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ABSTRACT 

 

ANTIMICROBIAL RESISTANCE IN THE MEAT INDUSTRY AND THE IMPACT OF 

MEAT ANIMAL FECAL MICROBIOMES AND RESISTOMES ON SUBSEQUENT 

ENVIRONMENTS 

 

The discovery of antibiotics for human and animal use is considered one of the greatest 

medical advancements. However, the widespread use of antibiotics has caused concerns about a 

potential increase of antimicrobial resistance genes (ARGs) within microbial communities offering 

the opportunity for consumers to acquire antimicrobial resistant infections through the direct 

consumption of meat animals or through the environment via manure applications to crop land. 

Many consumers are becoming increasingly conscious of antibiotic usage labeling when 

purchasing meat products resulting in animal agriculture being considered a primary contributor 

for the dissemination of antimicrobial resistance (AMR). Although in recent years many 

advancements have been made to more fully understand the resistome of production animals 

preharvest and few post-harvest but, there are minimal studies that fully characterize the resistome 

of meat animals carcasses throughout the harvest process. Therefore, the purpose of the review 

(Chapter 2) is to outline opportunities to utilize metagenomic sequencing to pinpoint potential 

sources of antimicrobial resistance throughout meat processing. This could provide insight to 

better understand the potential sources of antibiotic resistant bacteria as a result of meat production. 

As bacteria can acquire ARGs through horizontal gene transfer or mutations, as an 

evolutionary advantage directly resulting from environmental pressures, the objective of the 

following study (Chapter 3) was to evaluate the relationships between the fecal resistome of 



 iii 

different food animal species (avian, bovine, and porcine), the resistomes of meat from those 

animals, and resistomes of soil where feces was used as an amendment. Composite fecal samples 

(n = 20 per species) were collected from each commercial production facility and meat rinsate 

samples were (n = 20 per species) collected for each species at the time of harvest. After harvest, 

feces and litter were composted and applied as an amendment on agricultural land. After one 

growth season, soil samples (n = 20 per species) were collected separately for each species. 

Additionally, human waste solids were collected from wastewater treatment plants near each 

animal production operation (n = 14 per species), and soil samples amended with human waste 

solids were collected (n = 7 per species) from fields in close proximity to the broiler and bovine 

facilities. DNA was extracted, and the resistome library was prepped using the SureSelectXT 

reagent kit to prepare samples for target-enriched resistome sequencing targeting ARGs. Reads 

were analyzed using AMR++ v2 pipeline and sequences were aligned to the MEGARes v2 

database to identify ARGs. Richness, evenness, and Shannon’s diversity were calculated, and beta-

diversity was analyzed using Bray-Curtis dissimilarity distances. Hierarchal clustering was 

performed using Ward’s agglomeration in R. Regardless of species, fecal samples had a greater (P 

< 0.05) richness and evenness of ARGs compared to both meat and soil samples. For beta diversity, 

all the sampling types clustered (P < 0.05) individually (feces, meat, and soil) by species. 

Furthermore, within species each environment was dominated by different classes of ARGs 

indicating they have different resistomes. When resistance groups medically important for human 

health by the World Health organization were considered, human waste samples had a greater (P 

< 0.05) percentage (13%) of medically important resistance groups compared to all animal fecal 

samples (< 5%) (World Health Organization, 2017). The resistome of feces was richer and more 

diverse and clustered independently from both meat and soil indicating feces had a more unique 
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resistome across the different species. This suggests that the fecal resistome may not influence 

meat and amended soil resistomes.  
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CHAPTER 1 - REVIEW OF LITERATURE 

 

 Antimicrobial Resistance 

Antibiotic usage and resistance 

The discovery of antibiotics in 1928 by Alexander Fleming is by far one of the most 

important advancements in medicine. In a short amount of time, antibiotics were widely being 

utilized in both human medicine as well as agriculture. The usage of antibiotics has directly 

resulted in an increase in the average human lifespan due to the ability to treat infections that would 

have otherwise been fatal prior to antibiotic usage (Nicolaou and Rigol, 2018). Shortly after 

antibiotics became widely available for human use, the agriculture industry began utilizing 

antibiotics as therapeutic drugs for food production animals in an effort to prevent disease and  

supply the growing demand for food with high quality products that result from healthy herds of 

animals (Hardy, 2002). While the main goal of antibiotic use in livestock was to increase overall 

heard and flock health, it was discovered that antibiotic usage also improved growth and became 

a standard for growth promotion (Bacanlı and Başaran, 2019). Therefore, antibiotics not only 

elevated human medicine but increased animal health and efficiency. 

Although large scale usage of antibiotics is a rather recent advancement in human history, 

antibiotic resistance is ancient. The ancient origins of AMR were outlined in a study by D’Costa 

et al. (2011), were they used a targeted metagenomic analyses on 30,000 year old permafrost 

samples and were able to identify a highly diverse collection of ARGs encoding for resistance to 

β-lactams, tetracyclines, and glycopeptides as well as, vancomycin resistance element (VanA) and 

they were able to confirm its similarity to modern variants. 
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In addition, ARGs were found in the gut contents of 1,000-2,000-year-old humans (Wibowo et al., 

2021). Brealey et al. (2021) reported finding ARGs in the oral microbiota of Swedish bears 

collected over the last 180 years, well before the widespread use of antibiotics. All of these 

environments are considered pristine as they predate modern clinical use of antibiotic medications, 

and all of these studies provided researchers with evidence that antimicrobial resistance is naturally 

occurring. Although AMR is naturally occurring, the ability to develop resistance is a survival 

mechanism for bacteria giving them a competitive edge for survival against environmental 

pressures such as naturally occurring antibiotics produced by other bacteria (Bhullar et al., 2012). 

Although, ARGs naturally occurring, they have the ability to dissimilate throughout environments 

and spread to other bacteria via horizontal gene transfer. Horizontal gene transfer is the ability for 

bacteria to pass on ARGs to other species of bacteria. This can happen through three different 

mechanisms: conjugation, transformation, and transduction. Conjugation is a method of horizontal 

gene transfer where cells directly transfer genetic material from one another through direct cell to 

cell contact (Smillie et al., 2010). When utilizing transformation, bacteria uptake single strands of 

foreign genetic material and the recipient cell incorporates those genes into their own genomes for 

utilization (Johnston et al., 2014). Additionally, transduction is the sharing of genetic material from 

cell to cell utilizing phages (Brown-Jaque et al., 2015). It is through these mechanisms that bacteria 

are able to quickly evolve and develop resistance to common or misused antibiotics.   

Dissemination of antimicrobial resistance 

Recently, the world has given more attention to antibiotic usage especially across animal 

agriculture. The World Health Organization has acknowledged AMR as a global public health 

threat and outlined several potential source for the transmission of ARGs to humans (World Health 

Organization, 2019). Transmission of ARGs to humans has been outlined to occur through 
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multiple different pathways. Landers et al. (2012) outlined multiple potential pathways for the 

transmission of ARGs to humans. The major pathways outlined as potential vectors for the 

dissemination of ARGs to humans from animal agriculture are through direct contact with animals, 

through the environment, and some speculate through the consumption of meat products 

(Mayrhofer et al., 2004; Leverstein-van Hall et al., 2011; Marshall and Levy, 2011). Manure from 

livestock both treated with antibiotics and antibiotic free are both possible sources of 

environmental dissemination of ARGs into the environment through horizontal gene transfer 

(Holmes et al., 2016; von Wintersdorff et al., 2016).  

 In addition to ARG transmission from animals to humans, human waste is also a reservoir 

for medically important ARGs (Harris et al., 2014). In a study by Harris et al. (2014), they wanted 

to determine the extent that human effluent from hospitals contributed to the dissemination of 

ARGs into the environment by monitoring two waste-water treatment plants. One plant received 

effluent from a hospital while one did not, and they monitored the waste-water treatment plants 

for antimicrobial resistance of Escherichia coli. They reported there was no statistical difference 

in resistant Escherichia coli, between the waste-water treatment plants, and ultimately determined 

that hospitals alone were not the sole source of resistant Escherichia coli in human wastewater. 

With the presence of resistance in human waste, there is potential for the transmission of ARGs 

medically important for human health to be transmitted from humans to animals. A study by Ma 

et al. (2016), explored the ARGs and the shared fecal resistome of swine, chickens and humans. 

They reported finding high levels of tetracycline, multidrug, erythromycin, and aminoglycoside 

resistance genes across all the fecal samples from all the species. Additionally, there were many 

shared ARGs between the species and mobile the genetic elements aadA5-dfrA17-carrying class 

1 integron were identified in chicken feces and were carried by human pathogens. 
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Antibiotics are utilized in agriculture as a method to combat the growing demand for 

animal protein. Antibiotics can be used for meat production animals as a way to treat and prevent 

diseases and potential subclinical symptoms, and in sub-therapeutic levels as a form of growth 

promotion (Hao et al., 2014; You and Silbergeld, 2014). It is thought that the intensive use of 

antibiotics in food production animals can lead to the emergence of resistance due to misuse.  

Antimicrobial usage and resistance in poultry 

Chicken is the fastest growing protein groups in the United States with the value of broiler 

produced during 2020 exceeding $21 billion (USDA ERS - U.S. Per Capita Availability of Red 

Meat, Poultry, and Seafood on the Rise). With the continued growth of the broiler industry, 

antibiotics are typically administered to entire flocks for the treatment of diseases, disease 

prevention, and as a growth promotant (Poole and Sheffield, 2013). In the United States, there has 

been a significant decrease in the use of antibiotics in poultry. In 2013, 93% of broilers were 

receiving antibiotics during production and by 2017 that percentage had dropped drastically to 

17%. This decrease can also be represented as a 74% decrease in the use of gentamicin in 

hatcheries, a 95% decrease in tetracyclines and 60% decrease in virginamycin in broiler feed, and 

a 21% decrease in penicillin, 47% decrease in tetracyclines, and 72% decrease in sulfonamides as 

water soluble antibiotics in broilers (Singer et al., 2020).  

Even with the decrease in antibiotic usage, antibiotic resistance is still a major concern in 

the United States. Hedman et al. (2020) reported high levels of Campylobacter resistance to 

ciprofloxacin in humas was associated to poultry consumption and direct contact with animals. 

Additionally, they observed moderate levels of Salmonella resistant to ciprofloxacin which they 

associated with direct or indirect contact with animal feces. Further, multi-drug resistant 

Salmonella enterica serotype Infantis recovered from broilers was revealed in sick people 
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returning from South America (Hedman et al., 2020). Therefore, two important pathways for 

potential dissemination of resistance in poultry are feces and meat consumption. De Cesare et al. 

(2022) performed a pilot study in the European Union where they characterized the caeca and 

corresponding carcasses of chickens raised conventionally, and chickens raised without antibiotics 

to determine if there was any antimicrobial resistance gene spread pre or post-harvest. They 

reported clear separation in the caeca samples between conventional and antibiotic free rearing for 

antimicrobial resistance, however they did not find any differences in the carcass resistome 

between the two production practices. They also noted that there was a greater antimicrobial 

resistance load on carcasses compared to the caeca and concluded that all post-harvest steps 

contribute to the resistance load on the final carcass that reaches consumers. In another study by 

Li et al. (2020) where they analyzed the resistome of retail chicken breasts, they also found that 

production practice (conventional vs antibiotic free) did affect the resistome of the chicken breast 

and that a majority of the 10 ARGs belonged to aminoglycosides and ß-lactams. They also 

determined that the packaging type of the chicken breasts impacted the resistome. and found a low 

abundance of ARGs on chicken breasts compared to De Cesare et al. (2022) which they attributed 

to the regulatory differences between the United States and the European Union. While the earlier 

study by Li et al. (2020) ultimately concluded there was minimal risk of dissemination of ARGs 

to humans through the consumption of chicken breast regardless of production method. However, 

the more recent paper by De Cesare et al. (2022) speculated that different parts of the harvest 

process all contribute to the ARGs on the chicken carcasses, and more research needs to be done 

at those different steps in the process.  
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Antimicrobial usage and resistance in beef cattle 

Antimicrobial usage in beef production is used for similar purposes as mentioned 

previously in the poultry industry. In the cattle production antibiotic usage includes 

aminoglycosides, β-lactams, chloramphenicol, fluoroquinolones, glycolipids, ionophores, 

macrolides, quinolones, streptogramins, sulfonamides, and tetracyclines. One of the key time 

points of antibiotic usage in beef cattle is during the transition to a feedlot setting. This transition 

can be extremely stressful for animals as they are experiencing new handling practices, being 

transported, and commingling with other cattle which all can make the cattle susceptible to 

illnesses such as bovine respiratory disease (Sanderson et al., 2008). Because of this, cattle are 

typically treated with antibiotics upon entry into the feedlot to prevent subclinical symptoms from 

becoming clinical and preventing death (metaphylaxis). Doster et al. (2018), examined the impact 

of metaphylactic treatment of beef cattle with tulathromycin on the fecal resistome using shotgun 

metagenomics. They reported that the resistome of fecal samples collected from treated and 

untreated animals were similar at both day 1 and day 11. Since animal feces is considered a primary 

vector for the dissemination of antimicrobial resistant bacteria in the environment when manure is 

used as an application to soil for crops, this could indicate a similar potential of dissemination of 

ARGs in the early feeding period. However, in a study comparing fecal ARGs of dairy cattle 

treated with third generation cephalosporins, the researchers reported that antibiotic treatment of 

beef cattle increased the ARGs present in feces, in comparison to feces of untreated cattle, 

conversely indicating cattle treated with antibiotics have an increased risk of resistant bacteria 

(Chambers et al., 2015). 

