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ABSTRACT

BAYESIAN METHODS FOR ENVIRONMENTAL EXPOSURES:

MIXTURES AND MISSING DATA

Air pollution exposure has been linked to increased morbidity and mortality. Estimating the

association between air pollution exposure and health outcomes is complicated by simultane-

ous exposure to multiple pollutants, referred to as a multipollutant mixture. In a multipollutant

mixture, exposures may have both independent and interactive effects on health. In addition,

observational studies of air pollution exposure often involve missing data. In this dissertation,

we address challenges related to model choice and missing data when studying exposure to a

mixture of environmental pollutants. First, we conduct a formal simulation study of recently

developed methods for estimating the association between a health outcome and exposure to a

multipollutant mixture. We evaluate methods on their performance in estimating the exposure-

response function, identifying mixture components associated with the outcome, and identify-

ing interaction effects. Other studies have reviewed the literature or compared performance on

a single data set; however, none have formally compared such a broad range of new methods in

a simulation study. Second, we propose a statistical method to analyze multiple asynchronous

multivariate time series with missing data for use in personal exposure assessments. We de-

velop an infinite hidden Markov model for multiple time series to impute missing data and

identify shared time-activity patterns in exposures. We estimate hidden states that represent

latent environments presenting a unique distribution of a mixture of environmental exposures.

Through our multiple imputation algorithm, we impute missing exposure data conditional on

the hidden states. Finally, we conduct an individual-level study of the association between long-

term exposure to air pollution and COVID-19 severity in a Denver, Colorado, USA cohort. We

develop a Bayesian multinomial logistic regression model for data with partially missing cate-

gorical outcomes. Our model uses Polya-gamma data augmentation, and we propose a visu-
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alization approach for inference on the odds ratio. We conduct one of the first individual-level

studies of air pollution exposure and COVID-19 health outcomes using detailed clinical data

and individual-level air pollution exposure data.
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Chapter 1

Introduction

Exposure to air pollution is associated with increased morbidity and mortality, and presents

a major global environmental health risk (Di et al., 2017a,b; Dockery et al., 1993; Global Burden

of Diseases 2019 Risk Factors Collaborators, 2020; Health Effects Institute, 2018). Studies fo-

cusing on air pollution include exposure assessments and health effects estimation. Exposure

assessments are used to estimate an individual’s exposure to pollutants over a period of time

(Finazzi and Paci, 2019; Koehler et al., 2019), and can later be used for health effects studies. Air

pollution exposures have been associated with numerous health endpoints, including chronic

diseases such as chronic obstructive pulmonary disease (Pan et al., 2018) and asthma (Benka-

Coker et al., 2020), as well as acute diseases such as influenza (Landguth et al., 2020) and other

respiratory illnesses (Cui et al., 2003; Dockery and Pope, 1994). Estimating air pollution-health

associations is complicated by the reality that individuals are jointly exposed to a mixture of

pollutants at a time. In addition, observational studies are often rife with missing observations,

which may include missing exposure data or missing health data. In this dissertation, we aim

to fill several gaps in the literature induced by these challenges.

1.1 Multipollutant Mixtures

At any point in time, an individual may be exposed to a number of environmental pollutants.

A multipollutant mixture is defined as the joint exposure to three or more pollutants. The study

of health effects associated with multipollutant mixtures is a top priority for environmental

health scientists (NIEHS, 2018). Estimating health outcomes associated with multipollutant

mixtures is challenging due to possible nonlinear effects and interactions, small effect sizes, and

high correlation among pollutants. Recently, many statistical methods have been developed to

address these challenges.
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Statistical methods for multipollutant mixtures vary widely (Davalos et al., 2017; Hamra and

Buckley, 2018; Sun et al., 2013; Taylor et al., 2016). The simplest models are additive models,

such as generalized linear regression models. The next set of models permit interactions, typ-

ically in a generalized linear model framework. Usually, these models only include pairwise

interactions to maintain adequate statistical power and interpretability. Regularization and

shrinkage approaches have been applied to both additive models and models with interac-

tions to improve estimation in the context of a large number of possibly correlated exposures

(Carbajal-Arroyo et al., 2011; Herring, 2010; Lenters et al., 2016; Roberts and Martin, 2005; Win-

quist et al., 2014). Further methods for multipolluant mixtures include dimension reduction

techniques. Dimension reduction models, such as principle components analysis (Roberts and

Martin, 2006b) and Bayesian profile regression (Molitor et al., 2010), transform the exposure

data, which may be high-dimensional, to a smaller subset to reduce the parameter space. Last,

when the relationship between exposures and the health endpoint is hypothesized to be com-

plex, nonparametric methods are favorable because they relax assumptions on the shape of

the exposure-response function, therefore allowing complex interactions and nonlinear effects

in the modeling framework. Nonparametric methods for multipollutant mixtures analyses in-

clude Bayesian kernel machine regression (Bobb et al., 2015) and classification and regression

trees (Gass et al., 2014, 2015).

Epidemiological studies of the effects of multipollutant mixtures on human health have the

potential to answer a variety of questions depending on the type of data and modeling approach

(Braun et al., 2016). First, researchers may be interested in understanding the synergistic ef-

fect of exposures or predicting health outcomes associated with exposures. In these situations,

the modeling approach may focus on estimating the form of the exposure-response function.

Second, the primary goal may be identifying which components of the mixture truly have an

effect on the health outcome. Along the same line, interest may lie in identifying which com-

ponents of the mixture do not impact the health outcome. Identifying mixture components

motivates a variable selection approach to analysis. Last, joint exposures may motivate iden-
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tification and estimation of interaction effects among exposures. In this case, a model must

incorporate interactions and perhaps also include a variable selection approach on the interac-

tion terms. Defining the scientific objective of a study is the first step in selecting an appropriate

statistical method for analysis.

As the study of multipollutant mixtures gains popularity and numerous statistical methods

are developed, a gap remains in the literature regarding evaluation of the proposed methods

and guidance on choosing a method. In Chapter 2, we investigate recently developed statistical

methods for multipollutant mixtures. We evaluate the methods in a formal simulation study

where we test each method’s ability to answer epidemiological questions of interest.

1.2 Missing Exposure Data

Air pollution exposure assessments can be conducted on a variety of scales. Exposures can

be measured for individuals, residences, or regions at resolutions ranging from seconds to days,

weeks, or longer. Advances in technology currently allow ambient air pollution exposures to be

measured on a personal level at very high resolution. Personal exposure monitoring devices are

small enough to carry, and exposures to ambient environmental pollutants can be measured at

10-second intervals (Good et al., 2016; Koehler et al., 2019). Not only does high resolution per-

sonal exposure monitoring permit a more precise view of an individual’s exposures over time,

but the exposures are measured exactly where an individual is located, whether it be indoors,

outdoors, at their home, or away from home. Even in a single location, such as home, differ-

ent exposures to air pollution are expected when sleeping as opposed to other activities such

as cooking on an indoor stove. Hence, personal exposure monitors offer improvements over

area monitors in individual-level exposure assessments because personal monitors can detect

exposure changes associated with an individual’s specific location and activity.

Missing data is a common problem in studies where repeated measures are taken over time,

such as in exposure assessments. Missing personal exposure data may be due to a number of

factors including device malfunction, participant noncompliance, and exposures below the de-
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vice’s limit of detection. In short-term personal exposure monitoring, missing exposure data is

a significant obstacle to maximizing use of the data. In a single day, missing minutes of expo-

sure data may have a large influence on the entire daily exposure pattern. Complete case-only

analyses and single imputation approaches can introduce bias and underestimate variability

in the exposure data, particularly when the amount of missing data is high (Engels and Diehr,

2003; Junger and Ponce de Leon, 2015).

In a localized area, daily exposure patterns may be similar among multiple individuals. For

example, different individuals sleep at home, commute to work, and cook meals at similar times

each day. These shared activity patterns are likely to elicit similar exposure levels. In the pres-

ence of missing exposure data, shared activity patterns can help inform missing observations.

In Chapter 3, we develop a Bayesian infinite hidden Markov model (Beal and Rasmussen, 2002)

to impute missing multivariate exposure data for multiple people based on estimated latent

states. The latent states represent unobserved time-activity patterns that are associated with

unique distributions of exposures and may be shared among multiple people. We apply our

method to an analysis of the Fort Collins Commuter Study (Good et al., 2016; Koehler et al.,

2019) data to impute missing exposure data for three pollutants. In our analysis, we identify

shared and unique time-activity patterns associated with exposures among multiple people

during typical workdays in Fort Collins, Colorado, USA.

1.3 Missing Health Outcomes

Individual-level observational data are almost certain to contain some missing observa-

tions. When the primary goal is to estimate a health outcome associated with exposures, com-

plete health outcome data are typically required. Commonly, individuals with missing health

outcomes are dropped from the analysis, reducing sample size and power, and potentially in-

troducing bias. In some situations, health outcomes may be partially missing, as opposed to

fully missing. For example, time-to-event data may be censored or multinomial outcomes may
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be missing for only some categories. In such situations, statistical methods that can analyze

data with partially missing health outcomes are desirable.

During the global pandemic of coronavirus disease 2019 (COVID-19), scientists looking to

explain spatial differences in disease transmission and severity identified the study of the ef-

fects of air pollution exposure on COVID-19 endpoints as a critically important area of research

(Bhaskar et al., 2020). Though numerous ecological analyses suggest an association between

increased air pollution exposure and negative COVID-19 endpoints (Bhaskar et al., 2020; Co-

munian et al., 2020; Copat et al., 2020; Frontera et al., 2020; Setti et al., 2020a), individual-level

studies are needed to clarify the effects of air pollution and determine a causal link (Brandt and

Mersha, 2021).

Individual-level COVID-19 health outcomes can take a variety of forms including infection

status, death, and peak disease severity. Peak disease severity for individuals with confirmed

COVID-19 can be subdivided into the following mutually exclusive categories: asymptomatic,

symptomatic, hospitalized, admitted to an intensive care unit, placed on a mechanical ven-

tilator, or death. The City and County of Denver, Colorado identified 57,027 individuals with

confirmed COVID-19 between March 6, 2020 and February 28, 2021. During surges in the pan-

demic, there was inadequate staff capacity to follow up on all cases. For some individuals, it

was known that they were symptomatic, but unknown if they were admitted to a hospital or

intensive care unit, or placed on a mechanical ventilator. For others, it was known that they

were not hospitalized or worse, but unknown if they were asymptomatic or symptomatic. The

State of Colorado maintained accurate recordings of deaths caused by COVID-19. This verified

death status was available for all 57,027 cases. As a result, all individuals had at least partial

information regarding their peak COVID-19 severity classification.

Partial outcome information can be used to impute missing outcomes and inform estima-

tion of the exposure-response relationship. In Chapter 4, we develop a Bayesian multinomial

logistic regression model and multiple imputation approach for data with partially missing cat-

egorical outcomes. We estimate the association between long-term exposure to a mixture of
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two ambient air pollutants and temperature and COVID-19 peak severity in a Denver, Colorado

COVID-19 cohort. Just over 37% of cases had complete health outcome data, while nearly 63%

of cases had partially missing health outcome data. The development of a modeling approach

for partially missing health outcome data allows for a substantial increase in sample size, which

leads to improved estimation and power over a complete case analysis.

1.4 Outline

The remainder of this dissertation is organized as follows. In Chapter 2, we conduct a formal

simulation study evaluating five contemporary methods for estimating the association between

exposure to multipollutant mixtures and health outcomes. We evaluate the methods on their

ability to answer three specific epidemiological questions in a variety of exposure-response

function scenarios. Our simulation study shows that the best method depends on both the

data-generating mechanism and the primary research objective. We apply each method to es-

timate the association between lung function and a mixture of air pollutants and pesticides in

children with asthma in Fresno, California.

In Chapter 3, we develop an infinite hidden Markov model for analyzing multiple time series

of multivariate air pollution exposure data, where exposure values may be observed, missing at

random, or below the limit of detection. We estimate hidden state structures among multi-

ple time series to identify shared and unique activity patterns that give rise to pollutant expo-

sures and to inform missing exposure data imputation. In simulation and validation studies,

we demonstrate the estimation and imputation gains from our proposed method over inde-

pendent analyses of multiple time series, a model with no temporal structure, and fixed-state

approaches. We apply our proposed method to an analysis of 50 sampling days in the Fort

Collins Commuter Study. We impute missing exposure data for three pollutants and identify

time-activity patterns associated with the latent states.

We develop a Bayesian multinomial logistic regression model for data with partially miss-

ing categorical outcomes in Chapter 4. We develop a multiple imputation approach to im-
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pute missing health outcome data and demonstrate the estimation gains from our proposed

approach over complete case analyses in a variety of scenarios. We apply our method to a Den-

ver, Colorado COVID-19 cohort to estimate the association between long-term exposure to fine

particulate matter, ozone, and temperature and COVID-19 peak severity in a sample of 55,273

cases confirmed between March 6, 2020 and February 28, 2021. We propose a visualization ap-

proach to make inference on the odds ratio for each severity category that is associated with

exposures. We find that fine particulate matter is associated with an increased risk of severe

COVID-19. Our analysis also suggests possible interaction effects among the exposures.

We provide a summary in Chapter 5. We describe how our work has filled several gaps in

the literature regarding statistical methods for air pollution, and we propose future directions

for related research.
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Chapter 2

Model choice for estimating the association between

exposure to chemical mixtures and health outcomes:

A simulation study

2.1 Introduction

Individuals are continuously exposed to complex mixtures of environmental chemicals.

Mounting evidence from epidemiological studies links environmental exposures to increased

morbidity and mortality (Di et al., 2017a,b; Dockery and Pope, 1994; Dockery et al., 1993; Pan

et al., 2018). Traditional epidemiological studies have focused on a single pollutant and additive

models with a small number of exposures; however, studying pollutants in isolation can lead to

biased estimates (Slama and Vrijheid, 2015; Weisskopf et al., 2018) and does not reflect the real-

ity that people are jointly exposed to mixtures of pollutants. Hence, interest is rapidly growing

in studying health outcomes associated with simultaneous exposure to mixtures of pollutants

(i.e. multipollutant mixtures) (Dominici et al., 2010; Samet, 2005). The National Institute for En-

vironmental Health Sciences (NIEHS) identified the study of multipollutant mixtures as a goal

in its 2012-2017 strategic plan while noting that this will require novel quantitative approaches

(NIEHS, 2012). As such, numerous statistical methods have been proposed. There is a need to

identify the most appropriate statistical methods currently available for estimating health out-

comes associated with exposure to multipollutant mixtures (Hamra and Buckley, 2018; Taylor

et al., 2016).

Studying health outcomes associated with exposure to multipollutant mixtures is compli-

cated by small effect sizes, highly correlated exposures, possible nonlinear and interaction ef-

fects, and often small sample sizes. In this context, traditional regression methods are often

inadequate as they may yield biased or unstable estimates (Witte and Greenland, 1996) and
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have low power to detect effects, especially in the case of nonlinear associations and interac-

tions. Common methods designed for variable selection tend to incorrectly select predictors

when many predictors are highly correlated (Barrera-Gómez et al., 2017) and classical model

selection techniques ignore uncertainty in both the selected model and selected mixture com-

ponents when estimating the exposure-response function (Clyde, 2000; Hoeting et al., 1999).

In a broad literature review, Davalos et al. (2017) identified five classes of methods currently

used in mixtures analyses: additive main effects (AME), effect measure modification (EMM),

unsupervised dimension reduction (UDR), supervised dimension reduction (SDR), and non-

parametric (NP). AME and EMM methods are typically regression based. AME methods only

allow additive effects, while EMM methods include multiplicative interactions. Hierarchical

and penalized regression methods have been applied to AME and EMM models to identify im-

portant mixture components and improve precision (Carbajal-Arroyo et al., 2011; Herring, 2010;

Lenters et al., 2016; Roberts and Martin, 2005; Winquist et al., 2014). The next two groups are

dimension reduction techniques (UDR and SDR), which transform the exposure data to reduce

the dimension of the predictor and, therefore, the required parameter space. UDR methods

such as k-means (Austin et al., 2012; Zanobetti et al., 2014) transform exposure data without

regard to the health outcome (Pearce et al., 2014, 2015, 2016; Sacks et al., 2012). SDR methods,

including supervised principle components analysis (Roberts and Martin, 2006b), let the out-

come inform exposure data transformation (Carrico et al., 2015; Nikolov et al., 2007; Pachon

et al., 2012; Roberts and Martin, 2006a; Sun et al., 2013; Wold et al., 1984). Finally, NP methods

like Bayesian kernel machine regression (Bobb et al., 2015) are flexible data-driven techniques

for estimating a complex exposure-response function that may include interactions and non-

linear effects (Gass et al., 2014, 2015).

Choosing an appropriate statistical model depends on the research objectives (Braun et al.,

2016; Taylor et al., 2016) and requires understanding the empirical performance of methods.

Recent studies have compared several methods in subsets of the model classes described above.

Among those evaluated include linear regression AME (Agier et al., 2016) and EMM (Barrera-
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Gómez et al., 2017) methods, principle components analysis (Sun et al., 2013), structural equa-

tion models (Chiu et al., 2018), Bayesian kernel machine regression (Chiu et al., 2018), and

Bayesian semiparametric regression (Antonelli et al., 2020). These studies highlight challenges

induced by highly correlated data in estimating complex exposure-response functions and char-

acterizing uncertainty. To our knowledge, there has been no formal evaluation of methods from

all five classes identified by Davalos et al. (2017) in a single simulation study.

Evaluating the empirical performance of methods across a wide spectrum of model classes

is important as it guides researchers in choosing across classes of models and aids in interpret-

ing results and understanding the limitations of epidemiological studies using these methods.

In addition, the existing literature is sparse with regards to a comparison among Bayesian meth-

ods, which are favorable in the multipollutant setting as they can incorporate prior information

and fully characterize uncertainty (Gibson et al., 2019; Hamra and Buckley, 2018; Sun et al.,

2013). To this end, we focus on a comparison of Bayesian methods across a variety of model

classes in this paper. By comparing performance across classes of models, researchers can also

gain insight into promising future directions for statistical methods development.

Motivated by research linking mixtures of air pollutant and pesticide exposures to child res-

piratory health, we conducted a simulation study to compare contemporary methods devel-

oped for estimating the association between health outcomes and exposure to multipollutant

mixtures. We considered one method from each of the five classes identified by Davalos et al.

(2017) and evaluated each method in three data-generating scenarios. The data-generating

scenarios cover a range of linear to nonlinear functions of multiple pollutants with synergistic

effects on the response in order to test each method in its ability to estimate both simple and

complex exposure-response functions that may be encountered in practice.

In contrast to many recent studies that have compared methods from a conceptual stand-

point or compared their performance in the analysis of a single data set, the primary contribu-

tion of our work is to compare diverse methods in a simulation study addressing a variety of

research questions. Specifically, we quantified four aspects of model performance correspond-
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ing to previously identified epidemiological questions of interest: 1) how well does the model

estimate the exposure-response function, 2) can the model identify important mixture compo-

nents, 3) can the model identify components not associated with the outcome, and 4) can the

model identify interactions among exposures (Braun et al., 2016).

A secondary contribution of our work is to provide software for the tested methods that

currently lack software. Our simulation study describes the strengths and weaknesses of each

method and available software encourages practitioners to use the most appropriate methods

in a given application. Software in the form of the R package mmpack (Hoskovec, 2019) is avail-

able at github.com/lvhoskovec/mmpack to reproduce the simulation. Further, the software

allows researchers to easily conduct a simulation study using the same methods and simulated

exposure-response functions but substituting in their own exposure data which will have a dif-

ferent correlation structure and may result in different model performance. Hence, researchers

can determine which methods are most appropriate for their own study. Finally, we applied

each method to a data analysis of a cohort study investigating the relationship between air pol-

lutant and pesticide exposures and lung function in children with asthma. We describe the

differences in results among the methods, highlighting the importance of model choice.

2.2 Data

2.2.1 Health Data

This study was approved by the Institutional Review Board of Colorado State University, Pro-

tocol Number 19-9437H. This was a secondary data analysis from a closed cohort with all per-

sonal identifying information stripped from the database. We used data from Fresno Asthmatic

Children’s Environment Study (FACES). The study design, including recruitment, eligibility cri-

teria, and measurement procedures, is described elsewhere (Gale et al., 2012; Mann et al., 2010;

Margolis et al., 2009; Mortimer et al., 2008; Noth et al., 2011; Padula et al., 2015). FACES includes

data for children aged 6-11 years with asthma symptoms at the time of enrollment and living

within a 20 kilometer radius of one of Fresno‘s EPA air quality monitoring sites. The health out-
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come of interest was baseline forced expiratory volume in the first second (FEV1) measured via

spirometry. We regressed FEV1 on age, sex, height and ethnicity and used the residuals as the

outcome in our data analysis (Benka-Coker et al., 2020; Raanan et al., 2016; Van Sickle et al.,

2011). Age, sex, height, and ethnicity are well-known predictors of FEV1 so we remove all varia-

tion from these predictors before looking into the effects of air pollution and pesticide exposure

on FEV1. Other covariates have not been as well studied regarding their association with FEV1

and are included in the model as potential confounding variables. Complete exposure, health,

and covariate data were available for 153 children.

The data contain information on covariates and potential confounding variables. We in-

cluded average temperature and precipitation over three months, the temporal scale of the

pesticide exposure data, prior to baseline as covariates. Subject-specific covariates include

body mass index (BMI, kg/m2) and indicators for: self-reported residence within one block of a

freeway, any smoking in the home, positive atopy or allergy test, modified Global Initiative for

Asthma (GINA) score ≥ 3 at baseline, household income greater than $30K/year, mother having

post-secondary education, child not covered by insurance, and season of baseline spirometry

test. Temperature, precipitation, and BMI were scaled to have mean 0 and variance 1. Ap-

proximately 1% of the covariate data was missing, including any smoking in the home (16%),

household income (3%), and mother having post-secondary education (1%). As all covariates

with missing data were binary variables, we singly imputed the missing values with 0 and then

added a dummy variable for each covariate with any missing data that indicated which values

of that covariate were missing. We summarize the demographic characteristics of the sample

in Appendix A.1 (Table A.1).

2.2.2 Air Pollution and Pesticide Data

We obtained air pollution data from the EPA Air Quality System Data Mart. Air pollutant

concentrations were calculated as 24-hour averages for particles ≤ 2.5 µm in aerodynamic di-

ameter (PM2.5) and particles ≤ 10 µm in aerodynamic diameter (PM10), 8-hour daily maximum
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levels for ozone (O3) and one-hour daily maximum levels for nitrogen dioxide (NO2) (Mann

et al., 2010). Concentrations were taken from the air monitoring site closest to each child’s res-

idence and exposure levels were summarized as averages over three months prior to baseline

spirometry tests to be consistent with available pesticide exposure data. Due to right-skewed

distributions, air pollutant exposures were square-root transformed and then scaled to have

mean 0 and variance 1.

We obtained data on the date, location, and amount (kilograms) of applied agricultural pes-

ticides from the California Pesticide Use Report (PUR) (California Department of Pesticide Reg-

ulation, 2015). Based on previous evidence linking pesticide exposure to respiratory illness (Bu-

lathsinghala and Shaw, 2014; Colovic et al., 2013), we considered three pesticide classes: carba-

mates (C), methyl bromide (MeBr), and organophosphates (OP). Pesticide exposures were es-

timated using the purexposure (Severson, 2019) package in R. We applied inverse distance

weighting to the total reported pesticide amount over three months prior to baseline spirom-

etry tests (as PUR reports are aggregated quarterly) to estimate exposures within a 3km buffer

of each child’s residence. Pesticide exposures were also highly skewed and so were square-root

transformed and then scaled to have mean 0 and variance 1.

Exposure data summary statistics are shown in Table 2.1, and Spearman correlations among

exposures are shown in Table 2.2. Strong Spearman correlation existed between NO2 and PM2.5

(ρ = 0.88) and between NO2 and PM10 (ρ = 0.72). Moderate Spearman correlation existed be-

tween PM2.5 and PM10 (ρ = 0.67), O3 and NO2 (ρ = -0.63), O3 and PM2.5 (ρ = -0.54), O3 and OP

(ρ = 0.53), and OP and NO2 (ρ = -0.53).
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Table 2.1: Pesticide and air pollutant exposure data summary statistics. Table shows mean, standard

deviation (SD), minimum, 25th percentile, median, 75th percentile, and maximum concentration for

each exposure.

mean SD min 25th median 75th max

C × 106 (kg/3km2) 0.15 0.33 0.00 0.00 0.00 0.15 2.35

MeBr × 106 (kg/3km2) 3.88 9.90 0.00 0.00 0.00 0.00 48.92

OP × 106 (kg/3km2) 0.93 1.08 0.00 0.00 1.11 1.17 5.40

O3 (ppb) 0.04 0.01 0.01 0.03 0.04 0.04 0.06

NO2 (ppb) 15.48 3.26 9.49 12.64 14.42 17.96 23.07

PM2.5 (µg/m3) 16.35 9.80 6.66 10.14 11.23 18.20 40.21

PM10 (µg/m3) 37.89 10.68 19.55 30.30 32.49 47.23 65.94

Table 2.2: Spearman correlation among all pairs of air pollutant and pesticide exposures.

