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ABSTRACT

EXPLICIT AND QUANTITATIVE RESULTS FOR ABELIAN VARIETIES OVER FINITE

FIELDS

Let E be an ordinary elliptic curve over a prime field Fp. Attached to E is the characteristic

polynomial of the Frobenius endomorphism, T 2−a1T +p, which controls several of the invariants

of E, such as the point count and the size of the isogeny class. As we base change E over extensions

Fpn , we may study the distribution of point counts for both of these invariants. Additionally, we

look to quantify the rate at which these distributions converge to the expected distribution. More

generally, one may consider these same questions for collections of ordinary elliptic curves and

abelian varieties.
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LIST OF NOTATION

E An elliptic curve

E(1), . . . E(s) A collection of s elliptic curves, usually geometrically

not isogenous

an The trace of Frobenius for E/Fpn

an The normalized trace in [−2, 2]

∆
(j)
n The Frobenius discriminant for the jth, E(j) elliptic curve over Fpn

DN The discrepancy of a sequence

D∗
N The star-discrepancy for a sequence

V (f) The (Hardy-Krause) variation of a function

η The type of a vector α

T A periodic function used in construction of the Vinogradov

function Ψ

Ψ(θ) The Vinogradov function

θ A vector with components (θ1, . . . , θs).

r(h) r(h) =
∏s

i=1 max{1, |hi|}

≪ Vinogradov complexity notation

O(f) Big O complexity notation

A(J,N) The number of the first N terms of a sequence in the interval J

λ Lebesgue measure

iv



χ Indicator/characteristic function

e(θ) exp(2πiθ)

E
k A set of functions with a certain constraint on their

Fourier expansion

∥x∥ The distance from x to the nearest integer.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Abelian Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Abelian Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Background and Point Counts . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Endomorphism Rings and Size of an Isogeny Class . . . . . . . . . . . 10

Chapter 3 Quasi-Monte Carlo Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 One dimensional quasi-Monte Carlo . . . . . . . . . . . . . . . . . . . . . 13

3.2 Higher dimensional quasi-monte Carlo . . . . . . . . . . . . . . . . . . . 17

3.3 Further results in Quasi-Monte Carlo Theory . . . . . . . . . . . . . . . . 20

3.4 Baker’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 A multivariate Vinogradov function . . . . . . . . . . . . . . . . . . . . . 27

Chapter 4 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Setup and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Discrepancy in One Dimension . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 The Frobenius angle vector is of finite type . . . . . . . . . . . . . . . . . 34

4.4 Fourier coefficients of the Vinogradov function . . . . . . . . . . . . . . . 40

4.5 Proof structure for O(1/N) results . . . . . . . . . . . . . . . . . . . . . . 41

4.5.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.2 Relation between PropX and
∑

Ψ(nθ) . . . . . . . . . . . . . . . . . . 43

4.5.3 Estimation of the integral . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 5 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Explicit Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 An equidistribution result . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.3 Discrepancy discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Quantitative traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Traces for two isogeny classes . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Explicit Discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Quantitative Discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Discriminants for two isogeny class . . . . . . . . . . . . . . . . . . . . . 72

vi



5.7 Arbitrary collections of Isogeny Classes . . . . . . . . . . . . . . . . . . . 79

5.7.1 The Berry-Esseen theorem . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.2 Berry-Esseen for collections of elliptic curves . . . . . . . . . . . . . . 81

Chapter 6 Abelian Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Traces of abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Sizes of Isogeny Classes of Abelian Varieties . . . . . . . . . . . . . . . . 89

6.2.1 Modified quasi-Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Sizes of minimal strata over extensions Fpn . . . . . . . . . . . . . . . 95

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



Chapter 1

Introduction

1.1 Introduction

Elliptic curves and abelian varieties are frequently studied objects in arithemtic geometry that

arise as zero sets of polynomials and exhibit a group structure on their points. The statistics

of certain invariants associated with abelian varieties have garnered frequent attention, such as

the Sato-Tate conjecture, for example. Chapter 2 will provide background on elliptic curves and

abelian varieties. Given an abelian variety A/Fp of dimension g, we have the characteristic poly-

nomial of Frobenius of degree 2g. This polynomial has complex conjugate roots of the form

αj =
√
p exp(iθj) for 1 ≤ j ≤ g, where ±θ are called the Frobenius angles. After base change to

Fpn , the roots of the pn Frobenius endomorphism are αn
j =
√
pn exp(inθj), which then produces

a sequence of Frobenius angles {nθ}∞n=1 = {(nθ1, . . . , nθg)}∞n=1 corresponding to extensions Fpn .

The trace of Frobenius and the discriminant of the Frobenius polynomials are two invariants that

can be calculated from trigonometric functions of the Frobenius angles. Thus, we look to quantify

the distribution of these invariants as we consider A over extensions of Fp by working with the

sequence {nθ}∞n=1.

Chapter 3 then turns to the methods of quasi-Monte Carlo integration to study the distributions

of these invariants through the sequence {nθ}∞n=1. Quasi-Monte Carlo integration aims to give

numerical estimates of integrals of a function f by averaging the value of f on points of a sequence.

In the case of a one dimensional sequence, we have Koksma’s inequality,

∣∣∣∣∣
1

N

N∑

n=1

f(θn)−
∫ 1

0

f(x)dx

∣∣∣∣∣ ≤ D∗
NV (f)

where D∗
N is the discrepancy of the sequence {θn}Nn=1 and V (f) is the variation of f . For higher

dimensional sequences, we shall use the following quantitative result. Let θ = (θ1, θ2, . . . , θs)
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and let nθ = (nθ1, nθ2, . . . , nθs). Let f be a periodic function with a certain condition on its

Fourier coefficients. Under a certain assumption on the irrationality properties of θ, we have the

asymptotic

1

N

N∑

n=1

f(nθ)−
∫

Is
f(x)dx = O

(
1

N

)
. (1.1)

The irrationality measure of θ will prompt a brief overview of Baker’s theorem, and the condition

on f will lead us to the construction of a multivariate Vinogradov function from [1].

We then develop the background results necessary to apply quasi-Monte Carlo integration to

the sequence of Frobenius angles in Chapter 4. Our main results are then presented in Chapters

5 and 6. Many of these results aim to quantify how often a numerical invariant associated with

an abelian variety lands in a certain interval as A is based changed to extension of Fpn . One such

result involves explicit bounds for extensions up to degree N as follows. Define an ∈ [−2, 2] to

be the normalized trace for an elliptic curve over Fpn . Let E/Fp be an ordinary elliptic curve. The

following theorem quantifies the distribution of normalized traces for E over extensions Fpn .

Theorem 5.1.1. Let E/Fp be an ordinary elliptic curve with normalized Frobenius angle θ̃. Let

I = [a, b] ⊂ [−2, 2] be the target interval for the traces an. Define AI as the quantity

AI =
1

π
(arccos(a/2)− arccos(b/2)).

Then the proportion of extensions of degree up to N where an ∈ I satisfies the inequality

PropTrE,N,I ≥ AI − 2D∗
N

where D∗
N is the discrepancy of the sequence {θ̃n}Nn=1.

For a visualization of this distribution, see the histogram in Figures 1.1.
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Figure 1.1: Histogram of the normalized traces for N = 1000 for the curve y2 = x3 + x+13 with p = 37.

We also have quantitative results using the Vinogradov function Ψ and the error estimate from

(1.1). The construction of Ψ involves region R1 for which Ψ roughly acts as an indicator function.

The angle rank of an abelian variety is a sort of linear independence condition on the Frobenius

angles, and maximal angle rank ensures a certain irrationality property for (θ1, . . . , θg). Let A be

an abelian variety over Fp. The following theorem considers the distributions of Frobenius traces

for A based changed over extensions of Fp.

Theorem 6.1.2. Let A/Fp be an abelian variety of dimension g with maximal angle rank, and

let I = [a, b] ⊂ [−2g, 2g] be the target interval for the normalized traces. Then the proportion of

extensions where the trace an lands in I satisfies

PropTrA,N,I ≥
∫

R1

Ψ(x)dx−O

(
1

N

)
.

The data and figures throughout this thesis were produced using SageMath, [2].
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Chapter 2

Abelian Varieties

2.1 Abelian Varieties

An abelian variety A of dimension g over K, denoted A/K, is a reduced and irreducible

projective variety with a group structure (which is necessarily abelian). This paper will mostly

be concerned with elliptic curves and abelian surfaces, which are abelian varieties of dimension

1 and 2, respectively. We first examine a few generalities before specializing to elliptic curves.

Much of the general theory can be found in [3], [4], [5] and [6].

Definition 2.1.1. Let A1, A2 be abelian varieties of dimension g defined over K. An isogeny

ϕ : A1 → A2 is a surjective homomorphism. If an isogeny exists between A1 and A2, then the two

abelian varieties are said to be isogenous.

Isogeny is an equivalence relation on abelian varieties of dimension g. For abelian varieties

over a finite field, these equivalence classes are parameterized by a certain characteristic polyno-

mials, which we now work towards. First, we need some preliminaries on endomorphisms and the

Tate module.

Definition 2.1.2. The endomorphism ring of A/K is the set of isogenies from A to itself,

End(A) = {ϕ : A→ A : ϕ is an isogeny}.

The multiplication by m map is one such endomorphism.
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Example 2.1.3. Let A/K be an abelian variety. For an integer m, the map

[m] : A // A

P ✤

// mP = P + P + . . . P︸ ︷︷ ︸
m times

is an endomorphism of A. The kernel of this map is the m-torsion: we use A[m](K) to denote the

K points of order dividing m, and we use Am = A[m](K) for the K m-torsion points.

We will mostly be concerned with abelian varieties over finite fields. In this setting, the Tate

module and the Frobenius endomorphism are key elements of the theory. Let q be a power of a

prime, q = pn, and let A/Fq be a g-dimensional abelian variety.

Definition 2.1.4. For a prime ℓ ̸= p, define the ℓ-adic Tate module on A by the inverse limit

Tℓ(A) = lim←−
n

Aℓn

over the multiplication by ℓ maps

Aℓn+1
[ℓ]−→ Aℓn .

Let ϕ : A→ A be an isogeny. Because ϕ is a group homomorphism it induces a Zℓ-linear map

ϕℓ : Tℓ(A)→ Tℓ(A)

on the Tate module via the action on ℓn torsion. Then the map

End(A)→ End(Tℓ(A))

ϕ 7→ ϕℓ

5



is an inclusion of rings. If a basis of Tℓ(A) is chosen, then an isogeny has a representation as a

2g × 2g matrix with entries in Zℓ.

We continue with A/Fq of dimension g. The map x 7→ xq induces an endomorphism of A,

called the Frobenius endomorphism. After a choice of basis for Tℓ(A), the action of Frobenius on

the Tate module induces the characteristic polynomial of Frobenius, fA/Fq
(T ). In fact, fA/Fq

(T )

has coefficients that are independent of ℓ and are integers. In addition, fA/Fq
(T ) is monic of

degree 2g, with sizes of the roots controlled by the Weil conjectures. The roots of fA/Fq
(T ) (the

eigenvalues of the Frobenius endomorphism acting on the Tate module) are complex numbers of

the form αj =
√
q exp(iθj) for α1, . . . αg and the complex conjugates α1, . . . αg. Possibly after

rearranging, the numbers 0 ≤ θ1 ≤ . . . ≤ θg are called the Frobenius angles. A is said to be

ordinary if the coefficient of T g in fA/Fq
(T ) is not divisible by p.

As mentioned earlier, a theorem of Tate shows the Frobenius polynomials parameterize isogeny

classes.

Theorem 2.1.5. [7, Thm. 1] Let A and B be abelian varieties over a finite field Fq, with charac-

teristic polynomials fA/Fq
and fB/Fq

. Then A and B are Fq-isogenous if and only if fA/Fq
= fB/Fq

.

We now specialize to the setting generally considered in this paper. Let A/Fp be an abelian

variety of dimension g. Then the characteristic polynomial of Frobenius can be factored over C as

fA/Fp
(T ) = (T − α1) . . . (T − αg)(T − α1) . . . (T − αg)

for αj =
√
p exp(iθj). Note that αj is an eigenvalue of the p Frobenius endmorphism, and therefore

αn
j is an eigenvalue of the pn Frobenius endomorphism. Therefore after base change to Fpn , the pn

Frobenius endomorphism has characteristic polynomial

fA/Fpn
(T ) = (T − αn

1 ) . . . (T − αn
g )(T − α1

n) . . . (T − αg
n)

6



where αn
j =
√
pn exp(inθj). Thus, many invariants of A over extensions of Fp are controlled by

the sequence {(nθ1, . . . , nθg)}. We will eventually need a notion of independence for {θ1, . . . , θg},

which is called the angle rank of A.

Definition 2.1.6. The angle rank of A is the quantity

δ(A) = dimQ(SpanQ({arg(αj) : 1 ≤ j ≤ 2g} ∪ {π}))− 1

which takes value δ(A) ∈ {0, . . . , g}.

2.2 Elliptic Curves

We now specialize to elliptic curves, which are abelian varieties of dimension 1. Even the

specialized case of elliptic curves has proved important by their use in cryptography, integer fac-

torization, and in the proof of Fermat’s last theorem.

2.2.1 Background and Point Counts

An elliptic curve E over a field K is an abelian variety of dimension g = 1. It has an affine

model given by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a3, a4, a5, a6 ∈ K. If char(K) ̸= 2, 3 then by completing the square and depress-

ing the cubic, this Weierstrass equation can be simplified to

E : y2 = x3 + ax+ b

for a, b ∈ K. As previously mentioned, the K points of E form a group, where the addition law

for two points is given by a certain rational function in terms of the coordinates of the points.

Geometrically, the group law is that any three collinear points sum to the identity. For an elliptic

7



curve over a finite field K, the number of K-rational points of E is denoted #E(K). By Tate’s

isogeny theorem (Theorem 2.1.5), if K is a finite field, then the isogeny class of E is determined

by #E(K). Again, the Frobenius endormorphism plays a central role in the theory.

Theorem 2.2.1. Let q be a power of a prime and let E/Fq be an elliptic curve. Denote the qth-

power Frobenius endomorphism by

ϕ : E/Fq → E/Fq

(x, y) 7→ (xq, yq)

and define a = q + 1−#E(Fq).

1. The Frobenius polynomial T 2 − aT + q in Z[T ] factors over C as (T − α)(T − α), with

|α| = √q, and therefore |a| ≤ 2
√
q.

2. Over the degree m extension of Fq, the number of points is

#E(Fqm) = qm + 1− (αm + αm).

The number a is called the trace of Frobenius, and is in fact the trace of the induced matrix

ϕℓ ∈ GL2(Zℓ). Knowing the point count #E(Fq) is equivalent to knowing a. We often normalize

the trace of Frobenius as

a =
a√
q
∈ [−2, 2].

We now consider E/Fp base changed up to Fpn . Note that ϕn is the Frobenius endomorphism

on E over Fpn . Therefore we have the characteristic polynomial

det(T − ϕn
ℓ ) = T 2 − anT + pn = (T − αn)(T − αn)

8



where αn =
√
pn exp(niθ). Thus, if one knows θ over Fp, one can easily calculate an and the char-

acteristic polynomial over Fpn . In fact, we have the following recurrence relation over extensions

in terms of a1;

a2 = a21 − 2p

an = a1an−1 − pan−2

for traces of pnth-power Frobenius endomorphisms (see [5, exercise 5.13]).

The Frobenius angles give a quick way to compute the (absolute value of the) discriminant of

the characteristic polynomial of Frobenius over extensions.

Lemma 2.2.2. Let E/Fp be an ordinary elliptic curve. Let ∆n denote the discriminant of the

characteristic polynomial of Frobenius over Fpn . Then

|∆n| = 4pn sin2(nθ), an = 2
√
pn cos(nθ)

where θ is the Frobenius angle of E over Fp.

Proof. This quickly follows from the identities an = αn + αn and α =
√
pn exp(niθ).

We’ll conclude this subsection with a fact about the Frobenius angles which will be used later.

Lemma 2.2.3. Let E/Fp be an ordinary elliptic curve. Then the Frobenius angles are not rational

multiples of π.

Note 2.2.4. In the case of an elliptic curve over Fp the following are equivalent, due to [3].

• E is ordinary.

• a1 ̸= 0.

• For all n ∈ Z>0, α
n /∈ R .

9



Proof. Suppose θ = xπ
y

for x, y ∈ Z. Then

αy =
√
py exp(ixπ)

= µ
√
py

where µ = ±1 depending on the parity of x. However, then αy ∈ R, but E is ordinary, and

therefore θ is not a rational multiple of π.

2.2.2 Endomorphism Rings and Size of an Isogeny Class

Fix a prime p, an integer n ≥ 1 and an integer an with |an| ≤ 2
√
pn. Then, by Tate’s isogeny

theorem (Theorem 2.1.5) the set of (isomorphism classes of) elliptic curves over Fpn with pn+1−

an points defines an isogeny class, which we will denote by I(an). By Theorem 4.1 in [4], I(an)

is not empty.

We will consider the case that an and p are coprime (that is, any curve in I(an) is ordinary).

The endomorphism ring of any curve E ∈ I(an) containsOan,p,n = Z[T ]/(T 2−anT +pn), which

is an order in the quadratic imaginary field Kan,p,n = Q(
√

a2n − 4pn). Conversely, if O ⊂ Kan,p,n

is an order containing Oan,p,n, then O occurs as the endomorphism ring of an elliptic curve E in

I(an). Waterhouse shows this in [4, Thm. 4.2], using a lattice and quotient construction in the

vector space Vℓ(E) = Tℓ(E)⊗Zℓ
Qℓ. An isogeny between two elliptic curves ϕ : E1 → E2 induces

an isomorphism Vℓ(E2)→ Vℓ(E2) that is equivariant with respect to the Frobenius endomorphism,

and therefore the characteristic polynomial of Frobenius is the same for E1 and E2.

