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ABSTRACT 

 

 

 

DEMOGRAPHIC CONSEQUENCES OF AGRICULTURAL PRACTICES ON A  

LONG-LIVED AVIAN PREDATOR 

 

 

 

Within this dissertation we investigate the biological and demographic aspects of the 

entire life cycle of a hemispheric migrant and top avian predator - the Swainson’s hawk (Buteo 

swainsoni). The individual chapters progress in age-related steps from early life development to 

lifetime fitness metrics. Several chapters utilize individual-based data to estimate major 

demographic milestones (e.g., recruitment, lifetime fitness) while accounting for different 

sources of uncertainty, both in biological states and imperfect field observations. While the 

statistical and hierarchical accounting of observational uncertainty within demographic models 

allows for accurate inference, these models provide insight into ecological processes and are 

applied here to understand the influence of anthropogenic land use and agricultural habitats on 

Swainson’s hawk demography. To do this we utilize an individual based mark-resight project 

from 1985-2020 on a population of Swainson’s hawks breeding in an agricultural valley along 

the northern border of the state of California, USA.         

In chapter one we build a morphometric tool for classifying the sex of nestlings. Sex 

determination can be particularly challenging with species that don’t display external sex-linked 

plumage differences, have overlapping structural morphologies, and especially when examining 

individuals still undergoing ontogenetic development, but is a fundamental aspect to 

understanding organismal biology. We develop a morphological model that uses tarsus width 

and mass (with 91.5% accuracy) for determining sex in developing Swainson’s hawks that 
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incorporates the natural variation among broods and hatch order status based on a custom 

developmental index for stunting. This morphometric tool allowed us to investigate sex-specific 

demography – the focus of chapter three. 

 Chapter two covers the development and results of remote sensing efforts to obtain 

habitat data relevant to nearly four decades of demographic data. Understanding land alterations 

motivated by agriculture is important as croplands constitute over 20% of total land in the 

conterminous United States. Quantifying the cumulative transitions of anthropogenic habit 

change is important for understanding wildlife populations co-habiting these areas, as species 

may be slow or incapable of adapting. Here we develop an integrated workflow design using 

Google’s Earth Engine API platform and Program R to implement a supervised classification 

model using machine learning algorithms to identify crop types at the individual field level. 

Incorporating historical imagery we assess long-term changes in anthropogenic land use. This 

model is applied to Landsat imagery spanning over three decades (1985-2020) and encompasses 

three satellite generations (Landsat 5, 7, and 8). The supervised landcover classification model 

achieved an 85% accuracy rate, providing compositional and proximity characterization of 

Swainson’s hawk territories, and showed a clear increase in irrigated alfalfa across the study 

period. 

 Chapter three uses the morphometric sexing tool developed in chapter one to examine 

recruitment dynamics in relation to intrinsic (i.e., size and brood) and extrinsic (i.e., territory 

habitat) variables. For territorial species occurring within agricultural environments, habitat 

alteration can occur frequently and have dramatic effects on offspring ontogeny and early life 

demographics. We utilize over a decade (2009-2020) of mark-resight and landcover 

classification data to estimate age- and sex-specific demographic rates across a range of possible 
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recruitment ages using a hidden multi-state model with initial state (sex) uncertainties. Females 

proportionally recruited at earlier ages than males, and the study population had a slight bias in 

favor of female offspring production. We found that large structural size, large natal brood size, 

and earlier hatch dates were all associated with high apparent survival for males in their first year 

of life after fledging, and higher chances of recruiting later in life, while later hatch dates 

explained increased apparent survival of females in their first year. Surprisingly, no 

compositional or proximity measures of natal habitat type influenced early life demographics, 

but we did find evidence of density-dependence in the early life demography of both sexes. 

Density-dependent processes could therefore be masking direct relationships between habitat and 

early life demographics, which are important relationships to identify for management schemes, 

especially in intensive agroecosystems. 

Finally, in chapter four we examine the relationship between territory habitat 

composition, inter-annual effects of habitat on reproductive outcomes, and overall lifetime 

fitness. Utilizing data from 1985-2020 and tracking individually marked females across their 

lifespans, we estimate lifetime reproductive success (LRS) metrics of a long-lived raptor 

breeding within a non-stationary agroecosystem. Regardless of age, individuals that failed to 

reproduce in a given year experienced lower survival probabilities, a feature exacerbated by a 

strong probability that once an individual failed to successfully reproduce, they were likely to 

consecutively fail again. Results show substantial variation in LRS, with a large percentage 

(40.3%) of monitored females fledging four or fewer offspring over their entire life span, a 

quantity that can potentially be achieved in a single reproductive attempt for this species. In our 

attempts to examine agricultural effects (breeding territory habitat composition and proximities 

of nests to specific types of agricultural fields) on annual transitions between differing levels of 
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reproductive success, we failed to find a relationship between the measured habitat variables, 

including measures of population density, and therefore a lack of any relationship with LRS. Our 

lack of results may therefore lend more credibility to the role of stochasticity on individual 

dynamics and life history outcomes than differences in features of habitat selection that natural 

selection can act upon.  
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Chapter 1 

PREDICTING SEX OF NESTLING BIRDS WITH MORPHOMETRICS 

 

 

 

Introduction 

In the case of dimorphic species, the larger sex requires greater investment of resources 

and time to adequately develop, establishing sex-linked differences early in the life cycle 

(Trivers & Willard 1973; Newton 1978). Understanding this dynamic is a fundamental part of 

avian ecology and requires the ability to accurately classify offspring sex (Sheldon 1998). 

However, sex determination can be particularly challenging with species that don’t display 

external sex-linked plumage differences, have overlapping structural morphologies, and 

especially when examining individuals that are still undergoing biological development. The 

accurate discrimination of offspring sex is significant to avian research in that it allows us to 

establish and advance our understanding of sex-based differences in survivorship (Hernández-

Matías et al. 2011), natal and breeding dispersal distances (Newton & Marquiss 1983; Newton 

2001), and migration patterns (Hull et al. 2012) while broadening our understanding of life-

history ecology and ideally the conservation of a species (Muriel et al. 2010; Batbayar et al. 

2014). Sex-linked differences may be particularly strong across raptorial species, as most are 

sexually dimorphic (i.e., females are larger than males; McClure et al. 2019). 

Globally, there are still many species of raptor where little is documented about life 

histories and basic ecology (Buechley et al. 2019). Methods for accurately measuring individual 

sex prior to fledging could enhance our understanding of sex-specific developmental growth 

rates, intra-brood dynamics, survivorship, and other key life history traits (Bortolotti 1984), 

attributes that can carry over into older life stages (Van De Pol et al. 2006). Assigning sex labels 
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at the earliest points in life, a fixed individual trait, allows for a fuller understanding of life-

histories.  To understand basic biology and successfully conserve raptor species, it is therefore 

necessary to develop a functional and cost-effective method for determining offspring sex prior 

to fledging. Molecular methods are commonly used to determine sex and can be necessary for 

monomorphic species (i.e., Cinereous Vultures (Aegypius monachus) Batbayar et al. 2014). 

While exceptionally reliable, the use of molecular genetics can be costly, difficult to perform on 

site (exceptions see Koch et al. 2019), and time consuming. In contrast, the use of 

morphometrics can be performed cheaply, is easily performed on site, and is less time consuming 

if a reliable sexually-dimorphic trait during development can be identified (Dykstra et al. 2012).  

Within sexually dimorphic species the degree of dimorphism can vary between sexes and 

morphological structures, even in fully developed adults (López-López et al. 2011). This 

potential for morphometric range overlap is greater among rapidly growing nestlings, 

particularly with the added complexities of hatching asynchrony and varying brood sizes (Moss 

1979). These factors tied with individual hatch order create complex interactions when sex-based 

differences in growth trajectory and terminal size exist (McDonald 2003). Variation in 

morphometric trait size can arise from multiple sources (i.e., environmental or genetic factors) 

and should be expected, but outliers will always exist and a means to identify these can be 

challenging. For example, female nestlings that hatch first versus third may obtain slightly 

different terminal structural size. Due to the exceptionally unpredictable nature of these effects 

on any one particular brood, sorting outlying individuals presents a multifaceted problem only 

made more difficult by the common practice of only visiting a nest once to collect data and 

minimize disturbance. 
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The timing of nest visits presents another issue as the age of nestlings during data 

collection is crucial, as increased age and thus development will likely influence assignment 

accuracy and determine which traits are useful for discrimination. For example, traits such as 

mass or wing length may continue to change even after obtaining the ability to fly. While “hard” 

morphometric structures such as tarsus size stop growing much earlier in the development 

process. Thus the timing of nest visitation can be influential in determining the accuracy of 

morphometric predictors, whereas molecular approaches are not impacted by an individual’s age. 

Yet the utility of morphometric discriminates across life stages (e.g. nestling, juvenile, adult) is 

not guaranteed and may not be identical (Dykstra et al. 2012). 

This study aims to develop a morphological model for determining sex in developing 

Swainson’s hawks that incorporates the natural variation between and among broods and hatch 

order status. Variation across these brood dynamics can confound or impede accurate sex 

classification, but are not unique to this study and are expected to be issues for all related studies. 

Nestlings represent a life-stage with unique challenges to our goal, which can be summarized 

under a central analytical question, how to determine which individuals should be included in the 

predictive model? As brood size increases, the potential for reduced resource allocation also 

increases. Swainson’s hawks have also shown the potential for stunting as a survival mechanism 

(unpublished; Vennum). Within the nestling period (e.g., hatch to flight), the potential 

interactions and complexities that influence sex-based development in a dimorphic species are 

difficult for which to account. A rapid field-based tool for classifying offspring sex of raptors, 

that is accurate across an entire brood, will ultimately provide value and utility. 
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Methods 

Study Species 

Swainson’s hawks are a relatively common species with knowledge gaps remaining in 

their life history, particularly during earlier life stages prior to breeding. They are sexually 

monomorphic in plumage; yet like most birds of prey display reverse sexual dimorphism in 

physical size. All age classes undergo an annual migration to South America with the majority 

wintering in central Argentina (exceptions see Airola et al. 2019). Recent evidence from satellite 

tracking revealed that juveniles may take up to at least 5 years to recruit and are difficult to 

observe during this time due to nomadic behaviors (Vennum unpublished). This represents a 

significant period for selective forces to shape population dynamics, particularly when 

considering that first-year survival rates of raptorial species are low (Newton et al. 2016) and 

mortality rates often increase during migratory periods (Klaassen et al. 2014). For many avian 

species, but especially migratory ones, the developmental period prior to fledging represents the 

best viable period for data collection, highlighting the importance of scientific methods that 

improve biological inference. 

Study Area 

Butte Valley, California (United States) is a heterogeneous landscape (415 km2) 

comprised of high elevation (1,280 m to 1,340 m) sagebrush steppe, managed wetland, and 

groundwater-irrigated agriculture (Woodbridge 1991). Located in Siskiyou County, California 

(41˚ 49’N, 122˚ 0’W) the northern study boundary parallels the California/Oregon state border 

and extends south to include Red Rock Valley (41˚ 45’ 42’’N, 121˚ 48’ 22’’W). Breeding 

Swainson’s hawks (SWHA) primarily nest on the valley bottom of this arid juniper and 

sagebrush steppe, but higher nesting densities are associated with ground-water irrigated hay 
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fields (i.e., alfalfa). The dominant crop type and primary foraging habitat, alfalfa, provides 

consistent and high prey densities. Belding’s ground squirrels (Urocitellus beldingi) are the 

dominant prey species for the first half of the breeding season, until they locally estivate in late 

June, after which prey composition diversifies to include pocket gophers (Thomomys spp.), voles 

(Microtus spp.), reptiles, small bird species, and insects (Woodbridge 1991).  

General Field & Morphometric Data Collection 

Genetic samples and morphometric measurements were collected across multiple years 

(2014, 2017, and 2018) as part of an ongoing long-term demographic study. During these years a 

subset of nests were visited twice to collect growth-related measurements (2015 and 2016 field 

protocols didn’t require double entries), prior to nestlings leaving the nest. These included 

nestling mass (grams), lengths of several hard structures (tarsus width, tarsus length, footpad, 

culmen, hallux), and lengths of soft structures (unflattened wing cord, 7th primary, and tail 

length). Definitions of each measurement are provided in (Ch.1) Appendix A. Project guidelines 

delay nest visitation until offspring reach at least three weeks of age to reduce the probability of 

nest abandonment by parents. This minimum age of three weeks also represents the youngest age 

at which bands can safely be fitted to nestlings, a natural starting point to examine the ability to 

distinguish nestling sex in the field. 

 All nestlings were fitted with a United States Geologic Survey aluminum band during the 

first nest visit and a unique alphanumeric color band upon the second. During the second nest 

visit developing pin feathers were collected for the purpose of DNA extraction and molecular 

sexing. Nestling age at time of all sampling ranged from 21-44 days old. We purposely sampled 

nestlings as young as 21 days old as this is generally the youngest age bands can be safely 

attached, allowing us to examine how classification accuracy changed with age. Our two nest 
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visit study design divided our repeated measure samples into two age groups, a younger age class 

of 21-30 days old and an older 32-44 day old class. The natural growth pattern of feathers for 

Swainson’s hawks leaves the head for last with pin feathers typically becoming visible at 32 days 

of age (Gossett & Makela 2005). This biological age feature corresponds well with our two age 

classes and represents the easiest feature to observe when trying to age nestlings from a distance, 

prior to nest visitation. Field protocols were therefore established to visit each nest before and 

after this “32 day” age mark. Although fledging age can vary by a few days, we assume mean 

fledging age was 45 days of age (Bechard et al. 2020).  

 This study was conducted as part of a long-term, multi-decadal mark-resight project on 

the breeding ecology of SWHA. As a benefit from prolonged data collection, a secondary 11-

year (2009-2019) dataset of color-banded nestlings that survived the juvenile stage and were 

observed again as recruited breeders into the study population was available. These individuals 

were measured only once, but overlapped in age with our “older” group when measured, 

providing a non-overlapping validation dataset (hereafter, “recruited” dataset).  

Genetic Analysis – DNA Collection and Extraction 

Three developing feathers were plucked from each nestling’s breast between 32-44 days 

of age, and generally contained visible blood vessel(s) in the field at time of collection. Feathers 

were stored in individual envelopes at room temperature (24° C) for up to five (2014-2019) years 

before extraction. Genomic DNA was extracted from one dry breast feather per nestling (n=82). 

A 5mm piece from the tip of the calamus was removed, cut lengthwise and then one half was 

used for extraction. We extracted feather samples using the DNeasy Blood and Tissue Kit 

(Qiagen), according to manufacturer protocol, but with the following modifications to increase 

yield: (1) added a total of 40ul proteinase K to each sample during digestion, (2) extended 
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digestion time to 48hrs at 56° C, and (3) eluted DNA into 100ul AE buffer (instead of 200ul), to 

increase DNA concentration. We extracted feathers in batches of ~24, with a negative control 

included for each batch to detect any contamination. We assessed the DNA quantity in a subset 

of samples (n=5), including the oldest and newest feathers collected, using Qubit Florimeter HS 

reagents. DNA quantities ranged from 3.6-14.1 hg/µl, a sufficient quantity to proceed with PCR 

amplification.  

Molecular Sexing 

Molecular sexing of all nestlings was conducted by polymerase chain reaction (PCR) 

amplification of sexually diagnostic CHD1 alleles, using 2550F/2718R primers (Fridolfsson & 

Ellegren 1999). Reactions were amplified in volumes of 25µl, using 2µl template DNA, 0.25 µl 

each F and R primers, 22.5 µl water, and one Illustra PuReTaq Ready-To-Go PCR bead (GE 

Healthcare Life Sciences, Marlborough, MA, USA) per reaction. Negative extraction controls 

were amplified alongside nestling samples. We used PCR conditions as outlined in Woolaver et 

al. (2013): first, a 2-min denaturing step at 94° C; 30 cycles of 30 sec at 94° C for denaturing, 30 

sec at 50° C for annealing, and 30 sec at 72° C for extension; and last, a final 5 min extension at 

72° C. For a subset of samples that did not amplify the first time, presumably due to low starting 

concentrations of DNA, we used a nested protocol. For these reactions, we repeated the PCR 

conditions above, but with 2 µl of PCR product instead of template DNA for the nested 

amplification round. 

Amplified CHD1 alleles were visualized on 2% agarose gels, stained with 10ul GelRed 

Nucleic Acid Gel Stain (Biotium, Inc., Hayward, CA, USA), under ultraviolet light. At least one 

negative control was included on each gel; none of the negative controls yielded detectable 

amplification. From our recruited dataset of known-sex individuals we used six individuals of 
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(n=3 males, n=3 females) to confirm that our CHD1 amplification generated 1 band for males 

(ZZ) and 2 bands for females (ZW). All six correctly amplified. Male Swainson’s hawks showed 

a single band at ~600bp, while female Swainson’s hawks showed the 600bp band plus another at 

450bp. Allelic dropout can be a problem in DNA samples with low starting quantities, and would 

cause us to mis-assign females (2 bands) as males (1 band). We checked for allelic dropout by 

re-running 10 males - all males were confirmed.  

