predetermined and serve as the prespecified fairness

constraints. The value of ri denotes the minimum fraction of time that user i should

transmit over all the subcarriers in the long run, which is usually determined by the

user’s class, the price paid by the user, etc.

Define the policy π∗ as follows:

π∗(ωt) = argmax
Āt

{
N∑
i=1

K∑
k=1

(
ωt
i,k + v∗i

)
1{At

k=i}

}
, (3.2)

where the control parameters v∗i are chosen such that:

1. v∗i ≥ 0, ∀i;

2. lim infT→∞RT
i (π

∗) ≥ ri, ∀i;

3. If lim infT→∞ RT
i (π

∗) > ri, then v∗i = 0, ∀i.

Similar to [44], we can think of v⃗∗ = (v∗1, . . . , v
∗
N) in (3.2) as an “offset” or “thresh-

old” to satisfy the temporal fairness constraints. Under this constraint, the scheduling

policy schedules the “relatively-best” subset of users to transmit. The subset of users

selected by action Āt is “relatively-best” if
∑N

i=1

∑K
k=1

(
ωt
i,k + v∗i

)
1{At

k=i} is maximum

over all actions. If v∗i > 0, then user i is an “unfortunate” user, i.e., the channel con-

ditions it experiences over all subcarriers are relative poor. (For example, it is far
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from the base station.) Hence, it has to take advantage of other users (e.g., users

with v∗i = 0) to satisfy its fairness requirement. But to maximize the overall system

performance, we can only give the “unfortunate” users their minimum time-fraction

requirements; hence condition 3.

The policy π∗ defined in (3.2), which represents our opportunistic scheduling pol-

icy, is optimal in the following sense.

Theorem 3.1 If limT→∞ RT
i (π

∗) exists for all i for π∗, then the policy π∗ is an

optimal solution to the problem defined in (3.1), i.e., it maximizes the average OFDM

system performance under the temporal fairness constraints.

Proof: Let π be a policy satisfying the temporal fairness constraints, and v∗i

satisfies conditions 1–3. Hence, we have

U(π) ≤ U(π) +
N∑
i=1

v∗i

(
lim inf
T→∞

RT
i (π)− ri

)
= lim sup

T→∞

1

T

T∑
t=1

N∑
i=1

K∑
k=1

ωt
i,k1{At

k=i} +
N∑
i=1

v∗i lim inf
T→∞

1

T

T∑
t=1

K∑
k=1

1{At
k=i} −

N∑
i=1

v∗i ri

≤ lim sup
T→∞

1

T

T∑
t=1

N∑
i=1

K∑
k=1

ωt
i,k1{At

k=i}

+ lim inf
T→∞

1

T

T∑
t=1

N∑
i=1

K∑
k=1

v∗i 1{At
k=i} −

N∑
i=1

v∗i ri (3.3)

≤ lim sup
T→∞

1

T

T∑
t=1

N∑
i=1

K∑
k=1

(
ωt
i,k + v∗i

)
1{At

k=i} −
N∑
i=1

v∗i ri. (3.4)

By the definition of π∗, we have

N∑
i=1

K∑
k=1

(
ωt
i,k + v∗i

)
1{At

k=i} ≤
N∑
i=1

K∑
k=1

(
ωt
i,k + v∗i

)
1{(At

k)
∗=i}.

Thus,

lim sup
T→∞

1

T

T∑
t=1

N∑
i=1

K∑
k=1

(
ωt
i,k + v∗i

)
1{At

k=i} ≤ lim sup
T→∞

1

T

T∑
t=1

N∑
i=1

K∑
k=1

(
ωt
i,k + v∗i

)
1{(At

k)
∗=i}.
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Therefore,

U(π) ≤ lim sup
T→∞

1

T

T∑
t=1

N∑
i=1

K∑
k=1

(
ωt
i,k + v∗i

)
1{(At

k)
∗=i} −

N∑
i=1

v∗i ri

≤ U(π∗) + lim sup
T→∞

N∑
i=1

v∗iR
T
i (π

∗)−
N∑
i=1

v∗i ri (3.5)

≤ U(π∗) +
N∑
i=1

v∗i

(
lim sup
T→∞

RT
i (π

∗)− ri

)
. (3.6)

Since limT→∞ RT
i (π

∗) exists, lim supT→∞ RT
i (π

∗) = lim infT→∞ RT
i (π

∗). Thus,

U(π) ≤ U(π∗) +
N∑
i=1

v∗i

(
lim inf
T→∞

RT
i (π

∗)− ri

)
(3.7)

= U(π∗),

where the second part of (3.7) equals zero because of condition 3 on v∗i .

Inequalities (3.3), (3.4), (3.5), and (3.6) follow from the following properties of

lim sup and lim inf [87]: If {xn} and {yn} are real sequences, we have

lim inf
n→∞

xn + lim inf
n→∞

yn ≤ lim infn→∞(xn + yn) ≤ lim supn→∞ xn + lim infn→∞ yn

≤ lim supn→∞(xn + yn) ≤ lim supn→∞ xn + lim supn→∞ yn.

It is possible that the optimal policy is confronted with a tie between two or more

users. When ties occur in the argmax in the policy, they can be broken arbitrarily.

3.3.2 Utilitarian Fairness Scheduling

In the last section, we studied the opportunistic scheduling problem for multiuser

OFDM with temporal fairness constraints. In wireline networks, when a certain

amount of resource is assigned to a user, it is equivalent to granting the user a certain

amount of throughput. However, the situation is different in wireless networks, where

the performance value and the amount of resource are not directly related. Therefore,

a potential problem in wireless network is that the temporal fairness scheme has no

way of explicitly ensuring that each user receives a certain guaranteed fair amount
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of utility. Hence, in this section we will describe an alternative scheduling problem

that would ensure that all users get at least a certain fraction of the overall system

performance.

The problem of multiuser OFDM scheduling with utilitarian fairness can be ex-

pressed as:

max
π∈Π

U(π) (3.8)

subject to lim inf
T→∞

UT
i (π) ≥ aiU(π), i = 1, . . . , N,

where ai denotes the minimum fraction of the overall average throughput required by

user i, with ai ≥ 0 and
∑N

i=1 ai ≤ 1. Recall that UT
i (π) is the average throughput of

user i up to time T using policy π, and U(π) is the average overall throughput. The

ais are predetermined fairness constraints here. This constraint requires long-term

fairness in terms of performance value (throughput) instead of resource consumption

(time) as in Section 3.3.1.

We define the policy π∗ as follows:

π∗(ωt) = argmax
Āt

{
N∑
i=1

K∑
k=1

(κ+ γ∗
i )ω

t
i,k1{At

k=i}

}
, (3.9)

where κ = 1−
∑N

i=1 aiγ
∗
i , and the control parameters γ∗

i are chosen such that:

1. γ∗
i ≥ 0, ∀i;

2. lim infT→∞ UT
i (π

∗) ≥ aiU(π∗), ∀i;

3. If lim infT→∞ UT
i (π

∗) > aiU(π∗), then γ∗
i = 0, ∀i.

Analogous to v⃗∗ in the last section, γ⃗∗ = (γ∗
1 , . . . , γ

∗
N) in (3.9) can be considered

as a “scaling” to satisfy the utilitarian fairness constraints. The scheduling policy

always schedules the “relatively-best” subset of users to transmit. Here the subset

of users selected by action Āt is “relatively-best” if
∑N

i=1

∑K
k=1 (κ+ γ∗

i )ω
t
i,k1{At

k=i} is
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maximum over all actions. If γ∗
i > 0, then user i is an “unfortunate” user, and its

average performance value equals its minimum requirement.

The policy π∗ defined in (3.9), which represents our opportunistic scheduling pol-

icy, is optimal in the following sense.

Theorem 3.2 If limT→∞ UT
i (π

∗) exists for all i for π∗ defined in (3.9), then the

policy π∗ is an optimal solution to the problem defined in (3.8), i.e., it maximizes the

average OFDM system performance under the utilitarian fairness constraints.

Proof: Let π be a policy satisfying the utilitarian fairness constraints, and γ∗
i

satisfies conditions 1–3. Hence, we have

U(π) ≤ U(π) +
N∑
i=1

γ∗
i

(
lim inf
T→∞

UT
i (π)− aiU(π)

)
= lim sup

T→∞

N∑
i=1

κUT
i (π) +

N∑
i=1

γ∗
i lim inf

T→∞
UT
i (π)

≤ lim sup
T→∞

N∑
i=1

κUT
i (π) + lim inf

T→∞

N∑
i=1

γ∗
i U

T
i (π)

≤ lim sup
T→∞

N∑
i=1

(κ+ γ∗
i )U

T
i (π),

where κ = 1−
∑N

i=1 aiγ
∗
i . By the definition of π∗ , we get

N∑
i=1

K∑
k=1

(κ+ γ∗
i )ω

t
i,k1{At

k=i} ≤
N∑
i=1

K∑
k=1

(κ+ γ∗
i )ω

t
i,k1{(At

k)
∗=i}.

Thus,

N∑
i=1

(κ+ γ∗
i )U

T
i (π) ≤

N∑
i=1

(κ+ γ∗
i )U

T
i (π

∗).

Therefore,

U(π) ≤ lim sup
T→∞

N∑
i=1

(κ+ γ∗
i )U

T
i (π

∗)

≤ U(π∗) +
N∑
i=1

γ∗
i

(
lim inf
T→∞

UT
i (π

∗)− aiU(π∗)
)

(3.10)

= U(π∗),
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where the second part of (3.10) equals zero because of condition 3 on γ∗
i . Similar to

the proof of Theorem 1, the properties of lim sup and lim inf are applied here.

3.3.3 Minimum-Performance Guarantee Scheduling

So far, we have discussed two optimal multiuser OFDM scheduling policies that pro-

vide users with different fairness guarantees. However, while they satisfy a relative

measure of performance (e.g., fairness), they do not consider any absolute measures

such as data rate. This motivates the study of a category of scheduling problems with

minimum-performance guarantees [33,45].

The problem to maximize the OFDM system performance while satisfying each

user’s minimum performance requirement can be stated as:

max
π∈Π

U(π) (3.11)

subject to lim inf
T→∞

UT
i (π) ≥ Ci, i = 1, . . . , N,

where C⃗ = (C1, C2, . . . , CN) is a feasible predetermined minimum-performance re-

quirement vector. Feasible here means that there exists some policy that solves (3.11).

The QoS constraints here offer users a more direct service guarantee. For example,

a user requires a minimum data rate guarantee, then the performance measure here

can be data rate. Every user is guaranteed a minimum data rate, which may be more

appealing from the user viewpoint. However, it can be quite difficult in practice to

apply because of the difficulty to determine if a requirement vector is feasible.

Suppose C⃗ = (C1, C2, . . . , CN) is feasible. We define the policy π∗ for the problem

in (3.11) as follows:

π∗(ωt) = argmax
Āt

{
N∑
i=1

K∑
k=1

β∗
i ω

t
i,k1{At

k=i}

}
, (3.12)

where the control parameters β∗
i are chosen such that:

1. β∗
i ≥ 1, ∀i;
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2. lim infT→∞ UT
i (π) ≥ Ci, ∀i;

3. If lim infT→∞ UT
i (π) > Ci, then β∗

i = 1, ∀i.

Note that the parameter β⃗∗ = (β∗
1 , . . . , β

∗
N) “scales” the performance values of

users, and the scheduling policy always schedules the “relatively-best” subset of users

to transmit. Here the subset of users selected by action Āt is “relatively-best” if∑N
i=1

∑K
k=1 β

∗
i ω

t
i,k1{At

k=i} is maximum over all actions. If β∗
i > 1, then user i is an

“unfortunate” user, and it is granted only its minimum-performance requirement.

The policy π∗ defined in (3.12), which represents our opportunistic scheduling

policy, is optimal in the following sense.

Theorem 3.3 If limT→∞ UT
i (π

∗) exists for all i for the π∗ defined in (3.12), then the

policy π∗ is an optimal solution to the problem defined in (3.11), i.e., it maximizes

the average OFDM system performance under the minimum-performance guarantee

constraints.

Proof: Let π be a policy satisfying the minimum-performance guarantee con-

straints, and β∗
i satisfies conditions 1–3. Hence, we have

U(π) ≤ U(π) +
N∑
i=1

(β∗
i − 1)

(
lim inf
T→∞

UT
i (π)− Ci

)
= lim sup

T→∞

N∑
i=1

UT
i (π) +

N∑
i=1

(β∗
i − 1) lim inf

T→∞
UT
i (π)−

N∑
i=1

(β∗
i − 1)Ci

≤ lim sup
T→∞

N∑
i=1

UT
i (π) + lim inf

T→∞

N∑
i=1

(β∗
i − 1)UT

i (π)−
N∑
i=1

(β∗
i − 1)Ci

≤ lim sup
T→∞

N∑
i=1

β∗
i U

T
i (π)−

N∑
i=1

(β∗
i − 1)Ci.

By the definition of π∗, we get

N∑
i=1

K∑
k=1

β∗
i ω

t
i,k1{At

k=i} ≤
N∑
i=1

K∑
k=1

β∗
i ω

t
i,k1{(At

k)
∗=i}.
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Thus,
N∑
i=1

β∗
i U

T
i (π) ≤

N∑
i=1

β∗
i U

T
i (π

∗).

Therefore,

U(π) ≤ lim sup
T→∞

N∑
i=1

β∗
i U

T
i (π

∗)−
N∑
i=1

(β∗
i − 1)Ci

≤ U(π∗) +
N∑
i=1

(β∗
i − 1)

(
lim inf
T→∞

UT
i (π

∗)− Ci

)
(3.13)

= U(π∗),

where the second part of (3.13) equals zero because of condition 3 on β∗
i . Similar to

the proof of Theorem 1, the properties of lim sup and lim inf are applied here.

3.4 Implementation Issues

In this section, several implementation issues including parameter estimation and

efficient policy search methods will be considered. An optimal algorithm and a low-

complexity suboptimal algorithm are developed here for policy search.

3.4.1 Control Parameter Estimation

The opportunistic scheduling policies described in Section 3.3 involve some control

parameters to be estimated online: v⃗∗ in temporal fairness, γ⃗∗ in utilitarian fairness,

and β⃗∗ in the minimum-performance guarantee policy. Those parameters are deter-

mined by the distribution of performance value matrix {ωt} and the predetermined

constraints. In practice, the distribution is unknown, and hence we need to estimate

the control parameters.