Thus, to find the number of curves in an isogeny class I(an), one may count the number

of curves with endomorphism ring O, for each order O containing Oan,p,n. This leads to the

Kronecker class number.

Definition 2.2.5. Let O be an order in a quadratic imaginary field with discriminant ∆, let h(O)

denote the class number ofO, and h∗(O) = h(O)/(#O×). UseOmax to denote the ring of integers

10



in the ambient field. The Kronecker class number, H∗(∆), is

H∗(∆) =
∑

O⊂O′⊂Omax

h∗(O′).

Schoof gives the following count of the size of the isogeny class I(an) which relies on the

Kronecker class number.

Theorem 2.2.6. [8, Thm. 4.6] Let an be coprime to p, and let I(an) be the isogeny class of elliptic

curves that have #E(Fpn) = pn + 1− an points. Then the size of the isogeny class is

#I(an) = H∗(a2n − 4pn).

Katz, in [9, cor. 5.2], uses the Brauer-Siegel formula for h∗(Omax) to find the following bounds

on the Kronecker class number.

Theorem 2.2.7. For any real ϵ > 0, there exists Cϵ > 0 such that for any quadratic imaginary

order O with |∆| ≥ Cϵ, we have

|∆|1/2−ϵ ≤ H∗(O) ≤ |∆|1/2+ϵ.

Recall the notation of 2.2.1 and combine 2.2.6, 2.2.7 and the discriminant calculation in 2.2.2

to get the following corollary.

Corollary 2.2.8. Let an be coprime to p. Then for an isogeny class I(a1) over Fp with Frobenius

angle θ1, we have the following bound on the size of the isogeny class over extensions:

∣∣4pn sin2(nθ1)
∣∣1/2−ϵ ≤ #I(an) ≤

∣∣4pn sin2(nθ1)
∣∣1/2+ϵ

.

Therefore we expect the size of an isogeny class to be roughly I(an) ≈ 2pn/2, as long as nθ1

is away from a multiple of π.

11



We have now seen that, given E/Fp, we can calculate the trace of Frobenius (and by extension,

the point count of E) and the discriminant (and therefore roughly the size of the isogeny class) from

the values of the sequence {θn}. Therefore the next chapter will examine explicit and quantitative

results for the calculation of traces and discriminants from the sequence {θn}.
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Chapter 3

Quasi-Monte Carlo Theory

Given a function f(x), one might estimate the integral
∫ 1

0
f(x)dx by taking some collection

of points {θ1, . . . , θN} and calculating the sum 1
N

∑N
n=1 f(θn). Monte Carlo methods aim to pick

the terms of the sequence {θ1, . . . , θN} at random. We, however, will focus on quasi-Monte Carlo

integration, in which one picks a sequence {θ1, . . . , θN} to use in the estimation, instead of picking

points at random. The error in the quasi-Monte Carlo integral method can be bounded through

properties of f(x) and {θ1, . . . , θN}.

3.1 One dimensional quasi-Monte Carlo

We now turn our attention to sequences and estimation of integrals by finite sums. A reference

for much of the general theory is [10].

For this section, let {θn}∞n=1 be a real sequence contained in the half-open interval [0, 1). Let

J ⊆ [0, 1) and define A(J,N) to be the number of terms of {θn}Nn=1 contained in J , that is

A(J,N) = #{θn ∈ J : 1 ≤ n ≤ N}.

Let e(z) = e2πiz and let λ denote the Lebesgue measure. If J is the interval J = [a, b] ⊂ R, then

λ(J) = b− a.

Definition 3.1.1. The sequence {θn}∞n=1 is equidistributed (sometimes called uniformly distributed)

in the interval [0, 1) if for all pairs a, b ∈ R with 0 ≤ a < b < 1 we have

lim
N→∞

A([a, b), N)

N
= λ([a, b)).

Roughly, a sequence is equidistributed if, after N terms, any subinterval has about the same

number of terms of the sequence as any other subinterval of the same length. Then, one could use
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an equidistributed sequence on [0, 1) to approximate the average value of a function f by averaging

the value of f at the first N terms of the sequence. This leads to the following integral criterion for

equidistribution.

Theorem 3.1.2. The sequence {θn}∞n=1 is equidistributed in [0, 1) if and only if, for every Riemann-

integrable function f : [0, 1)→ C, we have

lim
N→∞

1

N

N∑

n=1

f(θn) =

∫ 1

0

f(x)dx.

There also exists the Weyl citerion for equidistribution, which roughly states that the first N

terms of an equidistributed sequence are evenly spaced on the unit circle after exponentiation. See

Figure 3.1 for a visualization.

Theorem 3.1.3 (Weyl Criterion). The sequence {θn}∞n=1 is equidistributed in [0, 1) if and only if

for all non-zero h ∈ Z,

lim
N→∞

1

N

N∑

n=1

e(hθn) = 0.

Example 3.1.4. Let θ be an irrational number. Note that for all non-zero h ∈ Z,

1

N

N∑

n=1

e(hnθ) =
e(hθ)(1− e(hNθ))

N(1− e(hθ))
∣∣∣∣∣
1

N

N∑

n=1

e(hnθ)

∣∣∣∣∣ =
∣∣∣∣
e(hθ)e(hNθ/2)(e(−hNθ/2)− e(hNθ/2))

Ne(hθ/2)(e(−hθ/2)− e(hθ/2))

∣∣∣∣

=

∣∣∣∣
sin(πhNθ)

N sin(πhθ)

∣∣∣∣

≤ 1

N | sin(πhθ)| .

It then follows from the Weyl criterion that the sequence {nθ (mod 1)}∞n=1 (often called a Kro-

necker sequence) is equidistributed in [0, 1) since 1
N | sin(πhθ)| → 0 as N →∞.
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(a) N = 10 (b) N = 20

(c) N = 50 (d) n = 500

Figure 3.1: The first N terms of an equidistributed sequence exponentiated onto the unit circle.

However, we would like an explicit version of the discrete integration rule from Theorem 3.1.2.

That is, we would like a result that gives an explicit bound for the error on estimating an integral

by the average function value at the first N terms of a sequence. There are two ways that an error

term arises. While {θn}∞n=1 may be equidistributed, the first N terms may be bunched together in

one subinterval, and further apart in another subinterval. This is measured by the discrepancy of

{θn}Nn=1. Another way an error term can appear is the function may oscillate or have many small

peaks that may not be seen by evaluating the function at finitely many points. This is measured by

the variation of a function. We now formalize these definitions.

15



Definition 3.1.5. The discrepancy of a finite real valued sequence {θ1, . . . , θN} is defined as

DN = sup
0≤α<β≤1

∣∣∣∣
A([α, β), N)

N
− λ([α, β))

∣∣∣∣ .

In the star discrepancy, the supremum simply runs over all intervals of the form [0, β) rather

than intervals of the form [α, β). The rest of this paper will generally focus on the star discrepancy.

Definition 3.1.6. The star discrepancy of a finite real valued sequence {θ1, . . . , θN} is defined as

D∗
N = sup

0<β≤1

∣∣∣∣
A([0, β), N)

N
− λ([0, β))

∣∣∣∣ .

Note that D∗
N ≤ DN , as every interval considered in calculating D∗

N is also considered for DN .

Definition 3.1.7. The variation of a real valued function f on [0, 1) ⊂ R is

V (f) = sup
P∈P

nP−1∑

j=0

|f(xj+1)− f(xj)|

where P is the set of partitions of the form P = {x0 < x1 < . . . < xnP
} with xi ≤ xi+1. If f has

finite variation, then f is of bounded variation.

Example 3.1.8. Let χJ(x) be the indicator function of the subinterval J = [a, b] ⊂ [0, 1], that is

χJ(x) =





1 x ∈ J

0 else.

Then V (χJ) = 2, which is achieved by the partition at the points {0 < b−a
2

< 1}.

The following theorem bounds the error of using a finite sequence to approximate an integral.
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Theorem 3.1.9 (Koksma’s Inequality). Let f be a function of bounded variation, and let {θ1, . . . , θN}

be a sequence in the interval [0, 1) ⊂ R, with star discrepancy D∗
N . Then

∣∣∣∣∣
1

N

N∑

n=1

f(θn)−
∫ 1

0

f(x)dx

∣∣∣∣∣ ≤ V (f)D∗
N .

However finding the discrepancy of a sequence is computationally difficult, so in order to find

bounds on the above integral estimation, one must find bounds on the discrepancy of a sequence.

The Erdős-Turán inequality is one such tool (see [10, eqn. 2.42]).

Theorem 3.1.10. There exists an absolute constant C such that, for any finite real sequence

{θ1, . . . , θN} in [0, 1) ⊂ R, the inequality

D∗
N ≤ C

(
1

H
+

H∑

h=1

1

h

∣∣∣∣∣
1

N

N∑

n=1

e(hθn)

∣∣∣∣∣

)

holds for any positive H ∈ Z.

Vaaler gives a more explicit bound on the discrepancy of a sequence, which we will use fre-

quently.

Theorem 3.1.11. [11, Pg.214] Let {θ1, . . . , θN} be a finite sequence in [0, 1) ∈ R, and let H ∈

Z>0 be an arbitrary positive integer. Then the star discrepancy of the sequence satisfies

D∗
N ≤

1

H + 1
+ 2

H∑

h=1

(
1

πh
+

1

H + 1

) ∣∣∣∣∣
1

N

N∑

n=1

e(hθn)

∣∣∣∣∣ .

3.2 Higher dimensional quasi-monte Carlo

To find results for higher dimensional abelian varieties, or for multiple isogeny classes of el-

liptic curves, we consider equidistribution and quasi-Monte Carlo in higher dimensions. For this

section, fix a dimension s ∈ Z>0. Let a = (a1, . . . , as), b = (b1, . . . , bs) be points in [0, 1)s ⊂ Rs.

If an < bn (respectively, an ≤ bn) for 1 ≤ n ≤ s, then a < b (respectively, a ≤ b). By [a, b) we
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denote the set of points x such that a ≤ x < b, and similarly for [a, b].

We again use λ to denote the Lebesgue measure. Let {θn}∞n=1 be a sequence with θn ∈

[0, 1)s ⊂ Rs, and let J ⊂ [0, 1)s be a subset. We will again use the notation A(J,N) as

A(J,N) = #{θn ∈ J : 1 ≤ n ≤ N}.

Definition 3.2.1. The sequence {θn}∞n=1 is equidistributed in [0, 1)s if for all a ≤ b

lim
N→∞

A([a, b), N)

N
= λ([a, b)).

Much like the one dimensional case, a sequence is equidistributed if the number of terms in a

hypercube is about the same as the number of terms in any other hypercube of the same measure.

This again affords a discrete calculation of a function at the points of the sequence to estimate the

average value of a function.

Theorem 3.2.2. The sequence {θn}∞n=1 with θn ∈ [0, 1)s ∈ Rs is equidistributed in [0, 1)s if and

only if for every continuous f : [0, 1)s → R we have

lim
N→∞

1

N

N∑

n=1

f(θn) =

∫

[0,1)s
f(x)dx.

We have another criterion for equidistribution which states that, for any lattice point in Zs, the

inner product of the lattice point with points of the sequence evenly generates points on the unit

circle. We use ⟨•, ⋆⟩ for the usual inner product on Rs.

Theorem 3.2.3. The sequence {θn}∞n=1 with θn ∈ [0, 1)s ∈ Rs is equidistributed in [0, 1)s if and

only if for every point h ̸= 0 of the lattice Zs we have

lim
N→∞

1

N

N∑

n=1

e(⟨h,θn⟩) = 0.
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Similar to the one dimensional case, we would like an explicit version of this integral criterion.

To this end, we’ll look at multi-dimensional discrepancy.

Definition 3.2.4. Let {θ1, . . .θN} be a finite sequence in [0, 1)s ⊂ Rs, and let λ be the s-

dimensional Lebesgue measure. The discrepancy of this sequence is defined as

DN = sup
J

∣∣∣∣
A(J,N)

N
− λ(J)

∣∣∣∣

where the supremum runs over all boxes [a, b) in [0, 1)s.

Definition 3.2.5. Let {θ1, . . .θN} be a finite sequence in [0, 1)s ⊂ Rs, and let λ be the s-

dimensional Lebesgue measure. The star discrepancy of this sequence is defined as

D∗
N = sup

J∗

∣∣∣∣
A(J∗, N)

N
− λ(J∗)

∣∣∣∣

where the supremum runs over all boxes [0, b) in [0, 1)s.

Theorem 3.2.6. The discrepancy of an s-dimensional sequence satisfies

D∗
N ≤ DN ≤ 2sD∗

N .

Definition 3.2.7. Let h = (h1, h2, . . . hs) ∈ Zs be a lattice point. Define the notation

r(h) =
s∏

i=1

max{1, |hi|}

and

||h||∞ = max{|h1|, |h2|, . . . |hs|}.

The Koksma-Hlawka inequality is the multi-dimensional generalization of Koksma’s inequality

from Theorem 3.1.9. This result uses variation in the sense of Hardy and Krause. Roughly, the
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variation in the sense of Hardy and Krause is the sum over all Vitali variations (restricted to the

above faces) of dimension d and smaller. See [12] for a full definition, and note the example

on [12, pg. 9] that an indicator function on [0, 1]s for the region from 0 to 1/2 has Hardy-Krause

variation 2s − 1.

Theorem 3.2.8. Let {θ1, . . . ,θN} be a finite sequence in [0, 1)s ⊂ Rs with star discrepancy D∗
N .

For any function f of bounded variation V (f) (in the sense of Hardy and Krause) on [0, 1)s we

have

∣∣∣∣∣
1

N

N∑

n=1

f(θn)−
∫

[0,1)s
f(x)dx

∣∣∣∣∣ ≤ V (f)D∗
N .

As in the one dimensional case, the discrepancy of a sequence can be hard to compute. The

Erdős-Turán-Koksma inequality gives an upper bound (see [13, thm. 1.21]).

Theorem 3.2.9. Let θ1 . . .θN be a finite sequence in [0, 1)s ⊂ Rs and let H ∈ Z>0 be an arbitrary

positive integer. Then the star discrepancy of the sequence satisfies

D∗
N ≤

(
3

2

)s

 2

H + 1
+

∑

0<||h||∞≤H

1

r(h)

∣∣∣∣∣
1

N

N∑

n=1

e(⟨h,θn⟩)
∣∣∣∣∣


 .

3.3 Further results in Quasi-Monte Carlo Theory

The error in Koksma’s inequality is much harder to control in dimensions larger than one, as

both the discrepancy and variation become more wild. There are several effective results that give

better control over the error involved in the integral estimation, which we now study. The first is

due to [14], which is a probabilistic result regarding the discrepancy of a Kronecker sequence.

Theorem 3.3.1 (Beck). Let θ = (θ1, . . . θs) ∈ Rs with 1, θ1, . . . θs linearly independent over Z.

Consider the sequence {nθ (mod 1)} in which the jth component of the nth term is nθj (mod 1).
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Then for almost every θ and for every ϵ > 0,

D∗
N ≪s,ϵ

(logN)s(log logN)1+ϵ

N

in Vinogradov notation.

However, given more control over the properties of θ, stronger asymptotics for the sequence

{nθ (mod 1)} are possible. The relevant notion is the type of θ, which in the one dimensional

case is closely related to the measure of irrationality. We use ∥x∥ to denote the distance from x to

the closest integer.

Definition 3.3.2. For a real number η, an s-tuple θ ∈ (R \Q)s is said to be of finite type η if η is

the infimum of all numbers σ for which there exists a positive constant c (which depends on σ,θ)

such that

r(h)σ||h · θ|| ≥ c for all h ̸= 0

for all h ∈ Zs \ {0}.

For all irrational θ we have η ≥ 1 (see [15, Prop. 4.18]). There are several explicit constructions

of s-tuples with η = 1, such as algebraic irrationals (due to Schmidt [16]) and θ = (er1 , . . . , ers)

for distinct nonzero r1, . . . rs ∈ Q (due to Baker [17]). For dimension s = 1, an equivalent notion is

called the Liouville-Roth irrationality measure. Under Lebesgue measure almost all real numbers

have type η = 1 [18, Thm E.3].

The type of a point θ dictates the error involved in Koksma’s inequality for the Kronecker

sequence {nθ (mod 1)}. The first result in this direction uses the type to bound the discrepancy of

the Kronecker sequence. See [10, exercise 3.17], [15, Thm. 4.19], or [19, Thm. 9].
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Theorem 3.3.3 (Niederreiter). Let θ be an s-tuple of finite type η. The discrepancy of the Kro-

necker sequence {nθ (mod 1)} satisfies

D∗
N ≪s,ϵ

1

N1/((η−1)s+1)−ϵ
.

We can further improve the error involved in the numerical integration rule if we also apply

restrictions upon the function f . Let f be a function on Rs which is periodic with period 1 in each

variable, and has absolutely convergent Fourier series

f(t) =
∑

h

che(h · t)

for lattice points h = (h1, . . . hs) ∈ Zs. We will impose a condition on how rapidly the Fourier

coefficients of f go to 0.