In addition to the fear of dissemination of ARGs through feces, ARG dissemination 

through consumption of beef products is also a concern. Although many different procedures are 
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in place to prevent antibiotic residues from entering the food supply, many beef products carry 

label claims such as “antibiotic free” or “raised without antibiotics”. Several studies have 

investigated the resistome of beef products from both conventional and raised without antibiotics 

production styles. In a study by Doster et al. (2020b), they used target enriched metagenomics to 

compare ground beef from local grocery stores that were labeled as raised without antibiotics, and 

conventionally raised. They determined that there was no difference in the resistome of ground 

beef regardless of the label. In a study by Schmidt et al. (2020) they used utilized microbial culture 

based methods for the detection of five antimicrobials, from conventionally and raised without 

antibiotics ground beef samples from six different cities in the United States. They reported that 

the prevalence of tetracycline-resistant Escherichia coli (conventional, 46.3%; raised without 

antibiotics, 34.4%) and erythromycin-resistant Enterococcus (conventional, 48.0%; raised without 

antibiotics, 37.5%) was higher in in ground beef not labeled as raised without antibiotics. 

Additionally, the ARG blaCTX-M was more abundant in conventionally raised ground beef, while 

the ARGs mecA, tet(A), tet(B), and tet(M) were more abundant in ground beef ground beef labeled 

as raised without antibiotics, which should be lower since the animals were not treated with 

tetracycline drugs. Ultimately, they concluded antibiotic usage did not increase the risk of 

antimicrobial resistance in humans. Weinroth et al. (2022), compared the colon resistome and the 

resistome of meat trimmings of cull beef and dairy cows from conventional and raised without 

antibiotic production practices. They reported that tetracyclines were the most abundant ARG class 

for both the colon content and meat trimmings. Additionally, they reported differences in ARGs 

in colon content based on production practice, but there were no differences in resistome of the 

meat trimmings based on production practice, ultimately determining that there is minimal risk of 
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dissemination of ARGs to human through the consumption of meat form conventionally raised 

animals.  

Antimicrobial usage and resistance in swine 

Just as with antibiotic usage in both poultry and beef cattle, antibiotics are utilized by the 

swine industry to treat disease and are delivered in low doses through both water and feed to 

increase performance by increasing rate of gain and feed efficiency (Cromwell, 2002). More 

recently, similarly to poultry, there has been a shift in the swine industry to focus on sustainability 

resulting in a shift away from antimicrobial usage (Zeineldin et al., 2019). 

 Even with this focus on sustainability, AMR transmission from swine to human is still a 

concern in the industry. Kazimierczak et al. (2009) examined how the discontinuation of antibiotic 

use would affect ARGs in pigs by conducting a metagenomic analyses of pigs reared in an 

antibiotic free environment to determine their resistome. They subsequently sequenced ARGs and 

specifically noted this was the first time that tet(40) had been found outside the human gut. In a 

later study, Zwonitzer et al. (2016) sampled six different swine operations consisting of two 

antibiotic free and four conventional farms where antibiotics are fed prophylactically. They 

reported that isolates from conventional systems were significantly more resistant to amoxicillin, 

ampicillin, chlortetracycline, erythromycin, kanamycin, neomycin, streptomycin, tetracycline, and 

tylosin, but also found resistant Escherichia coli in isolates from organic manure. Lugsomya et al. 

(2018) also compared conventional and raised without antibiotics production methods and found 

that Escherichia coli resistant to aminoglycosides and extended-spectrum ß-lactams (ESBL) were 

greater in conventional swine farms. Similarly, Thakur and Gebreyes (2005) showed antimicrobial 

resistant Campylobacter was present in the manure of pigs raised both conventionally, and without 

antibiotics. In a study that assessed the subtherapeutic administration of tylosin and 
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chlortetracycline on the AMR of swine they reported that pigs supplemented with tylosin had a 

significantly greater prevalence of tylosin resistant bacteria compared to non-supplemented pigs, 

and the ARGs tet(O), tet(Q), and erm(B) were detected in all pigs (Holman and Chénier, 2013). 

Due to the application of swine manure to crop land as a soil amendment it is important to fully 

understand how ARGs move through the environment. 

 Very few studies have taken a look into the resistome of pork post-harvest. Vikram et al. 

(2019) collected pork chops from animals raised without antibiotics and conventionally from food 

service suppliers and cultured Escherichia coli, tetracycline-resistant Escherichia coli, third-

generation cephalosporin-resistant Escherichia coli, Salmonella enterica, tetracycline-resistant 

Salmonella, third-generation cephalosporin-resistant Salmonella, nalidixic acid–resistant 

Salmonella, Enterococcus spp., tetracycline-resistant Enterococcus, erythromycin-resistant 

Enterococcus, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. They 

determined that production practice did not impact the detection of cultured bacteria.  Additionally, 

quantitative PCR was used to assess the aac(6′)-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, 

blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M), and there were no differences between the 

swine production practices. Some of the research has also focused on the harvest facility. A study 

by Liu et al. (2020) focused solely on resistance in salmonella in pork production systems in China. 

They isolated 105 Salmonella strains from pig carcasses and the environment of 4 separate harvest 

facilities. They reported that all isolates were multi-drug resistant with 95% being resistant to 

tetracyclines and 91% resistant to trimethoprim and sulfamethoxazole. Cobo-Díaz et al. (2021) 

recorded the establishment of the microbial environment and resistome in the first 1.5 years of a 

newly built pork fabrication facility in Spain. They took samples of pork carcasses as well as 

environmental samples of the plant including belts, drains, and equipment. They noted the 
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resistome structure temporally evolved, and Acinetobacter and Pseudomonas were the most 

relevant carriers of ARGs and the most abundant ARGs associated with resistance were to 

betalactams (27.2%), tetracyclines (26.9%), aminoglycosides (25.3%), and quinolones (7.5%.). 

However, over time, there was significant increase an in the relative abundance of ARGs related 

to resistance to aminoglycosides, tetracyclines, and antimicrobials of the MLSP group (macrolides, 

lincosamides, streptogramins, and pleuromutilins). They also noted that mobile genetic elements 

were greater in drains and increased over time. They ultimately concluded that the pork carcasses 

themselves were a primary source of ARGs in the new facility. 

Antimicrobial resistance in soil and composted manure 

Another opportunity for ARGs to reach humans is through the application of manure as a 

fertilizer to crop land as animal manure is a rich source of ARGs regardless of whether or not those 

animals were treated with antibiotics (Topp et al., 2018). In a study by Chen et al. (2019) they 

compared the antimicrobial resistance gene profiles amongst soils with different manure 

amendment applications 120 days after application they reported the environmental resistome risk 

scores of all amended soils including manure from animals treated with antibiotics were equivalent 

to that of the unamended soils suggesting the soil was able to recover from the amendments. 

However, Macedo et al. (2020) tested soil with different textures to determine its ability to recover 

its beginning levels of ARG after manure application. They determined that manure application 

increased erm(B) and tet(W) resistance in the soil, and the type of soil impacted its ability to 

recover at a certain rate. They predicted that soil final recover times occurred between 29 – 42 

days, which is significantly shorter than the 120 days out lined in Chen et al. (2019). Further, Joy 

et al. (2013) tested the ARGs in soil and runoff following land application of swine manure slurries 

and determined the land application method did not impact the concentration of ARGs in 
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subsequent run off and the concentration of ARGs (chlortetracycline and tylosin) decreased with 

each rainfall event. In another study to examine the ARG load in swine manure slurries, Sanz et 

al. (2021) found ARGs representative of those found in animal feces and the levels of some 

antibiotics exceeded currently accepted minimum inhibitory concentrations. Sanz et al. (2021) 

additionally, found evidence that ARG loads were directly correlated to the prevalence of 

Actinobacteria, Proteobacteria, and Spirochaeta. H. Yang et al. (2020), used a microbial culture 

confirmation method and qPCR to test ARG prevalence in soil due to the amending with manure 

as a long-term pasture management strategy. They determined that long term use of swine manure 

as a soil amendment could increase the abundance of ARGs in the soil. However, Miller et al. 

(2019) determined cropland amendment with manure from beef cattle has a minimal impact on 

ARGs in soil. Ultimately, most of the forementioned studies were in agreement that although there 

was an initial increase in ARGs after manure application, with time, the resistome of soil was able 

to recover resulting in less ARGs present.  

Approaches to investigate antimicrobial resistance  

Until recently, all work in antimicrobial resistance was performed using culture 

confirmation. As technology improved, antimicrobial resistance has shifted from culture-

confirmation to the use of qPCR, and most recently utilizing shotgun sequencing to determine the 

whole resistome of an environment. Three major studies utilizing the same samples provided key 

insights to the benefits and disadvantages of each method (Kanwar et al., 2013; Kanwar et al., 

2014; Weinroth et al., 2018). In the first study, Kanwar et al. (2013) utilized a broth microdilution 

to isolate non type specific Escherichia coli, and then used qPCR assays to specifically detect 

tet(A), tet(B) and blacmy-2. They concluded that chlortetracycline treatment resulted in an 

increased probability of recovering ceftiofur resistant isolates at the phenotypic and genotypic 
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level and chlortetracycline appeared to increase ceftiofur resistance levels following ceftiofur 

crystalline free acid treatment. In the second study, Kanwar et al. (2014) extracted DNA directly 

from the feces and utilized qPCR with primers to target the genes: blacym-2, blactx-m, tet(A), 

tet(B) and 16S rRNA. They concluded that chlortetracycline should not be used in an attempt to 

control ceftiofur-resistance following treatment in with a cephalosporin. Chlortetracycline 

treatment led to an increase in both blacmy-2 and blactx-m gene copies, especially in pens of cattle 

where all the animals were exposed to ceftiofur. Pen level ceftiofur resistance was lower in pens 

were just one ceftiofur crystalline free acid treated animal was cohoused with non-treated pen 

mates. In the third study, Weinroth et al. (2018) analyzed the same samples using shotgun 

metagenomics. They concluded there were no significant detectable changes in the relative 

abundances of betalactam ARGs in the feces of cattle in association with treatment of with 

ceftiofur crystalline free acid although diversity was impacted. The relative abundances of 

tetracycline ARGs increased on day 26 after exposure of the cattle to chlortetracycline via feed. 

There was also an increased abundance of aminoglycoside-resistant genes at the end of the trial in 

all cattle. Because of the different methods, the results from the culture and qPCR studies did not 

mimic the results represented in the shotgun sequencing study even though the samples were the 

same. This could be expected due to the differences in the methods used. Both culture and qPCR 

are very targeted methods for the identification of antimicrobial resistance genes. In the first study 

where culture and PCR methods were used, they were able to only identify the assay specific genes 

in only the Escherichia coli samples they had selected for during the culture step. In the second 

study where they only used qPCR, they were able to be slightly less selective, but they were only 

able to determine resistance based on the gene specific primers they used during amplification. 

Essentially, they selected for only blacym-2, blactx-m, tet(A), and tet(B), and that is what was 
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amplified during PCR. The inability to identify sequences in shotgun that were identified in PCR 

was expected. During shotgun sequencing, all genetic material is amplified. This means that less 

prevalent taxa may not be as detectable compared to taxa that are present in higher quantities. As 

they were highly selected, these taxa were able to be detected in the culture and PCR methods. 

