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ABSTRACT

LEARNED PERCEPTION SYSTEMS FOR SELF-DRIVING VEHICLES

Building self-driving vehicles is one of the most impactful technological challenges of

modern artificial intelligence. Self-driving vehicles are widely anticipated to revolutionize the

way people and freight move. In this dissertation, we present a collection of work that aims to

improve the capability of the perception module, an essential module for safe and reliable

autonomous driving. Specifically, it focuses on two perception topics: 1) Geo-localization

(mapping) of spatially-compact static objects, and 2) Multi-target object detection and tracking of

moving objects in the scene.

Accurately estimating the position of static objects, such as traffic lights, from the moving

camera of a self-driving car is a challenging problem. In this dissertation, we present a system

that improves the localization of static objects by jointly optimizing the components of the system

via learning. Our system is comprised of networks that perform: 1) 5DoF object pose estimation

from a single image, 2) association of objects between pairs of frames, and 3) multi-object

tracking to produce the final geo-localization of the static objects within the scene. We evaluate

our approach using a publicly available data set, focusing on traffic lights due to data availability.

For each component, we compare against contemporary alternatives and show significantly

improved performance. We also show that the end-to-end system performance is further improved

via joint training of the constituent models.

Next, we propose an efficient joint detection and tracking model named DEFT, or “Detection

Embeddings for Tracking." The proposed approach relies on an appearance-based object matching

network jointly learned with an underlying object detection network. An LSTM is also added

to capture motion constraints. DEFT has comparable accuracy and speed to the top methods on

2D online tracking leaderboards while having significant advantages in robustness when applied
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to more challenging tracking data. DEFT raises the bar on the nuScenes monocular 3D tracking

challenge, more than doubling the performance of the previous top method (3.8x on AMOTA,

2.1x on MOTAR). We analyze the difference in performance between DEFT and the next best-

published method on nuScenes and find that DEFT is more robust to occlusions and large inter-

frame displacements, making it a superior choice for many use-cases.

Third, we present an end-to-end model to solve the tasks of detection, tracking, and sequence

modeling from raw sensor data, called Attention-based DEFT. Attention-based DEFT extends the

original DEFT by adding an attentional encoder module that uses attention to compute tracklet

embedding that 1) jointly reasons about the tracklet dependencies and interaction with other

objects present in the scene and 2) captures the context and temporal information of the tracklet’s

past observations. The experimental results show that Attention-based DEFT performs favorably

against or comparable to state-of-the-art trackers. Reasoning about the interactions between the

actors in the scene allows Attention-based DEFT to boost the model tracking performance in

heavily crowded and complex interactive scenes. We validate the sequence modeling

effectiveness of the proposed approach by showing its superiority for velocity estimation task

over other baseline methods on both simple and complex scenes. The experiments demonstrate

the effectiveness of Attention-based DEFT for capturing spatio-temporal interaction of the crowd

for velocity estimation task, which helps it to be more robust to handle complexities in densely

crowded scenes. The experimental results show that all the joint models in this dissertation

perform better than solving each problem independently.
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Chapter 1

Introduction

Autonomous vehicles have grown a lot over the past decade from the rapid development of

technologies in computer vision and machine learning. While achieving fully autonomous driving

with no human intervention is years away, some autonomous driving technologies have already

been integrated into vehicles in the form of Advanced Driver Assistance Systems (ADAS) which

have shown to be able to accomplish autonomous driving in several scenarios such as highway

driving. These technologies aim to reduce vehicular accidents caused by human error. Every year,

around 1.35 million people lose their lives in vehicular accidents, and up to 50 million people are

injured [9]. Ninety-four percent of crashes on the roads are due to risky driving and to errors that

drivers make while behind the wheel. Autonomous vehicles have the potential to reduce risky

driver behaviors. Moreover, fully autonomous vehicles are widely anticipated to free the drivers

from managing the progress of the vehicle, enhancing human productivity. On average, Americans

spend around 300 hours driving per year, equivalent to more than seven potentially productive

weeks of work. Fully autonomous vehicles are also expected to help increase savings in time,

energy, and efficiency in transportation, along with many other anticipated benefits.

A self-driving vehicle needs to accomplish various tasks that a human would otherwise

perform with errors. However, to achieve these tasks multiple functionalities need to be realized.

This dissertation focuses on one of the key functionalities, known as perception, which allows

self-driving vehicles to sense their surroundings. Perception is still very challenging due to the

rigorously targeted low error rate, and it is a challenge that has drawn the attention of significant

efforts within the research community. This dissertation focuses on two driving-related

perception topics: 1) Geo-localization (mapping) of spatially-compact static objects and 2)

Multi-target object detection and tracking of moving objects in the scene.
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1.1 Brief History of Autonomous Driving

Similar to the invention of the gasoline-powered automobile by Karl Benz in 1886,

self-driving technology will have a significant impact on our mobility. Since the 1980s,

researchers and companies alike have been striving to achieve Level 5 autonomy for self-driving

vehicles (i.e., autonomous operation with no human intervention) [10]. Self-driving competitions

and road tests held worldwide help identify the capabilities and limits in both hardware and

software to bring safer self-driving vehicles on our roads. Even though there are still several

challenges to overcome to achieve fully autonomous driving, some autonomous driving

technologies have reached commercial success, enriching driving comfort and safety.

In 1986, the first self-driving vehicle was developed by the Navlab team at Carnegie Mellon

University. It was designed to be controlled by a computer. The same team achieved another

breakthrough in the “No Hands Across America” tour in 1995 by driving 2,849 miles over seven

days 98% autonomously. A trained neural network was used to control the steering wheel while

human drivers guided its acceleration and braking.

In 2004, The Defense Advanced Research Projects Agency (DARPA) launched a major

competition, called DARPA Grand Challenge, which boosted the innovation from universities

around this field. Endurance driving across the desert, static obstacles, and following the roadway

were the main focus of this challenge. None of the teams was able to achieve the goal. A year

later, the competition was repeated on another road (but with similar challenges), and five teams

successfully completed the challenge. The DARPA Grand Challenge competitions provided a

modern, fair testing opportunity to assess the state-of-the-art in autonomous vehicles in real-world

environments, especially as road tests were not allowed at that time.

In 2007, DARPA held a new challenge, called DARPA Urban challenge, focused on real

urban environments, to include much of what a typical human driver must perform. This

competition offered an excellent opportunity for researchers to evaluate the flaws and challenges

of autonomous driving in complex urban environments. The autonomous vehicles in the

competition were developed with various capabilities such as localization, object detection,
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multi-object tracking and lane keeping. Although this competition was the closest to real-world

environments, it was limited to only low-speed driving and uncomplicated scenarios that lack

common roadway obstacles, such as traffic lights, bicycles, and pedestrians. Only four teams

managed to complete the challenge and still showed reliability issues.

More inventions have become popular over time, and many companies have joined the

challenge of developing a fully autonomous commercial vehicle. Some popular nowadays include

Aurora, Waymo, Aptiv, Zoox, and units of automobile companies such as Tesla, Toyota, Ford,

and General Motors.

1.2 Motivation

Autonomous driving systems are generally composed of five main modules, shown in

Figure 1.1: localization, perception, prediction, planning, and vehicle control. The autonomy

process is started by localization and perception. Localization computes the global location of the

vehicle in order to determine its precise location on the map. Perception allows self-driving

vehicles to sense their surroundings. The perception module uses sensors to scan and analyze its

surrounding environment and provides situational awareness of dynamic actors (e.g., pedestrians,

animals, vehicles). The following module is prediction. The prediction module consists of the

prediction of the next trajectories or paths of the dynamic actors as well as the prediction of what

actions are feasible to plan a path accordingly. The outputs of the perception and prediction

modules are fed to the planning module, which determines possible and ideal routes for the

vehicle to drive. Finally, the determined route is translated by the vehicle control module into

driving commands for the vehicle, such as acceleration and steering angle.

Based on the various experiments on the field, including the DARPA Urban Challenge, it is

safe to say that perception is the most crucial function for safe and reliable driving as it serves to

translate the sensor data into useful and consistent information, which affects directly the

performances of the planning and vehicle control modules. In this dissertation, we are interested

in improving the capability of the perception module to deal with the complexity of real urban
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Figure 1.1: Overview of the autonomous driving system.

environments. Specifically, we will tackle one of the critical tasks of vehicle environment

perception, the multi-target object detection and tracking of moving objects in the scene.

Multi-target object detection and tracking aims to localize all objects of interest (e.g., pedestrians,

vehicles) and reliably recover their trajectories in a video sequence while maintaining their

identities. Multi-target object detection and tracking can be very challenging in complex urban

environments, given the changes of the number of objects across the video frames, object

occlusion, appearance changes and high inter-frame motion due to vehicle and objects motion,

presence of multiple similar-looking objects, cluttering, detection failures, etc. These challenges

motivated us to develop a joint detection and tracking model that is more robust than the current

top alternatives in real urban environments. Moreover, for autonomous driving systems, latency is

a primary concern. With latency as a key factor, the tracking approach has to be fast enough to

maintain the frame rate of the cameras. In many self-driving data sets such as KITTI [11] and

nuScenes [3] this is on the order of 10Hz to allow synchronization with LiDAR.

In addition to their live sensors, most autonomy systems for self-driving vehicles heavily

depend on HD maps or “High Definition” maps when planning their actions (Figure 1.1). This

latter helps ensure the safety and compliance of driving policies. HD maps are very precise

inventories that contain detailed information on static actors such as road lanes, boundaries, traffic

signs and lights. The knowledge of the static actors’ semantics and exact positions in the world is

crucial for the autonomy system’s planning. However, HD maps are quite expensive, and great

efforts have to be made to keep them up to date as many changes constantly occur in the world. A
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single stop sign or traffic light that is missed in the HD map can cause serious issues to the

perception module, which can endanger the safety of autonomous driving. Also, the dependence

of self-driving vehicles on HD maps limits their ability to react to new situations and adapt to

rapidly changing environments such as construction zones. Thus, towards an improved safety of

self-driving systems, onboard perception systems could also be used to perceive static objects.

This allows the system to combine the benefits provided by both perception and mapping for

traffic-control features – timeliness of real-time perception, human-verified accuracy of the map.

In this dissertation, we will study the perception of spatially compact static objects, such as traffic

lights and signs. The term “spatially compact” is used to distinguish such objects from things like

lane lines or road edge boundaries.

Figure 1.2: Examples of LiDAR point clouds data projected onto camera coordinate frame, from nuScenes

dataset [3]. Note that for some systems LiDAR point clouds do not cover areas or objects that are at a

certain height from the vehicle such as traffic lights. The images are taken from the nuScenes website

(https://www.nuscenes.org).

Perception depends heavily on the number and type of sensors used by the vehicle. These

sensors generally consist of cameras, Radar, LiDAR and GPS. Recently, there has been much
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perception research based on the use of either LiDAR [12], or cameras [6, 13] or combining

both [14, 15]. In this dissertation, we focus only on cameras (monocular imagery) as LiDAR is

substantially expensive while cameras are cheap, smaller, more versatile, and have a higher

resolution than any other used sensors. Also, this dissertation focuses on geo-locating static

objects such as traffic lights, and for some systems, LiDAR point clouds do not cover them (see

Figure 1.2) as they are generally at a certain height from the vehicle which is not covered by the

LiDAR point clouds.

1.3 Contributions

This dissertation aims to tackle the perceptual challenges of self-driving vehicles. In summary,

the contributions of this dissertation are as follows:

• For the problem of developing an accurate objects geo-localization system suitable for online

autonomous driving, an end-to-end approach is proposed; It is mainly composed of three

networks: 1) a pose regression network for estimating 5D poses of static objects from geo-

located RGB inputs, 2) objects matching network for matching objects between pairs of

video frames combining multi-resolution appearance features and geometric features from

the proposed pose regression network, and 3) multi-object tracking network to produce the

final geo-localization of the static objects within the scene. For each component, we compare

against contemporary alternatives and show significantly improved performance.

• The experimental results show that jointly optimizing the pose regression and object

matching models with a multi-task loss function improves the performance of the

individual components as well as the system-level performance via joint learning. Also, we

show that adding geometric cues explicitly for matching static objects helps in increasing

the matching accuracy over appearance alone.

• Static objects geo-localization data set is created, which can help accelerate static objects

geo-localization domain and provide a common benchmark for evaluating different
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approaches. To the best of our knowledge, it is the first publicly available data set for this

application.

• For the problem of multi-object tracking, we present a novel end-to-end approach, called

DEFT, in which embeddings for each object are extracted from the multi-scale backbone of

a detector network and used as appearance features in an object-to-track association

sub-network. DEFT is simple, online, fast, and has competitive performance to top scoring

methods in popular 2D tracking benchmarks. Because DEFT keeps a memory of

appearance embeddings over time, it is more robust to occlusions and large inter-frame

displacements than the top alternatives. This robustness allows DEFT to dramatically

outperform competing methods on the challenging nuScenes 3D monocular vision tracking

benchmark. DEFT is extensible to new detectors as they arise and adds only modest latency

to the underlying detection network. DEFT runs at approximately 12.5Hz on all data sets.

• We generate difficulty scores that help describe how challenging each video is with respect

to a specific factor. Occlusion, displacement, and crowdedness scores are created for videos

in the nuScenes validation dataset (they can be applied to any other dataset). Based on these

factors, the data set is then divided into partitions (easy/medium/hard). Analyzing the

performance on these partitions helps obtain a more informative evaluation to validate the

advantages of the proposed modules over state-of-the-art methods. We aim that these

partitions will help researchers working in the multi-object tracking and other domains

evaluate and compare their approaches’ strengths and weaknesses.

• We propose an end-to-end model to solve the tasks of detection, tracking, and sequence

modeling from raw sensor data. The proposed model, called Attention-based DEFT,

extends the original DEFT by adding an attentional encoder module which uses attention to

compute tracklet embedding that 1) jointly reasons about the tracklet dependencies and

interaction with other objects present in the scene and 2) captures the context and temporal

information of the tracklet’s past observations. We conduct exhaustive experiments and
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ablations on two popular benchmarks (KITTI and nuScenes) to validate the effectiveness of

Attention-based DEFT. In terms of the tracking performance, the results suggest that the

proposed approach performs favorably against or comparable to state-of-the-art methods.

We show that reasoning about the interactions between the actors in the scene improves the

model tracking performance significantly in highly crowded scenes while worsening its

performance in hard scenes with respect to occlusions. We also show the superiority of

Attention-based DEFT for sequence modeling tasks (velocity estimation) over other

baseline methods on both simple and complex scenes. The experimental analysis validates

the effectiveness of Attention-based DEFT for capturing spatio-temporal interaction of the

crowd for velocity estimation task, which helps it to be more robust to handle complexities

in heavily crowded scenes. Attention-based DEFT runs at approximately 12Hz on all

datasets.

• The experimental results demonstrate that all the joint models in this dissertation perform

better than solving each problem independently.

1.4 Dissertation Structure

The organization of the rest of this dissertation is as follows: Chapter 2 provides the necessary

background gathered during the prestudy of this dissertation. We start with object detection, then

go through static objects geo-localization, then multi-object tracking, and finish the chapter with

joint detection and tracking. Chapter 3 presents an end-to-end learning approach for 5D pose

estimation, tracking, and localization of spatially-compact static objects. Chapter 4 introduces

an effective and efficient joint detection and tracking model that relies on an appearance-based

object matching network jointly learned with an underlying object detection network. Chapter 5

describes an end-to-end model to solve the tasks of detection, tracking, and sequence modeling

from raw sensor data, followed by Chapter 6 with our conclusions and future research directions.
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Chapter 2

Related Work

This chapter aims to explore the perception component of the autonomy system. First, we will

discuss different approaches used to solve object detection task (§ 2.1), which is a prerequisite for

the perception of static and dynamic actors. Then, we will provide the necessary background to

explore the various strategies of perception for static actors including geo-localization of spatially-

compact static objects (§ 2.2). Finally, we will explore the perception module for dynamic actors,

which aims to identify and keep track of moving objects in the scene (§ 2.3 and § 2.4).

2.1 Object Detection

Object detection is an important computer vision task that deals with identifying an object in an

image along with its localization and classification. Object detection has been studied extensively

in the past decades. The traditional approach is to use hand-crafted features for object detection.

Hand-crafted features usually require advanced research and years of domain-specific expertise

to design complex feature representations. With the appearance of Deep Learning (DL), these

features rapidly became outdated as modern deep neural networks began naturally learning robust

and high-level feature representations of an image. The employment of DL has revolutionized

the object detection field. In the following, we will briefly review traditional object detectors in

§ 2.1.1, then discuss the more recent DL based object detectors in § 2.1.2. Finally, in § 2.1.3, we

will cover object detectors used for object pose estimation.

2.1.1 Traditional Object Detectors

The initial methods for object detection were based on alignment techniques to find the

correspondence between the model of the object and the image using straightforward features,

such as key-points [16], edges [17], or templates [18].
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Before 1990, object detection methods were based on geometric representations [19], and

then the focus has shifted towards the utilization of statistical classifiers such as SVM [20], neural

networks [21] and Adaboost [22], based essentially on appearance features. The appearance

features moved from global representations [23] to local representations, starting with the Scale

Invariant Feature Transform (SIFT) feature [16]. In 2001, Viola and Jones [22] presented a

Machine Learning (ML) based object detector, called Viola-Jones (VJ) detector, which is based

on the Haar-like features along with the cascaded AdaBoost classifier. The VJ detector was

introduced for real-time face detection, and it is a major source of inspiration for many subsequent

ML-based object detectors. The VJ detector and early ML-based object detectors perform an

exhaustive search with a sliding window to find potential objects in all feasible regions and scales.

Histogram of Oriented Gradients (HOG) detectors [24] were then proposed and were able

to achieve relatively high accuracy but low speed. To detect objects of variable sizes, the HOG

detector rescales the input image multiple times while using a single detection window. Later,

Felzenszwalb et al. [25] extended the HOG detector and proposed a Deformable Part based Model

(DPM), which represents objects by component parts arranged in a deformable configuration. The

DPM adapts the detection logic of “divide and conquer”, where the training can be inferred as the

learning of an appropriate manner of decomposing the object in different parts and the testing as

an ensemble of detections on different components of the objects.

Many traditional object detectors usually employ an aggregation of the local features (e.g.,

SIFT, Haar-like features, HOG) by simple concatenation or feature pooling encoders such as the

Bag of Words (BoW) approach [26] and Spatial Pyramid Matching (SPM) of BoW models [27].

2.1.2 Deep Learning Based Object Detectors

After 2010, object detection began to plateau as the performance of hand-crafted features

became saturated. However, in 2012, the revival of Convolution Neural Networks (CNNs)

inspired researchers in the object detection domain. The CNN-based model AlexNet, proposed by

Krizhevsjy et al. [28], won the image classification competition of the image dataset

10



ImageNet [29] with a considerable gap of 11% accuracy over the next best approach using

traditional algorithms.

In 2014, Girshick et al. [30] proposed Region-based Convolutional Neural Networks (R–CNN).

First, selective search-based image scanning is used to generate region proposals as bounding

boxes. CNN is then employed to extract a fixed-size feature vector from each region, and finally,

class-specific linear SVMs are employed to classify them. On the VOC07 dataset [31], R-CNN

achieved significant improvements of mean Average Precision (mAP) from 33.7% to 58.5% over

the winner of the challenge DPM. R-CNN runs at approximately 14 seconds per image with GPU.

The same authors improved the detection quality by proposing Fast R-CNN [32], which

shares feature maps across object proposals. In Fast R-CNN, the whole input image is fed to

CNN to generate feature maps. Then, a fixed-length feature vector is extracted from each region

proposal with a region of interest (RoI) pooling layer. Each RoI feature vector is then fed into

fully connected layers to predict the class of the proposed region and also refined bounding box

positions. Fast R-CNN and R-CNN rely on selective search to generate the region proposals,

which is a bottleneck in improving efficiency. Therefore, Ren et al. [33] proposed Faster

R-CNN [33] which employs Region Proposal Network (RPN) to determine proposals instead of

the traditional selective search algorithm. RPN is inspired by the work of Sermanet et al. [34]

which demonstrated that CNNs are inherently efficient at computing a sliding window as by

nature they share computations common to overlapping regions. RPN is a fully convolutional

network, which can predict object bounds and scores at each position simultaneously. This

allowed joint end-to-end training of the model for both detection and classification tasks. On the

VOC07 dataset, Fast R-CNN and Faster R-CNN achieved 70.0% and 73.2% mAP, respectively.

Faster R-CNN runs at approximately 0.2 seconds per image.

Lin et al. [35] proposed Feature Pyramid Network (FPN) based on Faster R-CNN. They

exploited the inherent multi-scale, pyramidal hierarchy of CNNs to create feature pyramids with

negligible extra cost. A top-down convolutional network structure with lateral connections was

employed in FPN to extract multi-scale semantic features. The FPN model demonstrated strong
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improvements in detecting objects with a variety of scales. It achieved state-of-the-art

performance on the COCO dataset [36] by boosting the detection mAP from 42.7% (Faster

R-CNN) to 61.1%.

All previously mentioned methods belong to two-stage approaches, consisting of two steps: 1)

region proposal generation and 2) bounding box classification and regression. Two-stage detectors

usually suffer from high computational time (≤ 5 FPS). In contrast, Redmon et al. [37,38] proposed

a one-stage detector that skips the proposal generation step and predicts class probabilities and

bounding boxes directly from the input image using a simple CNN, called "You Only Look Once"

(YOLO). YOLO divides the input image into a predefined number of grids. Each grid cell predicts

probabilities (confidence scores) for a fixed number of bounding boxes (also called anchors). A

post-processing step, called Non-Maximal Suppression (NMS), is then applied to high confidence

bounding boxes to eliminate duplicate detections and produce the final detections. YOLO has

shown to be much faster than two-stage approaches but less accurate. On the VOC07 dataset, a

fast version of YOLO runs at nearly 155 FPS achieving 52.7% mAP, while its enhanced version

runs at 45 FPS with 63.4% mAP.

Subsequent work by Liu et al. [39] on the Single Shot multi-box Detector (SSD) provided

another one-stage detector similar to YOLO. SSD is a simple network that achieves real-time

performance. SSD is based on a CNN that maps an image into multiple feature maps in order to

generate a fixed number of boxes with different aspect ratios and scales. The authors demonstrated

that a larger number of carefully selected default bounding boxes leads to better performance. SSD

predicts class scores and box offsets for the predefined boxes (anchors), followed by an NMS to

locate the object within the image. A fast version of SSD runs at 59 FPS with VOC07 mAP =

76.8% , and COCO mAP = 46.5%.

Despite their simplicity and high speed, the one-stage detectors have long struggled for inferior

accuracy compared to two-stage detectors. Lin et al. [40] discovered that the main reason for the

difference in accuracy between the two categories of detectors is the high imbalance between

foreground and background classes during training. To tackle this issue, they proposed a new
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loss called “focal loss” by modifying the classical cross-entropy loss so that the detector will

focus more on hard, misclassified examples during training. Focal loss facilitated closing the

gap in terms of accuracy between the two categories of detectors. The authors also presented

the RetinaNet network, similar to the FPN architecture but in a one-stage setting. On the COCO

dataset, RetinaNet achieved 61.1% mAP with a running time of 11 FPS.