Biological Outliers 

Central to the development of an effective field-based tool is a protocol that outlines the 

age and developmental ranges that can be accurately incorporated. While we acknowledge that 

increased nest visitation (i.e., greater than two) would provide the clearest understanding of 

growth trajectories, most morphometric sex-predictor studies appear to only perform a single 

nest visit. We combined two methods for identifying biological outliers, one method that can be 

used if only a single nest visit is possible and a second option for repeated nest visits. Individuals 

were excluded from the analysis if growth (i.e., change in mass) between the two visits was 

negligible, a simple but useful means if multiple nest visits are performed. For single nest visit 

studies, however, we suggest the application of a “development index.” This index is as follows. 

Swainson’s hawk nestlings hatch between 1-2 days apart (Fitzner 1980), thus feather 

development should lag accordingly as one examines nestlings from oldest to youngest within a 

brood. To produce our development index score we aged all nestlings using a photographic guide 

and feather development (Gossett & Makela 2005). An individual nestlings’ score is simply its 

assigned age subtracted from the age of the oldest nestling. For example, in a three brood nest 

under ideal conditions we’d expect the development index for each nestling to be: oldest (0 

days), middle (-1 or -2 days) and the youngest (-3 or -4 days, see Appendix A). Individuals that 

exceeded this (i.e., have larger negative index values then expected by rank in nest) were 
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excluded as their score indicates outward physical signs of abnormally slow or reduced 

development (i.e., stunted). These two benchmarks for exclusion provide biological reasoning 

for studies that conduct multiple visits and those that do not.  

Statistical Analysis 

 All plotting and statistical analyses were conducted in R v. 4.1.0 (R Core Team 2021). 

Initial plotting of morphometric trait data revealed that all soft structures, unflattened wing cord, 

7th primary, and tail length(s) were still growing at the time of fledging (45 days old). These 

structures overlapped completely between the sexes and were thus excluded from the analysis as 

no discriminatory power existed (Ch.1 Appendix B). The remaining five variables included in 

our predictive model were: tarsus length, tarsus width, hallux, culmen, and body mass. All 

predictor variables were evaluated for multicollinearity using Pearson’s correlation analysis, for 

normality with Shapiro-Wilk tests, and for homogeneity of variance using the Fligner-Killeen 

test (R package stat, R Core Team 2021). No data transformations were required and all 

predictors were standardized (mean = 0, s.d. = 1). Additionally, we tested for multivariate 

normality with the Shapiro-Wilk Multivariate Normality test (R package mvnormtest, Jarek 

2015) and checked for multivariate outliers by calculating Mahalanobis distances (R package 

stat, R Core Team 2021). We evaluated differences in morphometrics between the two age 

groups using a two-way multivariate analysis of variance (MANOVA). These two age groups 

represent approximate development stages of 50-70% and 70-100%, with the latter group 

containing the 80% development point that is commonly applied in raptor demographic studies 

as a reliable milestone, where one can assume an individual will successfully fledge from the 

nest. The morphometric data for the “recruited” dataset was compared against the older group for 

statistical differences using a MANOVA. We combined all three years of morphometric data, 
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ignoring year-to-year variation, as we felt this variation was necessary for developing an 

effective classification scheme that incorporated annual environmental variability. In addition to 

our five main predictors we felt obligated to examine the predictive power of footpad length, as 

it is commonly included in related studies. However, this metric was only collected in 2017 and 

2018 reducing the sample size (n = 57), so we generated separate models for this reduced dataset. 

Overall classification models were built using two different statistical approaches following 

related studies; recursive partitioning (Dykstra et al. 2012) and linear discriminatory function 

analysis (DFA; Pay et al. 2021). 

Recursive partitioning is a statistical method for incorporating multiple variables, 

classifying, and splitting samples into subgroups in a dichotomous manner (Strobl et al. 2009). 

Our recursive partitioning tree was generated with the rpart package v 4.1-15 (Therneau et al. 

2019).  Our comparative and second statistical analysis, a stepwise DFA, was performed using 

the klaR package v 1.7-0 (Roever et al. 2022). This stepwise procedure identified the minimum 

number of predictors, where inclusion or removal of a parameter for classification improvement 

was based on a significance level of 0.05. We validated the resulting stepwise model, our global 

model that included all predictors, and all morphometrics in singular form using a leave-one-out 

(jack-knife) procedure to produce posterior assignment probabilities and model accuracy scores 

(Pay et al. 2021). Summary statistics for each measurement and computed values of dimorphism 

between sexes were calculated as 100*[(Xmale/Xfemale) – 1] (Krüger 2005). Finally, confidence 

intervals on assignment were calculated using a bootstrapped leave-one-out model (Hartman et 

al. 2016). 
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Results 

 

For the older age group both statistical methods (i.e., recursive partitioning and linear 

discriminatory function analysis) identified the same morphometric predictors as best 

discriminating between the nestling sexes, specifically tarsus width and mass. Of the 82 nestlings 

included in the older age group 36 were scored male (ZZ) and 39 as female (ZW) correctly, with 

7 individuals (3 males, 4 females) individuals being misclassified. Both methods generated the 

same overall accuracy of 91.5% (DFA, CI 0.83-0.96; Figure 1-1B.). For this older age group, a 

two-tiered tree for weight and tarsus width was generated (Figure 1-1A.), with morphometric 

cutoffs greater than 820g (mass) and 9.4mm (tarsus width) indicating female, with males below 

these values. The alternative older age model that included footpad length, with a reduced 

sample size (n=57) produced the same result as our primary model. Mahalanobis distance values 

identified no multivariate outliers for the older age class.  

Our classification results for the younger age class (n = 76) did not match between 

statistical methods, as occurred with the older age group. The stepwise DFA identified tarsus 

width as the sole and best predictor with an overall accuracy of 76.3% (f=8, m=10; CI 0.65-0.85; 

Figure 1-2B.), with 18 individuals being misclassified. This contrasts with the recursive partition 

analysis where only 10 individuals were misclassified (f=8, m=2) and an overall accuracy of 

86.8% (f=31, m=35 correct). The recursive partition determined that a three-tiered tree including 

weight, tarsus length, and culmen as the best predictors (Figure 1-2A.). Mahalanobis distance 

values identified no multivariate outliers for the younger age class as well. 

 The recruit dataset (n=103; male = 52, female = 51) originally planned for validation 

procedures, consisted of individuals marked as nestlings between 2009-2019. However, t-test 

comparisons showed that the recruited individuals were structurally larger as nestlings than the 
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random PCR sample. Weight did not differ between recruited females (Mean= 897g SD=80g) 

and those from our randomized PCR sample (Mean=877g, SD=83g, t(88) = -1.19, p = .236), 

however between recruited males (Mean = 744g SD = 61g) and non-recruited males 

(Mean=717g, SD=67g, t(78) = -1.98, p = 0.050) there was a difference. In addition, tarsus width 

was different between groups with recruited females (Mean = 10.02mm SD = 0.63mm) being 

larger than non-recruits (Mean=9.65mm, SD=0.55mm, t(91) = -3.02, p = .003) and recruited 

males (Mean=9.12mm SD=0.46mm) being larger than non-recruits (Mean=8.72mm, 

SD=0.47mm, t(80) = -4.10, p < .001). Mean age at time of measurement were identical 

(recruit=37.75days, PCR=37.76days) between groups. These differences show a morphometric 

size bias between nestlings known to survive and those never observed again.  

 

Discussion  

 

We determined that it is possible to accurately distinguish the sex of nestling Swainson’s 

hawks to a reasonably young age with utility for field-base studies. Results from two different 

statistical approaches both identified tarsus width and mass as the best combination of 

morphometric predictors for our older age class. That individuals from our recruited dataset are 

structurally larger (females = 3.69%, males = 4.39%; tarsus width) than our random sample of 

nestlings is not surprising given larger offspring have been shown to have greater juvenile 

survival rates across avian taxa (passerine, Magrath 1991; waterfowl, Sedinger et al. 1995; 

raptors, McDonald et al. 2005) and are thus available to recruit. It is possible that increased 

structural size provides an advantage in regard to intrasexual competition for territorial space and 

vacancies, providing an additional selective force that could have shaped our dataset of recruited 

individuals. Determining an appropriate methodology for whether an individual should be 

included in our predictive model set required two nest visits, something many studies don’t 
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perform, and an overall means of identifying brood quality. The creation and use of our 

development index was a biologically minded means to include nestlings of different rank within 

a brood. Our goal was not to determine morphometric cutoffs for the best and oldest offspring, 

but a predictive model that incorporates some developmental variation and could predict the sex 

of younger brood mates. Future studies should consider that demographic mechanisms may 

shape the morphometrics of different age classes, in addition to a species' general development 

and dimorphism.  

 In comparison to nestlings, adult or fully developed Swainson’s hawks exhibit greater 

dimorphism in wing chord (mean = -6.35%; mean = -6.92%; measurements provided match 

order of citations) and tail length (mean = -7.58%; not provided), while mass differences remain 

similar to nestlings (mean = -17.8%, mean = -23.9%) (Sarasola & Negro 2004; Kochert & 

Mckinley 2008). These differences in relative size dimorphism are double of nestlings (-3.58%) 

in the case of wing chord, and 7.5% greater dimorphism for tail length (Table 1-1). While these 

two studies don’t provide tarsus width measurements, the similar differences in mass become 

apparent when visualizing our pseudo-growth trajectories for each sex (Ch. 1 Appendix C). We 

specify pseudo-growth as two visits limit us to linear trajectories yet avian growth rates are 

generally not linear (Ricklefs 1968). The fitted lines we included in our figures are based on 

polynomial/exponential curves, given this assumption (Ch.1 Appendix C.). While our two visits 

limit use to directly drawing a straight line, a crude evaluation of growth, we attempted to 

overcome this by obtaining a large sample size and creating an approximate growth curve for 

SWHA based on all individuals measured. Our ability to perform just two nest visits was enough 

to ascertain that certain morphological structures show little or no dimorphism during 

development and thus provide no insight into how growth varies between the sexes.  
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 Unique to only studies involving developing nestlings, our data clearly show that soft 

(i.e., feathers) morphometric structures such as length of wing cord, 7th primary, or tail are not 

fully developed prior to fledging with no differences between the sexes (Ch.1 Appendix B). In 

studies involving adult birds, that have obtained full maturity and size, soft structures such as 

wing chord and tail length can be diagnostic and thus afford more points of discrimination. Hard 

structures that complete growth early in development (i.e., tarsus width) are vital to nestling 

classification. Thus the best metrics for predicting sex in adults may not be the same used for 

assigning sex to nestlings and certain features once fully developed might be more diagnostic 

and easier to measure. For example, measuring wing cord may be easier to reliably measure and 

take less experience than measuring length and width of the tarsus bone. It should also be noted 

that more than one correct method/model for assigning sex may exist for a single species. This is 

the case for determining sex in adult Swainson’s hawks where a 93.3% overall accuracy was 

obtained using Forearm + Tail + Wing (Sarasola & Negro 2004) and a different study obtained 

99.2% overall accuracy with Mass + Wing + Foot (Kochert & McKinley 2008). A useful review 

across different raptor families (i.e., Accipitridae, Cathartidae, Falconidae) would elucidate any 

trends in common morphometric structures that best identify sex across different age classes and 

levels of dimorphism, and could provide a useful first step to future work on species with no 

scientific documentation. 

 For many species of raptor the period from fledging to recruitment is often unobservable 

and can last for several years, particularly for migratory and long-lived species. Maximizing 

information collected during the nesting period is crucial. In the case of Swainson’s hawks this 

juvenile phase can last up to at least five years (Vennum 2017). Thus, only about a three-week 

period, from the age that bands can be safely applied (21 days) to fledging (45 days of age on 
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average) is ideal for collecting information prior to the extended juvenile period. This juvenile 

phase represents a period with significant mortality, initial independence from parental care, the 

first migration, followed by potentially several years of nomadic existence (Watson 2021). It 

should not be surprising that a structure such as tarsus width, emerged with discriminatory 

power, given that we know it reaches almost full size by 21 days of age and allows for banding 

to occur. Given the complexities of nestling development, we tried to examine morphometric 

predictors across this entire crucial period of approximately three weeks. While our study 

preferentially aims to color band nestlings at or after 36 days of age (80% development; Steenhof 

1987), we realize that other studies may not be able to control the timing of banding so 

specifically, and thus understanding what useful information can be collected at younger ages is 

important.  

Unsurprisingly, sex assignment accuracy is highly and positively correlated with nestling 

age. We found that misclassification increased in our younger age group. Our statistical 

approaches also identified different morphometric predictors for the younger age class. 

Recursive partitioning identified a three-tier model with mass (706g), tarsus length (60mm), and 

culmen (17mm) while stepwise DFA selected only a singular predictor, tarsus width. They also 

varied in their accuracy, 86.8% for recursive partition (4.7% drop) and 76.3% for DFA (15.2% 

drop). There are many benefits to collecting data on older rather than younger nestlings, 

including increased confidence in fledging success and clearer understanding of brood dynamics. 

Thus banding nestlings at younger ages has a limited value compared to what can be gained 

closer to fledging ages when dimorphic differences have increased.  

 Very few studies describe how they chose which individuals to include in their analysis. 

Dykstra et al. (2012) uses average length of secondary feathers to classify individuals as young 
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or older nestlings. Future studies, regardless of species, would be improved by disclosing such 

information. The decision to include an individual nestling into the training data set is not trivial, 

when considering many factors can impact growth trajectories (e.g., too many siblings, 

inexperienced parents, poor natal territory quality, or climatic factors). For this study we 

examined growth differences between two visits and utilized a development index to determine 

which individuals to include. Ideally, more than two visits are necessary to adequately capture 

growth dynamics. Future studies should incorporate or at least discuss some metric for 

determining inclusion. While our original study plan attempted the use of a secondary dataset for 

validation purposes, a dataset from a different SWHA population would have been the best 

possible option. These approaches often divide datasets into smaller training and testing groups 

(i.e., splitting), and use resubstitution; techniques that can reduce sample size further or result in 

higher variance (Dechaume-Moncharmont et al. 2011). 

 Globally there are numerous species of raptor without published information on 

morphometrics to distinguish basic ecological components such as nestling sex. Collection of 

basic ecological data is still necessary. Such data represent the basics for studying population 

dynamics, life history decisions and trajectories, and can provide information on natal habitat 

and parental quality. We need more studies actively collecting and publishing basic 

morphometric data. There is already evidence that many avian species are getting smaller 

(Weeks et al. 2020), and that climatic factors could be causing this. If such processes are already 

taking place we need basic biological data as reference points so that it is possible to detect 

changes over time. Accurate sex assignment of offspring can inform on several key demographic 

processes (i.e., brood sex ratios, measures of fecundity, juvenile survival). It provides important 

information on pair quality and habitat characteristics, as greater production of females, the more 
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costly yet valuable offspring to produce, requires greater resources. Lastly, from a natural history 

standpoint the ability to accurately assign sex of offspring expands our knowledge. 
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Table 1-1. Morphometric data for Swainson’s hawk nestlings hatched in Butte Valley, California 

and collected across multiple years (2014, 2017, and 2018). Measurement ranges (mean, 

standard deviation) and percentage dimorphism provided across sex and age classes. Young age 

class represents nestling between 21-30 days old, with the old age class comprised of 32-44 day 

old nestlings. 
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Table 1-2. Evaluation of linear discriminatory function models containing different 

combinations of morphometric predictors. Associated model accuracies are provided for an 

overall classification rate and sex-specific (CI; confidence interval). Young age class represented 

by nestling between 21-30 days old, with the old age class comprised of 32-44 day old nestlings. 
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Figure 1-1. Morphometric discrimination of nestling Swainson’s hawk from Butte Valley, California between the 

ages of 32-44 days old. (A) Recursive partition tree of older nestlings with the morphometric cutoffs applied. (B) 

Plot representing the probability of being classified as male (dark circle) or female (open circle) based on linear 

discriminatory function analysis of older nestlings. The solid line represents a discriminant score of zero and the 

probability of being male or female is 50%. Area with dashed lines (0.25-0.75) indicates the range of discriminant 

scores where the probability of correct assignment is < 75%. 
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Figure 1-2. Morphometric discrimination of nestling Swainson’s hawk from Butte Valley, California between the 

ages of 21-30 days old. (A) Recursive partition tree of “younger” nestlings with the morphometric cutoffs applied. 