MeBr OP O3 NO2 PM2.5 PM10

C 0.27 0.12 0.09 0.08 0.06 0.01

MeBr -0.08 0.02 0.07 -0.03 -0.13

OP 0.53 -0.53 -0.38 -0.24

O3 -0.63 -0.54 -0.22

NO2 0.88 0.72

PM2.5 0.67

2.3 Statistical Methods

Our primary interest was to estimate the association between exposures to p pollutants

xi = (xi 1, . . . , xi p )T and a continuous outcome yi , while controlling for q potential confounders

wi = (wi 1, . . . , wi q )T in a sample i = 1, . . . ,n. We considered five recently proposed methods. The

first two are the AME model nonparametric Bayes shrinkage with main effects only (NPBr) and

the EMM model nonparametric Bayes shrinkage with main effects and all pairwise multiplica-

tive interactions (NPB) as proposed by Herring (2010). The next two models are unsupervised

(UPR) and supervised Bayesian profile regression (SPR) as proposed by Molitor et al. (2010). The

fifth is the NP model Bayesian kernel machine regression (BKMR) (Bobb et al., 2015). We chose
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these methods since they represent the five classes identified by Davalos et al. (2017) and are

recently developed Bayesian methods for estimating health outcomes associated with exposure

to multipollutant mixtures. These five methods cover a variety of exposure-response function

shapes, handle multicollinearity in various ways, and include options for variable selection.

BKMR is presented exactly as proposed by Bobb et al. (2015); NPB and SPR have been modified

to accommodate a continuous outcome with normal residuals rather than the logistic model

originally proposed by Herring (2010) and Molitor et al. (2010), respectively; and NPBr and UPR

are further modifications of those previously introduced methods. For a baseline comparison,

we also included a normal linear model with main effects only (LM) and with all pairwise inter-

actions (LM-int), both estimated with least squares. All models considered in this paper have

the form

yi = h(xi )+wT
i γ+ǫi , (2.1)

where ǫi are independent N(0,σ2) and h(xi ) represents the exposure-response function. All

models were fit in R version 3.6.0 (R Core Team, 2018).

2.3.1 Nonparametric Bayes Shrinkage

Nonparametric Bayes shrinkage (Herring, 2010) was originally introduced as a logistic re-

gression EMM model and was adapted to the linear regression setting used here. We consider

two variations. NPB, originally proposed by Herring (2010), is an EMM model including main

effects and all pairwise interactions, where

h(xi ) =
p∑

j=1

xi jβ j +

p−1∑

j=1

p∑

k= j+1

xi j xi kζ j k . (2.2)

NPBr is a reduced AME model not originally proposed in Herring (2010) that includes only main

effects. In NPBr, the exposure-response function is

h(xi ) =
p∑

j=1

xi jβ j . (2.3)
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The prior distributions on the intercept (γ0), regression coefficients for covariates (γ), and error

precision (σ−2) are

γ0 ∼ N (µ0,κ2
0) (2.4)

γ|µγ,κ2
∼ N(µγ,κ2I) (2.5)

σ−2
∼ Gamma(ασ,βσ). (2.6)

Both models place a Dirichlet Process (DP) prior on the exposure regression coefficients.

The base distribution of the DP is a finite mixture of a normal distribution and a point mass

at 0 to induce sparsity in the model. Hence, some coefficients are set exactly to 0, effectively

selecting out variables that do not contribute to the health outcome. Correlated exposures can

be clustered and assigned equal regression coefficients to reduce variance (Dunson et al., 2008;

Herring, 2010). This effectively reparameterizes the model to have a single effect for the sum

of two correlated predictors and is particularly advantageous in situations where it is difficult

to differentiate the effects of two highly correlated predictors. The DP prior for main effects is

constructed as

β j |D1 ∼ D1, j = 1, . . . p (2.7)

D1|α1,D01 ∼ DP(α1D01)

D01|π01,G1 = π01δ0 + (1−π01)G1

G1|µ1,φ2
1 ≡ N(µ1,φ2

1),

where δ0 represents the Dirac delta function at 0. The model is completed with standard hyper-

priors α1 ∼ Gamma(αα1,βα1), π01 ∼ Beta(απ1,βπ1), µ1 ∼ N(0,σ2
µ1), and φ−2

1 ∼ Gamma(αφ1,βφ1).
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The DP prior for interactions is similarly constructed. Specifically,

ζ j k |D2 ∼ D2, j = 1, . . . p −1&k = j +1, . . . , p (2.8)

D2|α2,D02 ∼ DP(α2D02)

D02|π02,G2 = π02δ0 + (1−π02)G2

G2|µ2,φ2
2 ≡ N(µ2,φ2

2).

The hyperpriors on α2, π02, µ2, and φ−2
2 come from the same families specified for the main

effects. The distributions on the main effects and interactions are independent a priori.

To sample from the posterior distribution, we introduce latent allocation variables. For

main effects, we introduce the variable S such that S j = c ⇔ β j = θc . Hence, the variable S

is used to cluster regression coefficients. Let K denote the number of clusters, or unique re-

gression coefficients, including the null group. We describe the DP prior on each β j by taking

limK→∞ of

β j |S j = c,θc ∼ δθc
(2.9)

θc ∼ G1

G1 ≡ N(µ1,φ2
1)

S j |π01,π ∼ Categorical(π01, (1−π01)π1, . . . , (1−π01)πK−1) ,
K−1∑
c=1

πc = 1

π01 ∼ Beta(απ1,βπ1)

π|α1 ∼ Dirichlet
( α1

K −1
, . . . ,

α1

K −1

)

α1 ∼ Gamma(αα1,βα1),

where δθc
denotes the Dirac delta function at the value θc , and π= (π1, . . . ,πK−1) are the assign-

ment probabilities for the K −1 non-null clusters for main effects. Let S( j ) denote all allocation

variables except the j th one. Let c = 0 denote the null cluster and c 6= 0 denote a non-null clus-

ter. Let p
( j )
0 represent the number of main effect regression coefficients assigned to the null
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cluster excluding the j th coefficient, and let p
( j )
c represent the number of main effect regression

coefficients assigned to the c th cluster excluding the j th coefficient. The prior distribution for

the allocation variable S j , conditional on S( j ), is

P (S j = c|S( j )) =





(
p

( j )
0 +απ1

p+απ1+βπ1−1

)
, c = 0

(
p−p

( j )
0 +βπ1−1

p+απ1+βπ1−1

)(
p

( j )
c

p+α1−p
( j )
0 −1

)
, c 6= 0∩p

( j )
c 6= 0

(
p−p

( j )
0 +βπ1−1

p+απ1+βπ1−1

)(
α1

p+α1−p
( j )
0 −1

)
, c 6= 0∩p

( j )
c = 0.

(2.10)

In (2.10), the first line represents the assignment probability to the null cluster, the second line

represents the assignment probability to an existing occupied cluster, and the third line repre-

sents the assignment probability to a new unoccupied cluster.

For interactions in NPB, we introduce an allocation variable Q such that Q j k = z ⇔ ζ j k =ψz .

Let M denote the number of clusters for the interaction regression coefficients, including the

null group. We describe the DP prior on each ζ j k by taking limM→∞ of

ζ j k |Q j k = z,ψz ∼ δψz (2.11)

Q j k |π02,π∗
∼ Categorical

(
π02, (1−π02)π∗

1 , . . . , (1−π02)π∗
M−1

)
,

M−1∑
z=1

π∗
z = 1

ψz ∼ G2

G2 ≡ N(µ2,φ2
2)

π02 ∼ Beta(απ2,βπ2)

π∗
|α2 ∼ Dirichlet

( α2

M −1
, . . . ,

α2

M −1

)

α2 ∼ Gamma(αα2,βα2),

where π∗ =
(
π∗

1 , . . . ,π∗
M−1

)
are the assignment probabilities for the M −1 non-null clusters for

interactions. Let Q( j k) denote all allocation variables except Q j k . Let r be the number of 2-

way interactions
(
r =

p(p−1)

2

)
. Then r

( j k)
0 is the number of interaction regression coefficients

assigned to the null cluster excluding the interaction term between the j th and k th pollutants
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(i.e. the j k th term), and r
( j k)
z is the number of interaction regression coefficients assigned to

the z th cluster excluding the j k th coefficient. The prior distribution on the allocation variable

Q j k , conditional on Q( j k), is

Pr (Q j k = z|Q( j k)) =





(
r

( j k)
0 +απ2

r+απ2+βπ2−1

)
, z = 0

(
r−r

( j k)
0 +βπ2−1

r+απ2+βπ2−1

)(
r

( j k)
z

r+α2−r
( j k)
0 −1

)
, z 6= 0∩ r

( j k)
z 6= 0

(
r−r

( j k)
0 +βπ2−1

r+απ2+βπ2−1

)(
α2

r+α2−r
( j k)
0 −1

)
, z 6= 0∩ r

( j k)
z = 0.

(2.12)

We use a blocked Gibbs sampler for efficient mixing of the posterior distribution. Let β

denote the p × 1 vector of main effect regression coefficients and let θ denote the (K − 1)× 1

vector of unique non-null main effect regression coefficients. At each iteration of the MCMC

sampler, we create a p × (K −1) binary allocation matrix, T1, that identifies to which θc each β j

belongs. If a regression coefficient falls in the null cluster, then it has zeros for all elements in

its row. Similarly for interactions, let ζ denote the vector of r interaction regression coefficients

and let ψ denote the (M −1)×1 vector of unique non-null interaction regression coefficients.

At each iteration, we create the r × (M −1) binary allocation matrix, T2, that identifies to which

ψz each ζ j k belongs. Finally, let X denote the n×p matrix of exposure data, Z the n×r matrix of

pairwise multiplicative interactions between elements in X, and W the n×q matrix of covariate

data. We define the block parameters

A = (XT1,ZT2,1,W)

∆
T

= (θ,ψ,γ0,γ)

Σ
−1

= diag
(
φ−2

1 , · · · ,φ−2
1 , φ−2

2 , · · · ,φ−2
2 ,κ−2

0 ,κ−2, · · · ,κ−2
)

mT
= (µ1, . . . ,µ1,µ2, . . . ,µ2,µ0,µγ).

The parameter Σ−1 is a (K +M +q −1)-dimensional diagonal matrix where the first K −1 diag-

onals are φ−2
1 , the next M −1 diagonals are φ−2

2 , the K +M −1 diagonal is κ−2
0 , and the final q
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diagonals are κ−2. The parameter m is a (K +M +q−1)-dimensional vector where the first K −1

elements are µ1, the next M − 1 elements are µ2, the K + M − 1 element is µ0, and the final q

elements are defined by the vector µγ. We sample all exposure (main effect and interaction, if

applicable) and covariate regression coefficients as a block from

∆|· ∼ N
(
(σ−2AT A+Σ

−1)−1(σ−2AT y+Σ
−1m), (σ−2AT A+Σ

−1)−1
)

.

We sample the error precision from

σ−2
|· ∼ Gamma

(
ασ+

n

2
,βσ+

1

2

(
y−A∆

)T (
y−A∆

))
.

We sample the DP base distribution parameters for main effects and interactions from

µ1|· ∼ N

(
φ−2

1

∑K−1
c=1 θc

(K −1)φ−2
1 +σ−2

µ1

,
1

(K −1)φ−2
1 +σ−2

µ1

)

φ−2
1 |· ∼ Gamma

(
αφ1 +

K −1

2
,βφ1 +

1

2
(θ−µ11)T (θ−µ11)

)

µ2|· ∼ N

(
φ−2

2

∑M−1
c=1 ψc

(M −1)φ−2
2 +σ−2

µ2

,
1

(M −1)φ−2
2 +σ−2

µ2

)

φ−2
2 |· ∼ Gamma

(
αφ2 +

M −1

2
,βφ2 +

1

2
(ψ−µ21)T (ψ−µ21)

)
.

We sample the DP concentration parameter α1 for main effects from

η ∼ Beta(α1 +1, p)

πη =
(αα1 +K −1)/(p(βα1 − log(η))

(αα1 +K −1)/(p(βα1 − log(η))+1

α1|· ∼ πη∗Gamma
(
αα1 +K ,βα1 + log(η)

)
+

(1−πη)∗Gamma
(
αα1 +K −1,βα1 − log(η)

)
.
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We sample the DP concentration parameter α2 for interactions from

η2 ∼ Beta(α2 +1,r )

πη2 =
(αα2 +M −1)/(r (βα2 − log(η2))

(αα2 +M −1)/(r (βα2 − log(η2))+1

α2|· ∼ πη2 ∗Gamma
(
αα2 +M ,βα2 + log(η2)

)
+

(1−πη2)∗Gamma
(
αα2 +M −1,βα2 − log(η2)

)
.

To update the allocation variables, S, for main effects, we calculate the proportional probabili-

ties

P (S j = 0|rest) ∝

(
p

( j )
0 +απ

p +απ+βπ−1

)
f (y |β( j ),β j = 0,σ2)

P (S j = c|rest) ∝

(
p −p

( j )
0 +βπ−1

p +απ+βπ−1

)(
p

( j )
c

p +α1 −p
( j )
0 −1

)
f (y |β( j ),β j = θc ,σ2)

P (S j = c∗|rest) ∝

(
p −p

( j )
0 +βπ−1

p +απ+βπ−1

)(
α1

p +α1 −p
( j )
0 −1

)
(2π)−

n
2 (σ−2)

n
2 (φ−2)

1
2

× (σ−2
n∑

i=1

(xi j )2
+φ−2)−

1
2

× exp
{
−

1

2

[
σ−2

n∑

i=1

(
yi −γ0 −x

( j )T

i
β( j )

−zi
Tζ−wi

Tγ
)2

+φ−2µ2
−

(
σ−2 ∑n

i=1(yi −γ0 −x
( j )T

i
β( j )

−zi
Tζ−wi

Tγ)(xi j
)+φ−2µ

)2

σ−2
∑n

i=1(xi j )2 +φ−2

]}
,

for all currently occupied clusters c and a single new unoccupied cluster c∗. We sample the

allocation variables from a normalized multinomial distribution using the above probabilities.

The allocation variables Q for interactions are updated similarly.
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If the j th main effect regression coefficient is assigned to a new cluster c∗ then we draw a

new coefficient θ∗ from

µθ =
σ−2 ∑n

i=1(yi −γ0 −x
( j )T

i
β( j )

−zi
Tζ−wi

Tγ)(xi j
)+φ−2

1 µ1

σ−2
∑n

i=1(xi j
)2 +φ−2

1

Σθ =
1

σ−2
∑n

i=1(xi j
)2 +φ−2

1

θ∗|· ∼ N(µθ,Σθ).

Similarly, if the j k th interaction regression coefficient is assigned to a new cluster z∗ then we

draw a new coefficient ψ∗ from

µψ =
σ−2 ∑n

i=1(yi −γ0 −xT
i
β−zi

( j k)T
ζ( j k)

−wi
Tγ)(zi j k

)+φ−2
2 µ2

σ−2
∑n

i=1(zi j k
)2 +φ−2

2

Σψ =
1

σ−2
∑n

i=1(zi j k
)2 +φ−2

2

ψ∗
|· ∼ N(µψ,Σψ).

Posterior inclusion probabilities (PIPs) are calculated for each mixture component as the

posterior probability of the regression coefficient being assigned a non-zero value. Both NPBr

and NPB were fit using the R package mmpack (Hoskovec, 2019).

2.3.2 Bayesian Profile Regression

Bayesian profile regression is a dimension reduction approach that classifies pollutant ex-

posure profiles, xi , into a parsimonious set of clusters using a DP mixture model (DPMM) (Moli-

tor et al., 2010, 2011). Each cluster represents a group of observations with similar exposure

levels across the vector of pollutants. The health outcome is regressed on cluster indicators to

estimate health risks associated with each cluster. We model the health outcome yi as

yi |zi = c,θ,γ,σ2
∼ N(θc +wT

i γ,σ2),
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where zi = c is a latent variable indicating that exposure profile i is assigned to cluster c, and θc

is a cluster-specific intercept. Hence, the exposure-response function is constant for all subjects

in the same cluster. That is,

h(xi ) = θc (2.13)

if profile xi is assigned to cluster c. Conditional on cluster assignment, the model for an indi-

vidual exposure profile is

xi |zi = c,µc ,Σc ∼ N(µc ,Σc ) (2.14)

µc ∼ N(ν0,Λ0)

Σ
−1
c ∼ Wishp(R,r ).

The DPMM for cluster assignment places a truncated stick-breaking prior on the assignment

probabilities to each cluster. The stick-breaking process and cluster assignment model are

V1, . . . ,VC−1|α ∼ Beta(1,α), VC = 1 (2.15)

α ∼ Gamma(αα,βα)

P (zi = c) =ψc = Vc

c−1∏

h=1

(1−Vh)

zi ∼ Categorical(ψ).

Subject to a maximum of C clusters, the DPMM allows the number of non-empty clusters to

be estimated from the data. To identify the most optimal partitioning of the data, we follow

the approach described in Dahl (2006) and Molitor et al. (2010). First, we construct an n ×n

score matrix at each iteration with a 1 in the i , j location if individuals i and j belong to the

same cluster and a 0 otherwise. Then we calculate a probability matrix S by averaging the score

matrices. The most optimal clustering is the clustering from the MCMC iteration that has a

score matrix with minimum least squared distance to the probability matrix S. We calculate
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model averaged estimates of the cluster-specific parameters θc to incorporate the uncertainty

present in the best clustering (Molitor et al., 2010).

We complete the model with the following prior distributions. For clusters c = 1, . . . ,C , the

prior distribution on the cluster intercepts is

θc |κ
−2
c ∼ N(0,κ2

c )

κ−2
c ∼ Gamma(ακ,βκ).

The prior distributions on the covariate regression coefficients (γl , l = 1, . . . , q), and error preci-

sion (σ−2) are

γl |φ
−2
l ∼ N(0,φ2

l ) l = 1, . . . q

φ−2
l ∼ Gamma(αφ,βφ)

σ−2
∼ Gamma(ασ,βσ).

We consider two variations of profile regression. The first, supervised profile regression

(SPR), originally introduced by Molitor et al. (2010) belongs to the SDR class of methods since

cluster assignments are influenced by the health outcome. The second is an unsupervised

adaptation (UPR) not originally proposed by Molitor et al. (2010) that belongs to the UDR class.

The difference between the two variations manifests when the latent cluster assignment vari-

able zi is updated. In the supervised case, we jointly model the response and cluster assign-

ments. Feedback between the health outcome model and the profile assignment model allow

the health outcomes to influence cluster assignment. In SPR, the full conditional for zi depends

on both the likelihood of exposures and the likelihood of the response and is calculated as

P (zi = c|xi , yi , ·) =
ψc f (xi |zi = c,µc ,Σc ) f (yi |zi = c,θc ,β,σ2)

∑C
c=1ψc f (xi |zi = c,µc ,Σc ) f (yi |zi = c,θc ,β,σ2)

. (2.16)
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Hence, individuals with similar exposure profiles may be assigned to different clusters if they

have different health outcomes.

The unsupervised case involves a two-step procedure where we first estimate cluster as-

signments independently of the response and then model the response conditional on cluster

assignment. In UPR, the full conditional for zi depends only on the exposure likelihood and is

calculated as

P (zi = c|xi , ·) =
ψc f (xi |zi = c,µc ,Σc )

∑C
c=1ψc f (xi |zi = c,µc ,Σc )

. (2.17)

Since the response does not inform cluster assignment in UPR, there may be high uncertainty

in the estimates of the cluster indicators θc if individuals with similar exposure profiles have

very different health outcomes but are assigned to the same cluster.

We implement a blocked Gibb’s sampler for posterior computation. At each iteration of the

MCMC sampler, we create the n×C binary matrix Z indicating to which cluster each individual

exposure profile belongs. We can then write the response model as

y|Z,θ,γ,σ2
∼ N

(
Zθ+Wγ,σ2I

)
,

where y is the vector of health outcomes for individuals i = 1, . . . ,n, θ is the C × 1 vector of

cluster-intercepts, W is the n ×q matrix of covariate data, and γ is the q ×1 matrix of covariate

regression coefficients. We define the block parameters

A = (Z,W)

δT
= (θ,γ)

τ−2
= diag

(
κ−2

1 , · · · ,κ−2
C ,φ−2

1 , · · · ,φ−2
q

)
,

where τ−2 is a (C + q)-dimensional diagonal matrix of precision parameters for the cluster in-

tercepts and covariates. Additionally, nc is the number of individual exposure profiles currently
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allocated to cluster c and x̄c = ( 1
nc

∑nc

i=1
xi 1, . . . , 1

nc

∑nc

i=1
xi p ) is the vector of empirical exposure

means for individuals currently in cluster c. We sample cluster intercepts and covariate regres-

sion coefficients as a block from

δ|· ∼ N
(
(σ−2AT A+τ−2I)−1(σ−2AT y), (σ−2AT A+τ−2I)−1

)
.

For c = 1, . . . ,C , we sample the cluster-specific exposure means and variances from

µc |· ∼ N
(
[ncΣ

−1
c +Λ

−1
0 ]−1[ncΣ

−1
c x̄c +Λ

−1
0 ν0], [ncΣ

−1
c +Λ

−1
0 ]−1

)

Σ
−1
c |· ∼ Wishp

(
[R−1

+
∑

i :zi=c

(xi −µc )(xi −µc )T ]−1,nc + r

)
.

We sample the stick-breaking process parameters from

Vc |· ∼ Beta

(
nc +1,α+n −

c∑

k=1

nk

)
, c = 1, . . . ,C −1

α|· ∼ Gamma

(
αα+C −1,βα−

C−1∑
c=1

log(1−Vc )

)
.

We sample the precision parameters from

κ−2
c |· ∼ Gamma

(
ακ+

C

2
,βκ+

1

2
θTθ

)
, c = 1, . . . ,C

φ−2
l |· ∼ Gamma

(
αφ+

q

2
,βφ+

1

2
γTγ

)
, l = 1, . . . , q

σ−2
|· ∼ Gamma

(
ασ+

n

2
,βσ+

1

2
(y−Aδ)T (y−Aδ)

)
.

The model has been extended to include variable selection to identify mixture components

actively contributing to cluster assignment (Chung and Dunson, 2009; Liverani et al., 2015; Pap-

athomas et al., 2012). Briefly, binary random variables are introduced that indicate whether the

mean for a mixture component within a cluster is unique to that cluster or common among all

clusters. Hence, mixture components that are selected into the model are interpreted as being
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informative in partitioning the exposure data into clusters, but are not necessarily related to the

health outcome. For exposures j = 1, . . . , p, the variable selection model is

µ∗
c, j = πc, jµc, j + (1−πc, j )x̄ j

πc, j |ρ j ∼ Bernoulli(ρ j )

ρ j |ω j ∼ I (ω j = 0)δ0(ρ j )+ I (ω j = 1)Beta(αρ,βρ)

ω j ∼ Bernoulli(0.5),

where the binary variable πc, j determines if exposure j informs the clustering of exposures

profiles into cluster c and x̄ j is the empirical mean for exposure j . If πc, j = 0 then the em-

pirical mean of exposure j replaces the cluster-specific mean for exposure j for all clusters;

hence, exposure j does not inform the clustering. When variable selection is implemented,

µ∗
c = (µ∗

c,1, . . . ,µ∗
c,p ) replaces µc for c = 1, . . . ,C in the likelihood in (2.14) and in all parameter

updates that depend on µc .

To sample the parameters for variable selection, we introduce the following notation: n{π j=1}

is the number of clusters in which the variable selection indicator variable π j ,c for the j th expo-

sure is equal to 1, C∗ is the number of non-empty clusters, σ2
c, j

is the ( j , j )th element of Σc , λ j is

the j th diagonal element of Λ, ν j is the j th element of ν, and Πc is a diagonal matrix with diag-

onal elements πc,1, . . . ,πc,p . We integrate over µc, j to update πc, j for c = 1, . . . ,C and j = 1, . . . , p.
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We update the variable selection parameters by

P (ω j = 1|
∑

c

πc, j > 0, ·) = 1

P (ω j = 0|
∑

c

πc, j = 0, ·) ∝ P (ω j = 0) = 0.5

P (ω j = 1|
∑

c

πc, j = 0, ·) ∝

(Γ(αρ+βρ)Γ(βρ+C∗)

Γ(βρ)Γ(αρ+βρ+C∗)

)
(0.5)

P (ρ j = 0|ω j = 0, ·) = 1

ρ j |ω j = 1, · ∼ Beta(n{π j=1} +αρ,C∗
−n{π j=1} +βρ)

P (πc, j = 1|·) ∝ (2π)−
nc
2 (σ2

c, j )−
nc
2 ρ jλ

−
1
2

j
exp

{
−

1

2

[∑
i :zi=c x2

i , j

σ2
c, j

+
ν2

j

λ j

]}
×

exp





1

2

( nc

σ2
c, j

+
1

λ j

)



∑
i :zi =c xi , j

σ2
c, j

+
ν j

λ j

nc

σ2
c, j

+
1
λ j




2


(
nc

σ2
c, j

+
1

λ j

)− 1
2

P (πc, j = 0|·) ∝
∏

i :zi=c

f (xi j |x̄ j ,σ2
c, j )(1−ρ j )

µ∗
c |· ∼ N

(
Σ̃

[
Λ

−1ν+ncΠcΣ
−1
c (x̄c − (I −Πc )x̄)

]
,Σ̃

)
,

where Σ̃=
[
ncΠcΣ

−1
c Πc +Λ

−1
]−1

.