In [46], Liu et al. give a stochastic approximation technique to estimate such

parameters. The basic idea is to find the root of a unknown continuous function f(x).

We approach the root by adapting the weighted observation error. For example, for

user i in temporal fairness scheduling, the base station updates the parameter v⃗t+1
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using a stochastic approximation algorithm

vt+1
i = vti − ϵt

(
K∑
k=1

1{At
k=i} − ri

)
,

where, e.g., the step size ϵt = 1/t. The initial estimate v⃗1 can be set to 0⃗ or some

value based on the history information.

Using standard methods, it can be shown that v⃗t converges to v⃗∗ with probability

one [88]. The computation burden above is O(N) per time slot, where N is the

number of users, which suggests that the algorithm is easy to implement online. For

our OFDM scheduling schemes, we have found that this stochastic approximation

algorithm also works well. For the detailed procedure, we refer the reader to [46].

3.4.2 Optimal User Subset Search Methods

In our optimal OFDM policies (for example, in the temporal fairness policy), all

the “relative performance values” (ωt
i,k + v∗i ), denoted cik for convenience, comprise

an N × K matrix [cik]. Therefore, the operator argmaxĀt is to find an action Āt

that indicates which K elements in [cik] have the maximal sum over all K selected

elements. This operator is obviously different from the argmaxi in [46], which simply

returns the index of the largest element from a vector.

It is straightforward to compute the argmax if no hard physical limitations are

considered. The operator can simply select the largest K elements. However, a

common physical constraint is that in any time-slot, the scheduler cannot assign two

users to the same subcarrier, or two subcarriers to the same user. Mathematically,

at any time-slot t, for any two subcarriers j and k, j ̸= k ⇔ At
j ̸= At

k. When

this physical constraint is considered, the computation of the argmax in the optimal

policy is nontrivial. A brute-force approach is exhaustively searching over the
(
N
K

)
possible assignments, which obviously has very high computational complexity. Since

this optimal user subset search operation should be performed online at each slot, we

need to use more efficient algorithms.
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It turns out that the problem of computing the argmax can be posed as an integer

linear program (ILP) [89]:

maximize
N∑
i=1

K∑
k=1

cikxik

subject to
N∑
i=1

xik = 1, k = 1, . . . , K,

K∑
k=1

xik ≤ 1, i = 1, . . . , N,

xik ∈ {0, 1}, cik ≥ 0, N ≥ K,

where the decision variables xik indicate which elements to choose, and the weights

cik are relative performance values defined above. This problem is called the maximal

weighted bipartite matching problem in graph theory, or the assignment problem in

combinatorial optimization [90].

It is interesting to see that the argmax operator in optimal multiuser OFDM

scheduling problem can be interpreted as a graph problem (U, S,E,w), where U

represents the set of all users, S represents the set of all subcarriers, and E represents

the set of all the feasible choices for specific users to select specific subcarriers. Each

choice in E is weighted by a function w(E). The problem is to find a matchingM ∈ E

for U and S that maximizes the sum of the weights over all edges in M .

The Hungarian algorithm is one of many algorithms that have been devised to

solve the assignment problem in polynomial time (O(N3) when N=K) [91]. We mod-

ify the Hungarian algorithm to solve our general unbalanced (N≥K) problem here

by introducing a number of slack variables to convert the ILP problem into stan-

dard form. Note that the standard form ILP with the slack variables is algebraically

equivalent to the original problem [92]. It is proved in [91] that the Hungarian algo-

rithm can always find the maximum assignment, i.e., it is an optimal solution to this

problem.

The following is our modified Hungarian algorithm:

62



Table 3.1: Modified Hungarian algorithm

Input: An N ×K nonnegative matrix [cik].
Step 1: Initialization:

a. Append (N -K) all-zero columns to the matrix.
b. In each row, subtract the smallest entry from every entry in that row.
In each column, subtract the smallest entry from every entry in that
column.

Step 2: Cover all zeros with the minimum number of (horizontal and/or vertical)
lines. If the minimum number =N , goto Step 4.

Step 3: Subtract the smallest uncovered entry from every uncovered entry; add
it to every intersection of lines. Goto Step 2.

Step 4: Make the assignment at zeros. If any row or column has only one 0,
make that assignment. Cross out the corresponding row and column,
and move to the next assignment.

Ideally, the OFDM scheduler should repeat the above procedure at every schedul-

ing slot. However, this still poses a heavy computational burden on the base station.

Hence suboptimal algorithms with lower complexity are of interest for practical im-

plementation.

We develop a suboptimal algorithm called “max-max” to perform the above

argmax operation with much lower complexity. This algorithm is a variation of the

“min-min” method for task mapping in heterogeneous computing [93]. The basic

idea is this: first find the overall maximal element in the matrix [cik], then assign the

corresponding subcarrier to the corresponding user. Next, remove the newly-assigned

user-subcarrier pair from the selection table. In other words, the corresponding row

and column are removed from the matrix. Continue to repeat the above procedure

on the reduced matrix until all subcarriers are assigned. In the simulations in the

next section, the suboptimal scheme shows near-optimal performance with a lower

complexity.

63



3.5 Simulation Results

In this section, we present numerical results to illustrate the performance of the

various OFDM scheduling schemes developed in this chapter. For the purpose of

comparison, we also simulate two special scheduling policies. Round-robin [94] is

a non-opportunistic scheduling policy that schedules users over all subcarriers in a

predetermined order. It is simple but lacks flexibility. The round-robin policy can

serve as a performance benchmark to measure how much gain results from using

our opportunistic scheduling policies. The other policy for comparison is a greedy

scheduling scheme that always selects the user with the maximum performance to

transmit for each subcarrier at each time-slot. The greedy policy will in general violate

the QoS/fairness constraints, but provide an upper-bound on the system performance.

It is used here to expose the tradeoff between the QoS constraints for individual users

and the overall system throughput. The more relaxed the fairness constraints, the

higher the overall achievable throughput, therefore the closer to we will get to the

performance of the greedy scheme.

In our simulation, we consider the downlink of a heavy-traffic single-cell OFDM

system with fixed 64 subcarriers. There is one base station serving all the users

in the cell. Each user suffers from multipath Rayleigh fading with the bad-urban

(BU) scenario of the COST 259 channel model [18, 95], and we assume a path-loss

exponent of four. Every user is assumed to be stationary or slowly moving so that

the maximum Doppler shift is 20 Hz. The performance values used by different users

usually is a nondecreasing function of their SINR, can be in various forms, such as

linear functions, step functions, or S-shape functions. For simplicity, here we take all

the performance values as linear functions of users’ SINR (in dB). We assume that

the physical limitation on scheduling discussed in Section 3.2 applies: at each time-

slot, no two users can be scheduled on the same subcarrier and each user is scheduled

exactly one subcarrier.
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Figure 3.2: System throughput gain in the temporal fairness scheduling.

3.5.1 Performance Gain

First we assume the locations of all users are distributed uniformly in the cell and

examine the impact of the number of users on the average system throughput. We

use the round-robin policy as the baseline, and define the system throughput gain as

(US − UR)/UR, where US and UR denote the average system throughput of a given

scheduling policy and the round-robin policy, respectively.

Figure 3.2 shows the system throughput gain relative to round-robin from the

different policies in the temporal fairness scheduling simulations. For the purpose of

simulation, we assume the time-fraction assignment is done using fair sharing, i.e.,

the total resources are evenly divided among the users. Therefore, if there are N

users in the cell, we set ri = 1/N for all users. From Figure 3.2, it is evident that the

system throughput gain increases with the number of users. This is reflective of the
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Figure 3.3: System throughput gain in the utilitarian fairness scheduling.

multiuser diversity gain. For 64 users, our optimal policy (Hungarian) achieves about

46% overall throughput gain, while the greedy policy has an improvement of 101%.

This is not surprising since the greedy policy achieves the highest overall performance

at the cost of unfairness among the users. The suboptimal policy (max-max) shows

surprisingly near-optimal performance. Its performance gap with the optimal policy

is less than 1–2%, and even smaller when we increase the number of users.

Figure 3.3 shows the system throughput gain relative to round-robin from the

different policies in the utilitarian fairness scheduling simulations. We also assume

fair sharing in the throughput-fraction assignment. This means we set ai = 1/N for

all users in a N -user system. As expected, the increasing trend similar to Figure 3.3

can be also seen here. For 64 users, our optimal policy (Hungarian) achieves about

32% overall throughput gain, while the greedy policy has an improvement of 102%.
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Figure 3.4: System throughput gain in the minimum-performance guarantee schedul-
ing.

The suboptimal policy (max-max) also improves the system performance by 27%.

Next, we investigate the performance of the opportunistic scheduling schemes

with minimum-performance guarantees. First we run the simulation for 1, 000, 000

time-slots using the round-robin policy, where the resource (time) is equally dis-

tributed among all users. Then we compute an average performance value and use

it as the minimum-performance requirement for each user. It is easy to see that this

minimum-performance requirement vector is feasible. Figure 3.4 shows the system

throughput gain relative to round-robin from the different policies in the minimum-

performance guarantee scheduling simulations. For 64 users, our optimal policy (Hun-

garian) achieves about 31% overall throughput gain, while the greedy policy (which

violates the minimum-performance requirements) has an improvement of about 100%.

The suboptimal policy (max-max) also performs well with 24% overall gain.
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Figure 3.5: Portion of resource shared by users in the temporal fairness scheduling.

3.5.2 Fairness

Using the temporal fairness scheduling scenario as an example, we study the fairness

among the users by applying the different policies. We use the same single-cell system

with 64 subcarriers; and there are 128 users in the system. The users are divided into

three “distance” groups. Users 1–48 belong to the “far” group, users 49–80 belong

to the “middle” group, and users 81–128 belong to the “near” group. Obviously a

user in the “near” group has a much higher probability to get a strong SINR than

a user in the “far” group. We set all users to have the same minimum time-fraction

requirement. Specifically, each user has a resource (time) requirement ri = 2/(3N)

for a N -user system, where
∑

i ri = 2/3 < 1. Therefore, the system has the freedom

to assign the remaining 1/3 portion of the resource to some “better” users (beyond

their minimum requirements) to further improve the system performance.
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Figure 3.6: User average performance in the utilitarian fairness scheduling.

Figure 3.5 indicates the amount of resource consumed by selected users in the

temporal fairness scheduling simulations. The first bar represents that of round-

robin, where the resource is equally shared by all users. The second bar represents

our optimal policy (Hungarian). The third bar is the greedy policy. The rightmost bar

shows the minimum requirements of user. The second bar is higher than the fourth bar

for all the users, which indicates that our temporal fairness optimal scheduling policy

meets the minimum time-fraction requirements for all users. In the greedy policy,

users 1, 16, and 32 get very little resource (far below the minimum requirement line)

while users 88, 96, and 128 have very large shares. As expected, the greedy algorithm

is heavily biased though it achieves the highest overall performance.

In the following, we simply check the fairness among the users with utilitarian

fairness and minimum-performance guarantee scheduling. We use the same cellular
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Figure 3.7: User average performance in the minimum-performance guarantee
scheduling.

system and user group settings as temporal fairness.

In Figure 3.6, we show the average performance values of selected users

in the utilitarian fairness scheduling simulations. The preset performance re-

quirements of the selected users 1, 16, 32, 56, 64, 88, 96, and 128 are

[0.001, 0.002, 0.001, 0.003, 0.003, 0.004, 0.005, 0.005]. The values represent the mini-

mum fraction of overall average performance for individual users.

In Figure 3.7, we show the average performance values of selected users in the

minimum-performance guarantee scheduling simulations. Similar to the previous sec-

tion, we first run a round-robin simulation, then use the obtained average performance

as minimum-performance requirement for each user. From the figure, we see that our

optimal scheduling policy (Hungarian) meets all the requirements and outperforms

round-robin policy everywhere.
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In summary, the simulation results show that using our OFDM opportunistic

scheduling policies, the system can achieve significant performance gains over the

non-opportunistic round-robin policy, while satisfying the various QoS/fairness re-

quirements. Also the low-complexity suboptimal policy shows near-optimal perfor-

mance in every scenario.

3.6 Conclusions

Opportunistic transmission scheduling is a promising technology to improve spec-

trum efficiency by exploiting time-varying channel conditions. We investigated the

application of opportunistic scheduling in multiuser OFDM systems, which dynami-

cally allocates resource in both temporal and spectral domains. Optimal scheduling

policies were presented and proved to be optimal under the temporal fairness, util-

itarian fairness, and minimum-performance QoS constraints. We developed optimal

and suboptimal algorithms to implement these optimal policies efficiently. The simu-

lation showed that the schemes achieve improvements of about 30%–140% in network

efficiency compared with a scheduling scheme that does not take into account channel

conditions.
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CHAPTER 4

OPPORTUNISTIC SCHEDULING WITH

MIXED CONSTRAINTS

Opportunistic scheduling exploits the time-varying, location-dependent channel con-

ditions to achieve multiuser diversity. In previous work, different type QoS constraints

are only treated individually as different scheduling problems. In this chapter, we con-

sider the problem of downlink transmission scheduling with more general constraints

than in the last chapter.

First, instead of only considering the lower bounds, we consider the schedul-

ing problems with both lower and upper bounds constraints here. We derive the

corresponding opportunistic scheduling policies for three long-term QoS/fairness

constraints—temporal fairness, utilitarian fairness, and minimum-performance guar-

antees. Then we deal with scheduling problems with multiple type mixed

QoS/fairness constraints. As examples, we derive our opportunistic scheduling poli-

cies with a mixture of three long-term QoS/fairness constraints and prove their op-

timality. At last, we propose a generalized opportunistic scheduling framework to

include all these scheduling schemes and more. We show that the structure of the op-

timal opportunistic scheduling policy can be carried over to the problem with general

constraints. The proposed framework can be viewed as a theoretical generalization

of the work by Liu et al. [44–46].
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Although we focus on the downlink of a wireless network, our scheduling schemes

can also be applied to uplink. However, the uplink may experience synchronization

difficulties due to different distances between users and the base station when the

duration of a time-slot is short. In general, downlink transmission is more important

for data traffic due to the highly asymmetric nature of the data service.

This chapter is organized as follows. In Section 4.1, we give the motivation for

this work. The system model is briefly explained in Section 4.2. In Section 4.3, we

derive the corresponding opportunistic scheduling policies with both maximum and

minimum constraints, and prove their optimality. In Section 4.4, we discuss the op-

portunistic scheduling problems with multiple mixed type QoS/fairness constraints.

