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ABSTRACT OF THESIS 

THE EFFECT OF SOIL MOISTURE STRESS ON GROWTH 
AND FLOWERING OF CARNATIONS 

The effect of differences in soil moisture stress, provided by 

the use of different soils and depths of soil, on yield and quality 

of carnations was investigated. A technique that would offer a 

better indication of when to water carnations under greenhouse 

conditions was also evaluated. 

The values of bulk density, moisture content at all suctions 

and total pore space of the best soils were an average of the 

extremes of all soils compared. Reduction of soil depth from 8 to 

4 inches increased problems that result from too much or insufficient 

water. Yield and grade were best on plants grown in 8-inch soil. 

Raw field soil had a decreased yield due to an aeration problem when 

placed in a greenhouse bench. 

The effect of stress was most noticeable in the flowering of 

the second crop which was delayed up to 5 weeks under high stress. 

Indications were that some stresS may be essential for production 

of higher grade carnations. 

The number of stomatal and epidermal c~lls per unit area 

increased as either solar radiation or soil moisture stress increased. 

Stomata on leaves from plants grown under high stress adapted to the 

unfavorable growing conditions by having a greater resistance to 
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transpiration. The use of stomatal index was not beneficial in 

understanding stomatal distribution. A higher correlation was 

found between transpiration rate and stomatal aperture than transpi-

ration rate and solar radiation. Although the lithium chloride 

hygrometer was easy to use, it was not sensitive enough to be used 

in a greenhouse as an indication of when to water. The measurement 

of stomatal apertures by the use of silicon rubber impressions was 

too laborious to be used as a practical field technique. 
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Chapter I 

INTRODUCTION 

There are several distinct differences between soils commonly 

found in the field and those in greenhouses. In the greenhouse, there 

is a restricted volume of soil available for root growth and water 

supply as compared to field conditions. Greenhouse soils may be 

characterized as shallow, intensively cultivated, restricted to pots 

and benches, and without restriction to drainage from the bottom of 

the bench (47). Depth of soil is important, since it is one of the 

factors determining soil water holding capacity. 

According to Richards· "outflow law" (83), if the pressure of 

the soil water is equivalent to, or less than atmospheric pressure 

at the undersurface of soil layer, then water will not flow from the 

soil. This law may be applied to a greenhouse bench. After it has 

been watered and equilibrium reached, the suction at the undersurface 

is 0, while the suction affecting the water content in the upper 

surface of soil is equal to the 80il's depth. A shallow soil of 

10 cm would have a higher water content than a soil 20 cm deep, 

provided all other physical characteristics are the same. 

Under conditions of low evapotranspiration (low light intensities 

and small plants), a 10 em deep soil stays wetter longer than a 20 em 

soil. This may result in aeration problems in the shallow soil. 

Overwatering problems may also occur in deep soils that do not 
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drain properly. However, given suitable characteristics, a deep soil 

will contain less water at its upper surface than a shallower soil. 

lVhen the total amount of water available to the plant per unit 

of ground area is compared, there is more water available for 

evapotranspiration in a soil 20 cm deep than one 10 cm deep_ Thus, 

under conditions of high evapotranspiration (high light intensity), 

a shallow soil will usually dry out faster. lVhen both a 10 cm and 

20 cm soil are on the borderline of watering in the morning, the 

plants in the 10 cm soil may be subjected to higher stresses by 

midafternoon. To avoid problems of overwatering, growers tend to 

use a shallower soil, since shallow soils tend to dry more rapidly. 

l~atering of carnations has been an art based on experience, which, 

added to differences in cultural practices between growers, seriously 

complicates the proper application of water and diagnostic solutions. 

Because greenhouse growers use different cultural practices such 

as hand watering by hose versus various types of automatic systems, 

the effect on soil characteristics will vary. Consequently, no two 

greenhouse soils are alike and their problems must be dealt with 

individually. These problems include the determination of watering 

frequency. 

There are indications that plants watered at low suction levels 

result in a higher yield and grade for both snapdragons and carnations 

(45, 49). However, Kramer (60) states that it is not known what 

constitutes an adequate water supply for optimum growth. 

Since the stress to which a plant is subjected is controlled by 

many factors besides those of soil moisture content and suction, the 

determination of uwhen to watern should be a measure of the water 
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status inside the plant. It is the water status inside the plant 

that influences various physiological processes. Plant water status 

is indicated by a number of terms such as internal water stress, 

internal water potential, internal water balance, or diffusion pressure 

deficit (DPD). Previous research has usually involved the study of 

the effects of water without considering what is going on inside the 

plant. There is a definite need to determine the relationship 

between plant water stress and subsequent growth. 

~ Problem 

There are two objectives of this study. First, what is the 

effect of soils and soil depth on yield and quality of carnations 

when so-called "problem" soils are treated identically; and second, 

can instruments used to measure transpiration rates of individual 

leaves be employed as a measure of indicating "when to water;1t and 

are such measurements superior to present practices1 

Specific Questions ~ this Study~: 

1. Are transpiration rates capable of being used as an 

irrigation indicator1 

2. What is the effect of cover, soil and depth on: 

a) transpiration rates as measured with a lithium chloride 

hygrometer 

b) stomatal density 

c) growth (yield and mean grade) 

3. Does the variation of stomatal density affect transpiration 

measurements1 
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Significance of this Research 

Few studies in the past concerning plant-soil-water relationships 

have dealt with the carnation. Considerable information on which to 

intelligently base future cultural practices should result. For 

practical purposes, the study should result in more reliable recom­

mendations to commercial growers as to the effect of reducing soil 

depth and the behavior of common greenhouse soils when treated 

identically. 



Chapter II 

LITERATURE REVIEW 

Introduction 

It is well known that plant growth may be reduced when water 

supply to a plant is restricted (1, 6, 11, 22, 29, 57, 62, 63, 70, 

74, 95, 96). The relationships between water and growth have been 

studied intensively for a number of years. Soil-water-plant relation­

ships are complicated with the result that some contradictory 

information and subsequent controversy has occurred. Much of the 

controversy that results is probably due to variations in research 

techniques, or to an inadequate evaluation of the internal water 

balance of the plants under investigation. 

Considerable research (31, 42, 74, 96) has been carried out on 

soil-water relationships as an indication of the internal water 

balance in plants. It is the consensus (3, 5, 11, 13, 62, 106) that 

determination of soil water stress alone is not always the best 

indication of plant response, nor does it indicate the internal 

water stress of the plant. Measurement of internal plant water 

deficits Eer ~, is more likely to result in meaningful information, 

since the internal water stress is influenced by all those factors 

that determine water balance, of which soil water availability is 

only one. It appears from the literature (45, 48, 49) that there 

may be consistent relationships between yield and the internal water 
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balance of a plant. A valuable application would be correlating the 

internal water balance in plant tissue to plant growth responses. 

It is the purpose of this study to examine some of the relation­

ships between the plant and its environment as they are related to 

water. This review is divided into sections dealing with: 1) termi­

nology used in soil-plant-water relations, 2) effect of water on 

growth, 3) factors affecting water supply, 4) methods of determining 

the water status of the plant and 5) summary. 

Definitions and Terminology 

Several authors (2l, 25, 52, 64, 99, 101, 104, 123) have discussed 

the terminology currently being used to describe the state of water 

in both plants and soils. It is apparent from the literature that 

these terms often have the same meaning and are used interchangeably, 

the particular term employed depending on the author. 

Some terms which have been used to describe the water status in 

plants include "water absorptive power," "suction force," "suction 

pressure,fI "suction tenSion," IInet osmotic pressure," "diffusion 

pressure deficit" (DPD), "hydratur," "saturation deficit," "relative 

turgidity," "relative water content," "enter tendency," and "osmotic 

equivalent" (E) (60, 61, 62, 64, 71, 72, 87, 104, 123). Terms such 

as "tota1 soil moisture stress" (TSMS), "total suction," "pF," 

"capillary potential," and "thermodynamic potential," have been used 

in soil water relationships (104). Meyer (71, 72) stated that DPD 

is a measure of the pressure at which water tends to move into plant 

tissue after it is placed in pure water and expressed it by the 

following equation: 
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DPD = OP - TP 

where OP = osmotic pressure and 

TP = turgor pressure 

(1) 

The terminology utilized most often to measure plant and soil water 

relations is DPD and TSMS respectively (101, 104). 

The universal use of basic thermodynamic terms and units of 

expression would enable the factors affecting the thermodynamic state 

of water to be adequately evaluated and described. Slatyer and Taylor 

(104) expressed the following reasons for requiring a more unified 

terminology: 1) The terms which have been used to describe the water 

relations of soil and plants are thermodynamic in nature and are 

measured by thermodynamic methods, but have been expressed in terms of 

equivalent pressures which may be misleading in that actual pressures 

may not develop in the system. 2) The use of DPD refers to a cell 

which is completely vacuolated, which may not always occur in the 

plant, and the rigid use of the term can result in an erroneous 

interpretation and description of the phenomenon observed and 3) 

since the most appropriate thermodynamic function is one of free 

energy, the most acceptable term to use in expressing both DPD and 

TSMS is based on the Gibbs free energy function. Although the most 

common units of expression are in atmospheres of pressure, the 

conversion to energy units can be made if the specific volume of the 

water and the temperature and pressure are accurately known. 

The basic thermodynamic term advocated for use in expressing 

soil-water-plant relations is "water potential. If Kramer ~ &. (64) 

defined water potential as the difference in the partial specific 
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Gibbs free energy between water in plant tissue being observed and 

free pure water at the same temperature. They (64) point out that 

it is actually a measurement of the tendency of water to move into 

a system, such as plant tissue or soil, or from one part of the system 

to another. The term water potential is symbolized by the Greek 

letter f and is made up of three main components expressed as: 

V' = 7T+ r..,.. P 
(2) 

The osmotic potential, hI, is the potential due to solutes in the cell 

solution and is equivalent to a negative OP as used in equation #1 

(64, 123). The potential due to the absorption of water by water­

binding colloids and surfaces in the cell matrix is represented 

by ~(64). Kramer et ale (64) stated that, except in very dry tissue 

or in cells containing small vacuoles this potential is small and may 

be disregarded. However, Wilson (123) found that omission of r' from 

quantitative treatments of internal water relations might cause errors. 

He believed that ~ is introduced to show that cell water is held 

partially by matric forces and is probably included in OP as used in 

equation #1. The potential represented by P is usually not evident 

in soils but in plants is represented by cell turgor pressure which 

is equivalent to TP in equation #1. Therefore, from equation #1 

'P = - (OP-TP) (3) 

and is negative except at maximum turgidity when it is o. \yater 

potential increases in magnitude but decreases in absolute value 

(becomes more negative) as stress increases (64). A rise in DPD 
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corresponds to a decreasing value for water potential. The water 

potential will be uniform throughout a tissue, provided it is in 

equilibrium, but the three components of water potential may vary 

among cell types and structural phases (cell wall, vacuole, and cyto­

plasm) (123). The use of water potential allows for the evaluation 

of the various components which make up the total water potential in 

different parts of the plant system. 