Both qPCR and shotgun sequencing are DNA amplification methods, but they resulted 

different information. Results from qPCR are very selective, as specific primers are used to target 

predetermined genes allowing them to be detected and quantified. Shotgun sequencing amplifies 

all DNA (bacterial, viral, and eurkaryotic) in the sample providing a more complete picture of the 

microbial community. While shotgun sequencing can provide more detailed taxonomic resolution 

that can provide information regarding functional properties, less prevalent taxa can be lost during 

amplification. In the previously mentioned studies, this is evident as some of the genes that were 

targeted for during culture and qPCR did not show up in the shotgun analysis. This could be 

because they were less prevalent. The method of investigation into ARGs within an environment 

depends solely on the research question. 

Target Enrichment 

 Although metagenomic sequencing is useful in the research of antimicrobial resistance 

genes, samples with greater amounts of background host DNA should be addressed with caution. 

Samples such as meat rinsates contain a greater amount of host DNA compared to environmental 

samples. Noyes et al. (2017) utilized a method on “on target” sequencing where a specific bait 

system was used to select for, or target enrich the samples for antimicrobial resistance. This 

enrichment allows for the identification of rare resistance genes that would otherwise not be 

detected. With the utilization of baits, there is less opportunity for host DNA to contaminate the 

samples during sequencing. This allows for researchers to focus on specific genes within samples 
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ultimately reducing cost and easing the later analyses. Using a hybridization method, specially 

designed baits that contain probes complementary to the targeted regions are bound to DNA 

molecules and then purified using magnetic beads to prevent the targeted genes from being rinsed 

away. This leaves only the targeted regions for downstream analyses (Bodi et al., 2013). 
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CHAPTER 2 - A REVIEW OF THE PREVALENCE OF ANTIMICROBIAL RESISTANCE IN 

MEAT ANIMALS DURING PROCESSING AND IN A RETAIL STORE  

 

 Introduction 

 The increase in awareness of the potential health threat from antimicrobial resistant 

bacteria have caused growing consumer concern in regard to meat animal production and the 

consumption of meat and potential vectors for the transmission of antimicrobial resistant bacteria 

to humans. Antimicrobial drug use in meat animals and subsequent antimicrobial resistance 

(AMR) transmission is quickly becoming a major concern for meat consumers around the world. 

The development and implementation of antimicrobial drug treatment in production animals has 

been a major milestone in animal health improving herd and flock health. Antibiotic drug usage in 

livestock provides benefits to food animal health and welfare, by therapeutically treating infections 

that can potentially spread throughout large production systems causing increased mortality rates 

and lower rates of gain. Additionally, antibiotic drugs can be administered preventatively to stop 

any potential infections that could be subclinical.  

The World Health Organization (WHO, 2015; WHO, 2017; WHO, 2019) and Centers for 

Disease Control and Prevention (CDC, 2019; CDC, 2021) have labeled antimicrobial resistance as 

one of the most critical threats in public health. The Centers for Disease Control estimates each 

year 2.8 million antibiotic resistant infections occur in the United States, resulting in upwards of 

35,000 deaths per year (CDC, 2019). Additionally, Nelson et al. (2021) reported just six multi drug 

resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, 

extended-spectrum ß-lactamase, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant 

Acinetobacter, and multidrug-resistant Pseudomonas) to have a potential economic impact of over 

$4.6 billion annually only adding to the overall impact of resistant bacteria.  
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 Much of the previous AMR surveillance research has been done using culture dependent 

methods. With aerobic culturing, bacterial isolates are tested for resistance to various drugs 

(Giuliano et al., 2019). Although culture-based studies have provided a plethora of information 

about AMR in many different environments, these culture-based methods are limited to the less 

than two percent of bacteria that is actually culturable in a lab setting (Wade, 2002). Therefore, 

culture-based method can only provide a highly selective look into the resistance potential in a 

microbial community. Due to the potential for transfer of  resistance genes between 

microorganisms through horizontal gene transfer and mobile genetic elements, resistance is not 

confined to a specific bacterial species and can be fluid within microbial communities (Ghosh et 

al., 2013; Martínez and Baquero, 2014; Brinkac et al., 2017). With all this considered, next-

generation sequencing, offers the opportunity to comprehensively view all the resistance genes in 

a microbial community (resistome), without the limitation of our ability to culture a bacterial 

species in a lab.  There are many studies that focus on the gut and fecal resistome of food 

production animals, but few studies have taken a deeper looking in to the resistome of meat animal 

carcasses throughout the harvest process, and into retail using next generation sequencing (NGS). 

Therefore, this review evaluated published studies that assessed antimicrobial resistance on 

carcasses in different meat processing facilities and in retail meat products to determine potential 

vectors of AMR resulting from the consumption of meat products. 

Materials and Methods 

Scientific articles were selected related to the research objective presented above. The 

literature was sourced from international online databases and was retrieved using a combination 

of the key search terms: “resistome, antibiotic resistance, metagenomics, avian, poultry, broiler, 
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chicken, swine, porcine, pork, bovine, cattle, beef, meat, carcass, processing plant.” Only articles 

published over the period of January 2002 to April 2022 were considered in the present review. 

 Review and Discussion 

Antibiotic resistance development and dissemination 

Although antibiotic drugs and AMR is currently a major topic in public health, antibiotics 

have origins which are considerably older than the discovery of penicillin by Sir Alexander 

Fleming in the early 1900’s. Naturally occurring antibiotics have evolved over millions of years, 

and subsequently antibiotic resistance is an equally natural occurring phenomenon with resistance 

genes being identified in samples of frozen permafrost samples that were dated to be over 30,000 

years old, and in the gut contents of 2,000 year old human remains (D’Costa et al., 2011; Wibowo 

et al., 2021). Many of the antibiotic mechanisms we currently utilize in modern medicine and in 

agriculture most likely originated from genes in environmental bacteria which have existed for 

thousands of years. Although these antibiotic and resistance genes in bacteria are natural, they both 

are survival mechanisms utilized by these organisms to provide an advantage during competition 

for resources. This competition for resources can pressure bacteria to form resistance to antibiotics 

through mutations occurring during cell replication or horizontal gene transfer which allows 

resistance to disseminate quickly to multiple species with selective pressures (Bhullar et al., 2012).  

There are three different mechanisms in which cells can transfer genetic material to one 

another. The first mechanism of horizontal gene transfer is conjugation. Conjugation is a process 

in which cells transfer genetic material through direct cell to cell contact with surface pili or 

adhesins. Once the cells are coupled, genetic material in the form of  plasmids are transferred from 

one cell to another by conjugative machinery within the cell (Smillie et al., 2010; Wozniak and 

Waldor, 2010; von Wintersdorff et al., 2016). Transformation is another mechanism of horizontal 
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gene transfer. Transformation, is the uptake of single strands of foreign DNA that is then integrated 

into the bacterial chromosomes of the recipient cell (Johnston et al., 2014). The DNA must be 

integrated into the recipient genome or circularized into a plasmid, and the resistance gene can 

then be utilized within the recipient cell and conserved. Lastly, resistance can be transferred via 

transduction. Transduction is the use of bacteriophages to transfer of advantageous genes to host 

bacteria and does not require cell to cell contact. These advantageous genes can be in the form of 

chromosomal DNA, plasmids, transposons, and genomic islands (Brown-Jaque et al., 2015). 

Through these mechanisms, bacteria are able to adapt to their environments and quickly develop 

resistance to heavily used antibiotics. This has caused antibiotic resistance to a public health crisis, 

with constant misuse of commonly used antibiotic medications in humans and animals, ultimately 

creating multi-drug resistant strains of bacteria which are resistant to three or more classes of 

antibiotic treatment.  

The use of antibiotics in animal production and harvest 

Animal agriculture is considered a key driver involved in the surge of antimicrobial 

resistance that is quickly becoming a public concern. Not long after the discovery of penicillin, 

antibiotic use in animal agriculture became a common occurrence and has been critical in the 

maintenance of herd and flock health and welfare as they vital in the prevention of and treatment 

of infectious diseases. Additionally, with improved herd and flock health, there was a subsequent 

improvement in feed efficiency. These advantages of antibiotic usage in livestock have resulted in 

the estimated sale of 60% of antibiotics sold in the United States in 2015 sold for utilization in 

food production animals (FDA, 2016). In the more current Annual Summary Report on 

Antimicrobials Sold or Distributed in 2020 for Use in Food-Producing Animals released by the 

United States Food and Drug administration (FDA, 2021), there was a 38% decrease in antibiotics 
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purchases for food production animals from 2015 to 2020, with a 3% decrease just from 2019 to 

2020. They attribute this to ongoing efforts to support more judicious use of antibiotics in food 

producing animals. There are over 100 antibiotics currently utilized in livestock operations. Some 

of the more common classes include: ß-lactams, aminoglycosides, tetracyclines, cephalosporins, 

amphenicols, macrolides, sulfonamides, fluoroquinolones, lincosamides, polypeptides, and 

polyenes. The FDA also reported that there was a 4% decrease in the domestic sales of 

tetracyclines, which represent the largest portion of domestic sales in the United States (66%), 

from 2019 to 2020. In addition to tetracyclines, ß-lactams account for 13%, macrolides for 7%, 

sulfonamides for 5%, aminoglycosides for 5%, lincosamides for 2%, cephalosporins for less than 

1%, and fluoroquinolones for less than 1% of the antimicrobials which are considered medically 

important classes in human medical therapy by the FDA sold in the United States for food 

producing animals. More specifically, an estimated 80% of cephalosporins, 57% of sulfonamides, 

54% of aminoglycosides, and 43% of tetracyclines were intended for use in cattle. An estimated 

87% of lincosamides and 42% of macrolides were intended for use in swine and an estimated 64% 

of ß-lactams were intended for use in turkeys. Additionally, antibiotics for cattle and swine 

accounted for an overwhelming majority of the medically important antimicrobial drugs sold from 

2016 to 2020 making antibiotics a key factor in maintaining healthy and productive animals (FDA, 

2021). Many of the concerns surrounding antibiotic usage in food production animals stems from 

the idea that the consumption of products derived from animals treated with antibiotic drugs could 

increase the risk of antibiotic resistant bacterial infections in humans that are increasingly more 

difficult to treat. 

In addition to antibiotic treatment during animal production, bacteria are additionally 

subjected to antimicrobials during the harvest process for cattle, swine and poultry. Regardless of 
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species, sanitation is important to ensuring safe meat products, because inherently meat production 

animals harbor many different bacteria in their intestinal tracts, some of which pose a potential 

threat to human health. Some of the more notable foodborne pathogens associated with meat 

production include Salmonella spp., Staphylococcus aureus, Escherichia coli, Campylobacter 

jejuni, Listeria monocytogenes, Clostridium perfringens, and Yersinia enterocolitica which are all 

major public health concerns. During the harvest process many critical sanitation steps are taken 

to ensure the resulting meat products are pathogen free and safe for consumption. However, even 

with many different efforts in place to prevent foodborne pathogens in meat, the United States 

Centers for Disease Control and Prevention estimated that between 1998 and 2008, 22% of the 

foodborne related illness cases in the United States resulted from the consumption of meat and 

poultry, and the greatest percentage (29%) of the foodborne illness related deaths were attributed 

to meat and poultry products, while only 23% of the total deaths were shown to have come from 

produce (CDC, 2019). Most of the deaths associated with meat and poultry products can be 

attributed to poultry products. This makes it even more important many different steps are taken 

to prevent pathogens during both harvest and further processing of meat product. With this in 

mind, even ARGS in non-pathogenic bacteria should be of concern, due to bacteria’s ability to 

acquire ARGs under pressure, and it can become a deathly combination when bacteria known to 

be pathogenic are able to acquire antimicrobial resistance mechanisms to both prevention 

antimicrobials and therapeutic antibiotics when they enter the food supply. 