Definition 3.3.4. For real numbers k > 1, C > 0, we say that f ∈ E
k(C) if the Fourier coefficients

satisfy

|ch| ≤ Cr(h)−k for all h ̸= 0 (3.1)

and that f ∈ E
k if f ∈ E

k(C) for some C > 0.

A sufficient condition with C that can be given explicitly is due to Zaremba [20]. Let k > 1 be

an integer and suppose all partial derivatives

∂q1+...+qsf(t)

∂tq11 . . . ∂tqss
0 ≤ qi ≤ k − 1 for 1 ≤ j ≤ s (3.2)

exist and are of bounded variation in the sense of Hardy and Krause (again see [12] for a description

of Hardy-Krause variation). Then f ∈ E
k(C) for an explicit C.
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Given a such a function f with rapidly vanishing Fourier coefficients and an s-tuple θ of finite

type η, the quasi-Monte Carlo integration rule has error O(1/N). See Niederrieter [21, Thm. 5.2],

[22], [23] and Haselgrove [24].

Theorem 3.3.5. Let θ ∈ Rs, s ≥ 1 be a point of finite type η. Then

1

N

N∑

n=1

f(nθ)−
∫

Is
f(t)dt = O

(
1

N

)
(3.3)

for every f periodic of period 1 and f ∈ E
k with k > η.

We’ll summarize the beginning of the proof to show how the type θ and the hypothesis of

f ∈ E
k is used.

Proof Sketch. We’ll give an outline of the start of the proof given in [23]. Let f ∈ E
k(M), and let

λ > 0 so that there exists a constant M such that |ch| ≤Mr(h)−k−λ. Then f converges absolutely

to its Fourier series, so that

N∑

n=1

f(nθ) =
N∑

n=1

∑

h

che(h · nθ)

=
∑

h

ch

N∑

n=1

e(h · nθ)

= Nc0 +
∑

h ̸=0

ch

N∑

n=1

e(h · nθ)

Recall that from the structure of a Fourier series, we have c0 =
∫
[0,1)s

f(x)dx to get

∣∣∣∣∣
1

N

N∑

n=1

f(nθ)−
∫

[0,1)s
f(x)dx

∣∣∣∣∣ =
∣∣∣∣∣c0 +

1

N

∑

h ̸=0

ch

N∑

n=1

e(h · nθ)− c0

∣∣∣∣∣

=

∣∣∣∣∣
1

N

∑

h ̸=0

ch

N∑

n=1

e(h · nθ)
∣∣∣∣∣ .
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Then by the triangle inequality we have

∣∣∣∣∣
1

N

∑

h ̸=0

ch

N∑

n=1

e(h · nθ)
∣∣∣∣∣ ≤

1

N

∑

h ̸=0

|ch|
∣∣∣∣∣

N∑

n=1

e(h · nθ)
∣∣∣∣∣ .

Recall we use ∥x∥ to denote the distance to the nearest integer. Then for x ∈ R \ Z

∣∣∣∣∣

N∑

n=1

e(nx)

∣∣∣∣∣ ≤
1

2 ∥x∥ .

Therefore we have the estimate

∣∣∣∣∣
1

N

N∑

n=1

f(nθ)−
∫

[0,1)s
f(x)dx

∣∣∣∣∣ ≤
1

2N

∑

h ̸=0

|ch|
∥h · θ∥ (3.4)

≤ M

2N

∑

h ̸=0

1

rη+λ(h) ∥h · θ∥ . (3.5)

where we have used the fact that f ∈ E
k(M).

We then have the inequality

∑

h ̸=0

1

rη+λ(h) ∥h · θ∥ ≤ (η + λ)s
∞∑

n1,...ns=1

(n1 . . . ns)
−η−λ−1 ×

∑

h∈Zs\0
|hj |≤nj

∥h · θ∥−1

which may be verified by fixing an h and calculating the total coefficient of ∥h · θ∥−1
on the right

hand side.

The type of θ is then used to estimate the sum

∑

h∈Zs\0
|hj |≤nj

∥h · θ∥−1

by the following argument. If the real numbers a, b, d satisfy ∥a+ b∥ ≥ d and ∥a− b∥ ≥ d, then∣∣∣∣ ∥a∥ − ∥b∥
∣∣∣∣ ≥ d. Choose two lattice points h,h′ with h ̸= ±h′. Then because θ is of type η, for
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any λ > 0 there is a constant C such that

∥h · θ ± h′ · θ∥ = ∥(h± h′) · θ∥ ≥Cr(h+ h′)−η−λ/3

= Cr(2n)−η−λ/3.

Define d = Cr(2n)−η−λ/3, so

∣∣∣∣ ∥h · θ∥ − ∥h
′ · θ∥

∣∣∣∣ ≥ d.

Let r = ⌊1/(2d)⌋. Because ∥h · θ∥ ≥ d, each of the intervals [0, d), [d, 2d), . . . [rd, (r + 1)d)

contains at most two numbers of the form ∥h · θ∥ with none in the first interval [0, d). Therefore

we have the estimate

∑

h∈Zs\0
|hj |≤nj

1

∥h · θ∥ ≤ 2
r∑

k=1

1

kd
.

We have now seen how the hypotheses of f ∈ E
k and the finite type of θ come into play. The

result then follows from further estimates on

(η + λ)s
∞∑

n1,...ns=1

(n1 . . . ns)
−η−λ−1

and 2
∑r

k=1
1
kd

.

3.4 Baker’s Theorem

Baker’s theorem is a result in transcendental number theory that provides a lower bound for

certain logarithmic forms. This theorem finds wide applications, such as proving transcendence of

some numbers and finding all imaginary quadratic fields with class number 1. We will later use

Baker’s theorem to prove that a certain s-tuple θ has finite type. Wüstholz offers an expository

25



description of the theorem in [25]. See also Baker’s textbook [26] and a text from Waldschmidt

[27]. The statement of Baker’s theorem begins with some notions of heights, which we now state.

Let K be a number field. We’ll use MK to denote the set of normalized absolute values of K,

where for the absolute value | · |v we normalize by




|x|v = x x ∈ Q, x > 0, v is Archimedean

|p|v = 1/p v is a p-adic valuation.

Definition 3.4.1. The absolute logarithmic Weil height of an element α in a number field K is

h(α) =
1

[K : Q]

∑

v∈MK

[Kv : Qv] logmax{|α|v, 1}.

We’ll use a modified height. Let α1, . . . , αn be complex numbers that are algebraic, and let

K = Q(α1, . . . , αn).

Definition 3.4.2. Let the number field K be of degree d. For α ∈ K denote by h′(α) a modified

height,

h′(α) =
1

d
max{h(α), | log(α)|, 1}.

Let L be the linear form

L = b1z1 + . . .+ bnzn (b1, . . . bn) ∈ Zn \ 0

Let b be the highest common factor of b1, . . . bn. Let h(L) be the logarithmic Weil height of L,

which is d log(max{|bj|/b}), and define

h′(L) =
1

d
max{h(L), 1}.
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Theorem 3.4.3 (Baker and Wüstholz). Let α1, . . . αn be algebraic, and not 0 or 1. If Λ =

L(logα1, . . . logαn) ̸= 0, then

log |Λ| > −C(n, d)h′(L)
∏

h′(αi)

where

C(n, d) = 18(n+ 1)!nn+1(32d)n+2 log(2nd)

and d is the degree of the extension Q(α1, . . . αn).

3.5 A multivariate Vinogradov function

In [1, Sec. 3.2], Bucur, Fité and Kedlaya construct a multivariate version of a function created

by Vinogradov in [28, pg. 32]. This Vinogradov function, Ψ, acts as a continuous approximation

of a characteristic function on the preimage of a given interval. Importantly, one has a great deal

of control over the decay of the Fourier coefficients of Ψ. We now study the construction of the

multivariate Vinogradov function.

Let πj : [0, 1]s → [0, 1]s−1 be the map that forgets the j-th component of θ ∈ [0, 1]s. For

ϑ ∈ [0, 1]s−1, define Xj(ϑ) = π−1
j (ϑ).

Definition 3.5.1. Let T : Rs → R be a differentiable function that satisfies the following condi-

tions:

1. T is periodic of period 1.

2. There exists a positive K ∈ R such that |∇T (θ)| ≤ K for all θ ∈ Rs.

3. There exists an integer C > 0 such that, for every γ ∈ R and every ϑ ∈ [0, 1]s−1 we have

#

(
T−1(γ) ∩Xj(ϑ)

)
≤ C
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for 1 ≤ j ≤ s.

Note 3.5.2. The case of s = 1 deserves some special attention. If s = 1, then the map πj :

[0, 1]s → [0, 1]s−1 is a map from [0, 1] to a one element set. Therefore, for a function T : R → R

the third condition can be restated as follows. There exists an integer C > 0 such that, for every

γ ∈ R, we have

#

(
T−1(γ) ∩ [0, 1]

)
≤ C.

That is, the number of solutions to T (x) = γ with x ∈ [0, 1] is bounded by C.

Let α, β,∆ ∈ R be such that ∆ > 0 and 2∆ ≤ β − α. Define I to be the interval (α, β) and

define the sets

R1 = T−1

(
(α +∆, β −∆)

)
∩ [0, 1]s

R0 = T−1

(
R \ (α−∆, β +∆)

)
∩ [0, 1]s.

The Vinogradov function will roughly act as an indicator of the preimage of I under T , except for

small ∆ sized regions around α and β.

Theorem 3.5.3. Let T : Rs → R be a function satisfying the conditions of Definition 3.5.1 and let

α, β,∆ be numbers such that

∆ > 0, 2∆ ≤ β − α.

For every m ∈ Z≥1, there exists a continuous function

Ψ = Ψ∆,I : R
s → R

that is periodic of period 1, and satisfies
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1. For θ ∈ R1, we have Ψ(θ) = 1.

2. For θ ∈ R0, we have Ψ(θ) = 0.

3. For all θ, we have the bounds 0 ≤ Ψ(θ) ≤ 1.

4. Ψ has Fourier expansion Ψ(θ) =
∑

h∈Zs che(h · θ) where c0 =
∫
T−1((α,β))∩[0,1]s dθ and for

all h ̸= 0 we have

|ch| ≤ min


|c0|,





C

πmaxj{hj}

s∏

j=1,hj ̸=0

(
mK
√
s

2π|hj|∆

)ρ





ρ=0,...m


 .

Bucur et al. use this Vinogradov function to prove a result for the Frobenius traces of reductions

of an Abelian variety defined over Q (see [1, Thm. 3.8]), which will serve as inspiration for several

results in this thesis.

In the construction of the Vinogradov function, condition 2 on T from Definition 3.5.1 is used

solely for the mean value theorem,

|T (θ + z)− T (θ)| ≤ K|z|. (3.6)

Therefore this condition can be relaxed to any function that passes the inequality in (3.7).

Similarly, condition 3 is used solely to find that T−1((α, β)) ∩Xj(π(θ)) is a union of at most

C intervals. Therefore, given an interval (α, β), the function T admits a Vinogradov function if

T−1((α, β)) ∩Xj(πj(θ)) is a union of at most C intervals.

Theorem 3.5.4. Let I = (α, β). Let T : Rs → R be a differentiable function that satisfies the

following conditions:

1. T is periodic of period 1.

2. There exists a positive K ∈ R such that

|T (θ + z)− T (θ)| ≤ K|z|. (3.7)
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for all θ ∈ Rs.

3. There exists an integer C > 0 such T−1((α, β))∩Xj(πj(θ)) is a union of at most C intervals.

Then T and I admit a Vinogradov function.
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Chapter 4

Preliminary results

4.1 Setup and notation

For the remainder of this paper we assume all elliptic curves are ordinary. Let E/Fp be an ordi-

nary elliptic curve, and let E(1), . . . , E(s) be a collection of geometrically non-isogenous ordinary

elliptic curves. Denote the trace of Frobenius over Fpn by an (respectively, a
(j)
n ), and the discrim-

inant of the Frobenius polynomial by ∆n (respectively, ∆
(j)
n ). We denote normalized Frobenius

traces over Fpn by an = an/
√
pn ∈ [−2, 2], and the absolutve value of the normalized Frobenius

discriminant by |∆n| = |∆n|/(4pn) ∈ [0, 1].

Recall from Lemma 2.2.2 that we can calculate the discriminant |∆n| over Fpn from the Frobe-

nius angle over Fp by

|∆n| = 4pn sin2(nθ1).

so that |∆n| = sin2(nθ1). Similarly, the trace of Frobenius over Fpn can be calculated from the

Frobenius angle over Fp by

an = 2
√
pn cos(nθ1)

and therefore the normalized trace is an = 2 cos(nθ1).

Definition 4.1.1. Let E/Fp be an ordinary elliptic curve. We have two notions of sequences of

normalized Frobenius angles. First, we have the normalization by π,

{θ̃n} =
{
nθ1 (mod π)

π

}
.
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We also have the normalization by 2π,

{θ̂n} =
{
nθ1 (mod 2π)

2π

}
.

The motivation for the two normalizations is as follows. The sequence {θ̃n} helps reduce

the error bound in explicit results, specifically by reducing the variation of the relevant function,

which we use in Sections 5.1 and 5.4. Informally, use of the sequence {θ̃n} tends to give the

variation V (f) = 2, whereas working with {θ̂n} would require use of a function g with variation

V (g) = 4. The normalization θ̃ also allows for construction of a Vinogradov function with an

auxiliary function such as T (θ) = sin2(πθ), as in Sections 5.5, 5.6.

On the other hand, {θ̂n} allows for the construction of a Vinogradov function that produces

results with complexity analysis O(1/N) for auxiliary functions similar to T (θ) = 2 cos(2πθ) as

in Sections 5.2, 5.3, 6.1, and 6.2.

Because E is ordinary, Lemma 2.2.3 shows that θ1 is not a rational multiple of π. By Example

3.1.4, the two sequences {θ̃n} and {θ̂n} are equidistributed in [0, 1).

We can make corresponding equidistribution statement for collections of elliptic curves. Let

θ̃(1), . . . , θ̃(s) be a collection of normalized Frobenius angles from geometrically not isogenous

elliptic curves. Define the sequence

{θ̃n} = {(θ̃(1)n , . . . , θ̃(s)n )}

and the sequence {θ̂n} is defined analogously. If θ(1), θ(2), . . . , θ(s) is a collection of Frobenius

angles of s ordinary, geometrically not isogenous elliptic curves, the following statement is due

to [3].

Lemma 4.1.2. The set {1, θ̃(1)1 , θ̃
(2)
1 , . . . , θ̃

(s)
1 } is linearly independent over Q. The set {1, θ̂(1)1 , θ̂

(2)
1 ,

. . . , θ̂
(s)
1 } is also linearly independent over Q.

This, combined with [10, ex. 6.1] can be used to show the relevant equidistribution statement.
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Lemma 4.1.3. The sequences {θ̃n} and {θ̂n} are equidistributed in [0, 1)s.

4.2 Discrepancy in One Dimension

In Sections 5.1 and 5.4 we will use Koksma’s inequality, which relies on the discrepancy of

a sequence. In this section, we’ll examine methods for calculating discrepancy for the sequence

of normalized Frobenius angles. First, we recall the Erdős-Turán-Koksma inequality for the star

discrepancy.

Theorem 4.2.1. Let {θ1 . . .θN} be a finite sequence in [0, 1)s ⊂ Rs and let H ∈ Z>0 be an

arbitrary positive integer. Then the star discrepancy of the sequence satisfies

D∗
N ≤

(
3

2

)s

 2

H + 1
+

∑

0<||h||∞≤H

1

r(h)

∣∣∣∣∣
1

N

N∑

n=1

e(⟨h,θn⟩)
∣∣∣∣∣


 .

This gives a general bound on the discrepancy for an s-dimensional sequence. For the s = 1

case (which is the case of a single isogeny class for this paper), we have the following bound due

to [11, pg. 214].

Theorem 4.2.2 (Vaaler). Let {θ1, . . . , θN} be a finite sequence in [0, 1) ∈ R, and let H ∈ Z>0 be

an arbitrary positive integer. Then the star discrepancy of the sequence satisfies

D∗
N ≤

1

H + 1
+ 2

H∑

h=1

(
1

πh
+

1

H + 1

) ∣∣∣∣∣
1

N

N∑

n=1

e(hθn)

∣∣∣∣∣ .

Given the sequence of normalized Frobenius angles {θ̃n} = {nθ1 (mod π)/π}, the inequality

N∑

n=1

e(hnz) ≤ 2

|e(hz)− 1| =
1

| sin(πhz)|

gives us the discrepancy bound

D∗
N ≤

1

H + 1
+

2

N

H∑

h=1

(
1

πh
+

1

H + 1

)
1

| sin(hθ1)|
(4.1)
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in terms of the Frobenius angle θ1 for E/Fp. We will use (4.1) in Examples 5.1.2 and 5.4.3.

If one instead works with the normalized Frobenius angle, the denominator is h| sin(πhθ̃1)|,

which emphasizes how the type η of θ̃1 controls the discrepancy. If integer multiples of θ̃ badly

approximate integers (the type is small), then the discrepancy is small. See Theorem 3.3.3 for a

formal statement relating the type to the discrepancy (we will show in Section 4.3 that θ̃ is of finite

type).

4.3 The Frobenius angle vector is of finite type

In order to use the O(1/N) quasi-Monte Carlo integration method from Theorem 3.3.5, we

must first show that the s-tuples of the normalized Frobenius angles have finite type. Recall the

type, η, of the s-tuple θ is the infimum of numbers σ such that there is a constant c = c(σ,θ) for

which the inequality

r(b)σ ∥b · θ∥ ≥ c

holds for all b ∈ Zs with b ̸= 0.