Effect of Water Stress ~ Plant Growth 

General effects -- The fact that a water deficit is detrimental 

to plant growth has been found by many investigators (22, 29, 45, 54, 

62, 63, 70, 74, 95, 96). Although the correlation between turgor and 

growth is not fully understood, all of the processes involving the 

cell in growth are affected by water deficits and the dehydration of 

protoplasm. These cellular processes include cell division, enlarge­

ment, differentiation, and maturation. Growth of the plant itself 

is an expression of cell elongation brought about by turgor pressure 

(107). Kramer (61) believes that cell division is affected less by 

water stress than is cell elongation. It is believed that decreasing 

water potential reduces cell enlargement most of all since the 

expansion of cells is dependent upon turgor pressure (26). Reduced 

turgor results in shorter stems and smaller leaves and fruits (87). 

Wadleigh and Gauch (113) found that a stress of 1-3 atmospheres (A) 

had little observable effect on leaf elongation, but at higher stress 

values, leaf elongation was progressively reduced and ceased at 15 A. 

Water deficits generally hasten maturation of cells and tissues, 

increase the thickness of cell wallS, amount of cutinization and 
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lignification, and decreases succulence (60). Leaf area is usually 

reduced while leaf thickness is increased (62). The increase in 

supporting tissue may be beneficial since it increases stem strength. 

Snapdragons watered at high soil moisture tensions had a reduced 

mean grade, stem length and fresh weight while the percentage of dry 

matter increased (45, 48). In work done on carnations, plants 

watered at high soil moisture tensions were visibly shorter and the 

foliage and stems harder (54). Drying the soil to a high moisture 

tension was also found to reduce the flower quality (49, 56). 

The keeping life of flowers grown under high stress conditions was 

slightly increased in comparison to those grown under low stress 

conditions (49). However, dye uptake was enhanced considerably on 

flowers grown at low soil moisture tensions. Hanan and Jasper (49) 

found a higher total yield and mean grade on carnations watered at 

low suction levels. 

Stress and physiological processes -- There is a great deal of 

evidence that water deficits in plants influence various physiological 

processes such as photosynthesis, transpiration, translocation, and 

respiration (61, 62, 109, 116). Some of the effects on these processes 

may be observed at low stress-values; and as stress increases, the 

effects become intensified. One of the first effects of stress is 

loss of turgidity (29, 35, 63, 95). Richards and Wadleigh (85) 

believed that permanent wilting was the end of a series of stages 

that occurred as stress increased. 

The loss of turgor seems to affect stomatal opening as soon as 

it occurs. Some investigators (66, 68, 77) have observed stomatal 

closure with only small water deficits existing in the plant. 
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Although closure reduces water loss, it also reduces the supply of 

carbon dioxide for photosynthesis_ According to Kramer (61), 

photosynthesis may be decreased because protoplasm becomes dehydrated 

and is less efficient in carrying out the process. Brix (14) found 

that photosynthesis was decreased at a relatively low value of water 

stress in the leaves. This value may vary depending upon the type 

of plant investigated. In Loblolly Pine, photosynthesis decreased 

when leaf DPD increased above 4 A. For tomatoes, photosynthesis 

decreased at levels above 7 A. Brix (14) also found that changes 

in rates of transpiration and photosynthesis were similar as water 

stress increased. Virgints (112) results showed that a small water 

deficit caused a strong inhibition of chlorophyll ~ formation. This 

was attributed to the effect water stress has on the formation of 

the precursor of chlorophyll ~,protochlorophyll. As the water 

potential decreased in the plant system, there was a decreased 

production of protochlorophyll. 

Schneider and Childers (91) noted that while photosynthesis had 

decreased by 80 per cent at the time of visible wilting, the 

respiration rate had increased. With an increased use of plant 

carbohydrates by respiration and a decrease in their synthesis, 

a depletion of reserve food material occurred. They (91) also 

noted that, at visible wilting, the transpiration rate had decreased 

by 87 per cent. After the plants were watered, recovery back to 

the maximum rate of transpiration took two days. Clark and Levitt 

(18) reported that plants grown under high water stress were found 

to transpire less than those grown under more optimum water conditions 

of low stress. 
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MOrphological change in leaves and stomata -- Water deficits 

in a plant have an effect on its morphological as well as its 

physiological processes. According to Stocker (103), Zakenski was 

the first to report in detail the morphological effects of increasing 

water deficit on the structure of a leaf. These effects were: 

1) the size of the stomata and epidermal cells were decreased and 

2) the number of stomata per unit area of leaf surface and the 

formation of the waxy layers were increased. There are other factors 

that may affect stomatal distribution besides water stress. These 

include the kind of plant grown (24), and environmental factors such 

as light intensity (38, 82) and atmospheric humidity (38). 

Relatively little evidence is available which clearly distin­

guishes the effects of different environmental conditions on stomatal 

distribution (24). Indications are that in some plants, when growing 

conditions are optimum and large leaves are produced, the number of 

stomata per unit area is small while they themselves are large. 

However, when leaf expansion is checked by water stress, the number 

of stomata per unit area is large and the stomata are usually small 

(24). In observations by Amer and Williams (2), leaves from plants 

grown under stress had small epidermal cells and large numbers of 

stomata and epidermal cells per unit area. But, they (2) found very 

little difference in the total number of cells per leaf on plants 

grown under both high and low water stress. Calculations of total 

stomatal area as a percentage of leaf area showed no consistent 

relationship (24). From this observation, it is doubtful that changes 

in cell size counterbalance changes in numbers. 
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In order to compare transpiration rates of various plants, it 

is necessary to have a constant number of stomata per unit area of 

leaf surface (15). Only then can the effect of different watering 

regimes on transpiration rates be accurately compared. According 

to Maximov (69), Heuser was unable to establish any correlation 

between the number of stomata per unit area and the needs of the 

plant for water. There does not appear to be any other report on 

the effect of stomatal density on the rate of transpiration per unit 

area of leaf surface. 

Stomata develop in the early stages of leaf growth. Fully 

developed stomata were found in the small imbricated primordial leaves 

at the top of a growing shoot (82). At this point, water supply is 

very important to cell expansion as there may be considerable variation 

in cell size (73). Stomatal formation appears to cease when the 

young leaves are about one-quarter their final size (82). No further 

change in the stomatal density per unit area was observed after this 

time although the more rapid multiplication of intervening cells may 

result in a reduction of stomata per unit area (82). 

The distribution of stomata may vary with the leaf position of 

the plant and on the leaf itself. Hirano (53) in working with citrus 

leaves found areas in the vicinity of large veins, glands and 

trichomes which had few stomata around them. Yocum (124) found that 

the base of the oak leaf and near the midrib always had fewer stomata. 

He (124) also found fewer stomata per unit area at the base of the 

leaf and near the midrib than in other areas of the leaf. Reed and 

Hirano (82) also found fewer stomata at the base of citrus leaves, 

most in the middle and an intermediate number at the tip. However, 
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they also found more in the apical rather than in the middle portion. 

Echerson (27) reported a greater stomatal area near the base of the 

leaf than at the tip and a greater area at the midrib than at the 

margin. According to Maximov (69), Salisbury found stomatal· frequency 

to increase from the base to the apex of the leaf and from the midrib 

to the leaf margin. He (Salisbury) expressed the numerical relation 

between stomata and epidermal cells by means of a stomatal index: 

I = S/E+S X 100 ~) 

where S = number of stomata per unit area 

E = number of epidermal cells per unit area 

He found that for a given species, the stomatal index (I) of leaves 

grown under different conditions are far more constant than stomatal 

frequency and believed that differences in stomatal frequency are 

due to differences in the size of the cells, rather than differences 

in the ratio of stomata to epidermal cells. 

Factors Affecting Stress in ~ Plant 

The internal water potential in a plant depends on the balance 

between rate of water loss by the shoots and the rate of uptake by 

the roots (10, 93, 101, 107). A decrease in water potential (more 

negative) can result from reduced absorption as soil moisture stress 

is increased and/or from excessive water loss through transpiration 

(62). On sunny days, wilting is often observed even though there may 

be an ample water supply in the soil. The factors affecting the 

internal water balance may be divided into two parts: 1) those 
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affecting the soil moisture availability and 2) those of the above 

ground environment influencing water loss. 

Soil moisture availability -- There has been controversy in 

earlier literature concerning the availability of water to the plant 

over the range of field capacity to permanent wilting percentage (110, 

111). Veihmeyer and Hendrickson (114) believed that reduced growth 

is not usually apparent until stress close to the wilting point has 

been reached. However, reduced growth has often been observed at 

what is usually considered insignificant soil moisture stresses (39, 

89). In studying mild water deficits, Goode (39) found that both 

fruit and vegetative growth of apples were reduced at a maximum soil 

water tension of less than 1 atmosphere (A). Rutter and Sands (89) 

found that a max~ soil water tension of 1.5 A reduced dry weight 

and stem elongation. Thus, soil water becomes progressively less 

available to plants as total soil moisture stress increases (32, 39, 

68, 74, 85, 89, l13). Clements (19) stated that to continue the 

argument is pointless. 

Some factors affecting the rate of water absorption are the 

soil moisture stress at any given moment, soil temperature, soil 

aeration and the concentration of the soil solution (60, 62, 106). 

It is also known that the rate of water absorption depends on the 

rate of water loss and the extent and efficiency of the root system 

(60, 62). A plant may have an adequate amount of moisture available 

for its use, but the root system may lack sufficient surface area to 

absorb water in quantities equal to that lost by transpiration. 

Atmospheric demand -- According to Gardner and Ehlig (36), when 

there is an ample supply of water available to the plant the rate 
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of water loss is controlled mainly by atmospheric factors. These 

factors include light intensity, CO2 concentration, air and leaf 

temperature, relative humidity, and wind velocity. The water loss 

from the plant is generally influenced by several of these factors 

at anyone time. 

At a constant temperature the vapor pressure of water varies 

directly with relative humidity (R.H.) which is a ratio of the actual 

vapor pressure to the vapor pressure of the atmosphere when saturated 

at the same temperature (24). It is often assumed that the inter-

cellular spaces of a leaf remain at 100 per cent R.H., while the 

external atmosphere is usually less than 100 (23, 33, 87). This 

results in a vapor pressure gradient between the leaf and the external 

atmosphere, and water vapor will diffuse through the stomata from 

the area of high vapor pressure to the area of low vapor pressure (24). 