(B) Plot representing the probability of being classified as male (dark circle) or female (open circle) based on linear 

discriminatory function analysis of older nestlings. The solid line represents a discriminant score of zero and the 

probability of being male or female is 50%. Area with dashed lines (0.25-0.75) indicates the range of discriminant 

scores where the probability of correct assignment is < 75%. 
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Chapter 2 

DEVELOPING A SUPERVISED RANDOM FOREST CLASSIFICATION MODEL FOR 

MONITORING HISTORICAL CHANGES IN HUMAN AGRICULTURE AND 

ASSOCIATED HABITAT FOR NESTING BIRDS 

 

 

 

Introduction  

The history of agriculture has had multiple origins across the space and time of modern 

human existence, but has grown to such a state that it is now a defining feature of the current 

epoch – the Anthropocene (Lewis & Maslin 2015). Human-induced changes (e.g., land-

conversion, changes in atmospheric chemistry) are now at a global scale with profound effects 

on ecosystem function and biodiversity of the planet. Agriculture, through direct (e.g., habitat 

conversion) and indirect (e.g., pesticides, fertilizers) factors is the largest contributor to 

biodiversity loss (Dudley & Alexander 2017), yet even more land will need to be appropriated 

for agricultural use in the future (Tilman et al. 2001). The cumulative effects of such landscape 

transitions and processes leading to species declines can be difficult to comprehend given the 

scale and complex nature of this problem, yet we can quantify the physical presence and 

intensity of agriculture on the landscape. 

 The availability of aerial imagery coupled with advances in technological platforms for 

analyzing “big data” with high computational speeds has made this quantification possible. 

Specific crops can be remotely identified, the dynamic nature and phenology of seasonal food 

production observed, and the physical space allocated to agricultural production can be 

measured. Through remote sensing technologies we can determine the scale and intensity of 

agricultural practices from the smallest fields to regions, and even countries. For some parts of 

the globe we can examine these exact dynamics across previous decades. 
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 The dominance of agriculture across the terrestrial biome requires that we understand the 

impact of agriculture at a global scale to preserve room for nature and maintain the integrity of 

biological processes. The designation and protection of land solely for the preservation of nature 

is vital to conservation, but agricultural supply and the demand to feed a global population of 9 

billion means that we must address conservation issues of working lands (Polasky et al. 2007). 

This need has sparked a recent debate in the scientific literature as to how we can balance the 

economics and production of food with nature present, a debate framed between “land sparing 

versus land sharing” (Fischer et al. 2014). Land sparing holds that through increasing agricultural 

intensity, less land will be required, allowing areas to be spared from conversion (Green et al. 

2005). While land sharing would lower agricultural intensity and be designed to incorporate 

nature into the same space, a level where crop production can exist within the natural matrix of 

the environment and thus preserve biological processes and ecosystem services (Kremen & 

Merenlender 2018). However, it is becoming evident that neither of these two land use schemes 

can be applied universally. Differences in aridity and the way in which irrigation occurs varies 

greatly even at small spatial scales, requiring agricultural policies flexible enough to incorporate 

local dynamics. 

 While these land use frameworks are important for implementing policy, they still require 

an innate understanding of how native wildlife species interact and use agricultural crops. This 

interaction must be explored over time, due to the dynamic nature of agricultural practices and 

complex stochasticity often found in ecology processes. To understand species habitat 

interactions, we must first have accurate models of landcover classes. The USDA National 

Agricultural Statistics Service annually produces a cropland data layer that currently 

distinguishes 254 crop types across the contiguous United States. The CropScape database is 
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publicly available and provides spatial data down to individual agricultural fields, at 30m 

resolution, and enables a nationwide perspective on annual crop production and trends (USDA 

NASS 2022). However, we found significant inaccuracies within this database when examining 

agricultural fields within northern California and the area surrounding a long-term study of 

Swainson’s hawks. Assuming many of these inaccuracies represent small areas, the effect on 

analyses of national production and trends is likely negligible, however for studies with small 

spatial scales seeking to understand local ecological processes, these inaccuracies may be too 

large and inject substantial biases into scientific inference.  

 Our objectives were therefore to create a remotely sensed image library dating back to 

1985, construct a supervised classification model that incorporates local crop phenology and 

farming practices, and to produce metrics of landcover class abundance and proximity in relation 

territorial boundaries of a top avian predator. To achieve this, we used remote sensing 

technology housed within Google’s Earth Engine platform to develop a supervised random forest 

classification model.  

 

Methods 

Study Area 

 Butte Valley is an agricultural valley (41˚ 49’N, 122˚ 0’W; 415 km2) located in the 

northern most extent of California, U.S.A., and adjacent to the southern border of Oregon 

(Figure 2-1). State boundaries and the physical topology of this area influence long-standing 

water use practices and historic legal rights, that have shaped the history of agricultural 

production locally. Unlike major agricultural areas to the north (i.e., Klamath Basin), which often 

use flood irrigation, Butte Valley relies almost entirely on ground water-based irrigation. Located 
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at medium elevation (1,280 m to 1,340 m) the native landscape was comprised of sage-brush 

steppe, intermittent surface water, playas, with scattered juniper woodlands. The proliferation of 

ground-water wells and center pivot irrigation has led to a heterogenous landscape divided into 

irrigated agricultural, rainfed farming, and shrub-steppe mixed with exotic grasses. 

 Based on our local knowledge of landcover types from monitoring Swainson’s hawk 

(SWHA; Buteo swainsoni) nests, we pre-determined the potential landcover types that were 

represented in our study system and that we desired our model to identify. Agricultural land 

could be grouped into several exclusive categories, including irrigated hay and grasses (i.e., 

alfalfa, timothy hay), dry land or rain feed cereal grains (i.e., wheat, rye), and row crops (i.e., 

strawberries, potatoes). One non-mutually exclusive category, bare dirt, while mostly associated 

with agriculture and crop rotation or periods of re-planting, could occur naturally. Two natural 

habitat types also occur, high-elevation sage-brush steppe and mixed grassland, and juniper 

woodlands. The majority of this more naturally occurring sage-brush steppe grassland occurs 

within the Butte Valley National Grassland and disjunct parcels of government owned land. The 

juniper woodlands, while mostly on private land, often outline agricultural field edges and offer 

abundant nesting structures for SWHA. 

During the 2018 and 2019 field seasons, the entire study area was mapped at the spatial 

scale of individual agricultural fields. The crop type or status, in the case of fallow fields, was 

identified and recorded. This data was then digitized through hand-drawn polygons in Google’s 

Earth Engine to create customized landcover layers for these years. With respect to the variety of 

row crops and dryland cereal grains grown within the study area, each were aggregated into 

respective landcover classes. Thus, our row crop layer included fields of strawberries, potatoes, 

garlic, and carrots. This aggregation was based on the biological assumption that all row crops 
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and all dryland cereal grains offer similar biological conditions to SWHA (e.g., habitat for small 

mammal prey). All areas of interest were classified into our six landcover types of interest, 

representing our ground-truth observations for building and testing the predictive accuracy of our 

model (see below).  

Image Library  

The historical range and consistent resolution of aerial imagery collected by the Landsat 

system allowed us to develop an image library that matched the longevity of our demographic 

study. This was achieved through the combined use of Tier-1 Landsat 5 (1985-2011), 7 (2012), 

and 8 (2013-2020) imagery. All satellites generate 30m resolution data. Although the quality of 

imagery and atmospheric corrections is not equal between Landsat 5 and Landsat 8, Landsat 5 

images still provide enough accuracy to identify distinct landcover types. On an annual basis, 

images were temporally constrained between April-October, as weather during the boreal winter 

often creates high percentage cloud cover or snow coverage. Outside of this standard time 

constraint a few years required additional temporal censoring due to obstructions such as late 

snow melts, typically in the 1990s-early 2000s, and occasionally smoke from local forest fires. 

This was performed through visual inspection of individual images and allowed us to accurately 

represent the natural growing periods of vegetation on a local and annual scale. Images were 

inspected for small visual obstructions (i.e., clouds and shadows) and when necessary, we 

selectively removed single images from the composition or applied an image masking function 

for clouds and shadows using the QA_PIXEL Landsat band.  

 From this completed image library, we examined spectral image charts to determine the 

best time periods for defining distinct phenological seasons whereby different crops could be 

distinguished based on their individual growing patterns. Certain crop types present different 
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spectral signatures throughout the year, requiring an understanding of crop phenology and 

harvest practices to adequately classify through spectral signatures. For this region, irrigated 

alfalfa has the earliest start to the growing season (high near-infrared spectral values all year; 

Figure 2-2a) and routinely undergoes three harvests throughout the year. From an aerial 

perspective, a row crop field is mostly dirt in early spring, as plants are small, obtaining adequate 

biomass to be detected via remote sensing much later in the year (low near-infrared spectral 

values in spring; Figure 2-2b). While dryland cereal grains may present different spectral colors 

early in the year, all crops of this type have a distinctive fall period, where they must desiccate 

prior to harvest, presenting a distinct spectral signature. Areas of shrub-steppe and mixed grasses 

(e.g., Butte Valley National Grassland) show very homogenous spectral signals across the entire 

year, compared to crops (no spectral peaks; Figure 2-2c). Thus, we partitioned annual satellite 

imagery into three “seasons” to better match vegetative phenology and increase our predictive 

accuracy. The spring signature was based on images from April and May, summer from June-

August, and the fall signature was defined with September and October images. As “season” 

images are composites of multiple aerial images we extracted the median pixel value for a season 

from the assigned image collection, resulting in three spectral values for annual classification. 

Spectral Components 

Landsat satellite sensors measure the intensity of several different wavelengths, known as 

the relative spectral response (RSR), where different wavelengths are represented by different 

channels or bands. Amongst the different wavelengths measured, six raw wavelengths (hereafter; 

bands) are relevant to modelling terrestrial vegetation. These raw spectral bands include BLUE 

(0.45-0.51), GREEN (0.53-0.59), RED (0.64-0.67), NEAR INFRARED (NIR; 0.85-0.88), 

SHORT-WAVE INFRARED 1 (1.57-1.65), and SHORT-WAVE INFRARED 2 (2.11-2.29). In 
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addition to using these raw spectral band values for predictive purposes we used two spectral 

index metrics, the normalized difference vegetation index (NDVI) and a soil-adjusted vegetation 

index (SAVI).  

NDVI = (NIR-RED)/(NIR+RED) 

SAVI = 1.5 * ((NIR - RED) / (NIR + RED + 0.5)) 

 

Values for these combined 8 spectral metrics (six raw bands, two indices) were extracted for 

each season (3). Thus, we initially started with 24 mean spectral values (hereafter “seasonal-

bands”) per year for classifying habitat types. 

Spectral Qualities of Landcover Types 

Our image library division into three seasons captured large scale phenological 

differences, however variation in farming practices produce finer scale differences that our 

seasonal division could not capture. Farming practices, such as the use of plastic to cover row 

crops (i.e., strawberry plants) early in the growing season create unique spectral signatures only 

in spring months. A signature that enabled us to classify row crops more accurately by modelling 

them separately (plastic vs non-plastic) and merging pixel types in Program R post classification. 

This same justification was used to model and classify two distinct vegetative types found 

primarily across the Butte Valley National Grassland. Two distinct “grassland classes” which 

were present across the study area (dark: big sagebrush (Artemisia tridentata) and rabbitbrush 

(Chrysothamnus spp.); light: open xeric and sparse exotic grasses) were modelled separately but 

combined in the final raster classification files. Overall, we identified six main landcover types 

that were most accurately modelled by defining eight unique spectral classes as it allowed us to 

incorporate our decades of local knowledge into the modelling process. 
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Variable Selection 

To determine which seasonal-bands (24) were truly important for classifying landcover 

types and reduce the correlation between some spectral bands we performed a variable selection 

analysis in Program R. From our digitized “2018 ground truth” layer we extracted spectral values 

of representative points (84 average per landcover class; 672 total points) from each habitat type. 

Using the vsurf package (Genuer et al. 2019) we performed a three-step variable selection 

procedure. The initial 1threshold step eliminates irrelevant variables, the 2intrepretation step 

selects all variables relevant to our response, in this case landcover type, and finally a 3refining 

step for those variables included in step two, which identifies our set of predictive seasonal-

bands (Genuer et al. 2015). For our data the threshold step eliminated four seasonal bands, the 

interpretation step further reduced this by another four seasonal bands, and finally the refining 

step identified a list of fifteen seasonal bands useful for our prediction purposes (Figure 2-3a). 

We further reduced this list by eliminating band pairings that exceeded a correlation factor of 

0.80 using the cor() function in the R Stats package (R Core Team 2021). We were left with 

seven seasonal bands (Figure 2-3b) that included at least one band from each of the three 

seasons, specifically spring (blue, ndvi, short-wave 2) summer (blue and ndvi), fall (short-wave 1 

and savi) to use in our supervised random forest algorithm. 

Classification & Accuracy 

We constructed a training dataset using our 2018 ground-truthed pixel points and spectral 

values for our seven seasonal bands identified from our variable selection procedure. These 

points were fed into a random forest machine learning algorithm that identified unique spectral 

signatures for each of our eight landcover classes and classified each pixel within our defined 

study area boundary (Breiman 2001). We used hyperparameter tuning to determine the optimal 
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number of trees to use in our random forest model. Testing across a sequence between 10-150 

trees, we found that the use of 110 trees provided the best validation accuracy. With a trained 

and tuned random forest model for 2018, we applied the model to the ground-truthed data in 

2019. Due to the low number of non-plastic row crop fields in 2019 (e.g., potatoes, garlic), fields 

with these crops were over-sampled relative to their abundance on the landscape in our training 

model. The bare dirt feature class represents agricultural fields currently being fallowed, between 

plantings, or abandoned, presenting a challenge as given enough time and no disturbance, weeds 

will appear, which by the fall season can present a spectral signature different from bare soil. 

This model provided sufficient accuracy as a supervised classification model. We then applied 

this model across time to all years from 1985-2000. The result of this process producing a final 

classified raster for each year, representing our eight different landscape features. 

Post-Classification 

Annual raster files from each year were exported from the Earth Engine platform as 

GeoTIFF files under the coordinate reference system EPSG: 32610 (WGS 84, UTM zone 10N) 

and imported into program R (version 4.1.0; R Core Team 2021), where the two distinct 

grassland and row crop spectral classes were merged under single representative values. As no 

model scheme is perfect, our supervised classification model produced pixel noise, singular or 

small pixel clusters that are likely misclassified. For example, an alfalfa or row crop field will be 

larger than the area of a single pixel (30x30m). Such small-scale classification error does not 

overly impact measures of quantity but can introduce large errors in proximity measures (e.g., 

distance from a bird nest to a given category if land cover). Pixel noise was removed by creating 

separate rasters for each landcover type on an annual scale. To these single value rasters we 

applied the clump function (Raster Package; Hijmans 2021) to count the number of pixels within 
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each distinct pixel cluster. Clusters were identified as individual pixels connected through all 8-

directions. Pixel groupings under the size of six were removed. Accurate proximity rasters (i.e., 

the value of each cell representing the distance to nearest pixel type of interest) were created 

using the distance function (Raster Package; Hijmans 2021). SWHA nest locations were then 

overlaid onto these proximity rasters to extract minimum distances between nest sites and 

landcover class.  

Similar to calculating proximity values, we also obtained territorial habitat compositions 

by overlaying nesting locations with territorial buffers onto our annual raster files comprising all 

six landcover types. Swainson’s hawks are a highly territorial species during the breeding season 

(e.g., April-August) and as such follow a central-forging strategy from nesting locations (Orians 

& Pearson 1979). We assigned each territory a 1000m radius buffer (3.14 km2) based on the 

results and average of two previous radio-telemetry studies. Two years of radio-telemetry 

observations in the Dakotas found that the 95% minimum convex polygon (MCP) of home 

ranges = 1.91km2, (n=10, 2013) and 95%MCP = 2.10km2, (n=9, 2014; Inselman et al. 2016). 

While early telemetry work on this population found mean foraging distances for breeding males 

(0.917km; radius) and average home range size (4.05 km2, n=12; Woodbridge 1991). Habitat 

composition within these defined boundaries was calculated through (extract function; Raster 

Package; Hijmans 2021) pixel counts of each landcover type, producing individual territory 

compositions as proportional landcover data. 

 

Results 

Using ground-truth data from 2018 as a training-dataset, the supervised landcover 

classification model achieved an 85% accuracy rate when tested against ground-truth landcover 
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classifications from a 2019 survey. Two landscape feature classes represented the majority of 

misclassification, the non-plastic row crop and bare dirt groups. Applying this model across 

Landsat imagery (5,7,8) spanning 1985-2020 produced annual landscape classifications with 

30m pixel resolution (e.g., 2018; Figure 2-4), a level of detail capable of identifying and 

discerning long-term trends in crop abundance within the study area. It was clear that the amount 

of alfalfa had increased continuously in a linear fashion since 1985 (max 3145 km2; Figure 2-6a). 

While the quantity of row crops had fluctuated more and showed no temporal trends, crops of 

this agricultural practice have always existed at a lower frequency than alfalfa (min alfalfa 1955 

km2; max row crop 1447 km2; Figure 2-6b) in the Butte Valley landscape. 

 From this landscape classification model, we were able to characterize SWHA territories 

across time, and to identify trends in general proximity measures. The average distance from nest 

trees to the nearest alfalfa field was approximately half the distance (493m) observed between 

nest sites and nearest row crop field (822m). Irrigated alfalfa (21.8%), shrub-steppe grassland 

(22.9%), and cereal grains (25.2%) were proportionally the most common landcover types across 

territories (Table 2-1).  