We have the following notation for Baker’s theorem (from Theorem 3.4.3). Given algebraic

numbers γ1, . . . , γs, let d be the degree of Q(γ1, . . . , γs), and let h′(γj) be the height of γj . Let

b ̸= 0, and for the linear form

Lb(z) = b1z1 + . . .+ bs+1zs+1,

let h(L) = d logmax{|bj|/b} for b the highest common factor of b1, . . . , bs+1. Then define

h′(L) =
1

d
max{h(L), 1}.

Baker’s theorem gives a bound on L(log γ1, . . . , γs) in terms of h′(L), h′(γj) and C(s, d), a con-

stant that depends on s and d.
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Our strategy to show θ̃ (or θ̂) has finite type is as follows. Let b = (b1, b2, . . . , bs) be an

arbitrary s-tuple and let bs+1, be the integer closest to b1θ̃
(1) + . . . + bsθ̃

(s). After appropriate set

up, Baker’s theorem will give a bound on

∣∣b1θ̃(1) + . . .+ bsθ̃
(s) − bs+1

∣∣.

This is the same as a bound on

∥∥∥b · θ̃
∥∥∥, because bs+1 is the closest integer to b · θ̃.

Proposition 4.3.1. The s-tuple of normalized Frobenius angles θ̃ = (θ̃(1), . . . , θ̃(s)) is of finite type.

Proof. Let θ̃(j) have associated trace of Frobenius a(j), and define the algebraic number

γj = i

√
1− (a(j)/2)2 + a(j)/2

Recall log(−1) = iπ, and note that from the identity

arccos(x) = −i log(i
√
1− x2 + x)

we can relate the Frobenius angle θ̃(j) with the algebraic number γj by

θ̃(j) =
arccos(a(j)/2)

π
=
−i log(γj)
log(−1)/i =

log(γj)

log(−1) . (4.2)

Let b = (b1, . . . , bs) ∈ Zs \ 0 be an arbitrary s-tuple, and let bs+1 be the integer closest to b1θ̃
(1) +

. . .+ bsθ̃
(s). Define the linear form

Lb(z) = L(z) = b1z1 + . . .+ bszs − bs+1zs+1.
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Let Λ = L(log(γ1), . . . , log(γs), log(−1)). Use the identity in equation 4.2 to find

Λ = b1 log(γ1) + . . .+ bs log(γs)− bs+1 log(−1)

= log(−1)
(
b1 log(γ1)

log(−1) + . . .
bs log(γs)

log(−1) − bs+1

)

= iπ(b1θ̃
(1) + . . .+ bsθ̃

(s) − bs+1).

Because bs+1 is the integer closest to b1θ̃
(1) + . . .+ bsθ̃

(s) we have

|Λ| = π
∥∥∥b1θ̃(1) + . . .+ bsθ̃

(s)
∥∥∥ .

Baker’s theorem then provides a bound on the quantity log(|Λ|) of the form

log(|Λ|) > −Cs+1,dh
′(γ1) . . . h

′(γs)h
′(L)

for an explicit constant Cs+1,d and for heights defined in Section 3.4. Define the constant

σ = Cs+1,dh
′(γ1) . . . h

′(γs)

which depends on s, d and the heights of γ1, . . . , γs, but is independent of b1, . . . , bs+1. We now

have the inequality

π
∥∥∥b1θ̃(1) + . . .+ bsθ̃

(s)
∥∥∥ > exp

(
− σh′(L)

)
. (4.3)

Our task is to now translate the right hand side into a term of the form c/r(b)σ. We have two cases

depending on the form of h′(L).

1. Consider the case max{h(L), 1} = h(L). Then h′(L) = log(max{|bj|/b}) for b the highest

common factor of b1, . . . , bs+1. We further break into two cases.
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(a) First, assume max{|bj|/b} is achieved for 1 ≤ j ≤ s, and let b′ = max{|bj|/b}. Then

exp(−σh′(L)) = exp(−σ log(b′)) and the inequality from equation (4.3) is now

∥∥∥b1θ̃(1) + . . .+ bsθ̃
(s)
∥∥∥ >

1

π(b′)σ
.

Note that b′ <
∏s

j=1 max{|bj|, 1}, so that 1/b′ > 1/r(b). Thus we have

∥∥∥b · θ̃
∥∥∥ >

1

πr(b)σ

as desired.

(b) Now assume that max{|bj|/b} is achieved at j = s+1. Then the inequality in equation

(4.3) is

∥∥∥b · θ̃
∥∥∥ >

bσ

π|bs+1|σ

Note that from Lemma 4.3.2 we then have the inequality

∥∥∥b · θ̃
∥∥∥ >

1

2π2sr(b)σ
.

Therefore in both case (a) and case (b), we have achieved the desired result.

2. Now consider the case max{h(L), 1} = 1. Then h′(L) = 1/d, and the inequality in equation

4.3 is

π
∥∥∥b1θ̃(1) + . . .+ bsθ̃

(s)
∥∥∥ > exp

(
− σ/d

)
.

and therefore

∥∥∥b · θ̃
∥∥∥ >

exp
(
− σ/d

)

r(b)
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We have that σ ≥ 1, so that

∥∥∥b · θ̃
∥∥∥ >

exp
(
− σ/d

)

r(b)σ

as desired.

In each of these cases we have found a bound

r(b)σ
∥∥∥b · θ̃

∥∥∥ ≥ c(σ, θ̃)

for a constant c(σ, θ̃) = min{1/π, 1/(2π2s), exp(−σ/d)} that is independent of b = (b1, . . . , bs),

and therefore θ̃ is of finite type σ.

To conclude this proposition, we provide a lemma to complete case (1b).

Lemma 4.3.2. Let b = (b1, . . . , bs) be an s-tuple, and let bs+1 be the integer closest to b1θ̃
(1) +

. . .+ bsθ̃
(s). Then bs+1 satisfies the inequality

|bs+1| < 2πsr(b)

Proof. Without loss of generality, assume each normalized Frobenius angle is positive (taking

conjugates of α(j) if necessary). Then the normalized Frobenius angles satisfy 0 < θ̃(j) < π, so

that

b1θ̃
(1) + . . .+ bsθ̃

(s) < π(|b1|+ . . .+ |bs|).

Because bs+1 is the integer closest to b1θ̃
(1)+ . . .+bsθ̃

(s), the largest |bs+1| can be is the first integer

greater than |b1|θ̃(1) + . . .+ |bs|θ̃(s), which is at most 1 + π
∑s

j=1 |bj|. Therefore

|bs+1| < 1 + π

s∑

j=1

|bj|.
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Note that for 1 ≤ i ≤ s we have |bi| ≤
∏s

j=1 max{|bj|, 1}, that is, |bi| ≤ r(b). Then |b1| + . . . +

|bs| < sr(b), and therefore

0 ≤ |bs+1| < 1 + πsr(b)

Because πsr(b) > 1, we have 2πsr(b) > 1 + πsr(b), and therefore

0 ≤ |bs+1| < 2πsr(b).

Corollary 4.3.3. The vector of normalized Frobenius angles θ̂ = (θ̂(1), . . . , θ̂(s)) is of finite type.

Proof. Note that θ̂(j) = θ̃(j)/2, and therefore

θ̂(j) =
log(γj)

2 log(−1) =
log(
√
γj)

log(−1)

and therefore we use Baker’s theorem on the algebraic numbers
√
γ1, . . . ,

√
γs and follow the proof

of Proposition 4.3.1.

If we have an s-tuple θ of finite type, then integer multiples of θ are also of finite type, as

shown by the following lemma.

Lemma 4.3.4. Fix an integer n ∈ Z>1. Suppose θ ∈ Rs is of finite type η. Then ϑ = nθ is of

finite type.

Proof. Because θ is of finite type there exists a constant c = c(σ,θ), such that for all non-zero

b ∈ Zs and σ > η, we have the inequality

r(b)σ ∥b · θ∥ ≥ c.
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Now consider the quantity

r(b)σ ∥b · ϑ∥ .

Clearly ∥b · ϑ∥ = ∥b · nθ∥ = ∥nb · θ∥ and r(b)σ ∥nb · θ∥ ≥ c. Therefore

r(b)σ ∥b · ϑ∥ ≥ c

and thus ϑ has finite type.

4.4 Fourier coefficients of the Vinogradov function

Another ingredient we need before we can use the O(1/N) error estimate in Theorem 3.3.5 is

to show that the Vinogradov function of Theorem 3.5.3 is in the class of function E
k where k > η,

the type of θ̃ or θ̂.

For Ψ to be in E
k, the Fourier coefficients must satisfy |ch| ≤ B/r(h)k for a constant B. Let

T : Rs → R be a function which satisfies Definition 3.5.1. This gives K ∈ R>0, a bound on the

gradient of T , and C ∈ Z>0 a bound on the cardinality of certain intersections of preimages of

T . Let α, β,∆ be real numbers with ∆ > 0 and 2∆ ≤ β − α. Then for every m ∈ Z>0 there

exists a Vinogradov function Ψ which roughly acts as the indicator function for values θ such that

a < T (θ) < b. Recall Ψ has Fourier coefficients which satisfy

|ch| ≤ min


|c0|,





C

πmaxj{hj}

s∏

j=1,hj ̸=0

(
mK
√
s

2π|hj|∆

)ρ





ρ=0,...m


 .

Let η be the type of θ̃ (or θ̂). We choose the integer m = ⌊η⌋ + 1. Under this choice, we will see

the term r(h)m then appears in the denominator of the product from the |hj| as desired.
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We have that

|ch| ≤
C

πmaxj{hj}

s∏

j=1,hj ̸=0

(
mK
√
s

2π|hj|∆

)m

.

Note that C
πmaxj{hj} ≤

C
π

and

s∏

j=1,hj ̸=0

(
mK
√
s

2π|hj|∆

)m

≤
(
mK
√
s

2π∆

)sm s∏

j=1,hj ̸=0

(
1

|hj|

)m

.

Therefore

|ch| ≤
C

π

(
mK
√
s

2π∆

)sm
1

r(h)m

which proves the following proposition.

Proposition 4.4.1. Given an s-tuple of finite type η, and a function T which satisfies Definition

3.5.1, there exists a Vinogradov function Ψ for T that is in the function class E
k for any k > η.

We may now proceed with a general schema for proofs that utilize a Vinogradov function.

4.5 Proof structure for O(1/N) results

Sections 5.2, 5.3, 5.5, 5.6, 6.1 and 6.2 will have results with an O(1/N) error term that all have

a similar style of proof. In this section, we outline the general proof structure, and then later fill in

details in the relevant sections. The tools we will need are the Vinogradov function from Theorem

3.5.3 and the O(1/N) integration rule for periodic functions from Theorem 3.3.5.

4.5.1 Set up

The general structure of these theorems is as follows. Let Fp be a finite field. For this section,

let A denote either a collection of s ordinary, not geometrically isogenous elliptic curves, or an

abelian variety of dimension s. Let θ̃ be the associated normalized Frobenius tuple, and let X
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be some quantity relating to the elliptic curves or abelian variety, such as the Frobenius trace or

discriminant.

Given an interval I = [a, b], we would like to study how often X takes value in I . Define the

quantity ExtSetA,N,I to be the set of extensions of Fp of degree up to N such that X ∈ I . Also

define PropXA,N,I to be the proportion of extensions up to degree N for which X is in I . We now

give the general framework for proofs that uses a Vinogradov function and the theorem of O(1/N)

integration error for periodic functions.

Define a function T : Rs → R, such that T (θ̃) ∈ I (that is, a ≤ T (θ̃) ≤ b) exactly when

X ∈ I . Choose ∆ to be small, and define the quantities α = a +∆ and β = b −∆. We have the

regions

R1 = T−1

(
(α +∆, β −∆)

)
∩ [0, 1]s

= T−1

(
(a+ 2∆, b− 2∆)

)
∩ [0, 1]s

R0 = T−1

(
R \ (α−∆, β +∆)

)
∩ [0, 1]s

= T−1

(
R \ (a, b)

)
∩ [0, 1]s

on the domain of T . From these choices of T, α, β,∆, we then construct a Vinogradov function

Ψ : Rs → R. This Vinogradov function takes value 1 on R1, value 0 on R0 and it is everywhere

bounded 0 ≤ Ψ(θ) ≤ 1. From Proposition 4.3.1 we have that θ̃ is of finite type η, and from

Proposition 4.4.1, we have that Ψ(θ) ∈ E
k for k ≥ η. Therefore, we can make use of the

integration rule from Theorem 3.3.5, which in this case is

1

N

N∑

n=1

Ψ(nθ̃)−
∫

[0,1)s
Ψ(x)dx = O

(
1

N

)
. (4.4)
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4.5.2 Relation between PropX and
∑

Ψ(nθ)

We must now relate the term 1
N

∑N
n=1 Ψ(nθ̃) with PropXA,N,I . First, we find a relation be-

tween
∑N

n=1 Ψ(nθ̃) and #{ExtSetA,N,I}. We have three cases, depending on if nθ̃ is in R1, R0,

or neither.

1. Let nθ̃ ∈ R1, so that Ψ(nθ̃) = 1. By definition of R1, we have that a + 2∆ ≤ T (nθ̃) ≤

b− 2∆, and therefore T (nθ̃) ∈ I . Then X ∈ I and so the extension of degree n is contained

in the set ExtSetA,N,I .

2. Let nθ̃ ∈ R0 and therefore Ψ(nθ̃) = 0. By definition of the region R0, either T (nθ̃) < a or

T (nθ̃) > b, and therefore X /∈ I . Thus the extension of degree n is not in ExtSetA,N,ϵ.

3. Lastly, if nθ̃ ∈ [0, 1]s \ (R0 ∪R1), then the extension of degree n is in ExtSetA,N,I , because

by definition of the sets R0, R1, it must be that either a + 2∆ ≤ T (nθ̃) ≤ a or b − 2∆ ≤

T (nθ̃) ≤ b and therefore X ∈ I . However, for this n we have Ψ(nθ̃) ≤ 1. In this case Ψ is

an underestimate of #ExtSetA,N,I .

Therefore, we may conclude that if Fpn ∈ ExtSetA,N,I , then 0 ≤ T (nθ̃) ≤ 1, and if Fpn /∈

ExtSetA,N,I , then T (nθ̃) = 0. Therefore
∑N

n=1 Ψ(nθ̃) ≤ #ExtSetN,ϵ, and thus we have

PropXA,N,I ≥
1

N

N∑

n=1

Ψ(nθ̃). (4.5)

4.5.3 Estimation of the integral

It remains to give a lower bound for the integral
∫
Is
Ψ(x)dx. Because Ψ(θ) is positive, re-

stricting the integral to the subset R1 of Is will give the lower bound

∫

R1

Ψ(x)dx ≤
∫

Is
Ψ(x)dx. (4.6)

Therefore, we wish to calculate the measure of the region where T (θ̃) > ϵ+ 2∆. In theorems
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involving one isogeny class, s = 1, the integral
∫
R1

Ψ(x)dx will usually be a straightforward

calculation. On the other hand, for theorems involving two isogeny classes, a parameterization of

a level set for T (θ̃) = c in the region [0, 1]2 will be used to evaluate
∫
R1

Ψ(x)dx. Also in the case

s = 2, the shape of the region R1 will be sensitive to the value of c, as will be illustrated in the

relevant sections.

Final statement

Returning to equation (4.4), for large enough N , there exists a constant M independent of N

(see Section 4.5.3 for discussion) such that

∣∣∣∣∣
1

N

N∑

n=1

Ψ(nθ̃)−
∫

Is
Ψ(x)dx

∣∣∣∣∣ ≤
M

N
.

We can rearrange as

∫

Is
Ψ(x)dx− M

N
≤ 1

N

N∑

n=1

Ψ(nθ̃).

From the inequalities established in equations (4.5) and (4.6) we then have the main result

PropXA,N,I ≥
∫

R1

Ψ(x)dx− M

N
. (4.7)

The implied constant

The constant M in equation (4.7) is unfortunately difficult to control. It depends on the bounds

of the Fourier coefficients,





C

πmaxj{hj}

s∏

j=1,hj ̸=0

(
mK
√
s

2π|hj|∆

)ρ





ρ=0,...m

for which we have selected m > η. More challenging is that M depends on the constant from the

type of θ̃.
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Chapter 5

Elliptic Curves

5.1 Explicit Traces

5.1.1 Set up

Given an elliptic curve E/Fp, we have the sequence of Frobenius traces, an, corresponding to

E/Fpn . These traces relate to the point count of E by #E(Fpn) = pn + 1 − an. Let an = an√
pn
∈

[−2, 2] be the normalized trace of Frobenius. Recall that {θ̃n} is the normalized Frobenius angle

of E/Fp so that the normalized Frobenius trace is an = 2 cos(πθ̃n). Let I = [a, b] ⊂ [−2, 2] be the

target interval for the normalized traces an. This section quantifies how often the normalized trace

lands in the target interval I . Let ExtSetTrE,N,I = {n ≤ N : an ∈ I} be the set of (degrees of)

extensions such that the Frobenius trace is in the interval I , and let

PropTrE,N,I =
#ExtSetTrE,N,I

N
(5.1)

be the proportion of extensions up to degree N such that an ∈ I . This section gives explicit bounds

on PropTrE,N,I in terms of the discrepancy of the sequence {θ̃n}∞n=1. For explicit calculations, one

may use the discrepancy bounds from Section 4.2, as is done in Example 5.1.2.