The factor of major importance in determining the transpiration rate 

is the vapor pressure gradient from the leaf to the air (23, 100). 

Vapor pressure is also influenced by temperature. The transpi-

ration rate will generally increase as the temperature of the leaf 

or of both leaf and air is increased (25). A rise in temperature 

will increase the vapor pressure both inside and outside the leaf, 

but the increased difference is due entirely to the greater increase 

inside the leaf resulting in a greater vapor pressure gradient (24). 

According to Salisbury and Ross (87), every 100 C increase in 

temperature results in a doubling of the vapor pressure values. 

The most important effect of radiant energy is that it will generally 

o increase leaf temperature 2-10 C above the air temperature (23), 
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resulting in a steeper vapor pressure gradient between the leaf and 

atmosphere. The high rate of transpiration can eventually lead to 

stomatal closure from loss of turgidity if the rate of water absorption 

does not keep pace with the rate of water loss. Light also has 

another important effect on water loss since stomata are usually 

found to be closed in the dark and open in the light (33, 51). A 

smaller percentage of stomata was found to be open under low than 

high light intensity (51, 78, 79). This would partly explain the 

low transpiration rates found at low light intensities. 

The effect of air movement over a plant canopy may either 

increase or decrease transpiration. By decreasing the thickness 

of the boundary layer around the leaf, the path length for vapor 

movement is shortened increasing the transpiration rate (24, 87). 

The wind may also decrease the transpiration rate by cooling the 

leaf and lowering the vapor pressure gradient (87). Heath and 

Mi1thorpe (51) found that increasing the rate of dry air flow over 

a leaf caused stomatal closure. The amount of stomatal closure was 

lessened when the water content of the air was high. The effect 

is probably due to the greater vapor pressure gradient that existed 

when dry air was used and the plant guard cells were not able to 

maintain their turgidity while losing water at a rapid rate. 

It has been found that increased concentrations of CO2 depress 

the transpiration rate by closing the stomata on the leaf (34). 

It has also been found that a very low concentration of CO2 will 

cause stomata to open both in the light (51) and dark (87). As 

can be seen from above, the effect of one environmental factor may 

either nullify or enhance the effect of another. 
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Heasurement of Internal Water Stress 

There has been some uncertainty concerning the best method for 

measuring plant water potential. Some of the methods used include: 

relative water content, gravimetric, cryoscopic, plasmolytic, osmotic 

pressure and DPD, beta-ray absorption, thermocouple psychrometer, 

stomatal aperture, electrical conductance and the pressure bomb. 

Osmotic pressure ~ diffusion pressure deficit -- The concept 

of osmotic pressure is old and was once used extensively as an 

indicator of water balance in a plant. As the water stress in a 

plant increases, there is a subsequent increase in osmotic pressure 

and DPD. Osmotic pressure has its disadvantages in that large 

samples of materials are necessary to obtain the amount of sap 

required for measurements. According to Kramer (62), it is not 

sensitive enough to be used as an indicator of the internal water 

balance in a plant, because a plant with an osmotic pressure of 10 A 

may be in the same physiological condition as another with 20 A. 

Interest has shifted from measuring osmotic pressure to DPD. 

DPD is a better indicator of the plant water balance partially 

because it is expressed in atmospheres which can be compared with 

soil moisture tension and the osmotic pressure of the soil solution. 

It also is an indication of the tendency for the plant to absorb 

water (58, 60, 62, 122). 

Several investigators (14, 42, 96, 97) have used DPD in their 

investigations of plant water deficits and some (58, 122) believe 

that DPD is the most suitable measurement of the internal water 

potential in plant tissue. The determination of DPD in plant tissue 
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may be obtained by using any of the several techniques available. 

These techniques may give either a direct or indirect measurement 

of DPD. 

Some of the classical techniques used include the cobalt 

chloride, gravimetric, cryoscopic, and plasmolytic methods. The 

cobalt chloride technique gives an indirect measurement of the rate 

of water loss from leaves. Since the paper is blue when dry and 

pink when wet, the rate of water loss is measured by the time required 

for a color change to occur (61). However, this method is unreliable 

as it measures the rate of water loss in a closed system and does not 

give an accurate indication of water loss in the open (61). 

Both the cryoscopic and plasmolytic methods may be used to give 

a measurement of osmotic potential (87). The cryoscopic method uses 

the freezing point of the sap solution to determine its osmotic 

potential. The method has two problems in that a highly sensitive 

thermometer must be used and obtaining a pure sample of cell sap is 

difficult (87). The mixing of cytoplasmic contents with the cell sap 

may also result in variations of data. However, in spite of these 

problems, the method has been used for many years. 

In the plasmolytic method, the osmotic potential of the cell 

sap is determined by placing strips of leaf tissue in solutions 

of different osmotic potential. When the tissue begins to show 

plasmolysis after a certain period of time, it is assumed that the 

osmotic potential of the solution, which started to produce plas­

molYSiS, is equivalent to the osmotic potential of the cells within 

the tissue (7, 87). 
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The gravimetric technique is a classical method in which the 

weight of a whole plant is recorded over a period of time. The 

evaporation from the potted plant is prevented by wrapping it in 

plastic or metal foil. This method is often used in comparison 

with a new technique. Although it gives a good indication of water 

loss, it does not indicate the internal water status of the plant, 

and it is limited to small plants which can be easily handled. 

Problems may result from poor aeration and the soil media becomes 

much warmer than normal if the pot is exposed to the sun (61). 

Relative water content -- According to Kramer (62), this is 

the oldest method to describe the amount of water in growing plant 

tissue relative to what it would be if the tissue were fully turgid 

(62). Water content has been expressed in many different terms 

which has resulted in confusion in studies of plant-water relations. 

The term "saturation deficit" was first suggested by Stocker in 

1929 (60) and employs the following calculations: 

(5) 
Saturated fresh weight - field fresh weight X 100 = Saturation Deficit 
Saturated fresh weight - oven-dry weight 

Halma (43) presented his measure of water deficits in citrus trees 

as the "relative saturation deficit" which was defined by Compton (20) 

as: 

(6) 

Saturated weight - fresh weight X 100 = URelative Saturation Deficit" 
Saturated weight 

These terms were disregarded after a variation was introduced by 

Weatherley (118) in 1950 called "relative turgidity," (RT). It is 

calculated from the relationship: 
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(7) 
Field fresh weight - oven-dry weight .. . 

Saturated fresh weight _ oven-dry weight X 100 = % Relat1ve Turg1d1ty 

This technique has been widely used in studying water stress in 

plants (16, 94, 96, 98, 106, 116, 121), with modifications by other 

investigators (3, 16, 17, 28, 41, 98). According to Slatyer (96) 

and Werner (121), its practical significance is that the degree 

of turgidity at any given stress value indicates the physiological 

activity of the plant. Others (60, 63, 120) suggested that the 

method may be used as an index of the DPD in leaf tissue. Weatherley 

(119) considered the method as a reliable indicator for the irrigation 

of cotton and could be applied to the irrigation of other crops. 

However, Unger and Danielson (106) found that RT values were not 

sufficiently sensitive to adequately evaluate differences in water 

potential. Slatyer (96) also found that the effect of a given 

turgidity value was not always the same in all species. 

The use of the term relative turgidity is critized because turgor 

is a physiological state where pressure is exerted by the vacuole 

and protoplast against the cell wall. It is not properly expressed 

as a percentage of water content (52). Although not completely 

acceptable, relative turgidity is a classical method and is often 

used as a basis upon which new techniques are evaluated. 

Stomatal aperture -- The relative opening of stomata is con-

trolled by the turgor present in the guard cells. Since the turgor 

is affected by the water balance in plants, the measurement of 

stomatal apertures has been used as an indicator of the water stress 

in plants. ~ruturi (74) found that the degree of stomatal opening 
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was directly related to relative turgidity values of bean leaf 

tissue. However, this type of measurement is qualitative and does 

not provide a good quantitative basis for the comparison of internal 

water conditions between plants. 

The measurement of stomatal openings may be obtained in several 

ways. The infiltration technique utilizes a graded series of liquids 

which vary in viscosity (42). The infiltration of the liquid into 

the leaf is indicated by a water soaked appearance of the tissue. 

The most viscous grade of liquid that the leaf will absorb in a 

given length of time is used to determine the relative degree of 

stomatal opening. Infiltration is a good field technique (50); but 

because the leaf cannot be used again, it is poor for laboratory 

use (8). Several investigators have used this technique (1, 31, 41, 

42). 

Stomatal aperture may also be measured by direct microscopic 

examination (15). The method is not practical since it is: 1) 

laborious to use and 2) time consuming due to the variation in width 

among stomata and requiring several experimental plots to be examined 

to obtain an average width (8). 

Direct microscopic observation has been replaced with a new 

technique utilizing silicone rubber impressions. This technique 

was reported by Sampson (88) and subsequently used by Zelitch (125, 

126) in stomatal studies. The method enables the measure of stomata 

in large numbers of samples without alteration of the leaf environment 

(125). The impressions can be stored and stomatal measurements can 

be made microscopically at a later date. Another technique used to 
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determine relative stomatal opening is the porometer. Although this 

technique is good laboratory method, it has the following disadvantages 

(8): 1) it is not practical as a field technique, 2) attachment to 

the leaf is difficult, and 3) attachment to the leaf changes the 

environmental conditions. 

Methods utilizing electrical conductance -- Much research con­

cerns water deficits affecting electrical resistance. One such method 

includes measuring the effect water stress has on the electrical 

conductance between electrodes implanted in a plant stem. Namken 

and Lemon (76) utilized this technique, but found that the method 

lacked sensitivity and did not appear to be correlated with relative 

turgidity values. In work done by Box and Lemon (10), the results 

indicated that the method showed promise as an indication of the 

water potential in the plant, but additional research was needed to 

evaluate the method more completely. 

Another method is the electric hygrometer in which electrical 

resistance of a lithium chloride cell varies inversely with humidity. 

This method is based upon measuring the rate of water vapor diffusion 

through the stomata. Wallihan (115) employed the instrument to 

estimate the relative opening of stomata. Van Baval ~ al. (108), 

modified Wallihan1s method and designed a special porometer cup 

which measures the resistance to water-vapor in the leaf structure 

itself. The effect of number, relative aperture and morphology of 

the stomata is directly evaluated in terms of the resistance (109). 

Correlating the data obtained with the environmental factors present, 

the actual rate of transpiration may be obtained. Since the internal 
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water balance affects the turgor of the guard cells which is reflected 

in the rate of transpiration, this method may become very useful in 

determining plant water potential. Unger and Danielson (106) state 

that this type of technique should provide a well correlated indication 

of the leaf water potential and plant growth. 