We fit SPR using theR packagePReMiuM (Liverani et al., 2015) and UPR using theR package

mmpack (Hoskovec, 2019) developed for this paper.

2.3.3 Bayesian Kernel Machine Regression

Bayesian kernel machine regression (BKMR) (Bobb et al., 2015) belongs to the NP class of

methods and flexibly models the exposure-response function to allow for nonlinear associa-

tions and higher order interactions. In BKMR, h(x) is a smooth function represented using a

Gaussian kernel. The response is modeled as

yi ∼ N (hi +wT
i γ,σ2) (2.18)

h ≡ (h1, . . . ,hn)T
∼ N (0,τK),
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where K is the kernel matrix with (i , i ′) element K(xi ,xi ′) = exp{−
∑p

j=1
r j (xi j − xi ′ j )2}, τ is a hy-

perparameter, and r =
(
r1, . . . ,rp

)T
are variable selection parameters. Estimated health out-

comes for individuals with similar exposure levels across the p predictors are shrunk towards

each other, resulting in a smooth but flexible exposure-response function.

BKMR allows for both component-wise and hierarchical variable selection (HVS) to identify

important mixture components. For inference in our simulation study and data analysis, we

implemented component-wise variable selection and calculated PIPs for each exposure. In our

data analysis, we also implemented HVS to address sensitivity of results. We partitioned the

mixture components into groups of air pollutants (PM2.5, PM10, NO2, and O3) and pesticides

(C, MeBr, and OP) and calculated PIPs for each group (group PIPs) and each component within

a group, conditional on group inclusion (conditional PIPs). We fit BKMR using the R package

bkmr (Bobb, 2017). We refer to Bobb et al. (2015) and Bobb et al. (2018) for details on imple-

menting BKMR.

2.3.4 Simulation Study Design

We evaluated the proposed methods in a simulation study. We ensured a realistic correla-

tion structure among the pollutants by using the observed exposure data from 153 individuals

in the FACES data set in our simulation study. We also used the observed covariate data in

our simulation study. Health responses were simulated for three exposure-response scenarios,

denoted hk , k = 1,2,3, as yi = hk (xi )+wT
i
γ+ εi , with εi ∼ N(0,1). The covariate coefficients

γ1, . . . ,γq were simulated as independent N(0,1).

The first scenario, h1 (linear), is an EMM model. For exposures x j , j = 1, . . . ,4, the exposure-

response function is

h1(x) = x1 −x2 +x3 −x4 +0.7x1x2 −0.5x3x4. (2.19)
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Second, h2 (nonlinear) includes nonlinear sigmoidal functions of three pollutants and a multi-

plicative interaction between two of those pollutants:

h2(x) =
2

1+exp(−3x1)
+

2

1+exp(−5x2)
−

2

1+exp(−5x3)
−0.4x1x2. (2.20)

Last, h3 (fixed profiles) groups individuals into four distinct clusters based on dichotomous cut-

offs for two pollutants. We assign a constant health effect to individuals in the same cluster:

h3(x) =





−2, x1 ≤ median(x1) and x2 ≤ median(x2)

−1, x1 ≤ median(x1) and x2 > median(x2)

0, x1 > median(x1) and x2 ≤ median(x2)

2, x1 > median(x1) and x2 > median(x2).

(2.21)

We selected these three exposure-response scenarios to cater to different methods in our

simulation study. The linear scenario plays to NPBr and NPB, the nonlinear scenario plays to

BKMR, and the fixed profiles scenario plays to UPR and SPR. We hypothesize that the methods

to which each scenario caters will perform best in that scenario. We are interested in evalu-

ating how methods perform in exposure-response scenarios for which they were not explicitly

developed.

We simulated 200 data sets for each scenario and fit all five Bayesian methods plus LM and

LM-int. As results can be sensitive to which pollutants, x j , j = 1, . . . ,4, are included in h(x),

we randomly selected pollutants to be the active components in each simulated data set. All

pollutants, even those not selected as one of the active components, are included as inputs

in the estimated models. By randomly selecting which exposures are the active components

of the mixture, each simulated data set has a different correlation structure among the active

exposures, which adds robustness to our simulation study results.

To measure the grouping structure of the data generated by the fixed profiles scenario, we

calculated the Calinski-Harabasz index (Caliński and Harabasz, 1974), the silhouette statistic
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(Rousseeuw, 1987), and the number of clusters to maximize the gap width (Tibshirani et al.,

2001). Since the active mixture components differ for each simulated data set, the clustering

of the data in the fixed profiles scenario differs for each data set. Across the 200 data sets used

in our simulation study, the median Calinski-Harabasz index was 22.54, the median silhouette

was 0.15, and the median number of clusters to maximize the gap width was 6. The distribu-

tion of each of these statistics can be found in Appendix A.3 (Table A.2). In general, the fixed

profiles scenario did not always generate a strong grouping structure with this data, but instead

represents a wide variety of clustering schemes.

We evaluated exposure-response function estimation using root mean squared error (RMSE)

and interval coverage (Cvg). RMSE was calculated as

√
1
n

∑n
i=1

[
h(xi )− ĥ(xi )

]2
and coverage was

calculated as the percent of h(xi )’s covered by 95% credible or confidence intervals. RMSE mea-

sures the variation between estimated and true values of the exposure-response function. Cov-

erage measures how often the 95% credible or confidence intervals for the estimated exposure-

response function capture the true mixture effect. A method with high RMSE and low coverage

fails to capture the overall mixture effect. In this way, RMSE and coverage measure the ability of

each method to capture the overall mixture effect.

We summarized variable selection through true and false selection rates. In the Bayesian

methods, we consider a variable with a PIP above 0.5 as selected into the model (Barbieri and

Berger, 2004). In LM and LM-int, a variable is selected if the 95% confidence interval for the

respective regression coefficient does not contain 0. We calculated true selection rate (TSR) as

the proportion of mixture components active in the exposure-response function as main effects

that were selected into the model as main effects, and false selection rate (FSR) as the propor-

tion of mixture components not in the exposure-response function as main effects that were

selected into the model as main effects. All seven exposures are included in the models as in-

puts, but the active mixture components are those that define the exposure-response function

for each simulated data set. For scenario 1, the active main effects are the randomly selected

exposures denoted by x1, x2, x3, and x4; for scenario 2, the active main effects are x1, x2, and
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x3; and for scenario 3 the active main effects are x1 and x2. In most methods (NPBr, UPR, SPR,

BKMR, and LM), TSR and FSR are calculated only for main effects. In NPB we can calculate

PIPs for interactions and in LM-int we can calculate confidence intervals for the interaction

effects. Hence, we also evaluate variable selection rates for interactions in NPB and LM-int.

We calculate true selection rate for interactions (TSRint) as the proportion of the exact pairwise

interactions active in the exposure response function that were selected into the model as inter-

actions, and false selection rate for interactions (FSRint) as the proportion of interactions that

were not active in the exposure-response function that were selected into the model as interac-

tions. In scenario 1, the true active interactions are x1x2 and x3x4 and in scenarios 2 and 3 the

only active interaction is x1x2.

We assessed convergence for a few simulated data sets by visualizing trace plots and com-

paring results from multiple chains. We found evidence of convergence by 20,000 iterations

for all methods. To ensure convergence across all simulated data sets, we based inference on

25,000 samples after a burn-in of 25,000 samples.

We conducted three additional simulation studies to further assess method performance.

First, we considered a null scenario, h4(x), where none of the exposures are associated with the

response. Second, we considered a complex mixture scenario, h5(x), where we simulated data

for seven additional pollutants to have a total of 14 mixture components. Third, we applied our

original simulation study design to a larger sample of size n = 1000 for each data set. Details on

the null, complex mixture, and large sample size simulations can be found in Appendix A.4.

2.3.5 Data Analysis

We conducted a data analysis on 153 individuals with complete data in the FACES data set.

We used regression-adjusted FEV1 as the outcome. Pesticide and air pollutant exposures and

covariate data were identical to that in our simulation study (Tables 2.1, 2.2, and A.1). We fit the

same models as in the simulation study. Prior specifications for the Bayesian models are listed

in Appendix A.2.
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2.4 Results

2.4.1 Simulation Study Results

Simulation results are shown in Table 2.4. Standard errors are shown in Appendix A.3 (Tables

A.3, A.4, and A.5). We show the computational time for each method to run for 5000 iterations

in Table 2.3.

Table 2.3: Computational time for each method to run 5000 iterations on MacBook Pro in R version 3.6.1.

Time is reported in seconds. Results reflect 10 evaluations of each method.

method minimum mean maximum

NPBr 6.90 7.03 7.17

NPB 24.73 24.95 25.23

BKMR 219.43 222.96 235.41

UPR 57.82 58.66 59.50

SPR 90.34 92.47 98.65

Overall BKMR and NPB were the best performing methods with BKMR performing slightly

better in the nonlinear and fixed profiles scenarios. Regarding RMSE for the exposure-response

function, BKMR (RMSE = 0.55) and NPB (RMSE = 0.54) tied for lowest in the linear scenario.

In the nonlinear scenario, BKMR (RMSE = 0.59) pulled slightly ahead of NPB (RMSE = 0.69),

while in the fixed profiles scenario, BKMR (RMSE = 0.69) outperformed all other methods by

a substantial margin. UPR had the highest RMSE in all three scenarios with SPR having the

second highest RMSE.

In addition to having the lowest RMSE in all three scenarios, BKMR consistently had interval

coverage closest to the nominal level. LM-int also had interval coverage near the nominal level

in all three scenarios and NPB performed well in the linear scenario. BKMR (Cvg = 0.96), NPB

(Cvg = 0.95), and LM-int (Cvg = 0.95) all achieved the nominal coverage level (0.95) in the linear

scenario. In the nonlinear scenario, BKMR (Cvg = 0.92) and LM-int (Cvg = 0.91) came closest to

the nominal level, with NPB next best but trailing behind (Cvg = 0.86). BKMR (Cvg = 0.91) and
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LM-int (Cvg = 0.91) had the highest coverage by far in the fixed profiles scenario. Again, UPR

and SPR performed poorly with the lowest coverage in all three scenarios.

The story is more complex when it comes to variable selection. While BKMR had the highest

TSR in all three scenarios, it also had the highest FSR. Again, NPB performed very well in the

linear scenario but not as well in the other scenarios, while UPR and SPR had consistently poor

selection rates. Regarding TSR, BKMR (TSR = 1.00) and NPB (TSR = 0.92) performed best in the

linear scenario. BKMR had the highest TSR in the nonlinear scenario (TSR = 0.96), where the

next best methods, NPBr, NPB, and LM, all had mean TSR just under 0.80. BKMR is singled out

with the best TSR in the fixed profiles scenario (TSR = 0.97). UPR, SPR, and LM-int tended to

have low TSR in all three scenarios.

A low false selection rate indicates a model does not erroneously classify exposures as asso-

ciated with the outcome when they are not. Here, BKMR had some of the highest FSR across the

three scenarios. In the linear scenario, LM-int (FSR = 0.04) and NPB (FSR = 0.10) had the lowest

FSR. LM-int also had the lowest FSR in the nonlinear scenario (FSR = 0.08). In the fixed profiles

scenario, NPBr, NPB, LM, LM-int all had similar FSR at or below 0.14. Along with BKMR, SPR

had high FSR in all three scenarios.

When considering overall variable selection performance, NPB takes the top spot in the lin-

ear scenario, with high TSR and low FSR. No method was able to simultaneously achieve domi-

nant TSR and FSR in the nonlinear or fixed profiles scenarios.

Only NPB and LM-int directly parameterized variable selection for interactions in an easily

interpretable manner. Interpretable variable selection for interactions is itself an advantage of

these approaches over the other methods. In the linear scenario, NPB (TSRint = 0.59) had higher

TSRint than LM-int (TSRint = 0.32). Both methods had poor TSRint in the nonlinear and fixed

profiles scenarios, with values at or below 0.25. Regarding FSRint, both methods performed well

in all three scenarios, with FSRint consistently at or below 0.11.

The additional simulations (Appendix A.4) produced similar results, with NPB and BKMR

being consistently top-performing methods in terms of estimating the exposure-response func-

34



Table 2.4: Summary of method performance in three data-generating scenarios. Table shows means

across all data sets for: root mean squared error (RMSE), coverage (Cvg), true selection rate for main

effects (TSR), false selection rate for main effects (FSR), true selection rate for interactions (TSRint), and

false selection rate for interactions (FSRint). Top-performing methods will have low RSME, coverage near

the nominal level (0.95), high TSR and low FSR. For each measure and exposure-response scenario, re-

sults from the top-performing method(s) are listed in bold.

Method RMSE Cvg TSR FSR TSRint FSRint

h1(x): linear with multiplicative interactions

NPBr 1.02 0.73 0.85 0.35 – –

NPB 0.54 0.95 0.92 0.10 0.59 0.02

UPR 2.01 0.56 0.25 0.26 – –

SPR 1.59 0.54 0.63 0.53 – –

BKMR 0.55 0.96 1.00 0.39 – –

LM 1.01 0.73 0.84 0.29 – –

LM-int 0.73 0.95 0.68 0.04 0.32 0.04

h2(x): nonlinear with multiplicative interactions

NPBr 0.77 0.80 0.79 0.22 – –

NPB 0.69 0.86 0.78 0.16 0.25 0.01

UPR 1.42 0.56 0.27 0.24 – –

SPR 1.27 0.58 0.68 0.58 – –

BKMR 0.59 0.92 0.96 0.48 – –

LM 0.78 0.81 0.78 0.17 – –

LM-int 0.89 0.91 0.54 0.08 0.20 0.07

h3(x): constant function of fixed profiles

NPBr 1.11 0.66 0.66 0.11 – –

NPB 1.02 0.75 0.68 0.13 0.06 0.02

UPR 1.41 0.55 0.27 0.25 – –

SPR 1.38 0.54 0.68 0.59 – –

BKMR 0.69 0.91 0.97 0.64 – –

LM 1.13 0.70 0.69 0.14 – –

LM-int 0.99 0.91 0.56 0.14 0.12 0.11
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tion and identifying active mixture components. In the null scenario (Table A.6), NPBr and NPB

had lowest FSR, meaning these methods were the best at not selecting any mixture components

into the model when none were associated with the response. Results from the complex mix-

ture scenario (Table A.7) largely mirrored those from the linear scenario. In the large sample

size simulation (Table A.8), BKMR and NPB remained top-performing. TSR was high for all

methods. UPR and SPR also had high FSR, meaning they often selected all of the mixture com-

ponents into the model.

2.4.2 Data Analysis Results

The results from our analysis of the FACES data set varied across the methods. First we

consider the traditional models LM and LM-int. LM showed evidence for main effects of NO2

(β̂: -0.32, CI: -0.54, -0.10) and PM10 (β̂: 0.19, CI: 0.02, 0.35). LM-int showed evidence for main

effects of MeBr (β̂: 0.17, CI: 0.05, 0.29), NO2 (β̂: -0.68, CI: -1.10, -0.25), and PM10 (β̂: 0.50, CI:

0.08, 0.93) and an interaction between C and PM2.5 (β̂: 0.28, CI: 0.01, 0.54) (Table 2.5). The

results from the linear models indicating a protective effect of PM10 are counter-intuitive as

there is an extensive literature on the deleterious health effects of PM on lung function. None

of the other methods found evidence of protective effects for any of the exposures.

Next we consider the five contemporary methods. NPBr did not identify any exposures with

PIPs above 0.5. The exposure with the highest PIP was NO2 (PIP = 0.47), which was estimated

to be negatively associated with FEV1 (β̂: -.08, CI: -0.35, 0.00). In NPB, NO2 was selected (PIP

= 0.60) and was also negatively associated with FEV1 (β̂: -0.12, CI: -0.36, 0.00) (Table 2.6). No

other main effects or interactions were selected by either method (Table A.10).

In BKMR, NO2 was selected as an important mixture component with a PIP of 0.96 (Table

A.11). No other exposures had PIPs above 0.5. Results were similar using the HVS formulation

(Table A.12). NO2 had a negative and nonlinear association with FEV1 (Figure 2.1). To identify

interactions, we plot the posterior distribution of the exposure-response function for each pair

of exposures, holding all other exposures constant at their median values, and visually inspect
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Table 2.5: Results from analysis of FACES data set using LM and LM-int. Table includes effect estimates

(β̂), 95% confidence intervals, and associated p-values for all main effects in LM and LM-int plus the

interaction effects in LM-int with p-values ≤ 0.10. The regression coefficient β̂ is the expected change in

FEV1 for a 1 standard deviation increase in the square root transformed exposures.

LM LM-int

β̂ 95% CI p-value β̂ 95% CI p-value

C 0.04 ( -0.03 , 0.11 ) 0.24 0.05 ( -0.08 , 0.19 ) 0.44

MeBr 0.00 ( -0.06 , 0.07 ) 0.96 0.17 ( 0.05 , 0.29 ) 0.01

OP 0.05 ( -0.03 , 0.13 ) 0.24 0.02 ( -0.17 , 0.22 ) 0.80

O3 -0.06 ( -0.20 , 0.07 ) 0.36 -0.13 ( -0.32 , 0.06 ) 0.17

NO2 -0.32 ( -0.54 , -0.10 ) 0.01 -0.68 ( -1.10 , -0.25 ) 0.00

PM2.5 -0.01 ( -0.20 , 0.17 ) 0.90 -0.11 ( -0.48 , 0.26 ) 0.55

PM10 0.19 ( 0.02 , 0.35 ) 0.03 0.50 ( 0.08 , 0.93 ) 0.02

C:PM2.5 – – – 0.28 ( 0.01 , 0.54 ) 0.04

OP:PM10 – – – 0.31 ( -0.01 , 0.62 ) 0.05

NO2:PM10 – – – 0.33 ( -0.05 , 0.72 ) 0.09

Table 2.6: Results from analysis of FACES data set using NPBr and NPB. Table shows estimates (β̂), 95%

credible intervals, and posterior inclusion probabilities (PIP) for main effect exposures in NPB and NPBr.

The regression coefficient β̂ is the expected change in FEV1 for a 1 standard deviation increase in the

square root transformed exposures. All interaction effects in NPB had posterior inclusion probabilities

below 0.12.

NPBr NPB

β̂ 95% CI PIP β̂ 95% CI PIP

C 0.00 ( 0.00 , 0.04 ) 0.07 0.00 ( 0.00 , 0.03 ) 0.07

MeBr 0.00 ( -0.02 , 0.00 ) 0.06 0.00 ( -0.01 , 0.00 ) 0.06

OP 0.02 ( 0.00 , 0.12 ) 0.21 0.01 ( 0.00 , 0.11 ) 0.16

O3 0.00 ( -0.08 , 0.02 ) 0.11 -0.01 ( -0.12 , 0.01 ) 0.11

NO2 -0.08 ( -0.35 , 0.00 ) 0.47 -0.12 ( -0.36 , 0.00 ) 0.60

PM2.5 0.00 ( -0.08 , 0.06 ) 0.13 0.00 ( -0.09 , 0.05 ) 0.12

PM10 0.02 ( 0.00 , 0.21 ) 0.21 0.02 ( -0.01 , 0.20 ) 0.19
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Figure 2.1: Results from analysis of FACES data set using BKMR. Figure shows the univariate relationship

between each exposure and FEV1, holding all other exposures at their median value.

changes in the response as both exposures change. In doing so we found no notable interac-

tions among exposures (Figure A.1).

As clustering algorithms, UPR and SPR reveal a different kind of story. UPR revealed four

clusters as the best partitioning of the data. Each cluster had similar estimated health effects

(Figure 2.2a); hence, despite partitioning the exposure space there was no meaningful associa-

tion between the exposure profiles and the health outcome. Figure 2.2b-e shows the empirical

exposure means for individuals assigned to each cluster. The first cluster of n = 25 individuals

was distinguished by higher than average exposure to MeBr. Cluster 2 (n = 33) had low exposure

to OP and O3 and high exposure to NO2 and PM2.5 relative to the average. The third cluster

(n = 9) was characterized by relatively high exposure to OP and low exposure to O3. Individ-

uals in cluster 4 (n = 86) had nearly average exposure to most pollutants except MeBR, which

was notably below average; in addition, O3 exposure was slightly above and PM2.5 exposure was
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Figure 2.2: Results from analysis of FACES data set using UPR. Panel (a) shows the distribution of the

model averaged estimated exposure-response function (θc ) for each cluster identified in the best clus-

tering by UPR. The dotted line represents the overall mean estimated exposure-response function across

all clusters. Panels (b-e) show the empirical exposure means of the individuals assigned to each cluster

in the best clustering, with 1 standard deviation error bars. The dotted lines are drawn at 0, the mean of

the standardized exposure data.

slightly below average. UPR selected OP (PIP = 0.57), O3 (PIP = 0.54), NO2 (PIP = 0.61), and PM2.5

(PIP = 0.56) as important mixture components (Table A.13).

SPR also revealed four clusters as the best partitioning of the data. The estimated exposure-

response function for cluster 3, the smallest cluster (n = 9), had a 0.97 posterior probability of

being greater than the overall mean estimated exposure-response function (Figure 2.3a). The

cluster sample sizes and associated empirical exposure means were very similar to those in UPR

(Figure 2.3b-e), with the labels switched for clusters 1 and 4. In both UPR and SPR, cluster 3 was

the smallest cluster and had an estimated mean health effect higher than average, but there

was more uncertainty around the health effect in UPR likely due to the two-stage approach

for estimation. SPR selected five important mixture components: MeBr (PIP = 0.71), OP (PIP

= 0.51), O3 (PIP = 0.75), NO2 (PIP = 0.67), and PM2.5 (PIP = 0.63) (Table A.13). We found the
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Figure 2.3: Results from analysis of FACES data set using SPR. Panel (a) shows the distribution of the

model averaged estimated exposure-response function (θc ) for each cluster identified in the best clus-

tering by SPR. The dotted line represents the overall mean estimated exposure-response function across

all clusters. Panels (b-e) show the empirical exposure means of the individuals assigned to each cluster

in the best clustering, with 1 standard deviation error bars. The dotted lines are drawn at 0, the mean of

the standardized exposure data.

clustering and PIPs in UPR and SPR to be sensitive to prior choice particularly for the cluster-

specific precision matrix and error precision.

2.5 Discussion

Interest is rapidly growing in estimating the association between exposure to mixtures of

environmental chemicals and health outcomes. As a result, new statistical approaches have

been developed for studying health outcomes associated with exposure to mixtures. The pur-

pose of this paper was to evaluate and compare recently developed methods for mixtures and

determine which research questions they answer well and in which scenarios. We limited our

study to contemporary Bayesian methods since they are under-studied, under-utilized, and

may have the ability to answer multiple research questions. Our results highlight the advan-

tages of the flexible modeling and Bayesian framework of BKMR and NPB in estimating the
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exposure-response function precisely and identifying mixture components most strongly asso-

ciated with the health outcome.

Overall, BKMR was a top-performing method. In each of the scenarios, BKMR estimated the

exposure-response function with coverage closest to the nominal level (0.95) and lowest RMSE.

Despite being a more flexible approach based on Gaussian processes, BKMR had lower RMSE

in the linear scenario than NPBr, LM, and LM-int, all of which assume linearity. This is likely

because NPBr and LM do not account for interactions and LM-int can result in inflated stan-

dard errors in the presence of correlated data. BKMR identified active mixture components with

the greatest frequency, but also included inactive components more often than other methods.

Although we did not evaluate variable selection rates for interactions in BKMR in our simula-

tion, BKMR can identify linear or nonlinear interactions among exposures through visualiza-

tion or summarizing the posterior distribution of the exposure-response function. A drawback

to BKMR is that results are not as easily interpreted as in NPB or the linear models, though

there are currently efforts to enhance interpretation and a suite of visualization approaches

that aid in interpretation. BKMR is an appealing choice for mixtures because it makes mini-

mal assumptions on the shape of the exposure-response function and includes a sophisticated

variable selection algorithm for identifying important mixture components.