All previously mentioned one-stage detectors use anchor boxes to serve as detection

candidates, which are typically a very large set (e.g., more than 100k in RetinaNet), and only a

small fraction of them will overlap with the ground truth. This often leads to

foreground-background class imbalance during training, as Lin et al. [40] showed in their

experiments. Anchor-based detectors also suffer from a large number of hyper-parameters and

design choices. To solve these issues, Zhou et al. [13] proposed an anchor-free object detector,

called CenterNet, which models the object by the center point of its bounding box. CenterNet

uses keypoint estimation to determine center points and regresses to all other object properties,

such as size and even 3D location, orientation. The input image is fed through a CNN to produce

a heatmap, in which peaks correspond to center points. Image features at each peak are passed

through a neural network to regress other object properties. CenterNet is end-to-end differentiable

and performs competitively with state-of-the-art detectors with a higher inference speed.

CenterNet achieved the best accuracy-speed trade-off on the COCO dataset, with 44.9% mAP at

142FPS, 55.1% mAP at 52 FPS, and 63.5% mAP at 1.4 FPS, depending on the employed

backbone network.

2.1.3 Object Pose Estimation

Object pose estimation extends the task of object detection and also estimates the location

and orientation of the detected objects relative to some coordinate system. Most state-of-the-art

methods for object pose estimation [41–43] use 3D models of the objects. They generally consist

of two stages: the first stage detects local 2D key-points of the object, and the second stage utilizes

the 2D-3D correspondences between the predicted key-points and their matches in the 3D model of
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the object and estimates the object pose using a classical algorithm such as the PnP algorithm [44].

These methods do not work well for autonomous driving application because of the presence of

multiple types and sizes for each class of static objects (e.g., traffic lights, signs) in real-world

scenarios, and in such cases, the pose estimation model cannot rely on the 3D model of the object.

Some end-to-end methods for object pose estimation that can work without the constraints of

having the object’s 3D model have been proposed. Kendall et al. [45] proposed PoseNet, a fully

convolution neural network to directly regress the camera pose from a single RGB image.

PoseNet is composed of a modified truncated GoogleNet [46] and can operate in real-time.

However, estimating the 3D translation directly from the image features is challenging and not

generalizable as objects can be located in any position in the image. To tackle this problem, Xiang

et al. [47] decided to estimate the 3D translation by localizing the object center in the 2D RGB

input and estimating the object distance from the camera. Their proposed approach, called

PoseCNN, is composed of two blocks: the first block contains a CNN backbone to extract

features from the input image, and the second block embeds the high-dimensional feature maps

extracted from the first block into low-dimensional task-specific features. The second block

consists of three network branches to estimate the object pose: semantic segmentation, 3D

translation estimation, and 3D rotation regression. One of the findings of Xiang et al. [47] is that

decoupling translation and rotation estimation into different branches has been shown to give

better results and enabled PoseCNN to model the dependencies between them. However,

end-to-end methods have shown weaker generalization and poor performance compared to

two-stage approaches, and thus they are still not popular for pose estimation.

Given that there is room for improving the pose estimation accuracy for end-to-end methods

and also the constraints of not using the 3D model data for our application, in Chapter 3, we

propose an end-to-end pose regression network for estimating the poses of static objects from

RGB inputs, which has shown to outperform PoseNet [45] and PoseCNN [47].
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2.2 Static Object Geo-localization

In the past few years, tremendous efforts have been made in localizing street-level objects

using multi-view geometry. Image triangulation has been established as a common technique

for this task. Triangulation is the process of geo-locating a point in 3D space given its position

in two or more images taken from cameras with known calibrations and poses. Timofte et al.

[48] proposed an offline traffic sign mapping pipeline based on the epipolar geometry of multiple

images. Traffic signs candidates are first extracted from the single-view image using hand-crafted

features, and then a set of multi-view 3D hypotheses are generated using simple geometric and

visual consistency between each pair of candidates. Finally, Minimum Description Length (MDL)

optimization is employed to determine the optimal set of 3D hypotheses that best explains the

overall set of 2D candidates.

In a similar attempt, Soheilian et al. [49] presented an offline system for detection and

localization of traffic signs from calibrated multi-view images. First, color-based segmentation is

applied to generate ROIs validated based on the shape and passed to a template matching

algorithm to match them with a set of reference road signs. A stereo matching algorithm taking

into consideration epipolar geometry is then applied to generate 3D hypotheses. The hypotheses

that likely belong to the same 3D object are determined and clustered during this process. Finally,

the hypotheses of the same cluster are combined to generate a unique 3D object by a multi-view

algorithm incorporating apriori knowledge of the road signs’ 3D shapes as constraints.

With the resurgence of DL, many studies employed DL for object detection and classification.

Hebbalaguppe et al. [50] proposed a system to automatically update telecom inventory using object

detection and triangulation-based method applied to Google Street-View (GSV) images. First,

objects of interest are detected using Faster R-CNN [33] detector. Then, SIFT feature matching

algorithm is used to find the point correspondence between pairs of images from two consecutive

locations on the street. Triangulation is then applied to estimate the location of the object. A major

drawback of this approach is that it works only with a pair of images and does not associate objects

between more than two video frames.
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All previously mentioned methods rely on triangulation from multiple camera views for objects

geo-localization. They rely on simple visual and geometrical clues to perform matching when

multiple objects are present. Therefore, when multiple identical objects are present together, these

methods perform poorly. Hebbalaguppe et al. [50] for example, pointed out that using SIFT for

visual matching has limited performance for reliable visual matching when there is a substantial

view-point position change or with the presence of multiple, similar-looking objects.

This motivated many studies to propose novel triangulation approaches. For instance, Zhang

et al. [51] proposed a system that consists of a RetinaNet object detector [40] to detect poles from

street view images followed by a novel brute-force Line-Of-Bearing (LOB) method for object-

localization. Finally, a geo-spatial aggregation algorithm is used to estimate the centroid of clusters

of LOB intersection locations. However, the evaluation of this approach showed poor performance

when objects are very close to each other. The experimental results showed that approximately

2.6% and 47% of the predicted locations are within 1 meter and 5 meters, respectively, from the

ground truth locations.

Krylov et al. [5] presented a better triangulation approach, where they proposed a novel model

by using a Markov Random Field (MRF) for triangulation and geo-localization of recurring static

objects from GSV imagery. They used two CNNs: the first to perform semantic segmentation

for objects detection and the second to estimate their distance from the camera. To geo-locate all

the detected objects, they proposed an MRF model to integrate depth information into geometric

triangulation from object instances discovered in multiple street view images. Finally, clustering

is applied to merge geo-located objects in the same area that are likely to describe the same object.

They tested their approach on traffic lights and telegraph poles, and they achieved high object recall

rates and localization accuracy within 2 meters.

Some studies combined aerial imagery with street-level imagery for better objects

geo-localization. Branson et al. [52] presented a system for tree detection and geo-localization

using street-level panoramas combined with aerial imagery as input. First, they employed Faster

R-CNN [33] to detect trees in each image/view, and then they applied a projection function to
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project each detection from image space into a common geographic coordinate system. The union

of all detections from different views are then back-projected into image space for each view,

such that detection scores can be computed with known alignment between each view. Then, a

Conditional Random Field (CRF) generates combined detections using multi-view scores and

with the help of semantic map data (e.g., roads locations) and spatial context of neighboring

objects. Their approach can detect around 70% of the street trees (within a 4 meters radius from

the ground truth tree). However, this approach was built based on assumptions that are not always

valid in a realistic environment. The authors assumed that the terrain is locally flat and that the

camera is leveled against the ground (pitch = 0), and even when such assumptions are valid, they

showed different kinds of causes that can yield to system failure.

All earlier mentioned approaches use multi-step and cascaded systems where they treat pose

and image evidence independently. Most recent approaches use DL object detectors followed by a

separate model to track or otherwise link observations across images without the complete support

of information from the detector. Therefore, when multiple objects are very close to each other,

geometric-only systems can fail due to the inherent spatial uncertainty of the features.

To tackle this issue, Nassar et al. [6] recently proposed an end-to-end trainable object

geo-localization architecture that jointly learns object detection and instance re-identification in

different views with learned geometric soft-constraints. Their architecture takes a pair of GSV

images along with their geographic metadata as input and passes both through two blocks that

share the same weights. Objects are first detected in the image pairs using SSD detector, then

bounding boxes from each image are projected into the other image’s space. For each block, the

predicted boxes and projected boxes locations are passed to a learnable Multi-Layer Perceptron

(MLP) to regress their real-world geo-coordinates. The projected predictions are also passed to

another network for fine-tuning of the projections. The full model is end-to-end trainable with a

multi-task loss function. Their approach showed very promising results: it achieved an error of

3.13 meters for geo-locating trees on the Pasadena dataset and 4.36 meters for geo-locating signs

on the Mapillary dataset [53]. However, it only works with one pair of frames, making it
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unsuitable for online autonomous driving systems where a sequence of more than two frames is

used to geo-locate static objects in the scene. For the objects geo-localization model to be suitable

for online autonomous driving systems, it should ideally detect static objects in the current frame,

associate them with the detected objects in the previous frames (more than one prior frame), and

geo-locate each tracked object.

To address the problem of having more than two video frames in the input, the same

authors [54] presented an end-to-end method for object detection and geo-localization based on

GNN. Their approach takes multiple images and their corresponding approximate camera poses

as input. Their architecture comprises three components: an object detector, a GNN for objects

association, and a geo-localization regressor where the full model is end-to-end trainable. First,

objects are detected using an anchor-based object detector. Then, an undirected fully connected

graph is constructed, which contains nodes composed of the features extracted from the detector’s

backbone concatenated with pose information and the predicted bounding box values. Then, the

graph is passed through a Graph Neural Network (GNN) trained to classify a pair of objects into a

matched or unmatched pair. In parallel, the detected bounding boxes are passed to a neural

network to regress their geo-coordinates. This approach achieved better performance with less

latency compared to their previous approach [6]. It reached an average geo-localization error of

only 2.75 meters on the Pasadena dataset and 3.88 meters on the Mapillary dataset. Even though

this method accepts any number of frames as input, it is not suitable for the autonomous driving

application because, in order to geo-locate objects in a sequence of frames, it needs to have all

frames as input to the model. For an online perception of static objects, their approach has to

reprocess all frames in the memory with each new frame, which is inefficient and

time-consuming.

The two approaches proposed by Nassar et al. [6, 54] have solved the issues of the multi-

step or geometric-only systems and have shown that the end-to-end approach for object detection

and geo-localization performs better. However, as we mentioned before, both are not suitable

for autonomous driving application. In contrast, in Chapter 3, we propose an end-to-end method
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for detection, tracking, and localization of spatially-compact static objects that is suitable for the

online autonomous driving application.

Static objects geo-localization using multiple street-view pictures has been the focus of

important prior work. Unfortunately, there is no common benchmark where different approaches

can have a fair comparison, as they all use their private datasets. Thus, in this dissertation

(Chapter 3), a public Traffic Lights Geo-localization (TLG) data set is created from nuScenes

dataset [3], which can help to accelerate static objects geo-localization domain and provide a

common benchmark for the evaluation of different approaches. In this dissertation, we compare

our proposed approach with existing methods that have publicly available code.

2.3 Multi-Object Tracking

Multi-Object Tracking (MOT) is a challenging problem in computer vision that aims to localize

all objects of interest (e.g., pedestrians, vehicles) and reliably recover their trajectories in a video

sequence while maintaining their identities. MOT aims to output objects bounding boxes present

in each frame (detection), identify where they are in each frame (localization), and assign a unique

identity to each bounding box in order to determine whether objects in different frames belong to

the same or different objects (association).

Multi-object tracking is generally evaluated using CLEAR-MOT metrics [1] which contains

multiple performance measures, with Multi-Object Tracking Accuracy (MOTA) and Multi-Object

Tracking Precision (MOTP) as the most used ones. MOTA is a summary of the overall tracking

accuracy. The counts of False Negatives (FN), False Positives (FP), and Identity Switches (IDs)

are summed and divided by the total number of ground-truth objects across all frames to compute

a total error rate, which is then subtracted from 1 to compute the MOTA. IDs score is the number

of times a trajectory gets a new predicted identity even though the ground truth identity remains

the same. MOTP is the total position error for the associated hypotheses over all frames averaged

by the total number of matches made. Mostly Tracked (MT) and Mostly Lost (ML) are also two

widely used metrics proposed by Li et al. [55]. MT is given by the proportion of ground truth
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trajectories tracked for more than 80% of their lifetime. ML is given by the proportion of ground

truth trajectories tracked for less than 20% of their lifetime.

In CLEAR-MOT metrics, the confidence value of the detection is not taken into account, and

all metrics are computed based on a single confidence threshold. Thus, Weng and Kitani [56]

proposed the Average MOTA (AMOTA) and the Average MOTP (AMOTP), which are the averages

of the MOTP and the MOTA across many thresholds. The AMOTA and AMOTP are calculated by

integrating MOTA and MOTP values over all recall values, e.g., area under the MOTP over recall

curve for computing AMOTP. They also proposed a new MOTA called recall-normalised MOTA

(MOTAR) which uses a recall-normalization term to prevent the MOTA from being negative (the

MOTA score can be negative when the number of errors is higher than the number of targets in the

video). Recently, Jonathon et al. [57] showed that all previously mentioned metrics overemphasize

the importance of either detection or association, and that is why they proposed the Higher-Order

Tracking Accuracy (HOTA) metric, which explicitly balances the performance of the detection,

association, and localization. The detailed definition of the HOTA score can be found in [57].

The standard approach employed in MOT algorithms is "tracking-by-detection" which is

characterized by two main steps: 1) a detection step to localize objects in a single video frame,

and 2) an association step to link objects detected in the current frame with those from previous

frames.

Recently the performance of object detection methods has improved substantially (see § 2.1),

and the majority of MOT methods have been focusing only on improving the association step.

Indeed, many MOT benchmarks [58,59] force different methods to use their set of public detections

to have a fair comparison at solely the association step, as the quality of detection can significantly

affect the MOT results. Thus, many MOT algorithms ignore the detection step and formulate the

tracking problem as a data association problem, i.e., detection hypotheses that are considered to

belong to the same object are associated into object trajectory (known as "tracklet").

Although there are a large number and variety of methods solving the MOT problem, the data

association step roughly contains the following three stages: i) Feature extraction stage: feature
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extraction algorithms process each detection and/or tracklet into representative features. ii) Affinity

estimation stage: statistical measuring of the similarity between pairs of detections and/or tracklets

when representative features are extracted. iii) Association stage: the estimated affinity scores are

used to link new detections and existing tracklets by assigning the same label to detections that

belong to the same physical object.

The data association step is commonly formulated as a graph problem. Current detections and

existing tracklets are represented as nodes of the graph, and edges between each pair of nodes

are weighted with the similarity scores between them, computed using the representative extracted

features. The association stage is then modeled as an optimization problem with respect to the

weighted graph.

In prior works, researchers used simple distances between available appearance/motion

features and focused on solving the various graph optimization problems [60, 61] that have been

formulated to determine optimal trajectories. In recent years and especially with the resurgence of

DL, the researchers’ interest has shifted from developing novel optimization algorithms to using

simple matching algorithms (e.g., Hungarian matching [4, 62–64], greedy matching [7, 65]) and

focusing on learning features that are better for data association. This drift has been reflected with

a significant increase in performance in the MOT frameworks. For the affinity estimation stage,

while it is generally computed as the distance (e.g., Euclidean distance [65], Mahalanobis

distance [66]) between extracted features, some recent MOT frameworks [67–69] used DL

models to directly estimate similarity score, without specifying any explicit distance measure

between the extracted features.

In the following, we will review the main works for MOT frameworks. This section is

organized based on the used features for the association. First, the use of hand-crafted features for

the association is briefly discussed in §2.3.1. §2.3.2 will cover the employment of classical CNNs

to extract appearance features. Then, a variant of CNNs, known as Siamese CNNs, is examined in

§2.3.3. §2.3.4 explores motion features that have also been widely used in MOT. Finally, the use

of interaction features which is a recent trend in MOT frameworks is explored in §2.3.5.
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2.3.1 Hand-crafted Features

The goal of feature extraction is to extract discriminative features that help to compute

affinity/distance scores between different detections and/or tracklets. Traditional MOT methods

mostly focused on feature selection. Among different kinds of features, appearance and motion

have shown to be the best discriminative features. Hand-crafted features such as

Intersection-Over-Union (IoU) [70] and spatial distance [60] were used as the motion features.

For the appearance features, pre-defined color intensity [71] and histogram [72] were the most

popular features. However, they do not deal with changes in imaging conditions, e.g.,

illumination changes. To overcome this, other hand-crafted features such as optical flow and

HOG [24] have been employed. The optical flow feature was used to associate detections into

short tracklets for more data association processing [73] or directly use it for data

association [74]. HOG feature descriptor played a crucial role in the multi-pedestrian tracking

problem [74]. Multiple works fused multiple handcrafted features [75, 76] for better

discrimination, but they were still not robust enough.

2.3.2 CNN-based Appearance Features

With the recent success of DL in different computer vision tasks, recent MOT algorithms have

used DL in various ways to improve tracking performance. More specifically, feature extraction

using CNNs has been the most successful thanks to their powerful capability of extracting abstract,

meaningful, and complex features.

In 2015, Chanho et al. [77] was one of the pioneers to utilize CNN-based appearance features

along with the classical Multiple Hypotheses Tracking (MHT) algorithm. First, image patches of

the detections are passed through a pre-trained CNN to extract appearance features, followed by

Principal Component Analysis (PCA) to reduce the dimensionality. Then, the obtained features are

fed to a classifier to compute a log-likelihood cost for a track hypothesis given a set of detections.

This work demonstrated that a classical MHT implementation from the 90′s surprisingly performed

well in comparison with state-of-the-art methods on standard benchmarks. When their paper was
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Figure 2.1: Framework of deep SORT [4] CNN-based feature extractor. Deep appearance features extracted

from CNN, pre-trained for classification, are used to improve the association between new detections and

existing tracklets.

first published, their model outperformed the second-best tracker on the 2DMOT15 [58] challenge

by 7% in terms of Multi-Object Tracking Accuracy (MOTA) [1].

Later, Yu et al. [62] employed a network similar to GoogLeNet [46], pre-trained on multiple

person re-identification datasets, to extract the appearance features from image patches of different

detections and utilized the cosine distance between different detection features as a measure of

the appearance affinity. Appearance affinities are then combined with straightforward motion and

shape affinities to construct the affinity matrix, and finally, the Hungarian algorithm [78] is adopted.

The Hungarian algorithm is a combinatorial optimization algorithm that solves the assignment

problem based on the computed affinities scores. In their experiments, Yu et al.demonstrated

that high-performance detection (Faster R-CNN [33] trained on several extra detection datasets)

combined with simple CNN-based appearance features for association can lead to state-of-the-art

performance in MOT.

Inspired by the work of Yu et al. [62], CNN-based appearance features were extensively used

in simple MOT algorithms and combined with state-of-the-art detectors and were able to achieve

state-of-the-art performance. One of the most widely used frameworks in this category is Deep
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SORT [4], which is an extension of Simple Online and Realtime Tracker (SORT) [63] (details

about SORT can be found in §2.3.4). Deep SORT combined CNN-based appearance features with

Kalman-filter-based tracking and Hungarian algorithm for data association and achieved the best

performance of (MOTA score of 61.4) on MOT16 challenge [59] in 2017. Deep SORT employs a

wide residual network [79] to extract appearance features of objects and then computes their

similarities with cosine distance. The network is pre-trained on a large-scale person

re-identification dataset to extract a normalized vector for each box, capturing the appearance

features of each. A combination of the cosine distance and motion-based Mahalanobis distance is

used as affinity estimation. A diagram of the framework is illustrated in Figure 2.1. This

adaptation successfully reduced the number of identity switches by 45% leading to a more stable

tracking. Their work demonstrated that incorporating appearance features from pre-trained CNN

into the MOT algorithm improves the tracking performance.

2.3.3 Siamese Networks
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Figure 2.2: The basic architecture of a Siamese network. The weights of the convolutional layers are shared

between the two inputs of the network. For feature extraction, the network is trained as a Siamese CNN. For

the inference, the last fully connected layer is utilized as the representative feature vector for a given object.

Some methods use Siamese architecture during the inference for estimating affinity between pairs of objects

as well.
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A variation of the classical CNN architecture that has seen enormous use in MOT and is

considered the most popular DL architecture in the MOT problem is the Siamese network

(Figure 2.2). A Siamese network is basically a CNN network trained with a loss function that

combines information from multiple images with shared weights to learn features that best

discriminate between objects. Intuitively, the Siamese network is suitable for the task of learning

the association likelihood between two inputs.

Contrastive loss function [80] is the traditional loss function that was used to train a Siamese

network. This loss function trains the network to minimize the distance between each pair of

images that belongs to the same object (lower than a pre-selected margin) while maximizing the

distance between each pair that belong to two different objects (larger than the same margin). Leal-

Taixé et al. [81] proposed a CNN-based Siamese network that directly predicts the likelihood that

the two inputs belong to the same object. More specifically, the two input patches are stacked along

with the associated optical flow information. The obtained input is then fed to the Siamese network

which is trained using the contrastive loss function. Furthermore, contextual features are extracted

from the variations of position and size between the two input patches and then combined with the

final layer of the Siamese network. The obtained combined representation is then fed to a gradient

boosting classifier to produce the final similarity score.

Lee et al. [69] proposed Feature Pyramid Siamese Network (FPSN) inspired by the work of

Leal-Taixé et al. [81], in which they extended the CNN Siamese network by incorporating FPN

[35]. In FPSN, the feature maps at multiple levels of the backbone convolutional networks are

extracted to use both coarse- and fine-level information. To incorporate motion information into

FPSN, a spatio-temporal motion difference feature is added for better affinity estimation. To train

FPSN, the contrastive loss function was generalized to capture the multi-level features in FPSN.

Various pairwise loss functions have also been proposed to improve the discriminability of the

Siamese network. Bae et al. [82] for example, used appearance features extracted from their

proposed Siamese CNN network, and for training, they proposed an energy function with

high-level feature distances of sample pairs inspired from the work of Alexis et al. [83]. In their
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experiments, the authors demonstrated the effectiveness of the proposed loss as compared to the

contrastive loss. Bae et al.formulated the MOT problem based on tracklet confidence measured

using its detectability and continuity through frames. For each given new frame, they associated

the tracklets and new detections in different ways according to the confidence values of the

tracklet. For both high- and low-confidence tracklets, similarity scores based mainly on the

appearance features are computed and then passed to the Hungarian algorithm for the

tracklet-detection association. The authors also demonstrated that combining online transfer

learning, by adapting the pre-trained deep model during online tracking, improves appearance

discriminability.

Thanks to the recent advances in the computational power of DL frameworks, many

researchers took advantage of tensors formulation to produce a faster way of computing affinities

between multiple pairs of detections in a single forward pass. Sun et al. [84] used a Siamese

network that takes two video frames as input and outputs similarity scores between all pairs of

detections. Appearance embeddings are first extracted for all detections in a pair of frames, and

then all possible pairs of detections embeddings between the two frames are concatenated to form

a tensor. Later, the obtained tensor is passed through convolution layers with a kernel size (1×1)

to obtain the final similarity matrix containing all similarity scores between all pairs of detections.

Finally, a binary classification loss function is used to train the network to classify each output in

the similarity matrix to a matched or mismatched pair. This approach is similar to the classical

Siamese network, extended by using tensors formulation, making its implementation faster.