Pressure-bomb technique -- Kramer (59) stated that most of the 

large, rapid changes in water content of plant tissue can be accounted 

for in terms of movement along osmotic or free energy gradients. 

The pressure-bomb technique permits the quantitative measure in 

atmospheres of the turgor or hydrostatic pressure of sap in the 

xylem of vascular plants. However, from the literature there is a 

variation in the accuracy reported for the technique. Scholander ~ al. 

(92) stated, that when carefully done, reproducibility of repeated 

readings were obtained within 1 per cent. Waring and Cleary (117) 

compared pressure bomb readings in twigs with Slatyer l s (97) vapor 

equilibrium technique and found agreement between the two methods 

within tl A. In tests with sunflower and yew plants (12), pressure 

bomb readings were within !2 A of psychrometer measurements while 

there was a greater discrepancy when rhododendron plants were used. 

Possible errors were reported to be of two types (117): 1) 

those related to the rate of pressure increase (too high readings 

when pressure is increased too rapidly) and 2) those related to the 

sample preparation (length of xylem extending from the bomb is 

critical). Boyer (12) concluded that the pressure bomb readings 

were sufficiently close enough to the psychrometer measurements 

that they could be used for the relative measure of leaf water 
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potential. For accurate values of leaf water potential, the pressure 

bomb measurements must be calibrated with a thermocouple psychrometer 

(12). 

Thermocouple psychrometer -- Up to now, the most accurate 

method, giving an absolute value of DPD in detached leaves, is 

Spanner's (102) or Richards and Ogata's (86) thermocouple psychrometer. 

A comparison has been made of the measurements between the two 

methods and although they were found to be comparable, Spanner's 

technique has advantages (4, 5). Several investigators (6, 9, 14, 

28, 36, 80, 104) have used the technique to measure DPD in leaves of 

different plants including sunflower, pepper, cotton, and tobacco. 

Manohar (67) and Lang and Barrs (65) both modified the method to make 

it possible to measure water potential using plant leaves still 

attached to the plant. However, there were certain inaccuracies 

in the determinations that had to be accounted for. These included 

heat produced by respiration (4), the presence of water on the walls 

of the psychrometer chamber (37), and the resistance of leaf tissue 

to vapor transfer (4, 81). The psychrometer also needs frequent 

calibration to maintain its accuracy (28). An improved method 

which attempts to take these errors into consideration is called 

the isopiestic technique. Its degree of accuracy is increased over 

that of Spanner1s (13). Boyer (11) states that if the corrections 

applied in the isopiestic technique are valid, it would be a good 

quantitative measure of water conditions in the plant. 

Beta-ray absorption -- Other investigators (30, 70, 75, 122) 

have used a beta-radiation gauge to measure the changes in water 
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content of a leaf. Mederski (70) showed that beta-radiation 

absorption was highly correlated with relative turgidity and was 

sensitive to small changes in turgidity values. He advocated 

that this technique could provide a continuous non-destructive 

record of changes in the internal water balance of a plant. 

Nakayama and Erhler (75) showed reliable responses to rapid changes 

in the internal water condition of cotton plants. However, Whiteman 

and Wilson (122) contend that while beta-radiation absorption 

follows the trend of water content, it is inadequate for useful 

estimation of DPD because of the wide variation between measurements 

on the same plant. 

Summary 

It appears from the literature that there are consistent 

relationships between plant water stress and growth response. 

Since water stress is the result of many environmental factors, 

its measurement would simplify controlling growth by environmental 

and cultural practices. However, until very recently the lack of 

a practical and accurate technique for measuring plant water potential 

has hindered research on the relationship of growth to water potential. 

Most of the techniques used give an indirect or qualitative 

value of plant water potential. These include relative water content, 

relative turgidity, electric hygrometer and stomatal aperture. 

A quantitative measure of water potential would make it possible 

to compare definite values of stress to various growth processes. 

A measurement of this type would be a more direct and exact 

representation of the water potential in the plant tissue. 
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Up to now, only the pressure bomb and thermocouple psychrometer 

provide a direct quantitative measure of plant water potential. 

Little work has been done utilizing the pressure bomb and more 

research is required to ascertain its advantages and disadvantages 

for practical use. The thermocouple psychrometer is the most 

accurate technique available. However, it is not a good field 

technique since it is expensive, time consuming, and requires precise 

temperature control. 

The most desirable method would be one that is simple to use, 

cheap to obtain, and expresses accurate and quantitative values. 

When such a technique is found, a commercial greenhouse grower will 

be able to have more control over growing his crops. By being able 

to measure the water potential in the plant, he can get the maximum 

growth possible by growing the plants at low stress values. If 

additional stress is required for better handling or production, 

he can easily control the amount with the technique. It is possible 

that if a dependable method to measure water potential is found, 

there will be a major change in the method of growing carnations. 



Chapter III 

METHODS AND MATERIALS 

This section is divided into three parts: 1) experimental 

design, 2) soil and plant measurements, and 3) transpiration, 

stomatal aperture, and stomatal frequency determinations. 

Part 1. Experimental Design 

General -- The research was conducted in the Colorado State 

University temperature greenhouse originally constructed for 

temperature research on carnations (44, 90). The greenhouse was 

oriented east-west, divided into four compartments, each 15 X 17 feet, 

and lettered from A to D beginning with the west unit. The coverings 

on each compartment were: 

A. frosted fiberglass installed June, 1964, 

B. clear fiberglass installed November, 1965, 

Q. rigid polyvinylchloride installed June, 1964, and 

D. original glass, house constructed the summer of 1955. 

A more complete description of the structure was given by Hanan and 

Holley (46). 

Day temperatures in all compartments were set to heat to 620 

and cool at 650
• Night temperatures were maintained at 530 F ~lo. 

CO2 was added to maintain approximately 600 ppm concentration when 

cooling fans were off. 
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Treatment -- Every compartment contained two benches, 42 inches X 

12 feet, oriented east-west. The benches were divided into six plots, 

each 24 inches long. The plots in the north bench were randomly 

assigned (Fig. 1) to different soils and soil depths. The soil 

mixtures were selected to give the range of soil types commonly 

incurred in commercial greenhouses. Two, obtained from growers, 

were known to apparently give trouble. The treatments were: 

1. ~ Old Soil: A well aggregated greenhouse mixture used 

for about six years with consistent records of high yield 

and grade. 

2. £[[ New~: A Fort Collins loam brought directly from 

the field with no additions. 

3. Grower's E2fl! obtained from a commercial range in the 

Denver area, well aggregated; but under the grower's 

conditions, apparently causing reduced production either 

from deficient aeration or disease. 

4. Grower's Soil! obtained from a commercial range in Colorado 

Springs, well aggregated, but apparently causing plant 

loss from root rots generally associated with high water 

contents. 

In an attempt to reduce, or overcome, difficulties with Soils! 

and !, both growers had reduced the soil depth in the greenhouse 

bench from about 6 inches to 4 inches. To test the effect of soil 

depth, Grower's Soils! and! were replicated once in the north 

bench in each compartment, and one of the two plots reduced to a 

depth of 4 inches, while the-other WaS left at a depth of 8 inches 

(Fig. 1). £m[ Old and ~ soils were 8 inches deep. 
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Various inert media were being tested in the south beds of each 

compartment during' this investigation. To act as a check, one plot 

from each compartment, consisting of a volcanic ash (Scoria) and a 

synthetic clay aggregate (Idealite) mixed in a 1:1 ratio) were 

selected. 

Cultural practice -- Plant material was Dianthus caryophyllus, 

cv "csu Red" in the soil plots and "Pink Coquette" in the Scoria­

Idealite treatments. Disease-free cuttings, selected for uniformity, 

were obtained from the CSU clean stock program. All plots were 

steamed, and the cuttings planted direct from the propagating bed on 

June 26, 1966, at a 6- X 8-inch spacing, 18 plants per plot. 

All soil plots were watered simultaneously by a peripheral 

sprinkler system when any plants in the 4-inch soil depths showed 

signs of wilting in the morning. Records were kept of the irrigation 

frequency. Tensiometers were placed in the 4-inch soil!::. plots in 

each compartment to indicate approximate soil suction. Nutrients were 

automatically injected into the water line during each irrigation at 

the following approximate concentrations (55): N-125, P-15, K-97, 

and B-1 ppm. Periodic soil tests were made and dry fertilizers were 

added to ensure adequate nutrient levels as indicated below: 

1. 1 lb~ K2S04 per 100 sq. ft. on all soil plots February 1, 

1967, and March 8, 1967 

2. 5 lbs. lime per 100 sq. ft. on plots A6, B6, C6, and D6 

February 12, 1967, and March 8, 1967 

3. 1 lb. treble superphosphate per 100 sq. ft. on plots AI) 

Bl, Cl, and Dl February 12, 1967, and March 8, 1967 
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The Scoria-Idealite plots were irrigated automatically with a 

peripheral sprinkler system and the same nutrient solution. Beginning 

on June 26, 1966, the irrigation intervals were at 8:00 a.m., 12:00 

noon, and 3:00 p.m., each cycle for 2~ minutes. This was dropped to 

two cycles on July 14 at 8:00 a.m. and 2:00 p.m., and finally to one 

8:00 a.m. irrigation August 1 to completion of the experiment. 

The terminal shoots of all plants were removed in the period 

June 14 to 21 to hasten the development of side shoots. A sterilized 

leaf mulch was added to the soil plots on August 8, 1966. 

Part £. Plant and §2!l Measurements 

General yield was recorded for each treatment as the total 

weekly number of flowers cut from the start of flowering October 10, 

1966, to April 29, 1967. 

Mean grade was determined on a weekly basis from all flowers cut. 

Grading was based on the Colorado State University grading system 

which comprises four grades: 

1. Fancy - all flowers 24 inches long and a minimum weight 

of 25 g. 

2. Standard - all flowers 20 inches long and a minimum 

weight of 20 g. 

3. Short - flowers less than 20 inches long or a weight 

less than 15 g. 

4. Design - all malformed flowers and those not meeting 

the above specifications (44). 

The mean grade was calculated by assigning each grade, beginning with 

fancy, the numerical values of 5, 4, 3, and 2. 
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Cut flower life was measured on 4- and 8-inch plots. Samples 

of eight flowers from both depths were placed in warm water after 

cutting, and preconditioned at 330 for 24 hours. The flowers were 

removed, placed in a Cornell solutionl , and into a keeping chamber 

o + 0 held at 70 F -1. The keeping of each flower was considered 

finished when the petal edges and flower color darkened. One day 

was subtracted from the actual number of days the flower was in the 

keeping room to arrive at total keeping life. 