 

Discussion  

 

It can be difficult for ecologist to gain inference on past environmental conditions with 

relevance to present biological status and observations, something that the advancement of 

remote sensing technologies and aggregation of (publicly available) historical imagery is quickly 

changing. The availability of training opportunities to utilize this data is also revolutionary, in 

that non-specialist (e.g., ecologists) can gain access and explore new ecological questions that 

are not necessarily inherent to the remote sensing field. The ability to combine ecological field 
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studies with a tool for examining temporal inference on potentially large spatial scales holds 

huge promise for scientific advancement. 

To gain temporal perspectives on habitat changes in relation to our study system, we 

required accurate landcover data spanning decades. We were able to achieve this through 

modeling and machine learning practices that incorporated our local knowledge of farming 

practices in the Butte Valley region. While large scale modelling efforts (e.g., USDA NASS 

Cropland Data Layers) aimed at examining nationwide levels and trends in agricultural 

landcover are extremely useful for setting policy, they can only be obtained through coarse 

spectral analysis. Conversely, enhancing the understanding of wildlife habitat interactions 

requires habitat information at a much finer scale. Our modelling efforts allowed us to examine 

historical landcover uses all the way back to 1985, 22 years earlier than the NASS initiated 

modelling in the state of California. The NASS cropland data layer was initiated in 1997, but in 

its inaugural year only covered the state of North Dakota (USDA NASS 2022).  

The value of our modeling effort goes beyond the measurement of long-term change in 

habitat for nesting and nestling SWHA in Butte Valley because it provides a general scheme for 

accessing, processing, and utilizing historical aerial imagery for classifying agricultural fields. It 

incorporates phenological and growing practices specific to individual crops and creates an 

image library that incorporates intra-annual seasons. This workflow provides instructions for 

modeling the presence of specific crop types through remote sensing, while simultaneously 

illustrating how to incorporate the multiple software platforms required to achieve this completed 

project (Figure 2-7). Many of the spectral and analytical steps in this modelling procedure have 

utility to other geographic areas and systems. This remote sensing procedure can also be used to 

examine landcover use for focal study areas across the entire world, a vast spatial improvement 
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compared to the NASS database, and a recognition of the potential value of Google’s Earth 

Engine provides to the study of wildlife-habitat interactions in the Anthropocene.  
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Table 2-1. Summary statistics describing average habitat characteristics and population density 

metrics across 890 SWHA territories from 1985-2020. The compositional habitat metrics means 

(25% quantile, 75% quantile) represent the average proportion and proximity distance across all 

nests. The nearest neighbor distance is the straight line distance (meters) between nest trees of 

adjacent SWHA territories. The nearest neighbor count is the number of SWHA territories within 

2,000m of the focal nest.  
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Figure 2-1. Geographic location of the Butte Valley study area in reference to the state of 

California, U.S.A. The inset image represents an aerial composite image of the study area 

boundaries. 
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C. 

 
 

 

 

 

 

 

Figure 2-2. (A) Charts showing the spectral signatures from 2018 training points. Values 

represent raw reflectance data for six primary Landsat bands collected across all three seasons 

(1_spring; 2_summer; 3_fall). High near-infrared spectral values in all three seasons (three 

spectral peaks) is a diagnostic feature of classifying alfalfa fields. (B) High near-infrared spectral 

values in the summer and fall seasons (two spectral peaks), with homogenous reflectance values 

in the spring (1_bandname) is a diagnostic feature of classifying row crops. (C) Homogenous 

reflectance values across all three seasons is a diagnostic feature of classifying grassland 

habitats, which express lower primary productivity than irrigated agricultural fields. 
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A. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

b
lu
e

b
lu
e
_
1

n
d
v
i_
1

n
ir
_
1

re
d
_
1

n
d
v
i

g
re
e
n

re
d

b
lu
e
_
2

s
a
v
i_
2

n
d
v
i_
2

n
ir
_
2

s
w
ir
l1
_
2

g
re
e
n
_
2

s
w
ir
l2

blue

blue_1

ndvi_1

nir_1

red_1

ndvi

green

red

blue_2

savi_2

ndvi_2

nir_2

swirl1_2

green_2

swirl2

B
lu

e 
(S

p
r)

 

 B
lu

e 
(S

u
m

) 

 N
D

V
I 

(S
u

m
) 

 N
IR

 (
S

u
m

) 

 R
ed

 (
S

u
m

) 

 N
D

V
I 

(S
p

r)
 

 G
re

en
 (

S
p

r)
 

 R
ed

 (
S

p
r)

 

 B
lu

e 
(F

al
l)

 

 S
A

V
I 

(F
al

l)
 

 N
D

V
I 

(F
al

l)
 

 N
IR

 (
F

al
l)

 

 S
W

IR
 1

 (
F

al
l)

 

 G
re

en
 (

F
al

l)
 

 S
W

IR
 2

 (
F

al
l)

 

Blue (Spr) 

 
Blue (Sum) 

 
NDVI (Sum) 

 
NIR (Sum) 

 
Red (Sum) 

 
NDVI (Spr) 

 
Green (Spr) 

 
Red (Spr) 

 
Blue (Fall) 

 
SAVI (Fall) 

 
NDVI (Fall) 

 
NIR (Fall) 

 
SWIR 1 (Fall) 

 
Green (Fall) 

 
SWIR 2 (Fall) 

 



   40 

B. 

 

 
 

 

Figure 2-3. Correlograms of spectral reflectance data from the 2018 training data. (A) Shows the 

15 seasonal-bands remaining after the threshold, interpretation, and refining steps of variable 

selection eliminated 8 seasonal bands for contributing no predictive power. Relationships 

between seasonal-bands with a correlation >0.8 (large dark blue or dark red dot) were removed. 

(B) Correlogram of the final seven seasonal-bands after correlation reduction. 
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Figure 2-4. Raster output from supervised random forest classification model. Classified annual 

raster of Butte Valley, California from 2018 showing the general distribution of our six specified 

landcover types (alfalfa, row crops, cereal grains, grassland, juniper, dirt).  
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Figure 2-5. (A) Raster file illustrating the spatial layout of alfalfa fields in Butte Valley, 

California in 2018, post pixel noise cleanup. (B) Proximity raster of alfalfa (2018), produced 

from data in figure 5A. Each raster cell is assigned a value representing the distance (meters) to 

nearest alfalfa field. 
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A. 

 
B. 

 
Figure 2-6. (A) Change in the quantity of alfalfa and (B) row crops (km2) over the duration of 

the long-term study of Swainson’s hawks breeding in Butte Valley, California between 1985-

2020. 
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Figure 2-7. A workflow diagram illustrating the major steps required to produce annual 

classified raster files. Each step is labelled with the software platform used to complete the step.  
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Chapter 3 

THE INFLUENCE OF AGE AND AGRICULTURAL HABITAT ON DELAYED 

RECRUITMENT IN A LONG-LIVED AVIAN PREDATOR 

 

 

 

Introduction 

For long-lived vertebrates the age of first reproduction is a particularly important 

demographic trait that may be under strong selection pressure (Fay et al. 2016), can vary 

substantially within a species, and is a crucial component in determining individual fitness and 

population dynamics (Cole 1954; Pradel & Lebreton 1999). Yet the early pre-breeding period of 

life leading up to this life-history milestone often receives far less attention than other parts of 

the life cycle because it can be difficult to separate permanent emigration (i.e., natal dispersal) 

from mortality (Lindberg et al. 1998; Bradley et al. 1999), and because non-breeding individuals 

are typically difficult to observe (Sedinger et al. 2008). However, the pre-breeding age classes 

can represent significant proportions of a population (Saether et al. 2013), commonly experience 

the highest rates of mortality, and are highly sensitive to environmental conditions given their 

inexperience. Under these condition, cohorts of young age classes are selectively thinned by the 

removal of frail individuals over time. Surviving to the age of recruitment is therefore a dynamic 

and complex process made increasingly difficult for many terrestrial species by the rapidly 

changing environment that defines the current epoch.  

 By definition, the Anthropocene has drastically altered environments from their natural 

trajectories due to anthropogenic sources (Hobbs et al. 2014), of which land conversion for 

agriculture use is a prominent force. Agricultural practices have influenced large areas of the 

planet, and future economic and food policies are expected to demand new and increased rates of 

agricultural conversion (Tilman et al. 2002). In the United States, land conversion has 



   46 

dramatically decreased the extent of prairie and grassland ecosystems (Drum et al. 2015), with 

negative consequences for numerous avian species (Brennan & Kuvlesky Jr. 2005). Moving 

forward a better understanding of agricultural effects on species and their demography will be 

required as these landscapes modified for seasonal agricultural production are likely to be more 

dynamic than native landscapes. Depending on the global region and style of agricultural 

practice, landscapes may be altered annually or multiple times a year. And yet we know that the 

quality of natal environment can have dramatic consequences on ontogenetic development of 

offspring in wild species. Habitat quality is known to influence the fitness of territorial species 

(Newton 1989), and the quality thereof has been shown to directly influence the production of 

recruits into the breeding population (Sergio et al. 2009). 

Understanding the reproductive consequences of farmland heterogeneity requires the 

combination of two primary modelling efforts, a spatio-temporal habitat component, and a model 

to generate robust demographic estimates. In the case of long-live species, delayed maturity and 

recruitment are quite common and require prolonged data collection to address observational 

uncertainties. Such uncertainties may arise from imperfect detection in the field, but they may 

also be biological in nature. For example, for most avian species it is challenging to determine 

sex during ontogeny, and failure to account for sex-specific demography may lead to flawed 

inference about the recruitment process (Becker & Bradley 2007). Current field methods for 

determining offspring sex for raptors are inadequate, impeding the understanding of sex 

differences in demography and especially recruitment. To overcome these shortcomings, we 

developed a hidden Markov multistate model, with state (i.e., sex) uncertainty built into the 

initial state of release (Nichols et al. 2004), which we informed using a separate logistic model 
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that predicts the probability of each individual being a given sex using morphological 

measurements of nestlings and verified with a genetic study (Ch. 1).  

In agricultural environments, space use may vary annually, remain unchanged (i.e., 

perennial), or even change within a year depending on the type of crop and harvest practices. 

Agricultural fields therefore differ in their ecosystem properties in the value they provide to 

wildlife. Capturing this heterogeneity and understanding habitat dynamics required the 

development and use of remote sensing techniques (Ch. 2). Here we hypothesize that irrigated 

alfalfa benefits ontogeny, promoting higher survival during the pre-breeding phase of life and an 

earlier age of recruitment for our study species, Swainson’s hawk (SWHA; Buteo swainsoni). 

The perceived benefit from alfalfa holds that this crop type supports several abundant prey 

species for raptors and nestlings developing in close association will be of higher quality. The 

opposite is assumed for row style crops, which often have high chemically use and are 

biologically sterile. Thus, increased row crop presence will have a negative impact on nestling 

development through resource restriction. In comparison, to these two main habitat types we 

expect the remaining landcover types providing marginal value to this species. In addition to 

providing a novel method for measuring sex-specific demography in species where sex is 

difficult to measure, our research provides needed insight into the ways in which long-lived 

wildlife are affected by, cope with, or benefit from specific types of crops in their surrounding 

landscape.  

 

Methods 

Study Area 

Located on the western boundary of the Great Basin ecotype, Butte Valley, California 

(41˚ 49’N, 122˚ 0’W; 415 km2) is a relatively high elevation (1,280 m to 1,340 m) sagebrush 
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steppe and juniper woodland environment. Through groundwater irrigation, agricultural fields 

have increased in abundance producing clear differences in primary productivity between arid 

natural sagebrush and irrigated agriculture, a common landscape feature in the western United 

States. Overall landcover can be defined by five categories: grassland shrub steppe, cereal grains, 

alfalfa, row crops, and juniper woodlots. An abundant crop and primary foraging habitat, 

irrigated alfalfa provides consistent and high prey densities for raptors. Belding’s ground 

squirrels (Urocitellus beldingi) are the dominant prey species for the first half of the breeding 

season, a key food resource for hawks refueling after completing spring migration. Ground 

squirrel distribution is patchy, and densest in irrigated hay crops (i.e., alfalfa) until they locally 

estivate in late June, after which prey composition switches to include pocket gophers 

(Thomomys spp.), voles (Microtus spp.), reptiles, small bird species, and insects (Woodbridge 

1991). 

Study Species 

Swainson’s hawk territories are established primarily on the valley floor in shrub-steppe 

habitat or in the margins and field edges defining agriculture field boundaries, where juniper 

woodlots are abundant and provide nesting substrates. SWHA construct stick nests, almost 

exclusively in trees, with a shallow inner bowl depression and will readily reuse nests across 

years. For birds nesting in Butte Valley over 90% of nests are constructed in western junipers 

(Juniperus occidentalis; Woodbridge 1991). SWHA exhibit reverse sexual dimorphism (females 

larger than males) with some physical overlap (Kochert & Mckinley 2008) impeding accurate 

sex identification of nestlings, which can be further complicated by physical stunting and 

asynchronous effects of hatch order. Full adult plumage, the visual que of reproductive maturity, 

is not obtained until the age of three but recruitment is often delayed further. During the pre-
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breeding (from fledging to recruitment) years individuals are generally unobservable. Juveniles 

are rarely observed within the study area during the breeding season and recent telemetry work 

has revealed that these early years are spent moving nomadically around the American southwest 

(Vennum unpublished). This age-dependent behavior makes the pre-breeder life stage 

unobservable without technology, leading to substantial uncertainty in the underlying process of 

recruitment and the factors that affect it (Clobert et al. 1994). Delayed recruitment also means 

that data on this demographic transition takes years to collect, and a large sample of marked 

offspring is needed to gain robust inference. As a territorial species, recruitment involves the 

probability of surviving to sexual maturity, obtaining a territory, a mate, and occurs across a 

range of ages. While the establishment of new territories continues to occur despite the 

population doubling in the last twenty years (Vennum 2017), annual turnover in established 

breeders is approximately 0.10-0.15 based on apparent adult survival of 0.85 to 0.90 (SE = 0.02; 

Briggs et al. 2011).  

Demographic Data Collection 

Annual surveys to locate and monitor reproductive pairs begins in late April and extends 

through early August when territorial boundaries break down. Observers enter nests starting in 

early July to individually mark offspring prior to achieving fledging age (45 days old; Bechard et 

al. 2020). The collection of high-quality recruitment data (i.e., accurate detection of first 

breeding attempt) started in 2008 when project banding protocols were improved. Prior to that, 

nestlings had only been marked with a United States Geologic Survey (USGS) aluminum band. 

Protocol changes added a secondary alphanumeric plastic color band and included the collection 

of morphometric data for nestling chicks (e.g., weight, tarsus width, etc.). Additionally, effort 

was made to mark nestlings after they reached a minimum of 36 days of age, which represents 
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the point in development at which they have reached 80% of peak structural size, and generally 

affords the assumption that a nestling will successfully fledge (Steenhof 1987). Color banding 

nestlings greatly improved detection probabilities, as newly recruited individuals could easily be 

identified through band re-sighting practices without the need for physical recapture.  

Our field efforts to complete a yearly census confirm the annual status of each territory, 

generating a historical record that can be examined retrospectively. In cases where a breeding 

individual’s alphanumeric color band wasn’t read in a given year, band status and plumage color 

(i.e., red band on left leg; dark morph) are still recorded. SWHA are polymorphic and express 

morph invariance (Briggs et al. 2010). So when a recruitment event occurs at a territory we 

compare the band and plumage status of mated pairs in the previous year to the newly recruited 

individual or pair, adding confidence to our ability to accurately observe the age of first breeding 

attempt in a manner that is individual- as opposed to territory-specific. Such accurate distinctions 

allow us to model the age-specific probability of recruitment across multiple ages for each sex, 

despite imperfect detection.  

Study protocols and procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Nevada, Reno (IACUC approval no. 00115 and 00522) and 

Hamilton College (IACUC approval no. 18-R-3). 

Habitat Evaluation 

Swainson’s hawks are a highly territorial species during the breeding season (e.g., April-

August) and as such follow a central-forging strategy from nesting locations (Orians & Pearson 

1979). To characterize territories, we defined a 1,000 m radius buffer (3.14 km2) around a nest 

and used rasterized landcover layers on a yearly basis to evaluate habitat composition within this 

radius. This assumption was based on the results of two previous SWHA radio-telemetry studies. 
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Two years of radio-telemetry observations in the Dakotas found 95% MCP = 1.91km2, (n=10, 

2013) and 95% MCP = 2.10km2, (n=9, 2014; Inselman et al. 2016). Early telemetry work on the 

Butte Valley study population estimated mean foraging distances for breeding males (0.917km; 

radius) and average home range size (4.05 km2, n=12; Woodbridge 1991) that also corroborate 

evidence for our assumed territory size.  