NPB was top-performing in the linear scenario regarding estimating the exposure-response

function, identifying both active and inactive mixture components, and identifying interac-

tions. NPB performed well even when the exposure-response function was mildly nonlinear,

but lacks the flexibility of BKMR for the fixed profiles scenario, which is highly nonlinear. The

AME method NPBr poorly estimated the exposure-response function in the linear scenario,

likely from not accounting for interactions. An advantage of NPB is its ease of interpretation,

which is similar to interpreting a linear regression model. NPB estimates PIPs and effect sizes

for all main effect and interaction terms, providing precise information regarding the contribu-

tion of each exposure to the mixture and its effect on the health outcome.
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The profile regression methods, UPR and SPR, poorly addressed the research questions of

interest in all three scenarios. Two explanations for this include lack of a clustering structure

in the exposure data and a weak signal, both of which inhibit these methods from accurately

estimating the multipollutant exposure-response function. Further, UPR and SPR do not have

the ability to identify or estimate interactions or tease out individual effects of the pollutants

within a mixture. These methods may not be appropriate for studies in which the primary

objectives are to estimate the multipollutant exposure-response function and identify driving

mixture components. As clustering methods, UPR and SPR are likely to perform better on data

that has a strong grouping structure. Since we used a single data set in our simulation study,

the results of our simulation should not be interpreted as representative of performance on all

data structures. A particular advantage of UPR and SPR is that the number of clusters need not

be pre-specified.

The linear model with interactions, LM-int, had coverage above 0.91 in all three scenarios,

but had higher RMSE and lower TSR than BKMR and NPB. LM-int and NPB are both EMM

methods, and NPB outperformed LM-int in the linear EMM scenario. LM and LM-int have

the advantage of being easy to implement and interpret, but these methods estimated the

exposure-response function with more uncertainty than the top-performing methods and gen-

erally lacked the ability to select truly active mixture components, likely due to high correlation

among exposures.

In our application to the FACES data set, four methods (LM, LM-int, NPB, and BKMR) iden-

tified NO2 as an important mixture component negatively associated with the health outcome.

In addition, LM and LM-int estimated PM10 to have a positive association with FEV1, and PM10

was positively correlated with NO2. Further, the magnitude of the effect estimate for NO2 in LM

and LM-int was several times larger than that estimated in NPB, and the confidence intervals

were also larger, reflecting more uncertainty. UPR and SPR also identified NO2 as an important

mixture component, but we cannot determine the sign of effect using these methods. Instead,

UPR and SPR have the ability to estimate how the overall mixture is associated with the health
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outcome. UPR revealed four clusters with similar estimated health effects; hence, patterns in

the exposure data were not associated with FEV1. In SPR, the smallest cluster was associated

with higher average FEV1 than the other clusters, suggesting an association between a relatively

rare mixture of exposures and the health outcome. Alternatively, this small cluster may reflect

a strong influence from the health outcome in the clustering using a supervised learner. Mean-

while, BKMR was able to describe a nonlinear association between NO2 and FEV1.

Using missing indicators may have introduced some bias in the effect estimates. Addition-

ally, all Bayesian methods are sensitive to prior specification and results may vary with more

or less informative priors. PIPs are particularly sensitive to prior specification in all methods,

so changing prior hyperparameters may lead to changes in TSR and FSR. We implemented all

models using the default priors as specified by the authors to obtain an objective comparison

of these methods.

Along with the primary research question, the best performing method is likely to depend

on the exposure data. We used observed exposure data so our results are highly relevant to

realistic settings. Our simulation results can be generalized to small data sets with a limited

number of localized exposures, which is a frequent scenario in epidemiological studies.

In analyses of environmental mixtures and human health, model choice depends on the as-

sumed exposure-response relationship and the primary questions of interest. NPB and BKMR

are recently proposed methods that outperformed traditional regression models and offer pro-

mising tools for mixtures analyses. We recommend NPB when the exposure-response function

is assumed to be approximately linear and a primary goal is accurately identifying which are the

active and inactive components of the mixture. NPB is also highly interpretable and explicitly

tests for interactions. We recommend BKMR if the exposure-response function is assumed to

take on a complex form and the primary goal is estimating the form of the exposure-response

function while at the same time identifying important mixture components. Our results suggest

that UPR and SPR do not reliably answer our specified research questions, but may be applica-

ble for different research questions such as pattern recognition. We further encourage users
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to take advantage of our R package mmpack (Hoskovec, 2019) to replicate the simulation and

determine how each method performs on their own data. Results will likely be different on dif-

ferent data sets. In particular, the profile regression methods may perform better on data that

exhibit a stronger clustering structure in the fixed profiles scenario. We include the clustering

statistics as part of the summary of the fixed profile scenario output so users can see how much

grouping structure is in their own data. Replicating the simulation on their own data will enable

users to choose the best method for their data and specific research question.
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Chapter 3

Infinite Hidden Markov Models for Multiple

Multivariate Time Series with Missing Data

3.1 Introduction

Exposure to indoor and outdoor air pollution are leading environmental risk factors for

morbidity and mortality worldwide (Global Burden of Diseases 2019 Risk Factors Collabora-

tors, 2020). Recent technological advances allow personal monitors to be used to collect time-

resolved ambient pollutant exposure data at the individual level. As opposed to collecting data

from local air quality monitoring sites, personal monitoring results in more accurate assess-

ments of exposure to air pollutants because these monitors move with an individual through

various indoor and outdoor microenvironments such as home, work, and transit. Along with

the advantages, time-resolved personal exposure data also evoke several modeling challenges,

including strong temporal dependence, missing observations, and exposure values below the

monitoring device’s limit of detection (LOD).

Our work is motivated by the Fort Collins Commuter Study (FCCS). The FCCS assessed per-

sonal exposure to ambient air pollutants during normal workdays in Fort Collins, Colorado,

USA (Good et al., 2016; Koehler et al., 2019). Exposures were assessed for multiple people on

different days, creating multiple asynchronous multivariate time series. Shared patterns in

movement and exposures exist due to locality and repeated sampling days for the same in-

dividual, and may be informed by covariates collected during the study such as time of day or

individual-level factors. As is typical in personal exposure monitoring studies, some exposure

data were missing due to device malfunction, participant noncompliance, or values too low to

be detected by the monitoring device.
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Several model-based approaches have been proposed to impute missing air pollution data

observed on a daily time scale or at larger temporal resolutions. Hopke et al. (2001) and Krall

et al. (2015) proposed imputation approaches based on Bayesian multivariate normal models.

Hopke et al. (2001) accounted for time series structure with smoothly-varying means through

an integrated moving average, but both models assume a constant variance over time. House-

man and Virji (2017) proposed an imputation model that uses splines to account for temporal

trends, but this model breaks down with high autocorrelations. No models have been proposed

to impute missing multivariate exposure data observed from personal monitors that account

for rapid changes in the exposure distribution as people transition between environments (e.g.

indoors to outdoors).

We conceptualize environments and activities as unobserved, or latent, discrete states through

which individuals transition over time, with each state giving rise to a unique distribution of

multivariate exposure data. To model the complexity of these data, we propose an infinite hid-

den Markov model (iHMM) framework (Beal and Rasmussen, 2002). Unlike traditional hidden

Markov models (HMMs) (Rabiner and Juang, 1986), iHMMs allow for a countably infinite num-

ber of hidden states in the model by leveraging Bayesian nonparametric prior formulations,

such as the Dirichlet process and extensions thereof (Beal and Rasmussen, 2002; Fox et al., 2011;

Montañez et al., 2015; Teh et al., 2006), the beta process (Fox et al., 2014), and the probit stick-

breaking process (PSBP) (Rodríguez and Dunson, 2011; Sarkar et al., 2012). A natural extension

of these models is to modify transition probabilities based on available covariate information

(Altman, 2007; Sarkar et al., 2012) or to incorporate application-specific prior beliefs, for exam-

ple an increased propensity of lingering in a given state (Fox et al., 2011; Hensley and Djuric,

2017; Montañez et al., 2015). While HMMs are often developed to handle multiple time series

(Altman, 2007; Dias et al., 2015; Langrock et al., 2013), iHMMs are typically not designed for this

setting, with few exceptions (Fox et al., 2014). Notably, we are unaware of any iHMM methods

that allow for multiple multivariate time series that are covariate-dependent. Further, there are
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no existing iHMMs that can impute both data that are missing at random (MAR) and below the

LOD.

In this manuscript, we develop a covariate-dependent iHMM for the analysis of multiple

multivariate time series with missing data. We model the hidden state transition distribution

with a covariate-dependent PSBP to inform transitions and identify shared patterns among

multiple time series. By developing a fully Bayesian computational approach, we handle multi-

ple imputation naturally by sampling from the posterior predictive distribution of the missing

data conditional on the observed data and the estimated hidden states. Our primary inferen-

tial goals are to impute missing observations and identify a hidden state structure representing

time-activity patterns associated with personal exposures.

3.2 Fort Collins Commuter Study

The FCCS followed 45 individuals for between 1 and 13 non-consecutive days each and

measured their exposure to fine particulate matter (PM2.5) mass (µg/m3), carbon monoxide

(CO) (parts per million), and black carbon (BC) (µg/m3) at 10-second resolution for 24-hour

periods. Using GPS data and time-activity diaries, each time point was manually classified into

one of five microenvironments: home, work, transit, eateries, and other. The FCCS aimed to

identify patterns in exposure to multiple pollutants that were associated with microenviron-

ments.

We considered a subset of the FCCS data. Specifically, we considered only those individ-

uals who had at least 5 repeated sampling days with less than 10% total missing observations

on each day. This resulted in 50 sampling days including 9 individuals. We averaged the data

to 5-minute intervals. If the 5-minute interval contained at least 90% observed data, then the

exposure value for that interval was considered observed and calculated as the mean of the

observed data within the interval. Observed data were log-transformed and scaled so each ex-

posure had mean 0 and variance 1. Otherwise, the exposure value was considered missing and

either denoted MAR or below the LOD based on the mode of the missing data type within the
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interval. In the FCCS, data classified as below the LOD were below the minimum value reported

by the device (Koehler et al., 2019). Data specified as MAR were missing due to device malfunc-

tion or participant noncompliance. Hence, MAR data may be below or above the LOD. The

missing data type was known, and we assumed the LODs to be fixed at the minimum value the

device reports. The log-transformed LODs for BC, CO, and PM2.5 were -3.57, -3.87, and -1.14,

respectively. In this analysis, approximately 0.3% of observations were MAR and 3% were below

the LOD.

In addition to exposure data, the FCCS data contain covariate information that may inform

the latent time-activity patterns. These variables include time of day, microenvironments, and

individual identifiers that link repeated sampling days for a single individual.

3.3 Model

We first present the model for multivariate exposure data conditional on the hidden states.

We then present the model for the hidden states. We describe the missing data model next.

Last, we discuss posterior computation.

3.3.1 Multivariate Exposure Data Model

Let yi st be a p-dimensional vector of exposures measured at time points t = 1, . . . ,Ti s for

individuals i = 1, . . . ,n on sampling days s = 1, . . . ,Si . Then Yi s,1:Ti s
is the p ×Ti s matrix of mul-

tivariate time series data for Ti s equally-spaced time points for individual i on sampling day

s. Our approach allows for varying time series lengths, but for presentation purposes, we as-

sume all time series have length T and omit the i s subscript. We assume the data for each

pollutant are centered and scaled to have mean 0 and variance 1. Let zi st denote the hidden

state for individual i on sampling day s at time t , where zi st = k if individual i on sampling

day s is in state k at time t . We define the vector zi s,1:T = (zi s1, . . . , zi sT ) as the hidden state

trajectory for individual i on sampling day s, which has the first-order Markov property such

that p(zi st |zi s,1:t−1) = p(zi st |zi s,t−1). We assume yi st are conditionally independent of exposure
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data measured for any i ′ 6= i , s′ 6= s, or t ′ 6= t given the hidden states. The distribution of the

multivariate emission data at a single time point is

f (yi st |Yi s,1:t−1,zi s,1:t ) = f (yi st |zi st ), (3.1)

where any parameters associated with the hidden state are indexed by zi st , and global param-

eters are implicit. We will refer to (3.6) as the emission distribution. We assume a Gaussian

emission distribution with state-specific mean and variance

f (yi st |zi st = k) ≡ N(µk ,Σk ), (3.2)

where µk |Σk ∼ N
(
µ0, 1

λ
Σk

)
and Σk ∼ Inverse-Wishart(ν,Ip ). The hyperparameters µ0, λ, and

ν are fixed. We set µ0 = 0 since the data are centered and scaled, and we set λ = 10 to reflect

the assumption that state-specific means are less variable than the data within a state. We set

ν= p +2, so E(Σk ) = Ip a priori.

3.3.2 Hidden State Model

We model hidden states for each time point as

zi st |zi s,t−1 ∼ Categorical
(
πzi s,t−1

)
, (3.3)

where πzi s,t−1
is the vector of probabilities for transitioning out of state zi s,t−1 into each of the

possibly infinite hidden states. We model πzi s,t−1
using a covariate-dependent PSBP (Rodríguez

and Dunson, 2011; Sarkar et al., 2012). Let xi st represent a vector of covariates measured for

individual i on sampling day s at time t . The covariates we consider are either smooth basis

functions of time of day or indicator variables for the microenvironment classification of time

points. Let π j k (xi st ) = P (zi st = k|zi s,t−1 = j ,xi st ) be the probability of transitioning from state

j to state k at time t given the covariates xi st for individual i on sampling day s at time t . We
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construct the transition distribution probabilities as

π j k (xi st ) =Φ(α j k +x′
i stβk +x′

i stγi k )
∏

l<k

[
1−Φ(α j l +x′

i stβl +x′
i stγi l )

]
, (3.4)

where Φ(·) denotes the standard normal distribution function. In (3.4), α j k is an intercept term

controlling dependency between states at consecutive time points, x′
i st

βk controls the propen-

sity of being in state k at time t based on covariates measured at time t , and γi k are subject-

specific effects that inform the propensity for individual i to be in state k at time t . Specifically,

γi k allows for subject-level deviation from the overall population effect of covariates when con-

sidering repeated sampling days for multiple subjects as in the FCCS.

We complete the model specification with hyperpriorsα j k |σ
2
α ∼ N(0,σ2

α) for j 6= k andσ−2
α ∼

Gamma(1,1) to model transitions to different states and α j j |mα, vα ∼ N(mα, vα), mα ∼ N(0,1),

and v−1
α ∼ Gamma(1,1) to model self-transitions. We place a hierarchical model on the self-

transition mass α j j to allow the data to inform the tendency to linger in a state or be transient,

under the assumption that personal exposure data may elicit some hidden states that are short-

lived and others that occur for long periods of time. Finally, βk ∼ N(0,I), γi k |κ
2 ∼ N(0,κ2I), and

κ−2 ∼ Gamma(1,1).

3.3.3 Missing Data Model

The previous sections described our proposed model for exposure data with no missing val-

ues. We extend this model to accommodate missing exposure data by imputing values from the

missing data model, which is the posterior predictive distribution of the missing data given the

observed data. The missing data model is conditional on the estimated hidden states and corre-

sponding emission distribution parameters, hence, we account for uncertainty in the estimated

hidden states in our imputation.

At each time point, the vector of exposures may have any combination of data that are ob-

served, MAR, or below the LOD. Denote yobs as the set of data that is observed, yMAR as the set

of data that is MAR, and yLOD as the set of data below the LOD. We first consider MAR data and
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ignore data below the LOD. If all p exposures are MAR for individual i on sampling day s at time

t , the missing data model is

yi st ,MAR|zi st = k,µk ,Σk ∼ N
(
µk ,Σk

)
. (3.5)

When yi st has some exposures that are observed and some that are MAR, we partition the com-

plete data into its observed and missing parts as yi st = (yi st ,obs,yi st ,MAR). The emission distri-

bution for yi st can then be written as




yi st ,obs

yi st ,MAR




∣∣∣∣zi st = k,µk ,Σk ∼ N






µ(k,obs)

µ(k,MAR)


 ,



Σ(k,obs,obs) Σ(k,obs,MAR)

Σ(k,MAR,obs) Σ(k,MAR,MAR)





 . (3.6)

In this case, the missing data model is

yi st ,MAR|yi st ,obs, zi st = k,µk ,Σk ∼ N
(
µ(k,MAR|obs),Σ(k,MAR|obs)

)
, (3.7)

where

µ(k,MAR|obs) = µ(k,MAR) +Σ(k,MAR,obs)Σ
−1
(k,obs,obs)

(
yi t ,obs −µ(k,obs)

)
(3.8)

Σ(k,MAR|obs) = Σ(k,MAR,MAR) +Σ(k,MAR,obs)Σ
−1
(k,obs,obs)Σ(k,obs,MAR). (3.9)

The missing data model for data below the LOD is similar. We assume the LOD is fixed and

known for each exposure. Data that fall below the LOD are censored at the LOD. At each time

point, we partition the complete data into its observed and below LOD parts: yi st = (yi st ,obs,yi st ,LOD).

The emission distribution for yi st can then be written as




yi st ,obs

yi st ,LOD




∣∣∣∣zi st = k,µk ,Σk ∼ N






µ(k,obs)

µ(k,LOD)


 ,



Σ(k,obs,obs) Σ(k,obs,LOD)

Σ(k,LOD,obs) Σ(k,LOD,LOD)





 . (3.10)
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Let d = (d1, . . . ,dp )′ be the vector of lower limits of detection for components j = 1, . . . p. Let Di st

be the support for data that is below the LOD for individual i on sampling day s at time t . For

a single log-transformed exposure j that is below the LOD, Di st = (−∞, log(d j )). The missing

data model for data below the LOD is

yi st ,LOD|yi st ,obs, zi st = k,µk ,Σk ∼ TNDi st

(
µ(k,LOD|obs),Σ(k,LOD|obs)

)
, (3.11)

where TNDi st
represents the truncated multivariate normal distribution restricted to the sup-

port Di st and

µ(k,LOD|obs) = µ(k,LOD) +Σ(k,LOD,obs)Σ
−1
(k,obs,obs)

(
yi st ,obs −µ(k,obs)

)

Σ(k,LOD|obs) = Σ(k,LOD,LOD) +Σ(k,LOD,obs)Σ
−1
(k,obs,obs)Σ(k,obs,LOD).

3.3.4 Posterior Computation

We implement a Metropolis-within-Gibbs algorithm to sample from the posterior distribu-

tion. After a burn-in period, the remaining samples are used for inference. The iterative steps of

the MCMC sampler are outlined in Algorithm 1. Our computation approach closely mirrors that

described in Sarkar et al. (2012). Software to fit our proposed approach exists in the R package

psbpHMM (Hoskovec, 2021b), available at github.com/lvhoskovec/psbpHMM.

To sample the hidden state trajectories zi s,1:T for individuals i = 1, . . . ,n, sampling days

s = 1, . . . ,Si , and time points t = 1, . . . ,T , we implement beam sampling (Van Gael et al., 2008),

a combination of slice sampling (Neal, 2003; Walker, 2007) and dynamic programming. Beam

sampling allows each time series’ entire hidden state trajectory to be sampled simultaneously,

which improves mixing and convergence in highly dependent data. At each iteration, we intro-

duce auxiliary slice variables ui st for each individual i , sampling day s, and time point t that

reduce the number of hidden states considered at that time point. Specifically, for zi st , only

states k such that πzi s,t−1,k > ui st are considered, where πzi s,t−1,k is the transition probability
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from state zi s,t−1 to state k and may depend on covariates xi st . For presentation purposes, we

remove the dependence on covariates in the transition probabilities when describing posterior

sampling for the hidden states. By limiting the number of states considered at each time point,

we limit the number of possible hidden state trajectories from which we sample in each itera-

tion. Slice sampling permits implementation of a forward-backward algorithm to sample entire

hidden state trajectories at once.

We sample the auxiliary slice variables, ui st , from the conditional distribution

ui st |zi st , zi s,t−1,πi s ∼ Uniform
[
0,πzi s,t−1,zi st

]
, (3.12)

where πi s denotes the set of all transition probabilities for individual i on sampling day s.

Let ui s,1:T denote the slice variables for individual i on sampling day s for time points t =

1, . . . ,T . Let (µ,Σ) represent the state-specific emission distribution parameters for all latent

states. To sample the hidden state trajectories zi s,1:T for i = 1, . . . ,n and s = 1, . . . ,Si , we use a

forward-backward algorithm. Let I (·) denote the indicator function. In the forward step, we

recursively compute the distribution of zi st given Yi s,1:t ,ui s,1:t ,πi s and (µ,Σ) as

p(zi st |Yi s,1:t ,ui s,1:t ,πi s ,µ,Σ) = p(zi st |yi st ,ui st ,Yi s,1:t−1,ui s,1:t−1,πi s ,µ,Σ) (3.13)

∝ p(zi st ,yi st ,ui st |Yi s,1:t−1,ui s,1:t−1,πi s ,µ,Σ)

=
∑

zi s,t−1

p(zi st ,yi st ,ui st , zi s,t−1|Yi s,1:t−1,ui s,1:t−1,πi s ,µ,Σ)

=
∑

zi s,t−1

f (yi st |zi st ,µ,Σ)p(ui st |zi st , zi s,t−1,πi s)p(zi st |zi s,t−1,πi s)×

p(zi s,t−1|Yi s,1:t−1,ui s,1:t−1,πi s ,µ,Σ)

= f (yi st |zi st ,µ,Σ)
∑

zi s,t−1

I
[
0 < ui st <πzi s,t−1,zi st

]
×

p(zi s,t−1|Yi s,1:t−1,ui s,1:t−1,πi s ,µ,Σ)

= f (yi st |zi st ,µ,Σ)
∑

zi s,t−1:ui st<πzi s,t−1,zi st

p(zi s,t−1|Yi s,1:t−1,ui s,1:t−1,πi s ,µ,Σ).
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The use of slice sampling truncates the sum over zi s,t−1 to the finitely many values such that 0 <

ui st < πzi s,t−1,zi st
and p(zi s,t−1|Yi s,1:t−1,ui s,1:t−1,πi s ,µ,Σ) > 0. For t = 1, we assume that P (zi s0 =

0) = 1 for all i and s. Then

p(zi s1|yi s1,ui s1,πi s ,µ,Σ) ∝ p(zi s1,yi s1,ui s1|πi s ,µ,Σ) (3.14)

= p(zi s1,yi s1,ui s1, zi s0|πi s ,µ,Σ)

= f (yi s1|zi s1,µ,Σ)p(zi s1|zi s0,πi )p(ui s1|zi s0, zi s1,πi s)p(zi s0|πi s ,µ,Σ)

= f (yi s1|zi s1,µ,Σ)I
[
0 < ui s1 <π0,zi s1

]
.

A new state may be proposed among the multiple time series. For identifiability, we only

permit one new state to be proposed in each iteration of the MCMC sampler. If zi st belongs

to a new state k∗ with nonzero probability, we evaluate p(yi st |zi st = k∗) by integrating over the

possible values of (µk∗ ,Σk∗) for the new state. Using the Normal-Inverse-Wishart model on

(µk ,Σk ), we have

f (yi st |zi st = k∗) =

∫

(µ,Σ)
f (yi st |zi st = k∗,µ∗

k ,Σk∗)p(µk∗ ,Σk∗)d(µk∗ ,Σk∗) (3.15)

=

(
λ

(π)(1+λ)

) p
2

(
Γp (ν+1

2
)

Γp (ν
2

)

)(
|Ip |

ν
2

|R∗
i st

|
ν+1

2

)
,

where R∗
i st

= Ip+λµ0µ
′
0+yi st y′

i st
−

(
1

1+λ

)
(λµ0+yi st )(λµ0+yi st )′. In the backward step, we sample

the latent sequence from

p(zi st = k|zi s,t+1,Yi s,1:t ,ui s,1:t ,πi s ,µk ,Σk ) ∝ (3.16)




p(zi st = k|Yi s,1:t ,ui s,1:t ,πi s ,µk ,Σk ), t = T

p(zi st = k|Yi s,1:t ,ui s,1:t ,πi s ,µk ,Σk )p(zi s,t+1|zi st = k,ui s,t+1,πi s), 0 < t < T,
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where

p(zi s,t+1|zi st ,ui s,t+1,πi s) ∝ p(ui s,t+1|zi s,t+1, zi st ,πi s)p(zi s,t+1|zi st ,πi s)

=
I
[
0 < ui s,t+1 <πzi st ,zi s,t+1

]

πzi st ,zi s,t+1

[
πzi st ,zi s,t+1

]

= I
[
0 < ui s,t+1 <πzi st ,zi s,t+1

]
.