Height of plants was measured in all plots 12 weeks (September 19) 

after being benched. The top carnation leaves on 20 shoots on each 

plot were extended vertically, and shoot length measured from the 

tip of the highest leaf to the junction of the branch and main stem. 

Solar radiation was measured at periodic intervals with calibrated 

-2 silicon solar cells, expressed as gm-cal cm • 

Soil moisture release curves were determined for the four soils 

by the pressure plate membrane technique (84). Undisturbed core 

samples from soil plots in Q compartment were used for suction levels 

from 10 cm water to 1 A. 

Part 1. Transpiration and Stomatal Measurements 

Preliminary experimentation with several methods used to measure 

transpiration, and indicate plant water stress, included the electric 

hygrometer with a lithium chloride sensor, pressure porometer, 

relative turgidity, and stomatal apertures. The electric hygrometer 

lCorne1l solution consisting of 100 ppm oxyquinoline, 50 ppm 
silver acetate, and 5% sugar. 
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was selected as the method most feasible for use in the greenhouse. 

The study also indicated that the best place to obtain reasonably 

consistent readings was at the top of the plant, top of the leaf. 

The third leaf pair from the top was used for all measurements, 

since the leaves at this position were the first of sufficient size. 

Transpiration -- The electric hygrometer was constructed (Fig. 2) 

according to Van Bavel, ~ al. (108). The narrow range humidity 

sensor was a Hygrodynamic Hygrosensor2 #4-4832 type TH with an 

effective range of 18 to 33% relative humidity at 800 F. Because 

of the narrow, linear dimensions of the carnation leaf, the leaf 

cup was modified by reducing the aperture to 1.0 X 1.7 cm. 

The following procedure was used in taking measurements for all 

experiments. Before clamping the cup onto the leaf, the cup chamber 

was purged with dry air, until a reading of less than 3 ua was 

obtained. The cup was always placed across the middle of the leaf, 

the time required for current to increase from 3 ua to 6 ua was 

measured and this designated as transit time (~t). All measurements 

are expressed as ~t which was the time required for a definite 

relative humidity change in the leaf cup, and was a direct measurement 

of transpiration (105). Six readings were taken per plot, with 

measurements limited to plants on the inside rows. 

Determinations -- Hygrometer measurements on soil plots started 

one day after watering. They were taken on all soil plots and the 

2 . 
The manufacturer's name is included for the benefit of the 

reader and does not infer any endorsement of the product. 
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Figure 2: Leaf resistance meter and associated equipment. 
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Scoria-Idealite plot in a particular compartment during the following 

periods: 

1. Ten a.m. MBT, September 27 to October 5, 1966, in compart­

ment D. 

2. At 9:00 a.m. and 1:00 p.m. MBT in compartment Q from 

March 21 to March 26, 1967. 

3. At 10:00 a.m. MET, June 17 to June 23, 1967, with soil! 

at both 4- and 8-inch depths, Scoria-Idealite and CSU Old 

in compartments !, !, £, and Q. 

4. At hourly intervals between 7:00 a.m. and 4:00 p.m. in 

compartment D on April 3, 1967. 

Stomatal apertures were measured as described by Sampson (88). 

A fluid silicon rubber, mixed with a curing agent was spread over 

5 to 6 cm2 of upper leaf surface. After setting 3 to 5 minutes, it 

was peeled off to provide an imprint of the leaf surface. Clear 

fingernail polish was applied to the rubber strip and allowed to dry. 

The dried colloid strip was peeled off and examined under the 

microscope. Stomatal apertures were measured perpendicular to the 

length of the opening at the widest dimension. 

Measurements of stomatal apertures were made on all soil plots 

in compartment Q. Plants were watered September 26 and rubber 

impressions taken September 27 to October 5, 1966, at 10:00 a.m. MST. 

Stomatal frequency on the upper surface of carnation leaves 

was studied under low solar radiation, comparing all soil plots and 

Scoria-Idealite in ~ c~mpartment on February 8, 1967. The same study 

was conducted under high solar radiation utilizing the previously 
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mentioned plots in all compartments on June 12. The same leaf 

position and area of leaf, as used in hygrometer measurements, were 

utilized. The upper epidermal layer of 14 leaves from each plot 

was peeled off and placed on a slide. Water and a cover slip were 

added. The number of stomata and epidermal cells were counted 

in a 0.5 mm2 area. 



Chapter IV 

RESULTS 

The results are presented in four parts: 1) soil moisture 

relationships, 2) plant response, 3) distribution of stomatal and 

epidermal cells, and 4) transpiration measurements. Complete 

statistical analyses are given in the Appendix. 

~1. 'Soil Moisture Relationships 

The four soils employed in this study were found to differ in 

the amount of moisture retained at nearly all suctions (Table 1). 

Table 1. Bulk density and comparison of soil moisture content at 
various suction levels expressed as the number 

of grams water per gram dry weight soil. 

Soil Bulk Suction - bars 
t~pe densitI 15 10 5 1 .67 .33 .10 .02 

Soil B .68 gIg .15 .16 .18 .25 .27 .31 .38 .43 

Soil A .70 gIg .13 .13 .15 .21 .24 .26 .36 .46 

CSU Old .80 gIg .13 .13 .15 .20 .21 .26 .30 .35 

CSU New 1.06 gIg .10 .11 .12 .16 .17 .19 .25 .28 

Soil moisture retention curves as a percent of dry weight are shown 

in Fig. 3. Fig. 4 presents the same curves plotted logarithmically 

and extrapolated to 0.01 bar, the theoretical moisture content in 

the upper soil surface when the soil depth is 4 inches deep and at 
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Figure 3: Soil moisture retention curves expressed 
as percent dry weight. 
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Figure 4: Logarithmic expression of soil moisture 
retention as percent dry weight. 
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equilibrium. Undisturbed soil cores taken at equilibrium after 

irrigation showed moisture contents less than the theoretical 

(Table 2). However, the extrapolated values indicate the maximum 

Table 2. Suction levels and water content on a percent dry weight 
basis in all soil plots before and after watering. 

Before waterin~ After waterin~ Percent 
Suction Percent Suction Percent moisture 

Plot bars moisture bars moisture difference 

Soil B-4u 15+ 12.5 0.01 45.B 33.3 

esu New 9.B 10.B 0.02 2B.5 17.7 

Soil A-4" 9.3 13.7 0.01 49.3 35.6 

esu Old 5.4 14.4 0.02 34.7 20.3 

Soil B-B" 2.6 21.0 0.02 42.9 21.9 

Soil A-B" 2.0 lB.O 0.02 46.0 2B.O 

moisture holding capacity of the various soils if entrapped air had 

not influenced the results. Table 1 shows the bulk density of the 

different soils with soil! having the lowest and ~~ soil the 

highest values. 

The determination of moisture retention-suction values showed 

distinct differences between all soil plots. At all suctions, esu 

~ soil contained less moisture than any of the other three soils. 

It was also observed to have a low organic matter content compared 

to the other soils. Grower's soil! had the highest moisture content 

between 0.1 and 15 bars suction. However, soil! had the highest and 

esu New soil the lowest moisture content of all soils when the bench 

was watered after a drying cycle. Soils~, B-4", and esu ~ had 
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the highest soil suction and the lowest moisture content before 

watering. In contrast, soils A-8", B-8", and CSU Old had lower 

values of soil suction and a higher water content. In comparing 

8- and 4-inch soil depths, the total water content in a given plot 

was less in the 4-inch than 8-inch depths, even though the 4-inch 

plots were initially wetter after watering. 

~£. Plant Response 

Carnations exhibited statistically significant differences in 

response as the result of substrate treatment (Table 3). esu Old, 

soil A-8", and soil B-8" had the highest yield and mean grade, as 

defined in Chapter III, of all plots (Figs. 5-8, Table 4). In 

comparing soils A-8", A-4", and B-8", B-4", total yield and mean 

grade were highest for plants grown in 8-inch deep media. As seen 

in Figs. 5 and 6, plants grown in inert media, and watered daily, 

produced flowers one week earlier during the first crop than plants 

grown in soil. On the second crop, production in the inert media 

was less than the three highest producing soil treatments. However, 

total yield differences between Scoria-Idealite, B-8", A-B", and CSU 

Old were not statistically significant. The flowers grown on Scoria­

Idealite plots were observed to be brittle after the first crop was 

cut with a relatively high proportion of design grade resulting from 

numerous "splits" (flowers with split calyxes). Solar radiation was 

the lowest of the year at this time and total vegetative surface area 

was decreased due to flower removal. Flowering of the second crop in 

4-inch plots was delayed 5 weeks and had a lower total yield than the 

plants in corresponding soils at 8-inch depths (Fig. 5). Carnations 
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Table 3. Sununary of production by compartment of IfCSU Red" on all soil 
plots and "Pink Coquette" on Scoria-Idea1ite 

October 10, 1966, to April 29, 1967. 

Total Flowers/ Mean Percent distribution of grade 
yield s9 .. ft. grade Fancy Standard Short Design 

ComEartment p::. 
Soil A-411 1BO 25.7 3.96 45.0 13.9 33.3 7.B 
Soil B-4" 201 2B.7 4.02 47.8 14.9 2B.B 8.5 
CSU New 217 31.0 4.20 49.B 2B.1 14.7 7.4 
Soil B-BIf 237 33.9 4.51 61.2 30.0 B.O 0.8 
CSU Old 248 35.4 4.43 57.7 30.6 B.5 3.2 
Scoria-Idealite 260 37.1 4.15 40.8 42.3 B.1 8.B 
Soil A-B" 264 37.7 4.29 5B.O 16.3 22.3 3.3 

ComEartment B 
CSU New 202 2B.9 4.24 53.5 21.3 20.B 4.4 
Soil A-4" 214 37.0 4.00 50.0 10.B 2B.0 11.2 
Soil B-411 214 30.6 4.03 41.1 26.7 27.1 5.1 
Scoria-Idea1ite 231 33.0 4.05 36.4 45.4 5.2 13.0 
CSU Old 243 34.7 4.47 60.9 29.6 5.4 4.1 
Soil B-B" 259 37.0 4.39 57.1 2B.2 10.B 3.9 
Soil A-B" 291 41.6 4.44 61.5 23.4 13.0 2.1 

ComEartment Q 
Soil A-4" 203 29.0 4.33 53.2 27.6 1B.7 0.5 
Scoria-Idea1ite 215 30.7 4.1B 40.5 44.7 7.4 7.4 
CSU New 216 30.9 4.19 4B.2 26.4 22.2 3.2 
Soil B-4" 21B 31.1 4.13 47.2 23.4 24.B 4.6 
Soil A-8" 220 31.4 4.35 51.8 33.6 12.3 2.3 
CSU Old 244 34.9 4.45 59.9 29.5 6.1 4.5 
Soil B-B" 253 36.1 4.3B 57.3 26.1 13.4 3.2 

Com:eartment D 
Soil A-4" 216 30.9 3.95 36.6 31.5 22.7 9.2 
Scoria-Idealite 223 31.9 4.25 43.9 44.B 3.6 7.7 
CSU New 232 33.1 4.15 45.3 30.6 17.7 6.4 
Soil B-4" 23B 34.0 4.09 42.9 27.3 26.0 3.B 
Soil A-B" 271 3B.7 4.38 57.6 26.9 11.8 3.7 
Soil B-8" 283 40.4 4.39 55.5 30.7 11.0 2.B 
CSU Old 317 45.3 4.59 64.7 30.6 3.5 1.2 
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Figure 5: Effect of soil type and depth on the total number of carnation flowers 
produced weekly. Start of flowering October 3, 1966. 
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Figure 6: Effect of esu Old, esu New, and Scoria-Idealite on the total number of carnation 
flowers produced weekly. Start of flowering October 3, 1966. 
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Figure 7: Effect of soil type and depth on weekly mean grade of carnations. 
Start of flowering October 3, 1966. 
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Figure 8: Effect of esu Old, Q§Q New, and Scoria-Idealite on weekly mean grade 
of carnations. Start of flowering October 3, 1966. 
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Table 4. Sunnnary of production of "csu Red" on all soil plots and "Pink Coquetter~ on Scoria-Idea1ite, 
October 10, 1966 to April 29, 1967. Horizontal lines indicate non-significance. 