5.1.2 An equidistribution result

We begin by stating a relevant result given in [29, prop. 2.11]. This asymptotic result states

that the sequence of traces {an} is equidistributed in [−2, 2] with respect to the measure

µ =
1

π

dz√
4− z2

(5.2)
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where dz is Lebesgue measure on [−2, 2]. Theorem 5.1.1 refines this by an explicit result that

gives a lower bound on the number of extensions up to degree N for which the trace is in a chosen

subinterval of [−2, 2].

Theorem 5.1.1. Let E/Fp be an ordinary elliptic curve with normalized Frobenius angle θ̃. Let

I = [a, b] ⊂ [−2, 2] be the target interval for the traces an. Define AI as the quantity

AI =
1

π
(arccos(a/2)− arccos(b/2)).

Then the proportion of extensions of degree up to N where an ∈ I satisfies the inequality

PropTrE,N,I ≥ AI − 2D∗
N (5.3)

where D∗
N is the discrepancy of the sequence {θ̃n}Nn=1.

Proof. We use Koksma’s inequality from Theorem 3.1.9 with the sequence {θ̃n} from Definition

4.1.1. Recall that this sequence is equidistributed in [0, 1] because E is an ordinary elliptic curve,

and therefore θ̃1 is irrational. Let χI be the indicator function of I , that is,

χI(x) =





1 x ∈ I

0 x /∈ I
.

Define

fI(x) = χI(2 cos(πx)). (5.4)

Then fI(θ̃n) = 1 exactly when an ∈ I , and the sum
∑N

n=1 fI(θ̃n) counts the cardinality of

ExtSetE,N,I . The function fI is the indicator function of an interval, so V (f) = 2. One can
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calculate that

∫ 1

0

fI(x)dx =
1

π
(arccos(a/2)− arccos(b/2)).

Therefore, from Koksma’s inequality we have the bound

∣∣∣∣∣
1

N

N∑

n=1

fI(θ̃n)−
∫ 1

0

fI(x)dx

∣∣∣∣∣ ≤ D∗
NV (f) (5.5)

which completes the proof.

An analogue of the cumulative distribution function for the main term, AI , of the lower bound

in Theorem 5.1.1 appears in Figure 5.1. Also see the histograms from empirical data in Figures

5.2, 5.4 and 5.5.

Figure 5.1: The cumulative distribution function of the main term in Theorem 5.1.1. The plot of
1
π (arccos(−1)− arccos(x/2)) for −2 ≤ x ≤ 2.

Next, we give an example to cement these ideas, and to demonstrate how one uses the discrep-

ancy bounds given in Section 4.2.

Example 5.1.2. Let p = 37, and let E be the curve defined by y2 = x3 + x+13 over Fp. Over Fp,

this curve has trace of Frobenius a1 = 5. We consider the proportion of extensions for which the
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normalized Frobenius trace lands in the interval I = [1, 2], up to extension degrees 500 and 1000.

We have the quantity AI = 1
π
(arccos(1/2) − arccos(1)) = 1

3
, thus Theorem 5.1.1 gives the

bound

PropTrE,N,I ≥
1

3
− 2D∗

N .

We’ll use the discrepancy bound from Vaaler given in Theorem 4.2.2 with the simplification in

equation (4.1). For convenience, that bound is

D∗
N ≤

1

H + 1
+

2

N

H∑

h=1

(
1

πh
+

1

H + 1

)
1

| sin(hθ)| (5.6)

where θ is the Frobenius angle of E/Fp and H is an arbitrary positive integer. Because N is

relatively small, we run an exhaustive search 1 ≤ H ≤ N to find a tightest upper bound on the

discrepancy, which we denote as DUB
N . Therefore, our explicit lower bound is

PropTrE,N,I ≥
1

3
− 2DUB

N .

These results are summarized in Table 5.1.

Table 5.1: Normalized traces in I = [1, 2] up to extension degrees N = 500, 1000 for the curve y2 =
x3+x+13 with p = 37. The column “1

3 − 2DUB
N is the bound from Theorem 5.1.1, and the two right-most

columns are the true values.

N DUB
N Optimal H choice 1

3
− 2DUB

N # ExtSetTrE,N,I PropTrE,N,I

500 0.038 114 0.257 166 0.332

1000 0.023 177 0.287 333 0.333

Note 5.1.3. One may note that the empirical values for PropTrE,N,I are very close to the value AI

48



(a) N = 500 (b) N = 1000

Figure 5.2: Histograms of the normalized traces for N = 500 and N = 1000 for the curve y2 = x3+x+13
with p = 37.

(a) N = 9 (b) N = 10

Figure 5.3: Illustration of different gaps in the sequence θ, 2θ, . . . , Nθ.

in Example 5.1.2. There are several contributing factors to this.

The three gap theorem states that given an angle θ, if one places points on the circle at angles

θ, 2θ, . . . , Nθ, there will be at most three distinct distances between points in adjacent positions.

For subsequences where the three gaps don’t change, the points are placed with high regularity,

but when a new gap is started we have some irregularity. See Figure 5.3 for an illustration of a

new gap. Using the correspondence between the angle 2πθ and the irrational number θ ∈ [0, 1),

we translate to the now familiar sequence {nθ}. Therefore, while the gaps remain stable, points

will be placed in a given subinterval with high regularity, but when a new gap appears, the pattern

of placement changes.
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Also recall the theorem of Beck from Theorem 3.3.1 which states that for almost all irrational

numbers θ, the Kronecker sequence {nθ (mod 1)} has the discrepancy bound

D∗
N ≪s,ϵ

(logN)(log logN)1+ϵ

N

for every ϵ > 0. Thus the error term in the estimate may in fact be smaller than our calculation.

Lastly, such regularity is not inherent in every example, which we consider in more detail in

the following discussion.

5.1.3 Discrepancy discussion

The data from Example 5.1.2 may prompt the following question: given that the observed

data for PropTrE,N,I is fairly close to the quantity AI , is the discrepancy term in the lower bound

for PropTrE,N,I really necessary? The histogram in Figure 5.4, and particularly subfigure 5.4a

suggests that the discrepancy is in fact necessary. For I = [1/2, 1], the quantity AI is roughly

AI ≈ 0.086. Therefore, for N = 100 we expect around 8 extensions for which the normalized

Frobenius trace is in I . However, in the example of Figure 5.4a there are no extensions up to

N = 100 where the normalized Frobenius trace takes value in I .

In fact, one may even use the discrepancy to predict when such irregular histograms will occur

(as opposed to the more smooth set of histograms in Figure 5.5). Given the exponential sum in the

discrepancy bound,

2

N

H∑

h=1

(
1

πh
+

1

H + 1

)
1

| sin(hθ)| ,

one may expect that an elliptic curve that has a Frobenius angle close to π/m for m a small

integer, might be slower to converge (in terms of N ) to the value AI due to the term 1/| sin(hθ)|.

Computationally, this is indeed the case; in particular, the curve used in Figure 5.4 has a Frobenius

angle θ such that |θ − π/4| < 0.000604.
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(a) N = 100 (b) N = 500

(c) N = 1000 (d) N = 5000

Figure 5.4: Histograms of the normalized traces for extension degrees N = 100, 500, 1000, 5000 for the

curve y2 = x3 + 14565x+ 9281 with p = 15331, which has trace of Frobenius a1 = 175.

(a) N = 100 (b) N = 500

(c) N = 1000 (d) N = 5000

Figure 5.5: Histograms of the normalized traces for extension degrees N = 100, 500, 1000, 5000 for the

curve y2 = x3 + 14565x+ 9281 with p = 15331 which has trace of Frobenius a1 = 130.
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5.2 Quantitative traces

Continue with E an elliptic curve over Fp with trace a1. Again, fix an interval I = [a, b] ⊂

[−2, 2] as the target interval for the normalized traces an. Recall that ExtSetTrE,N,I = {n ≤

N : an ∈ I} is the set of (degrees of) extensions such that the Frobenius trace is in I , and

continue to use the PropTrE,N,I =
#ExtSetTrE,N,I

N
to denote the proportion of extensions up to

degree N such that an ∈ I . Also recall the normalization of Frobenius angles,

θ̂ =
θ

2π
.

The previous section gave explicit lower bounds on PropTrE,N,I ; this section aims to give a result

on the speed of convergence of PropTrE,N,I to the probability density function given by (5.2) in

terms of N . We will make use of the proof structure outlined in Section 4.5. In particular, we look

to make use of a Vinogradov function, which requires the following lemma. We first review some

notation.

Recall the setup for Definition 3.5.1. Consider a function T : Rs → R. Let πj : [0, 1]s →

[0, 1]s−1 for 1 ≤ j ≤ s be the map that forgets the jth coordinate of the s-tuple θ = (θ1, θ2, . . . , θs).

For ϑ ∈ [0, 1]s−1, define Xj(ϑ) = π−1
j (ϑ). We now verify the conditions of Definition 3.5.1 for

the function T (θ) = 2 cos(2πθ).

Lemma 5.2.1. The function

T : R // R

θ ✤

// 2 cos(2πθ)

meets the criterion of Definition 3.5.1 with Note 3.5.2 for the special case of s = 1. That is, it

meets the following conditions:

1. T is periodic of period 1.
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2. There exists a positive K ∈ R such that |∇T (θ)| ≤ K for all θ ∈ R.

3. There exists an integer C > 0 such that, for every γ ∈ R

#

(
T−1(γ) ∩ [0, 1]

)
≤ C.

Proof. The function T is plainly periodic of period 1, and the derivative is bounded by K = 4π.

For the third part, let γ ∈ R be a fixed number.

The quantity

#

(
T−1(γ) ∩ [0, 1]

)

is the number of solutions to 2 cos(2πθ) = γ for θ ∈ [0, 1], thus taking C = 2 is sufficient.

Therefore, given an interval I = [a, b], we make use of the Vinogradov function, which mea-

sures how often T (θ) ∈ I . We have shown that θ̂ is of finite type (Corollary 4.3.3), so we will

use a Vinogradov function along with the error estimate for quasi-Monte Carlo integration for the

following theorem.

Theorem 5.2.2. Let E/Fp be an ordinary elliptic curve with normalized Frobenius angle θ̂. Let

I = [a, b] ⊂ [−2, 2] be the target interval for the normalized traces an. Let ∆ > 0, and define the

quantity

AI,∆ =
1

π
(arccos((a+ 2∆)/2)− arccos((b− 2∆)/2)).

Then the proportion of extensions of degree up to N where an ∈ I satisfies the inequality

PropTrE,N,I ≥ AI,∆ −O

(
1

N

)
. (5.7)
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Proof. Recall from Corollary 4.3.3 that θ̂ is of finite type. Let T be the function

T : R // R

θ ✤

// 2 cos(2πθ)

so that T (nθ̂) = an. As previously noted, T admits a Vinogradov function, Ψ. Recall from the

definition of the Vinogradov function, that given α, β,∆, we have the sets

R1 = T−1 ((α +∆, β −∆)) ∩ [0, 1]

R0 = T−1 (R \ (α−∆, β +∆)) ∩ [0, 1]

where Ψ takes value 1 on R1 and value 0 on R0. Thus, given ∆, define the quantities α =

a+∆, β = b−∆ and the regions

R1 = T−1 ((a+ 2∆, b− 2∆)) ∩ [0, 1]

R0 = T−1 (R \ (a, b)) ∩ [0, 1].

The Vinogradov function Ψ(θ) takes value 1 on R1, takes value 0 on R0, and is everywhere

bounded 0 ≤ Ψ(θ) ≤ 1 (note in particular, this holds on the preimages of [a, a + 2∆] and

[b− 2∆, b]). By 3.3.5 we have

∣∣∣∣∣
1

N

N∑

n=1

Ψ(nθ̂)−
∫ 1

0

Ψ(x)dx

∣∣∣∣∣≪
1

N
. (5.8)

We must now relate the sum 1
N

∑N
n=1 Ψ(nθ̂) to PropTrE,N,I and give a lower bound on the inte-

gral
∫ 1

0
Ψ(x)dx. First, as noted in Section 4.5.2, the sum 1

N

∑N
n=1 Ψ(nθ̂) is an underestimate of

PropTrE,N,I because a term nθ̂ correspond to an extension in ExtSetTrE,N,I , but Ψ(nθ̂) < 1.
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We find a lower bound on the integral
∫ 1

0
Ψ(x)dx by restricting to the region R1, because

∫

R1

Ψ(x)dx <

∫ 1

0

Ψ(x)dx.

The integral on R1 is the measure of the set of θ that satisfies the inequalities α+2∆ ≤ 2 cos(2πθ) ≤

β − 2∆. First consider the inequality α + 2∆ < 2 cos(2πθ). For θ ∈ [0, 1] this inequality is sat-

isfied exactly by θ < arccos((α+2∆)/2)
2π

and θ > 1 − arccos((α+2∆)/2)
2π

. Therefore the measure of

the set that satisfies α + 2∆ < 2 cos(2πθ) is
arccos((α+2∆)/2)

π
. After a similar computation for

2 cos(2πθ) ≤ β − 2∆, we find

AI,∆ =

∫

R1

Ψ(x)dx =
1

π

(
arccos((a+ 2∆)/2)− arccos((b− 2∆)/2)

)
.

Returning to (5.8), there exists a constant M such that

1

N

N∑

n=1

Ψ(nθ̂) ≥
∫ 1

0

Ψ(x)dx− M

N

Then combine the inequalities

PropTrE,N,I ≥
1

N

N∑

n=1

Ψ(nθ̂)

and

AI,∆ ≤
∫ 1

0

Ψ(x)dx

to finish the result.

Example 5.2.3. Let E be an elliptic curve with trace a1 = 5 over Fp with p = 19. One such curve

has equation y2 = x3+3x+8. We consider the proportion of extensions for which the normalized
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Frobenius trace lands in the interval I = [−2,−1]. Let ∆ = 0.0001, and calculate that

AI,∆ ≈ 0.3287

which is indeed a lower bound on PropTrE,N,I as one can see from the rightmost column of Table

5.2.

Table 5.2: Counts and proportions of normalized traces that land in I = [−2,−1] up to extensions of degree

N for the elliptic curve y2 = x3 + 3x+ 8 over F19.

N # ExtSetTrE,N,I PropTrE,N,I

50 18 0.36

100 32 0.32

500 167 0.334

1000 334 0.334

5000 1667 0.3334

10000 3333 0.3333

A natural question is: how accurate is O(1/N)? Could the true rate of convergence be faster?

To consider this, let

ErrorE,N,I =
∣∣PropTrE,N,I −AI,∆

∣∣ .

For an elliptic curve over F19 with trace a1 = 3 and target interval I = [1/2, 1], figure 5.6 plots

(in the black dots) ErrorE,N,I . Models of the form A/N (in blue), B/
√
N (in purple) and C/N1.5

for are fitted to the data and plotted along side the data points (the constants A,B,C are found via

a built-in SageMath function). While far from conclusive, this figure suggests that O(1/N1.5) is

unlikely, and O(1/N) visually fits the data well.
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Figure 5.6: Best fits for A/N (blue), B/
√
N (purple), C/N1.5 (red). Here A = 0.818, B = 0.232, C =

0.964. For a1 = 3, p = 19, error for normalized traces in the interval [1/2, 1].

5.3 Traces for two isogeny classes

Let p be a prime, and let E(1) and E(2) be ordinary elliptic curves over Fp that are geometrically

not isogenous. Let a(1)n , a(2)n be the normalized traces of E(1), E(2) (respectively) over Fpn . Let

θ̂(1), θ̂(2) be their normalized Frobenius angles, and recall from Corollary 4.3.3 that the tuple θ̂ =

(θ̂(1), θ̂(2)) is of finite type. In this section, we aim to quantify the set of extensions Fpn such that

the average of the normalized traces lies in a target interval. Let I = [a, b] ⊂ [−2, 2] be the target

interval. Let

ExtSetTrE(1),E(2),N,I = {n ≤ N : a <
a(1)n + a(2)n

2
< b}

be the set of degrees of extensions where the average of the normalized traces lands in I . Define

PropTrE(1),E(2),N,I =
#ExtSetTrE(1),E(2),N,I

N
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to be the proportion of extensions where the average of the traces lands in I . This section aims to

give a distribution for ExtSetTrE(1),E(2),N,I and a rate of convergence in terms of N . The theorem

and techniques of this section will be very similar to those from Theorem 5.2.2, and will again

follow the scaffolding given in 4.5. We first show that a relevant function T allows for the con-

struction the Vinogradov function. We then provide a calculation of the relevant integral in Lemma

5.3.2 and finally give the main theorem for PropTrE(1),E(2),N,I in Theorem 5.3.3.

First, recall that the normalized trace for an elliptic curve can be calculated from the normalized

Frobenius angle by an = 2 cos(2nπθ̂). Therefore, to calculate the average of two normalized

traces, we are interested in the function

T (θ1, θ2) =
1

2
(2 cos(2πθ1) + 2 cos(2πθ2))

= cos(2πθ1) + cos(2πθ2).

Lemma 5.3.1. The function

T : R2 // R

(θ1, θ2)
✤

// cos(2πθ1) + cos(2πθ2)

meets the criterion of Definition 3.5.1. That is, it satisfies the following conditions:

1. T is periodic of period 1.

2. There exists a positive K ∈ R such that |∇T (θ)| ≤ K for all θ ∈ R2.

3. There exists an integer C > 0 such that, for every γ ∈ R and every ϑ ∈ [0, 1] we have

#

(
T−1(γ) ∩Xj(ϑ)

)
≤ C

for 1 ≤ j ≤ 2.
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Proof. T is clearly periodic of period 1, and the gradient of T is bounded by K = 2π. Now

consider the third property. Let γ ∈ R be fixed. For a given ϑ ∈ [0, 1], the quantity

#

(
T−1(γ) ∩Xj(ϑ)

)

is the number of solutions to cos(2πx) + cos(2πϑ) = γ for x ∈ [0, 1]. Thus it suffices to set

C = 2.