While national crop databases exist within the United States (e.g., USDS NASS Cropland 

Data Layers; USDA National Agricultural Statistics Service), we found this database to be 

inaccurate for our study site with respect to key crop types. We instead chose to develop our own 

classified landcover layers using remotely sensed imagery and ground-truth data, under a 

supervised classification scheme and random forest algorithm (Breiman 2001) within Google’s 

Earth Engine platform. Aerial imagery was obtained using Landsat satellites 5 (2009-2011), 7 

(2012), and 8 (2013-2020). The 30m pixel data generated by all three satellites provides 

sufficient resolution to accurately identify distinct crop types. Ground-truth data were collected 

in 2018 and 2019. The 2018 landscape cover data was used to train our random forest model, 

with the 2019 data used for validation purposes. Raw spectral band values (i.e., red, green, blue, 

shortwave infrared 1 & 2, and near infrared) were collected to be used as predictors and to 

calculate two spectral indices, the normalized difference vegetation index (NDVI), and the soil 

adjusted vegetation index (SAVI). With regard to spectral signatures of landcover types we had 

two concerns, first being spectral signature distinctness for individual classifications (i.e., cereal 

crops vs grasslands), and second the spectral variability within a unique landcover type (i.e., 

consistent signatures across space and time). 

Prior to running our supervised classifier, we generated spectral response curves for each 

landcover type to visually inspect consistency of signal within a class and inspect differences 
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between landcover types. Examination of spectral signatures from our training data informed 

whether or not classes should be combined due to lack of spectral distinctiveness (e.g., irrigated 

grass and irrigated alfalfa have similar signatures). While we carefully inspected the spectral 

quality of each landcover type, most vegetative landscapes have a temporal component (i.e., 

seasonal green up) producing unique phenological characteristics. Certain agricultural crop types 

present different spectral signatures throughout the growing season, thus we defined three 

“seasons” across the year (Spring: April-May; Summer June – August; Fall: September-

October). This phenology component allowed for accurate distinction between row crops and 

crops such as alfalfa, which may have similar spectral signatures at the height of the boreal 

summer but are completely different in the months defined as spring and fall. Prior to running 

the random forest classifier, we performed a variable selection process using the VSURF package 

(version 1.1.0; Genuer et al. 2015). This was necessary to reduce the number of spectral 

predictors applied to each season and eliminate collinearity (a cutoff of >0.8 was used).  

Swainson’s hawk territory habitat composition was then quantified as the percentage of 

each landcover class within the defined territory buffer. Given a high density of nesting birds and 

strong site fidelity observed in this species, the distribution of nesting territories likely form 

according to an ideal despotic process (Fretwell & Lucas Jr. 1970) where some territories will 

lack prime foraging habitat within the territorial buffer. These less desirable territories will 

require longer flights to obtain resources and which could be accounted for using proximity 

measures. In example, a shorter distance from a nest to the nearest alfalfa field (hypothesized 

negative beta coefficient; shorter distance better), might benefit nestling quality resulting in 

increased survival and recruitment probabilities. While increased distances to nearest row crop 



   53 

(hypothesized positive beta coefficient) would be preferrable, as this habitat provides no foraging 

value to SWHA and high-quality territories will avoid such farms. 

 

Statistical Approach 

Subsection 1.1 Initial Bayesian Logistic Regression  

 

Observational uncertainty manifests when SWHA individuals are marked and measured 

as nestlings, a period when ontogenetic development is still in progress and individual sex cannot 

be visually or morphometrically determined with 100% accuracy. This early life stage of rapid 

development can be heavily influenced by nest dynamics (i.e., brood size, provisioning rates, 

hatch order). Previous work on this population has delineated that mass and tarsus width are the 

most parsimonious predictors of nestling sex, with females achieving masses above 820grams 

and tarsus widths greater than 9.4mm (Ch. 1). These morphometric cutoffs were obtained using a 

molecular sexing technique (i.e., polymerase chain reaction; PCR) on a smaller subset of known-

sex individuals included in this analysis (n= 88, see Ch.1 for details).  Even at a young age 

SWHA display sexual dimorphism, however morphometric overlap exists, producing uncertainty 

in sex assignment. We accounted for this uncertainty in a probabilistic fashion by first 

constructing a Bayesian logistic regression (x1 individual tarsus width data; x2 individual mass 

data) using the same known sex individuals from chapter 1. The posterior distributions of each 

beta coefficient (b0 intercept; b1 tarsus width; and b2 mass) produced from this initial model were 

then used as informative priors in a secondary logistic regression model to estimate probabilities 

of sex assignment (p) for all individual nestlings in the analysis (n=877, eq.1).  
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[𝐩, 𝛃, ∣ 𝐲] ∝ ) binomial

!""

#$%

(𝑦# ∣ 𝑛# , 𝑝#)
× Bernoulli(𝑝# ∣ invlogit(𝛽& + 𝛽%𝑥%,# + 𝛽(𝑥(,#))
× normal(𝛽) ∣ 0.234,9.239)
× normal(𝛽% ∣ 3.350,1.491)
× normal(𝛽( ∣ 2.747,1.555)

							{eq. 1} 

 

These probabilities (p) were then deterministically assigned (fixed to P) in our larger hidden 

Markov multistate model (HMMM; McClintock et al. 2020), linking them to the initial state of 

each individual. This allowed us to parametrize the probability of being a female, P, and the 

probability of being a male 1-P. 

This analysis was performed in Program R (Version 4.1.0) using the R2jags package 

(Version 0.7-1). Three independent Markov chains were run for 100,000 Monte Carlo iterations, 

with an initial burn-in of 20,000 samples, thinning rate of 4 (every 4th sample retained), thus each 

chain was represented by 20,000 runs, for a total of 60,000 saved samples for each posterior 

distribution. The sensitivity of the informed prior logistic regression was tested by calculating the 

area under the ROC (Receiver Operating Characteristic) curve (Hajian-Tilaki 2013, Beger 2016), 

and performed using the mcmcRocPrc function in the package BayesPostEst (v. 0.3.2; Karreth et 

al. 2021).   

 

Subsection 1.2 Hidden Markov CMR 

To incorporate the above-mentioned biological uncertainty into a demographic model we 

applied a hidden Markov modeling approach to examine longitudinal capture-mark-resight 

(CMR) data on sex-specific recruitment rates from 2009-2018 (Figure 3-1). State uncertainty 

models are advantageous as they allow more data to be incorporated (i.e., no censoring based on 
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missing sex identification), and have been shown to provide more precise and less biased 

estimates than traditional multistate models (Nichols et al. 2004; Pradel 2005).  Under this 

framework, a separate likelihood statement, state matrix (M1), and observation matrix (M2) are 

required to model the initial state of release, and all individuals start as sex “unknown”. For all 

subsequent time intervals, where sex becomes known (post recruitment), state and observation 

components are described in eq. 2 & 3 with associated matrices M3 & M4, following the 

nomenclature AF (alive and fledged) ANR (Alive Not Recruited), and AR (Alive Recruited). A 

clear distinction should be noted that f (M1) represents a vector of initial states, while f (M3) is 

a transition matrix from time t to t+1. 
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Given the unobservable nature of the juvenile life stage and variation observed in 

recruitment ages, there are two different ways that this model could be parameterized following 

the initial state matrices and based on assumptions of survival probability (Lebreton et al. 2002). 

One assumption would be to treat first-year survival as a distinct parameter for each sex and 

assume that annual survival probabilities for all subsequent juvenile ages (years two to 

recruitment) are equivalent to adult survival for the relevant sex. Alternatively, one can assume a 

distinction in annual survival probabilities between the juvenile and adult periods of life, but 

constrain the survival probabilities to be equivalent for each pre-breeding age. Based solely on 

studies using telemetry technologies there is strong evidence across raptor species that first-year 

survival is quite low (0.07-0.48; Newton et al. 2016). However, studies that separate first-year, 

later juvenile years, and adult life are very limited. Based on long-term demographic research of 

Black Kites (Milvus migrans), a species very similar to SWHA in their ecology and body size, 

we parameterized our model to assume adult survival probabilities after the first year, because 

survival greatly increased in Black Kites after the first year (Sergio et al. 2011).  

 

X.,/0%|X.,/ ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, X.,/,F.,/ )  {eq.2} 
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Subsection 1.3 Parametrization and Priors 

Differences in the range of recruitment ages exists between the sexes, a biological feature 

that is incorporated in the design of the state matrix (M3). Female SWHA need only survive a 

minimum of two years prior to entering the breeding population, while males must survive a 

minimum of three years before recruiting. Baseline recruitment probabilities were modeled with 

logistic priors on both the intercept and an age-effect coefficient. A multinomial logit link 

function ensured that upon back-transformation these transition parameters (recruitment) jointly 

summed to one (Kery & Schaub 2012). Apparent first year survival probabilities of both sexes 

were each modeled with separate truncated logistic priors dlogis(0,1)T(,0.4) on the intercepts, 

which helped with estimation convergence, and a temporal random effect. All explanatory 

variables were given logistic priors dlogis(0,1) as parameters modeled with a logit link function 

and traditionally vague normally distributed priors (e.g., dnorm(0,100) can produce an 

unintentional influence on the probability scale (Northrup & Gerber 2018). Adult survival was 

estimated for each sex, similarly, using a logistic prior on the intercept and temporal random 

effect, but no explanatory variables were included because our focus here is on early-life 

demography. Detection probabilities were estimated with full annual time-variation and a 

uniform(0,1) prior on the probability scale for each year. 
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Subsection 1.4 Model and Variable Selection 

To identify inferential explanatory variables, we employed a multi-step variable selection 

process that considered both the precision of within-model posterior densities of linear 

coefficients (Arnold 2010) and model WAIC scores (Watanabe 2013) using a plural approach to 

inference. The initial model set consisted of only intrinsic morphological and brood-related 

variables (tarsus width, mass, hatch date, and brood size) with each variable fitted to both 

survival and recruitment parameters of each sex. At this preliminary stage we did not consider 

contrasting model parameterizations for survival and recruitment, nor for different sexes, to 

avoid data dredging and because we had no a priori reasons to do so. Beyond single explanatory 

variable models, we considered two-variable additive effects (tarsus width + mass; hatch date + 

brood size). In the case of SWHA, large brood sizes (i.e., 3-4 offspring) generally appear earlier 

in the season, with later fledging nests often producing only a single chick; hence we also 

considered a model specifying an interaction between brood size and hatch date.  

When WAIC model scores were similar, variables were retained in step 2 using liberal 

inference if their posterior densities were more than 85% negative or positive (Arnold 2010). For 

example, if the coefficient for male mass on recruitment had > 85% of its posterior density above 

zero, but the female coefficient for mass was evenly distributed across zero, we retained the mass 

variable within the male linear equation for recruitment but excluded it from the female linear 

equation. This process of variable retention identified the morphological and brood variables 

pertinent to predicting sex-specific variation in survival and recruitment probabilities, given the 

observed data. The result of this initial and secondary selection step is referred to as the ‘85% 

group’. We recognize that more formal approaches to variable selection exist, but they are 

challenging to implement in HMMMs (Hooten and Hobbs 2015). 
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In our third step of model and variable selection, we considered density-dependent 

explanatory variables in addition to variables retained from the previous steps. Two different 

metrics of population density were considered, the distance from a focal nest to the nearest 

conspecific neighbors’ nest (NND; nearest neighbor distance), and the number of SWHA nests 

within 2000m meters (NNC; nearest neighbor count) that were each fit to the data in separate 

models. The consideration of population density indices seemed necessary because the local 

population has approximately doubled over the past two decades (Vennum 2017). To construct a 

final model that considered the best morphological, brood, population-density, and habitat 

variables without dredging the data by fitting all possible combinations of variables, we fit a 

“slack” model (Lawson 2014) comprising proportional habitat data, plus the variables identified 

in the previous three selection steps. Analytically, the composition of a SWHA territory (or any 

space within a defined boundary) is a mixture of landcover types that proportionally sum to one 

and are thus correlated. To deal with this correlation one of the primary habitat types, in this case 

proportion of juniper habitat, is simply dropped from the equation, ensuring that the mixture of 

variables examined no longer sums to one (Lawson 2014).  

The HMMM analyses were performed in Program R (Version 4.1.0) using the jagsUI 

package (Version 1.5.1) to construct models and the MCMCvis package (Version 0.15.2) to 

visualize results and confirm parameter convergence. Posterior distributions for annual survival 

and recruitment estimates were estimated using Markov chain Monte Carlo (MCMC) 

simulations (King et al. 2012). Five independent Markov chains were set to run for 100,000 

iterations each, after an adaption phase of 2,500 iterations, followed by an initial burn-in of 

45,500 iterations, and a total of 20,960 posterior samples were retained. Convergence was 

confirmed using visual inspection and 𝑅_ values < 1.2 as recommended in Gelman et al. (2004).  
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Results 

  

From 2009-2018 a total of 877 individual SWHA nestlings were banded and 

morphometrically measured in Butte Valley, California. These individuals obtained the 

minimum nestling age and appropriate development score required by our species-specific tool 

for predicting sex (32 days of age; ≦ -6 development index, see chapter 1). Within this 

population we found a slight bias favoring the production of female offspring (53% female; 467 

predicted females, 410 predicted males). The sensitivity of our initial logistic regression, used to 

estimate sex assignment probabilities, was quite high based on area under the ROC curve (AUC 

= 0.96, credible interval 0.95-0.97; Figure 3-2), where an AUC=1 represents a perfect diagnostic 

test. In total 475 unique nesting attempts spanning 10 years were included in the analysis. Across 

these nests the average distance to nearest alfalfa field (529m) was approximately half of that 

observed between nest trees and agricultural fields containing row crops (911m; Table 3-1). This 

increased separation from row style crops is also reflected in the low compositional proportion of 

them within an average territory (4.2%), while territories contained higher percentages of 

irrigated alfalfa (19.7%), shrub-steppe grassland (32.3%), and cereal grains (20.3%; Table 3-1) 

on average.  

Extensive annual field surveys resulted in 111 resightings of SWHA previously marked 

as nestlings and observed attempting to breed within the Butte Valley study area (12.7%; 55 

females, 56 males). Upon recruiting adult female survival ranged from 0.76-0.80 and adult male 

survival ranged from 0.79-0.83 (Ch. 3 Appendix A). Mean annual detection was 0.73 (0.52-0.95; 

Bayesian credible interval) and ranged from 0.58-0.94 (Ch. 3 Appendix B). Age variation in the 

latent first reproductive attempt differed slightly between the sexes (females 2-6yr; males 3-7yr). 

Based on yearly band and plumage status observations of mated pairs, we’re confident that all 
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female recruitment events for 2, 3, and 4 year-old individuals were observed accurately. This 

same degree of confidence can be stated for male recruitment at ages 3, 4, and 5. While the 

model allows for older recruitment ages for both sexes, our confidence in the observed 

recruitment age decreases because it is possible (even likely) that they recruited at an earlier age 

but went undetected. However, the majority of all recruits entered the breeding population within 

the age ranges of high observational certainty (49/55; 89%) females and (51/56; 91%) males. 

The most common age for females to recruit was age 3 (48.94%) and age 4 for males (47.82%; 

Table 3-2). Overall, age-specific recruitment probabilities (mean, BCI: 95% Bayesian credible 

interval) for females were R2yr = 0.17 (0.11-0.25);  R3yr = 0.51 (0.32-0.69); R4yr =  0.81 (0.55-

0.96); R5yr = 0.93, (0.75-0.99); R6yr = 0.97,  (0.88-0.99); (Figure 3-3a), and for males R3yr = 0.23 

(0.16-0.33); R4yr = 0.38 (0.26-0.51);  R5yr = 0.55, (0.32-0.75); R6yr = 0.69 (0.38-0.90) ; R7yr = 0.79 

(0.43-0.96);  Figure 3-3b). Across the range in age at recruitment, we observed an array of age-

specific reproductive outcomes upon the first breeding attempt. The youngest recruitment ages 

for both males (3yr) and females (2yr) generally failed to produce fledglings on their first 

attempts, while individuals that recruited at older ages (females 3-4yr; males 4-5yr) had 

improved reproductive success on their first attempts (Table 3-2). 

 None of the intrinsic body size or brood related variables were related to female 

recruitment probabilities, only distance to nearest neighboring nest explained variation in female 

recruitment probabilities (bnnD = 0.58, BCI -0.09,1.24; Figure 3-4). As a density-dependent 

measure of the population, smaller distances (i.e., negative relationships) indicate a higher 

density of nesting pairs but also suggests congregation in higher quality habitat. We found this 

exact relationship with male recruitment (bnnD = -0.51, BCI -1.05,0.00; Figure 3-4) as distance to 
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nearest neighbor decreased male recruitment probability increased, but the opposite was true in 

females. 

 The intrinsic nest dynamics of hatch date and number of siblings were moderately 

correlated (cor = -0.39; t=-12.41, df = 879, p = 0.0^-16) with earlier nests fledging more 

offspring, yet there was no support for an interaction term (posterior densities centered on zero), 

despite our expectations. Hatch date was the only variable that exhibited explanatory power for 

both the survival (females) and recruitment (males) parameter. Male recruitment showed a strong 

relationship with earlier hatch dates (bhatch♂ = -0.22, BCI -0.67,0.22; Figure 3-4), however hatch 

date did not explain female recruitment (posterior density broadly overlapped zero) and had a 

positive relationship (later hatch dates better) with female survival (bhatch♀  = 0.48 BCI 

0.02,1.09; Figure 3-4), the sex that requires a longer development time. We observed a strong 

positive relationship between apparent first year survival with the brood size (bbrood♂  = 0.36, 

BCI -0.26,1.25; Figure 3-4) and tarsus width (btarsus♂  = 1.09, BCI 0.31,1.95; Figure 3-4). Male 

survival improved with increased structural size and when hatching from a natal nest with more 

siblings. Estimates of apparent first year survival showed higher rates of male survival, 

compared to females (Figure 3-5). 