CSU Soil Soil Scoria- Soil CSU Soil LSD 
Old A-8" B ... 8" Idea1ite B-4" New A-4" 5% level 

Total number flowers produced 1 2°54 1,046 1,032 929 871 867 813 178.0 

Flowers per sq. ft. 37.6 37.4 36.9 33.2 31.0 31.0 29.0 

Mean grade 4.49 4.37 4.32 4.15 4.07 4.19 4.06 0.18 

Percent distribution of grade 

Fancy 60.9 57.6 57.7 40.3 44.7 49.0 46.1 U1 
C'\ 

Standard 29.7 24.7 28.8 44.2 23.3 26.8 21.2 

Short 5.9 14.8 10.8 6.1 26.6 18.8 25.4 

Design 3.5 2.9 2.7 9.4 5.4 5.4 7.3 



57 

grown in soil A-4" had the lowest total yield and mean grade of all 

media, while CSU ~ soil had the lowest total yield and mean grade 

of all 8-inch plots (Table 4). During the initial stages of growth, 

chlorosis occurred on plants grown in Q[[~ soil, but this later 

disappeared after the plants had grown and the irrigation interval 

had been increased. Daily solar radiation also decreased during this 

period. 

There were slight differences in mean grade and yield due to 

the type of greenhouse cover (Figs. 9 and 10), which were not 

statistically significant. The first crop peaked at the same time 

in all compartments. However, compartment ~ had the highest and 

earliest peak for the second crop, followed closely by compartment !. 

It also had the highest total production of all compartments to the 

end of April (Table 5). Second crops in compartments! and Q were 

Table 5. Sunnnary of production of "csu Red" October 10, 1966, to 
April 29, 1967, between compartments. 

Compartment 
A B C 

Total number flowers produced 1,347 1,423 1,354 

Flowers per sq. ft. 32.1 33.9 32.2 

Mean grade 4.26 4.28 4.31 

Percent distribution of grade 

Fancy 53.9 54.7 53.2 

Standard 22.7 23.6 27.8 

Short 18.5 16.8 16.0 

Design 4.9 4.9 3.0 

D 

1,557 

37.1 

4.29 

51.7 

29.6 

14.5 

4.2 
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Figure 9: Effect of cover on total number of ·carnation flowers produced weekly. 
Start of flowering October 3, 1966. 
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Figure 10: Effect of cover on weekly mean grade of carnations. 
Start of flowering October 3, 1966. 
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extended and delayed. By the end of April, yield from these two 

compartments was below that from! and Q. 

Flant heights measured September 19, 12 weeks after planting, 

varied according to treatment (Fig. 11). These differences were 

readily observable, but due to the variation were not mathematically 

significant. However, there was a statistically significant cover 

effect. Compartment! was found to have the highest average plant 

growth followed by compartments !, Q, and £ in descending order. 

Variation in keeping life was not significant although the keeping 

life of flowers produced in the 8-inch treatments averaged 0.5 day 

longer than those grown in the 4-inch plots. 

Part 1. Stomatal and Epidermal ~ Distribution 

Stomata were found to vary in their distribution an the leaf 

surface from relatively few near the midvein (Fig. 12) to mare 

numerous near the margins (Figs. 15 and 17). They were present an 

both surfaces of the leaf and sunken below the cuticle (Figs. 13 

and 14). While cross-sections of leaves from various treatments 

were nat examined, surface photographs (Figs. 15-18) indicated 

considerable differences. Stomata from plants in the 4-inch treat­

ments appeared to have a greater amount of cutin deposited about the 

stomata, and the stomata also appeared to be set deeper within the 

leaf itself. Epidermal cells were smaller, with stomata more 

frequent on leaves of plants subjected to greater sail moisture 

stress (4-inch depths). 

A relationship was found to exist between the number of stomata, 

epidermal cells and their size. Plants grawn in inert media had 
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Figure 11: Effect of root substrate on average 
plant height. 
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Figure 12: Upper epidermis of carnation leaf showing stomata distribution 
in the region of the midvein. Xt4S. 

Figure 13: Carnation leaf in transverse section showing stomata on both 
upper and lower surfaces. X14S. 

Figure 14: Enlargement of upper epidermis. Note sunken stomata and 
thick cuticle layer. X636. 
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Figure 15: Upper epidermis of carnation leaf from a plant grown in Scoria-Idea1ite. X145. 

Figure 16: Enlargement of Figure 15. X636. 

Figure 17: Upper epidermis of carnation leaf from a plant grown in soil Aw 4". X145. 

Figure 18: Enlargement of Figure 17. X636. 
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larger epidermal cells and fewer stomata per unit area (Table 6). 

Table 6. 
2 Summary of stomatal. and epidermal cell frequency per rom , 

stomatal index and number of stomata per leaf area 
sampled by the hygrometer leaf cup on all 

soil plots and Scori~-I~ealite. 

Number of Mean number 
Number of epidermal of stomata in 
stomata cells per Stomatal area covered 

Soil type per rom2 nun2 index (I)-.r by leaf cup 

Scoria-Idealite 77.8 227.0 23.9 13,226 

Soil B-8" 82.0 230.3 26.3 13,932 

CSU Old 82.4 236.8 25.8 14,008 

CSU New 85.8 248.0 25.7 14,578 

Soil A-4" 87.1 252.7 25 .. 6 14,199 

Soil A-8 u 87.6 248.2 26.1 14,892 

Soil B-4u 87.7 253.4 25.7 14,909 

LSD 5% level 1.5 3.3 

2 
~I # stomata per rom 
.~ ~ # stomata + # epidermal cells per rom2 

Plants grown in 4-inch plots had the opposite relationship. The 

differences between treatments as to number of stomata and epidermal 

cells on the upper leaf surfaces of carnation plants were statisti-

cally significant. Cover also effected the stomatal-epidermal cell 

relationship (Table 7); as did solar radiation (Fig. 19). Plants 

grown under high splar energy conditions, eventually produced leaves 

having more stomata and epidermal cells per unit area than those 

produced under low light. Leaves from plants grown in Scoria-

Idealite and Q§Q Old soil showed the largest increase in number of 
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Figure 19: Effect of substrate and light on the number of stomata 
per mm2 in compartment Q. 
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stomata from February to June. Soil B-8" had the least increase 

during the same period. An interaction was found to exist between 

cover and root substrate on stomatal and epidermal cell distribution 

but was low in comparison to the individual effects of cover and 

medium. 

Table 7. Summary of stomatal and epidermal cell frequency per mm2, 
stomatal index, and number of stomata per leaf area sampled 

by the hygrometer leaf cup per compartment. 

Number of Mean number 
Number of epidermal of stomata in 
stomata cells per Stomatal area covered 

ComEartment Eer mm2 mm2 index {I2* bl leaf cUE 

A 77.5 233.8 24.9 13,177 

B 84.0 242.9 25.7 14,280 

C 83.7 247.5 25.3 14,231 

D 92.1 256.4 26.4 15,649 

LSD 5% level 2 .. 0 4.4 

2 __ # stomata per mm 
*1 -# stomata + # epidermal cells per mmz 

The difference between the values of stomatal index (I) (Table 6) 

for all soil plots was only 0.7, while there was a difference of 

1.7 between Scoria-1dealite and the lowest soil plot. Although 

Scoria-Idealite had fewer stomata and epidermal cells than any soil 

plot, there was a greater decrease in the number of stomata than 

epidermal cells resulting in a lower I. No consistent relationship 

between I and growth could be found. 
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~~. Transpiration Measurements 

Measurement of both ~t (time required for a standard relative 

humidity change in an electric hygrometer cell) and stomatal aperture 

were used to indicate transpiration rate during a drying period, 

September 27 to October 5 in compartment~. Data was taken daily 

at 10:00 a.m. MBT. Computing the average opening of stomatal 

apertures from silicon rubber impressions was time consuming and 

tedious. In contrast, the electric hygrometer was a simple and more 

practical technique. 

As seen in Fig. 20, ~t decreased as aperture and solar radiation 

increased. However, variations are evident from the different ~t 

values with the same stomatal aperture. Thus, the variations shown 

in Fig. 20 cannot be attributed solely to changes in stomatal 

apertures. A linear regression of ~t on stomatal aperture and solar 

radiation was computed. Figs. 21 and 22 show that ~t was positively 

correlated to both stomatal aperture and solar radiation. 

There was a sharp decrease in ~t on the seventh day from watering 

in Fig. 20. The decrease coincided with a corresponding sharp 

decrease in solar radiation. On the eighth day after watering, the 

plants in the 4-inch soils showed visible signs of water stress, 

but ~t values in all plots were higher than those of the previous day. 

Measurements of ~t were taken at 9:00 a.m. and 1:00 p.m. MST in 

compartment ~ over a drying period from March 21 to March 26. The 

results of morning and afternoon measurements on all plots are shown 

in Figs. 23-25~ The afternoon readings in Fig. 23 showed consistent 

variations, in that ~t was consistently greater for plants in 4-inch 
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Figure 20: Relationship of stomatal aperture and transpiration rate ~) to solar 
radiation during the drying period from September 27 to October 5, 1966. 