Another widely used loss function for training Siamese networks is the triplet loss [85] where

each training input consists of three samples instead of two. Two of the three samples belong to the

same object, and the third belongs to a different object. Thus, the loss function trains the Siamese

network to maximize the relative distance between the matched pair and the mismatched pair.

Chen et al. [86] employed a network inspired by GoogLeNet [46] and trained the network with

triplet loss on person re-identification task to extract the appearance features of objects. Their MOT

algorithm first outputs possible detection candidates using both the output of R-FCN detector [87]
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and the predictions of existing tracklets using Kalman filter. The authors explained that extracting

redundant candidates is beneficial because high-confidence detections prevent tracking drift in the

long term, and the predictions of tracklets help in handling occluded objects. Candidates for data

association are then selected based on a unified confidence score and by applying NMS. Finally,

existing tracklets are hierarchically associated with selected candidates using Euclidean distance

between the appearance features. At the time of publishing, their method achieved state-of-the-art

performance on the MOT16 benchmark with a MOTA score of 47.6.

Rather than considering a pair or a triplet of image patches with Siamese networks, Son et

al. [88] proposed an extensive Siamese network, called Quadruplet Convolutional Neural Network

(Quad-CNN), that uses quadruplets of image patches as inputs: three of them belong to the same

object, but in ascending temporal order, and the fourth one belongs to a different object. Similar

to other Siamese networks, Quad-CNN enforces a matched pair to have a lower distance than a

mismatched pair. In addition, it encourages a temporally adjacent matched pair of detections to

have a lower distance than a temporally distant pair. Quad-CNN learns the similarity between

objects using a quadruplet loss which combines the appearance of detections with their sequence-

specific motion-aware position for metric learning. A multi-task loss for learning object association

and bounding-box regression (to refine noisy localization of detected objects) is used to jointly

optimize Quad-CNN in an end-to-end fashion. Quad-CNN showed competitive results with state-

of-the-art methods on the MOT16 benchmark, achieving MOTA score of 44.1.

Siamese networks are typically used to learn affinities between pairs of detections. Wang et al.

[89] proposed a novel Siamese network, called TrackletNet Tracker (TNT), that learns similarities

between pairs of full tracklets. Appearance features extracted from FaceNet [85] are concatenated

with bounding box parameters to construct an embedding feature vector for each detection. To

estimate affinity between two tracklets, embeddings from all detections of both tracklets within a

fixed time window are fused and fed to TNT network. The MOT problem in this work is formulated

as a tracklet graph model. First, tracklets are built from consecutive detections using IoU and

CNN-based appearance similarity. Then, the TNT network is employed to estimate the similarity
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between each pair of tracklets. Finally, a clustering algorithm is adopted to group tracklets that

belong to the same object into the same cluster. TNT achieved promising results on MOT16 (49.2

MOTA) and MOT17 (51.9 MOTA) benchmarks compared with state-of-the-art methods.

2.3.4 Motion Features

In real-world scenarios, appearance-only models can be unreliable for discriminating between

objects of the same class, especially with similar shapes and textures. In such cases, motion

features can provide better representative information useful to discriminate between objects.

Motion is an important component in tracking systems that can be combined with appearance

models [4, 90] or even employed solely [56, 63].

Motion prediction features are the most common motion features in MOT. In early works,

Kalman filter [91] was a very popular motion prediction model in MOT that is used to predict

the current object’s state based on its previous states. A typical technique in early methods [4,

56, 63, 90] is leveraging Kalman filters to model the object velocity and predicting its bounding

box location and size in the current frame, followed by the Hungarian algorithm to complete the

association. One popular Kalman filter based MOT algorithm is "Simple Online and Realtime

Tracking" (SORT) [63] which has been one of the pioneers to leverage CNNs for object detection

and combine it with an off-the-shelf Kalman filter and achieved the best performance, of 33.4

MOTA, among open-source algorithms on 2DMOT15 challenge in 2016. SORT first detects object

bounding boxes and classes using Faster R-CNN [33] and uses the Kalman filter to predict the

tracklets’ location in the current frame. The similarity cost matrix is then computed as the IoU

distance between each new detection and all predicted bounding boxes from existing tracklets.

Kalman filter has also been employed for 3D tracking (tracking 3D bounding boxes) to assign a

unique ID for each 3D detection. AB3DMOT, for example, [56], uses 3D detection from LiDAR

point cloud and then combines 3D Kalman filter and the Hungarian algorithm for state estimation

and data association.
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Kalman filter makes a major assumption on the linearity of the motion model. However, in

realistic tracking scenarios, the motion model can be more complex and especially in crowded

scenes. To tackle the non-linearity problem, variants of Kalman filter have been proposed to solve

MOT problems such as the Extended Kalman Filter (EKF) [92], and Unscented Kalman Filter

(UKF) [93].

Recently, some works employed CNN correlation filters to predict existing tracklets locations

in the current frame [64, 94]. For instance, Zhao et al. [64] incorporated features from multiple

layers of the SSD network [39], compressed using PCA, into the correlation filter. The correlation

filter computes a response map for each tracklet in the current frame, and the maximum value in

the map is then considered as the estimated location of the tracklet. Finally, the similarity score

is computed based on the IoU between new detections and predicted locations of the tracklets

combined with the appearance similarity score extracted from the response map. Their approach

was able to achieve a MOTA score of 32.7 and 71.27 on 2DMOT15 and KITTI [11], respectively.

The recent success of Recurrent Neural Network (RNN) in modeling time-series data

motivated researchers to employ RNNs and their variations to solve dynamic and complex motion

prediction problems. Milan et al. [67] proposed an RNN-based approach to learn complex motion

models inspired by the Bayesian filtering idea, where the temporal dynamics of objects learned by

RNN are exploited to accomplish state prediction and updating as well as track management.

Their RNN network jointly performs motion prediction, data association, state update, and

estimation of the initiation and termination of objects within a unified network. However, the

entire approach mainly focuses on motion prediction and ignores appearance features, and this

was reflected by relatively poor tracking performance (19.0 MOTA on 2DMOT15 benchmark).

To mitigate this issue, Sadeghian et al. [68] presented a MOT framework based on a structure of

RNNs that jointly encode temporal dependencies across multiple features including appearance,

motion, and interaction features, over a temporal window. Their framework achieved a high

tracking performance with a MOTA score of 37.6 and 47.2 on 2DMOT15 and MOT16
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benchmarks, respectively. However, the running time was relatively slow and unsuitable for

real-time applications.

It is also shown that the optical flow features are a powerful tool to describe motion between

video frames and are useful for MOT. The traditional Lucas–Kanade algorithm [95] for optical

flow estimation has been used in MOT [61, 94]. Because DL approaches [96] are able to get a

smoother and more robust estimation of optical flow compared to traditional methods, the tracking

accuracy is expected to be promoted with deep optical flow features. Zhou et al. [97] proposed

a CNN that estimates the displacement for each tracklet from the previous frame to the current

frame. Then, a deep continuous conditional random field with asymmetric pairwise terms is used

to refine the displacements. Spatial similarity score based on the predicted object displacements

is combined with appearance similarity score computed using the Siamese network, and then used

by the Hungarian algorithm for linking existing tracklets to new detections. Deep flow features

have also been used in end-to-end MOT methods (see §2.4); however, they have been only used

to associate detections between consecutive frames and have not shown reliable tracking accuracy

for long-term frames association.

2.3.5 Interaction Features

Most MOT frameworks use a feature extractor independently for each object without

accounting for feature interaction between objects, something that may lead to sub-optimal

discriminative feature learning. To tackle this issue, Graph Neural Networks (GNNs) have

recently been introduced in MOT. Weng et al. [98] for instance, proposed a novel feature

interaction mechanism based on GNN. Specifically, appearance and motion features are extracted

for each object and then fused through concatenation. A GNN is then constructed where each

node represents the features of either past tracked objects or newly detected objects in the current

frame. Each node feature is updated by aggregating all features from other nodes, which allows

for interaction among object features where each object feature can be adapted with reference to

other features. The affinity estimation is achieved via edge regression in the GNN. Finally, a
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batch triplet loss is utilized on the node feature of every GNN layer for discriminative feature

learning. The authors noticed that the discriminative ability considerably increased within a

couple of GNN layers when accounting for feature interaction. Their approach, called

GNN3DMOT, achieved 82.24 MOTA on KITTI and 6.21 AMOTA on the nuScenes validation

dataset. Multiple other works followed the same process and used GNNs to estimate similarity

scores between existing tracklets and new detections [99, 100]. The work of Weng et al. [98] and

other GNN based methods alike [99, 100] have shown poor tracking performance; however, they

pointed out an under-explored topic which is incorporating object interactions during tracking.

Some recent works started to explore transformer-style architectures [8] for tracking while

taking into account the interaction between different objects [101–103]. TransTrack [102]

performs tracking using attention-based query-key mechanism which relies on heuristic post

processing (IoU matching) to generate final tracklets. Meinhardt et al. [101], proposed

TrackFormer, an extension of the recent DEtection TRansformer (DETR) [104] object detector.

TrackFormer uses the track query embeddings to follow object location changing over time in an

autoregressive manner and adopts object queries as in DETR [104] to deal with newborn objects.

For Trackformer, the MOTA on MOT17 benchmark is 65.0.

While transformer-based trackers [101–103] have shown that transformers can associate

objects in a video using only attention operations, the tracking performance of transformer-based

trackers is not state-of-the-art for several reasons. First, these methods used only simple features

(such as spatial information and velocity) for representing each object, and they do not rely on

any additional matching such as appearance or motion modeling. Second, a scene generally

contains a large number of objects. Modeling the spatio-temporal relationships of these objects

with a general transformer architecture is not efficient because it does not consider the

spatial-temporal structure of the objects. Third, most of the transformer-based trackers [101, 102]

consider interaction only within two adjacent frames. In contrast, in Chapter 5, we integrate a

transformer-style network and apply it with objects’ appearance embeddings combined with

spatial and temporal information. The experimental results show that the proposed approach
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performs favorably against or comparable to state-of-the-art methods while significantly

outperforming the competing methods that consider interactions and dependencies between the

actors.

2.4 Joint Detection and Tracking

In real-world applications such as self-driving vehicles, system latency is a primary concern.

However, existing feature extractors (see §2.3) are often time-consuming. Furthermore, existing

MOT frameworks generally treat detection and association separately, which induces accumulated

latency and errors. To avoid such problems, the ability to use a shared neural network to provide

the “heavy lifting" required for detection and tracking may reduce latency and improve accuracy

(via joint learning).

Recently, a common trend in MOT consisted of leveraging off-the-shelf detectors and

extending them to perform both detection and tracking in an end-to-end framework. This has

shown to be helpful in different ways, including a reduction in system latency and also removal of

error accumulation of the cascaded detection-tracking methods.

Bergmann et al. [105] presented an efficient tracking framework, Tracktor, which leverages an

object detector and converts it into a tracker under the assumption that objects slightly move

between consecutive frames. Tracktor adapts the Faster R-CNN detector [33] by adding a

regression head to regress the location of a bounding box of an object in the new frame from the

previous frame. While Tracktor achieved top performances on MOT benchmarks [58, 59], it

suffers from a few drawbacks: (i) it only works well on high frame-rate videos where inter-frame

motion is low, (ii) it does not capture the appearance of the tracked object, which makes the

model unreliable when multiple objects are in close proximity, and also in the case of temporary

occlusion. To overcome the second drawback, Bergmann et al.presented an extension to Tracktor,

called Tracktor++, by integrating appearance features generated by a separate Siamese network

which led to better tracking accuracy, but with the sacrifice of efficiency, partially defeating the
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benefits of Tracktor. When Tracktor++ was published, it achieved state-of-the-art performance on

MOT16 (54.4 MOTA) and MOT17 (53.7 MOTA) benchmarks.

Multiple end-to-end MOT frameworks have then been constructed based on Tracktor. Liu

et al. [106] applied a new graph representation to Tracktor. The proposed graph representation

uses both the extracted features of individual objects and also the interactions among objects,

and this has been shown to enhance the tracking performance of Tracktor by +5.6 MOTA on

MOT16 and +2.9 MOTA on MOT17. Xu et al. [107] presented an end-to-end MOT training

framework, using a differentiable approximation of MOT metrics [1, 108] in the loss functions.

They showed improvements for the Tracktor approach on MOT16 and MOT17 benchmarks (+0.4

and +0.2 MOTA, respectively) when extended with their training framework.

To tackle the issue of high inter-frame motion that Tracktor and its extensions suffer from,

some end-to-end MOT methods used CNNs to estimate inter-frame offsets between detections of

consecutive frames using pairs of frames as input instead of using only one frame. Feichtenhofer

et al. [109] extended R-FCN [87] detector into the Siamese network to simultaneously perform

detection and also compute convolutional cross-correlation between feature responses of

consecutive frames in order to estimate inter-frame offsets between bounding boxes. On top of

the features, they proposed to employ Region-of-Interest (RoI) pooling layer [87] for tracking

which regresses bounding box transformations (translation, aspect ratio, etc.) across frames.

Similarly, Zhou et al. [7] proposed CenterTrack, which extends the CenterNet detector [13] to

estimate inter-frame offsets of bounding boxes. Each object in CenterTrack is represented by the

center location of its bounding box, and all center points are linked across frames. Their proposed

extension of CenterNet takes as input the current frame, the previous frame, and a heatmap

rendered from the existing tracklets centers and performs detection as well as regression of

displacement vectors, from the current object center to its center in the prior frame, for each

detected object. For the association stage, a greedy matching algorithm is applied based only on

the distance between the detected centers’ locations in the prior frame and the predicted

displacements. CenterTrack is the current state-of-the-art method in many tracking
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benchmarks [11, 58, 59]. It obtained 67.8 MOTA on the MOT17 benchmark and 88.83 MOTA on

KITTI. CenterTrack can be extended easily to 3D tracking and even has shown the best

performance (4.6 AMOTA) for monocular 3D tracking methods on nuScenes dataset [3]. While

Zhou et al. [7] and Feichtenhofer et al. [109] have solved the issue of large inter-frame motion

and achieved good results, they only link objects in adjacent frames and are not able to perform

long-range matching, which makes them unable to correctly link detections when the object is

temporarily occluded.

For better long-term association, Wang et al. [110] proposed the first attempt of simultaneous

detection and tracking approach based on appearance features. Their model named JDE, or “Joint

Detection and Embedding" employs a unified network to jointly output detections and their

corresponding appearance embeddings. JDE extends YOLOv3 [38] with a re-identification

branch trained with triplet loss [85] and jointly learnt with detection losses. For each new frame,

JDE updates the appearance embedding of the tracklet using a combination of all embeddings for

the detections belonging to the tracklet. The similarity score is a combination of cosine distance

between appearance embeddings and Mahalanobis distance between the current detection and the

predicted bounding box of the tracklet computed using the Kalman filter. The Hungarian

algorithm is then employed to find the optimal assignments. JDE achieved 64.4 MOTA on the

MOT16 benchmark at 20.2 FPS. JDE showed a speedup in inference time but was unable to

achieve a tracking accuracy improvement over non-jointly-learned alternatives.

Recently, Zeng et al. [14] proposed PnPNet, an end-to-end model that performs joint

detection, prediction, and tracking. All three modules share the same backbone network, and the

full model can be trained end-to-end. The model takes the bird’s eye view representation of

multi-sweep LiDAR point clouds and HD map as input and passes it to a CNN backbone with

multi-scale feature fusion to extract intermediate feature representation used for the three tasks.

At each frame, the extracted features are combined with estimated motion features to construct a

single feature representation for each detection. The constructed feature representations of all

detections belonging to a tracklet are passed through LSTM to output feature representation for
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each tracklet. Feature representations of each pair of new detection and existing tracklet are

passed to MLP to compute the similarity score. Finally, the Hungarian algorithm is applied for

tracklets-detections assignments. PnPNet is tested only on the validation set and only on the car

class of the nuScenes dataset [3], leaving its generalization ability questionable.

End-to-end methods that perform simultaneous detection and tracking have shown better

results than non-jointly-learned alternatives and with less running time. However, existing

appearance-based end-to-end methods did not yield significant improvements in tracking

accuracy. In contrast, in Chapter 4, we present an efficient joint detection and tracking model that

relies on an appearance-based object matching network jointly learned with an underlying object

detection network, and which has shown to have significant advantages in robustness, compared

to current end-to-end methods, when applied to challenging tracking data.

2.5 Conclusions

Geo-localization of static traffic-control objects is an important component of the autonomy

system for self-driving vehicles. Multiple prior works have studied this task. Traditional

approaches are based on the triangulation technique, which has yielded poor performance in

realistic scenarios like dense areas where many objects are present. Self-driving vehicles are

expected to encounter many traffic lights in a single intersection, and triangulation-based methods

are more likely to fail. Recently, a few attempts tried to explore DL-based end-to-end methods

that jointly detect, associate, and geo-locate static objects in a single model. End-to-end models

have shown very promising results even when multiple identical objects are present in the scene.

However, they are fundamentally not suitable for online autonomous driving application. Also,

one major issue in the static objects geo-localization domain is the absence of a common

benchmark where different approaches can have a fair comparison.

Scene understanding is a major component of the autonomy system for self-driving vehicles.

It involves a profound video analysis where all static and moving objects are identified and

tracked. As a result, both object detection and multi-object tracking tasks have been studied for
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decades by computer vision specialists and researchers. Recently, the significant improvements in

detection performance thanks to modern DL techniques have served as a strong basis for

researchers to tackle, once inevitable, tracking problems. Furthermore, with the success of DL,

researchers’ focus drifted from developing novel optimization algorithms for matching to learning

better discriminative features while using simple matching algorithms and yet achieving better

performance.

Studies have shown that appearance features are essential for good-performing trackers, and

CNNs are a powerful tool for extracting them. Besides, integrating future motion prediction as

well as flow features have been shown to boost tracking performance. These features can be used

solely or in conjunction with appearance features. Recently, further attempts to extract better

representative features consisted of incorporating features interaction between objects. This has

opened a new direction for the problem of tracking, where many researchers are showing great

interest.

Recent end-to-end methods of joint detection and tracking have shown solid results in reducing

system latency and enhancing the performance of both tasks. However, existing appearance-based

end-to-end methods did not yield significant improvements in tracking accuracy.

36



Chapter 3

Static Objects Geo-localization

Accurately estimating the position of static objects, such as signs and traffic lights, from the

moving camera of a self-driving car is a challenging problem. In this chapter, we present a

method for estimating 5D pose, tracking, and localizing spatially-compact static objects from a

single camera of a self-driving car. Each video frame is assumed to be associated with a

reasonable ego-pose of the camera, as is readily available in open-source self-driving data sets.

The proposed method consists of neural networks that address each of the main components of

the system, combined to allow joint-optimization via learning to improve overall performance.

This work was published in WACV2021 [111] and the code is publicly available at:

https://github.com/MedChaabane/Static_Objects_Geolocalization .

The top-level model takes a pair of geo-located video frames as input and outputs a set of

localized objects (5 Degree-of-Freedom, or “5D" poses). For each input image, a network performs

5D pose regression for each detected object. Detected objects are represented with both appearance

and pose information for learning how to associate them between frames. We employ an existing

object detector but propose new networks for single-image object pose regression and cross-image

object matching. The system applies these networks in a multi-object tracking paradigm to produce

robust 5D poses for the set of tracked objects in a video sequence. The performance of the proposed

approach is evaluated on traffic lights due to the availability of data. In principle, this method could

be applied to other static object types as well.

The proposed object localization method consists of two models. The first is a pose regression

network (§ 3.1) used to estimate the 5D pose of objects present in an RGB image. The second

is an object matching network (§ 3.2) used to associate objects across a sequence of frames. The

proposed approach is an online method, so it uses information derived only from past frames,

making it suitable for use in self-driving vehicles and other streaming applications. At each given

frame t, the network produces a set of 2D object detections in the image. For each detection, the 5D
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Figure 3.1: Single-image Object Pose Regression The model first computes bounding boxes (crops) of

objects of interest from geo-located images. Each image crop is then processed with an encoder-decoder

CNN to generate a feature map, F , which is processed by an attention module to yield F̄ . Using average

pooling, a fixed-size geometry embedding G is created, which is then fed to the pose regressor to output the

5D pose.

pose is estimated. The current-frame detections are associated with tracks of previously detected

objects using the object matching network. For each tracked object, the estimated 5D poses are

aggregated over time to compute the final location and rotation. Object locations are aggregated

by applying an LSTM network. In the following, details on the two main components, the pose

regression network and the object matching network, are provided.

3.1 Pose Regression Network

Figure 3.1 illustrates the architecture of the proposed object pose regression model. The method

is for application to spatially compact static objects, such as traffic lights or signs. As static objects

of interest are tracked across frames, the per-frame pose estimates are used not only to refine

the final 5D pose of the object, but also to help disambiguate matching objects across frames

(see § 3.2.2). The network outputs 5D object pose vectors p = [T,R] where T = (Tx, Ty, Tz)

represents the 3D translation vector of the center of the object in the camera coordinate system

and R = (Rx, Ry) represents the unit vector orthogonal to the object (the direction in which traffic
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light or sign is facing) with respect to the camera coordinate frame. To estimate the pose, the

network is trained using the euclidean loss Ltrans(T, T̂ ) = ‖T − T̂‖2 for the translation regression,

and the log hyperbolic cosine loss Lrot(R, R̂) =
∑

a∈{x,y} log(cosh(Ra − R̂a)) for the rotation

regression, where p = [T,R] is the ground truth pose and p̂ = [T̂ , R̂] is the estimated pose. Instead

of regressing the full translation vector T , the pose regression network is trained to regress the Tz

component and the object’s center position c = (cx, cy) in image pixel space. This formulation

provides better invariance to camera parameters. Projective geometry is used to recover the full

translation vector Ta = (ca − pa)Tz/fa for a ∈ {x, y}, where fx, fy are the camera focal lengths,

and (px, py) is the camera principal point offset.

The proposed pose regression network is a two-staged network. The first stage is a typical 2D

object detection network [37, 112, 113]. The bounding boxes of the detected objects are padded

by Np pixels for each side to include more context and to take into account slight errors coming

from the object detector model. Features from within each padded bounding box (“image crop")

are used in the second stage to estimate object pose.

3.1.1 Geometry Embedding

The image crop is fed into an encoder-decoder network that maps an image of size H ×W × 3

into a feature map F ∈ R
H×W×E . Each pixel of the feature map is an E-dimensional vector

representing the appearance information of the input image crop at each pixel location. From

the feature map F , the embedding of the image crop is derived as follows. A spatial attention

mechanism is employed to focus the embedding on the most salient parts of the image crop. The

spatial attention distribution a ∈ R
H×W is learned using 1 × 1 convolutions from the extracted

feature maps F . The spatial attention map a is then normalized using softmax of the responses:

ā =
exp(a)

∑H

i=1

∑W

j=1 exp(ai,j)
(3.1)
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The normalized spatial attention map ā is applied to weight the feature map F to generate the

attention-weighted feature map F̄ = rep(ā) ⊙ F (ā is replicated for E times to match the size of

F ). Average pooling is then applied to F̄ to obtain the geometry embedding G ∈ R
E .

3.1.2 Pose Regressor

The pose regressor transforms the geometry embedding G into 5D pose estimates for each

object crop in the input image. The pose regressor is composed of a rotation and a translation

branch, each composed of fully connected layers. The rotation branch estimates the rotation vector

R and is normalized before computing the loss. The translation branch estimates the Tz component

of the translation vector and the object’s center position c = (cx, cy). The network is trained by

minimizing the loss Lpose = Lrot + βLtrans.