Our attempts to model the association between landcover types within natal territories 

(e.g., composition and proximity variables) yielded no relationships with apparent first year 

survival nor recruitment probabilities. Model separation, based on WAIC, for distinct single-

variable habitat models did not occur and posterior densities were uninformative under the 85% 

criteria applied (Ch.3 Appendix C). Within the restrictions imposed by our global slack model, 

there was again no support for relationships between habitat and early life demographic 

parameters (i.e., posterior densities of habitat variables were uninformative). Because of this and 
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a similar WAIC score (2 unit separation; Table 3-3) we assert that the “85% group + Nearest 

Neighbor Distance” (bolded; Table 3-3) is the best explanatory model and use it to provide 

demographic estimates. 

 

 

Discussion 

 

By combining a genetically verified morphometric tool for determining ontogenetic sex, 

hierarchically with a hidden Markov model, we were able to make inference about the early life 

demography a hemispheric migrant predatory bird. Without the aid of technology, the pre-

recruitment years of SWHA are generally unobservable, and nomadic movements of non-

breeding juvenile SWHA occurring within the American southwest have only recently been 

documented (Vennum unpublished). The ability to generate sex-specific demographic rates is 

crucial for understanding the ecology of a dimorphic species that exhibits sex-linked variation in 

recruitment age (Becker & Bradley 2007). The age at first reproduction is a demographically 

important trait (Cole 1954; Stearns 1976), sensitive to a multitude of intrinsic and extrinsic 

factors, directly influencing individual life history trajectories, fitness, and ultimately population 

growth rates (Pradel & Lebreton 1999, Oli & Dobson 2003, Stahl & Oli 2006). It is also an 

individual trait that differs between SWHA sexes, as we illustrated with females proportionally 

recruiting at younger ages. Given the dynamic range of ages between fledging and recruitment in 

our study (females 2-6; males 3-7), we expected the environmental covariates to explain 

variation in estimates of apparent first year survival and recruitment probabilities. The migratory 

nature and delayed maturity observed in SWHA expose young birds to unmeasurable factors 

across fourteen different countries, two hemispheres, and demanding an individual survive 

several complete migrations prior to breeding (Bechard et al. 2020). Yet our modelling efforts 
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accounting for sex classification uncertainty and long-term field monitoring allowed us to 

explore the demographics of this relatively unobservable period in their life cycle. Dealing with 

these challenges is vital to identifying early life conditions or natal habitat types that impart 

survival advantages (silver spoon effect; Grafen 1988).  

 An unexpected result of this analysis was the lack of association between any natal 

habitat variable, proportion or proximity, and our estimated vital rates. Previous work has found 

that adult survival was negatively correlated with distance from nest sites to nearest agriculture 

field of any type (Briggs et al. 2011). Yet we found no such relationships for early life 

demographic performance. However, given the low WAIC score for the nearest neighbor 

distance model and that three associated parameters (b
'(&)'

♀ϕ,b
&(*+,+

♂ϕ	,b
𝑏𝑟𝑜𝑜𝑑

♂ϕ ) had 

posterior densities > 85% higher or lower than zero, this suggests that density-dependent 

processes may be directly important, but could also be masking direct relationships between 

habitat and early life demographics. Typically, under ideal despotic theory, increases in 

population density would result in new territories being pushed to lower quality habitats. Given 

our historic understanding of this population, areas that once held a single breeding pair now 

contain multiple territories. Increased nesting density and associated reduction in distance 

between conspecific neighbors could cause the habitat composition of territories to become 

relatively similar, reducing the inter-territory variation to a point where distinctive habitat effects 

are not apparent. During the boreal winter this species is quite gregarious on its wintering 

ground, forming large social flocks into the thousands (Sarasola 2008), a behavior that might 

explain some measure of tolerance for conspecifics on the breeding grounds. Assuming having 

closer neighbors is a sign of higher quality habitat (i.e., nearest neighbor distance coefficient 

with strong negative value) as we find with male recruitment, then we might infer that increased 
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structural size and brood number, that explained male survival, is related to habitat quality, but 

masked by density-dependent processes.   

 Ecological studies have previously found that increased structural size and mass in 

offspring leads to earlier recruitment later in life (Weimerskirch 1992). Yet recent evidence 

suggests that climate change is causing many avian species to become structurally smaller 

(Weeks et al. 2020). Gaining related insights into a dimorphic guild, such as birds of prey, 

requires accurate sex classification to reveal any similar responses. We did find sex-based 

differences in how structural size relates to demographic responses, with structurally larger 

males (compared to smaller males) experiencing higher probabilities of apparent first year 

survival. However no size-related metrics were identified as good predictors of female 

demographic parameters. Of the other intrinsic variables in our final model, we also observed a 

recruitment advantage for males hatched earlier in the season, yet later hatch dates were 

indicated to be better for female apparent first-year survival. This is an unexpected result given 

females are the larger sex, requiring more time to fully develop (Chapter 1), and we had 

originally assumed that hatch date would be a more important trait for females. Moreover, we 

found that larger natal brood size conferred a positive juvenile survival advantage for only males, 

not females.  

Several studies on long-lived birds with delayed and dynamic ages of first reproduction 

have explored questions related to the optimal age of recruitment. An individual decision where 

young birds must weigh the risks of early-life breeding and potential reduction in survival or 

obtaining poor territory quality, with the potential benefits gaining increased breeding experience 

and potential fitness gains (Becker & Bradley 2007), trade-offs that could be the result of 

different individual strategies or intrinsic quality (Fay et al. 2016). For example, female 
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goshawks (Accipiter gentilis) recruiting earlier than the optimal age were observed achieving 

lower lifetime reproductive success despite no reduction in lifespan (Krüger 2005). While 

examining fitness related metrics is beyond the scope of this paper, the youngest age classes of 

recruits, for both females (2yrs) and males (3yrs), generally failed to successfully reproduce the 

year they recruited, but birds that recruited at older ages often did fledge young on their first 

attempts (Table 1).     

 While this study focused on the front end of the recruitment process (i.e., fledging to 

recruitment), future work should examine the consequences of recruitment age (i.e., younger 

ages 2-3yrs vs older ages 4-5yrs) on lifetime fitness metrics and disparities between early and 

delayed recruitment ages. This work should examine the reproductive success of early breeding 

attempts with specific consideration of mate quality and of the territory obtained upon 

recruitment. While difficult to directly observe, the number of years spent in a pre-recruitment 

non-breeding state (floater; Hunt 1998) likely influences the amount of time spent prospecting 

for territories and influences decisions about mate choice. There are two likely scenarios for 

birds delaying recruitment age, either there is an advantage to waiting longer (i.e., more time 

prospecting) that might ensure a higher quality mate or territory, or individuals requiring a longer 

time to recruit are of lower quality and thus take longer to achieve reproductive status. Our 

results, while only examining the first reproductive attempt, suggest there may be an advantage 

to delaying recruitment. Individuals who recruit at early ages have less experience, which could 

explain their poor breeding success upon the first breeding attempt (Aubry et al. 2009).  

While recruitment strategies might vary, the importance of breeding habitat should not be 

ignored despite our results, as fragmented agricultural landscapes are becoming more common 

and are likely to increase in global scale (Tilman 2001). Studies able to connect demographic 
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outcomes to specific crop types could provide mechanistic descriptions on how anthropogenic 

decisions can enhance or degrade species coexistence and ultimately biodiversity. As the demand 

to increase agricultural production expands globally, what crops are planted and their ability to 

simultaneously provide resources for other species will heavily impact species abundance and 

biodiversity. Where and how we plant crops will also matter as evidenced by the growing 

scientific debate between land sharing and land sparing (Green 2005). It is easy to appreciate 

taxa such as raptors, that from a human perspective, provide easily identifiable ecosystem 

services in the form of pest management control (Kross et al. 2012, Shave et al. 2018), but not all 

species provide such clear benefits. As conservation practices and laws advance into the future, 

they will need to consider the implications of human food production and sustainability of 

ecosystems.  
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Table 3-1. Summary statistics describing average habitat characteristics and population density 

metrics across 475 SWHA territories from 2009-2018. The compositional habitat metrics mean 

(25% quantile, 75% quantile) represent the average proportion and proximity distance across all 

nests. The nearest neighbor distance is the straight line distance (meters) between nest trees of 

adjacent SWHA territories. The nearest neighbor count is the number of SWHA territories within 

2,000m of the focal nest.  
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Table 3-2. Sex specific recruitment rates, delineated by age of first reproductive attempt. 

Column three (Number %) specifies the proportion of individuals that recruit at each age while 

column four (success %) is the proportion of individuals who successfully reproduced on their 

first observed attempt.  

 

 
 

 

*SD: standard deviation 

*BCI: Bayesian Credible Interval 
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Table 3-3. WAIC model selection table separated into the three respective steps taken by our 

statistical approach. The defined “85 group” for each group lists the variables and associated 

relational direction (+ or -) for those with posterior densities >85% in the same direction as the 

mean. The habitat variables used to create the global slack model provided no added explanatory 

power (posterior densities overlap zero), thus biological inference was made from the 85% 

Group + Nearest Neighbor Distance model. 

 

 
 

 

*K n.eff is the effective number of parameters in a model 

*ELPD is the expected log pointwise predictive density 

*nnD = nearest neighbor distance 
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Figure 3-1. Demographic model diagram, where sex is delineated by line type (solid line - 

females; dashed line – males). Females can recruit at the age of two, but males cannot recruit 

until three years of age. Female recruitment ages range from 2-6 years old, while the male age 

range is 3-7 years old. 
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Figure 3-2. ROC curve plot showing the predictive ability of our logistic regression to 

accurately classify sex.  
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Figure 3-3. Conditional sex- and age-specific recruitment probabilities with 95% Bayesian 

credible interval. Female (solid circle) recruitment ages range from 2-6 years old, while the male 

(hollow triangle) age range is 3-7 years old. 
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Figure 3-4. Coefficient estimates of the linear predictors from the top inferential model (85% 

Group + NND). Only variables with posterior densities with > 85% on the same side of the mean 

are shown. Variables on the y-axis are labelled with a f (apparent first year survival), R 

(recruitment). Each variable is labelled with the hypothesized relationship direction and the 

actual result (e.g., - / - ; negative relationship expected / negative relationship found). The y-axis 

labels highlighted in grey indicate variables where our prediction and actual result match. Error 

bars on parameter estimates denote 95% Bayesian credible intervals. 
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Figure 3-5. Sex-specific apparent survival probabilities during the first year after fledging 

(conflated with permanent emigration). Males are denoted by triangles with darker grey 95% 

Bayesian credible intervals, females are denoted by circles with lighter grey 95% credible 

intervals. 
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Chapter 4 

AGE AND AGRICULTURAL HABITAT EFFECTS ON LIFETIME FITNESS OF A 

LONG-LIVED AVIAN PREDATOR 

 

 

 

Introduction 

For a large portion of terrestrial landcover, land has become or is increasing likely to be 

converted for agricultural or pastural purposes (Foley et al. 2011). Globally, agricultural land 

already represents a significant proportion of total possible arable land (Tilman et al. 2002), and 

in the United States has already claimed and converted the most productive areas (Scott et al. 

2001). A growing human population will require more land converted to agriculture and more 

intense growing methods, which will be exacerbated by conversion of lower-quality and less 

productive lands (Tilman et al. 2001; Haberl et al. 2007). With the increase in agricultural 

landscapes each year, there are significant concerns associated with declines in biodiversity 

(Benton et al. 2003; Brennan & Kuvlesky Jr. 2005), especially in a future where the boundaries 

between nature and anthropogenic land use continue to dissipate.  

Whether agricultural lands can provide adequate foraging and other resources needed for 

wildlife to sustainably reproduce and survive is of paramount concern. For many species to 

persist amidst global landcover change, they will need to adapt or move into alternative habitats 

that are becoming increasingly crowded during the Anthropocene (Kremen & Merenlender 

2018). However, agricultural activities vary in type and intensity across space and time 

(Ramankutty et al. 2008). In some regions, crops are well adapted to local conditions and can be 

incorporated into the natural habitat matrix (e.g., land sharing; Phalan et al. 2011), while other 

areas require distinct dichotomies between native landcovers (e.g., land sparing in semi-arid 

landscapes; Fischer et al. 2011). In addition to how agriculture is integrated into the local 
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environment, individual crop types vary in foraging value to wildlife (Paini et al. 2016). Crops 

such as irrigated hay and grasses, particularly alfalfa (Medicago sativa) are perennial, 

representing a stable landcover with consistent phenology that can support a diverse food web 

(Putnam et al. 2001). Foods grown through row-crop styles of practice (e.g., potatoes or 

strawberries) are generally annual crops, require large and intense soil disruption, are effectively 

sterile environments for wildlife, and are constantly changing (though some, such as cereal 

grains, can provide substantial amounts of food to wildlife at particular times of the year).     

This concept of stable vs dynamic landcover types is particularly important for migratory 

species that are biologically under strong phenological constraints to successfully reproduce each 

year. Extended migrations restrict the time available for prospecting new areas, emphasizing the 

importance of habitat quality and consistency across space and time. Habitats that provide 

environmental constancy may be important yet limited in a future where global food production 

requires rapid rates of land conversion to agriculture, a scheme that changes frequently due to 

local or global demand and economics. Identifying crops that can fulfill human needs, support 

wildlife, and can provide constancy of habitat on the landscape will be important to conservation. 

While many different metrics could be used to examine the effects of crop types on wildlife (e.g., 

occupancy, utilization time, reproductive attempts), none are better than evolutionary fitness. 

 Yet obtaining fitness data, especially for long-lived species, can require decades of 

intense effort, and observational uncertainty is a sine qua non in studies of wild populations that 

presents additional challenges (Gimenez & Gaillard 2018). Longitudinal studies commonly 

observe heterogeneity in survival and reproductive success among individuals and groups 

(Jenouvrier et al. 2018), particularly in avian and mammalian species where a few individuals 

produce a disproportionate number of recruits into the breeding population (Clutton-Brock 1988; 
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Newton 1989). Such variation in fecundity often produces a zero-inflated and highly skewed 

distribution of reproductive success (Tuljapurkar et al. 2020). A variety of factors have been 

noted to explain this variation, such as environmental conditions (Jenouvrier et al. 2015), 

individual heterogeneity (Cam et al. 2002), and age (Fay et al. 2016). A growing body of 

evidence suggests much of this variation in fitness across individuals might be explained by 

stochasticity (Caswell 2009; Caswell & Vindenes 2018), and that random "luck" can impede 

inference about mechanistic relationships between fitness and individual traits (Snyder & Ellner 

2018).  

We examined relationships between the environment and individual reproductive success 

of Swainson’s hawks (Buteo swainsoni; hereafter SWHA), a hemispheric migrant and top avian 

predator that has adapted well to agricultural environments (Bechard et al. 2020). Specifically, 

we matched an individual-based demographic dataset (1985-2020) with remote sensing 

techniques to understand the dynamic interaction between agricultural practices at the territory 

level and individual fitness across nearly four decades. To account for imperfect detection and 

potential biases in estimating fitness metrics, we used hierarchical Bayesian multi-event models 

(Gimenez & Gaillard 2018). We examine lifetime reproductive success (LRS) across several 

themes representing the spatial and temporal extent of agriculture practices across the landscape, 

while considering potential effects of density dependence, given the recent increase in population 

abundance and decreasing inter-territory distances. Overall, we examine important demographic 

parameters under the assumption of non-stationary environmental processes, key to advancing 

our understanding of vertebrate populations (Hoy et al. 2020) and hopefully useful for informing 

future land use policies and agricultural development. 
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Methods 

Study Area 

Butte Valley, California (41˚ 49’N, 122˚ 0’W; 415 km2) was natively a high elevation 

(1,280 m to 1,340 m) sagebrush steppe environment, but now contains a heavily grazed national 

grassland and abundant agriculture fields (Woodbridge 1991). Located on the western boundary 

of the Great Basin ecotype, there are clear differences in primary productivity between arid 

natural grassland/sagebrush and groundwater irrigated agriculture, a common landscape feature 

in the western United States. An abundant local crop and primary foraging habitat, irrigated 

alfalfa provides consistent and high prey densities (Whisson et al. 1999). Belding’s ground 

squirrels (Urocitellus beldingi) are the dominant prey species for the first half of the breeding 

season, a key resource for hawks refueling after completing spring migration. Ground squirrel 

distribution is patchy, and is densest in irrigated hay crops, which is why increased alfalfa 

availability is thought to have a positive effect on SWHA reproduction (Battistone et al. 2019). 

Additionally, alfalfa is a perennial crop, often with a stand life in the Intermountain West of 6-8 

years (Orloff 1997), so not only does it support food web communities, it is a relatively constant 

habitat feature on the local landscape. Belding’s ground squirrels locally estivate in late June 

after which time SWHA prey composition broadens in diversity to include pocket gophers 

(Thomomys spp.), voles (Microtus spp.), reptiles, small bird species, and insects (Woodbridge 

1991). 