Broiler  

Foodborne illness that can be traced back to poultry meat products has been estimated to 

cost over $2.4 billion per year in the United States, and Salmonella spp. and Campylobacter spp. 

the main pathogens of concern in the poultry industry (Lemonakis et al., 2017). In 2016, the United 
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States Department of Agriculture (USDA) agency Food Safety Inspection Service announced more 

stringent guidelines that required the prevalence of Salmonella positive not to exceed 9.8%, and 

the prevalence of Campylobacter positive carcasses not to exceed 15.7% of tested broiler chicken 

carcasses (USDA, 2022). In order for poultry processing facilities to meet these strict 

requirements, different antimicrobial processing aids are utilized. Typically, biocides, these 

antimicrobial processing aids are primarily used during the chilling process to reduce the 

prevalence of pathogenic bacteria to the acceptable levels dictated by the USDA, and ultimately 

improving the shelf life of those meat products. Some of the more common processing aids in the 

poultry industry are chlorine, peroxyacetic acid, and sodium hypochlorite. To date, few studies 

have used NGS to get an idea of the resistome of poultry carcasses and retail meat products and 

their potential to disseminate antimicrobial resistance humans, while most of the more recent 

studies have focused on the fecal microbiome. There are two studies that assessed the carcass or 

retail meat product using NGS for ARGs. Recently, De Cesare et al. (2022), performed a pilot 

study in the European Union where they characterized the caeca and corresponding carcasses of 

chickens raised conventionally, and chickens raised without antibiotics. They reported clear 

separation in the caeca samples between conventional and antibiotic free rearing for antimicrobial 

resistance, however they did not find any differences in the carcass resistome between the two 

production practices. They also noted that there was a greater antimicrobial resistance load on 

carcasses compared to the caeca and concluded that all post-harvest steps contributed to the 

resistance load on the final carcass that reaches consumers. In another study, Li et al. (2013) 

analyzed the resistome of retail chicken breasts, and reported that production practice 

(conventional vs antibiotic free) did effect the resistome of the chicken breast and that a majority 

of the 10 ARGs belonged to  aminoglycosides and ß-lactams. They also determined the packaging 
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type of the chicken breasts did impact the resistome and found a low abundance of ARGs on 

chicken breasts compared to a later study by De Cesare et al. (2022). When De Cesare et al. (2022) 

compared their results back to Li et al. (2013), they attributed the differences they reported in 

ARGs to the regulatory differences between the United States and the European Union. While the 

earlier study by Li et al. (2013) ultimately concluded there was minimal risk of dissemination of 

ARGs to humans through the consumption of chicken breast regardless of production method, the 

more recent paper speculated that different parts of the harvest process all contribute to the ARGs 

on the chicken carcasses, and more research needs to be done at those different steps in the process.  

Beef 

The major pathogens of concerned in fresh beef are Escherichia coli (specifically STECs), 

Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes. Of the 22% of foodborne 

illness cases that can be attributed to meat and poultry, only 13% of them can be attributed to beef 

products (Lianou et al., 2017). The beef industry has implemented many different prevention 

methods to decrease the risk of pathogens reaching consumers typically referred to as a “multiple 

hurdle approach”. This can include both chemical and thermal treatments to mitigate the spread of 

pathogens.  

In comparison to poultry, there were a greater number of studies that assessed the resistome 

of beef carcass and meat products. Similarly, to poultry the main question within those studies was 

if there were any differences in resistome based on production practice (conventionally vs. raised 

without antibiotics). Prior to the study by Noyes et al. (2016), there was very little research 

pertaining to ARGs in beef using shotgun metagenomics, where all prior work with ARGs in beef 

was performed using isolates. In that study they identified several different steps in the beef 

production system that had the potential to act as a vector for the transmission of ARGs to humans 
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both through the environment and the consumption of beef products. In addition to the pre-harvest 

environmental samples they took, (feces, soil, and water), they also took post-harvest swabs of the 

conveyor belt and rinsates of meat trimmings. They concluded that there was significantly few 

ARGs in the post-harvest samples and that the multiple hurdle intervention systems used during 

beef processing were effective in minimizing the likelihood of antimicrobial resistant infection 

through beef consumption. However, Noyes et al. (2016) noted there were high amounts of host 

DNA resulting in incomplete sequencing depths and suggested further investigation be done to 

negate the interference caused by the overwhelming amounts of host DNA to provide a more 

accurate resistome. Doster et al. (2020b) purchased packaged ground beef from local grocery 

stores as unlabeled or conventionally raised or labeled as raised without antibiotics, and they 

purchased these samples in a variety of different packaging styles (vacuum sealed, chub wrap, 

store grind and wrapped, and tray overwrap). The purpose of this study was to determine if there 

were any differences in the resistome of products raised conventionally or without antibiotics. 

However, unlike the previous study, they used a customized bait system termed “MEGaRICH” to 

target enrich for the resistome as developed in Noyes et al. (2017). This novel step allowed for the 

improvement of on target sequencing helping to sequence microbial DNA from samples that 

contained predominately host DNA and eliminating a lot of the noise caused by that host DNA. 

Doster et al. (2020b) reported there were no differences in the resistome of the ground beef samples 

in regard to the label on the product; however, they did report there being a difference in resistome 

of the ground beef products based on the type of packaging used. In a subsequent study by 

Weinroth et al. (2022), they also compared the two production practices of cull cows from 

conventionally raised beef and dairy cattle and organically raised dairy systems. They collected 

both colon and meat trimming rinsates from each different production style and metagenomic 
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DNA was obtained from the samples using target enriched sequencing to analyze the resistome. 

Weinroth et al. (2022) also reported there were no differences in the resistome of the meat 

trimmings between the production practices. In general, these results indicate production practice 

has minimal influence on the final meat products that are available to consumers, however, there 

is potential for facility and packaging type to play a key role in the dissemination of ARGs in beef 

products.  

Pork 

Just as with antibiotic usage in both poultry and beef cattle, antibiotics are utilized by the 

swine industry to treat disease  and delivered in low doses through both water and feed to increase 

performance by increasing rate of gain and feed efficiency to meet the growing consumer demands 

(Cromwell, 2002). Similar to poultry, swine industry has shifted its focus to sustainability resulting 

in a shift away from antimicrobial usage (Zeineldin et al., 2019). Although, a great value is placed 

on sustainability, AMR transmission from swine to humans is still a concern in the industry. There 

have been numerous studies to evaluate the impact of antibiotic usage on ARGs throughout 

different levels of production in the swine industry.  

 In 2009, Kazimierczak et al. examined the effect of the discontinuation of antibiotic use 

on the ARGs in pigs. They conducted a metagenomic analyses of feces from pigs reared in an 

antibiotic free environment, to determine their resistome. Surprisingly, they reported there were 

ARGs sequenced in pigs that should represent a pristine environment free of antibiotics. They also 

brought attention this study being the first time that tet(40) had been found outside the human gut. 

In a later study Zwonitzer et al. (2016) sampled six different swine operations both antibiotic free 

and conventional farms where antibiotics are fed prophylactically. Conventional systems were 

significantly more resistant to amoxicillin, ampicillin, chlortetracycline, erythromycin, 
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kanamycin, neomycin, streptomycin, tetracycline, and tylosin, but also found resistant Escherichia 

coli in isolates from organic manure. Additionally, Lugsomya et al. (2018), compared the 

conventional and raised without antibiotics pigs to determine if there were any differences in 

ARGs. They found that Escherichia coli resistant to aminoglycosides and extended-spectrum ß-

lactams (ESBL), were in greater abundance in conventional farms. On the other hand, Thakur and 

Gebreyes (2005) provided almost contrary results as they reported antimicrobial resistant 

Campylobacter was present in the manure of pigs raised both conventionally, and without 

antibiotics. In a study that assessed the subtherapeutic administration of tylosin and 

chlortetracycline on the ARGs in swine, pigs supplemented with tylosin had a significantly greater 

prevalence of tylosin resistant bacteria compared to non-supplemented pigs, and the ARGs tet(O), 

tet(Q), and erm(B) were detected in all pigs (Holman and Chénier, 2013). Due to the application 

of swine manure to crop land as a soil amendment it is important to fully understand how ARGs 

move through the environment. 

While many studies have assessed the fecal resistome in pigs raised under various 

conditions, few studies have looked into the resistome of pork during or post-harvest. In the only 

study in pork assessing ARGs of  pork in a retail store setting, Vikram et al. (2019) collected pork 

chops from animals raised without antibiotics and conventionally from food service suppliers and 

cultured Escherichia coli, tetracycline-resistant Escherichia coli, third-generation cephalosporin-

resistant Escherichia coli, Salmonella enterica, tetracycline-resistant Salmonella, third-generation 

cephalosporin-resistant Salmonella, nalidixic acid–resistant Salmonella, Enterococcus spp., 

tetracycline-resistant Enterococcus, erythromycin-resistant Enterococcus, Staphylococcus aureus, 

and methicillin-resistant Staphylococcus aureus. They determined that production practice did not 

impact the detection of cultured bacteria.  Additionally, quantitative PCR was used to assess the 
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aac(6′)-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), 

and tet(M), and similarly, there were no differences between the swine production practices. The 

other two studies focused more on the resistome within the harvest facility. The first study by Liu 

et al. (2020), focused solely on resistance on salmonella in pork production systems in China. They 

isolated 105 Salmonella strains from pig carcasses and the environment of 4 separate harvest 

facilities. They reported that all isolates were multi-drug resistant with 95% being resistant to 

tetracyclines and 91% resistant to trimethoprim and sulfamethoxazole. A recent study by Cobo-

Díaz et al. (2021) recorded the establishment of the microbial environment and resistome in the 

first 1.5 years of a newly built pork fabrication facility in Spain. They took samples of pork 

carcasses as well as environmental samples of the plant including belts, drains, and equipment in 

the processing area. They noted the resistome structure temporally evolved, and Acinetobacter and 

Pseudomonas were the most relevant carriers of ARGs and the most abundant ARGs associated 

with resistance were to betalactams (27.2%), tetracyclines (26.9%), aminoglycosides (25.3%), and 

quinolones (7.5%.). However, over time, there was significant increase an in the relative 

abundance of ARGs related to resistance to aminoglycosides, tetracyclines, and antimicrobials of 

the MLSP group (macrolides, lincosamides, streptogramins, and pleuromutilins) which are 

typically associated with swine. They also noted that mobile genetic elements were greater in 

greater abundance in drains and those mobile genetic elements increased over time. Ultimately, 

the researchers suggested that the change in resistome with dissemination of ARGs from the pork 

carcasses themselves determined they were a primary source of ARGs in the new facilities and 

played a key role in the built resistome in the plant.  
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 Final considerations 

The use of next generation sequencing to evaluate the resistome different environments has 

offered great insight into the resistome of many different environments throughout agriculture. 

Numerous studies evaluated the fecal resistome of food production animals; however, few studies 

have evaluated the resistome of meat animal carcasses, and meat products. Of the studies that 

evaluated the resistome of meat animals, samples were taken either after fabrication, or in a retail 

setting. In order to fully understand all of the potential vectors of AMR during meat processing, 

there should be sampling during multiple points in the harvest process, as well as through 

packaging. As ground beef packaged in different packages have different resistome, it is clear there 

is limited knowledge of AMR dissemination at multiple points in the meat production process 

from harvest to the retail case. 
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CHAPTER 3 - EVALUATION OF THE IMPACT OF AVIAN, BOVINE, AND PORCINE 

FECAL MICROBIOMES AND RESISTOMES ON SUBSEQUENT ENVIRONMENTS 

THROUGHOUT PRODUCTION 

 

 Summary 

The discovery of antibiotics for human and animal use is considered one of the greatest 

medical advancements. However, the widespread use of antibiotics has caused concerns about a 

potential increase of antimicrobial resistance genes (ARGs) within microbial communities. 

Microbes can acquire ARGs through horizontal gene transfer or mutations, resulting naturally and 

from environmental pressures. Many consumers consider antibiotic usage in animal agriculture to 

be a source for an increased abundance of antimicrobial resistant microorganisms in humans and 

the environment through meat consumption and manure application as a soil amendment. 

Therefore, the objective of this study was to evaluate the relationships between the fecal resistome 

of different food animal species (avian, bovine, and porcine), the resistomes of meat from those 

animals, and resistomes of soil where feces was used as an amendment. 

Composite fecal samples (n = 20 per species) were collected from each commercial 

production facility and meat rinsate samples were (n = 20 per species) collected for each species 

at the time of harvest. After harvest, feces and litter were composted and applied as an amendment 

on agricultural land. Soil samples (n = 20 per species) were collected separately for each species. 