3.2 Object Matching Network

The object matching network is responsible for associating objects between pairs of frames,

allowing the system to track objects through the video sequence. At a high level, the architecture

follows the Deep Affinity Network (DAN) of [84], but modifications are made to add pose features

into the embeddings. With these changes, the object matching network supports joint learning of

pose, appearance, and similarity to improve static object tracking. A summary of the architecture

is presented in Figure 3.2. The entire architecture is divided into two sub-networks: a feature

extractor and a matching head. Both are described in more detail below, following a description of

data preparation and encoding, which is important for understanding the network design.

3.2.1 Data Preparation and Encoding

A pair of images n frames apart, It and It−n, are input to the object matching network along

with the sets of bounding boxes of the detected objects, Bt = [bt1, b
t
2, ..., b

t
Nt
] and

Bt−n = [bt−n
1 , bt−n

2 , ..., bt−n
Nt−n

] respectively, with 1 ≤ Nt, Nt−n ≤ Nmax where Nmax is the

maximum number of allowed detected objects in any frame. In order to provide more robustness
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Figure 3.2: Object Matching Network. A pair of images n frames apart, It and It−n, along with the

detected 2D bounding boxes, are input to the network. The feature extractor extracts a d-dimensional vector

encoding pose and appearance information for each detected object in each frame. The matching head uses

these to produce affinity estimations, matching objects across the two frames.

during inference, the matching network is trained using image pairs separated by a variable

amount of time. The lower bound of the interval is a single frame of separation. The upper bound

is a number of frames representing a few seconds of time, to allow capturing the situation where

the camera has moved significantly between two observations of the same object. When

generating the training data, we sample uniformly from the range between the lower and upper

time intervals (in number of frames between image pairs), and the training data is expressed as

Xtrain = {(It, It−n) | n ∈ [1, ngap]}, where ngap is the maximum frames of separation between

image pairs. Each image in a pair is resized to a fixed-size.

For each training pair, two ground truth matching matrices M fwd (t − n → t) and M bwd(t →

t − n) are created, representing the forward and backward associations, respectively. The ground

truth matching matrices consist of entries [i, j] ∈ {0, 1}, and have dimensions Nmax × (Nmax + 1)

to allow for unassociated objects. The elements M fwd[i, j] and M bwd[j, i] encode the association

between the object observations bt−n
i and btj . A value of 1 encodes an association, meaning that

the observations pertain to the same physical object. Entities entering and leaving the scene are
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encoded with M fwd[i, Nmax + 1] = 1 and M bwd[j,Nmax + 1] = 1, respectively. Everywhere else,

the value is 0.

3.2.2 Feature Extractor

The feature extractor network extracts the compact features used to associate objects between

image pairs. The pair of frames (It−n, It) are fed in parallel to the feature extractor where the two

branches share the same set of weights. This network is composed of a geometry feature extractor

(yellow box in Figure 3.2) and an appearance feature extractor (green box in Figure 3.2). The

underlying idea of the feature extractor is that the affinity scores between objects can be computed

based on visual and geometric cues.

The proposed approach focuses on autonomous driving scenes, where the video frames are

from a monocular camera mounted on a car moving on the road plane, and the tracked targets

are static objects near the road. Thus, geometry features that describe the location and rotation of

objects can be helpful to discriminate between objects. Benefiting from reliable pose estimation,

the same physical object in the 2 frames It−n and It is expected to have similar estimations of

location and rotation in a common reference frame.

Thus, from any frame It, the proposed pose regression network is used to output the estimated

location and rotation of the detected object. The estimated pose is then transformed into the

camera coordinates system of a common reference frame Iref ; in the implementation, we chose

the reference frame to be the first frame for each video. The pose is transformed into the common

reference frame I0 from any other frame It as follow:

[

T̂ 0 | 1
]

= ζ−1
t · ζ0 ·

[

T̂ t | 1
]

, (3.2)

[

R̂0 | 0
]

= ζ−1
t · ζ0 ·

[

R̂t | 0
]

, (3.3)

where ζ0, ζt are the extrinsic matrices of I0 and It, respectively.
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The geometry embedding G used in the pose regression network contains information about

the geometry of the objects as well. Thus, the features of G are concatenated with the 6 pose values

described above to construct fg,i ∈ R
6+E geometry feature descriptor for the ith detected object.

Table 3.1: Details on the architecture of the appearance feature extractor network used in the object

matching network. The layers used in the final embedding are denoted in the column “Label” as fRn |n ∈
[1, 10].

Layer Output size Kernel size Stride Receptive field Label

1 3× conv H ×W × 3 3× 3 1 7 -

Max Pool H/2 × W/2 × 64 3× 3 2 9 -

4 2× conv H/2 × W/2 × 64 3× 3 1 17 -

Max Pool H/4 × W/4 × 128 3× 3 2 21 fR1

6 3× conv H/4 × W/4 × 128 3× 3 1 45 -

Max Pool H/8 × W/8 × 256 3× 3 2 53 fR2

9 2× conv H/8 × W/8 × 256 3× 3 1 85 fR3

11 1× conv H/8 × W/8 × 512 3× 3 1 101 -

Max Pool H/16 × W/16 × 512 3× 3 2 117 fR4

12 3× conv H/16 × W/16 × 512 3× 3 1 213 fR5

15 2× conv H/16 × W/16 × 512 3× 3 1 277 fR6

17 2× conv H/16 × W/16 × 512 3× 3 1 341 -

Max Pool H/32 × W/32 × 512 3× 3 2 373 fR7

19 3× conv H/32 × W/32 × 512 3× 3 1 565 fR8

22 3× conv H/32 × W/32 × 1024 3× 3 1 757 -

Max Pool H/64 × W/64 × 1024 3× 3 2 821 fR9

25 2× conv H/64 × W/64 × 1024 3× 3 1 1077 -

Max Pool H/112 × W/112 × 1024 3× 3 2 1205 fR10

Given a monocular imaging system, the objects and close surroundings are expected to

maintain their visual appearance over short time spans. To extract appearance features, a convnet

is employed, inspired by the increased performance of CNNs with smaller filter size (3 × 3) and

deeper architectures such as VGG [114]. We conducted a model search to identify the best

performing architecture for the appearance feature extractor. The architecture that achieved the

highest performance is presented in Table 3.1. It consists of 26 convolutional layers and 7

max-pooling layers. Each convolutional layer is followed by batch normalization [115] and a

ReLu activation function.
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For each detected object, feature vectors are extracted from the object’s center location as

regressed from the pose regression network. If the center of the ith object is at position (Xi,r, Xi,c)

in the input frame of size W ×H , then for a feature map Fj of size Wj ×Hj ×C, C-dimensional

feature vector is extracted at position (
Xi,r

H
Hj,

Xi,c

W
Wj) as the corresponding feature vector for the

ith object.

Appearance features [fRi | i ∈ [1, 10]] from ten layers matching varying receptive fields are

extracted, where the corresponding receptive field for each extracted feature vector is shown in

Table 3.1. This multi-resolution architecture helps to simultaneously capture fine geometric details

as well as higher-level semantics of the surroundings. Using a multi-resolution feature vector has

been shown to outperform those using a single receptive field (see § 3.3.4).

After extracting appearance and geometry features for each detected object, both are

concatenated to obtain fi = fg,i
⊕

fa,i ∈ R
d (d = A + 6 + E) which is a fused feature descriptor

for the ith detected object.

3.2.3 Matching Head

Using the extracted feature descriptors, the tensor Et,t−n ∈ R
Nmax×Nmax×2d is built, where

Et,t−n[i, j, :] = fi,t−n

⊕

fj,t is the concatenation of the feature vectors of the ith object of It−n and

the j th object of It. To construct fixed size tensor Et,t−n, the rest of the tensor is padded with zeros.

This formulation allows the model to compute object affinities in a single forward pass. Et,t−n is

fed to a similarity estimator network composed of 6 layers of 1×1 convolutions. The output of the

matching head is affinity matrix At,t−n ∈ [0, 1]Nmax×Nmax . Note that 1 × 1 convolutions are used

so that the computation of At,t−n[i, j] is computed using only the feature vectors fi,t−n and fj,t and

will not be affected by other feature descriptors.

Since we learn similarity between feature descriptors, there is no guarantee that the resulting

scores are symmetric when matching backwards or forwards across frames, i.e., when matching

from (t → t−n) versus (t−n → t). As a result, the affinities in both directions are computed using

a separate affinity matrix for each, denoted with superscripts “bwd" and “fwd" in the following.
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To allow for objects that should not be associated between the frames (objects new to the

scene, or departed), a column is added to At,t−n filled with constant value c to obtain the matrix

Abwd. Softmax is applied to each row of Abwd to obtain matrix Âbwd, representing the final affinity

including non-matched scores. The choice of c is not overly sensitive – the network will learn to

assign affinities greater than c for true matches.

Each Âbwd[i, j], represents the estimated probability of associating bti to bt−n
j . Âbwd[i, Nmax+1]

represents the estimated probability that bti is an object not present in frame t − n. Similarly, the

forward affinity matrix is constructed, using the transpose matrix AT
t,t−n to which we add a column

filled with constant value c and then softmax is applied to each row to obtain matrix Âfwd. During

the inference, the similarity score between bti and bt−n
j is given as the average of Âbwd[i, j] and

Âfwd[j, i].

3.2.4 Joint Loss Function

The object matching network is trained with the loss function Lmatch defined as the average of

the two losses Lfwd
match and Lbwd

match, where Lbwd
match is the error of matching bounding boxes in frame t

to those in frame t− n and Lfwd
match is the error of matching bounding boxes in frame t− n to those

in frame t. The expression of the matching loss is given as follows, where “*" represents “fwd" or

“bwd" as appropriate:

L∗
match =

Nmax
∑

i=1

Nmax+1
∑

j=1

M∗[i, j]log(Â∗[i, j]), (3.4)

Lmatch =
Lfwd

match + Lbwd
match

2(Nt +Nt−n)
, (3.5)

Training optimizes the joint affinity and pose estimation losses as defined in Eq. (3.6). The

loss of the pose estimation task is computed as the average of the pose losses of all object detected

in both frames. Pose and affinity losses are traded-off with a scalar λ.

45



Ljoint = Lmatch + λ(
1

Nt +Nt−n

Nt+Nt−n
∑

i=1

Li
pose) (3.6)

3.2.5 Multi-Object Tracking

The proposed Multi-Object Tracking (MOT) approach follows the tracking-by-detection

paradigm. Given a new frame with the bounding boxes of the detected objects, the tracker

computes the similarity scores between the already tracked m targets (each target consists of

multiple instances from different frames) and the n newly detected objects using the object

matching network. The score matrix is defined as S = [sji | 1 ≤ i ≤ m and 1 ≤ j ≤ n + m],

where sji represents the similarity between the ith target and j th detection and it is computed as the

maximum over the similarity between the instances of the ith target before frame t− 1 and the j th

detection at current frame t, si+n
i for 1 ≤ i ≤ m represents the likelihood of ith target to not being

matched to any of the new detected objects at frame t and is computed as the average of the

values at last column in S̃1
t−n,t for the instances of ith target and sji = −∞ for j > n and j 6= i.

Finally, the widely-used Hungarian algorithm [78] is adopted to derive the optimal assignments.

3.3 Experiments and Results

3.3.1 Datasets

We constructed the Traffic Lights Geo-localization (TLG) data set. TLG is derived from

nuScenes [116], a popular open-source data set for autonomous driving. The nuScenes data

contains 1000 scenes of 20 seconds (at 12Hz video rate), filmed in two cities (Boston and

Singapore), in both night and day, and with three weather conditions (rain, sun, and clouds). Each

scene comes with data from six cameras placed at different angles on the car.

Those scenes within road intersections containing Traffic Lights (TLs) are selected. For each

scene in the nuScenes data set, and for each video clip from one of the six cameras, we iterated

through key frames (2Hz), selecting TLs within 100 meters of the camera location. Each TL

location was transformed from world coordinates to camera coordinates and then into 2D
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homogeneous image coordinates, using the provided extrinsic and intrinsic camera calibration

parameters. TL locations not visible to the camera are filtered. Finally, scenes are selected only if

at least one TL is visible in 5 different key frames in one of the six cameras. With this process, we

ended up with 348 scenes for training and 56 scenes for testing.

In the TLG data, each video clip (from different cameras) in each scene contains 240 RGB

images (including 40 key frames) with a resolution of 1600 × 900. Images are augmented with

camera pose information and camera metadata, including information about each visible TL:

unique ID, 5D pose in world coordinates, 5D pose in the camera coordinates of the first frame,

and TL type (horizontal or vertical).

Three sub-datasets are created for the main tasks, one each for pose, matching, and tracking.

The “Traffic Lights 5D Pose" data contains around 66,000 snippets of TLs (60,000 for training

and 6,000 for testing) along with their 5D poses. The “Traffic Lights Matching" data contains

200,000 pairs of images (170,000 for training and 30,000 for testing) along with bounding boxes

of TLs and ground truth matching matrices between the two images. The average elapsed time

between image pairs in the Traffic Lights Matching data set is 1.4 seconds (the maximum frames

of separation between image pairs ngap is set to 35), and on average, four traffic lights appear per

image. The “Multi-Traffic Lights Tracking" (MTLT) data provides a detection and annotation file

for each video following the format of [59].

We evaluated several other potential sources of data that we hoped could be used to evaluate

the proposed static object localization approach. Unfortunately, beyond nuScenes, we were unable

to find other useful data sets.

3.3.2 Implementation Details

The proposed approach was implemented using PyTorch [117]. All experiments were run on an

Ubuntu server with an Nvidia TitanX GPU with 12GB of memory. The performance comparison of

contemporary methods for all tasks evaluated in this work was produced using the original authors’

publicly available code.
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In the pose regression network, the 2D object detector is the same as used in PoseCNN [47].

It is pre-trained on COCO [36] and Mapillary [53] datasets. The bounding box padding, Np, is

set to be between 5-25 pixels, scaled based on the bounding box. The architecture used to extract

feature map F is composed of a Resnet-18 encoder followed by 4 up-sampling layers as decoder.

The geometry embedding dimension E is set to 128. The weight factor β is set to 0.1. The pose

regression network is trained using SGD for 40 epochs with a momentum of 0.9, and a weight

decay of 0.0005. The resultant weights are used for the initialization when training the object

matching network.

For the object matching network, the maximum number of tracked objects, N , is set to 30,

and c is set to 8. The frames were resized to 896 × 896. By experimental evaluation, the optimal

dimensions of the appearance features vectors fR1, fR2, . . . , fR10 are set to 100, 80, 70, 60, 50,

40, 30, 30, 20 and 20 respectively, which results in a 634-dimensional (500 + 6 + 128) feature

descriptor for each detected object. The object matching and pose regression networks are jointly

trained for 130 epochs with a momentum of 0.9, a weight decay of 0.0008, and λ is 0.005. The

pose network is initialized to pre-trained weights.

3.3.3 5D Pose Estimation

We compared the proposed pose regression model to those which take RGB images as input and

regress directly 5D poses such as PoseNet [45], and PoseCNN [47]. To make the comparison fair,

all methods use the same object detector [118] as in PoseCNN, and both PoseNet and PoseCNN are

finetuned on the training data with the same loss function used to train the proposed pose regression

network. We made the following modifications to the PoseNet and PoseCNN architectures in order

to adapt them to the problem domain:

• PoseNet: The RGB input image is fed through the object detector to output bounding boxes

of detected objects, and then for each detected object, an image crop of size 224 × 224

centered in the center of the bounding box is extracted and fed to PoseNet architecture. The

final fully connected layer in PoseNet has also been modified to output a 5-dimensional pose
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Table 3.2: Pose regression ablation study. In “w/o Attention" the attention module of the pose regression

(F̄ = F ) is removed. In “Joint Training", the regression model is trained jointly with the object matching

model to minimize loss function Ljoint in Eq. (3.6). “Baseline" indicates training the model as described, as

a stand-alone network

Model 5D Pose Errors (mean/median) Run time

All objects Near (≤ 20m) objects sec/frame

Translation (m) Rotation (◦) Translation (m) Rotation (◦)

Ours (w/o Attention) 4.95 / 3.93 17.68 / 10.51 3.02 / 2.24 16.26 / 7.64 0.05

Ours (Baseline) 4.67 / 3.61 17.00 / 9.70 2.64 / 1.83 14.74 / 6.24 0.05

Ours (Joint Training) 4.43 / 3.39 15.97 / 9.16 2.51 / 1.70 14.21 / 6.08 0.05

PoseNet [45] 7.25 / 5.83 28.47 / 21.82 5.36 / 4.48 24.31 / 18.23 0.04

PoseCNN [47] 5.54 / 4.47 19.63 / 11.35 3.68 / 2.91 18.04 / 8.86 0.11

vector instead of a 7-dimensional pose vector. The weights of PoseNet were initialized with

those for the pretrained model on Cambridge Landmarks dataset [45], as this has shown to

give better performance than randomly initialized weights.

• PoseCNN: The output of the 3D rotation regression branch in PoseCNN is modified to output

a 2-dimensional vector instead of a 4-dimensional vector. The weights of PoseCNN were

initialized with those for the pretrained model on the YCB-Video dataset [47].

Table 3.2 presents a comparison of the proposed pose regression model against PoseNet and

PoseCNN on the Traffic Lights 5D Pose data. The proposed pose regression outperforms both

PoseNet and PoseCNN. As expected, TLs far away from the camera can be challenging to locate

accurately. All methods have considerably lower pose errors when evaluating only on TLs within

20 meters. In the full data set, TLs can be up to 100 meters away from the camera. We show in

a later discussion of end-to-end performance (see Table 3.6) that most of the translation error is

concentrated in the depth axis, Tz.

To understand the effects of the attention module and joint training strategy, the performance

of three variants of the pose regression network is compared as shown in Table 3.2. The inclusion

of the attention module reduces the rotation and translation errors. This shows how focusing on

some regions in the image crop helps the model to extract a better representation for 5D pose
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regression. Training the pose regression and object matching networks jointly improves further the

pose regression performance.

To see how the proposed pose regression model performs on different views of traffic lights,

we performed an analysis of 5D pose errors on four views of traffic lights: Front, Back, Right,

and Left. Each type is defined by the relative orientation of traffic light with respect to the camera

coordinates. We found out that the controlling traffic lights (Front) have lower translation errors

and higher rotation errors compared to other types.

Table 3.3: Results analysis of 5D pose errors of the proposed pose regression network on four views of

traffic lights: Front, Back, Right and Left.

Model 5D Pose Errors (mean/median)

All objects Near (≤ 20m) objects

Translation (m) Rotation (◦) Translation (m) Rotation (◦)

Front (Rz ≤ −0.96) 4.16 / 3.14 18.12 / 11.81 2.28 / 1.53 16.15 / 8.05

Back (Rz ≥ 0.96) 4.41 / 3.34 15.70 / 8.53 2.51 / 1.71 13.74 / 5.47

Right (Rx ≥ 0.96) 4.58 / 3.52 14.95 / 8.08 2.66 / 1.81 13.36 / 5.16

Left (Rx ≤ −0.96) 4.53 / 3.49 15.12 / 8.11 2.60 / 1.78 13.42 / 5.24

3.3.4 Object Matching

To highlight the impact of the feature extractor of the object matching network, we report

matching accuracy after changing the feature extractor component in Table 3.4. In this ablation

study, we measure the impact of using only appearance features, only geometric features, using

both appearance and geometric features, and joint training. Additionally, we measure variants of

the appearance features when larger or smaller receptive fields are used, and we show variants of

the geometric features when using only the 5D values or when combining the 5D values with the

vector G from the pose regression network.

In Table 3.4 and the following text, “AFE" will indicate using only appearance features, and

“GFE" will indicate using only geometric features in the object matching network. AFE

outperformed single RF based architectures (Resnet-50 and VGG-16) by more than 4.9
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Table 3.4: Object matching network ablation study. AFE uses only the appearance features. GFE uses only

the geometry features. For AFE, also shown is the impact on receptive field (RF) sizes. For GFE, we show

with and without including the pose regression feature vector G.

Object Matching Feature Extractor mAP Runtime

Resnet-50 [119] 0.744 0.1

VGG-16 [114] 0.824 0.08

AFE (RFs ≤ 213 only) 0.857 0.11

AFE (RFs > 213 only) 0.839 0.12

AFE 0.873 0.12

GFE (5D only) 0.825 0.08

GFE (5D + G) 0.831 0.08

AFE + GFE 0.912 0.14

AFE + GFE (Joint Training) 0.928 0.14

percentage points, demonstrating the benefit of multi-resolution networks for our application. We

found that appearance features extracted from small RFs perform better than those extracted from

larger RFs, as illustrated when comparing AFE (RFs > 213) and AFE (RFs ≤ 213). This fact is

supported by comparing Resnet-50 (RF size = 483) and VGG-16 (RF size = 212), where VGG

outperforms Resnet-50. Combining features from both small and large RFs (AFE) results in mAP

gain of 1.6 percentage points. This can be explained by the fact that features from small RFs will

focus on low level information such as color, texture, and shape, while features from large RFs

will have richer contextual information that can be beneficial in some challenging cases.

By comparing the performance of AFE and GFE, we can conclude that appearance is more

important than geometry for the object matching network. However, including the geometry cues

helps to increase the mAP by 3.9 percentage points over appearance alone. We argue that the

advantage gained from geometry features comes when TLs look similar and are close in image

space. In those cases, TLs will also have similar backgrounds and thus produce similar

appearance embeddings. The joint training strategy provides the remaining improvements,

increasing the object matching network’s mAP by 1.6 percentage points when compared to

stand-alone training.
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Figure 3.3: Object matching examples. Each column of the figure shows a pair of frames separated by n

frames. Object matching remains robust to illumination and weather conditions and existence of multiple

similar TLs in the frames.

Figure 3.3 shows examples of the object matching network’s output from the Traffic Lights

Matching data. We observe that the association appears robust to illumination and weather

conditions. Also, even with the existence of multiple similar looking TLs at very close locations

in the image space, the network is able to correctly associate the TLs. The chosen examples in

Figure 3.3 are random. We noted similar level of performance by the object matching network for

all the tested examples.

3.3.5 Multi-Object Tracking

We evaluate the performance of our tracker using MOT metrics [1] and compare its

performance with three contemporary online MOT algorithms that are known to have

reproducible results with publicly available code (Table 3.5). By only using appearance features

(AFE), the proposed tracker achieves 81.29 in terms of MOTA which is higher than

appearance-based trackers (DMAN and DeepSORT), demonstrating the strength of the

multi-resolution appearance features. By using only geometry features (GFE), the proposed

tracker achieves 74.12 in MOTA. By using both appearance and geometry features, the tracking

accuracy is increased to 85.52 in MOTA, out-performing the other methods. The proposed tracker
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Table 3.5: Comparison of the proposed method and contemporary MOT trackers on the MTLT test

sequences. The standard CLEAR-MOT metrics [1] are utilized: MOTA (multi-object tracking accuracy),

MOTP (multi-object tracking precision), MT (number of mostly tracked trajectories), ML (number of mostly

lost trajectories), IDS (number of identity switches) and FPS (frame per second). ↑ and ↓ indicate higher or

lower values are preferred

Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ IDS ↓ FPS ↑
DMAN [120] 80.79 82.40 61.12 12.91 103 3.3

DeepSORT [4] 77.69 77.81 56.34 9.41 69 17.2

Tracktor++ [105] 83.31 86.73 66.54 9.71 82 2.64

Ours (GFE) 74.12 75.32 51.17 20.64 162 9.7

Ours (AFE) 81.29 82.18 62.37 12.66 96 6.1

Ours (GFE + AFE) 85.52 85.14 69.57 10.79 61 5.3

is twice as fast as Tracktor++, which has somewhat similar performance for many of the metrics

other than IDS, where the proposed method is much better.