Data were taken at 10:00 a.m. MST in compartment ~. 
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Figure 21: Regression line showing the positive correlation between 
stomatal aperture and transpiration rate. 
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Figure 22: Regression line showing the positive correlation between 
solar radiation and transpiration rate. 
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Figure 23: Transpiration rate of carnations in soil A and Scoria-Idea lite during one 
drying period. Data taken at 9:00 a.m. and 1:00-p.m. MST in compartment ~ 

from March 21 to March 26, 1967. 
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Figure 24: Transpiration rate of carnations in soil Band Scoria-Idea1ite during one 
drying period. Data taken at 9:00 a.m. and 1:00-p.m. MET in compartment Q 

from March 21 to March 26, 1967. 
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Figure 25: Transpiration rate of carnations in CSU Old, CSU New, and Scoria-Idea1ite 
during one drying period. Data taken at 9:00 a.m. and 1:00 p.m. MST in 

compartment Q from March 21 to March 26, 1967. 
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soil depths than for plants in 8-inch soil depths. That is, transpira­

tion in most circumstances was greater for those plants subjected to 

lower soil moisture stress, provided other factors were equal. 

However, Figs. 24 and 25 are typical examples of inconsistent rela­

tionships that were found between ~t values on different media. In 

Figs. 23 and 24, there was a general trend for the difference in ~t 

values between Scoria-Idealite and soil plots to increase as the days 

from watering increased. However, there were some exceptions as can 

be seen from the afternoon values in Fig. 25. 

Statistical analysis indicated many factors, such as days from 

watering, type of media, and the hour readings were taken, as well 

as their interactions, were highly significant. Statistically, ~t 

was affected most by days from watering. Plants grown in Scoria­

Idealite generally had the lowest ~t rate or greatest transpiration 

rate. 

As a general rule, transpiration decreased as the substrate 

dried out, or as radiant energy decreased. Plants in 4-inch soils 

also had slower transpiration rates. Changes in solar radiation 

masked any definite increase in Llt at the end of the drying cycle. 

However, as days from watering increased, ~t values were higher (less 

transpiration) with decreased solar radiation. 

Changes in solar radiation were also found to affect ~t measure­

ments taken at hourly intervals from 7:00 a.m. to 4:00 p.m. Figs. 26 

and 27 indicate the effects of solar radiation on ~t of plants in 

various root substrates. As indicated in Figs. 23 and 24, the lowest 

~t values were obtained from plants grown on Scoria-Idealite which 



87 



Figure 26: Transpiration rate of carnations in soils A and Band Scoria-Idealite. 
Data taken April 3, 1967, in compartment~. 



TRANSPI RATION RATE 

(.6 t in seconds) 

SOLAR RADIATION 

( om-ca I I c m2 
) 

(;) (;) 0 _____ 
___ 0~O 0 

0 ____ 0 Be;;:; 0----- ~ ------=9 ~ 

~e~c~~~e ~-=--=-"'~:: ~2~~c "'e 
o /7 ~~~ ~~2----0 

o~ ./ o~o 
./ -0- 501 LA-all "" --.....x 

)( -x- SOl L A-4
n 

"" 

-0- SOl L B-a u 
0 

-0- SOILB--4 U 

--0-- SCOR1A .. IDEALITE CONTROL 

---0--- SOLAR RADIATION 
)( 

... 0 - - - __ .0 _____ --0, 
~' , ... , 

' , 0----- __ 0 ' " 