Therefore, given an interval I = [a, b] and ∆ > 0, we make use of the Vinogradov function, Ψ,

which measures how often T (θ) ∈ I . We have the regions

R1 = T−1

(
(a+ 2∆, b− 2∆)

)
∩ [0, 1]

R0 = T−1

(
R \ (a, b)

)
∩ [0, 1]

and Ψ takes value 1 on R1 and value 0 on R0. In Theorem 5.3.3 we shall make use
∫
R1

Ψ(x)dx as

a lower bound for
∫
[0,1]2

Ψ(x)dx. We first provide a computation for this integral.

Lemma 5.3.2. Let ∆ be given (via construction of the Vinogradov function Ψ(x)), and define

â = a+ 2∆ and b̂ = b− 2∆.

1. if â, b̂ > 0

∫

R1

Ψ(x) =

∫ 1

â−1

arccos(â− t)

π2
√
1− t2

dt−
∫ 1

b̂−1

arccos(b̂− t)

π2
√
1− t2

dt

2. if â, b̂ < 0,

∫

R1

Ψ(x) =

∫ 1

|b̂|−1

arccos(|b̂| − t)

π2
√
1− t2

dt−
∫ 1

|â|−1

arccos(|â| − t)

π2
√
1− t2

dt
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3. If â < 0 and b̂ > 0

∫

R1

Ψ(x) =

1− 2

(∫ â+1

−1

2π − arccos(â− t)

4π2
√
1− t2

dt−
∫ â+1

−1

arccos(â− t)

4π2
√
1− t2

dt

)
−
∫ 1

b̂−1

arccos(b̂− 1)

π2
√
1− t2

dt.

Proof. Let c be a constant in the interval −2 ≤ c ≤ 2. These integral formulas follow from

parametrizing the curve given by

cos(2πθ1) + cos(2πθ2) = c.

If c > 0, we have the parameterization

x(t) =
arccos(t)

2π
, y(t) =

arccos(c− t)

2π

c− 1 ≤ t ≤ 1

For an illustration of the region cos(2πθ1) + cos(2πθ2) < c along with the parameterization, see

Figure 5.7.

(a) The region cos(2πθ1) + cos(2πθ2) <
1/2

(b) The parameterization for c > 0 in red.

Figure 5.7: Illustrations of the region cos(2πθ1) + cos(2πθ2) < 1/2 and the associated parameterization.
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If instead c < 0, we need a parametrization of the upper and lower parts, which are given by

xlower(t) =
arccos(t)

2π
, ylower(t) =

arccos(c− t)

2π

−1 ≤ t ≤ −1− c

and

xupper(t) =
arccos(t)

2π
, yupper(t) = 1− arccos(c− t)

2π

−1 ≤ t ≤ −1− c.

See Figure 5.8 for an illustration. With the parameterizations in hand, the result is an exercise in

calculus via the integrals
∫
ydx or

∫
yupperdxupper −

∫
ylowerdxlower.

(a) The region cos(2πθ1) + cos(2πθ2) <
−1/2

(b) The parameterization for c < 0 in red

and purple.

Figure 5.8: Illustrations of the region cos(2πθ1)+ cos(2πθ2) < −1/2 and the associated parameterization.

We now give a lower bound on PropTrE(1),E(2),N,I whose main term uses the above parameter-

izations.
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Theorem 5.3.3. Let E(1) and E(2) be ordinary elliptic curves with over Fp that are geometrically

not isogenous. Let I = [a, b] ⊂ [−2, 2] be the given target interval for the average of the normal-

ized traces. For any ∆ > 0

PropTrE(1),E(2),N,I ≥
∫

R1

Ψ(x)dx−O

(
1

N

)
.

Proof. We follow the proof structure in 4.5. As above, let T (θ1, θ2) = cos(2πθ1) + cos(2πθ2). Let

α = a+∆, β = b−∆ which gives the regions

R1 = T−1

(
(a+ 2∆, b− 2∆)

)
∩ [0, 1]

R0 = T−1

(
R \ (a, b)

)
∩ [0, 1]

and Ψ(θ) takes value 1 on R1 and 0 on R0.

Note that this choice of α, β ensures the undercount

N∑

n=1

Ψ(nθ̂) < #ExtSetTrE(1),E(2),N,I .

This inequality holds because a < T (nθ̂) < b implies n ∈ ExtSetTrE(1),E(2),N,I , however Ψ(nθ̂) is

less than or equal to 1. Therefore the sum
∑N

n=1 Ψ(nθ̂) is less than or equal to #ExtSetTrE(1),E(2),N,I .

Because θ̂ is of finite type (Corollary 4.3.3), we use the complexity analysis from Theorem

3.3.5 to get

∣∣∣∣∣
1

N

N∑

n=1

Ψ(nθ̂)−
∫

[0,1]2
Ψ(x)dx

∣∣∣∣∣≪
1

N
. (5.9)

Note that
∫
R1

Ψ(x)dx ≤
∫
[0,1]2

Ψ(x)dx, and thus the theorem follows.

It is not immediately clear what the main term of Equation 5.9 looks like. See Figure 5.9 for a

visualization, which plots the term
∫
R1

Ψ(x)dx over intervals I = [−2, x] as x varies from -2 to 2,
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that is, the figure is the cumulative distribution. This CDF is plotted over the cumulative histogram

for the data in Example 5.3.4, which follows shortly. Also see Figure 5.10 for histograms that

illustrate the distributions of the normalized traces, again using the data from Example 5.10.

Figure 5.9: In blue is the CDF for the main term
∫
R1

Ψ(x)dx, which is overlayed over the cumulative

histogram for Example 5.3.4.

Example 5.3.4. Let p = 139, and consider two elliptic curves over Fp. Let E(1) be the elliptic

curve with equation y2 = x3 + 56x + 89 which has trace a
(1)
1 = 1, and let E(2) be the elliptic

curve with equation y2 = x3 + 54x + 10, which has trace a
(2)
1 = 16. We consider the proportion

of extensions for which the average of the two normalized traces of Frobenius lands in the interval

I = [−1/2, 1/2].

Let ∆ = .001. Then

0.382 ≈
∫

R1

Ψ(x)dx

which is our lower bound on the rightmost column of Table 5.3. See also the histograms in Figure

5.10.
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Table 5.3: Counts and proportions of averages of normalized traces that land in the interval I = [−1/2, 1/2]
up to extensions of degree N for two elliptic curves with traces a

(1)
1 = 1 and a

(2)
1 = 16 over F139.

N ExtSetTrE(1),E(2),N,I PropTrE(1),E(2),N,I

50 20 0.4

100 37 0.37

500 193 0.386

1000 385 0.385

5000 1921 0.3842

10000 3835 0.3835

(a) N = 500 (b) N = 1000

(c) N = 5000 (d) N = 10000

Figure 5.10: Histograms of the average of normalized traces up to extensions of degree N for curves with

traces a
(1)
1 = 1 and a

(2)
1 = 16 over F139.
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5.4 Explicit Discriminants

5.4.1 Set up

Let E/Fp be an elliptic curve with Frobenius trace a1, and let ∆E,1 be the discriminant of the

characteristic polynomial of Frobenius over Fp. Recall that the absolute value of the discriminant

over Fpn can be calculated from the Frobenius angle by |∆E,n| = 4pn sin2(nπθ), and thus define

the normalized discriminant ∆E,n = ∆E,n/(4p
n). As discussed in Section 2.2.2, the size of the

isogeny class is roughly of E over Fpn is roughly
√
|∆E,n|. In Table 5.4 we can see that isogeny

classes can be smaller than expected when extensions are ordered by size (as opposed to divisi-

bility). In fact, the size of an isogeny class over extensions of Fp isn’t necessarily monotone. To

quantify this phenomenon, we will use quasi-Monte Carlo estimates on the trigonometric factor of

the discriminant.

Table 5.4: The size of the isogeny class containing the curve given by y2 = x3+32x+170. p = 499, a1 =
22 exhibits smaller than expected cardinality at the degree 3 extension.

extension degree, n #I(an)

1 16

2 624

3 364

4 374192

Lemma 5.4.1. The sequence of normalized discriminants {|∆E,n|} is equidistributed with respect

to the measure dz/(π
√
z − z2), so that

lim
N→∞

#{Fpn : n ≤ N, a ≤ |∆E,n| ≤ b}
N

=

∫ b

a

dz

π
√
z − z2

.

This follows from the ideas of [29, Prop. 2.11]. First, we compute the pushfoward of the

uniform measure on [−π, π] (the space of Frobenius angles) along the measurable map z = sin2(θ).
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We then have that θ = arcsin(
√
z) and

dθ =
dz

2
√
z − z2

.

Note that

∫ 1

0

dz√
z − z2

= π

and therefore normalizing so that [0, 1] has measure 1 yields the stated measure.

Let ϵ > 0 be given. We look to quantify the proportion of extensions where |∆E,n| > ϵ. Define

the set ExtSetDiscE,N,ϵ = {n ≤ N : |∆E,n| > ϵ} to be the set of degrees of extensions of Fp

where the normalized discriminant is greater than ϵ. Define the notation

PropDiscE,N,ϵ =
#ExtSetDiscE,N,ϵ

N
(5.10)

to be the proportion of extensions up to degree N such that the normalized discriminant is greater

than ϵ. We now give an explicit lower bound on PropDiscE,N,ϵ.

Theorem 5.4.2. Let E/Fp be an ordinary elliptic curve with normalized Frobenius angle θ̃. Let

ϵ > 0 be given. The proportion of extensions of degrees up to N that have normalized discriminant

greater than ϵ satisfies the inequality

PropDiscE,N,ϵ ≥ 1− 2 arcsin(
√
ϵ)

π
− 2D∗

N .

Proof. We again use Koksma’s inequality with the sequence {θ̃n}. Let I be the interval I = [ϵ, 1],

and let f be the function

fI(x) = χI(sin
2(πx))
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which acts as an indicator for when the normalized discriminant is greater than ϵ. The sum

∑
fI(θ̃n) counts the extensions in ExtSetDiscE,N,ϵ. Because this function is an indicator func-

tion of an interval, we have V (fI) = 2.

For x ∈ [0, 1], the inequality ϵ < sin2(πx) < 1 is solved by arcsin(
√
ϵ)/π < x < 1 −

arcsin(
√
ϵ)/π. This interval has length 1− 2 arcsin(

√
ϵ)/π, and therefore

∫ 1

0

fI(x)dx = 1− 2 arcsin(
√
ϵ)/π

Now use Koksma’s inequality to find

∣∣∣∣∣

n∑

n=1

fI(θ̃n)−
(
1− 2 arcsin(

√
ϵ)

π

)∣∣∣∣∣ ≤ 2D∗
N

which completes the proof.

The cumulative distribution function for the term 1 − 2 arcsin(
√
x)/π can be found in Figure

5.11, and histograms from data appear in Figure 5.12.

Figure 5.11: The plot of the main term in Theorem 5.4.2, 1− 2 arcsin(
√
x)/π for 0 ≤ x ≤ 1.
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The following example illustrates how to combine Theorem 5.4.2 with the ideas of discrepancy

bounds from Section 4.2 to get lower bounds on PropDiscE,N,ϵ.

Example 5.4.3. Let p = 19, and let E be the curve defined by y2 = x3 + x + 7 over Fp, which

has trace a1 = 2. We consider the proportion of extensions for which the normalized discriminant

is greater than ϵ = 0.6. We have the quantity 1 − 2 arcsin(
√
0.6)/π ≈ 0.4359, so Theorem 5.4.2

gives the lower bound

PropDiscE,N,ϵ ≥ 0.4359− 2D∗
N .

We again make use of the discrepancy bounds from Theorem 4.2.2 to find an upper bound on the

discrepancy, DUB
N . After calculation of DUB

N , our explicit lower bound on PropDiscE,N,ϵ is 0.3575

for N = 500, and 0.3911 for N = 1000. See Table 5.5 for the empirical data, and see Figure 5.12

for the corresponding histograms.

Table 5.5: Computational data for normalized discriminants greater than ϵ = 0.6 for p = 19 and trace

a1 = 3.

N DUB
N Optimal H choice 0.4359− 2DUB

N #ExtSetDiscE,N,ϵ PropDiscE,N,ϵ

500 0.0392 121 0.3575 218 0.4357

1000 0.0224 189 0.3911 436 0.436
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(a) N = 500 (b) N = 1000

Figure 5.12: Histograms of the normalized discriminants |∆E,N | for N = 500 and N = 1000 for the curve

y2 = x3 + x+ 7 with p = 19.

5.5 Quantitative Discriminants

Continue with E an ordinary elliptic curve over Fp, with normalized Frobenius angle θ̂. Let

|∆E,n| be the absolute value of the normalized discriminant after base change up to Fpn . Recall

ExtSetDiscE,N,ϵ = {n ≤ N : |∆E,n| > ϵ} is the set of extensions of Fp where the normalized

discriminant is greater than ϵ. Also recall the quantity PropDiscE,N,ϵ =
#ExtSetDiscE,N,ϵ

N
as the

proportion of extensions up to degree N such that the normalized discriminant is greater than ϵ.

This section aims to give a quantitative lower bound on PropDiscE,N,ϵ through the proof structure

outlined in section 4.5. That style of proof requires construction of a Vinogradov function, which

requires the following lemma.

Lemma 5.5.1. The function

T : R // R

θ ✤

// sin2(πθ)

meets the criterion of Definition 3.5.1 with the special case of s = 1 in Note 3.5.2. That is, it

satisfies the following conditions:
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1. T is periodic of period 1.

2. There exists a positive K ∈ R such that |∇T (θ)| ≤ K for all θ ∈ R.

3. There exists an integer C > 0 such that, for every γ ∈ R we have

#

(
T−1(γ) ∩ [0, 1]

)
≤ C.

Proof. The first two conditions are clearly met. For the third condition, the set

(
T−1(γ) ∩ [0, 1]

)

is the set of solutions to sin2(πθ) = γ for θ ∈ [0, 1]. Thus C = 2 is sufficient.

Therefore, given 0 < ϵ < 1, we will construct a Vinogradov function that measures how often

T (nθ) ∈ [ϵ, 1]. We’ll then combine this with the O(1/N) error estimate since θ̂ is of finite type.

This strategy gives the following theorem.

Theorem 5.5.2. Let E/Fp be an ordinary elliptic curve. Given 0 < ϵ < 1, for every ∆ > 0, we

have

PropDiscE,N,ϵ ≥ 1− 2 arcsin(
√
ϵ+ 2∆)

π
−O

(
1

N

)
.

Proof. This proof follows the framework from Section 4.5, with the necessary details filled in. Let

0 < ϵ < 1 be given. Define the function

T : R // R

θ ✤

// sin2(πθ)
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which allows for the construction of a Vinogradov function Ψ(θ). Define the quantities α = ϵ+∆

and β = 1 +∆. We have the regions

R1 = T−1

(
(ϵ+ 2∆, 1)

)
∩ [0, 1]

R0 = T−1

(
R \ (ϵ, 1 + 2∆)

)
∩ [0, 1].

The Vinogradov function Ψ(θ) takes value 1 on R1, takes value 0 on R0, and is bounded 0 ≤

Ψ(θ) ≤ 1 everywhere. Note that this choice for α, β gives the inequality

N∑

n=1

Ψ(nθ̂) ≤ #ExtSetDiscE,N,ϵ .

Because θ̂ is of finite type, Theorem 3.3.5 gives the error estimate

∣∣∣∣∣
1

N

N∑

n=1

Ψ(nθ̂)−
∫ 1

0

Ψ(x)dx

∣∣∣∣∣≪
1

N
. (5.11)

From Section 4.5.3, we find a lower bound on
∫ 1

0
Ψ(x)dx by restricting to the region R1. The

integral on R1 is simply the length of the region where sin2(πθ) > ϵ+ 2∆, so that

∫

R1

Ψ(x)d(x) = 1− 2 arcsin(
√
ϵ+ 2∆)

π
.

Example 5.5.3. Let E be the elliptic curve defined by y2 = x3 + x + 3 over F23, which has trace

a1 = −3. We consider the proportion of extensions where |∆E,n| is great than ϵ = 0.8. Let

∆ = 0.001, then

1− 2 arcsin(
√
ϵ+ 2∆)

π
≈ 0.2935
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and therefore we have the lower bound

PropDiscE,N,ϵ ≥ 0.2935−O

(
1

N

)
.

See Table 5.6 for empirical data, and see Figure 5.13 for histograms.

Table 5.6: Counts and proportions of extensions with |∆E,n| > .8 of degree N for the elliptic curve

y2 = x3 + x+ 3 over F23.