In Section 4.5, we proposed a generalized opportunistic scheduling framework. Fi-

nally, concluding remarks are given in Section 4.6.

4.1 Motivation

The unique time-varying characteristics of wireless networks requires that the sched-

uler should opportunistically seek to exploit channel conditions to achieve higher net-

work performance. On the other hand, the potential to transmit at higher data rates

opportunistically also introduces an important tradeoff between wireless resource ef-

ficiency and level of satisfaction among different users (fairness).

To address this problem, as we introduced in Chapter 2, Liu et al. described a

framework for opportunistic scheduling to exploit the multiuser diversity while at

the same time satisfying different QoS constraints [44–46]. The framework enables

us to investigate different categories of scheduling problems involving two fairness

requirements (temporal fairness and utilitarian fairness) and a minimum-performance

requirement. The optimal scheduling solutions for these scheduling problems turn out

to be index policies, and a stochastic-approximation-based algorithm can be used to

efficiently estimate the key parameters of the scheduling schemes online.
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In the work of [44–46], the different type QoS constraints are only treated in-

dividually as different scheduling problems. It is interesting to consider scheduling

problems with multiple mixed QoS/fairness constraints. For example, a user might

ask for both minimum temporal fraction and minimum performance guarantees. Fu-

ture broadband wireless networks, which will fully support multimedia communica-

tions such as high-speed data access and video conferencing, demand more flexible

and efficient scheduling schemes. Therefore, such scheduling problems with multiple

different QoS constraints for a single user become more important and are definitely

of practical interest.

The work of [44–46] also only consider the users’ minimum (lower bound)

constraints—namely, minimum temporal fairness, minimum utilitarian fairness, and

minimum-performance guarantees constraints. But a user might be constrained by

both maximum and minimum requirements of wireless resource. It is of practical

interest to investigate such scheduling problems with both minimum (lower bound)

and maximum (upper bound) constraints.

Providing a minimum guarantee on resource or performance is natural and ar-

guably the simplest QoS guarantee. Multiple reasons why we feel it is important to

provide minimum rate constraints are:

• Some bandwidth-sensitive applications such as VoIP and streaming video need

a minimum rate in order to perform well.

• Even for static TCP-based applications such as web browsing if the bandwidth

is too small then we typically get a large queue buildup which can lead to TCP

timeouts and poor performance [96].

• Providing a minimum rate guarantee can help to smooth out the effects of a

variable wireless channel.
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• By having different minimum constraints for different users, we can ensure that

high-paying premium customers receive better service than regular customers.

It seems undesirable to place maximum constraints (upper bounds) on individual

users, because these bounds may limit the achievable system performance. However,

the following are several reasons for imposing such constraints.

• If a user has only paid for a cheap data service, the operator might wish to

cap their data rate in order to give them an incentive to upgrade to a more

expensive premium service.

• Maximal constraints are useful for implementing multi-tiered services.

• Maximal constraints can decrease the subscribers’ QoS sensibility to the number

of subscribers in the network. For example, when only one subscriber is active,

then all the system resource is available to that subscriber. This data rate

will decrease as more and more subscribers become active. Thus, there will be

considerable variance in QoS. By imposing maximal constraints on data rate

can help to decrease this variance.

Note that if the system operator does not wish to have maximum constraints, this

is easily accomplished by setting the upper bound to infinity (or some suitably large

value).

4.2 System Model

We consider the downlink of a time-slotted system where time is the resource to be

shared among all users. We focus on the scheduling problem for a single channel.

Such a system model includes TDMA systems as well as time-slotted CDMA systems

(e.g., HDR).
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Recall that in Chapter 3, we used a stochastic model to capture the time-varying

performance of each user. For simplicity, here we assume that {U t
i }, the stochastic

process associated with user i, is stationary and ergodic. Specifically, we use the no-

tation U⃗ = (U1, · · · , UN), where Ui is a random variable representing the performance

value of user i at a generic time-slot, and N is the number of users. At a generic time-

slot, if a policy π schedules user i = π(U⃗) ∈ {1, · · · , N} to transmit, then the system

receives a “reward” of Ui. Note that E(U(π)) is the average system performance

value associated with policy π, and it is the sum of all users’ average performance

values, i.e., E(U(π)) =
∑N

i=1E
(
Ui1{π(U⃗)=i}

)
. The objective is to find a policy π that

maximizes the average system performance value E(U(π)), while satisfying specific

QoS/fairness constraints.

4.3 Scheduling with Maximum and Minimum

Bounds

In this section, we consider scheduling problems with both maximum and minimum

constraints. We will still focus on the three fairness criteria—temporal fairness, util-

itarian fairness, and minimum-performance guarantees.

4.3.1 Performance Guarantee Scheduling

In this subsection, we consider a system where each user is subject to certain maxi-

mum and minimum performance (data-rate) constraints. More precisely, the problem

to maximize the system performance while satisfying each user’s maximum and min-

imum performance requirements can be stated as:

max
π∈Π

E (U(π)) (4.1)

subject to E
(
Ui1{π(U⃗)=i}

)
≥ Ci, i = 1, 2, . . . , N,

E
(
Ui1{π(U⃗)=i}

)
≤ Di, i = 1, 2, . . . , N,
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where C⃗ = (C1, C2, . . . , CN) is a feasible predetermined minimum-performance re-

quirement vector and D⃗ = (D1, D2, . . . , DN) is a feasible predetermined maximum-

performance requirement vector ; and ∀i, Di ≥ Ci ≥ 0.

Define the policy π∗ as follows:

π∗(U⃗) = argmax
i

((θi − µi)Ui) , (4.2)

where the control parameters θi and µi are chosen such that:

1. θi ≥ 1, µi ≥ 0, ∀i;

2. E
(
Ui1{π∗(U⃗)=i}

)
≥ Ci, ∀i;

3. If E
(
Ui1{π∗(U⃗)=i}

)
> Ci, then θi = 1, ∀i; and

4. E
(
Ui1{π∗(U⃗)=i}

)
≤ Di, ∀i;

5. If E
(
Ui1{π∗(U⃗)=i}

)
< Di, then µi = 0, ∀i.

The policy π∗ defined in (4.2), which represents our opportunistic scheduling pol-

icy, is optimal in the following sense.

Theorem 4.1 The policy π∗ defined in (4.2) is an optimal solution to the problem

defined in (4.1), i.e., it maximizes the system performance while satisfying the maxi-

mum and minimum performance requirements for individual users.

Proof: Let π be a policy satisfying the maximum and minimum performance
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requirements, and θi and µi satisfy conditions 1–5. Hence, we have

E (U(π)) ≤ E (U(π)) +
N∑
i=1

(θi − 1)
(
E
(
Ui1{π(U⃗)=i}

)
− Ci

)
+

N∑
i=1

µi

(
Di − E

(
Ui1{π(U⃗)=i}

))
=

N∑
i=1

θiE
(
Ui1{π(U⃗)=i}

)
−

N∑
i=1

µiE
(
Ui1{π(U⃗)=i}

)
−

N∑
i=1

(θi − 1)Ci +
N∑
i=1

µiDi

= E

(
N∑
i=1

(θi − µi)Ui1{π(U⃗)=i}

)
−

N∑
i=1

(θi − 1)Ci +
N∑
i=1

µiDi

By the definition of π∗, we have

N∑
i=1

(θi − µi)Ui1{π(U⃗)=i} ≤
N∑
i=1

(θi − µi)Ui1{π∗(U⃗)=i}

Thus,

E

(
N∑
i=1

(θi − µi)Ui1{π(U⃗)=i}

)
≤ E

(
N∑
i=1

(θi − µi)Ui1{π∗(U⃗)=i}

)

Hence,

E (U(π)) ≤ E

(
N∑
i=1

(θi − µi)Ui1{π∗(U⃗)=i}

)
−

N∑
i=1

(θi − 1)Ci +
N∑
i=1

µiDi

= E (U(π∗)) +
N∑
i=1

(θi − 1)
(
E
(
Ui1{π∗(U⃗)=i}

)
− Ci

)
+

N∑
i=1

µi

(
Di − E

(
Ui1{π∗(U⃗)=i}

))
(4.3)

= E (U(π∗)) .

where the second and third parts of (4.3) equal zero because of conditions 3 and 5 on

θi and µi.

Note that the parameters θi and µi “scale” the performance values of users, and the

scheduling policy always schedules the “relatively best” subset of users to transmit.
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If θi > 1, then user i is an “unfortunate” user. The setting of parameter θi will scale

the performance causing more frequent allocation of slots to user i to improve its data

rate. If user i satisfies the lower performance bounds, then the corresponding θi will

be 1, i.e., no scaling is needed in this case. Similarly, µi compensates any violations

of the upper bound. For users having scheduled data rate less than upper bound,

the corresponding µi values will be equal to 0. On the other hand, if the wireless

channel of user i is such that the scheduled data rate will be higher than Di, µi will

be greater than 0. This value will scale down the corresponding performance value of

the user; therefore, the user will be scheduled less often. The value of θi and µi can be

efficiently estimated online via a stochastic-approximation-based algorithm provided

in [46].

4.3.2 Temporal Fairness Scheduling

A natural fairness criterion is to give each action a certain portion of time because time

is the basic resource shared among users. The scheduling problem with maximum

and minimum temporal fairness bounds can be expressed as:

max
π∈Π

E (U(π)) (4.4)

subject to P{π(U⃗) = i} ≥ ri, i = 1, 2, . . . , N,

P{π(U⃗) = i} ≤ si, i = 1, 2, . . . , N,

where ri denotes the minimum time-fraction that should be assigned to user i, with

ri ≥ 0 and
∑N

i=1 ri ≤ 1; si denotes the maximum time-fraction that could be assigned

to user i, with si ≥ 0 and
∑N

i=1 si ≤ 1; and ∀i, si > ri.

Define the policy π∗ as follows:

π∗(U⃗) = argmax
i

(Ui + αi − βi) , (4.5)

where the control parameters αi and βi are chosen such that:
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1. αi ≥ 0, βi ≥ 0, ∀i;

2. P{π∗(U⃗) = i} ≥ ri, ∀i;

3. If P{π∗(U⃗) = i} > ri, then αi = 0, ∀i; and

4. P{π∗(U⃗) = i} ≤ si, ∀i;

5. If P{π∗(U⃗) = i} < si, then βi = 0, ∀i.

Theorem 4.2 The policy π∗ defined in (4.5) is an optimal solution to the problem

defined in (4.4), i.e., it maximizes the system performance, while satisfying maximum

and minimum temporal fairness constraints for individual users.

Proof: Let π be a policy satisfying the temporal fairness constraints, and αi and

βi satisfy conditions 1–5. Hence, we have

E (U(π)) ≤ E (U(π)) +
N∑
i=1

αi

(
P{π(U⃗) = i} − ri

)
+

N∑
i=1

βi

(
si − P{π(U⃗) = i}

)
= E

(
N∑
i=1

(Ui + αi − βi)1{π(U⃗)=i}

)
−

N∑
i=1

αiri +
N∑
i=1

βisi

By the definition of π∗, we have

N∑
i=1

(Ui + αi − βi)1{π(U⃗)=i} ≤
N∑
i=1

(Ui + αi − βi)1{π∗(U⃗)=i}

Thus,

E

(
N∑
i=1

(Ui + αi − βi)1{π(U⃗)=i}

)
≤ E

(
N∑
i=1

(Ui + αi − βi)1{π∗(U⃗)=i}

)
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Hence,

E (U(π)) ≤ E

(
N∑
i=1

(Ui + αi − βi)1{π∗(U⃗)=i}

)
−

N∑
i=1

αiri +
N∑
i=1

βisi

= E (U(π∗)) +
N∑
i=1

αi

(
P{π∗(U⃗) = i} − ri

)
+

N∑
i=1

βi

(
si − P{π∗(U⃗) = i}

)
(4.6)

= E (U(π∗)) .

where the second and third parts of (4.6) equal zero because of conditions 3 and 5 on

αi and βi.

4.3.3 Utilitarian Fairness Scheduling

In the last section, we studied the opportunistic scheduling problem with maximum

and minimum temporal fairness bounds. In this section, we will describe an alter-

native scheduling problem that would ensure that all users get at least a certain

fraction of the overall system performance. The opportunistic scheduling problem

with maximum and minimum utilitarian fairness bounds can be expressed as:

max
π∈Π

E (U(π)) (4.7)

subject to E
(
Ui1{π(U⃗)=i}

)
≥ aiE (U(π)) , i = 1, 2, . . . , N,

E
(
Ui1{π(U⃗)=i}

)
≤ biE (U(π)) , i = 1, 2, . . . , N,

where ai denotes the minimum fraction of the overall performance required by user

i, with ai ≥ 0 and
∑N

i=1 ai ≤ 1; bi denotes the maximum fraction of the overall

performance available for user i, with bi ≥ 0 and
∑N

i=1 bi ≤ 1; and ∀i, bi > ai.

Define the policy π∗ as follows:

π∗(U⃗) = argmax
i

((κ+ γi − ηi)Ui) , (4.8)

where κ = 1−
∑N

i=1 aiγi +
∑N

i=1 biηi, and the control parameters γi and ηi are chosen

such that:
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1. γi ≥ 0, ηi ≥ 0, ∀i;

2. E
(
Ui1{π∗(U⃗)=i}

)
≥ aiE (U(π)) , ∀i;

3. If E
(
Ui1{π∗(U⃗)=i}

)
> aiE (U(π)), then γi = 0, ∀i; and

4. E
(
Ui1{π∗(U⃗)=i}

)
≤ biE (U(π)), ∀i;

5. If E
(
Ui1{π∗(U⃗)=i}

)
< biE (U(π)), then ηi = 0, ∀i.

Theorem 4.3 The policy π∗ defined in (4.8) is an optimal solution to the problem

defined in (4.7), i.e., it maximizes the system performance, while satisfying maximum

and minimum utilitarian fairness constraints for individual users.