The proposed tracker’s performance as captured by the MT metric is significantly better,

suggesting the tracker generates more integrated trajectories by combining geometry and

appearance cues. Similarly, the tracker’s identity switches (IDS) value of 61 is best. Both MT and

IDS are critical metrics when the output of the tracker is used to generate an aggregated pose

estimate, as in our application.

3.3.6 Object Geo-localization

The end goal for our application is geo-locating static objects for HD Maps. The performance

is evaluated in this regard by comparing predicted and ground truth geo-locations of traffic lights

in the TLG data set. The proposed approach is compared with MRF-triangulation [5], and SSD-

ReID-Geo [6], given that they are the only two approaches that have publicly available codes. By

analyzing the errors of different methods (Table 3.6), it is worth noting that errors along Z-axis

(depth) are considerably higher than errors along X and Y axes, which is typical for monocular

vision-based systems. When localizing traffic lights, errors along Z-axis are less troubling than

lateral or vertical errors. This is because the perception of whether or not a traffic light pertains to

the self-driving car (i.e., the lane the car is in) is more affected by its horizontal position above the
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road than the depth along the roadway. A lateral error of 2m could cause confusion about which

lane the light controls. On the other hand, a depth error of a few meters is unlikely to cause such

confusion. The proposed method shows a median error in the X and Y axes of less than 20cm,

and a mean error within 25cm. The median depth error (Z axis) of about 1.5m is well within the

accuracy bounds of the problem domain.

Table 3.6: Translation Error (TE) along X, Y and Z axes

Model TE along X-axis (m) TE along Y-axis (m) TE along Z-axis (m)

Mean Median Std Mean Median Std Mean Median Std

Ours 0.25 0.16 0.15 0.23 0.15 0.14 2.24 1.47 1.28

MRF-triangulation 0.31 0.24 0.12 0.35 0.27 0.15 4.75 3.89 1.92

SSD-ReID-Geo 0.64 0.51 0.37 0.51 0.45 0.33 3.77 2.85 1.68

Given the uneven error contribution, we decided to evaluate the different approaches using the

Mahalanobis distance (see Fig. 3.4, B). In this case, positive predictions are defined as those within

an elliptical shape from the ground truth location, defined by 3 units of Mahalanobis distance. This

corresponds to an ellipse defined with semi-axes a=0.4, b=0.39, and c=3.84, along the X, Y, and

Z axes, respectively. This distance threshold requires that the vertical and horizontal location of

the prediction be within 40cm, while the depth error is tolerated to about 4m. The advantage

of the Mahalanobis distance is that it provides much tighter thresholds in the X and Y axes while

allowing more tolerance in depth, making it more suitable for our application. Figure 3.4 compares

the precision/recall of the proposed approach against MRF-triangulation and SSD-ReID-Geo using

two distance thresholds: 2m Euclidean distance and 3 units of Mahalanobis distance.

The proposed approach leads to more accurate geo-localizations than the other methods. The

proposed approach outperforms MRF-triangulation thanks to the efficiency of the proposed pose

regression model over the depth estimation in [5], and the joint learning employed by the proposed

approach. SSD-ReID-Geo uses only pairs of frames when estimating object poses. For a fair

comparison, the proposed approach is also tested using only frame pairs (Figure 3.4, denoted

with †). The proposed approach outperforms SSD-ReID-Geo, even with this restriction. We also
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(A)

(B)

Figure 3.4: Comparison of the performance of the proposed approach for static object geo-localization

against MRF-triangulation [5] and SSD-ReID-Geo [6]. An estimated geo-location is a true positive if it is

within a threshold distance of a ground truth point. Methods marked with * use only key frames (2fps) for

testing, methods marked with † are tested with only frame pairs, and “with rot" means that true positives

must also be within 20◦ of the true orientation.

observe that using the Mahalanobis distance, the PR curve of SSD-ReID-Geo becomes lower than

MRF-triangulation due to the added restrictions along X and Y axes.

The performance of the proposed approach improves by aggregating more information from

more frames. The proposed approach can perform anytime prediction (even using only 1 frame) by
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rapidly producing an initial estimate using the single-frame pose regression, and then improving

the estimate by tracking across frames. This improvement is shown in Figure 3.4, when comparing

the performance of the proposed approach under various settings: using pairs of frames, all key

frames (2fps), and all available frames (10fps).

Another advantage of the proposed approach over the other methods is that it is able to estimate

rotation as well as position. When adding a rotation error component to the definition of a true

positive (i.e., within the matching distance threshold and within the rotation angular threshold of

20◦), there is only a slight lowering of performance. In essence, the proposed method makes a

stronger prediction (5D) even when compared to other methods that only output 3D locations.

3.4 Conclusion

In this chapter, we covered a novel end-to-end method for 5D pose estimation, tracking, and

localization of spatially-compact static objects from a single camera of a self-driving car.

Specifically, the proposed end-to-end approach is mainly composed of two networks: 1) a pose

regression network for estimating 5D poses of static objects from geo-located RGB inputs, shown

to outperform contemporary methods, and 2) objects matching network for matching objects

between pairs of video frames combining multi-resolution appearance features and geometric

features from the proposed pose regression network. Jointly optimizing the pose regression and

object matching models improves 5D pose estimation, tracking, and geo-localization

simultaneously. Adding geometric cues explicitly for matching static objects has been shown to

increase the matching accuracy over appearance alone. Moreover, static objects geo-localization

data set was created, which can help to accelerate static objects geo-localization domain and

provide a common benchmark for the evaluation of different approaches and, to the best of our

knowledge, is the first publicly available data set for this application.
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Chapter 4

Multi-Object Tracking

Visual Multi-Object Tracking has made significant progress in recent years, motivated in part

by high-profile mobile robotics and autonomous driving applications. Continued improvements

in the accuracy and efficiency of CNN-based object detectors have driven the dominance of the

“tracking by detection" paradigm. There are many ways to associate detections across frames, but

those featuring learned associations are interesting because they have the promise of addressing

edge-cases where modeling and heuristics-based approaches fail. Even with learned associations,

the two-stage approach can lead to sub-optimal results in terms of accuracy and efficiency. A recent

trend of jointly learning detection and tracking tasks in a single neural network has led to increases

in performance on tracking benchmarks and related applications. However, existing end-to-end

methods that combine appearance and motion cues can be complex and slow (see §2.3, Related

Work).

We posit that a learned object matching module can be added to most contemporary CNN-

based object detectors to yield a high performing multi-object tracker, and further, that by jointly

training the detection and tracking (association) modules, both modules adapt to each other and

together perform better. Using the same backbone for object detection and inter-frame association

increases efficiency and accuracy when compared to methods that use detection as a black-box

feeding input to the association logic.

Given the tracking-by-detection paradigm, and inspired by the proposed approach for static

objects association (see §3.2), we propose to exploit the representational power of the

intermediate feature maps of the object detector (“detector backbone") to extract embeddings to

be used in an object matching network that associates objects across frames. The proposed

approach is named “Detection Embeddings for Tracking" (DEFT). The detector is jointly trained

with the object matching network. During training, errors in object association propagate back

through the detection backbone such that the appearance features are optimized for both detection
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and matching. DEFT also employs a low-dimensional LSTM module to provide geometric

constraints to the object matching network. This work was published in CVPR 2021 Workshop of

Autonomous Driving:Perception, Prediction and Planning [121] and the code is publicly available

at: https://github.com/MedChaabane/DEFT .

DEFT implemented with a CenterNet [13] backbone achieves state-of-the-art performance on

several tracking benchmarks, while being faster than most similarly-scoring alternatives. The

speedup is in part due to the fact that in DEFT, object association is a small additional module

within the detection network, thus adding only a few milliseconds of latency beyond detection.

DEFT performance can be upgraded as stronger and faster detection backbones are developed.

DEFT is also easily extensible to monocular 3D tracking. DEFT was applied to the monocular 3D

tracking by using the detection form of CenterNet [13]. Specifically, the 3D detection head of

CenterNet is used in order to predict object depth, rotation (encoded as an 8-dimensional

vector [122]), and 3D extent.

During inference (see Figure 4.1), the embedding extractor head uses features maps and

bounding boxes from the detector as input and extracts appearance embeddings for each detected

object. The matching head uses the embeddings to compute a similarity between the objects in

the current frame and those remembered from previous frames (current tracks). A motion

forecasting module (LSTM) prevents matches that lead to physically implausible trajectories. The

Hungarian Algorithm is used to make the final online association of objects to tracks. Details for

each module are provided below, followed by the training procedure.

4.1 Object Embeddings

The object embeddings used in the matching network are extracted from the detection

backbone, as described below. This is labeled as the “embedding extractor" in Figure 4.1 and

subsequent text. The embedding extractor constructs representative embeddings from the

intermediate feature maps of the detector backbone to help associate (or, “re-identify") objects

during tracking. Feature maps at different layers are used to extract appearance from multiple
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Training

Testing 

Figure 4.1: DEFT Training and Inference. DEFT adds an embedding extractor and a matching head to

an object detection backbone to jointly train appearance features for both detection and association tasks.

During inference, the matching head matches the current detections to the embeddings remembered for all

active tracks and uses a motion forecasting module to eliminate implausible trajectories.

receptive fields (RFs), which provides additional robustness over single-RF embeddings. DEFT

takes a video frame t as input and outputs a set of of Nt bounding boxes Bt = [bt1, b
t
2, ..., b

t
Nt
].
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For 2D detection, a bounding box is defined bti = (x, y, w, h), where (x, y) represents the 2D

center and (w, h) represents the width and height. For 3D detection, a bounding box is defined

as bti = (x, y, z, w, h, l, q), where (x, y, z) represents the 3D center and (w, h, l, q) represents the

width, height, length and orientation.

For each detected object, feature embeddings are extracted from the estimated 2D object’s

center location. For 3D bounding boxes, projection of 3D center location into the image space is

used as its estimated 2D center location. If the center of the ith object is at position (x, y) in the

input frame of size W ×H , then for a feature map of size Wm×Hm×Cm, Cm-dimensional vector

is extracted at position ( y

H
Hm,

x
W
Wm) as the feature vector fm

i for the ith object in feature map m.

Features from M feature maps are concatenated to construct the resulting e-dimensional feature

embedding fi = f 1
i · f 2

i . . . f
M
i for the ith object.

The dimension of the feature vector fm
i affects its contribution to the resulting feature

embedding. To change the contribution of some feature maps and to control the dimension of the

embedding, a single convolution layer is added to some feature maps to increase/decrease the

dimension from Cm to C ′
m before extracting the feature vectors. In practice, this serves to increase

the dimension of features contributed by earlier maps while reducing those from later maps.

4.2 Matching Head

Given Nt bounding boxes in frame t, and Nt−n in frame t − n, the matching head uses the

object embeddings to estimate the affinity scores between all pairs of detections across the two

frames. With Nmax maximum number of allowed objects in each frame, the tensor

Et,t−n ∈ R
Nmax×Nmax×2e is constructed such that the feature embedding of each object in frame t

is concatenated along depth dimension with all feature embeddings of objects in frame t − n and

vice versa. Et,t−n is fed to the a similarity estimator network which is composed of a few (4-6)

layers of 1× 1 convolutions. Following the same process in § 3.2.3, the affinity matrices Âbwd and

Âfwd are computed.
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4.3 Online Data Association

In DEFT, tracks remember the object embeddings from each observation comprising the track

in the last δ frames. The association between a new detection and the existing tracks requires

computing the similarity of the new object to the set of observations from each track in memory.

To allow for occlusions and missed detections, track memory is maintained for a few seconds

so that inactive tracks can be revived if a new observation is strongly associated to the previous

observations. Tracks with no observations after Nage frames are discarded from memory.

A track T is defined as the set of associated detections from frame t − δ to t − 1, noting that

tracks may not have a detection for each frame. The size of the track is given as |T|, representing

the number of bounding boxes and associated embeddings it comprises. The distance between the

ith new detection bti and Tj is defined as:

d(bti,Tj) =
1

|Tj|
∑

bt−n
k

∈Tj

Âfwd
t,t−n[k, i] + Âbwd

t,t−n[i, k]

2
(4.1)

The detections-to-tracks association problem is formulated as a bipartite matching problem so

that exclusive correspondence is guaranteed. Let K = {Tj} be the set of current tracks. The

detections-to-tracks similarity matrix D ∈ R
|K|×(Nt+|K|) is constructed by appending the all-pairs

detections-to-tracks distance (Eq. (4.1)) of size |K| × Nt with a matrix X of size |K| × |K| used

to represent when a track is associated with no detections in the current frame. The entries along

the diagonal of X are computed as the average non-match score of the detections in the track; the

off-diagonal entries are set to −∞. Specifically, D is constructed as follows:

D = [S|X] (4.2)

S[j, i] = d(bti,Tj) (4.3)

X[j, k] =















1
|Tj |

∑

bt−n
k

∈Tj
Âfwd

t,t−n[k,Nmax + 1] j = k

−∞, j 6= k

(4.4)

61



Finally, the bipartite matching problem defined by D is solved with the Hungarian algorithm

[78]. Only likely associations are included, if the affinity is larger than a specified threshold γ1.

Unmatched detections will start newborn tracks. Tracks that have not been associated for more

than a predefined maximum age Nage are considered to have left the scene and are deleted from

the track set.

4.4 Motion Forecasting

When learning to associate detections across frames using the appearance features from a

detection backbone, there is some chance that two objects look similar enough in the embedding

space to cause confusion. It is common practice to add additional geometric or temporal

constraints to help resolve such ambiguities. This often takes the form of a Kalman Filter

(e.g. [4, 123]) or an LSTM module (e.g. [68]).

DEFT uses an LSTM as the motion forecasting module. This module predicts future locations

of each track in the next ∆Tpred frames given its information in ∆Tpast past frames. It uses features

from past bounding boxes coordinates for each track. For 2D tracking, features for each detection

at time t are represented by 8-dimensional vector (xt, yt, wt, ht, v
x
t , v

y
t ,
∆wt

∆t

,
∆ht

∆t

) containing the

2D center location, height,width, velocity in the x and y directions and change in width and height

divided by time difference between consecutive detections . For 3D tracking, features for each

detection at time t are represented by 11-dimensional vector (xt, yt, zt, wt, ht, lt, rt, v
x
t , v

y
t , v

z
t , v

r
t )

containing 3D the center location, height,width,length,orientation about the z-axis, velocity in the

x, y and z directions and the rotational velocity vrt .

The motion forecasting module is used to constrain the associations between frames to those

that are physically plausible. It sets affinity scores in Eq. (4.1) to −∞ for detections that are too

distant from the track’s predicted location. In §4.6.6, an ablation study is provided to show the

impact of the LSTM motion forecasting module, and it has shown that it modestly outperforms a

Kalman Filter in our application.
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In practice, it was also found that a second stage of association using IoU between unmatched

detections and predicted locations of unmatched tracks with age less than ∆TIoU frames helps

improve the tracking accuracy of DEFT. 2D and 3D IoU are adopted for 2D and 3D tracking,

respectively. This helps to account for objects with weak detections (e.g., caused by partial

occlusion). Only associations that have sufficiently large IoU scores higher than a specified

threshold γ2 are considered.

4.5 Training

During training, a pair of frames n frames apart is input to DEFT as shown in Figure 4.1.

The image pairs are separated by a random number of frames 1 ≤ n ≤ ngap to encourages the

network to learn to be robust to temporary occlusions or lost detections. For each training pair,

two ground truth matching matrices M fwd and M bwd are created, representing the forward and

backward associations, respectively.

To train DEFT for matching estimation, the loss function Lmatch is used, which is defined as the

average of the two losses Lfwd
match and Lbwd

match, where Lbwd
match is the error of matching bounding boxes

in frame t to those in frame t−n and Lfwd
match is the error of matching bounding boxes in frame t−n

to those in frame t. The expression of the matching loss is given as follows, where “*" represents

“fwd" or “bwd" as appropriate:

L∗
match =

Nk
∑

i=1

Nmax+1
∑

j=1

M∗[i, j]log(Â∗[i, j]), (4.5)

Lmatch =
Lfwd

match + Lbwd
match

2(Nt +Nt−n)
, (4.6)

Training optimizes the joint affinity and detection losses as defined in Eq. (4.7). For a better

optimization of the proposed proposed dual-task network, the strategy proposed in [124] is used

for automatic loss balancing the two tasks.
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Ljoint =
1

eλ1

(
Lt

detect + Lt−n
detect

2
) +

1

eλ2

Lmatch + λ1 + λ2 (4.7)

where Lt
detect is the detection loss for frame t and λ1 and λ2 are the balancing weights to the

two tasks. Note that the balancing weights are modeled as learnable parameters.

4.6 Experiments and Results

4.6.1 Datasets and Metrics

The tracking performance of DEFT is evaluated on a set of popular benchmarks: MOT

Challenge (MOT16/MOT17) [59], KITTI tracking [11], and the nuScenes Vision Tracking

benchmark [3]. The MOT Challenge and KITTI benchmarks are used to assess 2D visual

tracking, while nuScenes is used for monocular 3D visual tracking.

MOT16/MOT17. The MOT16 and MOT17 tracking challenges are part of the multi-object

tracking benchmark MOT Challenge [59]. They are composed of indoor and outdoor pedestrian

tracking sequences. The videos have frame rates between 14 and 30 FPS. Both challenges contain

the same seven training sequences and seven test sequences. The proposed tracker is tested using

public detections provided by the benchmark protocol, following [105], as well as with private

detections output by DEFT. With public detections, the jointly-trained DEFT model is used, but

the provided bounding boxes are employed for embedding extraction – all else is the same. With

private detections, the bounding boxes output from the model are used.

MOT Challenge benchmarks employ the following metrics: MOTA - multi-object tracking

accuracy, MOTP - multi-object tracking precision, IDF1 - identity F1 Score, MT - mostly tracked,

ML - mostly lost, FP - false positives, FN - false negatives, IDS - identity switches.

KITTI. The KITTI tracking benchmark is composed of 21 training sequences and 29 test

sequences that were collected using cameras mounted on top of a moving vehicle. The videos are

recorded at 10 FPS. The performance is evaluated using the “Car" class because it is the only class
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with enough examples to allow effective training without external data sources.1 Public detections

are not provided with KITTI. KITTI uses the HOTA metrics [57]: HOTA - higher order tracking

accuracy and AssA - association accuracy, in addition to the tracking metrics of the MOT Challenge

benchmarks.

nuScenes. nuScenes is a large-scale data set for autonomous driving. nuScenes is composed

of 1000 sequences, with 700, 150, 150 sequences for train, validation, and testing, respectively.

Sequences were collected in Boston and Singapore, in both day and night, and with different

weather conditions. Each sequence length is roughly 20 seconds with a camera frequency of 12

FPS. Each sequence contains data from six cameras forming a full 360◦ field of view, but box

annotations are provided only for key frames (2 FPS). Given the ground truth format, only key

frames are used for training and evaluation. The effectively low frame rate of 2FPS makes this

data set challenging for visual tracking as the inter-frame motion of objects can be large. DEFT

is evaluated on the 7 annotated classes: Car, Truck, Trailer, Pedestrian, Bicycle, Motorcycle, Bus.

nuScenes uses tracking metrics aggregated over the curve of operating thresholds [56]. They are

as follows: AMOTA - average MOTA, AMOTP - average MOTP, MOTAR - recall-normalized

MOTA score.

4.6.2 Implementation Details

DEFT is implemented using PyTorch with an open source license. In all experiments, an

Ubuntu server with a TITAN X GPU with 12 GB of memory is used. All hyper-parameters were

chosen based on the best MOTA score for 3-fold cross validation on the training sets for 2D

tracking and best AMOTA score on the validation set for 3D tracking. The implementation runs at

approximately 12.5Hz on all data sets.

2D Tracking. DEFT was trained and evaluated with four object detectors including CenterNet

[13], YOLO v3 [38], FPN [35] and Faster R-CNN [33]. Same implementation details and hyper-

parameters settings from their official public codes is followed.

1This shouldn’t be interpreted as a lack of generality, as the results on MOT16/MOT17 and nuScenes show.
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Table 4.1: 3-fold cross-validation results of implementing DEFT with different object detector networks on

KITTI.

DEFT Variant MOTA↑ FP ↓ FN ↓ IDS ↓
DEFT + YOLO v3 [38] 85.6 6.5% 6.8% 1.1%

DEFT + FPN [35] 87.0 6.0% 6.3% 0.7%

DEFT + Faster R-CNN [33] 87.7 5.8% 5.8% 0.7%

DEFT + CenterNet [13] 88.1 5.7% 5.9% 0.3%

CenterNet is used with the modified DLA-34 [125] backbone, and feature embeddings are

extracted from all 13 feature maps of the modified DLA-34 backbone. YOLO v3 is used with the

Darknet-53 backbone, and feature embeddings are extracted from 12 feature maps which are the

output of layers 4, 10, 14, 19, 23, 27, 31, 35, 39, 44, 48, and 52. For FPN and Faster R-CNN,

ResNet101 [119] backbone is used and feature embeddings are extracted from 11 features maps

which are the output of layers 7, 10, 16, 22, 34,46, 58,70, 82, 91, and 100.

All object detectors were pre-trained on the COCO dataset [36]. The data is augmented with

random cropping, flipping, scaling, and photometric distortions. Table 4.1 shows the relative

performance from 3-fold cross-validation on KITTI. This evaluation is also performed using

MOT17, which yielded the same ranking, not shown here for brevity. Since the DEFT+CenterNet

variant was the strongest performing, it is used as the detection backbone for the remaining results

in this chapter.

While DEFT achieves the best performance with CenterNet, these results demonstrate that

DEFT can achieve good tracking performance using different detector backbones. Interestingly,

Faster R-CNN and CenterNet have similar detection performance on KITTI, however, the

association performance is better with CenterNet (fewer ID switches). This might be due to the

nature of CenterNet being an anchor-free detector and matches well to DEFT’s design of using

feature embeddings from the object center locations – allowing the features at center locations to

benefit from the supervised signals of both tasks.
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When training DEFT with CenterNet for the various experiments in this chapter, DEFT is

trained for 80 epochs with a starting learning rate of e−4 using the Adam [126] optimizer and batch

size 8. The learning rate is reduced by 5 at epochs 30, 60, and 70.

The nuScenes evaluation was performed on the full 360◦ panorama and not with each camera

separately. Following [7], outputs from all cameras are fused naively without any additional

post-processing for handling duplicate detections between cameras or for associating objects

across cameras. This ensures a fair comparison between all monocular 3D trackers. Additional

analyses are performed on the validation set, which allows observing how performance varies

when controlling for certain variables, including the amount of occlusion in the track and a

measure of inter-frame displacement.

4.6.3 Parameter Settings

MOT16/MOT17. For MOT16 and MOT17, frames are resized to 960× 544. The embedding

extractor head outputs a feature embedding of e = 416 features. The hyper-parameters

Nmax, ngap, δ,∆TIoU, γ1, γ2, Nage, c were set to 100, 60, 50, 5, 0.1, 0.4, 50, 10 respectively. For the

motion forecasting module, ∆Tpast,∆Tpred were set to 15 and 10.