Demographic Data Collection 

From 1985 – 2020 the study area was annually surveyed for breeding SWHA. Surveys 

typically began in late April, corresponding with the arrival of hawks from a northerly spring 

migration and terminated in mid-August after all young have fledged and territorial boundaries 

diffuse. Nests were routinely monitored to determine the presence and status of offspring so they 
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could be marked upon reaching a suitable age for banding (see below). Unmarked adults were 

trapped using a Great Horned Owl (Bubo virginianus) lure with a dho-gaza net (Bloom et al. 

1992) or opportunistically with a bal-chatri (Berger & Mueller 1959) and subsequently marked 

with both a U.S. Geological Survey (USGS) aluminum band and a unique alphanumeric color 

band. Extensive time and effort were spent each year resighting color-banded individuals within 

their territories. From 1985 to 2007, nestlings were only banded with a USGS aluminum band 

after they reached ≥3 weeks of age. After 2007 all offspring were individually marked with a 

USGS aluminum band and a unique alphanumeric plastic color band. Color banding nestlings 

improved detection probabilities, as newly recruited individuals could easily and accurately be 

identified through band re-sighting without the need for physical capture. We assumed any 

nestling that reached 36 days of age fledged successfully (i.e., 85% of fledging age; Steenhof 

1987) and was thus included in the dataset for fitness estimation. Because our main goal here is 

to examine drivers of individual fitness, we focus specifically on the sample of color-marked 

breeding adults and their annual reproductive success. For those breeders that were marked as 

nestlings and then later settled in the study area (i.e., recruits), we could assign an exact known 

age. For previously unmarked adults displaying full adult plumage at the time of initial marking, 

we assigned an age of 3 years for their first observed breeding attempt (Briggs 2011), thus 

assignment of individual age for some breeders is conservative.  

Study protocols and procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Nevada, Reno (IACUC approval no. 00115 and 00522) and 

Hamilton College (IACUC approval no. 18-R-3). 
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Habitat Evaluation  

While rasterized crop databases exist for the United States (i.e., USDS NASS Cropland 

Data Layers; USDA National Agricultural Statistics Service) we found that these databases were 

inaccurate for our study site with respect to key crop types. We opted instead to implement a 

supervised classification scheme using a random forest algorithm (Breiman 2001) and Google’s 

Earth Engine platform (Gorelick et al. 2017). Landcover classification rasters were created using 

Landsat 5 (1985-2011), 7 (2012), and 8 (2013-2020) satellite imagery to match the longevity of 

our demographic dataset. All satellites generate 30m resolution data, accurate enough to identify 

distinct crop types. Ground-truthed data were collected in 2018 and 2019. Raw spectral band 

values for six bands (red, green, blue, near infrared, short-wave infrared 1, and short-wave 

infrared 2), in addition to calculating a normalized difference vegetation index (NDVI) and a 

soil-adjusted vegetation index (SAVI) were used to define the spectral signatures of each 

landcover feature class. We identified eight distinct landcover types within our study area that 

could be represented by distinct spectral signatures across a calendar year. These included 

1alfalfa, 2dryland hay, 3juniper, 4bare dirt, 5grassland dark, 6grassland light, 7row crop type #1, 

and 8row crop #2.      

As certain crop types present different spectral signatures throughout the growing season, 

we partitioned annual satellite imagery into three “seasons” to better match vegetative phenology 

and increase our predictive accuracy. The spring signature was based on images from April and 

May, summer from June-August, and the fall signature was defined with September and October 

images. Of the 36 years modelled, most followed these exact phenological time definitions, 

while a few years required temporal adjustments due to obstructions such as late spring snows 

and fall smoke haze from forest fires. When necessary, we selectively removed images from the 
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composition or applied an image masking function for clouds and shadows (i.e., QA_PIXEL 

Landsat band). As “season” images are composites of multiple aerial images we extracted the 

median pixel value for a season from the assigned image collection, resulting in three spectral 

values for annual classification. 

Representative pixels of each of eight landcover types from all three seasons were 

extracted from our 2018 ground-truth data, exported out of GEE, and imported in program R 

(Version 4.1.0). Using the package VSURF (version 1.1.0; Genuer et al. 2015) we performed a 

three-step variable selection procedure to reduce the number of spectral bands inputted into our 

supervised random forest algorithm and collinearity, thus band pairings exceeding correlation 

factors of 0.80 were eliminated. This reduced band set was then used to train our classification 

model based on ground-truth data from 2018. The accuracy of which was then tested by its 

ability to predict a sample of points from 2019 imagery, also ground-truth data.  

Post creation of annual classified habitat rasters, the number of landcover classes was reduced 

from the original eight to six types. Farming practices, such as the use of plastic to cover row 

crops (i.e., strawberry plants) early in the growing season create unique spectral signatures, a 

feature that enabled us to classify row crops more accurately by modelling them separately 

(plastic vs non-plastic) and merging pixel types in Program R post classification. We applied this 

same process (separate classification, post analysis recombine) with two distinct vegetative types 

(darker sage and lighter grasses) found primarily across the Butte Valley National Grassland to 

better account for the vegetative complexity of this habitat type. Our finalized raster images, 

comprised of six landcover types, were overlaid with nest locations and territorial buffers to 

extract habitat data. Our supervised raster classifications produced pixel noise, which can 

introduce error into the nearest-distance measures of a nests’ proximity to particular categories of 
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habitat. Pixel grouping size of identical landcover types were measured using the clump function 

in the Raster package (v3.6-3; Hijmans 2021) with cells connected through 8-directions and all 

pixel groupings under six pixels in size were removed.  

Swainson’s hawks are a highly territorial species during the breeding season (e.g., April-

August) and as such follow a central-forging strategy from nesting locations (Orians & Pearson 

1979). We assigned each territory a 1 km radius buffer (3.14 km2). An assumption that we 

formed based on averaging the results of two previous radio-telemetry studies for this species. 

Two years of radio-telemetry observations in the Dakotas found a 95% MCP = 1.91km2, (n=10, 

2013) and 95% MCP = 2.10km2, (n=9, 2014; Inselman et al. 2016). In addition, early telemetry 

work on this population found mean foraging distances for breeding males (0.917km; radius) and 

average home range size (4.05 km2, n=12; Woodbridge 1991). Thus the habitat composition of 

each individual territory was defined by the extracted pixel counts of each landcover type within 

this defined boundary and conveyed as proportional data. Given the high density of nesting birds 

and strong site fidelity observed in this species, the distribution of nesting territories likely forms 

according to an ideal despotic process (Fretwell & Lucas 1970) where some territories will lack 

prime foraging habitat within the territorial buffer, and thus will be forced to travel farther to 

obtain resources, which may influence adult survival (Briggs et al. 2011a) and reproductive 

success, the latter of which has not yet been investigated. Thus, we measured the distance from 

each nest to the nearest alfalfa and row crop field and included them as explanatory variables as 

they may affect demographic performance in ways not explained by habitat composition within 

the 1 km radius territory.  
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Statistical Approach -Transitions in Reproductive Success over the Lifespan 

We applied a multi-event modelling approach (Pradel 2005) with longitudinal capture – 

mark – resight (CMR) data collected at the individual level to understand how fine scale 

territorial habitat features influence survival and transition probabilities between reproductive 

states (Kendall et al 2003; Kendall et al 2004; Figure 4-1). By using these models in a state-space 

framework, we were able to accommodate ‘reproductive state uncertainty’ for some observations 

collected during the breeding season, such as cases where we saw an individual and knew it was 

alive but we did not see the individual at a nest. The multi-event framework allows the 

observations to be associated probabilistically with latent state dynamics of actual breeding 

success, amidst state-assignment uncertainty for certain types of observations (Pradel 2008, 

Gimenez & Gaillard 2018). In turn, this allows for the incorporation of more data (i.e., no 

censoring) so that more individuals can be included in the analysis, and such models have been 

shown to provide more precise and more representative estimates than traditional multistate 

models (Conn & Cooch 2009), while ignoring such instances of imperfect state assignment could 

lead to flawed estimation of focal parameters if censoring is not random (Gimenez et al. 2008). 

In most cases the annual breeding success of individual SWHA was observed without ambiguity 

(e.g., failed breeder, 1 nestling fledged, etc.). The maximum brood size for SWHA is four 

nestlings, which occurs uncommonly, thus nests that produced 3 or 4 fledglings were combined 

into a single state of breeding success (3+). State assignment uncertainty manifests when 

individuals are resighted but their reproductive status could not be ascertained, creating a fifth 

observational category. Past annual detection probabilities for this study population (i.e., the 

chance a live bird on the study area is detected at all), while high most years (i.e., above 70%), is 

also not perfect (Briggs 2011) and requires attention when modeling observation probabilities.  
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Multinomial likelihoods were constructed under a Bayesian framework (eq. 1 & 2), with 

an associated generalized logit link function, which upon back-transformation ensures that the 

joint probability sums of the state transitions do not exceed 1.0 (Williams et al. 2002). The 

apparent survival and transition probabilities (state matrix, M1) between reproductive states were 

used to estimate individual trajectories of latent breeding success (Xi,t+1). These statistical 

transitions represent the biological effect of the previous breeding attempt on the current 

reproductive success. For example, if an individual produces one fledgling in year (Xi,t) then we 

estimate the probability in Xi,t+1, of being in four possible states (fail, 1, 2, or 3+ offspring). With 

four possible annual reproductive states, this produces sixteen total transition probabilities (ψ). 

Probabilities that are conditional on previous breeding success (Xi,t), apparent survival 

probability (fi,t), and hierarchically, the state-assignment (δ) and detection probabilities (p) 

corresponding to the observed encounter histories (Yi,t):  

𝑋#,*0%|𝑋#,* ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑋#,* , 𝝓# ,* )     {eq.1} 

 

𝑌#,*|𝑋#,* ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑋#,* , 𝑷# ,* )      {eq.2} 

where bold font denotes matrix notation. 

While detection probabilities (p) are based on annual resights of breeding individuals and 

modelled using an auto-regressive time random effect (Funatogawa & Funatogawa 2018), we 

applied a multi-event framework to account for the occasional inability to determine the 

reproductive outcome of a given breeding attempt with certainty. This was achieved by adding 

probabilities of ‘state assignment uncertainty’ to the probabilistic map between observations and 

latent states (eqn. M2; Pradel 2005; Kendall 2009).  
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This observation uncertainty is specifically associated with annual reproductive status 

(observation matrix, eqn. M2) and represented by two separate d parameters that accounted for 

observations where individuals were observed alive in the study area during the breeding season, 

but their nest was not located. One parameter (δ1) was assigned to the failed reproductive state, 

while (δ2) represented all three successful reproductive states. This assumes that our ability to 

find nests is similar if there are any number of offspring in the nest, which will prolong adult 

presence and localization of daily activities around the nest.    
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Statistical Approach - Age 

For many long-lived species aging is a dynamic process (gained experience, senescence) 

known to affect reproductive performance (Hamilton 1966) and survival probabilities 

(Weimerskirch 1992). Earlier work on this population found that the average age of breeding 

adults is nine years old (Kane et al. 2020). Using a model selection approach with the WAIC 

scoring statistic, we built models that classified individuals into two age groups (prime-age vs. 

old). We searched for the break in age between the two groups, from a range of 7-13 years of age 

for the break, and used WAIC to evaluate which break in age was most supported by the data. 

Once defined, an individual’s age (Agei,t) was applied in a linear fashion to explain variation in 

the apparent survival parameters by reproductive state (denoted subscript “s” eq.3 & eq.4).  

𝑙𝑜𝑔𝑖𝑡~𝜙5,*9:#;<=><� = 			𝛽∅5 	+ 	 𝜀*   {eq.3} 

 

𝑙𝑜𝑔𝑖𝑡(𝜙5,*?@A=><) = 			𝛽∅5 	+ 𝛽5=>< +	 𝜀*    {eq.4} 

 

This was done in a deterministic fashion, producing eight different apparent survival parameters, 

four for prime ages and four for old-age categories matching the four possible reproductive 

states. Each survival parameter included a unique intercept and shared time random effect (i.e., 

an additive random effect of year), with the old age classes distinguished by an additional 

coefficient for age. A logit link was applied to ensure all estimated survival probabilities were 

constrained between 0-1. 

Statistical Approach - Covariates 

To explain spatial and temporal variation in the probabilities of transitioning (𝜓5*B*<,*#;<) 

from one reproductive state at time t to any other at t + 1, we applied a mixed link-linear model 

function of environmental covariates and random effects. This was accomplished statistically by 
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specifying a series of linear models (12; last four transitions calculated complementary) for the 

starting state of possible transitions, where each model has a random intercept (𝛽0%→%() and 

random slope coefficient parameter (𝛽ℎ𝑎𝑏𝑖𝑡𝑎𝑡%→%(). The explanatory covariates were allowed to 

be unique among origin transitions (i.e., covariate effects were allowed to interact with the 

starting state). A random time effect was also added across transitions for each state block (e.g., 

the four transitions involving origination in "failed” state all received the same random time 

effect; see eq.5 below for an example of a link-linear prediction equation). 

𝜓5,*CB#@	→	% =	𝛽0E +	𝛽ℎ𝑎𝑏𝑖𝑡𝑎𝑡E +	𝜀*CB#@  {eq.5} 

To ensure the use of vague priors on these habitat covariates we applied a dlogis(0,1) distribution 

to each estimated b coefficient as the typically applied normal priors can unintentionally 

influence posterior estimates on the probability scale (Northrup & Gerber 2018).   

 We built separate models for each landcover explanatory variable using the respective 

proportional amounts of each category within the defined territory buffers. To evaluate the effect 

of proximity of a nest from our perceived best habitat (alfalfa, which supports ample small 

mammal food resources required for SWHA rearing of chicks) and worst habitat (row crops, 

provides zero food resources), we specified similar blocks of mixed link-linear model structures 

with covariates specifying the distance between a nest location and the nearest patch of these 

‘best’ or ‘worst’ habitats. Distance metrics to agriculture have previously been shown to 

influence apparent survival in this population (Briggs et al. 2011a), but agriculture was defined 

as an aggregate term where crop types were not separated, and possible effects on reproductive 

success have never been evaluated. Additionally, we considered two indices of population 

density because the SWHA study population roughly doubled over the past two decades 
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(Vennum 2017). These were represented by the distance (meters) to nearest neighboring 

conspecific nest and the number of SWHA nests within 2000m meters of a given nest.  

Statistical Approach – Bayesian Estimation 

Within Program R (Version 4.1.0) we utilized the jagsUI package (Version 1.5.1) to 

construct models and the MCMCvis package (Version 0.15.2) to visualize results and confirm 

parameter convergence. Posterior distributions were obtained for annual survival and state 

transitions using Markov chain Monte Carlo (MCMC) simulations across three independent 

Markov chains (King et al. 2010). Each chain was run for 100,000 iterations, with a 1,500 

adaption phase, followed by an initial burn-in of 8,500 samples, and a thinning rate of 5. Each 

chain was represented by 18,300 runs generating a total of 54,900 saved samples. Convergence 

was confirmed using visual inspection and 𝑅_ values <1.2, which measures the within and 

between variability of chains initiated at different starting values, as recommended in Gelman et 

al. (2004).  

Statistical Approach – Derived Parameters & Lifetime Fitness 

In studies of wildlife where imperfect detection is the norm, not the exception, it is 

impossible to estimate lifetime reproductive success (LRS) and other measures of lifetime 

individual fitness directly (Clutton-Brock 1988). But recent advances in Bayesian CMR methods 

have revealed how latent states of per-time-step fitness performance, Xi,t, can be estimated and 

summarized over an estimated lifetime to derive measures of lifetime fitness in a probabilistic 

manner (Gimenez and Gaillard 2018). The advantages of the Bayesian approach are that a) when 

reproductive outcomes are not observed (i.e., unobserved reproductive state or not observed at 

all) the latent state of being alive and reproducing at a given level can be estimated, and b) full 

posterior distributions of each Xi,t can be estimated, allowing for exact propagation of 
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uncertainty up to derived measures of lifetime fitness, such as LRS. This in turn allows one to 

examine fitness-related study objectives comprehensively, as opposed to studying components of 

fitness one at a time.   

𝐿𝑅𝑆# 		= 		�𝑋#,*							 (𝑓𝑜𝑟	𝑎𝑙𝑙	𝑋	 ≠ 𝐷𝑒𝑎𝑑	𝑆𝑡𝑎𝑡𝑒; 𝑒𝑞.𝑀1) 

Results 

From 1985-2020 a total of 211 individually marked adult female Swainson’s hawks were 

monitored to determine annual survival and reproductive outcomes across their lifespan, 

representing 890 observed reproductive events. Of these observed attempts 27.53% (245) were 

failed nesting occasions, followed by 20.67% (184) fledging a single chick, 30.22% (269) two 

chicks, 20.57% (192) three or more chicks fledged, with an additional 65 observations classified 

as reproductive status unknown. While the age of breeding females ranged from 2 years to a 

maximum age of 28 years, we identified a biological age distinction in apparent survival between 

prime-aged and older individuals. By estimating survival probabilities, conditioned on current 

reproductive state (in year t), we found that classifying individuals < 10 years old as prime-aged, 

and individuals ³ 10 as older, fit our data best and provided a metric for distinguishing age 

effects on SWHA demographic performance (Ch. 4 Appendix).  