Proof: Let π be a policy satisfying the utilitarian fairness constraints, and γi

and ηi satisfy conditions 1–5. Hence, we have

E (U(π)) ≤ E (U(π)) +
N∑
i=1

γi

(
E
(
Ui1{π(U⃗)=i}

)
− aiE (U(π))

)
+

N∑
i=1

ηi

(
biE (U(π))− E

(
Ui1{π(U⃗)=i}

))
=

(
1−

N∑
i=1

aiγi +
N∑
i=1

biηi

)
E (U(π)) +

N∑
i=1

γiE
(
Ui1{π(U⃗)=i}

)
−

N∑
i=1

ηiE
(
Ui1{π(U⃗)=i}

)
= E

(
N∑
i=1

(κ+ γi − ηi)Ui1{π(U⃗)=i}

)

By the definition of π∗, we have

N∑
i=1

(κ+ γi − ηi)Ui1{π(U⃗)=i} ≤
N∑
i=1

(κ+ γi − ηi)Ui1{π∗(U⃗)=i}

Thus,

E

(
N∑
i=1

(κ+ γi − ηi)Ui1{π(U⃗)=i}

)
≤ E

(
N∑
i=1

(κ+ γi − ηi)Ui1{π∗(U⃗)=i}

)

82



Hence,

E (U(π)) ≤ E

(
N∑
i=1

(κ+ γi − ηi)Ui1{π∗(U⃗)=i}

)

= E (U(π∗)) +
N∑
i=1

γi

(
E
(
Ui1{π∗(U⃗)=i}

)
− aiE (U(π∗))

)
+

N∑
i=1

ηi

(
biE (U(π∗))− E

(
Ui1{π∗(U⃗)=i}

))
(4.9)

= E (U(π∗)) .

where the second and third parts of (4.9) equal zero because of conditions 3 and 5 on

γi and ηi.

4.4 Scheduling with Mixed Constraints

In the last section, we studied scheduling problems with both maximum and mini-

mum constraints. Therein, both maximum and minimum constraints are of the same

type, i.e., it is either the data-rate constraint, or else. Furthermore, scheduling prob-

lems with multiple mixed QoS/fairness constraints is definitely of practical interests.

For example, a user might ask for both minimum temporal fraction and minimum

performance guarantees. In this section, we discuss the opportunistic scheduling prob-

lems with multiple mixed type QoS/fairness constraints. We still focus on the three

fairness criteria—temporal fairness, utilitarian fairness, and minimum-performance

guarantees.

4.4.1 Minimum Temporal Fairness and Performance Guarantee

Here we consider a system where each user requires both minimum temporal fraction

and minimum performance guarantees. More precisely, we are interested to solve the
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following constrained optimization problem:

max
π∈Π

E (U(π)) (4.10)

subject to P{π(U⃗) = i} ≥ ri, i = 1, 2, . . . , N,

E
(
Ui1{π(U⃗)=i}

)
≥ Ci, i = 1, 2, . . . , N,

where ri denotes the minimum time-fraction that should be assigned to user i, with

ri ≥ 0 and
∑N

i=1 ri ≤ 1; and C⃗ = (C1, C2, . . . , CN) is a feasible predetermined

minimum-performance requirement vector.

Define the policy π∗ as follows:

π∗(U⃗) = argmax
i

(θiUi + αi) , (4.11)

where the control parameters αi and θi are chosen such that:

1. αi ≥ 0, θi ≥ 1, ∀i;

2. P{π∗(U⃗) = i} ≥ ri, ∀i;

3. If P{π∗(U⃗) = i} > ri, then αi = 0, ∀i; and

4. E
(
Ui1{π∗(U⃗)=i}

)
≥ Ci, ∀i;

5. If E
(
Ui1{π∗(U⃗)=i}

)
> Ci, then θi = 1, ∀i.

Theorem 4.4 The policy π∗ defined in (4.11) is an optimal solution to the prob-

lem defined in (4.10), i.e., it maximizes the system performance while satisfying the

minimum time fraction and performance requirements for individual users.

Proof: Let π be a policy satisfying the minimum time fraction and performance

requirements for individual users, and αi and θi satisfy conditions 1–5. Hence, we

have
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E (U(π)) ≤ E (U(π)) +
N∑
i=1

αi

(
P{π(U⃗) = i} − ri

)
+

N∑
i=1

(θi − 1)
(
E
(
Ui1{π(U⃗)=i}

)
− Ci

)
=

N∑
i=1

θiE
(
Ui1{π(U⃗)=i}

)
+

N∑
i=1

αiP{π(U⃗) = i}

−
N∑
i=1

αiri −
N∑
i=1

(θi − 1)Ci

= E

(
N∑
i=1

(θiUi + αi)1{π(U⃗)=i}

)
−

N∑
i=1

αiri −
N∑
i=1

(θi − 1)Ci

By the definition of π∗, we have

N∑
i=1

(θiUi + αi)1{π(U⃗)=i} ≤
N∑
i=1

(θiUi + αi)1{π∗(U⃗)=i}

Thus,

E

(
N∑
i=1

(θiUi + αi)1{π(U⃗)=i}

)
≤ E

(
N∑
i=1

(θiUi + αi)Ui1{π∗(U⃗)=i}

)
Hence,

E (U(π)) ≤ E

(
N∑
i=1

(θiUi + αi)1{π∗(U⃗)=i}

)
−

N∑
i=1

αiri −
N∑
i=1

(θi − 1)Ci

= E (U(π∗)) +
N∑
i=1

αi

(
P{π∗(U⃗) = i} − ri

)
+

N∑
i=1

(θi − 1)
(
E
(
Ui1{π∗(U⃗)=i}

)
− Ci

)
(4.12)

= E (U(π∗)) .

where the second and third parts of (4.12) equal zero because of conditions 3 and 5

on αi and θi.

4.4.2 Minimum Temporal and Utilitarian Fairness

Here we consider a system where each user requires both a minimum time fraction

and a minimum fraction of the system performance. More precisely, the constrained
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optimization problem can be expressed as:

max
π∈Π

E (U(π)) (4.13)

subject to P{π(U⃗) = i} ≥ ri, i = 1, 2, . . . , N,

E
(
Ui1{π(U⃗)=i}

)
≥ aiE (U(π)) , i = 1, 2, . . . , N,

where ri and ai are identical as those defined in Sections 4.3.2 and 4.3.3.

Define the policy π∗ as follows:

π∗(U⃗) = argmax
i

((κ+ γi)Ui + αi) , (4.14)

where κ = 1−
∑N

i=1 aiγi and the control parameters αi and γi are chosen such that:

1. αi ≥ 0, γi ≥ 0, ∀i;

2. P{π∗(U⃗) = i} ≥ ri, ∀i;

3. If P{π∗(U⃗) = i} > ri, then αi = 0, ∀i; and

4. E
(
Ui1{π∗(U⃗)=i}

)
≥ aiE (U(π)) , ∀i;

5. If E
(
Ui1{π∗(U⃗)=i}

)
> aiE (U(π)), then γi = 0, ∀i.

Theorem 4.5 The policy π∗ defined in (4.14) is an optimal solution to the prob-

lem defined in (4.13), i.e., it maximizes the system performance, while satisfying the

minimum temporal and utilitarian fairness constraints for individual users.

Proof: Let π be a policy satisfying the minimum temporal and utilitarian
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fairness constraints, and αi and γi satisfy conditions 1–5. Hence, we have

E (U(π)) ≤ E (U(π)) +
N∑
i=1

αi

(
P{π(U⃗) = i} − ri

)
+

N∑
i=1

γi

(
E
(
Ui1{π(U⃗)=i}

)
− aiE (U(π))

)
=

(
1−

N∑
i=1

aiγi

)
E (U(π)) +

N∑
i=1

γiE
(
Ui1{π(U⃗)=i}

)
+

N∑
i=1

αiP{π(U⃗) = i} −
N∑
i=1

αiri

= E

(
N∑
i=1

((κ+ γi)Ui + αi)1{π(U⃗)=i}

)
−

N∑
i=1

αiri

By the definition of π∗, we have

N∑
i=1

((κ+ γi)Ui + αi)1{π(U⃗)=i} ≤
N∑
i=1

((κ+ γi)Ui + αi)1{π∗(U⃗)=i}

Thus,

E

(
N∑
i=1

((κ+ γi)Ui + αi)1{π(U⃗)=i}

)
≤ E

(
N∑
i=1

((κ+ γi)Ui + αi)Ui1{π∗(U⃗)=i}

)
Hence,

E (U(π)) ≤ E

(
N∑
i=1

((κ+ γi)Ui + αi)1{π∗(U⃗)=i}

)
−

N∑
i=1

αiri

= E (U(π∗)) +
N∑
i=1

αi

(
P{π∗(U⃗) = i} − ri

)
N∑
i=1

γi

(
E
(
Ui1{π∗(U⃗)=i}

)
− aiE (U(π∗))

)
(4.15)

= E (U(π∗)) .

where the second and third parts of (4.15) equal zero because of conditions 3 and 5

on αi and γi.

Similarly, we expect to derive the optimal opportunistic scheduling schemes for

different combinations of QoS/fairness constraints. In general, there can be more

than two different types of constraints (including maximum and minimum).
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4.5 A Generalized Framework for Opportunistic

Scheduling

We notice that the scheduling problems presented above, though with different fair-

ness constraints, share some kind of general form. Therefore, we are interested to

find out a generalized opportunistic scheduling framework to model and solve this

category of scheduling problems with fairness constraints.

For generalization purpose, we start by defining a new set of notation.

• fi(x) denotes the utility function associated with user i. Suppose that fi(x) is

a monotonically increasing function of x.

• hj
i denotes the jth constraint function associated with user i, and gki denotes

the kth constraint function associated with user i. We assume that the hj
i and

gki are convex functions in their arguments.

• Hj
i and Gk

i denotes the jth and kth predetermined constraint requirement asso-

ciated with user i respectively.

The generalized QoS constrained scheduling problem can be formulated as a con-

strained optimization problem as follows:

max
π∈Π

E
N∑
i=1

fi(Ui)1{π(U⃗)=i}

subject to E
(
hj
i (Ui)1{π(U⃗)=i}

)
−Hj

i ≥ 0, i = 1, 2, . . . , N, j = 1, 2, . . . , J,

E
(
gki (Ui)1{π(U⃗)=i}

)
−Gk

i ≤ 0, i = 1, 2, . . . , N, k = 1, 2, . . . , K.

(4.16)

We define the policy π∗ as follows:

π∗(U⃗) = argmax
i

{
fi(Ui) +

J∑
j=1

λj
ih

j
i (Ui)−

K∑
k=1

ρki g
k
i (Ui)

}
, (4.17)

where the control parameters λj
i and ρki are chosen such that:
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1. λj
i ≥ 0, ρki ≥ 0, ∀i, ∀j, ∀k;

2. E
(
hj
i (Ui)1{π∗(U⃗)=i}

)
−Hj

i ≥ 0, ∀i, ∀j;

3. If E
(
hj
i (Ui)1{π∗(U⃗)=i}

)
−Hj

i > 0, then λj
i = 0, ∀i, ∀j;

4. E
(
gki (Ui)1{π∗(U⃗)=i}

)
−Gk

i ≥ 0, ∀i, ∀k;

5. If E
(
gki (Ui)1{π∗(U⃗)=i}

)
−Gk

i > 0, then ρki = 0, ∀i, ∀k.

Theorem 4.6 The policy π∗ defined in (4.17), if one exists, is an optimal solution

to the problem defined in (4.16), i.e., it maximizes the system performance, while

satisfying the general fairness constraints for individual users.

Proof: By formulating the constraints as the Lagrangian multipliers, the proof

follows the similar steps as the proofs in the previous sections. The details are omitted

here.

The proposed framework is a generalization and abstraction of Liu et al.’s work.

The framework can accommodate various fairness constraints, not just limited to the

temporal fairness and minimum-performance guarantees. Our proposed scheduling

problems with mixed type constraints and maximum-minimum bounds also fits in

very well.

The generalized optimal framework for opportunistic scheduling provides us an

efficient tool to link successful optimization control and economy models to the engi-

neering problems, especially in designing and analyzing the scheduling problems with

the heterogeneous users’ QoS/fairness constraints over wireless networks.

4.6 Conclusions

Opportunistic transmission scheduling is a promising technology to improve spectrum

efficiency by exploiting time-varying channel conditions. In this chapter, we first

consider the scheduling problems with both minimum and maximum constraints.
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We derive the corresponding opportunistic scheduling policies for the three long-

term QoS/fairness constraints—temporal fairness, utilitarian fairness, and minimum-

performance guarantees. Then we deal with scheduling problems with multiple type

mixed QoS/fairness constraints. Finally, we develop a generalized opportunistic

scheduling framework to accommodate those scheduling schemes. We show that the

structure of the optimal opportunistic scheduling policy is carried over to the prob-

lem with general constraints. The generalized optimal framework for opportunistic

scheduling provides us an efficient tool to design and analyze the scheduling problems

with the heterogeneous users’ QoS/fairness constraints over wireless networks.
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CHAPTER 5

STOCHASTIC DYNAMIC PROGRAMMING

FOR OPPORTUNISTIC SCHEDULING

In this chapter, we consider the problem of fair scheduling of queued data transmis-

sions in wireless networks. We deal with both the throughput maximization problem

and the delay minimization problem. Taking fairness constraints and the data ar-

rival queues into consideration, we formulate the transmission scheduling problem as

a Markov decision process (MDP) with fairness constraints. We consider two crite-

ria: infinite horizon expected total discounted reward and expected average reward.

Applying the dynamic programming approach, we derive and prove explicit optimal-

ity equations for the above constrained MDPs, and give corresponding optimal fair

scheduling policies based on those equations. A practical stochastic-approximation-

type algorithm is applied to calculate the control parameters online in the policies.

Furthermore, we develop a novel approximation method—temporal fair rollout—to

achieve a tractable computation. Numerical results show that the proposed scheme

achieves significant performance improvement for both throughput maximization and

delay minimization problems compared with other existing schemes.

This chapter is organized as follows. In Section 5.1, we give the introduction for

our research. In Section 5.2, we describe our system model and MDP formulation. In

Section 5.3, we derive the dynamic programming equation and the optimal scheduling
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policy for the temporal fair constrained problem with both expected total discounted

reward and expected average reward criteria. In Section 5.4, we derive the dynamic

programming equations and the optimal scheduling policies for the utilitarian fair con-

strained problem with both expected total discounted reward and expected average

reward criteria. In Section 5.5, we propose an efficient approximation algorithm—

temporal fair rollout. We discuss stochastic approximation method for parameter

estimation in Section 5.6. In Section 5.7, we present and analyze the channel model

and the simulation results. Finally, concluding remarks are given in Section 5.8.

5.1 Introduction

Next generation wireless networks, which support high-speed packet data while pro-

viding heterogeneous QoS guarantees, require flexible and efficient radio resource

scheduling schemes. One of the fundamental characteristics of wireless networks is

the time-varying and location-dependent channel conditions due to multipath fad-

ing. Efficient exploitation of such channel variation has attracted significant research

interest in the past decade [32,34,62].