To sample the parameters of the transition distribution, we follow a similar approach to that

used in Bayesian probit regression (Chung and Dunson, 2009). Denote the currently occupied

states k = 1, . . . ,K and let K + 1 denote a potential new state. Conditional on zi s,t−1 = j and

zi st = k, we introduce auxiliary variables w j i st l for each individual i , sampling day s, time point

t , and state l = 1, . . . ,k to represent the pieces of the PSBP for all individuals, sampling days, time

points, and possible hidden state transitions. These auxiliary variables have the conditional

probability

w j i st l |zi s,t−1 = j , zi st = k,α j l ,βl ,xi st
ind
∼





TN(0,∞)

(
α j l +x′

i st
βl +x′

i st
γi l ,1

)
, l = k

TN(−∞,0)

(
α j l +x′

i st
βl +x′

i st
γi l ,1

)
, l < k,

(3.17)

where TNA denotes the truncated normal distribution restricted to the set A. We sample α j k

for states j 6= k from the full conditional

α j k |· ∼ N
(
m j k , v j k

)
(3.18)

v j k =
(
σ−2
α +n j k

)−1

m j k = v j k

[
µασ

−2
α +

∑

i st :zi st≥k,zi s,t−1= j

(w j i stk −x′
i stβk −x′

i stγi k )

]
,
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where n j k =
∑n

i=1

∑Si

s=1

∑T
t=2 I (zi st ≥ k, zi s,t−1 = j ). We sample α j j from the full conditional

α j j |· ∼ N
(
m j , v j

)
(3.19)

v j = (v−1
α +n j j )−1

m j = v j

[
mαv−1

α +
∑

i st :zi st≥ j ,zi s,t−1= j

(
w j i st j −x′

i stβ j −x′
i stγi j

)]

where n j j =
∑n

i=1

∑Si

s=1

∑T
t=2 I (zi st ≥ j , zi s,t−1 = j ). We sample mα from

mα|· ∼ N(m∗, v∗) (3.20)

v∗
=

(
K

vα
+ v−1

0

)−1

m∗
= v∗

(∑K
j=1α j j

vα
+m0v−1

0

)
,

where K is the current number of occupied states. We sample σ−2
α and v−1

α from

σ−2
α |· ∼ Gamma

[
1+

K (K −1)

2
,1+

∑
j 6=k α

2
j k

2

]
(3.21)

v−1
α |· ∼ Gamma

[
1+

K

2
,1+

∑K
j=1(α j j −mα)2

2

]
. (3.22)

We sample βk from

βk |· ∼ N(mk ,Vk ) (3.23)

Vk =
(
I+X′

k Xk

)−1

mk = Vk

[
X′

k (wk −αk −Γk )
]

,

where Xk has nk =
∑n

i=1

∑Si

s=1

∑T
t=1 I (zi st ≥ k) rows and is the matrix of covariates for all i , s, t

such that zi st ≥ k, wk is the nk -dimensional vector of w j i stk for all j , i , s, t such that zi st ≥ k and

zi s,t−1 = j , αk is the nk -dimensional vector of αzi s,t−1,k for all i , s, t such that zi st ≥ k, and Γk is

the nk -dimensional vector of x′
i st

γi k for all i , s, t such that zi st ≥ k. The subject-specific effects

56



γi k are updated similarly. We sample κ−2 from

κ−2
|· ∼ Gamma

[
1+

n∗K

2
,1+

1

2

n∗∑

i∗=1

K∑

k=1

(γi∗k −µγ)′Σ−1
γ (γi∗k −µγ)

]
, (3.24)

where, here, i∗ = 1, . . . ,n∗ denote the unique subjects.

Conditional on the transition distribution parameters, the updates for the transition prob-

abilities are deterministic. For individuals i = 1, . . . ,n, sampling days s = 1, . . . ,Si and times

t = 1, . . . ,T , we calculate {π j k (xi st )}K ,K
j=1,k=1

for the K currently occupied states as

π j k (xi st ) = Φ(α j k +x′
i stβk +x′

i stγi k )
∏

l<k

[
1−Φ(α j l +x′

i stβl +x′
i stγi l )

]
, (3.25)

and we calculate {π j ,K+1(xi st )}K
j=1

for transitions into a potential new state K +1 as

π j ,K+1(xi st ) = 1−
K∑

k=1

π j k (xi st ). (3.26)

On data sets with no missing observations, we update µk and Σk with Gibbs sampling. The

full conditional for (µk ,Σk ) is

(µk ,Σk )|· ∼ Normal-Inverse-Wishart
(
µnk

,λnk
,Σnk

,νnk

)
(3.27)

µnk
=

λµ0 + ñk ȳk

λ+ ñk

λnk
= λ+ ñk

νnk
= ν+ ñk

Σnk
= Ip +

∑

i st :zi st=k

(yi st − ȳk )(yi st − ȳk )′+
λñk

λ+ ñk

(ȳk −µ0)(ȳk −µ0)′,

where ñk =
∑n

i=1

∑Si

s=1

∑T
t=1 I (zi st = k), ȳk =

1
ñk

∑
i st :zi st=k yi st . First, we sample

Σk |· ∼ Inverse Wishart
(
νnk

,Σnk

)
. (3.28)
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Then, we sample

µk |· ∼ N

(
µnk

,
1

λnk

Σk

)
. (3.29)

To improve mixing and empirical performance on data sets with missing observations, we

reparameterize Σk so we can sample each parameter of the covariance matrices separately. We

follow Chan and Jeliazkov (2009) and let Σk = L−1
k

Dk

(
L−1

k

)′
, where

Lk ≡




1 0 0 · · · 0

ak,21 1 0 · · · 0

ak,31 ak,32 1 · · ·
...

...
...

. . .
...

ak,p1 ak,p2 · · · 1




, Dk ≡




δk,1 0 · · · 0

0 δk,2 · · · 0

...
...

. . .
...

0 0 · · · δk,p




. (3.30)

We model each of the parameters of Σk separately as

δk, j
ind
∼ Inverse Gamma

(
ν+ j −p

2
,

1

2

)
j = 1, . . . , p (3.31)

ak, j l
ind
∼ N(0,δk, j ) j = 2, . . . , p, and l = 1, . . . , j −1. (3.32)

With this formulation, Chan and Jeliazkov (2009) demonstrate thatΣk follows an inverse-Wishart

distribution with degrees of freedom ν and scale matrix Ip .

We implement an independence Metropolis-Hastings sampler to update δk, j and ak, j l for

all j , l , and currently occupied k. Metropolis-Hastings updates help avoid local modes in mix-

ture distributions (Celeux et al., 2000) and were used in a periodic infinite hidden Markov model

in Spezia et al. (2011). We found the independence sampler empirically performed better than

Gibbs sampling and random walk Metropolis-Hastings, particularly when small clusters form

that contain many missing observations.

Let θ(b) denote the value of the parameter θ at iteration b. Let p(·) denote a prior distribu-

tion, q(·) a proposal distribution, and f (·) a likelihood. For k = 1, . . .K and j = 1, . . . , p, we imple-
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ment the following steps to update δk, j . First, we propose δ∗
k, j

∼ Inverse Gamma(aδ,bδ). Then,

we create D∗
k

, which is equivalent to D(b)
k

except δ∗
k, j

replaces δ(b)
k, j

. We calculate the Metropolis-

Hastings ratio as

rδ =

f
(
Yk |µk ,Σ∗

k

)
f
(
µk |Σ

∗
k

)
p

(
δ∗

k, j

)
q

(
δ(b)

k, j

)

f
(
Yk |µk ,Σ(b)

k

)
f
(
µk |Σ

(b)
k

)
p

(
δ(b)

k, j

)
q

(
δ∗

k, j

) , (3.33)

where Yk is the nkk × p matrix of exposure data for all time points assigned to hidden state k

and Σ
∗
k
= L(b)−1

k
D∗

k
L(b)−1T

k
. Finally, we accept δ∗

k, j
with probability min(1,rδ).

For k = 1, . . . ,K , j = 2, . . . , p, and l = 1, . . . , j −1, we implement the following steps to update

ak, j l . First we propose a∗
k, j l

∼ N(0,τ2). Then, we create L∗
k

, which is equivalent to L(b)
k

except

a∗
k, j l

replaces a(b)
k, j l

. Finally we calculate the Metropolis-Hastings ratio as

ra =

f
(
yk |µk ,Σ∗

k

)
f
(
µk |Σ

∗
k

)
p

(
a∗

k, j l

)
q

(
a(b)

k, j l

)

f
(
yk |µk ,Σ(b)

k

)
f
(
µk |Σ

(b)
k

)
p

(
a(b)

k, j l

)
q

(
a∗

k, j l

) , (3.34)

where Σ
∗
k
= L∗−1

k
D(b)

k
L∗−1T

k
. We accept a∗

k, j l
with probability min(1,ra).

Through empirical testing, we found the tuning parameters aδ = 10,bδ = 1, and τ2 = 0.25

achieve acceptance probabilities between 0.1 and 0.4 for all parameters. A resolvent kernel was

used to obtain optimal acceptance ratios for a∗
k, j l

(Robert and Casella, 2004). At each iteration,

we randomly generated the number of times to repeat the Metropolis Hasting steps for updating

a∗
k, j l

from a geometric distribution with probability parameter 1/5.
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Algorithm 1: MCMC algorithm for covariate-dependent iHMM for multiple time series

with missing data

Result: Posterior samples of estimated hidden states zi s,1:T for individuals i = 1, . . . ,n on

sampling days s = 1, . . . ,Si , and state-specific parameters (µk ,Σk ) for all

occupied k. Multiple imputations for observations that are MAR or below the

LOD.

Specification of fixed hyperparameters.

Random initialization for all parameters.

for each iteration do

for i in 1, . . . ,n do

for s in 1, . . . ,Si do
Draw ui st |zi st , zi s,t−1,xi st ,πi s for each t ;

Define the set of possible states for each t as

k̃i st = {zi st : 0 < ui st <πzi s,t−1,zi st
(xi st ) and 0 < ui s,t+1 <πzi st ,zi s,t+1

(xi s,t+1)};

Calculate p(zi s1 = k|yi s1,ui s1,πi s ,µk ,Σk ) ∝ f (yi s1|zi s1 = k,µk ,Σk ) for all

k ∈ k̃i s1;

for t in 2, . . . ,T do
Calculate p(zi st = k|yi s,1:t ,ui s,1:t ,πi s ,µk ,Σk ) ∝ f (yi st |zi st =

k,µk ,Σk )
∑

zi s,t−1:ui st<πzi s,t−1,k (xi st ) p(zi s,t−1|Yi s,1:t−1,ui s,1:t−1,πi s ,µ,Σ)

∀k ∈ k̃i st ;
end

end

Sample zi st where p(zi st = k|−) ∝ p(zi st = k|Yi s,1:t ,ui ,1:t ,πi ,µk ,Σk )I (k ∈ k̃i st ) for

all t ;
end

Update K , the number of unique non-empty states;

Sample µk |− for k in 1, . . . ,K using Gibbs sampling;

Sample Σk |− for k in 1, . . . ,K using Gibbs sampling, or Metropolis-Hastings if there

are missing data;

Sample w·····|− from its full conditional;

Sample the transition distribution parameters from their full conditionals;

Update πi s |− deterministically for each i = 1, . . . ,n and s = 1, . . . ,Si

Sample missing values from posterior predictive distribution, if applicable

end
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Multiple imputation for MAR data and data below the LOD proceeds by sampling from the

posterior predictive distributions of the missing data given the observed data, which are de-

scribed in Section 3.3.3. By definition, yi st are conditionally independent of all other exposure

data given zi st . We can therefore sample from the posterior predictive distribution of the miss-

ing data separately for each time point. For data below the LOD, where the posterior predictive

distribution is a truncated multivariate normal distribution, we use the hybrid sampler pro-

posed by Li and Ghosh (2015). When yi st has both data that are MAR and below the LOD, we

sample from the posterior predictive distribution for each missing data type conditional on the

other missing data type, which is then assumed to be part of the observed data.

3.4 Simulation Studies

We tested the performance of our proposed method in a simulation study. We compared

five models. The first two models are variations of our proposed approach, which we term

‘joint’ models since we fit our model jointly to all time series. The ‘joint cyclical’ model in-

cludes a cyclical harmonic function of time as covariates to reflect cyclical daily patterns. In

the simulation study, we do not consider repeated time series for individuals and do not con-

sider subject-specific effects. We therefore drop the subscript s in the notation in this section.

To create the cyclical function, we scaled the time of day to the interval (0,2π) and defined

x′
i t
= [sin(hi t ),cos(hi t ),sin(2hi t ),cos(2hi t )], where hi t denotes the scaled time of day for indi-

vidual i at time point t . The ‘joint no covariates’ model does not include any covariates. To

evaluate the benefit of our joint approach for all time series over the naive approach of fitting

independent models for each time series, we fit the cyclical model and the model without co-

variates separately to each time series (‘independent cyclical’ and ‘independent no covariates’,

respectively). Finally, to quantify the importance of temporal structure in the modeling ap-

proach, we fit a Dirichlet process mixture model (joint DPMM) that allows shared states among

time series but includes no temporal dependency. All models in our simulation study account

for missing data using the same missing data model described in 3.3.3. We did not consider
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other iHMMs in our simulation study because methods with existing software lack the ability

to simultaneously impute both MAR and below LOD data and accommodate multiple asyn-

chronous time series.

Our proposed approach is computationally complex, but mixes quickly due to beam sam-

pling of the hidden state trajectories. The computational time is O(nT K 2). The time to run

1000 iterations of our MCMC sampler on our simulated data is 46 minutes on a personal laptop

(Processor: 3.1 GHz Dual-Core Intel Core i5, Memory: 16 GB 2133 MHz LPDDR3) in R version

4.0.3. We assessed convergence with trace plots of imputations and the estimated number of

hidden states (Appendix B.1, Figures B.1-B.3). Evidence of convergence appeared within 5000

iterations. Hence, we based inference on 5000 iterations after a burn-in of 5000 iterations.

3.4.1 Data-Generating Process for Simulated Data

We considered two simulation scenarios, one with shared temporal trends among individ-

uals and one with distinct temporal trends for each individual. In both scenarios, we simulated

n = 20 time series of length T = 288 to emulate data recorded every 5 minutes over a 24-hour

period, similar to our application. We considered p = 3 mixture components. We set the true

number of hidden states to K = 20.

For individuals i = 1, . . . ,20, we first sampled unordered state labels for t = 1, . . . ,288 as

z∗
i t
|ρi ∼ Categorical(ρi ) and ρi ∼ Dirichlet20 (20,19,18, . . . ,3,2,1). We then grouped the states

by index. In the shared trends scenario, we sorted the states for each individual as 1 to 20 so

all individuals traveled through the states in the same order. We set t = 1 to be halfway though

state 1 so all individuals started and ended in state 1. Due to small state allocation probabilities,

some hidden states were not generated for all individuals. In the distinct trends scenario, we

randomly permuted the ordering of the states for each individual. Each individual began and

ended in the same state, but the hidden state sequence differed for each individual to reflect dis-

tinct temporal trends. Our data-generating process induces implicit dependence on both time

and previous state, which is well-represented by our model. In addition, the process generates
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some highly-frequented hidden states as well as some hidden states that are only visited for a

small number time points, mimicking the heterogeneity observed in the FCCS data. Further, we

intentionally did not simulate directly from our proposed model to test performance in a more

realistic setting where none of the models considered exactly match the true data-generating

mechanism.

In both scenarios, we randomly generated the state-specific emission distribution means

µk ,k = 1, . . . ,20, as N(0,Σ0), where Σ0 is a diagonal matrix with elements 0.7, 0.4, and -0.2. To

create the state-specific covariance matrices Σk , k = 1, . . . ,20, we generated lower diagonal ma-

trices Lk with 1’s on the main diagonal and off-diagonal elements simulated from a N(0,0.5)

distribution. We defined Σk ≡
(

1
100

)
L−1

k
(L−1

k
)′. We simulated data by yi t |zi t = k ∼ N(µk ,Σk ) and

then scaled the data so each component had mean 0 and variance 1.

We constructed data sets with missing data levels of 0% (i.e. completely observed data), 5%,

10%, and 20%. For each missing data level, we specified half of the missing data as MAR and

half as below the LOD. We randomly removed MAR data in chunks of size 1 to 10 time points to

reflect the idea that data may be missing in sequences due to instrument failure or participant

noncompliance. For missing data below the LOD, we removed all data that fell below the quan-

tiles defined as half the missing data level (e.g., 2.5%, 5%, and 10%). We simulated 100 data sets

for each scenario and missing data level.

3.4.2 Evaluation Criteria

To evaluate hidden state estimation, we reported the mean estimated number of hidden

states (K̂ ) for each method. We calculated the estimated number of hidden states as the av-

erage number of occupied hidden states in each MCMC iteration post burn-in. For the inde-

pendently fit iHMMs, we reported the total mean estimated number of hidden states for all 20

time series since these methods estimate unique hidden states for each individual. We assigned

estimated states to true states to maximize overlap, and calculated the resulting Hamming dis-

tance (Van Gael et al., 2008). Hamming distance is the number of time points at which the true
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states and estimated states do not align. Our final evaluation metric was the proportion of in-

correctly classified time points. For the independently fit iHMMs, we calculated Hamming dis-

tance separately for each time series and reported the mean proportion of incorrectly classified

time points across the 20 time series. We evaluated state-specific mean estimation via mean

squared error (MSE) (see Appendix B.2 for details). On data sets with missing observations, we

calculated MSE and bias for MAR data and data below the LOD averaged over 400 imputations.

We reported the mean for each measure across 100 simulated data sets.

3.4.3 Simulation Results

Results from the shared trends scenario simulation study are shown in Table 3.1. At all lev-

els of missingness, the joint cyclical model was best able to estimate hidden states. By fitting a

single model to all time series instead of fitting a separate model to each time series, the joint

cyclical model estimated fewer, larger states. In most cases, this translated into better estima-

tion of the state-specific means and better imputation of missing data.

On completely observed data, the joint cyclical model had an average estimated number

of hidden states (14.25) closest to the truth, smallest Hamming distance (0.23), and MSE for

state-specific means of 0.06. The next best method was the joint no covariates model, which

estimated 12.78 hidden states on average, and had mean Hamming distance of 0.31 and MSE

for state-specific means of 0.08. The joint DPMM followed, with an estimated 30.13 hidden

states, Hamming distance of 0.33, and MSE for state-specific means of 0.05. The independently

fit iHMMs performed worst in both measures, and substantially over-estimated the number of

hidden states (K̂ = 125.97 for independent cyclical model and K̂ = 100.80 for independent no

covariates model) since they estimate unique states for each time series.

At 5% missing data, the joint cyclical model estimated 13.50 hidden states on average, with

Hamming distance of 0.30 and MSE for state-specific means of 0.08. The joint no covariates

model was the next best method, estimating an average of 11.06 hidden states with Hamming

distance of 0.39 and MSE for state-specific means of 0.10. The independently fit iHMMs (K̂ =
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Table 3.1: Results from the shared trends scenario simulation study. The two variations of our proposed

joint iHMM approach are the model with cyclical trends (joint cyclical) and the model with no covariates

(joint no covariates). We include the model with cyclical trends fit independently to each time series

(indep. cyclical) and the model with no covariates fit independently to each time series (indep. no co-

variates). Last is the Dirichlet process mixture model (joint DPMM) fit jointly to all time series. The table

shows the following measures: mean estimated number of hidden states (K̂); mean Hamming distance,

which is a measure of the distance between the estimated hidden state trajectories and the true hidden

state trajectories; mean MSE for the state-specific means (µMSE); mean MSE and bias for the MAR and

below LOD data imputations. Results are shown for four levels of missing data: 0%, 5%, 10%, and 20%.

Standard errors are shown in Table B.1.

MAR LOD MAR LOD

Method K̂ Hamming µMSE MSE MSE bias bias

0%

joint cyclical 14.25 0.23 0.07 – – – –

joint no covariates 12.78 0.31 0.08 – – – –

indep. cyclical 125.97 0.52 0.38 – – – –

indep. no covariates 100.80 0.61 0.48 – – – –

joint DPMM 30.13 0.33 0.05 – – – –

5%

joint cyclical 13.50 0.30 0.08 0.46 3.01 -0.06 -0.77

joint no covariates 11.06 0.39 0.10 0.62 2.24 -0.06 -0.60

indep. cyclical 122.62 0.52 0.28 1.02 4.26 -0.06 -1.08

indep. no covariates 96.82 0.61 0.35 1.11 3.49 -0.05 -0.93

joint DPMM 47.84 0.49 8.85 109.05 415.44 -2.83 -8.68

10%

joint cyclical 12.73 0.35 0.20 0.71 4.52 -0.05 -0.83

joint no covariates 11.69 0.44 0.21 0.82 3.60 -0.07 -0.86

indep. cyclical 117.80 0.53 0.32 1.12 4.29 -0.07 -1.00

indep. no covariates 93.32 0.62 0.40 1.29 3.67 -0.08 -0.92

joint DPMM 54.78 0.51 16.84 110.77 343.35 -2.69 -6.98

20%

joint cyclical 13.55 0.33 0.38 0.96 4.33 -0.14 -1.00

joint no covariates 11.14 0.46 0.30 0.90 3.12 -0.10 -0.79

indep. cyclical 109.90 0.57 0.49 1.60 7.19 -0.14 -1.37

indep. no covariates 83.84 0.67 0.54 1.53 5.36 -0.12 -1.12

joint DPMM 62.84 0.56 72.22 308.17 618.32 -7.72 -11.44
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122.62 for independent cyclical model and K̂ = 96.82 for independent no covariates model) and

the joint DPMM (K̂ = 47.84) over-estimated the number of hidden states, with Hamming dis-

tances ranging from 0.49 for the joint DPMM to 0.61 for the independent no covariates model.

In state-specific mean estimation, the independently fit iHMMs outperformed the joint DPMM.

The same relative performance of all models existed at 10% missing data. At 20% missing data,

the joint cyclical model continued to most accurately estimate the hidden states (Hamming

distance = 0.33), followed by the joint no covariates model (Hamming distance = 0.46). In state-

specific mean estimation, both joint iHMMs performed similarly and outperformed the inde-

pendently fit iHMMs and, by far, the joint DPMM.

The slight under-estimation of the number of states using the joint iHMMs is a result of a

tendency to merge small states, which may contain only one or two time points, with other

states. It is clear from the results that under-estimating the number of hidden states is pre-

ferred to over-estimating since our proposed joint approaches had lower Hamming distances

and lower MSE for estimated state-specific means than the independently fit iHMMs. The poor

estimation performance of the joint DPMM in the presence of missing data demonstrates the

importance of including temporal dependency in the modeling framework. The relative im-

provement of the models with covariates compared to those without covariates demonstrates

the value of including covariates in the transition dynamics.

The improved hidden state and state-specific mean estimation in the proposed joint models

resulted in more accurate imputations for missing data. At 5% missing data, the joint iHMMs

had smallest MSE for both types of imputations (joint cyclical: MAR MSE = 0.46, LOD MSE =

3.01; joint no covariates: MAR MSE = 0.62, LOD MSE = 2.24). The independently fit iHMMs

followed. At 10% and 20% missing data, the proposed joint iHMMs had smaller MSE for MAR

imputations than the independently fit iHMMs. For below LOD imputations, all iHMMs per-

formed similarly when considering the size of Monte Carlo standard errors (Appendix B.3, Table

B.1). The joint DPMM performed worst at all levels of missingness with high MSE for both types

of imputations.
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In the distinct trends scenario, both our proposed joint cyclical model and the joint no co-

variates model performed similarly regarding hidden state and state-specific mean estimation

(Appendix B.3, Table B.2). Hence, there are minimal drawbacks of including cyclical trends in

the model when they are not present in the data. Relative performance of the other models was

similar in both scenarios.

3.5 Application to FCCS Data

We applied our proposed method to the FCCS data described in Section 3.2. First, we con-

ducted a validation study to test our multiple imputation approach using holdout observations.

We compared variations of our proposed model with different covariates in a situation with an

unknown latent structure. Second, we used our proposed method to estimate a hidden state

structure in the FCCS data and impute missing observations.

3.5.1 Validation Study

We created 20 data sets for validation. In each data set, we removed an additional 5% of the

observed data, which amounted to 2160 observations, split evenly between MAR and below the

LOD. We used the same method for removing data as in our simulation study, and specified new

LODs at the 0.025 quantiles of the observed data for each exposure. Hence, the additional MAR

data was different for each data set, but the data below the LOD was the same for each data set

in the validation.

We fit our proposed model with five different specifications for covariates. We fit the joint

cyclical model and the joint no covariates model as described in Section 3.4. To account for

repeated sampling days, we fit a joint subject-specific cyclical model, which uses the same har-

monic function calculated as in Section 3.4 as covariates, as well as subject-specific effects of

the harmonic function, as described in (3.4). We also fit a model with the five manually defined

microenvironments (home, work, eateries, transit, and other) as categorical predictors, as well

as a model with subject-specific effects of the microenvironments, as described in (3.4). We
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considered three comparison models: the joint DPMM, a pooled approach, and a stratified ap-

proach. In the pooled approach, we fit a single multivariate normal distribution to the entire

data set. In the stratified approach, we fit separate multivariate normal distributions to the data

within each of the five manually assigned microenvironments. We imputed missing data for

the pooled and stratified approaches by sampling from the posterior predictive distributions of

the grouped data. To evaluate imputations, we calculated mean MSE and bias over 400 impu-

tations.