KITTI. For KITTI, the embedding extractor head outputs a feature embedding of e = 672

features. The hyper-parameters Nmax, ngap, δ,∆TIoU, γ1, γ2, Nage, c were set to 100, 30, 25, 3, 0.1,

0.6, 30, 10 respectively. For the motion forecasting module, ∆Tpast,∆Tpred were set to 10 and 5.

nuScenes For 3D monocular tracking in nuScenes, DEFT was trained and evaluated with

CenterNet as 3D object detector backbone. The embedding extractor head outputs a feature

embedding of e = 704 features. The frames are resized to 800 × 448. The hyper-parameters

Nmax, ngap, δ,∆TIoU, γ1, γ2, Nage, c were set to 100, 6, 5, 1, 0.1, 0.2, 6, 10 respectively. For

motion forecasting module, ∆Tpast,∆Tpred were set to 10 and 4.

4.6.4 Comparative Evaluation

The proposed approach is compared against other online tracking methods using the protocol

appropriate for each benchmark. The common practice of comparing against
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Table 4.2: MOT16. Results of the proposed approach with using public (provided) and private detections.

Performance comparison with published online methods on the leaderboard for MOT16. JDE is not present

on the public leaderboard, results are from their paper.

Method MOTA↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ IDS ↓
Tracktor17 [105] 54.4 78.2 52.5 19.0 36.9 682

DeepMOT-Tracktor [107] 54.8 77.5 53.4 19.1 37.0 645

Tracktor v2 [105] 56.2 79.2 54.9 20.7 35.8 617

GSM Tracktor [106] 57.0 78.1 58.2 22.0 34.5 475

Ours (Public) 61.7 78.3 60.2 27.0 31.8 768

JDE [110] (Private) 64.4 - 55.8 35.4 20.0 1544

Ours (Private) 68.03 78.71 66.39 33.06 22.92 925

Table 4.3: MOT17. Results of the proposed approach with using public detections (provided bounding

boxes) and private detections (those from the network). Compared methods are the published online methods

from the MOT17 leaderboard, except CenterTrack where the results are from their paper.

Method MOTA↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ IDS ↓
Tracktor17 [105] 53.5 78.0 52.3 19.5 36.6 2072

DeepMOT-Tracktor [107] 53.7 77.2 53.8 19.4 36.6 1947

Tracktor v2 [105] 56.3 78.8 55.1 21.1 35.3 1987

GSM Tracktor [106] 56.4 77.9 57.8 22.2 35.3 1485

CenterTrack [7] 61.5 – 59.6 26.4 31.9 2583

Ours (Public) 60.4 78.1 59.7 26.3 32.1 2581

CenterTrack [7] (Private) 67.8 – 64.7 34.6 24.6 3039

Ours (Private) 66.6 78.83 65.42 31.7 24.5 2823

published/peer-reviewed methods listed on the leaderboard is followed. Tracking results for MOT

(Table 4.2 and Table 4.3), KITTI (Table 4.4), and nuScenes (Table 4.5) benchmarks are computed

by host test servers with hidden labels on the test set.

DEFT is able to achieve a new state-of-the-art in terms of MOTA, IDF1, MT, and ML scores

in MOT16 benchmark among all trackers on public detections. In terms of the overall tracking

accuracy, DEFT significantly outperforms the best performing trackers GSM Tracktor [106] and

Tracktor v2 [105] by 4.7% and 5.5% respectively. DEFT also improves IDF1 score by 2.0%, which

demonstrates its effectiveness in identity preservation.

Both CenterTrack and DEFT use a CenterNet detection backbone. We see in Table 4.3 and

Table 4.4 that both are top-scoring among published online trackers on the leaderboards. This
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Table 4.4: KITTI car tracking. Performance comparison with published online entries on the leaderboard.

Method HOTA↑ MOTA↑ AssA↑ MOTP ↑ MT ↑ ML ↓ IDS ↓
mmMOT [127] 62.05 84.77 54.02 85.21 73.23 2.77 284

MASS [128] 68.25 85.04 64.46 85.53 74.31 2.77 301

TuSimple [129] 71.55 86.62 71.11 83.97 72.46 6.77 293

SMAT [130] 71.88 84.27 72.13 86.09 63.08 5.38 341

CenterTrack [7] 73.02 88.83 71.20 85.84 82.31 2.31 116

mono3DT [122] 73.16 84.52 74.18 85.64 73.38 2.77 377

Ours 74.23 88.38 73.79 84.55 84.77 1.85 343

Table 4.5: nuScenes Vision Tracking. Performance comparison with published monocular 3D tracking

entries on the leaderboard.

Method AMOTA AMOTP MOTAR MOTA

Mapillary [131]+ AB3D [56] 1.8 1.8 9.1 2.0

PointPillars [132]+ AB3D [56] 2.9 1.7 24.3 4.5

CenterTrack [7] 4.6 1.5 23.1 4.3

Ours 17.7 1.5 48.4 15.6

shows the power of the CenterNet detection backbone and provides support that jointly optimized

detection and tracking methods can outperform those that have detection as a distinct step. DEFT

achieves the highest HOTA score and best trajectory coverage on KITTI, providing evidence that

DEFT maintains longer tracks better, possibly due to remembering embeddings for several

observations in a track.

We observe a big performance advantage with DEFT on nuScenes (Table 4.5), which is

attributed in large part due to differences in how well DEFT tolerates long occlusions and large

inter-frame displacements of tracked objects. This hypothesis is explored in §4.6.5. Compared

with CenterTrack, DEFT achieves a gain of 13.1 percentage points in AMOTA, 25.3 in MOTAR,

and 11.3 in MOTA. As others have noted [2, 3, 133], nuScenes is significantly more difficult and

closer to real-world scenarios than KITTI.

Table 4.6 provides a per-class breakdown of performance when evaluating tracking

performance on the nuScenes validation data, front-camera only imagery. The Trailer class is

particularly difficult when using private (vision-based) detections. When using the provided
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Table 4.6: nuScenes 3D monocular Tracking results in term of AMOTA on the validation set. We present

the results of our approach with private detections (those from our network) and public detections (from the

lidar-based MEGVII [2])

CenterTrack [7] Ours Ours (Public Det)

Bicycle 16.7 20.6 27.3

Bus 39.7 46.4 66.1

Car 49.6 54.6 71.9

Motorcycle 23.8 28.4 50.5

Pedestrian 31.4 38.9 69.5

Trailer 0.0 0.3 47.2

Truck 15.1 20.4 48.0

Overall 25.2 30.6 54.3

lidar-based detections, tracking performance becomes more consistent with the other classes.

This points out that some classes may not have enough training samples to train a robust visual

detector, lacking the lidar signal.

4.6.5 Performance Analysis

As previously stated, DEFT and CenterTrack perform similarly on 2D tracking benchmarks

of MOT17 and KITTI, but DEFT outscores CenterTrack and all other methods on the nuScenes

vision tracking leaderboard by a sizable margin. In this section, we investigate what factors may

explain the performance difference.

Our intuition is that the major performance gains on KITTI and MOT benchmarks are driven

by improved detectors. For MOT and KITTI, the tracking/association logic can be weak and still

produce top numbers. Others in the community seem to agree. The authors of Tracktor promote

“tracking without bells and whistles" [105], while the creators of CenterTrack state that it “...trades

the ability to reconnect long-range tracks for simplicity, speed, and high accuracy in the local

regime...this trade-off is well worth it." [7] The first row in Table 4.7 of the ablation study (see

§4.6.6) provides additional support for this point of view. We observe that a simple baseline, using

nothing other than a motion model and IOU associations, when applied to CenterNet detections,

yields a MOTA score of 86.7 on KITTI (validation) and 63.5 on MOT17 (validation). While one
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cannot compare validation scores directly to test results, this is suggestive that many of the top

leaderboard methods are only marginally better than a naive baseline coupled to a SOTA detector.

However, is tracking without bells and whistles sufficient for harder tasks? We divided the

nuScenes validation data into partitions based on two factors, an occlusion score and a

displacement score. The occlusion score for a track is the number of frames for which the object

was temporarily occluded. We sum this over all tracks to score a video. The displacement score

for a track is the mean of the 2D center displacements in consecutive frames. We use the mean of

the top ten tracks as the video’s score. Scores are linearly rescaled to the range [0, 1]. The

distribution of scores has led to dividing the occlusion factor into easy and hard categories

(below/above the median, respectively) and the displacement factor into approximately

equal-sized easy/moderate/hard partitions. We also looked at a combined difficulty factor, which

is simply the maximum of the two normalized difficulty scores. Figure 4.2 shows the scores

distribution.
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Figure 4.2: Occlusion, Displacement, and Combined scores distribution. Red lines represent thresholds

used for the split. The occlusion factor is divided into 76 easy and 74 hard videos (below/above the median

respectively). The displacement factor is divided based on two thresholds of half standard deviation from the

median score to obtain 44 easy, 55 moderate and 51 hard videos. Similarly, the combined score is divided

into 43 easy,60 moderate and 47 hard videos.

Figure 4.3 shows that the difference in performance between DEFT and CenterTrack is

marginal on easier videos with respect to the displacement factor or the overall difficulty factor.

CenterTrack outperforms DEFT on the easiest videos by less than one percentage point, which is
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Figure 4.3: DEFT compared with CenterTrack on nuScenes validation front camera videos, according to

difficulty factors of occlusion and inter-frame displacement.

consistent with the difference in performance we observe on KITTI and MOT benchmarks.

However, when looking at moderate and hard videos, we observe that DEFT provides superior

performance. For occlusions, CenterTrack drops 7.6 percentage points from easy to hard, whereas

DEFT drops only 2.8, indicating that CenterTrack is more sensitive to occlusions than DEFT.

Figure 4.4 provides example frames from videos that feature occlusions and large displacements,

where DEFT is more robust.

4.6.6 Ablation Studies

Table 4.7: Ablation study of DEFT on MOT17, KITTI and nuScenes datasets. Results are obtained with

3-fold cross-validation on the training sets for MOT17 and KITTI, for nuScenes the results are on the

validation set.

MOT17 KITTI NuScenes

Feature

Embeddings

Motion

Model

2D/3D

IOU
MOTA↑ MT ↑ ML ↓ IDS ↓ MOTA↑ MT ↑ ML ↓ IDS ↓ AMOTA↑ MOTA↑

None LSTM X 63.5 19.6% 38.1% 2.8% 86.7 51.3% 27.9% 1.7% 4.2 5.0

Single-Scale 64.0 28.8% 28.5% 2.3% 87.4 81.46% 3.15% 1.0% 17.1 15.0

Multi-Scale 64.4 29.8% 27.5% 1.9% 87.7 82.55% 2.71% 0.7% 18.4 16.2

Multi-Scale Kalman 65.2 30.0% 27.3% 1.1% 87.8 82.60% 2.66% 0.6% 18.9 16.4

Multi-Scale LSTM 65.2 30.0% 27.3% 1.1% 88.0 82.81% 2.57% 0.4% 20.0 17.2

Multi-Scale LSTM X 65.4 30.3% 27.0% 0.9% 88.1 83.05% 2.36% 0.3% 20.9 17.8
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Figure 4.4: Qualitative results comparison between DEFT and CenterTrack [7] on nuScenes. Each pair

of rows shows the results comparison for one sequence. The color of the boxes represents the identity of

the tracks. Red arrows point at tracking errors (identity switches). Notice that DEFT is more robust to

occlusions and large inter-frame displacements.

In Table 4.7, results of an ablation study on MOT17, KITTI, and nuScenes benchmarks are

presented to investigate the importance of various aspects of DEFT. The first row of the table

shows baseline performance for tracking when using CenterNet detections followed by a simple

non-learned motion+IOU association step. We observe that the baseline tracker performs
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reasonably well in MOT17 and KITTI validation data but fails to perform well on the more

challenging nuScenes data.

The next two rows compare the benefit of using feature embeddings extracted from different

resolutions in the detector backbone versus using only the features from the final feature map. The

dimensionality is controlled so that the embeddings are the same size for both the single-scale

and multi-scale variants. Using multi-scale embeddings leads to modest improvements across the

board.

The table also shows the effect of the motion forecasting module – having one improves results

modestly on MOT17 and KITTI, with a stronger effect on nuScenes. An alternative to the learned

LSTM motion model would be to use a standard Kalman filter. The performance of the LSTM

over the Kalman filter is more pronounced in nuScenes. Finally, there are a few situations in which

having an IOU-based association layer as a second-stage to object matching can provide a small

performance gain. This is shown in the final row of the table.

On MOT and KITTI, the naive baseline performs well enough that additional gains from

DEFT result in a cumulative benefit of only a couple percentage points across most metrics, with

the exception of MT and ML (mostly tracked, mostly lost) scores. There we see a big jump in

performance from the baseline to multi-scale DEFT. This suggests that learned appearance-based

detection-to-track associations help maintain longer tracks. On nuScenes, the value of DEFT is

obvious. The gains in AMOTA from baseline to multi-scale DEFT is over 14 percentage points,

with an additional 1.5 points gained by adding the motion forecasting LSTM module. This

confirms that the learned matching-based association step is critical to overall performance and

that the motion model is a helpful addition, but relatively minor in terms of the overall

performance.

To show the benefit of joint training, DEFT is compared with joint and separate training

strategies. We can see from Table 4.8 that when jointly training detection and tracking tasks,

tracking performance is improved on both KITTI and nuScenes datasets without hurting the

detection performance.
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Table 4.8: Tracking and detection results of implementing DEFT with two training strategies (jointly vs

separately optimized) on KITTI and nuScenes. Results are obtained with 3-fold cross-validation for KITTI

where detection is evaluated with 2D bounding box AP for three different difficulty levels: easy (APE),

moderate (APM ) and hard (APH ). Results are obtained on the validation set for nuScenes where detection

is evaluated with mean Average Precision (mAP) over all 7 classes.

KITTI nuScenes

Method MOTA IDs APE APM APH AMOTA MOTA mAP

DEFT (separate training) 87.9 0.5% 92.8 83.6 74.3 20.1 17.1 24.5

DEFT (joint training) 88.1 0.3% 92.8 83.8 74.2 20.9 17.8 24.5

4.7 Conclusion

Most state-of-the-art trackers on popular public benchmarks follow the tracking-by-detection

paradigm, with substantial boosts in performance attributable in large part to improved object

detectors. This has allowed top-scoring algorithms to use limited matching strategies while

achieving high tracking performance and efficiency. The concept of tracking in the “local

regime," that is, constraining the association logic to relatively short temporal and spatial extents,

has been shown to be effective on at least two popular 2D tracking benchmarks (MOT, KITTI).

However, not all tracking challenges are ones where the assumption holds true that the local

regime dominates performance. In self-driving car applications, objects tracked in side-mounted

cameras experience large inter-frame displacements, and occlusions lasting a few seconds are not

uncommon. Additionally, there are use-cases for tracking with lower frame-rate videos in

bandwidth constrained domains.

We have shown that detection embeddings used with learned similarity scores provide an

effective signal for tracking objects, and are more robust to occlusions and high inter-frame

displacements. On KITTI and MOT tracking benchmarks, DEFT is comparable in both accuracy

and speed to leading methods. On the more challenging nuScenes visual tracking benchmark,

tracking performance more than doubles compared to the previous state of the art, CenterTrack

(3.8x on AMOTA, 2.1x on MOTAR). Further, DEFT and CenterTrack perform near parity when

occlusions and inter-frame displacements are low. However, when either factor becomes more

challenging, DEFT performs better. Importantly, these are not corner cases – the moderate and
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hard difficulty samples represent the majority in nuScenes, not the minority. DEFT’s significant

improvement in these cases is of considerable practical significance.
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Chapter 5

Multi-Object Tracking and Sequence Modeling

5.1 Motivation

In Chapter 4, a joint detection and tracking model, DEFT, was presented. DEFT relies on an

appearance-based object matching network jointly learned with an underlying object detection

network. DEFT has shown to have significant advantages in robustness, compared to current

end-to-end methods, when applied to challenging tracking data. We have shown that detection

embeddings used with learned similarity scores provide an effective signal for tracking objects

and are robust to occlusions and high inter-frame displacement. On KITTI and MOT tracking

benchmarks, DEFT is comparable in both accuracy and speed to leading methods. On the more

challenging nuScenes visual tracking benchmark, DEFT raises the bar, more than doubling the

performance of the previous top method. However, despite the success of DEFT on existing

tracking benchmarks, it fails to address some aspects that are important for the effectiveness of

autonomous driving systems. These aspects can be summarized as follows:

1. Sequence Modeling Suitability: The multi-object tracker outputs the objects’ trajectories

that are essential for many other sequence modeling tasks. Modern perception

systems [134, 135] often perform multi-object tracking and sequence modeling separately

in a cascaded order, where tracking is performed first to obtain trajectories in the past,

followed by sequence modeling to estimate state of future position. However, this cascaded

pipeline with separately trained modules can lead to sub-optimal performance, as

information is not shared during training. Since many sequence modeling tasks are

dependent upon tracking, it would be beneficial to optimize them jointly. Also, it is not

convenient for autonomous driving systems to have separate models for multi-object

tracking and the subsequent sequence modeling tasks, as this will result in making

compromises in each module in order to meet the computing budget. Thus, for autonomous
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driving applications, it is not just the accuracy of the tracker that is important but also the

design that makes it suitable for the subsequent sequence modeling tasks. Just as DEFT

jointly learns detection and tracking, we could also jointly learn tracking and sequence

modeling with the benefit of using common backbone for all the tasks.

2. Interaction and Dependencies between objects: DEFT uses a feature extractor

independently for each object without accounting for feature interaction or dependencies

between objects, something that may lead to sub-optimal discriminative feature learning.

Taking into account the interaction and dependencies between objects is beneficial for the

tracking and for sequence modeling tasks that follow the tracking process, such as the

velocity estimation task, where each object’s velocity depends on its surrounding objects.

For example, drivers control the vehicle velocity to keep a safe distance to the vehicle

ahead. DEFT uses only features from the current detection and the observations belonging

to the existing tracklet when estimating the similarity score between them without

considering other detections and existing tracklets. This can be insufficient in highly

crowded scenes where multiple similar-looking objects move close to each other in the

scene. In such cases, the association approach needs to account for the features of other

adjacent objects to help address the ambiguities. Thus, we propose extending the

detection/tracklet similarity scoring process to consider all the tracked objects and all other

new detections, not only the objects of concern.

3. Effective use of Temporal Information: DEFT uses temporal information only for the

motion forecasting module to constrain the associations between frames to those that are

physically plausible, but it ignores such information for the similarity estimation process.

Some recent papers [67, 68] have highlighted the importance of aggregating the temporal

information and combining it with the context information. They have shown that utilizing

higher-order information along with the affinities between pairs of detections helps improve

the tracker’s performance. Effective use of the temporal information in DEFT can be helpful

for the tracking and the following sequence modeling tasks.
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5.2 Attention-based DEFT Network

In this chapter, we propose an end-to-end model to solve the tasks of detection, tracking, and

sequence modeling from raw sensor data. The proposed model extends the original DEFT model

to address the aspects mentioned above. We refer the reader to Figure 5.1 for the overall model

architecture, called Attention-based DEFT. The proposed model uses attention to compute

tracklet embeddings that 1) account for object interactions and 2) capture the context and

temporal information of the tracklet’s past observations. The tracklet representation is used in

tracking and any subsequent sequence modeling task. Importantly, all detection, tracking, and

sequence modeling modules share computation as there is a single backbone network, and the

whole model can be trained end-to-end.
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Figure 5.1: Attention-based DEFT. Attention-based DEFT adds an attentional encoder module inspired by

the transformer networks. Object embeddings from the last (δ + 1) frames are processed by the attentional

encoder module. The processed embeddings of both the existing tracklets, represented by their last detection

embeddings, and the new detections are then fed to the matching head, which estimates the similarity scores

between them. The processed new detections embeddings are passed to the sequence modeling network.
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At a high level, as shown in Figure 5.1, feature embeddings of the new detections of the

current frame t are first extracted using the embedding extractor and then passed along with the

embeddings of all detections in the memory (from the last δ frames) to the attentional encoder

module. The attentional encoder module processes the input embeddings and generates new

feature embeddings for all detections. It applies self-attention layers to the detections

embeddings, and this way, the model is able to learn the spatio-temporal dependencies between

all detections across all δ frames. The processed embeddings of both the existing tracklets,

represented by their last detection embedding, and the new detections are then fed to the matching

head, which estimates similarity scores between the new detections and the existing tracklets. The

matching head follows the same architecture as in the original DEFT network (see §4.2). Finally,

the encoded attentional feature embeddings are stored in the memory for future frames. This

process is repeated for each new frame.

It is worth noting that in DEFT (see §4.3) and other existing MOT frameworks [7, 56], the

similarity scores between new detections and existing tracklets are estimated based on the hard past

data associations. This can be suboptimal as it: 1) ignores several data association hypotheses, 2)

does not take into account the contextual information from unmatched detections, and 3) neglects

possible errors in the past data associations which can propagate to future associations. In contrast,

in the formulation of Attention-based DEFT, no information is provided about the hard past data

associations made by the model when estimating similarity scores.

5.2.1 Attentional Encoder Module

An overview of the attentional encoder module is illustrated in Figure 5.2. This module is

mainly inspired by the encoder network of the original transformer architecture proposed by

Vaswani et al. [8]. The transformer network was first proposed to solve sequence-to-sequence

tasks in natural language processing (NLP), such as word sequence modeling. Specifically,

transformer networks discard the sequential nature of language and instead utilize the potent

self-attention mechanism to model temporal dependencies, differentially weighing the importance
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Figure 5.2: Attentional Encoder Module. This module adds spatial and temporal information to the

detections embeddings and applies self-attention layers to the obtained embeddings. Parts of this figure are

from the original transformers paper [8].

of each part of the input data. The primary gain of the Transformer architecture is that

self-attention significantly improves temporal modeling compared to RNNs [8].

In the attentional encoder module, the input is the appearance feature embeddings of the

detections obtained in the last (δ + 1) frames {f η
i | 1 ≤ i ≤ Nmax and η ∈ [t − δ, t]}. Each

detection embedding is first concatenated with a spatial embedding. For 2D tracking, the spatial

embedding is a 2-dimensional vector containing the relative position of the center location of the

object in the image space. For 3D tracking, the spatial embedding is a 3-dimensional vector

containing the object’s 3D location projected to a common reference frame. As shown in

precedent work [98, 136], adding the spatial information explicitly to the model is an effective
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way for better describing the scene to the model; it enhances its capability to capture the spatial

dependencies between different objects. We denote the obtained embeddings by

{f̃ η
i ∈ R

dmodel | 1 ≤ i ≤ Nmax and η ∈ [t− δ, t]}

Self-attention networks are invariant to sequence ordering in their structure, and that is why it

requires explicit incorporation of the temporal information. Thus, each obtained embedding is

summed with temporal embedding, Tη ∈ R
dmodel , representing the temporal difference between the

current frame t and the actual frame of the detection. In our work, we use learned temporal

embedding that is learned during the model training. We have also experimented with the

sinusoidal positional encoding proposed by the original formulation of the transformer

architecture [8], but we have encountered convergence difficulties and inferior tracking

performance.

Finally, the resultant embeddings {xi,η = f̃ η
i + Tη | 1 ≤ i ≤ Nmax and η ∈ [t − δ, t]} are

passed through Nencoding Transformer-like layers (see Figure 5.2). Each layer is composed of two

components: a multi-head self-attention network and a point-wise feed forward network.