From an information-theoretic viewpoint, Knopp and Humblet showed that the

system capacity is maximized by exploiting inherent multiuser diversity gain in the

wireless channel. The basic idea is to schedule a single user with the best instanta-

neous channel condition to transmit at any one time. Technology based on this idea

has already been implemented in the current 3G systems: High Data Rate (HDR)

and high-speed downlink packet access (HSDPA).

Good scheduling schemes in wireless networks should opportunistically seek to

exploit the time-varying channel conditions to improve spectrum efficiency thereby

achieving multiuser diversity gain. In this context, it is also important to consider the

tradeoff between wireless resource efficiency and level of satisfaction among individual

users (fairness).

92



Fairness criteria are critical to the scheduling problem in wireless networks. For

example, allowing only users close to the base station to transmit at high transmis-

sion rate may result in very high throughput, but sacrifice the transmission of other

users. Liu et al. developed a unified opportunistic scheduling framework for multime-

dia communication in a cellular system, while providing three long-term QoS/fairness

guarantees—temporal fairness, utilitarian fairness, and minimum-performance guar-

antees.

In this chapter, we consider an opportunistic fair scheduling problem for the up-

link of a single-cell Time Division Multiplexing (TDM) system. We provide a novel

formulation of the scheduling problem with a Markov channel model as an MDP

with explicit fairness constraints. We deal with both the throughput maximization

problem and the delay minimization problem. We consider two criteria: infinite

horizon expected total discounted reward and expected average reward. In either case,

we characterize the corresponding optimal MDP-based fair scheduling scheme. We

focus on two categories of fairness constraints, namely temporal fairness and utilitar-

ian fairness. Owing to the particular characteristics of the constraints, we are able

to derive and prove explicit dynamic programming equations for MDPs with fairness

constraints. Based on these optimality equations, we obtain the exact corresponding

optimal scheduling policies. A practical stochastic approximation algorithm is ap-

plied to calculate the control parameters online in the policies. Furthermore, based

on the rollout algorithm, we develop a novel approximation method—temporal fair

rollout—to achieve a tractable computation.

Our work addresses heterogeneity of networks in three dimensions. First, there is

heterogeneity in the channel conditions, owing to factors such as path loss, shadow-

ing, and fading. Second is heterogeneity in the utility of the channel, which depends

on factors such as the heterogeneity of the end-user devices and their capability (e.g.,

transmission power, battery capacity, signal-processing hardware, and application

93



software). Third, there is heterogeneity in the end-user QoS and fairness require-

ments.

Our proposed scheme can easily be extended to different objective functions and

other fairness measures. Although we only focus on uplink scheduling, the scheme is

equally applicable to the downlink case.

5.2 System Model And Problem Formulation

5.2.1 System Model

Fig. 5.1 depicts an uplink data queueing model for a single-cell TDM system. We

assume that there is a base station receiving data from K mobile users. A scheduler,

located at the base station, decides at the start of each scheduling interval which

(single) user to serve. We call a decision rule for scheduling which user to transmit

at each interval a scheduling policy.
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Figure 5.1: Uplink queueing model of a single-cell TDM system.
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The wireless channel for each user differs depending on the location, the surround-

ing environment, and the mobility. Here we assume that the base station knows the

channel state information (CSI) of all users perfectly. Each user has its own packet

queue for transmission with unlimited queue capacity. We assume that packets arrive

in each queue randomly (according to some distribution) and independently. The

length of a scheduling interval (time slot) is fixed, and the channel does not vary

significantly during a time slot. We also assume that all users have the same fixed

packet size.

In practice, before each scheduling interval, all users need to report their current

CSI to the base station. So, the perfect CSI assumption here potentially involves

significant feedback signaling cost [97]. This issue has motivated the recent research

interest in opportunistic scheduling with partial or reduced feedback [98–100].

Let t = 0, 1, . . . be the index of time slots, and k = 1, . . . , K the index of users. For

user k at time slot t, we use Xk(t), Sk(t), and Ak(t) to denote the queue length, the

channel state, and the exogenous packet arrivals respectively (all in terms of number

of packets). The channel state here is measured by the maximum number of packets

each user can transmit to the base station at each time slot.

Let πt be the user scheduled at time slot t given a scheduling policy π. Using this

notation, the queue length evolution is given by, for all k ∈ 1, . . . , K,

Xk(t+ 1) = Xk(t) + Ak(t)−min (Xk(t), Sk(t))1{πt=k},

where 1{·} is the indicator function.

5.2.2 MDP Problem Formulation

Recall that in Section 2.5, a discrete-time, finite-state Markov decision process (MDP)

is specified by a tuple (S,A, P (·|·, ·), r(·, ·)). The state space S and the action space

A are finite sets. At time slot t, if the system is in state s ∈ S and action a ∈ A is

chosen, then the following happens:
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1. a reward r(s, a) is earned immediately;

2. the process moves to state s′ ∈ S with transition probability P (s′|s, a), where

P (s′|s, a) ≥ 0 and
∑

s′ P (s′|s, a) = 1 for all s and a.

The goal is to determine a policy, a decision rule for action selection at each time, to

optimize a given performance criterion. This optimization involves balancing between

immediate reward and future rewards: a high reward now may lead the process into

a bad situation later.

We formulate our scheduling problem as a MDP as follows:

• State: The state space S is the set of all vectors s ∈ R2K of the form

s = (x1, x2, . . . , xK , s1, s2, . . . , sK),

where xk and sk are the queue length and the channel state of user k during a

generic time slot. The state of the system at time slot t is

Xt = (X1(t), X2(t), . . . , XK(t), S1(t), S2(t), . . . , SK(t)).

• Action: The action at each time is to choose one of K users for transmission;

thus an action here corresponds to a user. The action space A is thus

A = {1, 2, . . . , K}.

• Transition probability function: Since a state consists of all queue lengths

and channel state, the transition probability function is determined by the queue

length evolution formula and the dynamics of the channels.

• Reward: We consider the following two problems: the throughput maximization

problem and the delay minimization problem.

The throughput maximization problem involves maximizing the system

throughput with the fairness constraints (described below). The throughput
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in a time slot is defined as the actual number of packets transmitted between a

user and the base station in the time slot. The corresponding reward function

is given by

r(Xt, πt) =
K∑
k=1

1{πt=k}min (Xk(t), Sk(t)) . (5.1)

Note that the throughput for user k is the minimum of the queue length Xk(t)

and the available channel transmission packets Sk(t) because at most Xk(t)

packets can be transmitted at time slot t.

The delay minimization problem is to minimize the sum of the user queue

lengths with the fairness constraints. The corresponding reward function is

given by

r(Xt, πt) = −
K∑
k=1

Xk(t). (5.2)

(The negative sign accounts for minimization.)

Each of these reward functions leads to an overall objective function to be max-

imized, defined roughly as the long-term cumulative reward; these are defined

precisely in the next two sections.

• Policy: In this chapter, the space of policies under consideration is restricted

to stationary policies. A stationary policy is a mapping π : S → A from the

state space S to the action space A; i.e., the stationary policy π selects action

π(s) when the process is in state s. Let Π be the set of all stationary policies.

A natural fairness criterion is to give each user a certain long-term fraction of time,

because time is the basic resource shared among users. This is called the temporal

fairness [46], which is closely related to generalized processor sharing (GPS) in wire-

line networks [23]. An alternative fairness criterion, called utilitarian fairness, would

ensure that all users get at least a certain fraction of the overall system performance.

Based on the MDP model described above, our goal can be formally stated as:

find a policy π that maximizes the specified objective function Jπ while satisfying the
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corresponding fairness constraints.

In this chapter, we consider infinite-horizon models. In the following sections, we

will discuss the above scheduling problems with two types of objective functions: the

expected total discounted reward and the expected average reward criteria.

5.3 Temporal Fairness scheduling

5.3.1 Expected Total Discounted Reward Criterion

Discounting arises naturally in applications in which we account for the time value

of the rewards, such as in economic problems. The discount factor α measures the

present value of one unit of currency received in the future. The meaning of α < 1

is that future rewards matter to us less than the same reward received at the present

time [80,81].

In this subsection, we study the infinite horizon expected total discounted reward

MDP problem with the expected discounted temporal fairness constraints. We derive

and prove an explicit dynamic programming equation for the constrained MDP, and

give an optimal scheduling policy based on that equation.

Problem formulation

For any policy π, we define the expected discounted reward objective function as

Jπ(s) = lim
T→∞

Eπ

[
T−1∑
t=0

αtr(Xt, πt)

∣∣∣∣∣X0 = s

]
, s ∈ S,

where Eπ represents expectation given that a policy π is employed, α is the discount

factor with 0 < α < 1, and X0 is the initial state. Since r(Xt, πt) is the immediate

reward received at time t, it follows that Jπ(s) represents the expected total discounted

reward received when the policy π is employed and the initial state is s. A policy π∗

is said to be α-optimal if

Jπ∗(s) = max
π∈Π

Jπ(s), ∀s ∈ S. (5.3)
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Hence, a policy is α-optimal if its expected discounted reward is maximal for every

initial state.

The expected discounted temporal fairness constraint is

lim
T→∞

Eπ

[
T−1∑
t=0

αt1{πt=a}

∣∣∣∣∣X0 = s

]
≥ C(a), ∀a ∈ A, (5.4)

where C(a) denotes the minimum discounted time-fraction in which action (user) a

should be chosen, with 0 ≤ C(a) ≤ 1 and
∑

a∈AC(a) ≤ 1.

Therefore, our goal can be stated as: find an α-optimal policy π∗ subject to the

expected discounted temporal fairness constraint.

Optimal scheduling policy

Theoretically, the above constrained optimization problem can be solved directly

by linear programming or Lagrangian methods [55–57]. Practically, those methods are

computationally formidable even for problems with moderate state spaces. Moreover,

they cannot be used if the state-transition distribution is not available explicitly.

Dynamic programming can be used to solve such problems online iteratively. Here

we will derive and prove an explicit dynamic programming equation for the above

constrained MDP. Then we characterize an optimal solution to find (5.3) subject

to (5.4).

Given a function u : A → R, for any policy π, we define

Vπ(s) = lim
T→∞

Eπ

[
T−1∑
t=0

αt[r(Xt, πt) + u(πt)]

∣∣∣∣∣X0 = s

]
, s ∈ S,

and let

Vα(s) = sup
π∈Π

Vπ(s), s ∈ S.

Lemma 5.1 Given a function u : A → R, Vα satisfies the optimality equation

Vα(s) = max
a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}
, s ∈ S. (5.5)
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Proof: Let π be an arbitrary policy, and suppose that π chooses action a at

time slot 0 with probability Pa, a ∈ A. Then,

Vπ(s) =
∑
a∈A

Pa

[
r(s, a) + u(a) +

∑
s′∈S

P (s′|s, a)Wπ(s
′)

]
,

where Wπ(s
′) represents the expected discounted weighted reward with the weight

u(πt) incurred from time slot 1 onwards, given that π is employed and the state a

time 1 is s′. However, it follows that

Wπ(s
′) ≤ αVα(s

′)

and hence that

Vπ(s) ≤
∑
a∈A

Pa

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}

≤
∑
a∈A

Pa max
a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}

= max
a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}
. (5.6)

Since π is arbitrary, (5.6) implies that

Vα(s) ≤ max
a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}
. (5.7)

To go the other way, let a0 be such that

r(s, a0)+u(a0)+α
∑
s′∈S

P (s′|s, a0)Vα(s
′) = max

a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}
(5.8)

and let π be the policy that chooses a0 at time 0; and, if the next state is s′, views

the process as originating in state s′; and follows a policy πs′ , which is such that

Vπs′ (s
′) ≥ Vα(s

′)− ε, s′ ∈ S. Hence,

Vπ(s) = r(s, a0) + u(a0) + α
∑
s′∈S

P (s′|s, a0)Vπs′ (s
′)

≥ r(s, a0) + u(a0) + α
∑
s′∈S

P (s′|s, a0)Vα(s
′)− αε

100



which, since Vα(s) ≥ Vπ(s), implies that

Vα(s) ≥ r(s, a0) + u(a0) + α
∑
s′∈S

P (s′|s, a0)Vα(s
′)− αε.

Hence, from (5.8), we have

Vα(s) ≥ max
a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}
− αε. (5.9)

Since πs′ could be arbitrary, then ε is arbitrary, from (5.7) and (5.9), we have

Vα(s) = max
a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}
, s ∈ S.

Now let B(S) be the Banach space of real-valued bounded functions on the state

space S. Note that since rewards are bounded, Vπ ∈ B(S) for any policy π. For any

stationary policy π we define the mapping

Tπ : B(S) → B(S)

in the following manner:

(Tπv)(s) = r(s, π(s)) + u(π(s)) + α
∑
s′∈S

P (s′|s, π(s))v(s′).

We can interpret Tπv at s as representing the expected weighted reward if we use

policy π but terminate it after one period and receive a final reward αv(s′) when the

final state is s′.

The following lemma and theorem characterize the optimal policy for our temporal

fair constrained MDP and the corresponding optimal discounted reward.

Lemma 5.2 Let u : A → R satisfy u(a) ≥ 0 for all a ∈ A. Let π∗ be a stationary

policy that when the process is in state s, selects an action maximizing the right-hand

side of (5.5):

π∗(s) = argmax
a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, a)Vα(s
′)

}
. (5.10)
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Then

Vπ∗(s) = Vα(s), ∀s ∈ S.

Proof: By applying the mapping Tπ∗ to Vα, we obtain

(Tπ∗Vα)(s) = r(s, π∗(s)) + u(π∗(s)) + α
∑
s′∈S

P (s′|s, π∗(s))Vα(s
′)

= max
a∈A

{
r(s, a) + u(a) + α

∑
s′∈S

P (s′|s, π∗(s))Vα(s
′)

}

= Vα(s),

where the last equation follows from Lemma 5.1. Hence,

Tπ∗Vα = Vα,

which implies that

T 2
π∗Vα = Tπ∗(Tπ∗Vα) = Tπ∗Vα = Vα

and by induction we have,

T n
π∗Vα = Vα, ∀n.

Letting n → ∞ and using Banach fixed-point theorem yields the result,

Vπ∗(s) = Vα(s), ∀s ∈ S.