The transitions among reproductive states also indicated relatively consistent 

reproductive output at the individual level. For each reproductive state, except the most 

successful breeding state (3+), the highest probabilities were associated with remaining in the 

same state from one year to the next (Figure 4-2). A high probability of remaining in the same 

reproductive state represents a high degree of reproductive constancy for individuals. Regardless 

of age, individuals that failed to reproduce in a given year experienced lower survival 



   91 

probabilities (mean 0.81 BCI 0.76,0.85 prime aged; mean 0.75 BCI 0.54,0.92 old aged) 

compared to conspecifics that were reproductively successful. The lower survival probability for 

failed breeders is exacerbated by a strong probability that once an individual failed to 

successfully reproduce, they were likely to consecutively fail again (Y0®0), with a probability of 

0.41 (BCI 0.29,0.51) (Table 4-1). For reproductively successful individuals, annual survival 

probabilities remained high for individuals in all successful reproductive states (e.g., 1, 2, 3+ 

chicks fledged), the exception being “old” breeders that produced two offspring in a given year, 

which had a markedly lower survival probability (mean 0.63 BCI 0.45,0.80). Annual apparent 

survival probabilities, distinguished by age class and reproductive state are shown in Figure 4-3.  

 Lifetime reproductive success values produced a left-skewed distribution (Figure 4-4). 

Illustrated by many individuals (12.3%; n=26) failing to fledge any offspring over their entire 

life, and a large percentage (40.3%, n=85) fledged four or less over their lifespan, a quantity that 

can potentially be achieved in a single reproductive attempt for this species. In fact, 31.8% 

(n=67) of females fledged 10 or more offspring, and only 9.0% (n=19) fledged 20 or more 

offspring, with the maximum for any female being 36 fledged offspring. While our results show 

substantial variation in LRS, we failed to find a relationship between any of the environmental or 

population density explanatory variables and the (𝜓) transitions among reproductive states, and 

therefore a lack of any relationship with LRS. In fact, only the proportion of juniper woodlands, 

a habitat representing nesting substrate, received more support than our null model for explaining 

spatial and temporal variation in the (𝜓) reproductive transitions (DWAIC 12.1, Table 4-2). All 

remaining models of habitat proportions within the breeding territory were outcompeted by the 

null model. Similarly, both habitat proximity measures (alfalfa and row crops), had the worst fit 

to our data, as indicated by the highest DWAIC values (DWAIC 17.3 alfalfa; DWAIC 17.4 row 
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crop; Table 4-2). While model selection provided no distinction between the proximity models 

(DWAIC 0.1), alfalfa fields were consistently closer to nesting sites. The average distance to the 

nearest alfalfa field was 493m, while the average distance to the nearest row crop field was 

nearly double (822m, Table 4-1).  

Over the course of this study, the population of nesting SWHA consistently grew in 

abundance and doubled since 2000, a population feature that is evident in the decreasing average 

distance to nearest conspecific neighbors’ nest from 1985-2020 (Figure 4-5c). Yet, our two 

measures of population density, nearest neighbor distance and number of neighbors within 

2,000m (Table 4-1), both received less support than the null model for explaining annual 

reproductive outcomes (Table 4-2). However, the increase in nesting density does correlate with 

the abundance of alfalfa over time (-0.48; t = -3.25, df = 34, P = 0.002), which through our 

remote sensing modelling revealed an overall increase in the amount of alfalfa, the primary 

foraging habitat over the study duration (Figure 4-5a). The overall field space allocated to row 

crop production has remained below that of alfalfa, despite some annual fluctuations in quantity 

and lack of trend over the same time (Figure 4-5b.).  

The probability of correct assignment for successful breeders (𝛿�2) was 0.98 (BCI 0.95,1.00), 

while the assignment for failed breeders (𝛿�1) was lower 0.77 (BCI 0.702,0.855; Table 4-3). 

Overall, detection probabilities ranged from 0.39-0.94 across 1986-2019, with a mean of 0.71 

(BCI 0.68,0.73) and a few years of lower resight probability in the early 2000’s due to decreased 

field crew size (Figure 4-6). 
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Discussion 

 The lifetime reproductive success values estimated here reveal the cumulative efforts and 

variation in fitness among individuals existing within a dynamic landscape that is heavily 

modified by the anthropogenic sources of modern agriculture (Reynolds et al. 2019; Tuljapurkar 

et al. 2021). However, our analysis failed to find direct associations between the spatial and 

temporal components of agricultural crops, native shrub-steppe habitat, or conspecific nesting 

densities and the annual components of reproductive success that comprise this metric of lifetime 

fitness. Although the juniper woodlands model did outcompete the null model, biologically we 

interpret this landcover type more so as the availability of nesting substrate (Woodbridge 1991). 

Juniper woodlots commonly exist on the edges between agricultural fields providing limited 

foraging opportunities. The weak explanatory power of our remaining landcover types, 

consequently, implies that we could not draw inference on how the availability of other habitats 

within the breeding territory (ranging from 0-100%) might influence annual SWHA reproductive 

success and net fitness (LRS). Our CMR statistical methods accounted for both imperfect 

detection and observed breeding state uncertainty, producing quality measures of individual 

fitness that are not confounded with nuisance parameters (as in many historical studies of LRS). 

Yet, our hypotheses that proportions (or distance to) of irrigated alfalfa and intensive row crop 

agriculture within an assumed territory radius would strongly explain spatio-temporal variation 

in reproductive success were not supported by the data. This lack of association between habitat 

and annual reproductive success, nor LRS, suggests at least three potential avenues of 

explanation. First, despite our monitoring efforts of nearly 900 nesting attempts across more than 

three decades, it may be that we still do not have enough data to model the annual reproductive 

transitions across the range of brood sizes for this species at an individual level (annual sample 

sizes ranged from 12-53). This raises concern as to how scientific monitoring can inform the 
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impact of management and land-used practices on fitness, when this quantity of data may be 

insufficient for nearly all birds of prey. Second, the roles of individual heterogeneity and 

stochasticity across the 211 studied individuals may be strong in long-lived vertebrates, and 

overriding more subtle effects of occupied nesting habitat (Steiner & Tuljapurkar 2012; Hamel et 

al. 2018). For example, if there are individual traits that have a stronger influence on fitness than 

nesting habitat, the sample size of 211 individuals may make it difficult to detect subtle but 

potentially important effects of breeding territory habitat. Thirdly, wildlife-habitat relationships 

depend on how an individual uses information about the landscape to make decisions, and 

individuals are likely using information at multiple spatial scales (Stuber et al. 2017). Accurately 

incorporating habitat characteristics into any modeling framework can be difficult when a 

relevant spatial scale is unknown and when different ecological processes interact across 

multiple scales. Our decision to use a fixed single scale 1km radius buffer, while informed by 

previous studies, could create a mismatch between the spatial scale of our analysis and actual 

biological processes, hindering biological inference (Keitt et al. 2002). Continued effort into this 

study system will consider alternative scales in forthcoming work. 

For wildlife managers and those creating conservation strategies, ideally a large portion 

of variation in fitness could be explained through direct habitat associations, but it is important to 

note that individual fitness values are the cumulative sum of random events (e.g., longevity, 

reproduction) across a lifetime (Tuljapukar et. al. 2020) and subject to both individual 

heterogeneity and stochasticity (Jenouvrier et al. 2022). Heterogeneity refers to individual trait 

differences (Cam et al. 2016), which in this study of a territorial species includes variability in 

territory habitat composition. Stochasticity, on the other hand represents demographic outcomes 

due to random chance (e.g., coin flip outcomes; Snyder & Ellner 2016; Tuljapurkar et al. 2020). 



   95 

The contributions of these two forces to life-history outcomes varies across studies (e.g., Caswell 

& Vindenes 2018; Jenouvrier et al. 2018), but recent work suggests that these two factors can 

contribute differently under certain types of environmental conditions. For another long-lived 

avian species, the southern fulmar (Fulmarus glacialoides), favorable (less limiting) conditions 

decreased the contributions of individual heterogeneity, while increasing that of individual 

stochasticity, and vice versa, consistent with expectations that natural selection would be 

strongest in limiting environments (Jenouvrier et al. 2022).  

Within the Butte Valley study system and the generally arid Intermountain West region, 

annual precipitation is a major driver of primary productivity. Yet the constant irrigation of 

alfalfa decouples this habitat type from fluctuations in rainfall. Our habitat modeling has shown a 

constant increase in alfalfa abundance over time (Figure 4-5), and its consistency on the 

landscape could reduce the importance of annual precipitation to drive primary and secondary 

productivity, shielding individual SWHAs from unfavorable environmental conditions. Yet, the 

environmental decoupling and constancy of irrigated alfalfa on the landscape may still be an 

important driver behind local SWHA population growth. Despite strong breeding site fidelity, 

our simplified post-hoc examination of the “territory constancy” (variance) of habitat proportions 

across time also failed to reveal any notable correlations with LRS (Table 4-2). Our lack of 

hypothesized findings may lend more credibility to the role of stochasticity in shaping individual 

dynamics and life history outcomes than actual individual heterogeneity in traits and habitat use 

per se. 

A large portion of the literature on avian life history variation focuses on colonial systems 

(e.g. Sedinger et al. 1995, Hadley et al. 2006, Aubry et al. 2009, Fay et al. 2018). Even outside 

avian taxa, the long-term mammalian studies examining individual heterogeneity such as Soay 
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sheep (Ovis aries; Coulson et al. 2006), Red deer (Cervus elaphus; Moyes et al. 2006), and 

Weddell seals (Leptonychotes weddellii; Chambert et al. 2013) are colonial, exhibit gregarious 

herd behavior, or occur on isolated islands. Studies involving territorial species are discussed less 

commonly, possibly due to the difficulty of obtaining adequate sample sizes compared to high 

density colonial or herding species. Yet understanding these dynamics is no less important, 

especially in agricultural environments where habitat types have clear distinctions and are easily 

quantified. However, gaining biological inference about these systems requires working on and 

around private land boundaries. 

Despite occasional issues of private land access, our ability to annually resight individual 

marked females was quite high across our 36-year study duration (mean 0.71 BCI 0.68,0.73; 

Figure 4-6.) and the additional incorporation of state uncertainty parameters (d) for occasions 

when nests were not located provided a robust statistical methodology (Pradel 2005). In most 

cases the likely reason for not observing the reproductive state was that an individual had a nest 

failure very early in the breeding season and field crews simply hadn’t located the nest yet. 

Despite this problem our estimates of δ1 (failed reproduction group) were still quite high (77%). 

For those occasions classified into the successful reproductive group (δ2), our estimates of 98% 

provide strong support that our field surveys routinely find almost all successful nests, leading to 

accurate estimation of fitness components. Properly accounting for imperfect detection is vital to 

fitness estimation and questions of evolutionary inference (Gimenez et al. 2008). Working on 

private land creates unique challenges for long-term studies, however the importance of private 

land cannot be understated, given the predominance of private holdings, agricultural practices on 

these lands, and the large number of threatened species existing upon them (Knight 1999).  
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Within the United States, private lands tend to be at lower elevations where more 

productive soils exist and have already been converted from their native state, often for 

agriculture (Scott et al. 2001). Given the effects agricultural and grazing practices can have on 

biodiversity (Brennan & Kuvlesky 2005), informed policies are needed to maintain and possibly 

reverse biodiversity declines within agricultural environments (Fahrig et al. 2011). Agricultural 

systems vary in their effects and have been shown to maintain the abundance of some avian 

species, despite the declines in species richness (Wilson et al. 2017). While this analysis did not 

establish a strong relationship between agricultural habitat types and fitness components, nor 

lifetime fitness, understanding the fitness consequences or benefits for species utilizing these 

spaces is vital across the world.  
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Table 4-1. Summary statistics describing average habitat characteristics and population density 

metrics across 890 SWHA territories from 1985-2020. The compositional habitat metrics means 

(25% quantile, 75% quantile) represent the average proportion and proximity distance across all 

nests. The nearest neighbor distance is the straight line distance (meters) between nest trees of 

adjacent SWHA territories. The nearest neighbor count is the number of SWHA territories within 

2,000m of the focal nest.  
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Table 4-2. WAIC selection table comparing models of territory habitat components and 

population density metrics on annual changes in reproductive success of breeding female SWHA 

from (1985-2020). Habitat variables are represented by territory composition data (proportions of 

habitat type) and two proximity measures. Metrics of population density include distance to 

nearest conspecific neighbor and number of conspecifics within 2,000m). The last two columns 

show the correlation values and summary statistics between territory habitat variances and 

individual derived LRS values.  
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Table 4-3. Parameter estimates and 95% credible intervals. All survival, transition, and detection 

parameter values provided in the Table were averaged across female SWHA breeding in Butte 

Valley, CA between 1985-2020. 
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Figure 4-1. Demographic model diagram showing the four reproductive states and how 

individuals transition between them in a probabilistic manner. Reproductive states (large circles) 

and subscripts are as follows: F (failed attempt), 1 (fledged single chick), 2 (fledged two chicks), 

3+ (fledged 3 or 4 chicks). Symbols for demographic parameters are as follows: f (apparent 

survival for adult females, subscript represents current state) y (transition between reproductive 

states, subscript denotes state in time t ® state t+1). Dash lines represent a transition to a lower 

reproductive state, while solid lines are transitions to higher states. 

 

 

 

 

 

 

 

 

 

 



   102 

 

 

Figure 4-2. Annual probabilities of moving from one reproductive state (t) to another 

reproductive state the following year (t+1). Shared characters (asterisk, square, circle, triangle) 

represent parameter groups that were modelled with similar linear model parameterizations.  
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Figure 4-3. Annual apparent survival probabilities for adult female Swainson’s hawks breeding 

in Butte Valley, California from 1985-2020 according to reproductive state (dashed grey line) 

and age class (Ñ prime age; D old age). 
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Figure 4-4. Histogram of lifetime reproductive success for female Swainson’s hawks breeding in 

Butte Valley, California between 1985 and 2020. 
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Figure 4-5. (A) Change in the quantity of alfalfa and (B) row crops (km2) over the duration of 

the long-term study of Swainson’s hawks breeding in Butte Valley, California between 1985 and 

2020. (C) Average nearest neighbor distance between Swainson’s hawk nests from 1985-2020. 
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Figure 4-6. Resight probabilities for female Swainson’s hawks breeding in Butte Valley, 

California between 1985 and 2020. 
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Chapter 1 Appendices 

 

Appendix A 

 

Development Index 

This index represents an informed hatch order, where younger siblings are assigned a 

value in reference to the oldest sibling in the nest. All nestlings are aged (days) based on feather 

development using a photographic guide (Gossett & Makela 2005). The oldest nestling is 

assigned an index value of zero. The index value of younger nestlings is calculated by 

subtracting age, in days, from the oldest nestling age. We assumed that all siblings hatched in 

close proximity to each other, so large index differences reflect stunted growth, not actual age 

differences. For example, the sibling on the right (oldest; 38d old at sampling), the second oldest 

sibling (far left feather development equal to 34d old), and youngest nestling (middle, feather 

development equivalent of 26d). Resulting in index scores of 0, -4, and -12. This example 

provides an exaggerated case, compared to most nests. 

  

 

 

 

 

 

 

 



   118 

Appendix B 

 

Graphics illustrating the lack of discriminator power for determining sex in nestling SWHA 

based on soft structures (i.e., feather measurements). Red points and trend line represent females, 

with blue points and trend line representing males. 
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Appendix C 

 

Growth trajectories of mass and tarsus width, separated by sex. Red points and trend line 

represent females, with blue dots and trend line representing males.   
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Chapter 3 Appendices 

 

Appendix A 

 

Sex-specific survival probabilities with 95% Bayesian credible intervals of adult Swainson’s 

hawks. Males are triangles and females’ circles. Survival for both sexes was generally high and 

similar to previous work on this population and other studies of SWHA. 
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Appendix B  

 

Annual detection probabilities with 95% Bayesian credible intervals (2011-2018). As the initial 

year of this model was 2009, the earliest a female could recruit and thus inform detection 

probabilities was 2011.The earliest a male could recruit in this analysis was 2012. 
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Appendix C 

 

Table A. Result summaries for single variable models of different habitat types considered. A 

“Prop. Type” refers to the habitat composition of a territory. A “Proximity” model is the 

distance from nest tree to nearest field type. WAIC results illustrate a lack of model 

separation for habitat variables. 
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Chapter 4 Appendix 

Table 1. Using a model selection approach with the WAIC scoring statistic, we built models that 

classified individuals into two age groups (prime-age vs. old). By estimating survival 

probabilities, conditioned on current reproductive state (year t), we found that classifying 

individuals < 10 years old as prime-aged, and individuals ³ 10 as older, fit our data best. 

This age distinction was applied across all models. 

 