Results from our validation study are shown in Table 3.2. All five variations of our proposed

model performed similarly and were the best methods for MAR imputations, with mean MSE

ranging from 1.20 to 1.39. For the pooled and stratified approaches, mean MSE for MAR impu-

tations was 2.21 and 2.05, respectively. For below LOD imputations, the pooled and stratified

approaches had lowest MSE on the majority of the data sets. For our proposed approaches, the

minimum MSE for imputations below the LOD ranged from 0.70 to 1.08, with means ranging

from 1.94 to 2.58. Meanwhile, the minimum MSE for the pooled and stratified approaches was

1.10 and 1.09, with mean MSE of 1.13 and 1.12, respectively. The joint DPMM had very poor im-

putations for both types of missing data. For all methods, imputations tended to be negatively

biased and more so for below LOD imputations.
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Table 3.2: Results from the imputation validation study using FCCS data. The table shows the minimum

(min), median, mean, and maximum (max) mean squared error (MSE) for imputations of MAR and be-

low LOD data. The five variations of our proposed joint iHMM approach include the model with no

covariates (joint no covariates), the model with cyclical trends (joint cyclical), the model with subject-

specific cyclical trends (joint s.s. cyclical), the model with microenvironments as categorical predictors

(joint microenv.), and the model with subject-specific microenvironment effects (joint s.s. microenv.)

In the pooled approach, a single multivariate normal distribution was fit to all data. In the stratified

approach, multivariate normal distributions were fit to all data within each FCCS assigned microenvi-

ronment. Last is the Dirichlet process mixture model (joint DPMM) fit jointly to all time series.

MSE bias

min median mean max min median mean max

MAR

joint no covariates 0.93 1.19 1.23 1.70 -0.26 -0.15 -0.15 -0.04

joint cyclical 0.99 1.19 1.26 1.81 -0.20 -0.15 -0.13 -0.08

joint s.s. cyclical 0.90 1.10 1.20 2.34 -0.26 -0.15 -0.14 -0.06

joint microenv. 1.03 1.23 1.28 1.67 -0.23 -0.15 -0.14 -0.06

joint s.s. microenv. 1.00 1.20 1.39 4.07 -0.29 -0.19 -0.17 -0.11

pooled 2.13 2.19 2.21 2.31 -0.23 -0.16 -0.15 -0.01

stratified 1.96 2.04 2.05 2.17 -0.23 -0.16 -0.15 -0.01

joint DPMM 302.83 568.48 613.70 1109.12 -18.05 -12.54 -12.65 -8.17

Below LOD

joint no covariates 0.71 1.82 1.94 5.11 -1.07 -0.24 -0.30 0.14

joint cyclical 0.84 1.92 2.09 5.26 -0.59 -0.25 -0.23 0.17

joint s.s. cyclical 0.70 1.95 2.14 5.53 -0.97 -0.29 -0.32 0.21

joint microenv. 0.77 1.74 1.96 4.06 -0.98 -0.21 -0.29 -0.01

joint s.s microenv. 1.08 2.03 2.58 10.23 -1.17 -0.53 -0.45 -0.04

pooled 1.10 1.13 1.13 1.19 -0.27 -0.26 -0.26 -0.25

stratified 1.09 1.12 1.12 1.18 -0.27 -0.26 -0.26 -0.25

joint DPMM 663.08 1291.68 1498.04 2970.76 -44.84 -26.72 -27.73 -19.38

These results demonstrate that the hidden state estimation offered by our proposed ap-

proach improves imputations for MAR data over naive fixed-state approaches and a DPMM

with no temporal structure. For data below the LOD, our results must be interpreted with cau-

tion and only in the context of this data set and validation design, since data below the LOD was

not randomly generated as in our simulation study. Much of the data below the LOD was clus-

tered within a few sampling days for a long period of time. Imputations of the FCCS data were

not sensitive to the covariates specified in our proposed approach. In particular, our models
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with cyclical trends performed just as well as the models using microenvironments as predic-

tors, suggesting that the microenvironment data, which may be costly to obtain and subject to

error, were not necessary for accurate imputations of multivariate exposures.

Our imputation approach was sensitive to the specification of the emission distribution pa-

rameter λ. We conducted a sensitivity analysis of the parameter λ included in Appendix B.4.

Smaller values of λ led to higher MSE for imputations in our proposed approaches due to larger

a priori variation in the data and state-specific means (Tables B.3 and B.4).

3.5.2 Case Study

We applied the joint subject-specific cyclical model to the FCCS data set described in Sec-

tion 3.2. Although all variations of covariate structure that we considered in the validation study

performed similarly, the joint subject-specific cyclical model best represents our prior belief in

the underlying data structure. We based inference on 5000 iterations after discarding 5000 it-

erations as burn-in. Figures B.4-B.6 in Appendix B.5 show trace plots of the imputations and

estimated number of hidden states, demonstrating evidence of convergence within 5000 itera-

tions. The computational time to run our MCMC sampler for 1000 iterations in our application

to the FCCS data set was 3.2 hours on a personal laptop (Processor: 3.1 GHz Dual-Core Intel

Core i5, Memory: 16 GB 2133 MHz LPDDR3) in R version 4.0.3.

We classified hidden states using the draws-based latent structure optimization method de-

scribed by Dahl (2006) with the variation of information loss function (Wade and Ghahramani,

2018). Using this method, we estimated 53 hidden states shared across the 50 sampling days.

Figure 3.1a shows the model-averaged exposure means for each state, with error bars represent-

ing the empirical minimum and maximum exposures within each state. In Figure 3.1b, we show

the number of time points assigned to each state and the proportion that lie within each of the

five manually assigned microenvironments from the FCCS. Some hidden states were frequently

visited and others were relatively rare. Most hidden states encompassed several microenviron-

ments, of which home and work were most frequently visited.
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(a) Model averaged state-specific exposure means

(b) Hidden states and microenvironments

Figure 3.1: Results from analysis of FCCS data using joint subject-specific cyclical model. Panel (a) shows

model averaged log-transformed exposure means for each of the 53 hidden states estimated in the most

optimal partitioning of the FCCS data. Exposures include black carbon (BC), carbon monoxide (CO),

and fine particulate matter (PM2.5). Error bars depict the minimum and maximum empirical exposures

within each state. Panel (b) shows the number of time points in each hidden state and the proportion

of time points that intersected with each of the manually assigned microenvironments from FCCS. The

total number of time points in this analysis was 14,400.
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The hidden states provide opportunity for further investigation of time-activity patterns

associated with the exposures. To illustrate this, we investigated in detail hidden state 8 and

hidden state 12. Hidden state 8 had higher than average mean exposure for each of three pol-

lutants. By far the most common microenvironment in state 8 was home, followed by other,

and then work. In this analysis, 637 time points were assigned to state 8 across 38 sampling

days and 9 unique people (Appendix B.6, Table B.5). The presence of this state among many

people and days suggests that people frequently experience periods of time when their home

microenvironments are subject to higher than average levels of exposure. This state tends to

occur around typical breakfast and dinner times and likely corresponds to cooking events. Hid-

den state 12, on the other hand, had markedly lower than average mean exposure to CO. The

458 time points assigned to hidden state 12 spanned 31 days and 9 unique people (Table B.5),

with approximately half of the time points occurring at work and half at home. The very low CO

exposure mean for this state suggests that many of the time points assigned to this state may

have CO levels below the LOD.

Next we discuss the hidden state trajectories for two sampling days for two separate indi-

viduals. We selected two individuals that represent two different patterns in the data: one with

very similar exposure patterns and one with different exposure patterns over repeated sam-

pling days. In Figure 3.2a we show the estimated hidden states, reported microenvironments,

and imputations for person 8 on sampling days 1 and 3. The left column of panels shows the

observed exposures for BC, CO, and PM2.5 for person 8 on sampling day 1, and the right column

shows the observed exposures for person 8 on sampling day 3. In Figure 3.2b, we show the same

for person 37 on sampling days 1 and 2. Microenvironment patterns were similar across all four

sampling days shown in Figure 3.2, with individuals generally first spending a large portion of

the day at home, followed by a short time in transit, a chunk of time at work, then transit again

and ending the day at home. Hidden state change-points generally aligned with microenvi-

ronment change-points, showing that our model is able to pick up on changes in activity that
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coincide with differences in the distribution of exposures. Our model also subdivides the mi-

croenvironments to reflect changing conditions over time.

For person 8, similar microenvironment patterns over the two sampling days elicited similar

levels of exposure, which our model identified via shared hidden states. On both sampling days

shown, person 8 traversed through hidden states 1 and 8 during their time at home. State 8,

which had higher than average exposure means for all pollutants, was mostly visited during the

evening hours (5-9pm) and mid-morning hours (7-9am). State 1 occurred during the overnight

hours. All three exposure means were higher in state 8 than in state 1. It appears that our model

is identifying shared activity patterns related to cooking (state 8) and sleeping (state 1), which

produce different exposure levels within the same location.

On the contrary, person 37 exhibited differences in exposures between the two sampling

days, even within the same microenvironment. Our model captured these differences by esti-

mating different hidden states on the two sampling days for this individual. Person 37 also had

a substantial amount of missing data on these two days. All of the imputations shown in Figure

3.2b represent data below the LOD. The time points with CO below the LOD were all assigned to

hidden state 12. At these times, PM2.5 and BC exposures remained relatively constant. Hence,

through the estimation of hidden state 12, our model used the observed data within the state to

inform imputations for the long stretch of missing data seen for person 37 on sampling day 2.

Our approach produces a rich output regarding the hidden states, providing plenty of op-

portunity for further investigation. For example, we estimated several rare hidden states that

were present in only one or two subjects. In particular, state 43 was present in only one subject

for a total of 13 time points across three days (Table B.5). Figure 3.1 shows that hidden state 43

was defined by slightly lower than average exposure to CO and PM2.5, and mainly appeared in

the work microenvironment. An uncommon feature of this person’s work may have produced

this unique distribution of exposures. On the other hand, some hidden states were common

among many sampling days, but were only visited for a short period of time each day. One ex-

ample is hidden state 31, which occurred in 16 sampling days for a total of 81 time points (Table
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(a) Person 8 sampling days 1 and 3

(b) Person 37 sampling days 1 and 2

Figure 3.2: Multivariate exposures for two sampling days for each of two individuals in the FCCS data.

Panel (a) shows person 8 on sampling days 1 (left panel) and 3 (right panel). Panel (b) shows person 37 on

sampling days 1 (left panel) and 2 (right panel). Points represent exposure data with colors determined

by the hidden state to which each time point was assigned in the most optimal partitioning of the data.

Background colors represent the microenvironments as assigned by the FCCS based on time-activity

diaries and GPS data. Black points and associated error bars show the mean imputed values and 95%

credible intervals. Time is the local Mountain Daylight Time.
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B.5). Hidden state 31 had the highest mean exposure to CO and occurred in the microenviron-

ments home, transit, and other (Figure 3.1). This hidden state suggests that multiple people

experience high exposure to CO for a short period of time, which may disproportionately influ-

ence daily cumulative exposures. Through visualization of the time series containing hidden

states 43 and 31, we can use our model’s output to shed light on possible activities associated

with rare combinations of exposures as well as short periods of high exposure.

3.6 Discussion

In this paper, we proposed a coherent modeling framework to identify shared exposure pat-

terns and impute missing data in time-resolved ambient pollutant exposure data collected with

personal monitors. Our model is a covariate-dependent iHMM for multiple multivariate time

series with missing data. We model hidden state transitions with a PSBP, which flexibly allows

time-varying covariates and subject-specific effects to inform hidden state transitions and im-

prove imputations. Our model imputes data that are MAR or below the LOD.

In simulation, our approach offers improvements in hidden state estimation and imputa-

tion over models fit independently to each time series or a DPMM with no temporal structure.

On the FCCS data, our approach best imputes MAR data compared to competing methods.

In our analysis of the FCCS data, we investigated the utility of our proposed approach. In

particular, our model can impute missing data for multiple multivariate exposure assessments.

To our knowledge, this is the first iHMM developed that can impute data that are both MAR and

below the LOD for multiple time series. Accurate imputations are critical in exposure assess-

ments so the data can be reliably used for health effects studies. Additionally, through estima-

tion of the hidden state trajectories, our proposed model can identify both shared and unique

states among multiple individuals that correspond to high or low exposures. The estimated hid-

den states allow us to make inference on time-activity patterns for the individuals in the data

set, which can subsequently inform possible interventions.
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A limitation of our approach is the challenge of interpreting covariate effects in the PSBP

due to the probit transformation, stick-breaking formulation, and possible label switching in

the MCMC. While our primary interest was to use covariates to inform hidden state transitions,

other methods, such as the mixed HMM (Altman, 2007) or the stick-breaking Pólya-gamma

approach (Linderman et al., 2015), could be considered if interest focuses on interpreting co-

variate effects.

Our work offers a number of promising future directions. First, uncertainty in the LOD and

the missing data classification could be accommodated by estimating the LOD and modeling

the missing data type with a binary variable, respectively. Second, while our method was devel-

oped to cluster time points, extensions may consider hierarchical clustering of sampling days or

subjects. Clustering sampling days would provide insights into weekly or seasonal patterns in

exposures, while clustering subjects may elucidate individual- or group-level activities related

to exposures. Third, the method could be extended to accommodate continuous time series

and non-Gaussian emissions. With the rapid increase in the use of personal monitors in stud-

ies of air pollution exposure and health, methods such as we proposed in this paper, as well

as these potential extensions, are essential to maximize the information researchers can obtain

from these data.
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Chapter 4

Association Between Air Pollution and COVID-19

Disease Severity via Bayesian Multinomial Logistic

Regression with Partially Missing Outcomes

4.1 Introduction

Ambient air pollution exposure is a major global environmental health concern (Global Bur-

den of Diseases 2019 Risk Factors Collaborators, 2020; Health Effects Institute, 2018). Long-term

exposure to air pollution is associated with increased rates and severity of chronic diseases in-

cluding cardiovascular disease, diabetes, asthma, chronic obstructive pulmonary disease, and

mortality (Di et al., 2017a,b; Dockery and Pope, 1994; Dockery et al., 1993; Pan et al., 2018). In

addition, poor air quality has a negative impact on infectious diseases, and has been linked to

increased rates of influenza (Landguth et al., 2020) and increased fatalities from sudden acute

respiratory syndrome (SARS) (Cui et al., 2003). Previous evidence indicates long-term expo-

sure to air pollution increases susceptibility to viral disease, leading to more severe outcomes

(Ciencewicki and Jaspers, 2007). It is hypothesized that air pollution exposure may be linked

to increased severity in the ongoing global pandemic of coronavirus disease 2019 (COVID-19)

caused by the novel coronavirus SARS-CoV-2 (Comunian et al., 2020; Domingo and Rovira,

2020; Frontera et al., 2020; Setti et al., 2020b). Similar biological pathways that have been ob-

served with influenza and other respiratory viral infections may exist between exposure to par-

ticulate matter and SARS-CoV-2 infection, highlighting the possibility of increased COVID-19

severity among individuals with higher exposure to air pollution (Frontera et al., 2020).

The study of the effects of air pollution on COVID-19 health endpoints has been identified

as a critically important area of research for developing solutions to the global COVID-19 pan-

demic (Bhaskar et al., 2020). Studies investigating this relationship have considered exposures
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such as air quality index, fine and coarse particulate matter, nitrogen oxides, ozone, carbon

monoxide, and sulfur dioxide, as well as meteorological parameters including temperature and

relative humidity. In two literature reviews of studies taking place world-wide, a majority of

articles identified significant associations between short- and long-term exposure to air pollu-

tion and negative COVID-19 endpoints (Bhaskar et al., 2020; Copat et al., 2020). The COVID-

19 endpoints varied among studies and included number of cases, number of deaths, case-

hospitalization rate, case-fatality rate, percent of severe infection, basic reproduction number,

intensive care unit (ICU) admissions, and epidemic escalation. In addition, emerging cohort

studies suggest long-term exposure to air pollution prior to the pandemic is associated with a

higher risk of severe COVID-19 in those infected with SARS-CoV-2 (Bozack et al., 2021; Kogev-

inas et al., 2021).

The vast majority of existing studies used ecological designs with aggregated, most com-

monly county-level, data. Ecological studies suffer from ecological fallacy; that is, character-

istics of the group cannot be attributed to individuals. In their review, Brandt and Mersha

(2021) emphasized the need for individual-level air pollution exposure data and detailed clin-

ical data to establish a causal relationship between air pollution exposure and COVID-19 out-

comes. Individual-level exposure and risk factor data are needed to minimize bias and poten-

tial confounding that can occur at larger spatial resolutions. In addition, health endpoints for

COVID-19 that are measured at the individual level are more accurate than regional endpoints,

which may be subject to variations among regions or error due to unmeasured asymptomatic

cases and under-reporting of cases and deaths. The current literature is sparse with regards to

individual-level studies on the association between air pollution exposure and COVID-19 out-

comes.

We conduct an individual-level analysis of the association between long-term exposure to

air pollution and weather and peak COVID-19 severity in a Denver, Colorado, USA administra-

tive cohort. We consider all cases of COVID-19 that were reported to the Colorado Department

of Public Health and Environment (CDPHE) between March 6, 2020 and February 28, 2021, re-
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sulting in a cohort size of 57,027 verified COVID-19 infections. As the primary health outcome,

we consider peak severity. Our peak severity outcome takes on one of six mutually exclusive

categorical values: asymptomatic, symptomatic, hospitalized, admitted to the ICU, placed on

a mechanical ventilator, or death. Our primary interest is estimating the association between

long-term exposure to ambient air pollution and weather and peak COVID-19 severity.

A key challenge when using individual-level administrative data, especially in the rapidly

evolving COVID-19 pandemic, is the presence of missing health outcomes. Individual health

outcomes may be missing due to non-response or logistical problems with data attainment.

In the Denver, Colorado cohort, health outcomes are either observed or partially missing. For

example, it may be known that an individual was not hospitalized or worse, but it is unknown

whether the individual was symptomatic or asymptomatic. Observations with partially missing

outcomes are often discarded prior to a complete case analysis; however, there is valuable in-

formation to gain from the partially missing observations. Hence, there is a need for statistical

methods for regression analysis of data with partially missing categorical outcomes.

In classical statistics, multiple imputation approaches for categorical outcome data include

nearest-neighbor based methods (Zhou et al., 2017), bootstrap hotdeck multiple imputation

(Wang and Hsu, 2020), inverse probability weighting, and expected estimating equations. These

methods generally require discrete covariates, though continuous covariates can be incorpo-

rated through discretization. In Bayesian statistics, missing data are handled naturally by sam-

pling from the posterior predictive distribution of the missing data given the observed data.

Currently, however, there are no fully Bayesian approaches for multinomial logistic regression

with missing outcome data.

In this paper, we propose a Bayesian multinomial logistic regression model for data that

contain observations with partially missing categorical outcomes. Fully Bayesian inference in

categorical and multinomial regression has been historically challenging due to non-conjugate

priors for the model’s likelihood. In our analysis, we base inference on the odds ratio for each

peak severity category; hence, we require a logit link function. Polson et al. (2013) proposed a
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Pólya-gamma data augmentation approach for Bayesian logit models, and extended the Pólya-

gamma approach to multinomial models by combining it with the data augmentation approach

from Holmes and Held (2006). This approach requires sampling the category-specific regres-

sion coefficients one at a time, which can cause slow mixing and convergence in correlated

models. To address this issue, Linderman et al. (2015) proposed modeling the multinomial

distribution recursively with binomial distributions via the stick-breaking representation. The

stick-breaking approach permits parallelized updates of the regression parameters, leading to

more efficient mixing. Though the stick-breaking approach offers computational improve-

ments, it presents an inferential challenge because the odds ratio ceases to be a linear function

of the exposures.

We develop the first fully Bayesian multinomial logistic regression model for partially miss-

ing outcome data in which the primary goal is inference on the odds ratios. Our method builds

on the approach of Linderman et al. (2015), and we address the inferential challenges induced

by the stick-breaking approach through post-processing and visualization of the posterior dis-

tribution. Our model imputes partially missing health outcome data, where the number of

missing outcome categories can vary by individual. Using the proposed model, we estimate

the association between long-term exposure to fine particulate matter, ozone, and tempera-

ture and peak COVID-19 severity in the presence of missing outcome data, while controlling

for individual- and neighborhood-level risk factors. We find evidence of a positive association

between exposure to fine particulate matter and increased risk of severe COVID-19, as well as

a possible interaction effect between fine particulate matter and ozone. Our individual-level

analysis supports existing research on air pollution and COVID-19, and provides the additional

contribution of beginning to draw a causal link.
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4.2 Data

4.2.1 Health Data

We obtained health outcome data from Denver Public Health, a department of Denver Health

and Hospital Authority (DHHA). Our study population includes 57,027 laboratory-confirmed

cases of COVID-19 in the City and County of Denver, Colorado reported between March 6, 2020

and February 28, 2021. The data include information about the case status including if an indi-

vidual was symptomatic, hospitalized, admitted to an ICU, placed on a mechanical ventilator,

or died. The case outcome data had missing observations, primarily due to lack of staff ca-

pacity to follow-up with cases regarding disease outcomes. Hence, the missing mechanism was

assumed to be missing at random. We made two assumptions to deterministically fill in some of

the missing outcome data. First, since deaths were accurately reported to the City and County

of Denver, we assumed that a case with missing death status did not die. Second, we assumed

that a case that was not symptomatic was not hospitalized, a case that was not hospitalized was

not admitted to the ICU, and a case that was not admitted to the ICU was not placed on a me-

chanical ventilator. After deterministically imputing missing outcome data using these basic

assumptions, we assigned each case to its most severe outcome. When peak severity could not

be determined for an individual due to missing data, all possible peak severity outcome cate-

gories were left as missing and imputed by our model. Table 4.1 shows the resulting pattern of

missingness in the data.
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Table 4.1: Missing data pattern for the peak severity outcome categories in our analysis of the Denver,

Colorado cohort (n = 55273). Cases with partially missing outcomes were missing between 2 and 5 out-

come categories. The table shows the number and percent of cases with each missing outcome category

pattern.

# missing

outcomes

missing

categories
# cases % cases

0 – 20872 37.8

2 (Asymptomatic, Symptomatic) 2916 5.3

3 (Symptomatic, Hospitalized, ICU) 59 0.1

4 (Symptomatic, Hospitalized, ICU, Ventilator) 8725 15.8

5 (Asymptomatic, Symptomatic, Hospitalized, ICU, Ventilator) 22701 41.1

4.2.2 Exposure Data

We obtained air pollutant and meteorological exposure data from the Colorado Department

of Public Health and Environment (CDPHE) website (Department of Public Health and Envi-

ronment, 2021). The exposure metric of interest was annual average exposure to fine particulate

matter with an aerodynamic diameter less than 2.5 µm (PM2.5; µg/m3), ozone (ppb), and tem-

perature (degrees Fahrenheit) in the year prior to the COVID-19 pandemic in Denver, Colorado.

The first officially documented case of COVID-19 in Denver was March 6, 2020. We therefore

define the year prior to the pandemic, our exposure period, as March 1, 2019 through February

29, 2020. We calculated daily average exposure during the exposure period for PM2.5 and tem-

perature, and 1-hour maximum daily average for ozone from hourly measurements recorded

at ground monitoring stations. We excluded daily variables if more than 25% of hourly obser-

vations recorded at that monitoring site for that day were missing. We excluded monitors that

were located in the Rocky Mountains west of Denver because that area experiences unique me-

teorological conditions not representative of the study area (Vedal et al., 2009). Using inverse-

distance weighting, we assigned daily exposures to individual residential locations using data

from all monitors within 50km of the individual’s address. Finally, we calculated each indi-

vidual’s annual average exposure during the year prior to the pandemic by averaging the daily
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exposure values. For our analyses, exposure data were centered and divided by the interquartile

range (IQR) prior to model fitting.

4.2.3 Covariate Data

We included individual- and census tract-level variables. We obtained individual-level vari-

ables from Denver Public Health’s COVID-19 case investigation database. These variables in-

cluded the continuous covariate age and the categorical covariates gender, race/ethnicity, and

pregnancy status. We also included case report date, defined as the date the case was first re-

ported to CDPHE. The individual-level covariate data contained a small number of missing ob-

servations. To impute missing categorical covariate data, we first assumed that if the case was

listed as male then the case was not pregnant. We then singly imputed the missing values for

categorical covariates with 0 and added a dummy variable for each covariate with missing data

that indicated which values of the covariate were missing. For gender, a value of ‘other’ was

combined with the missing group due to the small number in the ‘other’ group (n = 3).