We now show that, under certain assumptions, the policy π∗ in Lemma 5.2 is an

α-optimal policy for the discounted temporal fair constrained MDP.

Theorem 5.1 Suppose there exists a function u : A → R such that:

1. ∀a ∈ A, u(a) ≥ 0;

2. ∀a ∈ A, limT→∞ Eπ∗

[∑T−1
t=0 αt1{π∗

t =a}
∣∣X0 = s

]
≥ C(a);

3. ∀a ∈ A, if limT→∞ Eπ∗

[∑T−1
t=0 αt1{π∗

t =a}
∣∣X0 = s

]
> C(a), then u(a) = 0.
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Then π∗ defined in (5.10) is an α-optimal policy as defined by (5.3) subject to (5.4).

The corresponding optimal discounted reward is

Jπ∗(s) = Vπ∗(s)−
∑
a∈A

u(a)C(a), ∀s ∈ S. (5.11)

Proof: Let π be a policy satisfying the expected discounted temporal fairness

constraint. And suppose there exists u : A → R satisfying conditions 1-3. Then,

Jπ(s) = lim
T→∞

Eπ

[
T−1∑
t=0

αtr(Xt, πt)

∣∣∣∣∣X0 = s

]

≤ lim
T→∞

Eπ

[
T−1∑
t=0

αtr(Xt, πt)

∣∣∣∣∣X0 = s

]

+
∑
a∈A

u(a)

(
lim
T→∞

Eπ

[
T−1∑
t=0

αt1{πt=a}

∣∣∣∣∣X0 = s

]
− C(a)

)

= lim
T→∞

Eπ

[
T−1∑
t=0

αtr(Xt, πt)

∣∣∣∣∣X0 = s

]

+ lim
T→∞

Eπ

[
T−1∑
t=0

αtu(πt)

∣∣∣∣∣X0 = s

]
−
∑
a∈A

u(a)C(a)

= lim
T→∞

Eπ

[
T−1∑
t=0

αt[r(Xt, πt) + u(πt)]

∣∣∣∣∣X0 = s

]
−
∑
a∈A

u(a)C(a)

= Vπ(s)−
∑
a∈A

u(a)C(a).
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Since Vπ(s) ≤ Vα(s) = Vπ∗(s) from Lemma 5.2, we have

Jπ(s) ≤ Vπ∗(s)−
∑
a∈A

u(a)C(a) (5.12)

= lim
T→∞

Eπ∗

[
T−1∑
t=0

αt[r(Xt, π
∗
t ) + u(π∗

t )]

∣∣∣∣∣X0 = s

]
−
∑
a∈A

u(a)C(a)

= lim
T→∞

Eπ∗

[
T−1∑
t=0

αtr(Xt, π
∗
t )

∣∣∣∣∣X0 = s

]

+
∑
a∈A

u(a)

(
lim
T→∞

Eπ∗

[
T−1∑
t=0

αt1{π∗
t =a}

∣∣∣∣∣X0 = s

]
− C(a)

)
(5.13)

= lim
T→∞

Eπ∗

[
T−1∑
t=0

αtr(Xt, π
∗
t )

∣∣∣∣∣X0 = s

]

= Jπ∗(s),

where the second part of (5.13) equals zero because of condition 3 on u. From (5.12),

we get the corresponding optimal discounted reward is

Jπ∗(s) = Vπ∗(s)−
∑
a∈A

u(a)C(a), ∀s ∈ S.

Lemma 5.2 and Theorem 5.1 provide an optimal scheduling policy for the dis-

counted temporal fair constrained MDP. The α-optimal scheduling policy π∗ is given

by (5.10), and the corresponding optimal discounted reward is given by (5.11).

We can think of the parameter u(a) in Theorem 5.1 as an “offset” or “threshold”

for each user (action) to satisfy the fairness constraint, analogous to the result of [46].

Under this constraint, the scheduling policy schedules the “relatively best” user to

transmit. It is straightforward to see that by setting u(a) = 0 for all a ∈ A, the

optimal policy reduces to an optimal policy for a standard (unconstrained) MDP.

However, that policy could be unfair to certain users. If u(a) > 0, then user a is

an “unfortunate” user, i.e., the channel condition it experiences is relatively poor.

Hence, it has to take advantage of other users (e.g., users with u(a) = 0) to satisfy its
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fairness requirement. But to maximize the overall system performance, we can only

give the “unfortunate” users their minimum resource requirements, hence condition 3

for u(a).

5.3.2 Expected Average Reward Criterion

In the previous subsection, we posed the temporal fairness scheduling problem as an

expected discounted reward MDP with constraints. In this subsection, we consider

optimization problems with average reward criteria. Such problems are common

in economic, computer, and communication systems. Some examples are inventory

control problems and computer communication networks, where decisions are made

based on throughput rate or average time a job or packet remains in the system [80].

In this subsection, we study the problem as an infinite horizon average reward

MDP with expected average temporal fairness constraints. Analogous to the results in

the last subsection, we derive and prove an explicit dynamic programming equation for

the constrained MDP, and give an optimal scheduling policy based on that equation.

Problem formulation

For any policy π, we define the expected average reward objective function as

Jπ(s) = lim
T→∞

Eπ

[
1

T

T−1∑
t=0

r(Xt, πt)

∣∣∣∣∣X0 = s

]
, s ∈ S, (5.14)

where Eπ represents conditional expectation given that the policy π is employed.

Since r(Xt, πt) is the immediate reward received at time t, it follows that Jπ(s) repre-

sents the expected average reward received per stage when the policy π is employed

and the initial state is s. If the limit in (5.14) does not exist, then we agree to use

limsup instead of lim. We say that the policy π∗ is average-reward-optimal if

Jπ∗(s) = max
π∈Π

Jπ(s), ∀s ∈ S. (5.15)

The expected average temporal fairness constraint is defined as

lim
T→∞

Eπ

[
1

T

T−1∑
t=0

1{πt=a}

∣∣∣∣∣X0 = s

]
≥ C(a), ∀a ∈ A, (5.16)
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where C(a) denotes the minimum relative frequency at which action a should be

taken, with C(a) ≥ 0 and
∑

a∈A C(a) ≤ 1.

Therefore, our goal can be stated as: find an average-reward-optimal policy π∗

subject to the expected average temporal fairness constraint.

Optimal scheduling policy

Here we derive and prove an explicit dynamic programming equation for the above

constrained MDP, and give an optimal scheduling policy based on that equation.

Theorem 5.2 Suppose the system is unichain.1 Suppose we have a bounded function

h : S → R, a function u : A → R, a constant g, and a stationary policy π∗ such that

for s ∈ S,

1. ∀a ∈ A, u(a) ≥ 0;

2. ∀a ∈ A, limT→∞ Eπ∗

[
1
T

∑T−1
t=0 1{π∗

t =a}
∣∣X0 = s

]
≥ C(a);

3. ∀a ∈ A, if limT→∞ Eπ∗

[
1
T

∑T−1
t=0 1{π∗

t =a}
∣∣X0 = s

]
> C(a), then u(a) = 0;

4.

g + h(s) = max
a∈A

{
r(s, a) + u(a) +

∑
s′∈S

P (s′|s, a)h(s′)

}
; (5.17)

5. π∗ is a policy which, for each s, prescribes an action which maximizes the right-

hand side of (5.17):

π∗(s) = argmax
a∈A

{
r(s, a) + u(a) +

∑
s′∈S

P (s′|s, a)h(s′)

}
. (5.18)

.

Then π∗ is an average-reward-optimal policy as defined by (5.15) subject to (5.16).

The corresponding optimal average reward is

Jπ∗(s) = g −
∑
a∈A

u(a)C(a), ∀s ∈ S. (5.19)

1An MDP is unichain if the transition matrix corresponding to every deterministic stationary
policy consists of one single recurrent class plus a possibly empty set of transient state [80].
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Proof: Let π be a policy satisfying the expected average temporal fairness

constraint; and let Ht = (X0, π0, . . ., Xt−1, πt−1, Xt, πt) denote the history of the

process up to time t. First, we have

Eπ

{
T∑
t=1

[h(Xt)− Eπ(h(Xt)|Ht−1)]

}
= 0,

since

Eπ

{
T∑
t=1

[h(Xt)− Eπ(h(Xt)|Ht−1)]

}
=

T∑
t=1

Eπ[h(Xt)− Eπ(h(Xt)|Ht−1)]

=
T∑
t=1

{Eπ[h(Xt)]− Eπ[Eπ(h(Xt)|Ht−1)]}

=
T∑
t=1

{Eπ[h(Xt)]− Eπ[h(Xt)]} = 0.

Also,

Eπ[h(Xt)|Ht−1] =
∑
s′∈S

h(s′)P (s′|Xt−1, πt−1)

= r(Xt−1, πt−1) + u(πt−1) +
∑
s′∈S

h(s′)P (s′|Xt−1, πt−1)

− r(Xt−1, πt−1)− u(πt−1)

≤ max
a∈A

{
r(Xt−1, a) + u(a) +

∑
s′∈S

P (s′|Xt−1, a)h(s
′)

}

− r(Xt−1, πt−1)− u(πt−1)

= g + h(Xt−1)− r(Xt−1, πt−1)− u(πt−1)

with equality for π∗, since π∗ is defined to take the maximizing action. Hence,

0 ≥ Eπ

{
T∑
t=1

[h(Xt)− g − h(Xt−1) + r(Xt−1, πt−1) + u(πt−1)]

}

⇔ g ≥ Eπ
h(XT )

T
− Eπ

h(X0)

T
+ Eπ

1

T

T∑
t=1

r(Xt−1, πt−1) + Eπ
1

T

T∑
t=1

u(πt−1).
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Letting T → ∞ and using the fact that h is bounded, we have that

g ≥ Jπ(X0) + lim
T→∞

Eπ
1

T

T−1∑
t=0

u(πt)

⇔ g −
∑
a∈A

u(a)C(a) ≥ Jπ(X0) + lim
T→∞

Eπ
1

T

T−1∑
t=0

u(πt)−
∑
a∈A

u(a)C(a)

= Jπ(s) + lim
T→∞

Eπ

[
1

T

T−1∑
t=0

∑
a∈A

u(a)1{πt=a}

∣∣∣∣∣X0 = s

]

−
∑
a∈A

u(a)C(a)

= Jπ(s) +
∑
a∈A

u(a)

(
lim
T→∞

Eπ

[
1

T

T−1∑
t=0

1{πt=a}

∣∣∣∣∣X0 = s

]
− C(a)

)
.

(5.20)

Since we know that u ≥ 0, and that the policy π satisfies the temporal fairness

constraints, the second part of (5.20) is greater than or equal to zero. We get

g −
∑
a∈A

u(a)C(a) ≥ Jπ(s).

With policy π∗, we have

g −
∑
a∈A

u(a)C(a) = Jπ∗(s) +
∑
a∈A

u(a)

(
lim
T→∞

Eπ

[
1

T

T−1∑
t=0

1{π∗
t =a}

]
− C(a)

)
(5.21)

= Jπ∗(s),

where the second part of (5.21) equals to zero because of condition 3 on u(a). Hence,

the desired result is proven.

The average-reward-optimal policy π∗ is given by (5.18), and the corresponding

optimal average reward is given by (5.19).

Analogous to u(a) in the last section, u(a) in (5.17) can be considered as an

“offset” for each user to satisfy the average temporal fairness constraint. If we relax

the fairness constraint by letting C(a) = 0 for all a ∈ A, the optimal policy would

reduce to an optimal policy for a standard (unconstrained) average reward MDP, as

expected.
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5.4 Utilitarian Fairness Scheduling

In the previous section, we studied the scheduling problem with temporal fairness

constraints. In wireline networks, when a certain amount of resource is assigned to a

user, it is equivalent to granting the user a certain amount of throughput. However,

the situation is different in wireless networks, where the performance value and the

amount of resource are not directly related. Therefore, a potential problem in wireless

network is that the temporal fairness scheme has no way of explicitly ensuring that

each user receives a certain guaranteed fair amount of utility (e.g., data rate). Hence,

in this section we will describe an alternative fair scheduling problem that would

ensure that all users get at least a certain fraction of the overall system performance,

called utilitarian fairness scheduling.

We consider both the infinite horizon expected total discounted and average re-

ward criteria here. In either case, we characterize the corresponding optimal MDP-

based fair scheduling scheme.

5.4.1 Expected Total Discounted Reward Criterion

Problem formulation

As defined in Section 5.3.1, for any policy π, the expected discounted reward

objective function is

Jπ(s) = lim
T→∞

Eπ

[
T−1∑
t=0

αtr(Xt, πt)

∣∣∣∣∣X0 = s

]
, s ∈ S.

The expected discounted utilitarian fairness constraint is

lim
T→∞

Eπ

[
T−1∑
t=0

αtr(Xt, πt)1{πt=a}

∣∣∣∣∣X0 = s

]
≥ D(a)Jπ(s), ∀a ∈ A, (5.22)

where D(a) denotes the minimum discounted fraction of overall system performance

in which action (user) a should be chosen, with 0 ≤ D(a) ≤ 1 and
∑

a∈A D(a) ≤ 1.

Therefore, our goal can be stated as: find an α-optimal policy π∗ subject to the

expected discounted utilitarian fairness constraint.
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Optimal scheduling policy

Given a function ω : A → R, for any policy π, we define

Uπ(s) = lim
T→∞

Eπ

[
T−1∑
t=0

αt[(κ+ ω(πt))r(Xt, πt)]

∣∣∣∣∣X0 = s

]
, s ∈ S,

where κ = 1−
∑

πt∈A D(πt)ω(πt) and let

Uα(s) = sup
π∈Π

Uπ(s), s ∈ S.

Lemma 5.3 Given a function ω : A → R, Uα satisfies the optimality equation

Uα(s) = max
a∈A

{
(κ+ ω(a))r(s, a) + α

∑
s′∈S

P (s′|s, a)Uα(s
′)

}
, s ∈ S. (5.23)

Proof: The proof is similar to that of Lemma 5.1 in Section 5.3.1. The details

are omitted for the sake of space.

The following lemma and theorem characterize the optimal policy for our utilitar-

ian fair constrained MDP and the corresponding optimal discounted reward.

Lemma 5.4 Let ω : A → R satisfy ω(a) ≥ 0 for all a ∈ A. Let π∗ be a stationary

policy that when the process is in state s, selects an action maximizing the right-hand

side of (5.23):

π∗(s) = argmax
a∈A

{
(κ+ ω(a))r(s, a) + α

∑
s′∈S

P (s′|s, a)Uα(s
′)

}
. (5.24)

Then

Uπ∗(s) = Uα(s), ∀s ∈ S.