Additionally, human waste solids were collected from wastewater treatment plants near each 

animal production operation (n = 14 per species), and soil samples amended with human waste 

solids were collected (n = 7 per species) from fields in close proximity to the broiler and bovine 

facilities. Metagenomic DNA obtained from samples were analyzed using target-enriched 
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sequencing to characterize the resistome and 16S rRNA gene sequencing to characterize the 

microbiome. Regardless of species, fecal samples had a greater (P < 0.05) richness and evenness 

of ARGs compared to both meat and soil samples. For beta diversity, all the sampling types 

clustered (P < 0.05) individually (feces, meat, and soil) within species. Furthermore, within species 

each environment was dominated by different classes of ARGs indicating they have different 

resistomes. When resistance groups medically important for human health were considered, human 

waste samples had a greater (P < 0.05) percentage (13%) of medically important resistance groups 

compared to all animal fecal samples (< 5%). The resistome of feces was richer and more diverse 

and clustered independently from both meat and soil indicating feces had a more unique resistome 

across the different species. This suggests that the fecal resistome is different from the meat and 

amended soil resistomes.  

Introduction 

The discovery of antibiotics for human and animal use is easily considered one of the 

greatest medical advancements in the past 100 years. However, antimicrobial resistant (AMR) 

bacteria are a worldwide public health concern, and according to the World Health Organization 

(WHO) and the United States Centers for Disease Control and Prevention (CDC) (World Health 

Organization, 2017; CDC, 2021). The widespread use of antibiotics in human and veterinary 

medicine has triggered concerns about a potential increase of antimicrobial resistance genes 

(ARGs) within microbial communities. Antibiotic usage in food animal production has been 

receiving increased criticism as a potential source for the spread of ARGs to humans directly 

through the consumption of meat and through the environment. Antibiotic resistance is a naturally 

occurring factor represented by the discovery of ARGs in ancient 30,000 year old permafrost. 

Bacteria can acquire ARGs through horizontal gene transfer or genetic mutations leading to the 
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spread of antimicrobial resistance (D’Costa et al., 2011). The objective of this study was to 

evaluate the relationships between the fecal microbiome and resistome of different food animal 

species (avian, bovine, and porcine), the microbiome and resistomes of meat from those animals, 

and the microbiome and resistomes of soil where feces was used as an amendment. 

 Materials and Methods 

Sample Collection 

Feedlot cattle, market hog, and broiler chicken production systems were sampled at a single 

location and time following the same group of animals. From each production system, animal feces 

(n = 20 per species), meat (n = 20 per species), and soil (n = 20 per species) where animal feces 

was applied as a soil amendment after composting were collected. Additionally, treated human 

waste biosolids (n = 14 per species) were collected from a nearby human wastewater treatment 

facility in close proximity to each animal system, and soil (n = 7) where human waste biosolids 

were applied as a soil amendment in close proximity to the avian and bovine facility. 

Fecal samples (n = 80) were collected ≤ 48 h prior to the harvest and were composited to 

obtain 20 pooled samples, and meat trimmings were collected during carcass fabrication of the 

same cohort of animals. After animals were removed, the feces for each species was allowed to 

compost (1 to 4 months) and the composted manure from each production system was applied to 

nearby crop land as a soil amendment. The amended soil samples were then collected during crop 

harvest. Treated human waste biosolids were collected at the same point in time as animal feces 

from nearby wastewater treatment facilities. Additionally, a different subset of treated human 

wastewater was applied to grasslands and soil samples from the fields were collected after plant 

growth. All samples were frozen with dry ice and transported to Colorado State University and 

upon arrival were stored at -80°C until further processing.  
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DNA Isolation and Sequencing 

 The DNA was isolated directly from the feces, soil, and human waste biosolid samples 

while a surface rinsate was performed on meat samples. For all raw fecal samples from animal 

production facilities, fecal debris was removed using a pre-sedimentation step. For each 10 g 

sample, 30 ml of buffered peptone water was added to the conical tube and the tube was shaken 

until well mixed. Larger particles were allowed to settle out of suspension for approximately 5 to 

10 minutes, and the supernatant was transferred to a clean conical tube. The conical tubes were 

then centrifuged at 4300 xg for 10 min, the supernatant was poured off and the resulting pellet was 

resuspended in 5 ml of 1x phosphate buffered saline (PBS). Samples were centrifuged and the 

supernatant was removed a final time. DNA was isolated from the pellet (sedimented or meat 

rinsate) or 10 g of non-sedimented sample using the PowerMax Soil DNA Isolation Kit (MoBio 

Laboratories, Inc.) according to manufacturer’s instructions with some modifications. For meat 

trim samples, surface rinsates were performed by adding 180 mL of phosphate-buffered saline to 

the bag and each sample was hand massaged. Following massaging, all supernatant was removed 

from the bag and centrifuged (10,000 ×g for 10 min at 4°C). The resulting pellet was stored at -

80°C until DNA extraction. DNA concentration was assessed using the Qubit dsDNA HS Assay 

Kit on a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA). DNA quality (260/280 

ratio) was assessed using a NanoDrop ND-1000 (Thermo Fisher Scientific, Waltham, MA). 

16S rRNA Library preparation and sequencing 

For 16S rRNA amplicon sequencing, Aliquots of DNA were shipped to Novogene 

Corporation (Beijing, China) for library preparation and sequencing. The V4 region of the 16S 

subunit was amplified with the 515F/806R primer set [5’-GTGCCAGCMGCCGCGGTAA-3’] / 

[5’-GGACTACHVGGGTWTCTAAT-3’]. Amplicon sequencing was performed using paired-end 
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chemistry (2 × 250 base pairs) on a HiSeq 2500 Sequencing System (Illumina, Inc., San Diego, 

CA) with a targeted depth of 100,000 reads per sample.  

Target Enriched AMR metagenomic Library Preparation and Sequencing 

For target enriched shotgun metagenomics, DNA libraries were prepared using the 

SureSelectXT Target Enrichment System for Illumina Paired-End Multiplexed Sequencing 

Library (Aligent Technologies, Santa Clara, CA) with a custom Antimicrobial Resistance gene 

target-capture library ‘MEGaRICH’ (Noyes et al., 2017). Libraries were sequenced (2 × 150 base 

pairs) on the HiSeq 2500 Sequencing System (Illumina, Inc. San Diego, CA). The sequencing 

depth on the meat samples was 4 samples per lane, soil samples were sequences at 15 samples per 

lane, and feces/biosolids were sequences at 20 samples per lane. 

Bioinformatics 

The 16S rRNA reads were received from Novogene and sequences were imported into and 

processed with QIIME2 version 2019.10 (Bolyen et al., 2019). Amplicon sequence variants 

(ASVs) were assigned using DADA2 (Callahan et al., 2017). Forward reads were trimmed at 25 

base pairs and reverse reads were trimmed at 26 base pairs, while both were truncated at 230 base 

pairs. A Naïve Bayes Classifier was trained on the Greengenes database version 13_8 99 % 

(DeSantis et al., 2006) to assign taxonomy. Reads assigned to chloroplast or mitochondria were 

removed from the ASV table.  

Antimicrobial Resistance Target enriched metagenomic sequence reads were processed 

using the AMR++ v2 pipeline and reads were aligned to the MEGARes v2 antimicrobial resistance 

database (Lakin et al., 2017; Doster et al., 2020a). Briefly, the AMR++ v2 pipeline utilized 

trimmomatic (Bolger et al., 2014) to trim and filter the reads for quality, and BWA was used to 

identify host DNA (G. gallus, B. taurus, S. scrofa, and H. sapiens) and align non-host reads to the 
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MEGARes antimicrobial resistance database. Gene sequences aligning to > 80% of the of the 

reference nucleotide sequence were included in further analysis. Reads aligning to gene accessions 

that require single nucleotide polymorphism confirmation were excluded from statistical analyses. 

Bioinformatics and statistical analyses 

 Antimicrobial resistance genes identified as medically important when found in human 

pathogens in a previous study by (Noyes et al., 2016a) were identified. These represented 19 

different antimicrobial resistance gene groups. 

 Data (16S rRNA ASV and AMR-TE ARG count tables) were imported separately in to R 

version 4.0.4 (R Core Team, 2018) using the phyloseq (McMurdie and Holmes, 2013) 

‘import_biom’ function and metadata was merged with each count table to form a phyloseq object. 

Alpha diversity metrics (richness, and Shannon’s) were calculated with phyloseq and Pielou’s 

evenness index (Pielou, 1966) was calculated using the microbiome package (Lahti and Shetty, 

2017). Count tables (ASV and ARG) were normalized using cumulative sum scaling (Paulson et 

al., 2013). Beta-diversity for ASVs was analyzed using generalized UniFrac distances (Chen et al., 

2012), while beta-diversity for ARGs was calculated using Bray-Curtis dissimilarity distances 

(Ricotta and Podani, 2017). Non-metric multidimensional was performed on the distances and 

plotted. Significant differences in community structure were calculated using a permutational 

multivariate analysis of variance (PERMANOVA) with the vegan (Oksanen et al., 2019) and 

pairwiseAdonis (Arbizu, 2019) packages. Hierarchal clustering was performed using Ward’s 

agglomeration clustering method (Murtagh and Legendre, 2014) using the ‘hclust’ function for 

both generalized UniFrac and Bray-Curtis distances. The relative abundances of both 16S and 

AMR-TE were calculated using phyloseq. Pairwise Wilcoxon rank-sum tests were performed with 

a Benjamini-Hochberg (Benjamini and Hochberg, 1995) correction for multiple post hoc 
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comparisons, and differences in beta-diversity were analyzed using pairwise PERMANOVA with 

a Benjamini-Hochberg correction for multiple comparisons and 9,999 permutations. For all 

analyses, critical alpha was set at 0.05.  

 Results  

Resistome and microbiome composition 

 A total of 236 samples were target-enriched and sequenced resulting in an average of 

41,251,699 paired-end clusters per sample (ranging from 1.5 million – 287.6 million). There were 

3,277 different gene classifications representing 50 drug classes, and 156 resistance mechanisms. 

Across all sample types (feces, soil, meat, and human-waste biosolids) and species (avian, bovine, 

porcine, and human) the most abundant resistance classes were tetracyclines (21.3%), multi-metal 

resistance (16.1%), drug and biocide resistance (16.0%), macrolide-lincosamide-streptogramin 

(5.9%), betalactams (5.7%), aminoglycosides (5.0%), mercury resistance (5.0%), copper 

resistance (4.1%), and sulfonamides (3.8%). Additionally, the 16S rRNA gene was sequenced for 

223 samples. There was an average of 128,619 reads per sample which resulted in a total 57,229 

different amplicon sequence variances. Proteobacteria was most common phylum in both soil 

(44.1%) and meat (55.1%) and firmicutes were the most common phyla in fecal samples (42.3%) 

regardless of the host species. 

Resistome and Microbiome  

 Regardless of production operation (avian, bovine, and porcine) the resistome of fecal 

samples was richer and more diverse compared to both meat and soil samples where composted 

feces was used as a soil amendment as evidenced by a greater richness, Pielou’s evenness, and 

Shannon’s alpha diversity metric (P < 0.05; Figures 3.1 – 3.3). This pattern was also present in 

human samples as waste biosolids collected from waste treatment facilities in close proximity to 
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each production facility displayed a greater richness, Pielou’s evenness, and Shannon’s alpha 

diversity index compared to soil samples where human waste were used as a soil amendment (P < 

0.05; Figure 3.4). While the resistome of fecal and human waste biosolid samples were richer and 

more diverse, this was not the case with the 16S microbial structure. For all production operations, 

amended soil samples had a greater richness, Pielou’s evenness, and Shannon’ Alpha Diversity 

Index (P < 0.05; Figures 3.5 – 3.7). This was also evident in the human samples as soil samples 

amended with human waste biosolids had a greater richness, Pielou’s evenness, and Shannon’s 

Alpha Diversity Index (P < 0.05; Figure 3.8). 

There were also significant differences in both resistome and microbial community 

structure. The resistome beta diversity of each sampled environment (feces, meat, and soil) within 

each animal production system were different based on Bray-Curtis dissimilarity values indicating 

the composition of ARGs across each environment was different (PERMANOVA P < 0.05; Figure 

3.9.A, B, C). Additionally, the beta diversity of human derived resistome samples showed 

significant differences by environment (waste biosolids and amended soil; PERMANOVA P < 

0.05; Figure 3.9.D) and location of the sampling (in close proximity to avian, bovine, and porcine 

production facilities; PERMANOVA P < 0.05). The microbial community showed similar 

differences between environments (Figure 3.10). The beta diversity of each sampled environment 

(feces, meat, and soil) within each animal production system were not similar based on 

Generalized UniFrac distances indicating the microbial community of each environment was 

unique (PERMANOVA P < 0.05; Figure 3.10.A, B, C). 