In each head of the multi-head self-attention network, an attention function is applied to each

embedding xi,η ∈ R
dmodel . We can define an attention function as mapping a query vector and a

set of key-value pairs of vectors to an output. The output is calculated as a weighted sum of the

values and the weights are determined for each value based on the compatibility function of the

query with the considered key. In our work, each embedding xi,η ∈ R
dmodel is updated with scaled

dot-product attention, leading to

x̃i,η =
∑

j

softmax(
QiK

T
j√

dk
)Vi (5.1)

where Qi = Wqxi,η, Ki = Wkxi,η, Vi = Wvxi,η are the query, key, value features obtained

by applying a linear transformation on a feature embedding xi,η, where Wq ∈ R
dmodel×dk , Wk ∈

R
dmodel×dk , Wv ∈ R

dmodel×dv and j denotes the index of all detections in the last (δ+1) frames. Thus,

each detection embedding will be updated by using a weighted sum of all detections embeddings.
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Similarly to the work of [8], we use multi-head attention where embeddings from M attention

heads are concatenated to construct zi,η = x̃1
i,η · x̃2

i,η . . . x̃
M
i,η. In this work, we use dk = dv =

dmodel

M
.

The point-wise feed forward network comprises fully connected feed-forward layers applied

to each position separately and identically. It consists of two linear transformations with a ReLU

activation in between. While the linear transformations are the same across different positions,

they use different parameters from layer to layer.

Each of these components (multi-head self-attention network and a point-wise feed forward

network) is then encapsulated within a residual connection and a layer norm operation. The

complete definition of an attentional encoder module layer can be finally written as:

z̃i,η = AddNorm(F (zi,η) + xi,η) (5.2)

where AddNorm indicates the composition of a residual connection and a layer normalization,

and F (.) represents the point-wise feed-forward network.

Given the structure above, Nencoding encoding layers are stacked sequentially where the output

set of layer l − 1 feeds into the following layer l. This allows creating multi-level encodings

encapsulating the relationships between object embeddings, in which higher encoding layers can

leverage relationships already identified by previous layers.

When Attention-based DEFT is trained for associating new detections to the existing tracklets

(loss function Lmatch in §5.2.3), the attentional encoder module computes the objects embeddings

that encode the spatio-temporal features that account for object interactions, and thus it learns to

output embeddings with higher similarity for detections that belong to the same tracklet and

embeddings with lower similarity for those that do not. This improves association with multiple

similar-looking objects. Unlike DEFT, where only the appearance features of the existing tracklet

and the new detection are considered when estimating the similarity, the proposed attentional

encoder module also accounts for other objects in the scene. We show that this extension

improves the discriminative power of the appearance features for the detections/tracks association

process and improves overall tracking performance in highly crowded scenes (see §5.3.4).
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5.2.2 Sequence Modeling

The attentional encoder module addresses aspects that are essential to make DEFT more

effective for autonomous driving systems. It tackles aspects that can improve the tracking

performance in real-world scenarios, and it also serves better suitability for sequence modeling.

With the self-attention layers formulation, the detection embedding encapsulates data about

the tracklet of interest as well as information about other objects encoded with interactions data.

This formulation is important for the sequence modeling task, as the new detections embeddings

will essentially attend to the embeddings that belong to the same tracklet observations and also to

some other detections embeddings that are useful for the sequence modeling task (nearby objects

when estimating tracklet’s velocity for example). This helps the model to take into account the

dependencies and interaction between objects for the sequence modeling task.

As shown in Figure 5.2, the new detections embeddings output of the attentional encoder

module are fed to the sequence modeling task network. For each new detection obtained at time t

comprising feature embedding z̃i,η output of the last encoding layer, a feed-forward neural

network computes a measurement embedding z̃seqi,η . This network consists of two fully-connected

layers. The two fully connected layers use ReLU and linear activation functions, respectively. To

assess the effectiveness of the sequence modeling capability for Attention-based DEFT, we

experiment with the velocity estimation task, which is a key requirement for collision avoidance

in several scenarios. Thus, we estimate Vx and Vy components of the object’s actual velocity in

the vehicle coordinate system with the nuScenes [3] dataset. Therefore, z̃seqi,η is a 2-dimensional

vector in this case.

5.2.3 Training

In order to generate training data, the ground truth track labels are processed sequentially,

where track proposals are generated in an online manner for each frame. Specifically, given NTr

existing tracklets in the previous δ frames and Nt new detections, NTr × Nt track-detection pairs

are generated in the current frame by considering all possible pairs between the existing tracklets
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and the new detections. These NTr × Nt track proposals are then used to calculate the matching

loss function. These steps are repeated until all frames in each training video are processed, and

all videos of the training dataset are treated.

To train Attention-based DEFT for matching estimation, the loss function Lmatch (same loss

used with DEFT) is used, which is defined as the average of the two losses Lfwd
match and Lbwd

match, where

Lbwd
match is the error of matching new detections in frame t to the existing tracklets present in the

last δ frames and Lfwd
match is the error of matching the existing tracklets to the new detections. The

expression of the matching loss was given in §4.5, with N bwd = Nt and N fwd = NTr.

Similarly to DEFT, training optimizes the joint affinity and detection losses as defined in Eq.

(5.3).

Ljoint =
1

eλ1

(
Lt

detect + Lt−n
detect

2
) +

1

eλ2

Lmatch + λ1 + λ2 (5.3)

where Lt
detect is the detection loss for frame t and λ1 and λ2 are the balancing weights to the

two tasks.

Attention-based DEFT is fully differentiable and can be trained end-to-end for detection,

tracking, and sequence modeling. When trained for sequence modeling, the model is first trained

for few epochs for detection and tracking tasks and then jointly trained with the sequence

modeling task by minimizing the joint loss as shown in Eq. (5.4).

Ltotal =
1

eλ3

Ljoint +
1

eλ4

Lseq + λ3 + λ4, (5.4)

Lseq =
1

N bwd

Nbwd
∑

j=1

∥

∥

∥
Vj − Ṽj

∥

∥

∥

1
, (5.5)

where Lseq is the sequence modeling loss or velocity estimation loss in our experiments, and

Vj and Ṽj are the predicted and ground truth velocity vectors.

During the training experiments with the Attention-based DEFT, we realized that the current

training strategy affects the robustness of the model to occlusion. This is mainly due to the high
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imbalance in the training data where the rate of occluded tracks (occlusion can last for few frames

in real scenarios) is very small. To solve this issue, we uniformly augment the data by simulating

occlusions: We randomly remove bounding boxes in the tracks to augment the data with missing

detections. For each ground truth track, we randomly choose the missing detection rate from a

probability between 0.1 and 0.5. After selecting the missing detection rate, we randomly remove

bounding boxes in the selected track according to the selected rate. In §5.3.4, we show a

comparison of the model performance with and without the "simulated occlusions".

5.3 Experiments and Results

The performance of Attention-based DEFT is evaluated on KITTI tracking [11], and the

nuScenes Vision Tracking benchmark [3]. The KITTI benchmark is used to assess 2D visual

tracking, while nuScenes is used for monocular 3D visual tracking and velocity estimation.

5.3.1 Implementation Details

Attention-based DEFT is implemented using PyTorch with an open-source license. In all

experiments, an Ubuntu server with a TITAN X GPU with 12 GB of memory is used. All

hyper-parameters were chosen based on the best MOTA score for 3-fold cross-validation on the

training set for 2D tracking and the best AMOTA score on the validation set for 3D tracking. The

implementation runs at approximately 12Hz on all data sets.

Same as DEFT, Attention-based DEFT was trained and evaluated with CenterNet detector

[13]. CenterNet is used with the modified DLA-34 [125] backbone, and feature embeddings are

extracted from all 13 feature maps of the modified DLA-34 backbone.

For the KITTI dataset, Attention-based DEFT is trained for 80 epochs with a starting learning

rate of 1.25e−4 using the Adam [126] optimizer and batch size 8. The learning rate is reduced by

5 at epochs 30, 60, and 70.

For the nuScenes dataset, Attention-based DEFT is first trained for detection and tracking tasks

for 40 epochs using the Adam [126] optimizer and batch size 8. Then, it is jointly trained with the
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velocity estimation task for 45 epochs. The learning rate is started at 2e−4 and then reduced by 5

at epochs 30,50, 60, and 70.

5.3.2 Parameter Settings

KITTI. For KITTI, the embedding extractor head outputs a feature embedding of e = 670

features. The hyper-parameters Nmax, δ, Nage, dmodel, dk, dv,M,Nencoding were set to 100, 25, 30,

672, 84,84, 8, 2 respectively.

nuScenes For 3D monocular tracking in nuScenes, the embedding extractor head outputs a

feature embedding of e = 701 features. The frames are resized to 800×448. The hyper-parameters

Nmax, δ, Nage, dmodel, dk, dv,M,Nencoding were set to 100, 6, 6, 704, 88,88, 8, 4 respectively.

5.3.3 Tracking Comparative Evaluation

Attention-based DEFT is compared against DEFT and other online tracking methods using the

protocol appropriate for each benchmark. Tracking results for KITTI (Table 5.1), and nuScenes

(Table 5.2) benchmarks are computed by host test servers with hidden labels on the test set.

Table 5.1: KITTI car tracking. Performance comparison with published online entries on the leaderboard.

Method HOTA↑ MOTA↑ AssA↑ MOTP ↑ MT ↑ ML ↓ IDS ↓
SoDA† [103] - 84.3 - 85.3 70.3 3.5 408

mmMOT [127] 62.05 84.77 54.02 85.21 73.23 2.77 284

MASS [128] 68.25 85.04 64.46 85.53 74.31 2.77 301

TuSimple [129] 71.55 86.62 71.11 83.97 72.46 6.77 293

SMAT [130] 71.88 84.27 72.13 86.09 63.08 5.38 341

TrackMPNN† [137] 72.30 87.33 70.63 84.49 84.46 2.15 481

CenterTrack [7] 73.02 88.83 71.20 85.84 82.31 2.31 116

mono3DT [122] 73.16 84.52 74.18 85.64 73.38 2.77 377

DEFT 74.23 88.38 73.79 84.55 84.77 1.85 343

Attention-based DEFT 74.02 88.61 73.50 84.59 84.0 2.31 344

† denotes methods that account for the objects interactions and dependencies.
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Table 5.2: nuScenes Vision Tracking. Performance comparison with published monocular 3D tracking

entries on the leaderboard. IDSA represents the average of IDS over all classes.

Method AMOTA ↑ AMOTP ↓ MOTAR ↑ MOTA ↑ IDSA ↓
Mapillary [131]+ AB3D [56] 1.8 1.8 9.1 2.0 -

PointPillars [132]+ AB3D [56] 2.9 1.7 24.3 4.5 -

CenterTrack [7] 4.6 1.5 23.1 4.3 -

DEFT 17.7 1.5 48.4 15.6 985

Attention-based DEFT 17.8 1.5 52.2 15.6 930

On the KITTI dataset, Attention-based DEFT achieves a similar performance to the

state-of-the-art. While Attention-based DEFT falls short of DEFT and CenterTrack on a few

metrics, it beats them in some others. Attention-based DEFT performs favorably compared to the

methods that take into account interaction and dependencies between different objects, such as

the transformer-based SoDA and the GNN-based TrackMPNN. Specifically, it achieves a 4.31%

higher MOTA, a 13.7% higher MT, a 1.19% lower ML, and a 15.6% lower IDS when compared

to SoDA, and a 1.72% higher HOTA, a 2.84% higher AssA, 1.28% higher MOTA, and a 28.4%

lower IDS when compared to TrackMPNN.

On the nuScenes dataset, both DEFT and Attention-based DEFT are the two top-scoring

methods among published online trackers on the leaderboard. This shows the power of the

detection embeddings used with learned similarity scores. The addition of the attentional encoder

module to DEFT appears to have a positive effect on AMOTA, MOTAR and IDSA. It leads to a

MOTAR improvement of 7.5% and an IDSA reduction of 5.5%.

Table 5.3 shows that the results comparison on the nuScenes validation data set are consistent

with the results obtained on the test data set. Compared with DEFT, Attention-based DEFT

Table 5.3: nuScenes Vision Tracking. Performance comparison with the state-of-the-art monocular 3D

tracking methods on the nuScenes validation data set.

Method AMOTA ↑ AMOTP ↓ MOTAR ↑ MOTA ↑ IDSA ↓
CenterTrack [7] 6.8 1.5 - - 813

DEFT 20.9 1.5 47.9 17.8 812

Attention-based DEFT 21.3 1.5 50.3 17.9 791
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achieves a gain of 0.4 percentage points in AMOTA and 2.4 in MOTAR. The improvements of

Attention-based DEFT over DEFT on nuScenes dataset (both validation and test datasets) are

attributed in large part due to differences in how Attention-based DEFT takes into account the

interactions and dependencies among the actors, which results in superior performance in highly

crowded scenes. This hypothesis is explored in §5.3.4.

5.3.4 Tracking Performance Analysis

As previously stated, Attention-based DEFT reasons about the interaction and dependencies

between different objects when associating new detections to existing tracklets, which we

hypothesized will improve the discriminative power of the model in much denser scenes, where

several similar-looking objects are present close to each other. To validate that, we created a

crowdedness score to estimate how crowded a scene is, in order to evaluate the performance of

Attention-based DEFT under different crowdedness conditions.

Figure 5.3: Occlusion, displacement, and crowdedness scores distribution. Red lines represent thresholds

used for the split. The occlusion factor is divided into 76 easy and 74 hard videos (below/above the median,

respectively). The displacement factor is divided based on two thresholds of half standard deviation from

the median score to obtain 44 easy, 55 moderate, and 51 hard videos. Similarly, the crowdedness score is

divided into 45 easy,65 moderate, and 40 hard videos.

The crowdedness score for a video frame is computed as the total number of objects present

from all the classes. We use the mean of the top five video frames as the video’s score. Scores are

linearly rescaled to the range [0, 1]. The distribution of the crowdedness score has led to dividing

89



the crowdedness factor into easy/moderate/hard partitions. Figure 5.3 shows the scores

distribution.

Figure 5.4 shows an interesting variation in the performance of different methods on nuScenes

validation front camera videos, according to difficulty factors of crowdedness, occlusion, and inter-

frame displacement. DEFT and Attention-based DEFT outperform CenterTrack on both simple

and complex scenes. With respect to the displacement and crowdedness factors, the difference in

performance between Attention-based DEFT and CenterTrack is marginal on easier videos, and

it becomes more prominent as the videos get more challenging. For displacement, for example,

CenterTrack drops 14.2 percentage points from easy to hard, whereas Attention-based DEFT drops

only 6.8, indicating that Attention-based DEFT is more robust to large inter-frame displacements

than CenterTrack.

Interestingly, DEFT outperforms Attention-based DEFT on easier videos with respect to the

crowdedness factor; however, when looking at hard videos, we observe that Attention-based

DEFT provides superior performance. DEFT drops 6.1 percentage points from easy to hard,

whereas Attention-based DEFT drops only 3.8, indicating that DEFT is more sensitive to

crowdedness than Attention-based DEFT. It is also worth noting that in terms of the number of

identity switches, DEFT IDSA increases by 137 (from 182 to 319) from easy to hard, while

Attention-based DEFT IDSA increases only by 101 (from 194 to 295) from easy to hard. The

results suggest that appearance only based matching may not be discriminative enough in

crowded and complex interactive scenes, where multiple objects can share similar appearances in

adjacent locations. Taking into account additional factors, mainly the interaction and

dependencies between different actors in the scene, and considering all possible interactions

among present actors as well as between present and past actors for the detection/tracklet

similarity scoring process, has shown to improve the discriminative power of the tracker for each

track.

To quantify the effects of data augmentation during training for Attention-based DEFT, we

train a model without the "simulated occlusions". The resulting tracking metrics of the two variants

90



31.4
33.9

25.8

30.9
28

16.7

32.7
34.7

25.9

32.6 34

25.5

Easy Moderate Hard

Displacement

A
M
O
T
A

34.6
31.8

27

19.4

36.2

28.9

36.7

26.4

Easy Hard

Occlusion

A
M
O
T
A

32.9
31.4

26.8

31.4

27.2

20.3

32.3 31.8

28.5

32.1 31.4

28.2

Easy Moderate Hard

Crowd

A
M
O
T
A

Crowdedness

Displacement

Occlusion

DEFT CenterTrack

Attention-based DEFT Attention-based DEFT w/o Aug

Figure 5.4: Attention-based DEFT compared with DEFT and CenterTrack on nuScenes validation front

camera videos, according to difficulty factors of crowdedness, occlusion, and inter-frame displacement. We

also present the results of a variant of Attention-based DEFT trained without the "simulated occlusions".

Attention-based DEFT is more robust to crowdedness factor than any other compared method, while DEFT

is more robust to occlusions.
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Table 5.4: Ablation study on the "simulated occlusions" during training on the nuScenes validation data set.

Method AMOTA ↑ AMOTP ↓ MOTAR ↑ MOTA ↑ IDSA ↓
Attention-based DEFT w/o Aug 20.7 1.5 49.6 16.9 826

Attention-based DEFT 21.3 1.5 50.3 17.9 791

(with and without augmentation) are presented in Table 5.4. The data augmentation improves most

metrics across the board. Figure 5.4 indicates that the proposed augmentation technique improves

the model performance on hard videos with respect to all factors - and especially for the occlusion

factor: AMOTA is improved by 2.5 percentage points. This can be explained by the fact that most

of the ground truth tracks in the training data are not occluded, and thus Attention-based DEFT was

overfitting to associate objects between consecutive frames, which is why the data augmentation

was essential.

It is worth noting that even with the "simulated occlusions", DEFT is more robust to

occlusions than Attention-based DEFT: Attention-based DEFT drops 7.3 percentage points from

easy to hard, whereas DEFT drops only 2.8. This shows that explicitly using track embeddings

memory and considering only the objects of concern with simple learned pairwise

detection/tracklet similarity estimation is more beneficial when multiple objects are occluded in

the scene. However, as mentioned above, considering all the tracked objects and all other new

detection for the detection/tracklet similarity scoring process is more helpful when the crowd

density is high.

5.3.5 Tracking Ablation Studies

In Table 5.5 and Table 5.6 we present the results of an ablation study on KITTI and nuScenes

benchmarks investigating how 5 architectural variants (V1 - V5) affected Attention-based DEFT’s

performance.

The first variant (V1) shows baseline performance for tracking by removing the attentional

encoder module completely and passing directly the existing tracklets last embeddings and the

new detections embeddings to the matching head. We observe that the baseline tracker performs
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Table 5.5: Ablation study of tracking performance of Attention-based DEFT on KITTI dataset. Results are

obtained with 3-fold cross-validation on the training sets for KITTI.

KITTI

Model
Feature

Interaction

Temporal

Information

Spatial

Information

Motion

Model
MOTA↑ MT ↑ ML ↓ IDS ↓

V1 None None None None 87.73 ± 0.025 81.37 ± 0.076 3.29 ± 0.035 0.87 ± 0.041

V2 X None None None 87.98 ± 0.042 82.10 ± 0.230 2.73 ± 0.061 0.52 ± 0.062

V3 X X None None 88.21 ± 0.039 82.65 ± 0.068 2.58 ± 0.038 0.29 ± 0.028

V4 X X X None 88.25 ± 0.036 82.85 ± 0.078 2.51 ± 0.042 0.25 ± 0.024

V5 X X X X 88.20 ± 0.054 82.72 ± 0.084 2.61 ± 0.045 0.30 ± 0.029

DEFT 88.10 ± 0.046 83.05 ± 0.108 2.36 ± 0.053 0.30 ± 0.036

CenterTrack - - - -

Table 5.6: Ablation study of tracking performance of Attention-based DEFT on nuScenes dataset. the

results are on the validation set.

NuScenes

Model
Feature

Interaction

Temporal

Information

Spatial

Information

Motion

Model
AMOTA↑ MOTAR↑ MOTA↑ IDSA ↓

V1 None None None None 17.3 43.7 15.2 971

V2 X None None None 19.5 47.5 16.9 858

V3 X X None None 21.0 49.7 17.8 804

V4 X X X None 21.3 50.3 17.9 791

V5 X X X X 21.2 49.9 17.8 807

DEFT 20.9 47.9 17.8 812

CenterTrack 6.8 - - 813

reasonably well in KITTI and nuScenes validation data. With such a simple design, our model

has achieved a strong baseline compared with state-of-the-art methods on the nuScenes validation

dataset (Table 5.3). It outperforms CenterTrack by 10.5 percentage points in terms of AMOTA.

The second variant (V2) evaluates the effectiveness of considering interaction and

dependencies between new detections and existing tracklets. It adds the attentional encoder

module to V1, but with removing the spatial information and also with passing as input only the

last embedding of each existing tracklet (instead of all detections embeddings in the memory)

along with the new detections embeddings. This leads to a modest results improvement on KITTI,

with a more substantial effect on nuScenes: a gain of 2.2 percentage points in AMOTA, 3.8 in
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MOTAR, and an IDSA reduction of 11.6% on nuScenes. This shows the benefit of considering

interaction and dependencies between past tracks and new detections for objects association.

The third variant (V3) evaluates the effect of the temporal information aggregation on the

tracking performance of Attention-based DEFT. Instead of passing only the last embedding of

each existing tracklet as input (V2), all detections embeddings in the memory and the new

detections embeddings are processed by the attentional encoder module. The variant V3 further

improves AMOTA by 1.5 percentage points and MOTAR by 2.2 on nuScenes, which validates

that the attentional encoder module effectively exploits the rich spatio-temporal context

information to enhance data association. The improvements are more pronounced in nuScenes,

which suggests that aggregating temporal information, as well as context information, is more

beneficial in the more complex and real-world scenarios.

The fourth variant (V4) shows the modest additional benefit of adding the spatial information

(embedding), which helps the model to capture both temporal and spatial dependencies between

different actors in the scene.

Interestingly, unlike DEFT, where adding a motion forecasting module (LSTM) to constrain

the associations between frames to those that are physically plausible was greatly beneficial to the

tracking performance, we can notice a slight drop in performance when adding such component to

Attention-based DEFT (variant V5). This suggests that the attentional encoder module is able to

learn motion modeling and implicitly associate only physically plausible trajectories.

5.3.6 Sequence Modeling Comparative Evaluation

We evaluate the velocity estimation performance of Attention-based DEFT on nuScenes

validation data set and compare it with several baseline methods. We summarize the results in

Figure 5.5.

A large number of the objects in nuScenes data set are static objects (zero velocity): 74% for

Car, 78% for bicycle, 43% for Bus, 62% for Motorcycle, 84% for Trailer and 76% for Truck .

Therefore, we tested Zero-Velocity baseline which predicts zero velocity for all objects. The
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Figure 5.5: Velocity estimation performance comparison on nuScenes validation data set in terms of mean

Absolute Velocity Error (mAVE). The mAVE is defined as the L2 norm of the velocity differences in

2D in meters per second (m/s). ↓ indicates lower values are preferred. We compare with Zero-velocity

baseline which predicts zero velocity for all objects, single-frame-based baselines (DEFT and CenterNet)

and temporal modeling baselines (Kalman Filter, LSTM, DEFT + LSTM). (M) stands for motion features,

and (A) stands for appearance features.