Proof: The proof is similar to that of Lemma 5.2 in Section 5.3.1.

We now show that, under certain assumptions, the policy π∗ in Lemma 5.4 is an

α-optimal policy for the discounted utilitarian fair constrained MDP.

Theorem 5.3 Suppose there exists a function ω : A → R such that:

1. ∀a ∈ A, ω(a) ≥ 0;
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2. ∀a ∈ A, limT→∞ Eπ∗

[∑T−1
t=0 αtr(Xt, π

∗
t )1{π∗

t =a}
∣∣X0 = s

]
≥ D(a)Jπ∗(s);

3. ∀a ∈ A, if limT→∞ Eπ∗

[∑T−1
t=0 αtr(Xt, π

∗
t )1{π∗

t =a}
∣∣X0 = s

]
> D(a)Jπ∗(s), then

ω(a) = 0.

Then π∗ defined in (5.24) is an α-optimal policy as defined by (5.3) subject to (5.22).

The corresponding optimal discounted reward is

Jπ∗(s) = Uπ∗(s), ∀s ∈ S. (5.25)

Proof: Let π be a policy satisfying the expected discounted utilitarian fairness

constraint. And suppose there exists ω : A → R satisfying conditions 1-3. Then,

Jπ(s) ≤ Jπ(s) +
∑
a∈A

ω(a)

(
lim
T→∞

Eπ

[
T−1∑
t=0

αtr(Xt, πt)1{πt=a}

∣∣∣∣∣X0 = s

]
−D(a)Jπ(s)

)

= Jπ(s) + lim
T→∞

Eπ

[
T−1∑
t=0

αtω(πt)r(Xt, πt)

∣∣∣∣∣X0 = s

]
−
∑
a∈A

ω(a)D(a)Jπ(s)

= lim
T→∞

Eπ

[
T−1∑
t=0

αt[(κ+ ω(πt))r(Xt, πt)]

∣∣∣∣∣X0 = s

]

= Uπ(s),

where κ = 1 −
∑

πt∈AD(πt)ω(πt). Since Uπ(s) ≤ Uα(s) = Uπ∗(s) from Lemma 5.4,

we have

Jπ(s) ≤ Uπ∗(s) (5.26)

= lim
T→∞

Eπ∗

[
T−1∑
t=0

αtr(Xt, π
∗
t )

∣∣∣∣∣X0 = s

]

+
∑
a∈A

ω(a)

(
lim
T→∞

Eπ∗

[
T−1∑
t=0

αtr(Xt, π
∗
t )1{π∗

t =a}

∣∣∣∣∣X0 = s

]
−D(a)Jπ∗(s)

)
(5.27)

= Jπ∗(s),
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where the second part of (5.27) equals zero because of condition 3 on ω. From (5.26),

we get the corresponding optimal discounted reward is

Jπ∗(s) = Uπ∗(s), ∀s ∈ S.

5.4.2 Expected Average Reward Criterion

Problem formulation

As defined in Section 5.3.2, for any policy π, the expected average reward objective

function is

Jπ(s) = lim
T→∞

Eπ

[
1

T

T−1∑
t=0

r(Xt, πt)

∣∣∣∣∣X0 = s

]
, s ∈ S.

The expected average utilitarian fairness constraint is

lim
T→∞

Eπ

[
1

T

T−1∑
t=0

r(Xt, πt)1{πt=a}

∣∣∣∣∣X0 = s

]
≥ D(a)Jπ(s), ∀a ∈ A, (5.28)

where D(a) denotes the minimum fraction of overall system performance in which

action (user) a should be chosen, with 0 ≤ D(a) ≤ 1 and
∑

a∈AD(a) ≤ 1.

Therefore, our goal can be stated as: find an average-reward-optimal policy π∗

subject to the expected average utilitarian fairness constraint.

Optimal scheduling policy

The following theorem characterize the optimal policy for our average utilitarian

fair constrained MDP.

Theorem 5.4 Suppose the system is unichain. Suppose we have a bounded function

h : S → R, a function ω : A → R, a constant g, and a stationary policy π∗ such that

for s ∈ S,

1. ∀a ∈ A, ω(a) ≥ 0;

2. ∀a ∈ A, limT→∞ Eπ∗

[
1
T

∑T−1
t=0 r(Xt, π

∗
t )1{π∗

t =a}
∣∣X0 = s

]
≥ D(a)Jπ∗(s);
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3. ∀a ∈ A, if limT→∞Eπ∗

[
1
T

∑T−1
t=0 r(Xt, π

∗
t )1{π∗

t =a}
∣∣X0 = s

]
> D(a)Jπ∗(s), then

ω(a) = 0;

4.

g + h(s) = max
a∈A

{
(κ+ ω(a))r(s, a) +

∑
s′∈S

P (s′|s, a)h(s′)

}
, (5.29)

where κ = 1−
∑

a∈A D(a)ω(a);

5. π∗ is a policy which, for each s, prescribes an action which maximizes the right-

hand side of (5.29):

π∗(s) = argmax
a∈A

{
(κ+ ω(a))r(s, a) +

∑
s′∈S

P (s′|s, a)h(s′)

}
. (5.30)

.

Then π∗ is an average-reward-optimal policy as defined by (5.15) subject to (5.28).

The corresponding optimal average reward is

Jπ∗(s) = g, ∀s ∈ S. (5.31)

Proof: Let π be a policy satisfying the expected average utilitarian fairness

constraint; and let Ht = (X0, π0, . . ., Xt−1, πt−1, Xt, πt) denote the history of the

process up to time t. First, we have

Eπ

{
T∑
t=1

[h(Xt)− Eπ(h(Xt)|Ht−1)]

}
= 0.
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Also,

Eπ[h(Xt)|Ht−1] =
∑
s′∈S

h(s′)P (s′|Xt−1, πt−1)

= (κ+ ω(πt−1))r(Xt−1, πt−1) +
∑
s′∈S

h(s′)P (s′|Xt−1, πt−1)

− (κ+ ω(πt−1))r(Xt−1, πt−1)

≤ max
a∈A

{
(κ+ ω(a))r(Xt−1, a) +

∑
s′∈S

P (s′|Xt−1, a)h(s
′)

}

− (κ+ ω(πt−1))r(Xt−1, πt−1)

= g + h(Xt−1)− (κ+ ω(πt−1))r(Xt−1, πt−1)

with equality for π∗, since π∗ is defined to take the maximizing action. Hence,

0 ≥ Eπ

{
T∑
t=1

[h(Xt)− g − h(Xt−1) + (κ+ ω(πt−1))r(Xt−1, πt−1)]

}

⇔ g ≥ Eπ
h(XT )

T
− Eπ

h(X0)

T
+ Eπ

1

T

T∑
t=1

(κ+ ω(πt−1))r(Xt−1, πt−1)

⇔ g ≥ Eπ
h(XT )

T
− Eπ

h(X0)

T
+ Eπ

1

T

T∑
t=1

r(Xt−1, πt−1)

+ Eπ
1

T

T∑
t=1

(
ω(πt−1 −

∑
a∈A

D(a)ω(a)

)
r(Xt−1, πt−1).

Letting T → ∞ and using the fact that h is bounded, we have that

g ≥ Jπ(X0) + lim
T→∞

Eπ
1

T

T−1∑
t=0

(
ω(πt−1 −

∑
a∈A

D(a)ω(a)

)
r(Xt−1, πt−1)

⇔ g ≥ Jπ(X0) +
∑
a∈A

ω(a)

(
lim
T→∞

Eπ

[
1

T

T−1∑
t=0

r(Xt, πt)1{πt=a}

∣∣∣∣∣X0 = s

]
−D(a)Jπ(s)

)
.

(5.32)

Since we know that ω ≥ 0, and that the policy π satisfies the utilitarian fairness

constraints, the second part of (5.32) is greater than or equal to zero. We get

g ≥ Jπ(s).
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With policy π∗, we have

g = Jπ∗(s) +
∑
a∈A

u(a)

(
lim
T→∞

Eπ∗

[
1

T

T−1∑
t=0

r(Xt, π
∗
t )1{π∗

t =a}

∣∣∣∣∣X0 = s

]
−D(a)Jπ∗(s)

)
.

(5.33)

= Jπ∗(s),

where the second part of (5.33) equals to zero because of condition 3 on ω(a). Hence,

the desired result is proven.

5.5 Temporal Fair Rollout Algorithm

5.5.1 Rollout Algorithm

In the previous sections, we derived optimal policies for the expected total discounted

reward and the expected average reward criteria MDP problems with the correspond-

ing temporal fairness and utilitarian fairness constraints. Note that the optimal poli-

cies may be obtained in principle by maximizing the right-hand side of (5.5), (5.17),

(5.23), or(5.29), but this requires the calculation of the optimal value function in the

right-hand side, which for many problems is overwhelming.

The rollout algorithm yields a one-step lookahead policy, with the optimal value

function approximated by the value function of a known base policy π. The base policy

π is typically heuristic and suboptimal, which is calculated either analytically or by

simulation. The policy thus obtained is called the rollout policy based on π.

The salient feature of the rollout algorithm is its reward-improvement property :

the rollout policy is no worse than the performance of the base policy. In many cases,

the rollout policy is substantially better than the base policy. The rollout algorithm

can also be viewed as the policy improvement step of the policy iteration method,

which is a primary method for solving infinite horizon MDP problems [81].
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5.5.2 Temporal Fair Rollout Algorithm

We will extend the idea of rollout to our temporal fair constrained MDPs to propose an

efficient approximation method—temporal fair rollout. (A similar treatment applies

to the utilitarian fairness case, but is omitted here for the sake of brevity.) We use

the expected total discounted reward MDP as an example here (a similar approach

applies to the expected average reward case).

Suppose that there exists a function u : A → R satisfying the conditions in

Theorem 5.1. Then we have

Vπ∗(s) = max
a

{r(s, a) + u(a) + αE [Vπ∗(s′)|s, a]} , ∀s ∈ S,

where E[·|s, a] is the conditional expectation given the state s and action a. Moreover,

an optimal policy is given by

π∗(s) = argmax
a∈A

{r(s, a) + u(a) + αE [Vπ∗(s′)|s, a]} , s ∈ S.

Applying Theorem 5.1, we can rewrite the optimal policy as:

π∗(s) = argmax
a∈A

{
r(s, a) + u(a) + αE [Jπ∗(s′)|s, a] + α

∑
a∈A

u(a)C(a)

}
, s ∈ S.

Removing the last constant term, we get

π∗(s) = argmax
a∈A

{r(s, a) + u(a) + αE [Jπ∗(s′)|s, a]} , s ∈ S.

Instead of calculating the optimal value function directly, we approximate it with

the value function of a base policy that also satisfies the discounted temporal fairness

requirements. Let πb be a base policy and Jπb the value function of the policy. Then

the temporal fair rollout policy is

πtfr(s) = argmax
a∈A

{
r(s, a) + u(a) + αE

[
Jπb(s′)

∣∣s, a]} , s ∈ S. (5.34)

The expected value of the base policy is obtained by Monte Carlo simulation. The

selection of the base policy is problem specific. In our experiments, we use the tem-

poral fair opportunistic scheduling policy of [46] as the base policy. We will show by
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simulation that the temporal fair rollout policy in fact performs better than the base

policy.

5.6 Stochastic Approximation for Parameter Esti-

mation

The temporal fair rollout policy (5.34) described in the previous section involves some

control parameters u(a) that need to be estimated. Fig. 5.2 shows a block diagram

of a general iterative procedure to estimate these control parameters online. We use

a practical stochastic approximation technique, similar to the one in [46], to estimate

such parameters.

Measure Channel

and Queue


Length


Estimate

Expected Value


Function


Apply

Scheduling


Policy


Update Control

Paramenter


Figure 5.2: Block diagram of the scheduling policy with online parameter estimation

We first briefly explain the idea of the stochastic approximation algorithm used

here. Suppose we wish to find a zero root of an unknown continuous function f(·). If

we can evaluate the value of f(x) at any x, then we can use the iterative algorithm

xt+1 = xt − βtf(xt),

which will converge to a point x∗ such that f(x∗) = 0 as long as the step size βt is

appropriately chosen. Suppose that we cannot have the exact value of f(xt) at xt;

instead, we only have a noisy observation gt of f(xt), i.e., gt = f(xt)+et where et is the

observation error (noise) and E[et] = 0. Then the iterative stochastic approximation
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algorithm

xt+1 = xt − βtgt,

converges to x∗ with probability 1 under appropriate conditions on βt and f . We refer

readers to [88, 101] for a systematic and rigorous study of stochastic approximation

algorithms.

We now use a stochastic approximation algorithm to estimate u⃗ (the vector of

u(a)). Note that we can write u⃗ as a root of the equation f(u⃗) = 0, where the kth

component of f(u⃗) is given by

fk(u⃗) = lim
T→∞

Eπtfr

[
T−1∑
t=0

αt1{πtfr
t =k}

∣∣∣∣∣X0 = s

]
− C(k), ∀k ∈ A.

Next, we use a stochastic approximation algorithm to generate a sequence of iterates

u⃗1, u⃗2, · · · that represent estimates of u⃗. Each u⃗t defines a policy given by

πtfr,t(s) = argmax
a∈A

{
r(s, a) + ut(a) + αE

[
Jπb(s′)

∣∣s, a]} , ∀s ∈ S.

To construct the stochastic approximation algorithm, we need an estimate gt of f(u⃗t).

Although we cannot obtain f(u⃗t) directly, we have a noisy observation of its compo-

nents:

gtk = αt1{πtfr,t(s)=k} − C(k), ∀k ∈ A.

Hence, we can get a stochastic approximation algorithm of the form

ut+1(k) = ut(k)− βt(αt1{πtfr,t(s)=k} − C(k)),

where the step size βt is appropriately chosen; for example, βt = 1/t. The initial

estimate u⃗1 can be set to 0⃗ or some value based on the history information. The

computation burden above is O(K) per time slot, where K is the number of users,

which suggests that the algorithm is easy to implement online. Simulations show

that with the above stochastic approximation algorithm, u⃗t converges to u⃗ relatively

quickly.
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5.7 Numerical Results

In this section, we present numerical results to illustrate the performance of the

proposed temporal fair rollout algorithm. We first describe our simulation setup of a

cellular system, as well as the channel model. We then show the simulation results

for each scheduling policy using the model.