Similarly, this was also demonstrated in the microbial communities of the human derived 

biosolid and soil samples as there were significant differences in both environment and location 

(PERMANOVA P < 0.05; Figure 3.10.D). These resistome and microbial structure differences 
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were also evident when hierarchal clustering was performed. For both ARGs and 16S there was 

distinct clustering of samples within each environment. Interestingly, within the resistome and 

microbiome, these clusters followed the same pattern observed in the alpha diversity metrics. 

Hierarchal clustering of the resistome, showed across all host species, fecal samples formed an 

independent clade apart from both soil and meat samples (Figure 3.11 - 14.A). Conversely, in the 

microbiome hierarchal clusters across species, soil formed clades independently of both meat and 

fecal samples. (Figure 3.15 - 18.A). Additionally, for both the resistome and microbiome 

hierarchal clustering showed there were unique clades formed for human waste biosolids and 

amended soil, and within each environment there was further clustering among location of the 

water treatment facility (avian, bovine, and porcine). 

Avian resistome and microbiome 

The most prominent class of ARGs found in avian litter samples was tetracyclines (31.5%), 

and this was significantly greater than the abundance of tetracycline ARGs found in meat (13.4%) 

and soil (4.6%; Figure 3.19A). The predominant tetracycline groups associated with the litter 

resistome were TETW (8.7%), TETM (7.9%), TETO (5.9%), and TETQ (1.8%), which were all 

significantly lower in meat and soil samples (P < 1.0%; P < 0.05; Figure 3.20.A). In meat samples, 

the most common tetracycline group was TET39 (7.7%) which was significantly greater than both 

feces and soil (< 0.5%; P < 0.05). The groups TETW, TETM, TETO, and TETQ all confer 

resistance to ribosomal protection proteins, while TET 39 which was most common in meat 

encoded for MFS efflux pumps. Determinants conveying multi-metal resistance were the most 

prominent class in avian meat trim samples (29.0%; P < 0.05), significantly greater than both litter 

(10.9%) and soil (9.1%) which were similar (P > 0.05). Additionally, Drug and biocide resistance 

was the most prominent resistance class in soil samples amended with composted avian litter 
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(37.3%), compared to litter (11.3%) and feces (15.4%). Firmicutes were the most dominant phyla 

in the avian litter samples (65.9%), while proteobacteria was the most common in both soil (46.8%) 

and meat (78.1%; Figure 3.22.A). 

Bovine resistome and microbiome 

The bovine fecal resistome showed the greatest abundance of determinants for tetracycline 

resistance with 48.9% compared to both meat (3.6%) and soil (5.5%) samples (Figure 3.19.B). 

Bovine fecal samples had a greater abundance of TETW (15.4%), TETO (13.1%), TETM (8.0%), 

and TETQ (4.0%), when compared to both meat and soil samples (P < 0.05%, Figure 3.20.A). 

Bovine meat trimmings and soil samples showed less than 1% of tetracycline groups TETW, 

TETM, and TETO, and less than 2% of TETQ. The bovine meat resistome was dominated by 

genes conferring for multi-metal resistance (70.2%), which was significantly greater than fecal 

(6.7%) and soil (6.6%) samples (P < 0.05). Additionally, the resistome of soil samples amended 

with composted bovine feces had a greater abundance of drug and biocide resistant groups (33.2%) 

compared to feces (9.5%) and meat trimmings (1.7%; P < 0.05, Figure 3.7). The microbiome of 

the bovine fecal samples consisted mostly of firmicutes (64.0%), and bacteroidetes (17.1%, Figure 

3.22.B). The meat trim samples were dominated by proteobacteria (55.9%) and firmicutes 

(24.5%), while soil consisted of proteobacteria (42.9%), actinobacteria (12.2%), acidobacteria 

(12.2%), and gemmatimonadetes (10.0%).  

Porcine resistome and microbiome 

 The most prominent resistance class in porcine fecal samples were tetracyclines (41.2%) 

of which, most prominent resistance groups were TETW (13.9%), TETO (11.4%), TETQ (3.5%), 

and TETM (2.8%, Figures 3.19.C and 3.20.A). The abundance of tetracycline resistant genes feces 

(41.2%) was similar to the abundance of tetracycline resistant genes in porcine meat samples 
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(39.2%, P = 0.99); however, the meat trimming contained a greater percentage TETQ (24.6%) and 

TET39 (10.1%). Porcine meat trim samples also contained the greatest abundance of genes 

conferring multi-metal resistance (36.2%) compared to fecal (8.4%) and soil (6.6%) samples (P < 

0.05). Soil samples amended with composted porcine feces revealed the greatest abundance of 

genes conferring drug and biocide resistance (31.1%) compared to feces (10.3%) and meat (2.6%; 

P < 0.05). The porcine fecal microbiome was 58.2% firmicutes, 19.8% Bacteroidetes (Figure 

3.22.C). The microbiome of the meat trim samples were dominated by proteobacteria (35.5%) and 

firmicutes (33.3%), and the soil microbiome consisted of proteobacteria (47.2%), acidobacteria 

(13.2%), actinobacteria (13.2%), and Bacteroidetes (7.3%).  

Human waste biosolids resistome and microbiome 

The human waste biosolid samples had a greater abundance of tetracycline resistance 

ARGs (23.5%) compared to soil (3.6%; P < 0.05; Figure 3.19.D). the most common genes in 

human biosolid samples were TETW (5.8%), TETO (4.8%), TETQ (2.6%) and TETC (2.6%), and 

these were all in greater percentages than in soil samples where they were present in less than 1% 

(P < 0.05, Figure 3.20.A).Additionally, sulfonamides (14.8%), betalactamases (14.6%), MLS 

(12.3%), and aminoglycosides (10.4%) were abundant in the human biosolid samples. Conversely, 

genes coding for drug and biocide resistance (27.6%) were the most abundant in soil samples 

amended with composted human biosolids (P < 0.05). The human waste biosolids microbiome, 

primarily consisted of proteobacteria (32.3%), bacteroidetes (21.9%), and firmicutes (13.3%). 

Additionally, the soil amended with human waste, was dominated by proteobacteria (37.4%) and 

actinobacteria (17.2%), and firmicutes (11.4%; Figure 3.22.D). 
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Medically important antimicrobial resistance genes 

There were 19 genes identified a priori as being medically important to human health when 

expressed in human pathogens. Of these 19 genes, across all production systems, and human 

derived samples, 12 of them were identified across all species and sample types. There were 11 

medically important ARGs found in avian samples, 9 medically important ARGs found in porcine 

samples and 10 medically important ARGs found in bovine and human derived samples. There 

were no ARGs found in: bla(IMI), bla(MEC),bla(NDM), bla(SME), mcr (colistin 

phosphoethanolamine transferase) , vat (streptogramin A O-acetyltransferase), and vgb 

(streptogramin B ester bond cleavage). Alignments to bla(KPC) were only found in one of the 

human biosolid samples. Overall, genes conferring resistance to beta lactamases were the most 

abundant class of medically important determinants identified across all sample types.  

Overall, there was a significantly greater percentage of ARGs considered medically 

important to human health in human waste biosolid samples (11.96%) compared to fecal samples 

from meat animal production systems (0.73% - 2.19 %; P < 0.05; Figure 3.23). The soil samples 

amended with manure and human waste biosolids were dominated by sme (avian = 89.2%, bovine 

= 96.1%, porcine = 90.5%, and human = 84.3%). Additionally, when comparing the medically 

important ARGs of production animal fecal samples to the human waste biosolid samples, they 

were found to be significantly different from one each other with the biosolid samples clustering 

independently from the animal fecal samples (P < 0.05; Figure 3.26).  

 Discussion 

This study provides a unique opportunity to assess the resistome and microbiome of three 

different potential vectors of antimicrobial resistance across a boiler chicken, beef, and pork 

production system through the sampling of feces, soil amended with composted manure, and meat 
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trimmings. Additionally, this study provided an overview of the potential resistance conveyed in 

human fecal samples via the sampling of human waste biosolids, and the soil of land amended 

with those human waste biosolids. To date no other study has provided such a wide range of insight 

into the ARGs throughout multiple food animal production systems. The target enriched 

metagenomic data indicated that within each species, each production environment was different 

furthering the idea that AMD use in livestock production poses a lesser risk of potential human 

exposure to antimicrobial resistant bacterial populations via meat consumption or through 

amendment of land with manure from productions systems where AMDs are used. This is similar 

to a study by Hu et al. (2016), where they reported that animal feces, human waste biosolids, and 

soil microbiomes clustered independently on an ordination plot and identified these individual 

microbiomes as possibly preventing the dissemination of ARG between each other. 

 Based on the results of previous studies, it was expected for the resistome and microbiome 

of fecal samples to be significantly different from the meat trimming and amended soil for each 

species which is what the current study shows. For all animal species and human waste biosolids, 

tetracyclines were the most prominent resistance class across all species consisting primarily of 

the ARGs tet(O), tet(M), tet(Q), and tet(W). The high abundance of tetracycline resistance is in 

line with previous work in in avian, bovine, and porcine species (Kazimierczak et al., 2009; 

Holman and Chénier, 2013; Schmidt et al., 2020; Doster et al., 2021; De Cesare et al., 2022; 

Weinroth et al., 2022). In this study, there was also a high prevalence of drug and biocide, 

aminoglycoside, and multi-metal resistance and MLS in all animal feces. In the human waste 

biosolids, tetracyclines were also an abundant resistance class, along with aminoglycosides, and 

MLS, as well as betalactams and sulfonamides which were not as prevalent in the animal feces. 

The gene bla(OXA) was the most abundant betalactam resistance gene in human waste biosolids. 
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These results show similar patterns to other studies that have looked at the microbiome and 

resistome of individual production systems where each environment was unique. Regardless 

within each species, the meat trimmings had a unique resistome and microbiome separate from 

both the fecal samples and amended soil samples. In the current study, multi-metal resistance was 

reported to be the most abundant class for both avian and bovine meat trimmings, while porcine 

trimmings had a greater abundance of tetracycline and multi-metal resistance classes. The results 

for avian and bovine are different from previous studies. A previous study using similar target 

enriched sequencing methods to investigate meat trimmings in cull cows found tetracyclines to be 

the most prominent class, and another study of the resistome of ground beef in retail stores also 

found tetracyclines to be the most prominent resistance class (Doster et al., 2020b; Weinroth et al., 

2022). In a previous study to observe the resistome of chicken breast samples Li et al. (2020) found 

the majority of the resistome on the retail chicken breast samples belonged to the resistance class 

aminoglycosides and betalactams. In contrast, while aminoglycosides and betalactams were both 

present in the chicken samples of the currently study, they were not the most noteworthy classes. 

Additionally, a pilot study by De Cesare et al. (2022) where they tested resistome chicken 

carcasses, also reported aminoglycosides and betalactams as the most prominent classes on the 

broiler carcasses. In the current study, tetracyclines and multi-metal resistance were the most 

abundant classes in the swine meat trimmings. Several other studies in pork have also reported 

tetracyclines as a predominant class (Vikram et al., 2019; Liu et al., 2020; Cobo-Díaz et al., 2021). 

While there are no other references to multi metal resistance in meat trimmings, it has been 

mentioned in different resistome studies of livestock as a result of metal supplementation in animal 

feed (Guo et al., 2021; Tunsagool et al., 2021). Another noteworthy resistance class prevalent in 

the meat samples from all three production animals was mercury resistance. H. Yang et al. (2020), 
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where they isolated antibiotic and metal resistant Escherichia coli in pork harvest facilities in the 

United Kingdom, and reported finding resistance to mercury, silver, and copper with 18% of 

strains being resistant to mercury.  