We obtained census-tract variables summarizing socioeconomic status from the 2015-2019

American Community Survey (United States Census Bureau, 2020) using the tidycensus pack-

age in R (Walker et al., 2021). These variables included median income, percent of the civilian

workforce aged 16 and older that is unemployed (unemployed), percent of the population aged

25 and older with less than a high school diploma or equivalent education (low education),

and percent of individuals in the census tract with past year’s income below the poverty level

(poverty).

We obtained a final sample size of 55,273 individuals for which we were able to link the

health outcome data with complete covariate and exposure data. We provide a summary of

the demographic characteristics of the sample in Appendix C.1 (Table C.1). This study was

approved by the Institutional Review Board of Colorado State University.
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4.3 Statistical Model

We first present the model for complete data. Then we describe our Markov chain Monte

Carlo (MCMC) sampler, our multiple imputation approach, and our inferential approach. Soft-

ware to fit our proposed method is in theRpackagepgmultinomr (Hoskovec, 2021a) available

at github.com/lvhoskovec/pgmultinomr.

4.3.1 Complete Data Model

For a sample i = 1, . . . ,n, let yi denote the K -dimensional vector indicating to which of K

possible outcome categories individual i belongs. Hence, yi = (yi 1, . . . , yi K ) contains one 1 and

the remaining K −1 observations are all 0. Let xi denote the vector of exposures for individual

i . In our analysis, xi contains three exposures and all pairwise interactions. Let wi denote the

vector of covariates measured for individual i , including an intercept term.

We model yi with a multinomial distribution where the number of trials is 1. Using the

stick-breaking representation of the multinomial distribution, we model the complete data for

individuals i = 1, . . . ,n by

yi ∼

K−1∏

k=1

binom(yi k |Ni k , π̃i k ), (4.1)

where Ni 1 = 1 and Ni k = 1 −
∑

j<k yi j . In (4.1), π̃i k for k = 1, . . . ,K − 1 are the stick-specific

weights for individual i , denoting the proportion of the remaining probability mass assigned to

the kth category. The parameter Ni k denotes the number of remaining trials for the kth category,

which, in our case, will always be either 0 or 1. We model each π̃i k for i = 1, . . . ,n and k =

1, . . . ,K −1 using a logit link function of exposures and covariates. The logit link for the stick-

specific weights is given by

π̃i k =
exp(ψi k )

1+exp(ψi k )
(4.2)

ψi k = xT
i βk +wT

i γk , (4.3)
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where βk and γk are category-specific regression coefficients for the exposures and covariates,

respectively. The model in (4.1) is equivalent to the standard multinomial model

yi ∼ multinomK (1,πi ), (4.4)

where πi = (πi 1, . . . ,πi K ) and

πi 1 = π̃i 1 (4.5)

πi k = π̃i k

(
1−

∑

j<k

πi j

)
for k = 2, . . . ,K −1

πi K = 1−
K−1∑

k=1

πi k .

To achieve efficient Gibbs sampling of the posterior distribution, we implement a Pólya-

gamma data augmentaton scheme (Linderman et al., 2015; Polson et al., 2013). We introduce

latent Pólya-gamma random variables ωi k for i = 1, . . . ,n and k = 1, . . . ,K − 1 such that ωi k ∼

PG(Ni k ,0), where PG(·, ·) denotes the Pólya-gamma distribution. Using the stick-breaking rep-

resentation and Pólya-gamma augmentation, the multinomial likelihood for individual i can

be written as

f (yi |xi ,wi ,β,γ) =
K−1∏

k=1

(
Ni k

yi k

)
exp(xT

i
βk +wT

i
γk )yi k

[
1+exp(xT

i
βk +wT

i
γk )

]Ni k
(4.6)

=

K−1∏

k=1

(
Ni k

yi k

)
exp

[
κi k

(
xT

i
βk +wT

i
γk

)]

2Ni k
Eωi k

[
exp

{
−

1

2
ωi k

(
xT

i βk +wT
i γk

)2
}]

,

where κi k = yi k − Ni k /2 and Eωi k
(·) denotes the expectation taken with respect to the Pólya-

gamma random variable ωi k . By conditioning (4.6) on ωi = (ωi 1, . . . ,ωi K−1), we obtain

f (yi |ωi ,xi ,wi ,β,γ) ∝

K−1∏

k=1

exp

[
−

1

2
ωi k

{
xT

i βk +wT
i γk −

(
κi k

ωi k

)}2]
, (4.7)
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which is a Gaussian kernel with respect to the regression coefficients. The prior distributions

on the regression coefficients are βk ∼ N(0,I) and γk ∼ N(0,I) for k = 1, . . . ,K −1, which allow

for efficient Gibbs sampling of the posterior distribution.

4.3.2 Posterior Computation

In our model, the number of trials is 1. We sample ωi k only for those individuals i and

categories k such that Ni k = 1. The full conditional for ωi k is

ωi k |Ni k = 1, · ∼ PG(1,xT
i βk +wT

i γk ). (4.8)

The regression coefficients for the kth category only depend on data from individuals where

Ni k = 1. For k = 1, . . . ,K −1, let Xk be a matrix with rows xi and Wk be a matrix with rows wi for

each i such that Ni k = 1. We sample the exposure regression coefficients from

βk |· ∼ N(mk ,Vk ) (4.9)

Vk =
(
I+XT

k Ωk Xk

)−1

mk = Vk

[
XT

k Ωk

(
zk −WT

k γk

)]
,

where Ωk is a diagonal matrix with elements ωi k for each i such that Ni k = 1 and zk is a vector of

κi k /ωi k for each i such that Ni k = 1. The regression coefficients for the covariates are similarly

updated.

4.3.3 Multiple Imputation

We assume missing outcome data are missing at random (Little and Rubin, 2019), but may

be conditional on partial outcome information. The complete data vector yi = (yi 1, . . . , yi K )

may contain any combination of observed and missing values for the K categories. If the vector

contains missing data, then any observed values must be 0, since the total number of trials is 1.
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To impute missing outcome data, we sample from the posterior predictive distribution of the

missing data given the observed data.

Consider an individual i with missing outcome data. Let yi ,miss denote the set of outcome

categories with missing data and yi ,obs the set of outcomes categories that are observed for

individual i . If yi ,obs = {;} (i.e. the individual is missing outcome data for all K categories), then

the posterior predictive distribution is

yi ,miss|xi ,wi ,β,γ∼ multinomK (1,πi ), (4.10)

where πi is calculated by (4.2), (4.3), and (4.5).

If some outcome categories for individual i are observed and some are missing, then we

leverage the partial information to improve imputations. Let Ki ,miss denote the set of cate-

gories with missing data for individual i and let Ki ,obs denote the set of categories that are

observed. Note that Ki ,miss ∪Ki ,obs = {1, . . . ,K }. For partially missing outcomes in our analysis,

the number of missing outcome categories may range from 2 to 5. Since we know the observed

outcome categories must all be 0, we can sample the missing outcome categories from a re-

duced dimensional multinomial distribution. First, we calculate the entire probability vector

πi by (4.2), (4.3), and (4.5). Then we calculate πi ,miss = {πi k,miss : k ∈Ki ,miss} where

πi k,miss =
πi k∑

k ′∈Ki ,miss
πi k ′

. (4.11)

Finally, we sample the missing outcome categories from

yi ,miss|xi ,wi ,β,γ∼ multinom|Ki ,miss|(1,πi ,miss), (4.12)

where |Ki ,miss| is the number of missing outcome categories for individual i .
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4.3.4 Inference

The traditional multinomial model (4.4) exhibits straightforward inference on the regres-

sion coefficients, assuming the model only includes main effects. The exponentiated regres-

sion coefficient exp(β j k ) is the odds ratio for category k relative to the reference category that is

associated with a one-unit increase in exposure j , holding all other exposures constant. When

interactions are included, the interpretation of regression coefficients in the traditional multi-

nomial model is complicated. Unless all co-exposures are set to zero, in which case inference

simply ignores interactions, it is impossible to increase an exposure while holding constant an

interaction term containing that exposure.

The stick-breaking representation of the multinomial distribution also presents challenges

in interpreting the regression coefficients because logit(ψi k ) for each k is conditional on not be-

ing in any category k ′ < k. In the stick-breaking model, exp(β j k ) is the odds ratio for category k

relative to a category greater than k, conditional on not being in a category less than k, that is as-

sociated with a one-unit increase in exposure j , holding all other exposures constant. Not only

is the stick-breaking interpretation difficult to comprehend, it also heavily depends on the or-

dering of the k categories since the reference is to a category greater than k. The stick-breaking

model presents the same problem with interpreting interactions as the traditional multinomial

model. We propose a visualization approach for inference on the stick-breaking multinomial

model to address these problems.

Due to the fully Bayesian nature of our model, we use the posterior distribution of the re-

gression coefficients to recover the traditional odds ratio inference that is common in logistic

regression. We consider the odds ratio as a function of exposures, and set all covariates to 0 in

our calculations.

Let θ(s) denote the sampled value for the parameter θ at iteration s of the MCMC sampler.

For iterations s = 1, . . . ,S post burn-in, we calculate the posterior distribution of the assignment
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probabilities, P (y = k|x), for each category, by

π̇(s)
k

=

exp
(
xTβ(s)

k

)

1+exp
(
xTβ(s)

k

) , for k = 1, . . . ,K −1 (4.13)

P (y = 1|x)(s)
= π̇(s)

1

P (y = k|x)(s)
= π̇(s)

k

(
1−

∑

j<k

P (y = j |x)(s)

)
, for k = 2, . . . ,K −1

P (y = K |x)(s)
= 1−

K−1∑

k=1

P (y = k|x)(s).

With this method, any category may be selected as the reference category. Let k∗ denote the

selected reference category. We calculate the posterior distribution of the odds ratio (OR) for

specified exposure values x∗ relative to baseline exposure values x0 by

ÔR
(s)

(x∗,x0) =

[
P (y = k|x = x∗)(s)

P (y = k∗|x = x∗)(s)

]/[
P (y = k|x = x0)(s)

P (y = k∗|x = x0)(s)

]
, (4.14)

for all k 6= k∗. In our analysis, we consider three exposures and their pairwise interactions. To

create the matrix x∗ in (4.14), we generate a sequence of evenly-spaced exposure values within

the mean plus or minus two IQR for a primary exposure of interest, and set the two secondary

exposures to a fixed percentile. The pairwise interactions are then calculated and all six expo-

sure variables (3 main effects and 3 interactions) are included in x∗. The baseline exposure ma-

trix, x0, includes the primary exposure set to its mean value, the other two secondary exposures

set to the specified percentiles, and the pairwise interactions. Hence, the OR will always be 1

at the mean value of the primary exposure. To visualize the posterior distribution of ÔR(x∗,x0),

we plot the posterior mean and 95% credible intervals as a function of the primary exposure,

holding the secondary exposures at the same fixed percentile. We visualize interaction effects

by plotting ÔR(x∗,x0) for different percentiles of the secondary exposures. We repeat this proce-

dure three times so each of the three exposures included in our analysis is used as the primary

exposure.
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In some situations, the peak severity outcomes follow a logical order. Such is the case in

our analysis with outcomes: asymptomatic, symptomatic, hospitalized, admitted to the ICU,

placed on a mechanical ventilator, and death. In these situations, the ordinal regression model

may seem appropriate. However, ordinal regression requires the strong assumption that the

odds ratio for being in a category less than or equal to k, relative to being in a category greater

than k, is the same for all categories. Ordinal regression also presents the same interpretation

problems for interaction effects as discussed previously for traditional multinomial regression.

Hence, we utilize the flexibility and Bayesian nature of our model to estimate the incremental

odds ratio (IOR), which is interpreted as the odds ratio of being in category k relative to being in

any of the less severe categories. Following a similar approach as we did for the OR, we calculate

the IOR by

ÎOR
(s)

(x∗,x0) =

[
P (y = k|x = x∗)(s)

P (y < k|x = x∗)(s)

]/[
P (y = k|x = x0)(s)

P (y < k|x = x0)(s)

]
, (4.15)

for the ordered outcome categories k = 1, . . . ,K .

4.4 Simulation Study

4.4.1 Simulation Study Design and Evaluation Metrics

We conducted a simulation study to evaluate the proposed method’s performance at imput-

ing missing outcome data and estimating regression coefficients. We considered eight simula-

tion scenarios that vary 1) the proportion of observations in each outcome category, 2) whether

or not exposures and covariates are predictive of the outcome categories, and 3) whether there

are partially missing outcomes or fully missing outcomes. For each scenario, we compared the

proposed model to a complete case analysis estimated with a similar Pólya-gamma augmented

stick-breaking model using the same priors on the regression coefficients.
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For all eight scenarios, we generated exposure data xi for i = 1, . . . ,n with p = 3 components

from a multivariate normal distribution with mean 0 and covariance matrix

ΣX =




1 −0.13 0.02

−0.13 1 −0.86

0.02 −0.86 1




, (4.16)

where ΣX is the correlation matrix of the real exposure data. We generated covariate data wi

for i = 1. . . ,n with q = 5 components from independent standard normal distributions. We

simulated outcome data with K = 6 categories and used a sample size of n = 5000.

Scenarios 1-4 encompassed the “data probabilities" setting, in which we set the category-

specific intercepts so the outcome category sizes mimicked the complete cases of the real data

as much as possible. In scenarios 5-8, termed the “equal probabilities" setting, we set the inter-

cepts so outcome categories were approximately equal-sized. Outcome categories in the equal

probabilities setting were not exactly equal-sized due to the randomness in the data generat-

ing process. Rather, the equal probabilities setting provides a setting in which all six categories

have a substantial amount of data, on average roughly equal amounts, and there are no very

small or very large categories as is the case in the data probabilities setting. The intercepts were

appended to the covariate matrix w. The outcome category assignment proportions for each

scenario, as well as the true proportions for the complete case data, are shown in Table 4.2.
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Table 4.2: Classification probabilities into each of the 6 outcome categories. The table shows the out-

come probabilities for the complete cases of the real data (“real data") and for the complete data in our

simulation scenarios. Measures for the simulated data were taken from 500 simulated data sets. Table

shows the mean (minimun, maximum) classification probabilities for scenarios with a signal, and the

fixed classification probabilities for null scenarios. Classification probabilities for null scenarios did not

differ among the simulated data sets. Probabilities are shown for both the “data probabilities” and “equal

probabilities” simulation design settings.

data probabilities equal probabilities

real data signal null signal null

Symptomatic 0.76 0.71 (0.64, 0.81) 0.77 0.19 (0.09, 0.29) 0.14

Asymptomatic 0.15 0.16 (0.08, 0.25) 0.16 0.18 (0.09, 0.27) 0.16

Hospitalized 0.06 0.06 (0.01, 0.14) 0.05 0.15 (0.06, 0.24) 0.19

ICU 0.01 0.03 (0.01, 0.09) 0.01 0.16 (0.07, 0.26) 0.19

Ventilator 0.01 0.02 (0.01, 0.05) 0.01 0.14 (0.07, 0.25) 0.14

Death 0.01 0.01 (0.01, 0.07) 0.01 0.18 (0.07, 0.28) 0.18

We designed scenarios both with and without a signal from the data to determine the effect

of a signal on imputations. In scenarios with a signal, exposure and covariate regression coeffi-

cients (βk and γk , respectively) for categories k = 1, . . . ,K −1 were simulated from independent

standard normal distributions. In scenarios without a signal (null scenarios), all exposure and

regression coefficients were set to 0, with the exception of the intercepts, which were specified

to dictate outcome category sizes. In all scenarios, we letψi k = xT
i
βk+wT

i
γk and then generated

outcome data according to the stick-breaking representation of the multinomial distribution.

We considered missing data levels of 0%, 20%, 50%, and 80%. Each missing data level re-

flects the percent of cases that have some level of uncertainty in the outcome. The cases with

missing outcome data were randomly selected in each simulated data set. We considered “par-

tially missing" outcomes and “fully missing" outcomes. Under partially missing outcomes, a

case with missing outcome data was missing anywhere between 2 and 5 outcome categories.

The true outcome was always included as one of the missing outcome categories. We randomly

selected the additional outcome categories, drawing the number of additional missing outcome
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categories (1 to 4) uniformly. Under fully missing outcomes, all cases with missing outcome

data were missing data for all 6 outcome categories.

Performance was based on 500 simulated data sets for each scenario and missing data level.

We evaluated estimation of the exposure and covariate regression coefficients through root

mean squared error (RMSE), bias, coverage of the 95% posterior credible intervals (CI), and

CI width, averaged over all regression coefficients. To evaluate imputations, we calculated pre-

cision (the proportion of outcomes assigned to a category that truly belong in that category)

and recall (the proportion of outcomes that truly belong in a category that were assigned to that

category) for each outcome category. We compared our method’s estimation performance to a

complete case analysis in each of the eight simulation scenarios.

4.4.2 Simulation Study Results

We summarized simulation results for estimation of the exposure regression coefficients in

the data probabilities setting in Table 4.3 and in the equal probabilities setting in Table 4.4. Re-

sults for covariate regression coefficients are available in Appendix C.2 (Tables C.2 and C.3). We

presented precision and recall for 80% missing data in the data probabilities setting in Table 4.5

and in the equal probabilities setting in Table 4.6. Precision and recall for 20% and 50% missing

data were similar and are available in Appendix C.2 (Tables C.4 and C.5). For each of Tables 4.3

- 4.6, the four scenarios within each of the two simulation settings reflect the four combina-

tions of the data (providing a signal or being null) and the missing mechanism of the outcomes

(partially or fully missing). Hence, the scenarios were termed “partially missing, signal," “fully

missing, signal," “partially missing, null," and “fully missing, null."

Both our proposed method and the complete case analysis produced unbiased estimates for

the regression coefficients. However, our proposed method resulted in lower variance estimates

of the regression coefficients, exhibited by lower RMSE, smaller CI width, and maintenance of

the nominal coverage level (0.95). Hence, by retaining the full data set and imputing missing

outcomes, we obtained more efficient inference over a complete case only analysis. Further es-
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timation gains were achieved through improvements in the imputations, which occurred when

there was partial outcome information or larger category sizes.

When outcomes were partially missing, as opposed to fully missing, our method leveraged

the information available to improve imputations. In each case, partially missing outcomes

resulted in higher precision and recall over fully missing outcomes, controlling for other sce-

nario factors (Tables 4.5 and 4.6). For example, looking at the scenarios with a signal in the data

probabilities setting (Table 4.5), precision and recall in category 1, the largest category, were

0.92 when outcomes were partially missing versus 0.85 when outcomes were fully missing. For

category 6, the smallest category, precision and recall were 0.31 when outcomes were partially

missing versus 0.13 when outcomes were fully missing. Hence, the partial outcome information

was particularly valuable for small categories where little observed data were available.

With improved imputations from partially missing outcomes, our proposed method re-

sulted in even more efficient estimation of the regression coefficients compared to a complete

case analysis. We saw the greatest estimation gains from the partial information at 80% missing

data. At 80% missing data in the data probabilities setting, the partially missing scenario with

a signal resulted in RMSE of 0.51, CI width of 1.20, and coverage of 0.93, compared to RMSE of

0.59, CI width of 1.41, and coverage of 0.91 for the fully missing scenario with a signal (Table 4.3).

In the respective complete case analysis, RMSE was 0.63, CI width was 1.62, and coverage was

0.96. Similar patterns for partially and fully missing outcomes existed in the null scenarios in

the data probabilities setting (Table 4.3), and in all scenarios in the equal probabilities setting

(Table 4.4). Hence, our imputation approach offers estimation gains over the complete case

analysis for both partially and fully missing outcomes, and these gains are increased further by

leveraging the information from partially missing outcomes.

Keeping the scenario constant, regression coefficients were more efficiently estimated in the

equal probabilities setting than in the data probabilities setting. This is because the data prob-

abilities setting results in some large categories and some very small categories. The small cate-

gories have higher estimation uncertainty and worse imputation performance, as evidenced by
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lower precision and recall for categories 3-6, which contained less data in the data probabilities

setting than in the equal probabilities setting. On the other hand, the largest category in the

data probabilities setting (category 1) had higher precision and recall than any category in the

equal probabilities setting. Hence, the differences in estimation and imputation performance

between the data probabilities and equal probabilities settings are purely a result of differences

in category size. In both settings, there remained substantial gains in estimation performance

from our proposed method over the complete case analysis.

A signal in the data also improved imputations. Controlling for other scenario factors, pre-

cision and recall were higher in scenarios with a signal than in scenarios with null effects. For

small categories containing approximately 1/6 of the data or less (all categories in the equal

probabilities setting and categories 3-6 in the data probabilities setting), a signal in the data

improved imputations to a greater extent than did the partial outcome information (Tables 4.5

and 4.6). Generally, regression coefficient estimation was at least as efficient in the null scenar-

ios as in the scenarios with a signal. This is likely due to the prior distribution for the regression

coefficients being centered on zero. Hence, even though the signal aided imputations, the prior

distribution provided more information for estimating the null regression coefficients.

Our simulation study demonstrates that our proposed method is able to impute missing

outcomes and offers more efficient inference over a complete case analysis under a wide variety

of scenarios. Imputation and estimation performance improved as more information became

available, whether in the form of partially missing outcomes, larger categories, or a signal to

inform outcomes.
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Table 4.3: Simulation study results for the data probabilities setting. The table shows mean across 500

data sets for each measure in four simulation scenarios (“partially missing, signal," “fully missing, sig-

nal," “partially missing, null," and “fully missing, null"). The measures are root mean squared error

(RMSE), bias, 95% credible interval width (width), and coverage (cov) for exposure regression coeffi-

cients. Table shows results from our proposed method and the complete case analysis for missing data

levels of 0%, 20%, 50%, and 80%.

proposed method complete case analysis

RMSE bias width cov RMSE bias width cov

partially missing, signal

0% 0.35 0.00 0.87 0.95 0.35 0.00 0.87 0.95

20% 0.38 0.00 0.92 0.94 0.39 0.00 0.96 0.95

50% 0.43 0.00 1.02 0.94 0.46 0.00 1.16 0.95

80% 0.51 0.00 1.20 0.93 0.63 0.00 1.62 0.96

fully missing, signal

0% 0.35 0.00 0.87 0.95 0.35 0.00 0.87 0.95

20% 0.38 0.00 0.93 0.94 0.39 0.00 0.96 0.95

50% 0.45 0.00 1.08 0.93 0.46 0.00 1.16 0.95

80% 0.59 0.00 1.41 0.91 0.63 0.00 1.62 0.96

partially missing, null

0% 0.34 0.00 0.83 0.95 0.34 0.00 0.83 0.95

20% 0.38 0.00 0.90 0.95 0.38 0.00 0.93 0.95

50% 0.44 0.00 1.07 0.94 0.47 0.00 1.16 0.95

80% 0.53 0.00 1.35 0.95 0.62 -0.01 1.68 0.96

fully missing, null

0% 0.34 0.00 0.83 0.95 0.34 0.00 0.83 0.95

20% 0.38 0.00 0.91 0.95 0.38 0.00 0.93 0.95

50% 0.45 0.00 1.11 0.94 0.47 0.00 1.16 0.95

80% 0.56 -0.01 1.49 0.94 0.62 -0.01 1.68 0.96
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Table 4.4: Simulation study results for the equal probabilities setting. The table shows mean across

500 data sets for each measure in four simulation scenarios (“partially missing, signal," “fully missing,

signal," “partially missing, null," and “fully missing, null"). The measures are root mean squared error

(RMSE), bias, 95% credible interval width (width), and coverage (cov) for exposure regression coeffi-

cients. Table shows results from our proposed method and the complete case analysis for missing data

levels of 0%, 20%, 50%, and 80%.

proposed method complete case analysis

RMSE bias width cov RMSE bias width cov

partially missing, signal

0% 0.15 0.00 0.40 0.94 0.15 0.00 0.40 0.94

20% 0.16 0.00 0.42 0.94 0.17 0.00 0.45 0.95

50% 0.18 0.00 0.47 0.93 0.21 0.00 0.56 0.95

80% 0.21 0.00 0.55 0.93 0.32 0.00 0.86 0.95

fully missing, signal

0% 0.15 0.00 0.40 0.94 0.15 0.00 0.40 0.94

20% 0.16 0.00 0.43 0.94 0.17 0.00 0.45 0.95

50% 0.20 0.00 0.52 0.93 0.21 0.00 0.56 0.95

80% 0.30 0.00 0.74 0.90 0.32 0.00 0.86 0.95

partially missing, null

0% 0.10 0.00 0.26 0.95 0.10 0.00 0.26 0.95

20% 0.11 0.00 0.28 0.94 0.11 0.00 0.29 0.95

50% 0.12 0.00 0.33 0.94 0.14 0.00 0.37 0.95

80% 0.16 0.00 0.41 0.92 0.22 0.00 0.59 0.95

fully missing, null

0% 0.10 0.00 0.26 0.95 0.10 0.00 0.26 0.95

20% 0.11 0.00 0.29 0.94 0.11 0.00 0.29 0.95

50% 0.13 0.00 0.35 0.93 0.14 0.00 0.37 0.95

80% 0.20 0.00 0.52 0.92 0.22 0.00 0.59 0.95
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Table 4.5: Summary of imputation performance in the data probabilities setting. Results are shown

for 80% missing data and four simulation scenarios (“partially missing, signal," “fully missing, signal,"

“partially missing, null," and “fully missing, null"). The table shows mean across 500 data sets for preci-

sion and recall for each outcome category. Results for the other missing data levels (20% and 50%) were

similar and are shown in Appendix C.2.

outcome category

1 2 3 4 5 6

partially missing, signal
precision 0.92 0.69 0.54 0.43 0.31 0.31

recall 0.92 0.69 0.53 0.43 0.31 0.31

fully missing, signal
precision 0.85 0.47 0.30 0.21 0.13 0.13

recall 0.85 0.47 0.30 0.21 0.13 0.13

partially missing, null
precision 0.88 0.50 0.28 0.13 0.07 0.06

recall 0.88 0.49 0.28 0.13 0.07 0.07

fully missing, null
precision 0.77 0.16 0.05 0.01 0.01 0.01

recall 0.76 0.16 0.05 0.02 0.01 0.01

Table 4.6: Summary of imputation performance in the equal probabilities setting. Results are shown

for 80% missing data and four simulation scenarios (“partially missing, signal," “fully missing, signal,"

“partially missing, null," and “fully missing, null"). The table shows mean across 500 data sets for preci-

sion and recall for each outcome category. Results for the other missing data levels (20% and 50%) were

similar and are shown in Appendix C.2.

outcome category

1 2 3 4 5 6

partially missing, signal
precision 0.71 0.67 0.63 0.63 0.59 0.62

recall 0.71 0.68 0.63 0.63 0.58 0.61

fully missing, signal
precision 0.55 0.50 0.44 0.44 0.38 0.42

recall 0.56 0.50 0.45 0.43 0.38 0.41

partially missing, null
precision 0.28 0.31 0.35 0.36 0.27 0.35

recall 0.29 0.31 0.35 0.36 0.27 0.34

fully missing, null
precision 0.14 0.16 0.19 0.19 0.14 0.18

recall 0.14 0.16 0.19 0.19 0.13 0.18
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4.5 Data Analysis

We applied our proposed method to an analysis of the Denver, Colorado cohort data. The

data set contained 55,273 cases, of which 62.2% (n = 34,401) had partially missing health out-

comes. Cases with incomplete health outcomes were missing data for between 2 and 5 outcome

categories (Table 4.1). We fit our proposed method to the full data set and imputed missing out-

comes. Due to constraints of the stick-breaking representation of the multinomial distribution,

the largest probability mass is most often assigned to the first outcome category (Zhang and

Zhou, 2018). When fitting the model, we ordered the outcome categories so the largest cate-

gory was first. Hence, the order was: symptomatic, asymptomatic, hospitalized, admitted to

the ICU (ICU), placed on a mechanical ventilator (ventilator), and then death (Table 4.2). For

comparison, we also conducted an analysis of the subset of complete cases (n = 20,872).