N # ExtSetDiscE,N,ϵ PropDiscE,N,ϵ

50 16 .32

100 30 .3

500 148 0.296

1000 96 0.296

5000 1477 0.2954

10000 2953 0.2953

5.6 Discriminants for two isogeny class

Let p be a prime, and let E(1) and E(2) be ordinary elliptic curves over Fp that are geometrically

not isogenous. Let ∆
(1)

1 ,∆
(2)

1 ∈ [0, 1] be the normalized discriminants of the respective Frobenius

polynomials over Fp and let ∆
(1)

n ,∆
(2)

n be the normalized discriminants after base change up to

Fpn . Let

AvgNormDiscE(1),E(2),n =
|∆(1)

n |+ |∆
(1)

n |
2

be the average of the normalized discriminants of the two isogeny classes over Fpn . Given ϵ > 0,

define the set ExtSetDiscE(1),E(2),N,ϵ = {n ≤ N : AvgNormDiscE(1),E(2),n > ϵ} to be the set of
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(a) N = 50 (b) N = 100

(c) N = 1000 (d) N = 10000

Figure 5.13: Histograms of |∆E,N | for extension degrees N = 50, 100, 1000, 10000 for the curve y2 =
x3 + x+ 3 over F23.

extensions where the average of the normalized discriminants is greater than ϵ. Define the quantity

PropDiscE(1),E(2),N,ϵ =
#ExtSetDiscE(1),E(2),N,ϵ

N

which is the proportion of extensions up to degree N where the average normalized discriminant

is larger than ϵ. This section aims to quantify PropDiscE(1),E(2),N,ϵ through the techniques out-

lined in Section 4.5. We first define a function T that calculates the average of the normalized

discriminants, and then show it admits a construction of a Vinogradov function Ψ. We then give

an estimate of the integral
∫
[0,1]2

Ψ(x)dx before applying the quasi-Monte Carlo integral estimate

to get the main result of this section in Theorem 5.6.3.
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Lemma 5.6.1. The function

T : R2 // R

(θ1, θ2)
✤

//
1
2

(
sin2(πθ1) + sin2(πθ2)

)

meets the criterion of Definition 3.5.1. That is, it satisfies the following conditions:

1. T is periodic of period 1.

2. There exists a positive K ∈ R such that |∇T (θ)| ≤ K for all θ ∈ R2.

3. there exists an integer C > 0 such that, for every γ ∈ R and every ϑ ∈ [0, 1] we have

#

(
T−1(γ) ∩Xj(ϑ)

)
≤ C.

for 1 ≤ j ≤ 2.

Proof. The first two conditions are clear. For the last condition, fix γ ∈ R. For a given ϑ ∈ [0, 1],

note that

(
T−1(γ) ∩Xj(ϑ)

)

is the set of solutions to sin2(πx) + sin2(πϑ) = γ for x ∈ [0, 1), so C = 2 is sufficient.

In light of this, we aim to make use of a Vinogradov function, Ψ and the quasi-Monte Carlo

integration method from Theorem 3.3.5. Let ϵ > 0 be given. Let ∆ > 0, and choose the parameters
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as α = ϵ+∆, β = 1 +∆. The Vinogradov Ψ function then has the associated regions

R1 = T−1

(
α +∆, β −∆

)
∩ [0, 1]2

= T−1

(
ϵ+ 2∆, 1

)
∩ [0, 1]2

R0 = T−1

(
R \ (α−∆, β +∆)

)
∩ [0, 1]2

= T−1

(
R \ (ϵ, 1 + 2∆)

)
∩ [0, 1]2

where Ψ takes value 1 on R1, and is bounded 0 ≤ Ψ ≤ 1 everywhere else. In order to produce

estimates for PropDiscE(1),E(2),N,ϵ, we use the following integral calculations.

Lemma 5.6.2. Let ∆ be given (via construction from a Vinogradov function Ψ), and define ϵ̂ =

ϵ+ 2∆.

1. If ϵ̂ < 1/2

∫

R1

Ψ(x)dx = 1− 4

π2

∫ √
2ϵ̂

0

arcsin(
√
2ϵ̂− t2)√

1− t2
dt

2. If ϵ̂ > 1/2

∫

R1

Ψ(x)dx =
4

π2

∫ √2(1−ϵ̂)

0

arcsin(
√
2(1− ϵ̂)− t2)√
1− t2

dt

3. If ϵ̂ = 1/2, then
∫
R1

Ψ(x)dx = 1
2
.

Proof. These integral calculations are found by parameterizing the curve

1

2
(sin2(πθ1) + sin2(πθ2)) = ϵ̂.
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For ϵ̂ < 1/2, we have the parameterization

x(t) =
arcsin(t)

π
, y(t) =

arcsin(
√
2ϵ̂− t2)

π
(5.12)

0 ≤t ≤
√
2ϵ̂. (5.13)

The first case then follows from a calculation of
∫
ydx from the parameterization.

If ϵ̂ > 1/2, we exploit the symmetry about ϵ̂ = 1/2 of the level set of T (θ) = ϵ̂. We use a

change of coordinates by ϑi = θ1 − 1/2 and ε = 1 − ϵ̂ to center the level set at the origin, and

again calculate
∫
ydx.

See Figure 5.14 for illustrations of the region T (θ) > ϵ̂ and Figure 5.15 for the parameterization

of the curve T (θ) = ϵ̂.

(a) ϵ̂ = 0.4. (b) ϵ̂ = 0.6.

Figure 5.14: Illustrations of the region (1/2)(sin2(πθ1) + sin2(πθ2)) > ϵ̂ for ϵ̂ = 0.4 and ϵ̂ = 0.6.
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Figure 5.15: In blue, the level set (1/2)(sin2(πθ1) + sin2(πθ2)) = .45 with the parameterization shown in

red.

Theorem 5.6.3. Let E(1), E(2) be ordinary elliptic curves over Fp that are geometrically not isoge-

nous. Let ϵ > 0 be given. For any ∆ > 0,

PropDiscE(1),E(2),N,ϵ ≥
∫

R1

Ψ(x)dx−O

(
1

N

)
.

Proof. As in Lemma 5.6.2, let T be the function T (θ1, θ2) = (1/2)(sin2(πθ1) + sin2(πθ2)). To

construct Ψ(θ), we choose parameters α = ϵ+∆, β = 1 +∆. We then have the regions

R1 = T−1

(
ϵ+ 2∆, 1

)
∩ [0, 1]2

R0 = T−1

(
R \ (ϵ, 1 + 2∆)

)
∩ [0, 1]2

and Ψ takes value 1 on R1 and 0 on R0. This choice of α, β ensures the inequality

1

N

N∑

n=1

Ψ(nθ̃) ≤ PropDiscE(1),E(2),N,ϵ .
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We use the quasi-Monte Carlo integration method from Theorem 3.3.5 to get

∣∣∣∣∣
1

N

N∑

n=1

Ψ(nθ̃)−
∫

[0,1]2
Ψ(x)dx

∣∣∣∣∣≪
1

N
.

because θ̃ is of finite type. The result follows by the inequality
∫
R1

Ψ(x)dx ≤
∫
[0,1]2

Ψ(x)dx.

For a visualization of the CDF of AvgNormDiscE(1),E(2),n, see 5.16 which is overlaid on the

data of Example 5.6.4. See also the histograms in Figure 5.17.

Figure 5.16: The CDF of AvgNormDiscE(1),E(2),n (in blue), over the cumulative histogram for Example

5.6.4

Example 5.6.4. Let p = 47, and consider the curves E(1) : y2 = x3 + 23x + 4 and E(2) : y2 =

x3 + 5x + 39 which have traces a
(1)
1 = 2 and a

(2)
1 = 5 over Fp. We consider the proportion of

extensions for which the average of the normalized discriminants is greater than ϵ > 0.8. Let

∆ = 0.001, then

0.1411 ≈
∫

R1

Ψ(x)dx
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so that PropDiscE(1),E(2),N,ϵ ≥ 0.1411 − O(1/N) is our lower bound for the rightmost column of

table 5.7.

Table 5.7: Counts and proportions of averages of normalized discriminants larger than ϵ = 0.8 up to

extensions of degree N . This data is for the curves E(1) : y2 = x3 +23x+4 and E(2) : y2 = x3 +5x+39
over F47.

N ExtSetDiscE(1),E(2),N,ϵ PropDiscE(1),E(2),N,ϵ

50 7 0.14

100 15 0.15

500 71 0.142

1000 145 0.145

5000 712 0.1424

10000 1423 0.1423

5.7 Arbitrary collections of Isogeny Classes

One might notice that the histogram in Figure 5.10 for two traces looks significantly different

than the histograms for one class (for example, Figure 5.5). In essence, the central limit theorem

is beginning to determine the distribution of the averages of traces. Throughout this section, we

no longer consider a finite bound N on extension degrees, rather, we have a bound m on the

number of isogeny classes under consideration. We begin with the Berry-Esseen theorem, which

is a quantitative version of the central limit theorem. This theorem roughly states that the average

of a collection of random variables converges to a normal distribution at a rate of the square root

of the number of random variables.

5.7.1 The Berry-Esseen theorem

Recall for a random variable, X , with density f(z) the nth moment is defined as

E[Xn] =

∫ ∞

−∞
znf(z)dz.
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(a) N = 500 (b) N = 1000

(c) N = 5000 (d) N = 10000

Figure 5.17: Histograms of the averages of normalized discriminants for extensions up to degree N for the

curves E(1) : y2 = x3 + 23x+ 4 and E(2) : y2 = x3 + 5x+ 39 over F47.

Let X1, . . . Xm be independent and identically distributed (i.i.d) random variables with E(Xj) =

0, E(X2
j ) = σ2, E(|Xj|3) = ρ < ∞ (because the Xj are i.i.d, these quantities are the same for

each of the Xj). Define

Ym =
X1 +X2 + . . .+Xm

m

to be the sample mean, and let Fm be the cumulative distribution function of

Ym

√
m

σ
.

Let Φ be the cumulative distribution function of the standard normal distribution. The Berry-

Esseen theorem gives a bound on the error in estimating Fm by Φ in terms of σ, ρ and m.
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Theorem 5.7.1 (Berry-Esseen). There exists a positive constant C such that, for all x and all m,

the inequality

|Fm(z)− Φ(z)| ≤ Cρ

σ3
√
m

holds.

The current best bound for C is C < .4748, due to [30].

5.7.2 Berry-Esseen for collections of elliptic curves

We now consider the distribution for the average of traces from m geometrically not isogenous

elliptic curves over Fp. Let Xj be the random variable of the values of normalized traces a(j)n for

the elliptic curve E(j). Then Xj has the density function

f(z) =
1

π
√
4− z2

and all X1, . . . , Xm are i.i.d. Note that f(z) has support on the bounded interval [−2, 2] and thus

f(z) takes value 0 outside of [−2, 2]. We first check the values of the moments E(Xj), E(X2
j ) =

σ2, E(|Xj|3) = ρ <∞. We find that the mean of Xj is 0, by the following calculation

E[Xj] =

∫ ∞

−∞

zdz

π
√
4− z2

= 0.

We also compute the variance,

E[X2
j ] =

∫ ∞

−∞

z2

π
√
4− z2

dz

= 2
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and therefore the standard deviation of Xj is σ =
√
2. Finally, we need that the absolute third

moment, ρ, is finite:

E(|Xj|3) =
∫ ∞

−∞

|z|3
π
√
4− z2

dz =
32

3π
.

Theorem 5.7.2. Let E(1), . . . , E(m) be a collection of m ordinary, geometrically not isogenous

elliptic curves over Fp, with random variables X1, . . . , Xm corresponding to the values of the

normalized traces. Let Ym be the sample mean

Ym =
X1 + . . . Xm

m

and let Fm(x) be the CDF of

Ym

√
m

σ
.

Let Φ(x) be the CDF of the standard normal distribution. Let ρ = 32/(3π) and σ =
√
2. Then the

distance between Fm(x) and Φ(x) has the bound

|Fm(x)− Φ(x)| ≤ Cρ

σ3
√
m

for a constant C < 0.4748.

Proof. This follows from the Berry-Esseen theorem along with the previous calculations of the

moments E(Xj), E(X2
j ), E(|Xj|3).

Example 5.7.3. Consider all isogeny classes with positive Frobenius trace over F179. The his-

togram for the averages of the normalized traces of these classes over exensions F179n appears in

Figure 5.18. Figure 5.19a shows the sample mean of the traces, Ym, along with the probability den-

sity of the standard normal distributions, with the corresponding cumulative distribution in Figure

5.19b.

82



Figure 5.18: The histogram for the average of all normalized traces for isogeny classes that have positive

trace over F179.

(a) PDF (b) CDF

Figure 5.19: Density and cumulative histograms for Ym
√
m/σ of all isogeny classes with postive trace over

F179 up to extension degree N = 5000. The standard normal distribution is in red.

83



Chapter 6

Abelian Varieties

Let A be an abelian variety of dimension g over Fp. Recall that the Frobenius polynomial is

of degree 2g, with roots of the form αj =
√
q exp(iθj) for 1 ≤ j ≤ g along with their complex

conjugates α1, . . . αg. Possibly after rearranging, the numbers 0 ≤ θ1 ≤ . . . ≤ θg are the Frobenius

angles.

Recall the angle rank of A is the quantity

δ(A) = dimQ(SpanQ({θj : 1 ≤ j ≤ 2g} ∪ {π}))− 1

and A has maximal angle rank if δ(A) = g. See [31] and [32] for more on angle ranks. Under

the assumption that A has maximal angle rank, the normalized Frobenius angle tuples θ̂ and θ̃ are

of finite type. We thus state an analogue of Theorem 5.3.3 for abelian varieties of maximal angle

rank.

6.1 Traces of abelian varieties

Let I = [a, b] ⊂ [−2g, 2g] be a given target interval for the normalized traces an. Let

ExtSetTrA,N,I = {n ≤ N : a < an < b}

be the set of degrees of extensions where the normalized trace lands in I . Define

PropTrA,N,I =
#ExtSetTrA,N,I

N

to be the proportion of extensions where the normalized trace lands in I . We first define a function

T to use in construction of a Vinogradov function.
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Lemma 6.1.1. The function

T : Rg // R

(θ1, . . . , . . . , θg)
✤

//

∑g
j=1 2 cos(2πθj)

meets the criterion of Definition 3.5.1. That is, T satisfies the following conditions:

1. T is periodic of period 1.

2. There exists a positive K ∈ R such that |∇T (θ)| ≤ K for all θ ∈ Rg.

3. There exists an integer C > 0 such that, for every γ ∈ R and every ϑ ∈ [0, 1]g−1 we have

#

(
T−1(γ) ∩Xj(ϑ)

)
≤ C

for 1 ≤ j ≤ g.

Proof. Let g be fixed. Condition 1 is clear. For condition 2, we certainly have the bound |∇T (θ)| ≤

4πg.

Now for the third condition. Fix j to be in the range 1 ≤ j ≤ g. For a given ϑ =

(ϑ1, . . . ϑg−1) ∈ [0, 1]g−1,

(
T−1(γ) ∩Xj(ϑ)

)

is the set of solutions to

2 cos(2πx) +
∑

i ̸=j

2 cos(2πϑi) = γ

for x ∈ [0, 1]. Let Γ = γ −∑i ̸=j 2 cos(2πϑi). Then 2 cos(2πx) = Γ has at most two solutions,

therefore C = 2 is sufficient.
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Given I = [a, b], we can construct the Vinogradov function Ψ(x), which measures when

T (θ) ∈ I , that is, when an ∈ I . Let α = a+∆, β = b−∆. Then we have the regions

R1 = T−1

(
(a+ 2∆, b− 2∆)

)
∩ [0, 1]g

R0 = T−1

(
R \ (a, b)

)
∩ [0, 1]g

where Ψ(x) takes value j on Rj and is everywhere bounded 0 ≤ Ψ(x)<1.

Theorem 6.1.2. Let A/Fp be an abelian variety of dimension g with maximal angle rank, and let

I = [a, b] ⊂ [−2g, 2g] be the target interval for the normalized traces. Then the proportion of

extensions where the trace an lands in I satisfies

PropTrA,N,I ≥
∫

R1

Ψ(x)dx−O

(
1

N

)
.

Proof. We proceed in the same manner as the previous proofs with an O(1/N) complexity term.

Fix ∆. Consider the function T from Lemma 6.1.1 which allows the construction of the Vino-

gradov function Ψ(x). From Theorem 3.3.5 we have

∣∣∣∣∣
1

N

N∑

n=1

Ψ(nθ̂)−
∫

[0,1]g
Ψ(x)dx

∣∣∣∣∣≪
1

N
.

The Vinogradov function Ψ(θ) takes value 1 on R1, value 0 on R0, and value 0 ≤ Ψ(θ) ≤ 1

everywhere else. Therefore, if Fpn is an extension in ExtSetTrA,N,I , then Ψ(nθ̂) ≤ 1, and if Fpn

is not in ExtSetTrA,N,I , then Ψ(nθ̂) = 0. Thus 1
N

∑N
n=1 Ψ(nθ̂) ≤ PropTrA,N,I . As already seen,

∫
R1

Ψ(x)dx ≤
∫
[0,1]g

Ψ(x)dx, and thus the result follows.

Example 6.1.3. Let A be an abelian surface over F7 with characteristic polynomial

f1(T ) = T 4 − 2T 3 + T 2 − 14T + 49.
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Then A has an angle rank of 2 as verified by the LMFDB in [33, Abelian Variety 2.7.ac_b]. Let

∆ = 0.001 be given, and let I = [0, 2] be the target interval in [−4, 4] for the normalized traces

{an}. We numerically compute
∫
R1

Ψ(x) ≈ 0.313 (see Note 6.1.4), so that

PropTrA,N,I ≥ 0.313−O

(
1

N

)
.

Empirical data for this abelian surface can be found in Table 6.1, and histograms in Figure 6.1.