Zero-velocity baseline shows higher velocity estimation error than all other methods. DEFT and

CenterNet are single-frame-based baselines. Both estimate the velocity of the objects using only

static appearance features extracted from single video frames. To adapt DEFT for the single

frame velocity estimation task, we pass each object’s appearance embedding (output of the

feature extractor network) through a feed-forward neural network to estimate the object velocity.

We train DEFT jointly for multi-object detection, tracking, and velocity estimation tasks. For

CenterNet, we evaluate the performance of the published pretrained model. Details about the

CenterNet velocity estimation head can be found in the original paper [13].

The rest of the baseline methods consider temporal relation between consecutive frames.

Kalman Filter and LSTM use the trajectories output of Attention-based DEFT and predict the

velocity for each predicted tracklet using motion features (location, orientation and velocity). The

motion features are the same features used by the motion forecasting module used with DEFT to

predict tracks’ future locations (see §4.4). We also built a variant of DEFT (DEFT + LSTM)

adapted for modeling temporal sequence data by stacking an LSTM on top of the frame-wise

appearance features. For each tracklet, The LSTM recursively updates the sequence information

stored in its hidden state with each new appearance input. Then, a feed-forward neural network
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takes as input the hidden state to produce the estimated velocity. We also tested out a variant (A +

M) where motion features (same features as in §4.4) are concatenated with appearance features

before going through the LSTM network.

The results show that Kalman Filter and LSTM baselines which use simple motion features,

achieve superior performance over single-frame baselines DEFT and CenterNet: mAVE is

decreased by more than 16%. The temporal information is not considered in DEFT and

CenterNet, and thus their performance is quite limited. This indicates that objects velocities can

be inferred from semantic contexts but with limited capability. This is expected since predicting

the absolute velocity of an object from a single video frame can be challenging even for a human.

Adding an LSTM on top of the frame-wise appearance features extracted from DEFT (DEFT +

LSTM (A)) leads to mAVE drop of 20%. This indicates that though visual appearances (and their

context) are important for velocity estimation, it is rather more important to model the temporal

structure. We also show that by adding the motion features to DEFT + LSTM model, we achieve

an additional 16.4% mAVE relative reduction.

Attention-based DEFT outperforms DEFT + LSTM (A+M) baseline by achieving 18% lower

mAVE. The superiority of Attention-based DEFT for velocity estimation over all other methods is

quite impressive. It confirms the ability of the attentional encoder module to model the temporal

structure with significant variations and complexities effectively.

5.3.7 Sequence Modeling Performance Analysis

Table 5.7 provides a per-class breakdown of performance when evaluating velocity estimation

performance on the nuScenes validation data. Attention-based DEFT consistently outperforms all

other baselines on most classes (except for Trailer). The most improved classes are Car and

Pedestrian, where Attention-based DEFT achieves 21% and 27% less mAVE, respectively,

compared to DEFT + LSTM (A+ M). Objects in these two classes represent the majority of the

total annotations (56% for Car and 21% for Pedestrian), and multiple objects are usually present

simultaneously in the scene, making them tend to interact with each other and change their
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motion because of that. Our intuition is that the major performance gains of Attention-based

DEFT over DEFT + LSTM (A+ M) come from its capability of learning complicated

dependencies and interaction between different objects when estimating the velocities of the

objects, and this is what explains the more pronounced performance gap on the Car and

Pedestrian classes.

Table 5.7: Per-class performance comparison for velocity estimation (mAVE) on nuScenes validation

dataset.

DEFT DEFT + LSTM (A) DEFT + LSTM (A+ M) Attention-based DEFT

Bicycle 1.02 1.12 0.96 0.91

Bus 2.48 1.62 1.51 1.38

Car 1.51 1.17 0.95 0.75

Motorcycle 2.87 1.80 1.62 1.59

Pedestrian 0.84 0.78 0.69 0.50

Trailer 0.80 0.75 0.56 0.61

Truck 1.47. 1.24 1.03 0.91

Overall 1.39 1.10 0.92 0.75

We analyze the effect of different difficulty factors on the velocity estimation performance of

Attention-based DEFT and DEFT + LSTM (A+ M) in Figure 5.6. With respect to crowdedness,

we observe that while Attention-based DEFT achieves lower velocity estimation error than DEFT

+ LSTM (A+ M) on easy, moderate, and hard videos, the difference in performance is marginal on

easier videos and substantial on hard videos. Attention-based DEFT mAVE is increased by 0.37

from easy to hard, whereas Attention-based DEFT mAVE is increased only by 0.11. This validates

the effectiveness of Attention-based DEFT for capturing spatio-temporal interaction of the crowd,

which helps it to be more robust to handle complexities in heavily crowded scenes.

As shown in Figure 5.6, Attention-based DEFT consistently achieves lower velocity

estimation error than DEFT + LSTM (A+ M) on both simple and complex scenes. Despite that

DEFT achieves better tracking performance (see Figure 5.4) on hard videos with respect to

occlusions, Attention-based DEFT velocity estimation error is lower than DEFT + LSTM (A+

M). This shows the power of the proposed spatio-temporal context information encoding to
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Figure 5.6: Attention-based DEFT compared with DEFT + LSTM (A+ M) on nuScenes validation dataset,

according to difficulty factors of crowdedness, occlusion, and inter-frame displacement.

accurately predict objects velocities from inputs with missing observation data (multiple occluded

objects), thanks to its attention mechanism, something in which LSTMs have shown to be

ineffective [138]. Notably, thanks to the temporal embedding, which time-stamps the input, the

attentional encoder module learns to effectively neglect missing observations while being aware

of the relative time-stamps of the presented observations.

Furthermore, Attention-based DEFT aggregates information from all detections in the past

frames with no information about the past hard data associations. This prevents the past association

errors from negatively affecting the current tracklet representation the velocity estimation network

uses. This is depicted in hard videos with respect to the occlusion factor. On the other hand, in

DEFT + LSTM, the information is gathered from the detections that are matched with each tracklet

via hard data associations, which badly impact the velocity estimation when the model’s tracking

performance is poor, such as in hard videos with respect to crowdedness.

5.3.8 Sequence Modeling Ablation Studies

We validate the effectiveness of our sequence modeling approach by conducting an ablation

study on the nuScenes validation set. We present the results of 5 architectural variants (V1 - V5) in

Table 5.8. For a fair comparison, all variants are jointly trained for detection, tracking and velocity

estimation.
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Table 5.8: Ablation study of velocity estimation performance of Attention-based DEFT on nuScenes

validation dataset. AEM stands for attentional encoder module.

Model
Temporal

Information

Feature

Interaction

Spatial

Information
Bicycle Bus Car Motorcycle Pedestrian Trailer Truck Overall

V1 None None None 1.08 2.40 1.55 3.10 0.89 0.92 1.59 1.44

V2 LSTM None None 1.02 1.83 1.16 2.21 0.81 0.76 1.04 1.09

V3 AEM None None 0.95 1.64 1.10 1.80 0.77 0.75 1.05 1.03

V4 AEM X None 0.89 1.45 0.83 1.63 0.52 0.61 0.93 0.81

V5 AEM X X 0.91 1.38 0.75 1.59 0.50 0.61 0.91 0.75

The first variant is single frame baseline where the new detections appearance embeddings

{f t
i | 1 ≤ i ≤ Nmax} are passed through a feed-forward network to estimate the objects velocity.

The variant V1 achieves overall poor performance, which is similar to other single-frame-based

baselines DEFT and CenterNet (Figure 5.5). This validates our conclusions on the limitations of

estimating the velocity of moving objects based only on their static visual information.

In order to evaluate the importance of the temporal aggregation for velocity estimation

performance of Attention-based DEFT, we built two variants V2 and V3, that take each tracklet’s

frame-wise appearance embeddings and pass them through a sequence modeling network, which

are an LSTM and attentional encoder module (without the spatial information) for V2 and V3,

respectively. Each object is modeled separately without any complex interaction consideration.

The LSTM sequentially processes the embeddings before predicting the velocity, while the

attentional encoder module scans all available embeddings, weighting them according to an

attention mechanism. In these two variants, the sequence modeling network is separate from the

actual tracking architecture, but all modules are jointly trained. Both variants outperform the V1

by a large gap, indicating the importance of temporal context for velocity estimation. We observe

that the attentional encoder module outperforms the LSTM, which suggests that

only-attention-based memory mechanisms of the attentional encoder module provide a better

temporal modeling ability compared to RNNs.

The variant V3 can model the motion dynamics of each object separately but fails to

incorporate interactions and dependencies between different objects. The variant V4 analyzes the
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contribution of considering crowd interaction for velocity estimation performance of

Attention-based DEFT. It consists of the same architecture proposed in §5.2 (without the spatial

information). This further pushes the velocity estimation performance because each object’s

velocity depends on its surroundings. For example, when a driver of a vehicle would decide on

the velocity, he would first predict the future motions of his neighbors and choose a velocity that

avoids collision with others in the next short time interval. This explains the main advantage of

Attention-based DEFT over DEFT+LSTM, especially when the crowd density is high (Figure

5.6). The large improvements of V4 over V3 are on the Car and Pedestrian classes, which is

consistent also with the per class improvements we saw of Attention-based DEFT over

DEFT+LSTM in Table 5.7.

The last variant (V5) shows that adding the spatial information (embedding) helps to further

decrease the velocity estimation error. Inferring motion from the features extracted from the raw

sensor data is important, but also exploiting motion from explicit objects locations in the scene is

also helpful to the overall velocity estimation performance.

5.3.9 Additional analysis

Effect of the encoding memory length: We compare Attention-based DEFT using different

sizes of the encoding memory scope δ in Figure 5.7. From the results, we can see that as the

memory scope increases, the tracking performance of the model improves. This indicates that

Attention-based DEFT leverages all available information from context, history, and interactions.

Increasing the memory for more than 6 frames (3 seconds) results in small tracking performance

improvements while adding more computational running time and memory usage.

Longer memory leads to lower velocity estimation error, which indicates that history is helpful

to velocity estimation. We observe that the model performance saturates at a spanning scope of

around 4 frames (2 seconds) in the past. We believe that this has to do with the usual time for

real-world traffic changes. Therefore, increasing the memory window beyond 2 seconds does not

further improve the performance.
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Figure 5.7: Attention-based DEFT’s tracking and velocity estimation performance for different sizes of the

encoding memory scope δ .

Effect of Joint Training: Attention-based DEFT is compared with joint and separate training

strategies. We can see from Table 5.9 that when jointly training detection, tracking, and sequence

modeling tasks, tracking performance is improved on both KITTI and nuScenes datasets without

hurting the detection and velocity estimation performance.

Table 5.9: Detection, tracking, and velocity estimation results of implementing Attention-based DEFT with

two training strategies (jointly vs separately optimized) on KITTI and nuScenes. Results are obtained with

3-fold cross-validation for KITTI where detection is evaluated with 2D bounding box AP for three different

difficulty levels: easy (APE), moderate (APM ), and hard (APH ). Results are obtained on the validation set

for nuScenes, where detection is evaluated with mean Average Precision (mAP) over all 7 classes.

KITTI nuScenes

Training Strategy MOTA IDs APE APM APH AMOTA MOTA mAP mAVE

Separate training 88.0 0.4% 92.8 83.6 74.3 20.2 17.3 24.5 0.78

Joint training 88.2 0.2% 92.7 83.7 74.5 21.3 17.9 24.6 0.75

5.4 Conclusion

In this chapter, we have introduced Attention-based DEFT, an end-to-end model to solve the

tasks of detection, tracking, and sequence modeling from raw sensor data. Instead of treating each

task separately like the traditional cascaded methods, we follow the recent advances of multi-task

learning, and we train a model to solve multiple tasks jointly while taking advantage of the shared

feature computation. We further improve upon the paradigm with a novel objects representation

encoded by the proposed attentional encoder module that 1) jointly reasons about the object
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dependencies and interaction with other objects present in the scene and 2) captures the context

and temporal information of the tracklet’s past observations. We conducted experiments and

ablations on two popular benchmarks (KITTI and nuScenes) to validate the effectiveness of

Attention-based DEFT. In terms of the tracking performance, the results suggest that the proposed

approach performs favorably against or comparable to state-of-the-art methods. We have shown

that reasoning about the interactions between the actors in the scene improves the model tracking

performance in highly crowded scenes while worsening its performance in hard scenes with

respect to occlusions. We have also shown the superiority of Attention-based DEFT for velocity

estimation over other baseline methods on simple and complex scenes. This confirms the

remarkable ability of the attentional encoder module to model the temporal structure with

significant variations and complexities with taking into account the interactions and dependencies

among the actors.

Attention-based DEFT makes velocity estimation only by using objects’ context, history, and

interactions, which might fail in extreme scenarios such as unpredictable sharp turns or sudden

stops. Thus, additional information such as map configuration could help solve such issues.

Furthermore, Attention-based DEFT was initially designed to adapt to any sequence modeling,

and velocity estimation is one possible application. Future work can include its application to

other sequence modeling tasks.
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Chapter 6

Conclusion and Future Work

6.1 Summary

This dissertation aims to improve the capability of the perception module, an essential module

for safe and reliable autonomous driving. Specifically, it focuses on two perception topics: 1) Geo-

localization (mapping) of spatially-compact static objects and 2) Multi-target object detection and

tracking of moving objects in the scene.

In Chapter 3, we presented a novel system that improves the localization of static objects by

jointly optimizing the components of the system via learning. Our system is comprised of

networks that perform: 1) 5DoF object pose estimation from a single image, 2) association of

objects between pairs of frames, and 3) multi-object tracking to produce the final geo-localization

of the static objects within the scene. The proposed approach was evaluated using a publicly

available data set, focusing on traffic lights due to data availability. For each component, we

compared against contemporary alternatives and showed significantly improved performance. We

also showed that the end-to-end system performance is further improved via joint training of the

constituent models. The results suggest that the proposed explicit addition of the geometric cues

for matching static objects increases the matching accuracy over appearance alone, something

that can be considered for future works in this field. Furthermore, a static objects geo-localization

data set was created to help accelerate the static objects geo-localization domain and provide a

common benchmark for evaluating different approaches.

Chapter 4 described a simple, online, and efficient joint model of detection and tracking

named DEFT. DEFT relies on an appearance-based object matching network that is jointly

learned with an underlying object detection network. DEFT can be applied effectively to several

popular detection backbones. DEFT’s design and data association approach yields top-tier

performance on KITTI and MOT 2D tracking benchmarks and sets a new standard on the more

103



challenging nuScenes monocular 3D vision tracking challenge. On the nuScenes benchmark,

DEFT performance more than doubles compared to the previous SOTA, CenterTrack (3.8x on

AMOTA, 2.1x on MOTAR). Further, partitioning the data using the created difficulty scores

helped analyze the difference in performance between DEFT and CenterTrack. DEFT and

CenterTrack perform near parity when occlusions and inter-frame displacements are low.

However, when either factor becomes more challenging, DEFT performs better. Importantly, in

the autonomous driving application, objects tracked, especially in side-mounted cameras,

experience large inter-frame displacements, and occlusions lasting a few seconds are not

uncommon. These are not corner cases – the moderate and hard difficulty samples represent the

majority in nuScenes, not the minority. DEFT’s significant improvement in these cases is of

considerable practical significance. DEFT is also extensible to new detectors as they arise and

adds only modest latency to the underlying detection network.

In chapter 5, an end-to-end model to solve the tasks of detection, tracking, and sequence

modeling from raw sensor data, called Attention-based DEFT, was proposed. Attention-based

DEFT extends the original DEFT by adding an attentional encoder module that uses attention to

compute tracklet embedding that 1) jointly reasons about the tracklet dependencies and

interaction with other objects present in the scene and 2) captures the context and temporal

information of the tracklet’s past observations. We conducted experiments and ablations on

KITTI and nuScenes to validate the effectiveness of Attention-based DEFT. In terms of the

tracking performance, the results suggest that Attention-based DEFT performs favorably against

or comparable to SOTA methods. Reasoning about the interactions between the actors in the

scene allowed Attention-based DEFT to improve significantly the model tracking performance in

highly crowded scenes. We also showed the superiority of Attention-based DEFT for sequence

modeling tasks (velocity estimation) over other baseline methods on both simple and complex

scenes. The experimental analysis confirmed the effectiveness of Attention-based DEFT for

capturing spatio-temporal interaction of the crowd for velocity estimation task, which helps it to

be more robust to handle complexities in densely crowded scenes.
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6.2 Findings

The work of this dissertation revealed some interesting findings that we summarize in this

section. In Chapter 3, we studied the static objects geo-localization topic for the onboard

perception of autonomous vehicles. We have shown that we can benefit from the additional

objects attribute of being - static objects - and use geometric cues explicitly when associating the

objects across frames. Using the geometric cues alone has shown to achieve a reasonable

association accuracy of 83% mAP and when combined with appearance cues they helped to

increase the mAP by 3.9 percentage points over appearance alone.

In Chapter 4, We have shown that the major performance gains on some datasets such as

KITTI and MOT are driven by improved detectors. Others in the community seem to agree [7,

105]. The first row in Table 4.7 of the ablation study (see §4.6.6) provides additional support

for this point of view. We observe that a simple baseline, using nothing other than a motion

model and IOU associations, when applied to CenterNet detections, yields a MOTA score of 86.7

on KITTI (validation) and 63.5 on MOT17 (validation). While one cannot compare validation

scores directly to test results, this is suggestive that many of the top leaderboard methods are only

marginally better than a naive baseline coupled to a SOTA detector. The analysis we did on the

more challenging nuScenes dataset in §4.6.5 revealed that the top method in MOT and KITTI,

CenterTrack, still performs well on easy videos with respect to different difficulty scores that we

created, but its performance drops significantly when evaluating on hard videos. This shows that

a failure to look at performance evaluation based on the levels of difficulty within public datasets

hide important aspects of performance. Dividing the datasets into partitions based on the difficulty

factors reveals where there is a strong contribution for the proposed models. This suggests that

it would be beneficial for the tracking community to have this kind of performance comparison

based on different difficulty factors on the tracking leaderboards.

In Chapter 5, we have shown that adding the attention encoder module to DEFT

(Attention-based DEFT) maintained comparable tracking performance while significantly

improved the velocity estimation performance: the mean absolute velocity error is reduced from
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0.924 to 0.754. The results also confirms that the end-to-end learning strategy that reframes

sequential tasks into multi-task networks, allowing for joint optimization, is effective. The

velocity estimation is important task for autonomous vehicles because determining the

instantaneous direction and speed of the surrounding actors is a crucial requirement for collision

avoidance in many scenarios.

6.3 Methodology

In this dissertation, we follow the common practice of SOTA methods to evaluate the

performance of different proposed models. Each of the public datasets used in this work provide

public evaluation tools to compute a set of specific metrics, and we used these tools throughout

the comparative evaluation and performance analysis of this dissertation.

The models trained and evaluated in this dissertation are complex and take a significant

amount of time and resources to train. Thus, with the limited amount of resources available, it

was not feasible to have multiple training runs for each experiment to see the variations in the

model performance over different runs. Thus, the variation for model instantiation is not as well

understood as one might hope. However, we want to highlight that we have analyzed and tested

the proposed tracking models on multiple independant benchmarks : MOTA dataset for indoor

and outdoor pedestrian tracking, KITTI dataset for vehicles tracking on videos collected on a car

in high traffic areas and nuScenes as a large-scale geo-splitted dataset for autonomous driving for

tracking 7 object classes. So, if the performance were a one-time fluke of the training distribution,

we don’t expect to have consistent performance across different benchmarks. Also, by looking on

the 2 datasets used for 2D visual tracking , MOTA and KITTI, we can see that the relative ranking

of methods that are common to the two are fairly consistent. nuScenes saw a dramatic difference

in the performance of CenterTrack and DEFT, and that’s why more analysis was done to further

investigate the differences in performance.

We have shown that the proposed models in this dissertation were able to achieve SOTA

performance. But as we look in the future of AV, a couple of aspects of methodology seem to be
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needed. While multiple metrics are used to evaluate different models, these metrics are not

enough to analyze the differences in performance of different models and to understand the

contribution and the failure of each model. While the proposed difficulty scores (occlusion,

displacement and crowdedness) helped us to overcome some of this limitation, it is only a small

step in the right direction. Also, not all the metrics are equally severe/consequential, and this

thesis makes no attempt to judge the proposed methods in that light. Furthermore, the metrics

used in this dissertation are used to evaluate the models performance and not the system

performance – in order to deploy the models to a self-driving vehicle, there’s a distinct challenge

of validation testing that isn’t being addressed in this thesis.

6.4 Future Work

The proposed objects geo-localization approach has shown superior performance compared

to SOTA methods for static object geo-localization and better suitability for autonomous driving

applications. The running time for the proposed approach is 5.3 frames per second, which is less

than the frame rate of the cameras for some self-driving data sets such as KITTI [11] and nuScenes

[3], on the order of 10Hz. This is mainly because the proposed approach follows a cascaded

pipeline that uses an off-the-shelf 2D object detector to obtain the 2D detections, which are then

passed to the objects matching network to perform the pose estimation and association the objects

across frames. The followed approach essentially processes the image crops of the detected objects

twice without sharing any information, inducing accumulated latency to the proposed system. The

research we did on DEFT showed that sharing features between the 2D object detector and the

object matching network provides opportunities for further joint optimization and inference speed-

up. Thus, future plans include extending DEFT to perform joint detection, tracking, and geo-

localization in an end-to-end approach. Also, we were limited to evaluating the performance of

the proposed approach on traffic lights; application to other static compact objects (signs, etc.)

requires creating or identifying new data sets.
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Attention-based DEFT achieved superior velocity estimation performance compared to other

baseline methods on both simple and complex scenes. It makes velocity estimation only by using

objects’ context, history, and interactions, which might fail in extreme scenarios such as

unpredictable sharp turns or sudden stops. Thus, additional information such as map

configuration (e.g., lanes, traffic lights, signs) could help solve such issues. One possible idea

would be by rendering HD map into RGB rasterized representation (Bird’s Eye View scene

color-coded image) [135], passing it through CNNs, extracting local scene context information

for each actor using its spatial location in the rasterized image, and then fusing the obtained

features with appearance features. This would help the model to account for road context

information while modeling the object’s velocity. Furthermore, Attention-based DEFT was

initially designed to adapt to any sequence modeling; velocity estimation is one possible

application. Future work can include its application to other sequence modeling tasks.

All models proposed in this dissertation use the Hungarian algorithm to find the optimal

assignment between the new detections and existing tracklets based on the predicted similarity

scores. A natural extension to this work is replacing the only non-differentiable module of our

models – the Hungarian algorithm – with an equivalent differentiable network to allow complete

end-to-end learning. For example, Yihong et al. [107] proposed a Deep Hungarian Net (DHN)

module that is equivalent to the Hungarian algorithm. DHN estimates the correspondence

between object tracklets and ground truth objects to determine differentiable proxies of MOTA

and MOTP, which are then used as loss functions to directly optimize the trackers. Their

experiments showed improvements in the existing trackers performance when using their

proposed fully differentiable framework.

While I think that all the mentioned above directions are exciting and have promising

implications for the future of achieving a fully autonomous vehicle, it is indeed a very complex

problem that requires enormous research and engineering work. I am grateful to have the

opportunity to be present and participate a little in the process of building a self-driving vehicle.

The work of this dissertation only focuses on some of the essential components of the autonomy

108



system. I have and always will be keen on keeping up with the updates and breakthroughs in this

field, and I cannot express my excitement and eagerness to witness the achievement of Level 5

autonomy.
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