 While some of the previous literature has suggested the presence of ARGs in manure 

correspond directly with the usage of antibiotics during animal production (Topp et al., 2018). Our 

results in the current study suggested manure and biosolids application on soil as an amendment 

had very little impact on the microbiome and resistome of the soil. Regardless of the manure 

application, the soil microbiome was dominated by proteobacteria, actinobacteria, and 

acidobacteria. Additionally, soil resistome was consistent regardless of which manure application 

was applied. Drug and biocide resistance was the most abundant resistance class across all 

amended soil samples. These results are consistent with results of Chen et al. (2019) where they 

compared the antimicrobial resistance gene profiles amongst soils according to application, and 

they reported the environmental resistome risk scores of all amended soils including manure from 

animal treated with antibiotics were equivalent to that of the unamended soils. However, Macedo 

et al. (2020) tested soil with different textures to determine its ability to recover its beginning levels 

of ARGs after manure application, and determined that manure applications increased erm(B) and 

tet(W) in the soil, and the type of soil impacted its ability to recover at a certain rate; however, 

final recovery times were predicted to occur between 29 – 42 days. 

 Due to their importance to human health, 19 ARG groups were identified as being 

medically important to human medicine. When these resistance genes are present in pathogenic 

bacteria, they can cause infections that are difficult to treat with current antibiotics posing a serious 

threat to public health. The medically important ARG groups are based off the ARGs described in 

Noyes et al. (2016b). Of the 19 medically important ARG groups, 12 of them were identified in at 
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least one sample of the current study and most notably, human waste biosolids possessed a 

significantly greater abundance of medically important ARGs (12%) compared to the feces 

collected from each animal production operation (0.7% to 2.2 %). Additionally, when the fecal 

resistome of the food animals was compared to the human biosolid resistome on an ordination plot, 

the animal feces clustered independently of the human was biosolids indicating the biosolids had 

a different resistome of medically important ARGs compared to the feces all three species of meat 

animal 

 Conclusions 

Currently, there are no other metagenomic studies that evaluate the impact of the fecal 

microbiome and resistome on both meat and manure amended crop lands to understand the effect 

ARGs in three different meat production animal operations could have on potential vectors for the 

transmission of AMR to humans. This study provides substantial evidence to indicate that the 

conclusions in previous studies suggesting there is minimal dissemination of ARGs to subsequent 

meat and soil environments of conventionally produced meat animals. Furthermore, the increased 

abundance of medically important ARGs in human waste biosolids could indicate contact with 

human waste is of greater risk for the dissemination of ARGs to subsequent environments, and 

further investigation should be done to fully understand the impact of human use of antibiotic on 

environmental resistomes.  
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Table 3.1 Antimicrobial resistance gene sequencing quality 

 Sequencing Quality for Antimicrobial Resistance Genes 

Species Environment Paired Reads 
Raw  

Reads 

Forward 

Reads 

Reverse 

Reads 

Reads 

Removed 

Reads 

Passing 

Quality 

Control 

Mapped to 

Host 

Host 

(%) 
Non-Host 

Non-Host 

(%) 
MEGARes1 MEGARES1 

(%) 

DEDUP 

AMR2 

AMR3  

(%) 

Avian 

Feces 33733650 67467300 795163 121193 50180 65535009 14531859 15.6542 51003150 84.3458 19867359 36.2978 1146573 2.2387 

Meat 71196340 142392680 2355455 253809 111591 137417221 127027197 89.4529 10390024 10.5471 836806 11.2787 70741 0.0696 

Soil 40155353 80310706 998022 95953 53200 78029622 7039039 9.5359 70990583 90.4641 6343050 6.3541 222586 0.2762 

Bovine 

Feces 33388989 66777979 829401 104143 52272 64807519 25845617 37.8685 38961903 62.1315 20055494 44.5736 752431 1.4821 

Meat 65291409 130582818 2401390 186893 105659 125774194 117496128 93.8477 8278066 6.1523 329143 13.7837 21993 0.0298 

Soil 25617182 51234364 620698 62156 32657 49820295 5810863 12.9595 44009433 87.0405 1256399 3.5393 79420 0.2227 

Porcine 

Feces 45477528 90955057 1357625 137322 149803 87673001 27674444 30.3360 59998557 69.6640 16874779 37.6900 853078 1.6947 

Meat 83601894 167203788 3920695 266770 142097 159414686 158576670 99.4529 838015 0.5471 35994 3.4311 8499 0.0059 

Soil 27703732 55407464 901707 66397 45352 53396050 4509614 8.8853 48886436 91.1147 1467664 3.3320 91020 0.1969 

Human 

Biosolids 21916439 43832878 648312 58866 45878 42329115 4253728 9.2253 38075387 90.7747 4060865 11.6990 351060 0.9545 

Soil 23106535 46213070 478257 42744 18748 45145741 4607262 11.3548 40538479 88.6452 3459126 8.0651 167802 0.4617 

Total Average 41251699 82503399 1338796 122376 72001 79602748 42041256 52.8138 37561492 64.1936 6695103 16.2740 350640 0.7302 

Total Minimum 1578905 3157810 22330 3554 697 3072900 12120 0.0473 261820 0.1795 72 0.0091 55 0.0000 

Total Maximum 287603137 575206274 10343821 782339 1644167 549788951 533845613 99.8205 403215315 99.9527 97022902 79.4384 1614465 4.1585 

1MEGARes – The number of reads aligned to the MEGARes database. 
2MEGARes (%) – The percentage of reads aligned to the MEGARes database. 
3DEDUP AMR – Removal of duplicated antimicrobial resistant isolates. 
4AMR (%) – The total percentage of antimicrobial resistant reads aligned and identified. 
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Table 3.2 The 19 ARG1 groups identified in avian samples a priori that are medically important when found in human pathogens. The 

percent of important ARGs and total ARGs reports the mean values within each group.  

   
Avian 

   
Feces Meat Soil 

Gene 

Group 

Resistance 

Class 
Resistance Mechanism 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

CFR 
Multi-drug 

resistance 

23S rRNA 

methyltransferases 
0.110 0.002 1/20 0.000 0.000 0/20 0.000 0.000 0/20 

CMY β -lactamases Class C β-lactamases 0.685 0.014 5/20 0.000 0.000 0/20 0.602 0.032 8/20 

CPHA β -lactamases Class B β-lactamasesf 0.000 0.000 0/20 0.073 0.004 2/20 0.000 0.000 0/20 

CTX β -lactamases Class A β-lactamases 17.653 0.3541 20/20 39.698 1.957 20/20 5.821 0.312 17/20 

GES β -lactamases Class A β-lactamases 0.423 0.008 3/20 0.000 0.000 0/20 0.057 0.003 1/20 

IMI β -lactamases Class A β-lactamases - - - - - - - - - 

IMP β -lactamases Class B β-lactamases 0.000 0.000 0/20 0.000 0.000 0/20 0.584 0.031 7/20 

KPC β -lactamases Class A β-lactamases - - - - - - - - - 

MCR Lipopeptide 

Colistin 

phosphoethanolamine 

transferase 

- - - - - - - - - 

MEC β -lactamases 
Penicillin binding 

protein 
- - - - - - - - - 

NDM β -lactamases Class B β-lactamases - - - - - - - - - 

OXA β -lactamases Class D β-lactamases 1.275  0.026 13/20 53.766 2.651 20/20 3.669 0.197 12/20 

SHV β -lactamases Class A β-lactamases 0.000 0.000 0/20 0.000 0.000 0/20 0.004 0.000 1/20 

bla(SME) β -lactamases Class A β-lactamases - - - - - - - - - 

SME 
Multi-drug 

resistance 

Multi-drug RND efflux 

pumps 
0.000 0.000 0/20 5.611 0.277 8/20 89.200 4.782 19/20 

TEM β -lactamases Class A β-lactamases 79.104 1.587 20/20 0.784 0.042 9/20 0.003 0.000 1/20 

VAT MLS 
Streptogramin A O-

acetyltransferase 
- - - - - - - - - 

VGA 
Multi-drug 
resistance 

Multi-drug ABC efflux 
pumps 

0.749 0.015 7/20 0.000 0.000 0/20 0.073 0.004 1/20 

VGB MLS 
Streptogramin B ester 

bond cleavage 
- - - - - - - - - 
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Table 3.3 The19 ARG1 groups identified in bovine samples a priori that are medically important when found in human pathogens. 
The percent of important ARGs and total ARGs reports the mean values within each group.  

   
Bovine 

   
Feces Meat Soil 

Gene 

Group 

Resistance 

Class 
Resistance Mechanism 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

CFR 
Multi-drug 

resistance 

23S rRNA 

methyltransferases 
4.246 0.031 14/21 0.000 0.000 0/19 0.000 0.000 0/20 

CMY β -lactamases Class C β-lactamases 0.000 0.000 0/21 0.000 0.000 0/19 0.181 0.005 1/20 

CPHA β -lactamases Class B β-lactamasesf - - - - - - - - - 

CTX β -lactamases Class A β-lactamases 57.227 0.416 21/21 28.103 1.238 15/19 2.090 0.062 3/20 

GES β -lactamases Class A β-lactamases 1.770 0.013 4/21 0.000 0.000 0/19 0.000 0.000 0/20 

IMI β -lactamases Class A β-lactamases - - - - - - - - - 

IMP β -lactamases Class B β-lactamases 0.000 0.000 0/21 0.000 0.000 0/19 0.257 0.007 2/20 

KPC β -lactamases Class A β-lactamases - - - - - - - - - 

MCR Lipopeptide 

Colistin 

phosphoethanolamine 

transferase 

- - - - - - - - - 

MEC β -lactamases 
Penicillin binding 

protein 
- - - - - - - - - 

NDM β -lactamases Class B β-lactamases - - - - - - - - - 

OXA β -lactamases Class D β-lactamases 3.406 0.025 19/21 54.630 66.451 19/19 0.185 0.005 1/20 

SHV β -lactamases Class A β-lactamases 0.000 0.000 0/21 0.861 1.047 1.19 0.000 0.000 0/20 

bla(SME) β -lactamases Class A β-lactamases - - - - - - - - - 

SME 
Multi-drug 

resistance 

Multi-drug RND efflux 

pumps 
0.000 0.000 0/21 0.000 0.000 0/19 96.146 2.849 13/20 

TEM β -lactamases Class A β-lactamases 29.136 0.212 9/21 4.399 3.616 7/19 1.141 0.034 4/20 

VAT MLS 
Streptogramin A O-

acetyltransferase 
- - - - - - - - - 

VGA 
Multi-drug 

resistance 

Multi-drug ABC efflux 

pumps 
4.216 0.031 11/21 0.000 0.000 0/19 0.000 0.000 0/20 

VGB MLS 
Streptogramin B ester 

bond cleavage 
- - - - - - - - - 
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Table 3.4 The 19 ARG1 groups identified in porcine samples a priori that are medically important when found in human pathogens. 
The percent of important ARGs and total ARGs reports the mean values within each group.  

   
Porcine 

   
Feces Meat Soil 

Gene 

Group 

Resistance 

Class 
Resistance Mechanism 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

CFR 
Multi-drug 

resistance 

23S rRNA 

methyltransferases 
2.437 0.0534 18/20 0.000 0.000 0/20 0.000 0.000 0/20 

CMY β -lactamases Class C β-lactamases 0.103 0.002 1/20 0.000 0.000 0/20 0.000 0.000 0/20 

CPHA β -lactamases Class B β-lactamasesf - - - - - - - - - 

CTX β -lactamases Class A β-lactamases 15.892 0.348 20/20 12.012 0.250 3/20 2.836 0.058 5/20 

GES β -lactamases Class A β-lactamases 1.320 0.029 3/20 0.000 0.000 0/20 0.000 0.000 0/20 

IMI β -lactamases Class A β-lactamases - - - - - - - - - 

IMP β -lactamases Class B β-lactamases 0.186 0.004 1/20 0.000 0.000 0/20 3.896 0.080 9/20 

KPC β -lactamases Class A β-lactamases - - - - - - - - - 

MCR Lipopeptide 

Colistin 

phosphoethanolamine 

transferase 

- - - - - - - - - 

MEC β -lactamases 
Penicillin binding 

protein 
- - - - - - - - - 

NDM β -lactamases Class B β-lactamases - - - - - - - - - 

OXA β -lactamases Class D β-lactamases 30.032 0.658 18/20 54.063 1.127 10/20 2.729 0.056 12/20 

SHV β -lactamases Class A β-lactamases - - - - - - - - - 

bla(SME) β -lactamases Class A β-lactamases - - - - - - - - - 

SME 
Multi-drug 

resistance 

Multi-drug RND efflux 

pumps 
1.671 0.037 1/20 0.000 0.000 0/20 90.539 1.863 17/20 

TEM β -lactamases Class A β-lactamases 45.176 0.990 18/20 33.925 0.707 2/20 0.000 0.000 0/20 

VAT MLS 
Streptogramin A O-

acetyltransferase 
- - - - - - - - - 

VGA 
Multi-drug 

resistance 

Multi-drug ABC efflux 

pumps 
3.182 0.0697 17/20 0.000 0.000 0/20 0.000 0.000 0/20 

VGB MLS 
Streptogramin B ester 

bond cleavage 
- - - - - - - - - 
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Table 3.5 The 19 ARG1 groups identified in human samples a priori that are medically 
important when found in human pathogens. The percent of important ARGs and total ARGs 

reports the mean values within each group.  

