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A TEST OF PHILLIPS' HYPOTHESIS FOR EDDY VISCOSITY IN PIPE FLOW
by

Lionel V. Baldwin and Robert D. Haberstroh
Colorado State University
Fort Collins, Colorado
In a recent paper, O. M. Phillips (1) proposed a mechanism for the
manner in which turbulent components support Reynolds stress in turbulent
shear flow. Phillips' model is a generalization of Miles' mechanism for
wind generated water waves in that each turbulent component is assumed to
interact with the mean flow to produce an increment of Reynolds stress at
the "matched layer'" of that particular component. The derivation is
rather involved but leads to a simple relation between measurable turbu-
lence, statistical properties and eddy viscosity. The eddy viscosity de-
rived by Phillips is not the customary formulation of Boussinesq, but it
is easily related to the latter. Specifically, for a fully developed pipe

flow, Phillips gives:
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whereas the classical formulation is (2, p. 23),

T = *g;l_J.
rx  "e dr (2)

In other words, Phillips' mechanism leads to an eddy viscosity He which

is a proportionality constant between the stress gradient and the second



derivative of the mean velocity rather than the familiar form (Eq. 2).
Furthermore, the mechanism relates W, to measurable physical properties

of the turbulence; thus,
b, =Aow @ (3)

where A is a number less than n and @® the convected integral time
scale of the lateral fluctuation velocity which has a mean square magnitude
w2 Phillips tested the analysis with experimental anemometer data ob-
tained in the near field mixing region of an air jet (3) and he concluded
that these data were consistent with the analytical prediction. For the
jet flow mixing region, A = 0.24, but Phillips states that, depending on
the shépe of the turbulent eddy, the precise value may vary somewhat from
one turbulent shear flow to another.

Eddy viscosity models are widely used and, although there have been
numerous advances recently in formulating rather general functions (e.g.
Ref. 4), heuristic dimensional arguments are usually the sole basis of the
formulation. Phillips' proposal is a welcome exception which should be
critically tested in a variety of turbulent shear flows. This note
summarizes the results of one such test in the core of fully developed
pipe flow.

The shear stress gradient is constant in a fully developed pipe flow
and it is easily related to the wall pressure drop down the tube. A sum-
mary of measured wall shear stress data for smooth tubes, as well as the
ratio of bulk to centerline velocity, is given in Ref. 5 in the form of a
review of the semiempirical velocity profile proposed by Pai (2, p. 42).
This velocity profile is the most accurate available in the core region of
pipe flow. The eddy viscosity of Eq. 1 may be derived using the Pai pro-

file to be
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Here n and s are empirical constants which are functions only of the
Reynolds number; Ref. 5 gives numerical values for these constants in
graphical and tabular form. At the pipe centerline, the dimensionless

1

radius n = == 0 , and the Phillips eddy viscosity R becomes identi-

cal to the classical version u;

ue(O) _ n(s-1)
S

(5)

Figure 1 is a plot of Equation 5 prepared using the n and s values of

Ref. 5. Although not shown in the plot, ue(O) =0 at N, < 2100 be-

Re
cause s 1is unity by definition in laminar pipe flow.

The statistical properties of turbulence in pipe flow necessary to
test Phillips' model (Eq. 3) were published in References 6 and 7. The
Eulerian space-time correlation of the axial velocity fluctuations in the
apparent convective frame of reference (7)were fit with exponential curves
for the reported four mean flow velocities of air flowing in an 8-inch
pipe (see Table I). The convective integral scales L; (Ref. 5
nomenclature) were then read as the values of 1 where the peak correla-
tions dropped to the value of 1/e . This procedure is identical to that
followed by Phillips (1) in interpreting the jet mixing region data of
Davies (3) in his original computation of A. The lateral intensities

of turbulence w? were reported for the same experimental conditions in

Ref. 6 in the following form:



u? = 0.035 U

and
Vw2 = 0.75 VuZ .

Table 1 summarizes the turbulent properties, L; (which Phillips used

for ® in Ref. 1) and w? , as well as the value of A computed from

He (0)
A= ;53717—-. (3b)

i
In pipe flow the values of A range from 0.43 to 0.26 with no systematic
Reynolds number trend. The average value of A for pipe flow is 0.33
which isAonly 30 percent larger than the value inferred by Phillips from
jet data. Although more definitive experimental tests of Phillips model
need to be designed, the pipe flow results are consistent in the same
sense as the original experimental test employing jet data.

It is worth noting in closing that a direct measurement of the
turbulent diffusivity of heat o, for the core of pipe flow was reported
in Ref. 6 (Table 1) for these identical flow conditions. Using the
kinematic eddy viscosity ve(O) calculated from Eq. 5 divided by the air

density, an eddy Prandtl number NPr at the pipe centerline may be com-

puted. Table 2 shows NPr is essentially unity, which lends direct sup-
t

port to the classical version of the Reynolds analogy. In the same vein,
Phillips' eddy viscosity formulation (Eq. 3 ) bears a striking resemblance
to the analogous eddy viscosity of heat or mass which would be calculated
from Taylor's theory of diffusion by continuous movements using the

Eulerian-to-Lagrangian approximations proposed in References 6 and 7.
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LIST OF SYMBOLS

Pipe radius, ft
Dimensionless constant, Eq.(3)
Naperian logarithm base, 2.718...

Convective integral scale of axial turbulent velocity from
space-time data, sec

Dimensionless constant, Eq. 4
\

EE , turbulent Prandtl number
E

H§§3 Reynolds number
Radial coordinate, ft
Dimensionless constant, Eq. 4

Bulk mean flow velocity, ft/sec

Centerline velocity, ft/sec

Reynolds shear stress component, ft2/sec?
Mean square of axial turbulent velocity, ft2/sec?
Mean square of radial turbulent velocity, ft2/sec?

Convective integral scale of radial turbulent velocity from
space-time data, sec

% , dimensionless pipe radius

Molecular viscosity, le—sec/ft2

Phillips' eddy viscesity, Eq. 1, le—sec/ft2
Boussinesq's eddy viscosity, Eq. 2, le—sec/ft2
Kinematic eddy viscosity, ft2/sec

Fluid density, le-sec/ftq

Turbulent shear stress, le/ft2
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