" , ~ , 
' , ~ , ~' 0 _____ -0 10 

~~~ ,,0 , 
... 0 ....... 

,-,--
0 .... -
t 

7am a 9 10 II Noon 2 :3 4pm 

H 0 U R S 

00 
00 



89 



Figure 27: Transpiration rate of carnations in CSU Old, CSU New, and Scoria-Idealite. 
Data taken April 3, 1967, in compartment Q. 
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were also least affected by low solar radiation in both the morning 

and afternoon. 

Fig. 27 indicates a lower hourly transpiration rate of plants 

in CSU New soil than those in csu Old. This relationship also held 

true during drying cycles (see Fig. 25). Transpiration rates from 

plants in 4-inch soils were generally slower than those from the 

corresponding 8-inch plots. No definite mid-day stomatal closure 

was noted except for a slight decrease in ~t values at -1:00 p.m., 

but there was also a lower level of solar radiation. 

Fig. 28 indicates that there was a difference in ~t values 

between compartments. Compartment ~ had the highest transpiration 

rate followed by ~, &, and Q. Compartment Q had the highest solar 

radiation at the time the readings were taken. There appears to be 

a significant decrease in transpiration rate on the seventh day from 

watering. However, solar radiation on the seventh day was also the 

lowest during the entire drying period. 
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Figure 28: Comparison of effect of cover on transpiration rate 
of carnations during drying cycle. Data taken at 

10:00 a.m. MST, June 17 to June 23, 1967. 
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Chapter V 

DISCUSSION 

The observed plant response in this investigation showed several 

important effects of practical significance. Even though reducing 

soil depth resulted in a higher initial soil moisture content, the 

net effect was to increase soil moisture stress since less total water 

in the plot was available. The responses of the plants were those 

that would be expected from high soil moisture stress (45, 49). The 

effect of reducing soil! to a 4-inch depth was more severe on total 

yield than reducing soil! to 4 inches. The fact that soil B had a 

higher moisture content at all suction levels may be beneficial at 

reduced depths where the soil dries more rapidly. In essence, 

reducing soil depth to 4 inches increases problems that result from 

either too much or insufficient water. 

Both Growers' Soils A and! at 8-inch depths produced similarly 

to CSU Old soil. However, soil! had a lower total yield than soil! 

even though soil ~ had a higher moisture content at all suctions. The 

soil moisture retention curve of soil A was more identical to CSU Old ----
soil. 

The approximate total pore space of the two problem soils was 

high and reflected their ability to retain more water at all suction 

values in comparison to CSU ~ soil which had a lower total pore 

space. 
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CSU ~ soil was observed to have a low organic matter content 

resulting in a greater bulk density value than the regular greenhouse 

soils. The extrapolation of the soil moisture retention curves on a 

logarathmic scale showed that the approximate total pore space of CSU 

New soil was lower than all others and resulted in the lowest 

percentage of available water to the plant at both high and low 

suction levels. 

From the moisture retention curves (Fig. 3), i,t would not be 

expected that high water content would be a factor in the reduced 

plant response for fm[~ soil (Figs. 7 and 8). However, the 

chlorotic condition of plants during initial growth stages, definitely 

indicated an aeration problem. At the time chlorosis was observed, 

the plants were small, and solar radiation levels were decreasing 

daily. These two factors resulted in a low rate of evapotranspiration. 

Consequently, the soil did not dry out very fast and chlorosis appeared 

as a result of poor aeration. Watering records showed that as solar 

radiation decreased, watering frequency also decreased even though 

plant size increased. This indicated that solar radiation affected 

the number of days between irrigations more than plant size. It is 

likely that poor aeration during initial growth, and insufficient 

water during later growth, both contributed to the decreased yield 

and grade. 

The extrapolated soil moisture retention curves in Fig. 4 showed 

that Q[[~ soil had neither the highest nor lowest moisture contents 

at all suction levels. 

CSU New soil had the lowest moisture content and soil! the 

highest at all levels of suction, and both had a total yield arid 
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grade lower than that for CSU Old soil. The amount of pore space in 

CSU Old soil provided good drainage and sufficient aeration for good 

plant growth since total yield and grade were highest from plants 

grown in CSU Old soil; this soil was the closest to what would be 

called an ideal soil. When handled similarly, all four soils produced 

acceptable cut flowers. There were no indications of marked problems 

from deficient aeration, extreme stress, or disease observed in the 

two growers' soils at either the 4- or 8-inch depths. When supposedly 

problem soils were handled properly, disease control and high 

production were attainable. 

Plants grown under low moisture stress in Scoria-Idealite 

flowered earlier than those under high stress. This indicates that 

an adjustment must be made in scheduling, since the time required to 

produce a crop was shortened. The effect of stress was most notice­

able in the flowering of the second crop. After the first crop was 

cut, plants grown in 4-inch plots responded by producing fewer breaks 

which developed slower than those on plants in 8-inch plots. The 

delayed growth resulted in a production peak 5 weeks later than the 

peak in the 8-inch plots. 

The decreased grade and brittleness of flowers from plants grown 

in Scoria-Idealite may have been due to a lack of stress on plant 

growth. The beginning of the second crop was a period of low solar 

radiation and subsequent low evapotranspiration. Since the irrigation 

interval was the same as at high solar radiation, the plants had an 

optimum supply of water. Indications are that perhaps some stress 

is required by carnations for the best grade. 
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The effect of soil conditions early in the growth of carnations 

was not found to be directly related to total productivity (Table 4 

and Fig. 11). However, general trends were indicated in that plants 

grown in both poorly aerated soil and shallow depths were shortest 

after 12 weeks of growth. The same plots also had the lowest total 

yield. 

The different types of cover significantly affected transpiration 

rates, stomatal distribution, and plant height, but did not signi­

ficantly affect yield and mean grade. From the data obtained, plants 

grown in compartment! should have shown the best response as to 

yield and mean grade. The taller plant growth and fewer number of 

stomata per mm2 indicated that the plants were grown at lower levels 

of stress. However, this was not reflected in the response of the 

plants to yield and mean grade. Compartment Q, which had the largest 

number of stomata per mm2, had the highest total yield up to April 29. 

The factor involved here was probably solar radiation. The 

higher solar radiation in compartment Q provided more energy for 

photosynthesis and plant growth during the winter months. This 

resulted in a higher production for plants grown at higher values 

of stress. Fig. 28 showed that transpiration in the Scoria-Idealite 

media was lowest in compartment ! and highest for compartment Q. 

Soils ~ and B-8" generally followed the same trend. This indicated 

that although plant growth was better at low values of stress, other 

environmental factors, especially solar radiation, were probably 

limiting. This opens up an area of future work that could be of 

practical importance to the grower. Since artificial media allows 

plant growth at lower levels of water stress, the additional solar 
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radiation under glass as compared to fiberglass might be better 

utilized for greater production as a result of a greater rate of 

photosynthesis. 

Different levels of suction in the root substrate also had an 

effect on stomatal and epidermal cell distribution. A greater number 

per unit area was found on leaves from plants grown under high soil 

moisture stress. Fig. 15 showed the decreased density of stomata 

and increased size of epidermal cells on leaves from plants grown in 

Scoria-Idealite watered daily. The increased stomatal densities found 

in high stress treatments might not have been the result of continuous 

cell division, but rather decreased expansion of the cells during 

periods of low moisture availability (40). Denmead and Shaw (26) 

noticed that stress imposed while the plant was actively growing 

retarded cell enlargement. 

Fig. 18 showed the effect of high water stress on the stomata 

in comparison to those under low stress in Fig. 16. The stomata 

from leaves on plants grown under high stress appeared to have adapted 

to their growth conditions. They were more cutinized and had thicker 

cell walls around the periphery of the guard cells. This might have 

been due to a lower amount of moisture available to maintain turgor 

during the growth of the cells which acted as a check against wide 

stomatal apertures and increased water loss. Another adaptation to 

high stress might have been the thicker cuticle over the epidermal 

cells. Since carnations have sunken stomata, the thickness of the 

cuticle layer would create a longer passageway for water vapor to 

travel from the interior of the leaf to the outside air. 
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The observation that leaves from plants grown at high stress had 

more stomata per unit area than those grown at low stress, would 

indicate a potentially greater transpiration rate. However, transpi­

ration rates from plants grown under high stress were usually lower 

than those from plants grown under low stress. Waggoner (114) stated 

that although a greater stomatal density would seem to encourage a 

greater transpiration rate, it had nothing to do with decreased 

transpiration. The decreased transpiration rate at high stress might 

have been due to an increased resistance of the individual stomata 

to transpiration. 

Work in this area should be continued to determine if there are 

a greater number of stomata per plant when grown under high stress 

or whether this fact is compensated by a smaller total leaf area. 

Assuming the possibility that the total number of stomata per plant 

are equal under both high and low stress, the lower transpiration 

rates obtained at high stress would lead to the theory that the 

stomata increased their resistance to transpiration. Anatomical work 

on stomata might show what type of cellular changes occur that increase 

resistance to transpiration. 

Cover also had a significant effect on the number of stomata per 

unit area. This might have been the direct result of different 

amounts of solar radiation and subsequent stress under the various 

covers. A definite effect of solar radiation was found when stomatal 

density was observed in February and again in June in compartment ~ 

as shown in Fig. 19. An increased stomatal density on corresponding 

soil plots was observed under high solar radiation in June, which 

might have been attributable to increasing stress. 
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Fig. 12 emphasized the variations that may be obtained in 

measuring stomatal numbers. The leaf midvein was also found by 

Hirano (53)-to have fewer stomata. Large variations in the distri­

bution of stomata over a leaf were observed and it was imperative 

that readings be made in a predetermined section of leaf surface 

for the best sampling technique. 

The stomatal index (I) was found to be more constant than 

stomatal frequency as was reported by Salisbury (69). However, the 

decreased variation might have been due to the way I was computed; 

i.e. the total number of stomata were divided by the total number of 

stomata plus epidermal cells. This seemed to eliminate some of the 

variations that were found when looking at stomatal numbers alone. 

No relationships were found when stomatal index and total yield were 

compared. No importance could be attributed to the fact that I for 

Scoria-Idealite was different from the soil plots. 

According to Ting (105), ~t is a direct measure of transpiration. 

It should give an indirect measurement of stomatal aperture which 

indicates plant water balance through the effect of turgor pressure 

on aperture width. A general trend in ~t measurements to stomatal 

apertures was noted. Larger apertures had a lower ~t value which 

reflected a greater loss of water vapor from the stomata. The use 

of silicon rubber impressions was a laborious method of indicating 

transpiration rate because of the large number of observations per 

leaf and the time necessary for taking the readings. The lithium 

chloride hygrometer method was relatively easy to use and results 

were obtained quickly. 
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As seen from the measurements taken during the various drying 

periods, ~t values followed the general trend of transpiration, 

but did not give an indication for determining when the plant first 

came under water stress considered as the point where potential 

growth is reduced. Consequently, this technique would be adequate 

in controlled environment studies, but its practical application by 

a grower does not appear possible. The effect of other factors such 

as solar radiation, type of cover, days from watering, amount of 

water available to the plant in the particular plot being sampled, 

and the hour readings are taken, all entered into the final value 

of ~t. 

Solar radiation appeared to be the most important factor affecting 

~t values. During certain drying periods as in Figs. 23-25, ~t 

rates were higher on the day of watering due to higher levels of solar 

radiation than the day prior to watering. Measuring the transpiration 

rate by ~t values did not appear to be sensitive enough for commer­

cial application. By the time definite decreases in transpiration 

rate occurred, the fact the plant was under stress could be observed 

visually. 

The technique of measuring ~t with the lithium hygrometer may be 

excellent to show when the availability of water starts to decrease, 

when this is the only factor measured and all other environmental 

conditions are equal. The fact that plants grown on Scoria-Idealite 

were generally found to have the lowest ~t values demonstrated the 

technique to be reliable in showing the effects of differences in 

stress. 
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The increasing difference in ~t values between soil plots and 

Scoria-Idealite over a drying period suggested the possible use of 

the technique if a control plot of artificial media with plants 

grown at low stress is used. This would entail further study in 

determining what differences in absolute values must be obtained 

to indicate when the plant is under stress and the possibility of 

determining when to water. 



Chapter VI 

SUMMARY 

The effect of differences in soil moisture stress, provided by 

the use of different soils and depths of soil, on yield and quality 

of carnations was investigated. A technique that would offer a 

better indication of when to water carnations under greenhouse 

conditions was also evaluated. 

The best producing soils had neither the maximum nor minimum 

bulk density, moisture content at all suctions, or total pore space 

of all soils compared. The values of the best soils were usually 

an average of the extremes. These values could possibly be used as 

a guideline for determining a good greenhouse soil. 

There were no indications of marked problems from deficient 

aeration, extreme stress, or disease in two soils, known to have 

problems, when treated alike. The reduction of soil depth from 

8 to 4 inches increased problems that result from too much or 

insufficient water. Yield and grade were best on plants grown in 

8-inch soil. 

The raw field soil had an aeration problem when placed in a 

greenhouse bench resulting in decreased yield. The apparent low 

organic matter content might have been the cause of the low transpi­

ration'demand by small plants, aeration problem and resulting decreased 

yield. 
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Plants grown under low stress flowered one week earlier during 

the first crop, than those grown under high stress. The effect of 

stress was most noticeable in the flowering of the second crop which 

was delayed up to 5 weeks under high stress. Carnations grown under 

low stress conditions would require new planting schedules. There 

were indications that some stress may be required by carnations to 

produce higher grade flowers. 

As either solar radiation or soil moisture stress increased, 

there was generally a corresponding increase in the number of stomatal 

2 and epidermal cells per rom. As stress decreased, there was an 

increase in size of epidermal cells and a decreased number of stomata. 

There was no relation between transpiration rate and the number of 

stomata per unit area. Stomata on leaves from plants grown under 

high stress adapted to the unfavorable growing conditions by having 

a greater resistance to transpiration. The resistance might have 

been due to a thicker cuticle layer which increased the diffusion 

path length for water vapor from the interior of the leaf to the 

outside air. Although stomatal index was found to vary less than 

stomatal frequency, it was not beneficial in understanding stomatal 

distribution. 

Indications were that although plant height was greater at low 

values of stress, solar radiation should not be decreased as it 

probably became a limiting factor in photosynthesis and resulted in 

a lower total yield. 

A higher correlation was found between transpiration rate and 

stomatal aperture than transpiration rate and solar radiation. 
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Although the lithium chloride hygrometer was easy to use, it was not 

sensitive enough to be used in a greenhouse as an indication of when 

to water. Many factors such as solar radiation, type of cover, days 

from watering, and hour readings are taken, all affected ~t values. 

The measurements of stomatal apertures by the use of silicon rubber 

impressions was too laborious to be used as a practical field 

technique. 
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TABLE A. Analysis of variance of cover and root substrate on yield of 
"csu Red" on soil plots and "Pink Coquette" on 

Scoria-Idealite. 

Source of variance df MS F 

Weeks 29 580.80 29.4972-J..-k 

Cover 3 40.16 2.0396 

Error 87 19.69 

Root substrate 6 81.19 4.2799** 

Cover X root substrate 18 13.33 .7027 

Error 696 18.97 

TABLE B. Analysis of variance of cover and root substrate on mean 
grade of ttcsu Red lt on soil plots and "Pink CoquetteU 

on Scoria-Idea1ite 

Source of variance df MS F 

Weeks 29 36.38 37.8958** 

Cover 3 .16 .1667 

Error 87 .96 

Root substrate 6 5.78 7.6053** 

Cover X root substrate 18 1.36 1.7895 

Error 696 .76 
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TABLE C. Analysis of variance of cover and soil plots on plant height 
after 3 months growth. 

Source of variance df MS F 

Cover 3 473.33 8.1735** 

Soil plots 5 47.76 .8247 

Cover X soil plots 15 116.00 2.0031 

Error 456 57.91 

TABLE D. Analysis of variance of soil depth and keeping life of "CSU 
Red" carnations. 

Source of variance df SS MS F 

Time 5 1.5 .300 2.5000 

Depth soil plot 1 0.5 .500 4.1667 

Error 5 0.6 .120 

TABLE E. Analysis of variance of root substrate and cover on stomatal 
density. 

Source of variance df MS F 

Cover 3 856.86 30.1605** 

Root substrate 6 192.02 6.7589** 

Root substrate X cover 18 83.13 2.83721("'.\* 

Error 364 28.41 
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TABLE F. Analysis of variance of root substrate and cover on epidermal 
cell density. 

Source of variance df MS F 

Cover 3 3,761.54 28.4728*'..\' 

Root substrate 6 764.40 5.7861** 

Root substrate X cover 18 301.32 2. 2808~h''' 

Error 364 132.11 

TABLE G. Analysis of variance of ~t data taken at 9:00 a.m. and 
1:00 p.m. MST in compartment D from March 21 

to March 26, 1967. 

Source of variance df MS F 

Root substrate 6 1,659.35 123.7397** 

Day 5 5,532.63 412.5749** 

Day X root substrate 30 235.37 17 ! 5518** 

Hour 1 928.56 69.2438** 

Hour X root substrate 6 141.11 10.5227*'..\' 

Hour X day 5 815.98 60.8486** 

Hour X day X root substrate 30 123.66 9.2215** 

Error 420 13.41 
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TABLE H. Analysis of variance of ~t data taken at 10:00 a.m. MST, 
June 17 to June 23, 1967, in compartment~. 

Source of variance df MS F 

Cover 3 500.50 95.3333** 

Root substrate 3 298.39 56.83621:* 

Root substrate X cover 9 484.19 92.2267*"1: 

Day 6 16,325.50 310. o 962')\-/: 

Day X cover 18 227.23 43.2819** 

Day X root substrate 18 54.67 10.4133** 

Day X root substrate X cover 54 38.27 7.2895m'(o 

Error 448 5.25 
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