   
Human 

   
Waste Biosolids Soil 

Gene 

Group 

Resistance 

Class 
Resistance Mechanism 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

Percent 

Important 

ARGs 

Percent 

Total 

ARGs 

Samples 

with hits 

CFR 
Multi-drug 

resistance 

23S rRNA 

methyltransferases 
0.014 0.002 1/42 0.000 0.000 0/14 

CMY β -lactamases Class C β-lactamases 0.136 0.016 30/42 0.158 0.006 1/14 

CPHA β -lactamases Class B β-lactamasesf - - - - - - 

CTX β -lactamases Class A β-lactamases 2.398 0.287 40/42 0.689 0.026 6/14 

GES β -lactamases Class A β-lactamases 15.701 1.878 35/42 0.000 0.000 0/14 

IMI β -lactamases Class A β-lactamases - - - - - - 

IMP β -lactamases Class B β-lactamases 0.412 0.049 11/42 0.098 0.004 2/14 

KPC β -lactamases Class A β-lactamases 0.001 0.0001 1/42 0.000 0.000 0/14 

MCR Lipopeptide 

Colistin 

phosphoethanolamine 

transferase 

- - - - - - 

MEC β -lactamases 
Penicillin binding 

protein 
- - - - - - 

NDM β -lactamases Class B β-lactamases - - - - - - 

OXA β -lactamases Class D β-lactamases 77.648 9.286 42/42 14.621 0.546 13/14 

SHV β -lactamases Class A β-lactamases - - - - - - 

bla(SME) β -lactamases Class A β-lactamases - - - - - - 

SME 
Multi-drug 

resistance 

Multi-drug RND efflux 

pumps 
3.432 0.410 30/42 84.348 3.151 13/14 

TEM β -lactamases Class A β-lactamases 0.243 0.029 12/42 0.087 0.003 3/14 

VAT MLS 
Streptogramin A O-

acetyltransferase 
- - - - - - 

VGA 
Multi-drug 
resistance 

Multi-drug ABC efflux 
pumps 

0.015 0.002 1/42 0.000 0.000 0/14 

VGB MLS 
Streptogramin B ester 

bond cleavage 
- - - - - - 
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Figure 3.1 The alpha diversity metrics of the resistome of avian associated environments. abc 

Means within an alpha diversity metric lacking a common superscript differ (P < 0.05). A) The 
richness, B) Pielou’s evenness, and C) Shannon’s alpha diversity index of the resistome of 

different avian environments. 
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Figure 3.2 The alpha diversity metrics of the resistome of bovine associated environments. abc 

Means within an alpha diversity metric lacking a common superscript differ (P < 0.05). A) The 
richness, B) Pielou’s evenness, and C) Shannon’s alpha diversity index of the resistome of 

different avian environments. 
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Figure 3.3 The alpha diversity metrics of the resistome of porcine associated environments. abc 

Means within an alpha diversity metric lacking a common superscript differ (P < 0.05). A) The 
richness, B) Pielou’s evenness, and C) Shannon’s alpha diversity index of the resistome of 
different porcine environments. 
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Figure 3.4 The alpha diversity metrics of the resistome of human samples. ab Means within an 
alpha diversity metric lacking a common superscript differ (P < 0.05). A) The richness, B) 
Pielou’s evenness, and C) Shannon’s alpha diversity index of the resistome of different human 
samples. 
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Figure 3.5 The alpha diversity metrics of the microbiomes of avian associated environments. abc 

Means within an alpha diversity metric lacking a common superscript differ (P < 0.05). A) The 
richness, B) Pielou’s evenness, and C) Shannon’s alpha diversity index of the microbiomes of 
different avian environments.  
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Figure 3.6 The alpha diversity metrics of the microbiomes of bovine associated environments. 
abc Means within an alpha diversity metric lacking a common superscript differ (P < 0.05). A) 
The richness, B) Pielou’s evenness, and C) Shannon’s alpha diversity index of the microbiomes 

of different bovine environments.  
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Figure 3.7 The alpha diversity metrics of the microbiomes of porcine associated environments. 
abc Means within an alpha diversity metric lacking a common superscript differ (P < 0.05). A) 
The richness, B) Pielou’s evenness, and C) Shannon’s alpha diversity index of the microbiomes 

of different porcine environments.  
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Figure 3.8 The alpha diversity metrics of the microbiomes of human samples. ab Means within 
an alpha diversity metric lacking a common superscript differ (P < 0.05). A) The richness, B) 
Pielou’s evenness, and C) Shannon’s alpha diversity index of the microbiomes of human biosolid 

and human biosolid amending soil samples. 
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Figure 3.9 Bray-Curtis dissimilarity ordination of the resistomes of avian, bovine, porcine, and human associated environments. A) 
The Bray-Curtis dissimilarity ordinations of the resistome of different avian associated environments. B.) The Bray-Curtis 
dissimilarity ordinations of the resistome of different bovine associated environments. C) The Bray-Curtis dissimilarity ordinations of 
the resistome of different porcine associated environments. D) The Bray-Curtis dissimilarity ordinations of the resistome of different 
human associated environments.  
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Figure 3.10 Generalized Uni-Frac beta diversity ordination of the microbiomes of avian, bovine, porcine, and human associated 
environments. A) Generalized Uni-Frac beta diversity ordinations of the microbiome of different avian associated environments. B) 
Generalized Uni-Frac beta diversity ordinations of the microbiome of different bovine associated environments. C) Generalized Uni-
Frac beta diversity ordinations of the microbiome of different associated environments. D) Generalized Uni-Frac beta diversity 
ordinations of the microbiome of different human associated environments.  
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Figure 3.11 Ward’s Hierarchal Clustering and relative abundance of the resistome of avian samples. A) Ward’s Hierarchal Clustering 
of the resistome of different avian associated environments. B) The relative abundance of antimicrobial resistance at the class level for 
the corresponding avian samples. Classes of Resistance are colored by class groupings and the 16 most abundant classes are displayed 
in the legend. 
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Figure 3.12 Ward’s Hierarchal Clustering and relative abundance of the resistome of bovine samples. A) Ward’s Hierarchal 
Clustering of the resistome of different bovine associated environments. B) The relative abundance of antimicrobial resistance at the 
class level for the corresponding bovine samples. Classes of Resistance are colored by class groupings and the 16 most abundant 

classes are displayed in the legend.  
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Figure 3.13 Ward’s Hierarchal Clustering and relative abundance of the resistome of porcine samples. A.) Ward’s Hierarchal 
Clustering of the resistome of different porcine associated environments. B.) The relative abundance of antimicrobial resistance at the 
class level for the corresponding porcine samples. Classes of Resistance are colored by class groupings and the 16 most abundant 
classes are displayed in the legend.  
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Figure 3.14 Ward’s Hierarchal Clustering and relative abundance of the resistome of human samples. A.) Ward’s Hierarchal 
Clustering of the resistome of different human samples. B.) The relative abundance of antimicrobial resistance at the class level for the 
corresponding human samples. Classes of Resistance are colored by class groupings and the 16 most abundant classes are displayed in 
the legend.  
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Figure 3.15 Ward’s Hierarchal Clustering and relative abundance of the microbiome of avian samples. A.) Ward’s Hierarchal 
Clustering of the microbiome of different avian associated environments. B.) The relative abundance of microbiome at the phylum 
level for the corresponding avian samples.  
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Figure 3.16 Ward’s Hierarchal Clustering and relative abundance of the microbiome of bovine samples. A.) Ward’s Hierarchal 
Clustering of the microbiome of different bovine associated environments. B.) The relative abundance of microbiome at the phylum 
level for the corresponding bovine samples.  
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Figure 3.17 Ward’s Hierarchal Clustering and relative abundance of the microbiome of porcine samples. A.) Ward’s Hierarchal 
Clustering of the microbiome of different porcine associated environments. B.) The relative abundance of microbiome at the phylum 
level for the corresponding porcine samples.  



68 

  

Figure 3.18 Ward’s Hierarchal Clustering and relative abundance of the microbiome of human samples. A.) .) Ward’s Hierarchal 
Clustering of the microbiome of different human samples. B The relative abundance of microbiome at the phylum level for the 
corresponding human samples. Classes of Resistance are colored by class groupings and the 16 most abundant classes are displayed in 

the legend. 
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 Figure 3.19 The relative abundance of antimicrobial resistance at the class level for avian, bovine, porcine, and human associated 
environments. Classes of Resistance are colored by class groupings and the 16 most abundant classes are displayed in the legend. A.) 
The relative abundance of resistance classes of different avian associated environments. B.) The relative abundance of resistance 
classes of different bovine associated environments. C.) The relative abundance of resistance classes of different porcine associated 
environments. D.) The relative abundance of resistance classes of different human associated environments.  
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Figure 3.20 The relative abundance of antimicrobial resistance gene groups for avian, bovine, porcine, and human associated 
environments. Genes are colored by group displayed in the legend. A.) The relative abundance of resistance classes of different avian 
associated environments. A.) Antimicrobial resistance genes specific to tetracyclines in avian bovine, porcine, and human 
environments. B.) Antimicrobial resistance genes specific to macrolides, lincosamides, and streptogramins (MLS) in avian bovine, 

porcine, and human environments.   
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Figure 3.21The relative abundance of antimicrobial resistance gene groups for avian, bovine, porcine, and human associated 
environments. Genes are colored by group displayed in the legend. A.) The relative abundance of resistance classes of different avian 
associated environments. A.) Antimicrobial resistance genes specific to Aminoglycosides in avian bovine, porcine, and human 

environments. B.) Antimicrobial resistance genes specific to betalactams in avian bovine, porcine, and human environments. 
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Figure 3.22 The relative abundance of the microbiome at the phylum level for avian, bovine, porcine, and human associated 
environments. different colors represent different phylums in the legend. A.) The relative abundance at the phylum level of different 
avian associated environments. B.) The relative abundance at the phylum level of different bovine associated environments. C.) The 
relative abundance at the phylum level of different porcine associated environments. D.) The relative abundance at the phylum level of 
different human associated environments.  
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Figure 3.23 The relative abundance of medically important antimicrobial resistance genes for 
avian, bovine, porcine, and human associated environments. Classes of Resistance are colored by 
group in the legend. A.) The relative abundance of medically important resistance genes of 
different avian associated environments. B.) The relative abundance of medically important 
resistance genes of different bovine associated environments. C.) The relative abundance of 
medically important resistance genes of different porcine associated environments. D.) The 
relative abundance of medically important resistance genes of different human associated 

environments.  
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Figure 3.24 Bray-Curtis dissimilarity ordination of medically important resistance genes of 
avian, bovine, porcine, and human associated environments. A.) The Bray-Curtis dissimilarity 
ordinations of medically important resistance genes of different avian associated environments. 
B.) The Bray-Curtis dissimilarity ordinations of medically important resistance genes of different 
bovine associated environments. C.) The Bray-Curtis dissimilarity ordinations of medically 
important resistance genes of different porcine associated environments. D.) The Bray-Curtis 
dissimilarity ordinations of medically important resistance genes of different human associated 
environments. 
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Figure 3.25 Multivariate analogue of Levene's test for homogeneity of variances for all 
medically important antimicrobial resistance genes. A.) Multivariate analogue of Levene's test 
for homogeneity of variances for all medically important antimicrobial resistance genes by host 
(avian, bovine, porcine, human) for all environments (feces, meat, soil). B.) Multivariate 
analogue of Levene's test for homogeneity of variances for all medically important antimicrobial 
resistance genes by host (avian, bovine, porcine, human) and environment (feces, meat, and soil) 
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Figure 3.26 Bray-Curtis dissimilarity ordination of medically important resistance genes of 
avian, bovine, porcine, and human feces and biosolid samples. 
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