Note 6.1.4. The numerical calculation of
∫
R1

Ψ(x)dx in the above example was found by the

following python script.

from scipy import cos

from scipy import sin

from scipy import pi

from scipy.integrate import dblquad

a = 0

b = 2

delta = .001

def Ind(x, y):

val = 2*cos(2*pi*x) + 2*cos(2*pi*y)

if (val > (a+2*delta)) and (val < (b - 2*delta)):

return 1

else:

return 0

predicted_prop = dblquad(Ind, 0, 1, lambda x: 0, lambda x: 1)[0]

print(f"The predicted lower bound = {predicted_prop}")
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Table 6.1: Counts and proportions of normalized traces that land in I = [0, 2] up to extensions of degree N
for the abelian surface with LMFDB label 2.7.ac_b.

N # ExtSetTrA,N,I PropTrA,N,I

50 12 0.24

100 28 0.28

500 163 0.326

1000 313 0.313

2500 793 0.3172

(a) N = 250 (b) N = 500

(c) N = 1000 (d) N = 2500

Figure 6.1: Histograms of the normalized traces for extension degrees N = 250, 500, 1000, 2500 for the

abelian surface with LMFDB label 2.7.ac_b.
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6.2 Sizes of Isogeny Classes of Abelian Varieties

Given an isogeny class, C, of abelian varieties, we further refine the isogeny class into strata.

A stratum of an isogeny class is a subset of the isogeny class of all the abelian varieties sharing

the same endomorphism ring. This section examines estimates for sizes of a certain stratum for

abelian surfaces.

In [34], Howe gives a result for the size of the minimal stratum of an isogeny class. We first

begin with some notation. Let {an} and {bn} be real-valued sequences. The notation an ∼∼∼ bn

means that, for every ϵ > 0, there are positive constants r, s such that bn ≤ ra1+ϵ
n and an ≤ sb1+ϵ

n

for all n. If {an} and {bn} both tend to infinity, then an ∼∼∼ bn if and only if (log(an)/ log(bn))→ 1.

Consider an isogeny class of simple abelian surfaces with Frobenius polynomial f(T ). Let K

be the field Q[T ]/f(T ), and let K+ be the maximal real subfield of K. For an order R ⊂ K, let

R+ = R ∩K+. We first need the notion of the Picard group and the narrow Picard group.

Definition 6.2.1. The Picard group, PicR , is the group of isomorphism classes of invertible R-

ideals.

Definition 6.2.2. Two R+ ideals, A,B are said to be strictly isomorphic if there is a totally positive

x ∈ K+ such xA = B. The narrow Picard group Pic+ R+ of the real order R+ is the group of

strict isomorphism classes of invertible R+-ideals.

The usual norm map of invertible ideals for K over K+ induces a homomorphism from PicR

to Pic+ R+, which we call the norm NPic : PicR→ Pic+ R+.

Let α be a root of the characteristic polynomial of Frobenius for the isogeny class C. We say

that R = Z[α, α] is the minimal ring for the isogeny class C. This name is justified, as all abelian

varieties in C have an a Frobenius endomorphism F and a Verschiebung endomorphism V . Then

Z[α, α] is isomorphic to Z[F, V ], and therefore the endormorphism ring of every abelian variety

in C contains Z[α, α]. The stratum of abelian varieties that have R for an endomorphism ring is

called the minimal stratum of C. We now consider a theorem of Howe’s that estimates the size of

the minimal stratum of an isogeny class.
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Theorem 6.2.3. [34, Thm. 1.3] Let {qn} be a sequence of prime powers. For each positive integer

n, let Cn be an isogeny class of simple g-dimensional ordinary abelian varieties over Fqn . Let Rn

be the minimal endomorphism ring, and let Sn be the associated minimal stratum. Let {θn,i}gi=1 be

the Frobenius angles for Cn. Define Pn as the number of principally polarized varieties in Sn. If

qn →∞ and if each norm map PicRn → Pic+ R+
n is surjective, then

Pn
∼∼∼ qg(g+1)/4

n

∣∣∣∣∣
∏

i<j

(cos(θi)− cos(θj))
∏

sin(θi)

∣∣∣∣∣ (6.1)

We specialize to the case of abelian surfaces, g = 2, and in this case (6.1) becomes

Pn
∼∼∼ q3/2n |sin(θ1) sin(θ2)(cos(θ1)− cos(θ2))| . (6.2)

Additionally, we work in the case of extensions of Fp, so that Fqn is the extension Fpn .

A criterion for the surjectivity of the norm map PicRn → Pic+ R+
n is given by the following

lemma.

Lemma 6.2.4. [34, Cor. 4.4] If K/K+ is ramified at a finite prime that does not divide the

conductor of R+, then the norm map PicR→ Pic+ R+ is surjective.

Recall that for quadratic fields, the conductor of an order can be identified with its index in the

ring of integers. We recall a few facts for the quadratic extension K+. Let OK+ be the maximal

order (i.e. the ring of integers) of K+.

Definition 6.2.5. Given an order O in a quadratic field K+, the index f = [OK+ : O] is the

conductor of O.

We will use another method to calculate the conductor based on the discriminant of O.
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Definition 6.2.6. Let O = Z[α, β] and let α 7→ α′ be the nontrivial automorphism of K+. The

discriminant D of O is the number

D =


det






α β

α′ β′










2

Lemma 6.2.7. Let O be an order with discriminant D and conductor f. Let dK+ be the discrimi-

nant of K+. We have the formula

D = f2dK+ .

For more on orders in quadratic extensions see [35, ch. 7].

Extensions Fpn with surjective norm map

Given this set up, we aim to take an isogeny class C over Fp, and give a lower bound on how of-

ten the minimal stratum achieves a certain size over extensions Fpn by estimating the trigonometric

factors of (6.2). However, the hypothesis on the sujectivity of the norm map PicRn → Pic+ R+
n

is not always satisfied for every extension of Fp. A finite check will be sufficient to identify which

extensions satisfy this constraint, which we now demonstrate.

Consider an isogeny class C of abelian surfaces with characteristic polynomial f(T ) over Fp.

Compute the relative discriminant of K/K+ to find a prime, r ∈ K+ that ramifies in K. In view

of Lemma 6.2.4, we would like to find conditions on those n for which r divides the conductor of

R+
n .

The characteristic polynomial associated to C over Fpn has the form

fn = T 4 − anT
3 + bnT

2 − anp
nT + p2n

= (T − αn)(T − αn)(T − βn)(T − β
n
)

91



so that an = αn + αn + βn + β
n
. Then the real subfield of K is K+

n = Q[T ]/f+
n (T ) where

f+
n (T ) = T 2 − anT + bn − 2pn

=
(
T − (αn + αn)

)(
T − (βn + β

n
))
)
.

In fact, K+
n is independent of n, therefore we drop the subscript and just write K+. The discrimi-

nant of the order On ⊂ R+
n is then Dn = (αn + αn − (βn + β

n
))2. Therefore, using the formula

Dn = f2ndk+ from Lemma 6.2.7 we have

(αn + αn − (βn + β
n
))2 = f2ndK+ .

Then r divides the conductor if

(1/dK+)(αn + αn − (βn + β
n
))2 ≡ 0 (mod r). (6.3)

Using this, we now characterize extensions for which r divides fn.

Because αn ∈ K and OK/(r) is a finite field, the values of αn, βn, αn, β
n

are cyclic in n when

taken mod r. Let M be the least common multiple of the orders of α, β (mod r). There is a finite

list of values for αn + αn − (βn + β
n
) (mod r), which are found in 1 ≤ n ≤M .

Let B = {m1, . . . ,mw} be the list of integers up to M such that

αmj + αmj − (βmj + β
mj
) ≡ 0 (mod r).

Recall that fn = [OK+ : R+
n ]. Given that R+

km ⊂ R+
m, we have that fm|fkm. Therefore if

αl + αl − (βl + β
l
) ≡ 0 (mod r).

then l ≡ m for some m ∈ B. We have that B is a subgroup of Z/MZ, and we define Bmin to be

the set of minimal generators of B.
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In the sequel, we will need extensions where r does not divide the conductor, which leads to

the following condition.

Condition 6.2.8. If B is a proper subgroup of Z/MZ, we say the isogeny class C meets the

existence of surjective norm maps condition. Note that if B = Z/MZ, then r divides the conductor

fn at every extension of Fp.

Lemma 6.2.9. Let C be the minimal strata of an isogeny class of abelian surfaces over Fp and let n

be the reduction n (mod M). If n /∈ B, then the number of principally polarized abelian varieties

in the minimal stratum Sn over Fpn is

Pn
∼∼∼ q3/2n |sin(θ1) sin(θ2)(cos(θ1)− cos(θ2))| .

Proof. By the definition of B, we have that r does not divide fn. by Lemma 6.2.4, the norm

map NPic : PicRn → Pic+ R+
n is surjective, and thus the estimate of (6.2) from Theorem 6.2.3

holds.

We therefore enforce Condition 6.2.8 so that there are extensions where the estimate of (6.2)

does in fact hold.

6.2.1 Modified quasi-Monte Carlo

In light of Lemma 6.2.9, we need to remove certain subsequences of {nθ̂} where the estimate

of (6.2) may not hold. The number of terms we must remove is roughly given by

N∗ ≈ |B|
M

N.

and the subsequences we must remove are of the form {mnθ̂} for m ∈ Bmin.
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Proposition 6.2.10. Let θ ∈ Rg be a point of finite type η. Then the sum over f(nθ) for n /∈ B

converges to
∫
f(x)dx at the rate O(1/(N)), that is,

1

N −N∗

N∑

1≤n≤N
n/∈B

f(nθ)−
∫

[0,1]g
f(x)dx = O

(
1

N

)
.

Proof. We have from Theorem 3.3.5

N∑

n=1

f(nθ) = N

∫

[0,1]g
f(x)dx+O (1) . (6.4)

We can break the sum up as

N∑

n=1

f(nθ) =
N∑

1≤n≤N
n/∈B

f(nθ) +
N∑

1≤n≤N
n∈B

f(nθ). (6.5)

Note that

N∑

1≤n≤N
n/∈B

f(nθ)

has N∗ terms. Let m ∈ Bmin. From Lemma 4.3.4, we have that ϑ = mjθ is an irrational g-tuple

of finite type. Therefore from Theorem 3.3.5 we have

⌊N/mj⌋∑

n=1

f(nϑ) =

⌊
N

mj

⌋∫

[0,1]g
f(x)dx+O (1) .

Then accounting for inclusion-exclusion of multiples in Bmin, we have

N∑

1≤n≤N
n∈B

f(nθ) = N∗
∫

[0,1]g
f(x)dx+O (1) .
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Combining this with equations 6.4 and 6.5 gives

N∑

1≤n≤N
n≡0 mod m

f(nθ) = (N −N∗)

∫

[0,1]g
f(x)dx+O (1) .

Note that O(1/(N −N∗) = O(1/N), which finishes the result.

6.2.2 Sizes of minimal strata over extensions Fpn

Given the hypotheses of Theorem 6.1, the size of the minimal stratum S of C over Fpn satisfies

Pn
∼∼∼ p3n/2 |sin(nθ1) sin(nθ2)(cos(nθ1)− cos(nθ2))| .

Suppose we are interested in quantifying how often the minimal stratum is at least a certain size.

That is, let ϵ > 0, and consider the number of extensions for which the size of the stratum Pn

satisfies

Pn

p3n/2
> ϵ.

Because of the relatively weak relation implied by ∼∼∼, we restrict to estimating the trigonometric

factor of Pn,

PTrign = |sin(nθ1) sin(nθ2)(cos(nθ1)− cos(nθ2))| .

Let C be the minimal stratum of an isogeny class, and assume that Condition 6.2.8, so that there

are extensions where the estimate of (6.1) hods. Define the quantity

ExtSetStrataC,N,ϵ = {n ≤ N : PTrign > ϵ}
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as the set of degrees of extensions where PTrign is larger than ϵ. Then define

PropMinStrataC,N,ϵ =
#ExtSetStrataC,N,ϵ

N

as the proportion of extensions where PTrign > ϵ.

Given ϵ > 0, we have the target interval I = (ϵ, 1]. Let α = ϵ + ∆ and β = 1 + ∆. Then we

have the regions

R1 = T−1

(
ϵ+ 2∆, 1

)
∩ [0, 1]2

R0 = T−1

(
R \ (ϵ, 1 + 2∆)

)
∩ [0, 1]2.

We require the following lemma before constructing a Vinogradov function.

Lemma 6.2.11. Let ϵ > 0 be given and let I be the interval I = (α, β) as above. Let T be the

function

T : R2 // R

(θ1, θ2)
✤

// | sin(2πx) sin(2πy)(cos(2πx)− cos(2πy))|

.

Then T and I meet admit a Vinogradov function by Definition 3.5.1 and Theorem 3.5.4. That is, it

is:

1. T is periodic of period 1.

2. There exists a positive K ∈ R such that T satisfies the inequality

|T (θ + z)− T (θ)| ≤ K|z|.
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3. There exists an integer C > 0 such that the set

T−1((α, β)) ∩Xj(λ)

is a union of at most C intervals for any λ ∈ [0, 1].

Proof. The first condition holds, because sin(2πx) and cos(2πx) are periodic of period 1. For the

second condition, note that

T̃ = sin(2πx) sin(2πy)(cos(2πx)− cos(2πy))

satisfies the condition for some K, by the multivariate mean value theorem. But then

|T (θ + z)− T (θ)| ≤ |T̃ (θ + z)− T̃ (θ)| ≤ K|z|

because T is always positive, and therefore condition 2 holds for T .

Fix λ ∈ [0, 1]. Given I = (α, β) we must show that the set

T−1((α, β)) ∩Xj(λ)

is a union of at most C intervals. We first consider the function,

Sλ(θ) = sin(2πθ) sin(2πλ)(cos(2πθ)− cos(2πλ))

First, assume that λ ̸= 0, and therefore Sλ is not a constant function. Then the derivative of

Sλ(θ) has 4 critical points, and thus Sλ(θ) changes from increasing to decreasing at most 4 times.

Therefore Sλ(θ) intersects the line y = γ at most 4 times. But then T (θ, λ) intersects y = γ at

most 8 times, and therefore C = 8 is sufficient.

Now suppose λ = 0. then S is the constant function S = 0. However, 0 /∈ (α, β), and therefore
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T−1(0) ∩ T−1((α, β)) = ∅.

We now quantify PropMinStrataC,N,ϵ.

Theorem 6.2.12. Let C be an isogeny class of abelian surfaces of maximal angle rank over Fp,

and let ϵ > 0 be given. Assume that Condition 6.2.8 is met. Then the quantity PropMinStrataC,N,ϵ

satisfies

PropMinStrataC,N,ϵ ≥
∫

R1

Ψ(x)dx−O(1/(N)).

Proof. Condition 6.2.8 implies that there are extensions where the estimate of (6.1) holds. Because

C has maximal angle rank, the Frobenius tuple θ̂ has finite type, and thus we aim to construct a

Vinogradov function and use the modified quasi-Monte Carlo integration method in Proposition

6.2.10.

Let α = ϵ+∆, β = 1 +∆ and define the interval I = (α, β). Define T to be

T : R2 // R

(θ1, θ2)
✤

// | sin(2πx) sin(2πy)(cos(2πx)− cos(2πy))|

.

Then T and I admit construction of a Vinogradov function by Lemma 6.2.11. We have the regions

R1 = T−1

(
ϵ+ 2∆, 1

)
∩ [0, 1]2

R0 = T−1

(
R \ (ϵ, 1 + 2∆)

)
∩ [0, 1]2

where the Vinogradov function Ψ takes values 1 on R1 and value 0 on R0. Then the sum
∑

Ψ(nθ̂)

is an underestimate of #ExtSetStrataC,N,ϵ, so that

PropMinStrataC,N,ϵ ≥
1

N

N∑

n=1

Ψ(nθ̂).
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Finally, we have the in equality

∫

R1

Ψ(x)dx ≤
∫

[0,1)2
Ψ(x)dx

which concludes the proof.

Example 6.2.13. Let C be the isogeny class of abelian surfaces over F7 with characteristic poly-

nomial

f1(T ) = T 4 − 2T 3 + 5T 2 − 14T + 49.

The LMFDB numerically verifies that this class has maximal angle rank, [33, Abelian Variety

2.7.ac_f].

Let α be a root of f1, so that K = Z[α, α] and K+ = Z[α + α]. One can compute that K has

absolute discriminant 26 · 3 · 52 · 83 and K+ has discriminant 23 · 5. Therefore a prime, r, above

3 ramifies in K/K+. By computer calculation, αn (mod 3) is periodic of period 12. Again by

computer calculation, we see that the conductor fails to be coprime to 3 at extensions of degree

{4j}∞j=1, and thus the norm map PicR → Pic+ R+ is possibly not surjective at the extensions

{Fp4j}∞j=1.

The hypotheses of Theorem 6.2.12 hold. Given ϵ > 0, we have that

PropMinStrataC,N,ϵ ≥
∫

R1

Ψ(x)dx−O(1/(N)).

Let ϵ = 0.2, then
∫
R1

Ψ(x)dx ≈ 0.51, so that

PropMinStrataC,N,ϵ ≥ 0.51−O(1/(N)).

In the above, the estimation of the integral was done by the following python script.
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from scipy import cos

from scipy import sin

from scipy import pi

from scipy.integrate import dblquad

epsilon = .2

Delta = .001

def Ind(x, y):

val = abs((cos(2*pi*x) - cos(2*pi*y))*sin(2*pi*x)*sin(2*pi*y))

if (val > epsilon + Delta):

return 1

else:

return 0

print(dblquad(Ind, 0, 1, lambda x: 0, lambda x: 1)[0])
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