5.7.1 Simulation Setup

We consider the uplink of a single-cell system with 10 mobile users and 1 base station

in our simulation. The preset temporal fairness requirements for users 1–10 are 1/11,

1/11, 1/13, 1/13, 1/13, 1/13, 1/11, 1/11, 1/13, 1/13. Note that the temporal fairness

requirements are nonuniform and the summation of these is less than 1. This gives the

system the freedom to assign the remaining fraction of the resource to some “better”

users to further improve the system performance.

We assume that the packet arrivals at each queue are independent Poisson pro-

cesses. For simplicity, we assume that we know the maximum arrival rate for each

user. We denote the arrival rate and the maximum arrival rate for user k by λk and

λmax
k respectively. We define the normalized-arrival-rate for user k as λk/λ

max
k .

We divide the 10 users into five groups based on their heterogeneous arrival rates

and mean channel conditions. Specifically, users 1 and 2 have low arrival rates and

low mean channel conditions. Users 3 and 4 have high arrival rates and high mean

channel conditions. Users 5 and 6 have high arrival rates and moderate mean channel

conditions. Users 7 and 8 have low arrival rates and high mean channel conditions.

Finally, users 9 and 10 have moderate arrival rates and moderate channel conditions.

With this range of heterogeneous user environments, we can study how the arrival

rates and channel conditions affect the users’ performances under different scheduling

schemes.
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For the purpose of comparison, we evaluate six related scheduling policies includ-

ing temporal fair rollout:

1. Round-robin: A well-known non-opportunistic scheduling policy that schedules

users in a predetermined order. At time slot t, the user (tmodK+1) is chosen.

2. Greedy: The natural greedy policy always selects the user with maximum possi-

ble throughput to transmit at any time. At time slot t, we choose user according

to the following index policy:

argmax
a∈A

{min(Xa(t), Sa(t))}.

3. Rollout: At time slot t, the user chosen is

argmax
a∈A

{
r(Xt, a) + αE

[
Jπb(Xt+1)

∣∣Xt, a
]}

,

where the base policy πb is the above greedy policy.

4. Opportunistic scheduling-1: In [46], Liu et al. proposed an opportunistic

scheduling scheme with temporal fairness constraints for memoryless channels.

The policy is

argmax
a∈A

{Sa(t) + v1(a)},

where v1(a) is estimated online via stochastic approximation.

5. Opportunistic scheduling-2: This policy is a variation of the above opportunistic

scheduling-1 policy with the consideration of the queue lengths. The policy is

argmax
a∈A

{min(Xa(t), Sa(t)) + v2(a)} ,

where v2(a) is also estimated online via stochastic approximation.

6. Temporal fair rollout: We select the above opportunistic scheduling-2 policy

as our base policy πb. It not only satisfies the discounted temporal fairness
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constraints, but also takes the queue lengths into account. At time slot t, the

user chosen is

argmax
a∈A

{
r(Xt, a) + u(a) + αE

[
Jπb(Xt+1)

∣∣Xt, a
]}

.

The primary motivation of this paper is to improve wireless resource efficiency

by exploiting time-varying channel conditions while also satisfying certain QoS con-

straints among users. However, it turns out that policies (1)–(3) above violate the

temporal fairness constraints (see Figs. 5.4 and 5.6), which means they are infeasible

for our problem. The reason we include them in our comparison is that either they are

very simple and widely used, or they can serve as a performance benchmark/bound.

In our evaluation, our focus is not on the effect of the discount factor (which was

introduced primarily for analytical tractability). Therefore, in our simulation, we

treat α as a number very close to 1, and replace all normalized discounted sums by

finite-horizon averages. For example, in the throughput maximization problem, we

calculate the throughput as a time average (without discounting). Similarly, in the

delay minimization problem, the delay is the calculated as the time average of the

queue length. The constraints are also calculated as time averages.

5.7.2 Channel Model

The digital cellular radio transmission environment usually consists of a large number

of scatterers that result in multiple propagation paths. Associated with each path is

a propagation delay and an attenuation factor depending on the obstacles in the path

that reflect electromagnetic waves. Multipath fading results in a correlated random

process, i.e., a random process with memory. This kind of channel is known as the

multipath Rayleigh fading channel.

Finite-State Markov Channel (FSMC) models have been found to be accurate in

modeling such channels with memory [79]. The base station uses the pilot channels

to estimate the SNRs at the receiver. The SNR is used as a measure of channel
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condition here. The study of the FSMC emerges from a two-state Markov channel

known as the Gilbert-Elliott channel [25,26]. However in some cases, modeling a radio

communication channel as a two-state Gilbert-Elliott channel is not adequate when

the channel quality varies dramatically. We need more than two states to capture

the channel quality and take advantage of rate adaptation techniques used in cellular

networks.
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Figure 5.3: State transition for Rayleigh fading channel model.

In our simulation, we use an 8-state Markov channel model described in [102] to

capture the channel conditions. Fig. 5.3 shows the state transition for the Rayleigh

fading channel model. We partition the range of possible SNR values into eight equal

intervals where each interval corresponds to a state in the Markov chain. We denote

the set of states by N = {0, 1, 2, 3, 4, 5, 6, 7}, where state 0 corresponds to an SNR

range of 0 db to 5 db, state 1 to 5 db to 10 db, and so on. The time interval between

channel measurements for this model is 1 ms, also called the time granularity of the

model. For convenience, we assume that the length of time slot is also 1 ms, so that

the granularity of the channel model and the scheduling intervals are consistent. The

channel state transition probabilities are given in the Table 5.1 [102].
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Table 5.1: Channel state transition probabilities
HHHHHHn

n′
n− 2 n− 1 n n+ 1 n+ 2

0 - - 0.677567 0.319746 0.002687
1 - 0.109712 0.676353 0.212175 0.001760
2 0.000739 0.137678 0.671957 0.188237 0.001389
3 0.000885 0.149863 0.670962 0.176897 0.001393
4 0.001099 0.157779 0.671564 0.168380 0
5 0.001102 0.164497 0.670785 0.162652 0.000964
6 0.001252 0.169662 0.670743 0.158343 -
7 0.000248 0.041396 0.958356 - -

5.7.3 Simulation Results

Figs. 5.4 and 5.5 show the performance of the six policies (described in Section 5.7.1)

for the throughput maximization problem where we use (5.1) as the reward function.

Fig. 5.4 indicates the long-term time fraction allocations of all 10 users under the

various scheduling policies for the problem. We plot the 95% confidence intervals

for each user. For each user, the rightmost bar shows the minimum time fraction

requirement. The remaining six bars represent the time fraction allocated to this

user in the six policies evaluated here. We see that only the opportunistic scheduling-

1, opportunistic scheduling-2, and temporal fair rollout policies satisfy the minimum

temporal fairness requirements for all users. Therefore, these three policies are feasible

solutions for our constrained problem.

Fig. 5.5 evaluates the scheduling policies by examining the impact of the arrival

traffic on the average system throughput (packets/time slot). We take the normalized-

arrival-rate for each user to be the same for every simulation, varying from 0.1 to 1.0.

We also plot the 95% confidence intervals for each step. From Fig. 5.5, we see that our

temporal fair rollout policy outperforms (higher means better) all the other policies

except the rollout policy with the greedy base policy. This is not surprising since the

latter policy achieves the best overall performance at the cost of unfairness among

the users (and is thus not a feasible solution to the problem).
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Figs. 5.6 and 5.7 show the performance of the six policies for the delay minimiza-

tion problem where we use (5.2) as the reward function. Similar to Fig. 5.4, Fig. 5.6

indicates the time-fraction allocations of 10 users in the various scheduling policies for

the problem. Also we can see that only the opportunistic scheduling-1, opportunistic

scheduling-2, and our temporal fair rollout policies are feasible solutions.

Fig. 5.7 evaluates the scheduling policies by examining the impact of the arrival

traffic on the average system queue length (packets/time slot). It is evident that

the average system queue length increases significantly with increasing arrival traffic.

Similar to Fig. 5.5, we also see that our temporal fair rollout policy outperforms

(lower means better) all the other policies except the rollout policy with the greedy

base policy (which, again, is not a feasible solution).

In summary, the simulation results show that our temporal fair rollout policy per-

forms significantly better than other policies, including the two opportunistic schedul-

ing policies that also satisfy the temporal fairness requirements, especially for the

delay minimization case.

5.8 Conclusions

In this chapter, we formulated the opportunistic fair scheduling problem as an MDP

with explicit fairness constraints. We derived the dynamic programming optimal-

ity equations for MDPs with temporal fairness and utilitarian fairness constraints

with two criteria: infinite horizon expected discounted reward and expected average

reward. Based on the optimality equations, we obtained the corresponding optimal

scheduling policies for the two criteria. We applied the methods on two common

scheduling objectives: throughput maximization and delay minimization problems.

Our approach can naturally be extended to fit different objective functions and many

other fairness measures. To compute the optimal policies efficiently, we developed
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a practically viable approximation algorithm called temporal fair rollout. Simula-

tions showed that the algorithm achieve significant performance gains over the other

existing opportunistic and non-opportunistic scheduling schemes.
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Figure 5.4: Time fraction allocation for throughput maximization problem.
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Figure 5.5: Average system throughput vs. normalized arrival rate.

127



1 2 3 4 5 6 7 8 9 10
0

0.05

0.10

0.15

0.20

0.25

User Index

T
em

po
ra

l f
ai

rn
es

s

 

 
Round−robin
Opportunistic scheduling−1
Opportunistic scheduling−2
Temporal fair rollout
Greedy
Rollout
Temporal fairness requirement

Figure 5.6: Time fraction allocation for delay minimization problem.
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CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

This chapter briefly summarizes the major contributions of this dissertation and out-

lines proposals for future work.

6.1 Summary of Contributions

To meet the increasing demand for wireless services, especially affordable wireless

internet services, wireless spectrum efficiency is becoming increasingly important. In

wireless networks, users experience unreliable, location-dependent, and time-varying

channel conditions. So dynamic resource allocation for wireless networks has become

an important research topic. In this dissertation, we study several resource allocation

problems in QoS-aware wireless cellular networks.

The main contributions of this dissertation are as follows:

First, we develop a rigorous framework for opportunistically scheduling user trans-

missions to exploit the time-varying channel conditions in multiuser OFDM systems,

which dynamically allocates resource in both temporal and spectral domains. The

objective is to maximize the OFDM system performance while satisfying various QoS

requirements. Our framework enables us to investigate three categories of schedul-

ing problems involving two fairness requirements (temporal fairness and utilitarian

fairness) and a minimum-performance requirement. We provide optimal scheduling
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solutions, discuss the advantages and disadvantages of the various scheduling formu-

lations. Our scheduler decides not only which time-slot, but also which subcarrier

to allocate to each user. To implementing these optimal policies involves solving a

maximal bipartite matching problem at each scheduling time. To solve this prob-

lem efficiently, we propose a modified Hungarian algorithm and a simple suboptimal

algorithm. Numerical results demonstrate that our schemes achieve significant im-

provement in system performance compared with non-opportunistic schemes.

Second, we generalize the work by Liu et al. in two ways. Beginning with

the scheduling problems with both minimum and maximum constraints, we derive

the corresponding optimal opportunistic scheduling policies for the three long-term

QoS/fairness constraints. Then we deal with scheduling problems with multiple type

mixed QoS/fairness constraints. We also provide optimal scheduling solutions. Fi-

nally, we present a generalized opportunistic scheduling framework to accommodate

those scheduling schemes. We show that the structure of the optimal opportunis-

tic scheduling policy is carried over to the problem with general constraints. The

generalized optimal framework for opportunistic scheduling provides us an efficient

tool to design and analyze the scheduling problems with the heterogeneous users’

QoS/fairness constraints over wireless networks.

Third, taking input queues and channel memory into consideration, we reformulate

the above transmission scheduling problem as a Markov decision process (MDP) with

fairness constraints. We investigate the throughput maximization and the delay min-

imization problems in this context. We study two categories of fairness constraints,

namely temporal fairness and utilitarian fairness. We consider two criteria: infinite

horizon expected total discounted reward and expected average reward. We derive

and prove explicit dynamic programming equations for the above constrained MDPs,

and characterize optimal scheduling policies based on those equations. An attractive

feature of our proposed schemes is that they can easily be extended to fit different
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objective functions and other fairness measures. Although we only focus on uplink

scheduling, the scheme is equally applicable to the downlink case. Furthermore, we

develop an efficient approximation method—temporal fair rollout—to reduce the com-

putational cost. Numerical results show that the proposed scheme achieves significant

performance improvement for both throughput maximization and delay minimization

problems compared with other existing schemes.

6.2 Future Work

Resource allocation and scheduling schemes are important in wireless networks, es-

pecially to provide high speed packet data and seamless service. There are many

unanswered questions and problems yet to be solved in this area.

Opportunistic transmission scheduling is a promising technology to improve spec-

trum efficiency by exploiting time-varying channel conditions. In order to bring such

benefit to future wireless networks, we can extend the opportunistic scheduling idea to

efficiently support multicast traffic, partial channel information, and ad hoc network.

We can extend the scheduling algorithms to efficiently support non-additive utility

functions, which arise naturally in multicast applications. To avoid low multicast

throughput caused by serving users with poor channel conditions, we need develop

a comprehensive framework to tradeoff multicast throughput and the number of ser-

viced users. Owing to the general difficulty in obtaining precise global channel states,

it is necessary to extend the scheduling framework to support partial channel infor-

mation. We model partial channel information in terms of instantaneous channel

state distributions. The objective is to derive scheduling policy based on channel

distributions rather than precise channel states. For ad hoc network environments,

we assume local schedulers, each managing a subset of wireless terminals. We pro-

pose to achieve such objective without extensive information exchange among local

schedulers.
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We have developed a framework of opportunistic scheduling in multiuser OFDM

systems. Our research demonstrated the significant improvement brought by oppor-

tunistic scheduling on the effective system capacity of multi-channel systems. Further-

more, we plan to investigate the significant feedback overhead involved in assuming

perfect channel-state information feedback in OFDM systems, especially in fast fad-

ing channels. Scenarios with relatively small numbers of users in the system will be

of practical interest to be explored. That means two or more subcarriers could be

available for each user. The effects of finite-length data arrival queues or explicit delay

requirement for certain users also will be studied. The application of multiple-channel

opportunistic scheduling for MAC layer QoS control in the popular cognitive radio

systems will be considered.
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