We conducted a sensitivity analysis using logistic regression. In the logistic analysis, we

collapsed the multinomial categories to severe (hospitalized, ICU, ventilator, or death) and not

severe (asymptomatic or symptomatic). We considered only complete cases.

In all models, we included main effects for prior year exposure to PM2.5, ozone, and tem-

perature as well as all pairwise interactions. To control for temporal changes in the pandemic,

we included a natural cubic spline function of the case report date with 3 degrees of freedom.

To account for potential non-linearities in the effect of age, we included a natural cubic spline

function of age with 3 degrees of freedom. We included all covariates described in the data

section. We based inference on 5,000 MCMC iterations after a burn-in of 5,000 iterations.

4.5.1 Results

The estimated exponentiated regression coefficients from our proposed method and the

complete case analysis are shown in Figure 4.1. The posterior means for the regression coeffi-

cients were similar between the two methods. On average, the 95% CI’s in our proposed method

were 8.2% smaller than those in the complete case analysis, demonstrating the estimation gains

from using our proposed method. Exponentiated regression coefficients with 95% credible in-
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tervals that do not cross 1.0 existed primarily for the main effect of PM2.5 and the interaction

effect between PM2.5 and ozone.

Figure 4.1: Results of the analysis of the Denver, Colorado COVID-19 cohort from our proposed method

(black circles) and the complete case analysis (blue triangles). Figure shows the posterior mean and

95% credible intervals for the estimated exponentiated category-specific regression coefficients associ-

ated with main effects (top row) and pairwise interactions (bottom row). Exposures are PM2.5, ozone,

and temperature. Categories are symptomatic (sympt.), asymptomatic (asympt.), hospitalized (hosp.),

admitted to the ICU (ICU), and placed on a mechanical ventilator (vent). There are no regression coeffi-

cients for the death category because it was the last category, and thus contains the remaining probability

mass in the stick-breaking representation.

As described in Section 4.3.4, interpreting the regression coefficients in the stick-breaking

multinomial approach is challenging. Instead, we made inference on the results using OR and

IOR, as described in Section 4.3.4. We selected asymptomatic as the reference category for in-

ference. We visualized the posterior distribution of the OR and IOR for each severity category

as a function of a single exposure, holding the other two exposures at their 25th, 50th, and 75th

percentiles.
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Figure 4.2 shows the posterior distribution of the OR for each peak severity category (symp-

tomatic, hospitalized, ICU, ventilator, and death) relative to asymptomatic, as a function of

average year-prior PM2.5 exposure, holding ozone and temperature at their 25th, 50th, and 75th

percentiles. At the 25th percentiles of ozone and temperature (Figure 4.2a), increased exposure

to PM2.5 was associated with a decreased risk of being admitted to the ICU, relative to being

asymptomatic. There was a suggestive positive effect of PM2.5 exposure associated with risk of

death, relative to being asymptomatic. When ozone and temperature were at their 50th per-

centiles (Figure 4.2b), increased annual PM2.5 exposure was associated with a starkly increased

risk of being hospitalized, relative to being asymptomatic. At these levels of ozone and tempera-

ture, exposure to PM2.5 was no longer associated with risk of death. A similar pattern continued

at the 75th percentiles of ozone and temperature (Figure 4.2c). At these high levels of ozone and

temperature, PM2.5 exposure was associated with an increased risk of being hospitalized and,

to a lesser extent, being symptomatic and admitted to the ICU, relative to being asymptomatic.
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(a) 25th percentiles of ozone and temperature

(b) 50th percentiles of ozone and temperature

(c) 75th percentiles of ozone and temperature

Figure 4.2: Results from the analysis of the Denver, Colorado COVID-19 cohort using our proposed

method. The figure shows the posterior mean (black line) and 95% credible interval (gray shaded area)

of the estimated odds ratio (OR) for categories symptomatic, hospitalized, admitted to the ICU (ICU),

placed on a mechanical ventilator (ventilator) and death, relative to asymptomatic. The OR was calcu-

lated as a function of annual average PM2.5 exposure (µg/m3) relative to the mean exposure, holding

ozone and temperature at their 25th (a), 50th (b), and 75th (c) percentiles.

The posterior mean effect of year-prior exposure to PM2.5 on the risk of being hospitalized

or admitted to the ICU, relative to being asymptomatic, switched from a negative trend to a pos-
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itive trend when ozone and temperature moved from their 25th to 75th percentiles. Changes in

the effect of PM2.5 as co-exposures change indicate interactions among exposures. The PM2.5-

ozone interaction was associated with a decreased risk of being asymptomatic relative to being

hospitalized, admitted to the ICU, placed on a mechanical ventilator, or death as evidenced by

the 95% credible interval for the asymptomatic category’s exponentiated regression coefficient

being below 1.0 (Figure 4.1). Hence, we determined the PM2.5-ozone interaction is driving the

patterns seen in the effect of PM2.5 on risk of severe COVID-19 as ozone and temperature move

from low to high levels.

We obtained similar inferences from the IOR. Figure 4.3 shows the IOR associated with an-

nual average PM2.5 exposure, holding ozone and temperature at their 25th, 50th, and 75th per-

centiles. At the 25th percentiles of ozone and temperature (Figure 4.3a), there was a protective

effect of PM2.5 exposure on the risk of being admitted to the ICU, relative to not being admit-

ted (e.g. being asymptomatic, symptomatic, or hospitalized only). Exposure to PM2.5 was also

associated with an increased risk of death, relative to not dying. These effects became null as

ozone and temperature moved to their 50th percentiles (Figure 4.3b). At the 50th percentile of

ozone and temperature, exposure to PM2.5 was associated with an increased risk of being hos-

pitalized, relative to not hospitalized. Similar effects of PM2.5 occurred at the 75th percentiles

of ozone and temperature (Figure 4.3c), with the addition of a suggestive protective effect on

the risk of dying, relative to not dying. The complex interaction between PM2.5 and ozone was

again revealed by the directional switches in the posterior mean trends of PM2.5 as ozone and

temperature moved from the 25th to 75th percentiles.
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(a) 25th percentiles of ozone and temperature

(b) 50th percentiles of ozone and temperature

(c) 75th percentiles of ozone and temperature

Figure 4.3: Results from the analysis of the Denver, Colorado COVID-19 cohort using our proposed

method. The figure shows the posterior mean (black line) and 95% credible interval (gray shaded area)

of the estimated incremental odds ratio (IOR) for categories symptomatic, hospitalized, admitted to the

ICU (ICU), placed on a mechanical ventilator (ventilator) and death, relative to all less severe categories.

The IOR was calculated as a function of annual average PM2.5 exposure (µg/m3) relative to the mean

exposure, holding ozone and temperature at their 25th (a), 50th (b), and 75th (c) percentiles.

Similar plots for the effects of year-prior exposure to ozone and temperature are available

in Appendix C.3. Overall, there was weaker evidence for the effects of ozone and temperature
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on COVID-19 severity. There were suggestive effects of increased ozone exposure associated

with an increased risk of dying, relative to being asymptomatic and relative to not dying, when

PM2.5 and temperature were at their 25th percentiles (Figures C.1 and C.2). These effects be-

came null as PM2.5 and temperature moved to their 75th percentiles. Increases in temperature,

combined with low levels of PM2.5 and ozone, were associated with a decreased risk of being

symptomatic relative to asymptomatic (Figure C.3). This effect was attenuated at higher levels

of PM2.5 and ozone. At high levels of PM2.5 and ozone, there was a suggestive protective effect

of temperature on risk of being hospitalized and placed on a mechanical ventilator, relative to

being asymptomatic (Figure C.3), but not relative to a less severe outcome (Figure C.4). The es-

timated regression coefficients (Figure 4.1) indicate that interaction effects between PM2.5 and

temperature and between ozone and temperature may be driving these patterns.

4.5.2 Sensitivity Analysis Results

Results from our logistic regression sensitivity analysis are shown in Appendix C.4 (Table

C.8). A one IQR increase in exposure to PM2.5 was associated with a 9% increased risk of severe

COVID-19 (ÔR = 1.09, 95% CI: (1.02, 1.18)). These results mirror the results from our multino-

mial regression analysis. In both analyses, PM2.5 was associated with an increased risk of severe

COVID-19. In the logistic analysis, there was a positive estimated effect for the interaction be-

tween PM2.5 and ozone, and a negative estimated effect for the interaction between ozone and

temperature. Notably, the negative interaction effect between ozone and temperature may be

due to the fact that annual averages for ozone and temperature were highly negatively corre-

lated (ρ =−0.86).

4.6 Discussion

In this paper, we proposed a Bayesian multinomial logistic regression model for data with

partially missing outcomes. We implemented Pólya-gamma data augmentation to achieve effi-

cient computation of the posterior distribution. We developed a multiple imputation algorithm
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to impute missing outcomes, where the number of missing outcome categories for each case

can vary from 2 to the total number of outcomes. Our model is based on the stick-breaking

representation of the multinomial distribution, which presents a challenge in interpreting re-

gression coefficients. The stick-breaking multinomial regression approach has historically been

used for applications focused on clustering and prediction (Linderman et al., 2015). To our

knowledge, we present the first application of this approach in which inference using the odds

ratio is the primary goal. We proposed an inferential approach based on visualization of the

posterior distribution to retain the familiar logistic regression interpretation of the odds ratios.

In a simulation study, we demonstrated our method’s ability to impute missing outcome

data and improve estimation over complete case analyses. In eight different scenarios, our pro-

posed method produced unbiased estimates for the regression coefficients that had smaller

RMSE and CI width than estimates from respective complete case analyses. Our proposed

method leveraged information from various sources to improve imputation. These sources

include: partially, as opposed to fully, missing outcomes, a signal in the data, and larger out-

come categories. Better imputations resulted in even more efficient inference on the regression

coefficients using our method compared to the complete case analysis.

Using our proposed method, we estimated the association between long-term exposure to

PM2.5, ozone, and temperature and COVID-19 peak severity in a Denver, Colorado cohort. Our

model imputed outcomes for the 34,401 cases with partially missing outcome data. In our anal-

ysis, we found increased long-term exposure to PM2.5, combined with high levels of ozone and

temperature, was associated with an increased risk of being hospitalized and admitted to the

ICU, relative to being asymptomatic. These associations were null or reversed when ozone and

temperature were low, indicating interaction effects between the exposures. Through visual-

ization of the OR and IOR, combined with analysis of the estimated regression coefficients, we

identified an interaction effect between PM2.5 and ozone. A complete case analysis produced

similar results, but with more uncertainty, further exemplifying the estimation gains from our

proposed method with imputation. Our results support recent studies that identified an asso-
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ciation between increased PM2.5 exposure and a lagged effect on COVID-19 mortality (Garcia

et al., 2021; Shao et al., 2021). Our individual-level analysis of the Denver, Colorado cohort fills

a major gap in the literature. With individual-level data, we controlled for known confounding

variables and risk factors, and began to establish a driving association between air pollution

exposure and COVID-19 outcomes.
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Chapter 5

Conclusion

Exposure to air pollution presents an ongoing threat to human health. Understanding per-

sonal exposures and associated health outcomes can help inform air pollution policy and in-

terventions, leading to improved health. To advance the state of the science in air pollution

epidemiology, we identified three major gaps in the literature, which we aimed to fill in this

dissertation.

In Chapter 2, we highlighted the statistical modeling challenges induced by joint exposure

to multiple pollutants, which are further complicated by lack of evaluation of existing meth-

ods. We conducted a simulation study comparing five recently developed Bayesian methods

for multipollutant mixtures. Our simulation study showed that Bayesian kernel machine re-

gression (BKMR), a nonparametric method, is highly adaptable and can accurately estimate

exposure-response functions with complex nonlinear or interaction effects. On the other hand,

nonparametric Bayes shrinkage (NPB), a Bayesian linear effect measure modification model,

performs well in approximately linear scenarios and can efficiently identify mixture compo-

nents that have main effects and/or interaction effects on the health outcome in the presence

of highly correlated exposures. BKMR may be preferred when the primary goal is to estimate a

complex exposure-response function, or to predict health outcomes. NPB may be the preferred

choice when the emphasis is on identifying which components of a mixture are associated with

the health outcome. Hence, the most appropriate statistical method depends on the research

question of interest, as well as the underlying data structure. We applied the methods in an

analysis of lung function in children with asthma. Using both BKMR and NPB, we estimated a

negative association between nitrogen dioxide and lung function. To promote the use of these

contemporary methods for multipollutant mixtures, we developed software to implement each

method and post-process results. The software also allows users to reproduce our simulation

study as a tool to determine the most appropriate method for their application.
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In Chapter 3, we addressed the common problem of missing exposure data in temporal ex-

posure assessments. We developed a Bayesian nonparametric infinite hidden Markov model

that leverages information from multiple exposure assessments to identify shared activity pat-

terns, estimate parameters, and impute missing observations. Our proposed model estimates

shared hidden states of exposure among multiple time series, and uses the estimated hidden

states to inform imputations. In simulation and validation studies, our method outperformed

independent analyses of multiple time series, models with no temporal structure, and models

with deterministic states of exposure in estimation and imputation. We applied our method

to an analysis of 50 sampling days from the Fort Collins Commuter Study, where each sam-

pling day consisted of time-resolved personal exposure to fine particulate matter (PM2.5), black

carbon, and carbon monoxide. Our model imputed exposure data that were both missing at

random and below the limit of detection. Among the 50 sampling days, we identified 53 shared

hidden states of exposure. We investigated the hidden states to draw inference on time-activity

patterns associated with exposures, and found evidence of a potential cooking activity associ-

ated with higher than average pollutant exposures.

We focused on missing health outcome data in Chapter 4. We developed a fully Bayesian

method for multinomial logistic regression analysis with partially missing outcome data. We

demonstrated our proposed method’s estimation gains over a complete case analysis in a vari-

ety of simulation scenarios. We then applied our proposed method to estimate the association

between long-term exposure to PM2.5, ozone, and temperature and COVID-19 peak severity in a

Denver, Colorado cohort. By imputing partially missing outcome data, we achieved greater es-

timation efficiency from a substantially larger sample size (n = 55273) compared to a complete

case analysis (n = 20872). With our novel visualization approach, we made inference on the

odds ratios associated with each exposure, and provided sensible interpretation of interaction

effects. We found a positive association between PM2.5 exposure and increased risk of severe

COVID-19 outcomes. We also estimated an interaction effect between PM2.5 and ozone. Our

results support previous findings from ecological analyses on the relationship between air pol-
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lution exposure and COVID-19 endpoints. Our research further contributes to the literature by

providing an individual-level analysis, in which we identified an association between air pollu-

tion exposure and COVID-19 severity while controlling for individual- and neighborhood-level

risk factors.

5.1 Future Work

We identified several areas for future work in environmental mixtures analyses. First, the

performance of BKMR and NPB merits a combination of these approaches that draws on the

top qualities of each. A possible new direction is a nonlinear extension to NPB that main-

tains the ease of implementation and inference, but relaxes assumptions on the shape of the

exposure-response function. Regarding exposure assessments, our proposed Bayesian infinite

hidden Markov model for multiple time series with missing data could be extended to accom-

modate continuous time series or non-Gaussian emissions. In addition, improvements could

be made to speed computation. Extensions to our proposed method for Bayesian multino-

mial logistic regression analysis include accommodating highly correlated exposures through

shrinkage priors or variable selection. Through our work we addressed a number of research

problems and provided valuable tools for scientists and applied statisticians. We have also

opened the door to promising future directions for statistical methods development in the field

of air pollution epidemiology.
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Appendix A

Model choice for estimating the association between

exposure to chemical mixtures and health outcomes:

A simulation study

A.1 Demographic Characteristics of the Sample

Table A.1: Descriptive statistics of FACES data. Demographic characteristics of the sample of FACES

data used in simulation studies and data analysis.

n = 153

Age (years), mean (SD) 9 (1.8)

Male gender, % 60.1

Height (inches), mean (SD) 52.3 (4.8)

Ethnicity, %

Non-Hispanic Black 13.7

Non-Hispanic White 46.4

Hispanic 39.9

BMI (kg/m2), mean (SD) 18.5 (4.6)

Mother < 12th grade education, % 60.1

Insured, % 94.8

Atopy, % 78.4

Father/Mother smokes currently, % 5.2

Proximity to Freeway (< 1 block away), % 47.7

Severity (GINA ≥ 3), % 17.6

Household income > 30K/year, % 52.3

FEV1 (L), mean (SD) 1.7 (0.4)
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A.2 Hyperparameter Specification

A.2.1 Nonparametric Bayes shrinkage

We specify the following prior hyperparameters for NPB and NPBr in our simulation study

and data analysis:

µγ = 0 κ−2 = 1 µ0 = 0 κ−2
0 = 1

σ−2
µ1 = 1 σ−2

µ2 = 1 αφ1 = 1 βφ1 = 1

αφ2 = 1 βφ2 = 1 ασ = 1 βσ = 1

απ1 = 1 βπ1 = 1 απ2 = 9 βπ2 = 1

αα1 = 2 βα1 = 1 αα2 = 2 βα2 = 1.

A.2.2 Bayesian Profile Regression

Following Molitor et al. (2011), we specify the following prior hyperparameters for UPR and

SPR in our simulation study and data analysis:

αα = 2 βα = 1 ακ =
7
2

βκ =
43.75

2

αφ =
7
2

βφ =
43.75

2
ασ = 2.5 βσ = 2.5

αρ = 0.5 βρ = 0.5 r = p C = 20.

We also set ν0 to the vector of empirical exposure means, Λ0 to the diagonal matrix where each

non-zero element is the square of the observed range for each exposure, and R to the empirical

covariance matrix of the exposure data.
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A.3 Additional Simulation Study Results

Table A.2: Grouping structure in fixed profiles scenario. Table shows summary statistics for the Calinski-

Harabasz index, silhouette statistic, and number of clusters to maximize the gap width (Gap clusters) for

200 simulated data sets used in the simulation study.

Min 1st quartile Median Mean 3rd quartile Max

Calinski-Harabasz 6.0647 18.1074 22.5437 21.3772 25.9485 35.0493

Silhouette 0.0015 0.1099 0.1463 0.1515 0.1878 0.2900

Gap clusters 2 4 6 6.07 9 10

Table A.3: Summary of method performance in the linear scenario. Results from simulation study across

200 simulated data sets in scenario h1: linear. Reported values are means (standard errors) across all data

sets for: root mean squared error (RMSE) and coverage (Cvg) for the exposure-response function, true

selection rate for main effects (TSR), false selection rate for main effects (FSR), true selection rate for

interactions (TSRint), and false selection rate for interactions (FSRint).

NPBr NPB UPR SPR

RMSE 1.02 (0.02) 0.54 (0.01) 2.01 (0.04) 1.59 (0.04)

Cvg 0.73 (0.01) 0.95 (0.01) 0.56 (0.01) 0.54 (0.01)

TSR 0.85 (0.01) 0.92 (0.01) 0.25 (0.02) 0.63 (0.02)

FSR 0.35 (0.02) 0.10 (0.01) 0.26 (0.02) 0.53 (0.02)

TSRint – 0.59 (0.02) – –

FSRint – 0.02 (0.00) – –

BKMR LM LM-int

RMSE 0.55 (0.01) 1.01 (0.02) 0.73 (0.01)

Cvg 0.96 (0.01) 0.73 (0.01) 0.95 (0.01)

TSR 1.00 (0.00) 0.84 (0.01) 0.68 (0.01)

FSR 0.39 (0.02) 0.29 (0.02) 0.04 (0.01)

TSRint – – 0.32 (0.02)

FSRint – – 0.04 (0.00)
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Table A.4: Summary of method performance in the nonlinear scenario. Results from simulation study

across 200 simulated data sets in scenario h2: nonlinear. Reported values are means (standard errors)

across all data sets for: root mean squared error (RMSE) and coverage (Cvg) for the exposure-response

function, true selection rate for main effects (TSR), false selection rate for main effects (FSR), true selec-

tion rate for interactions (TSRint), and false selection rate for interactions (FSRint).

NPBr NPB UPR SPR

RMSE 0.77 (0.01) 0.69 (0.01) 1.42 (0.03) 1.27 (0.03)

Cvg 0.80 (0.01) 0.86 (0.01) 0.56 (0.01) 0.58 (0.01)

TSR 0.79 (0.02) 0.78 (0.02) 0.27 (0.02) 0.68 (0.02)

FSR 0.22 (0.02) 0.16 (0.02) 0.24 (0.02) 0.58 (0.02)

TSRint – 0.25 (0.03) – –

FSRint – 0.01 (0.00) – –

BKMR LM LM-int

RMSE 0.59 (0.01) 0.78 (0.01) 0.89 (0.02)

Cvg 0.92 (0.01) 0.81 (0.01) 0.91 (0.01)

TSR 0.96 (0.01) 0.78 (0.02) 0.54 (0.02)

FSR 0.48 (0.02) 0.17 (0.01) 0.08 (0.01)

TSRint – – 0.20 (0.03)

FSRint – – 0.07 (0.01)

Table A.5: Summary of method performance in the fixed profiles scenario. Results from simulation study

across 200 simulated data sets in scenario h3: fixed profiles. Reported values are means (standard errors)

across all data sets for: root mean squared error (RMSE) and coverage (Cvg) for the exposure-response

function, true selection rate for main effects (TSR), false selection rate for main effects (FSR), true selec-

tion rate for interactions (TSRint), and false selection rate for interactions (FSRint).

NPBr NPB UPR SPR

RMSE 1.11 (0.02) 1.02 (0.02) 1.41 (0.02) 1.38 (0.02)

Cvg 0.66 (0.01) 0.75 (0.01) 0.55 (0.01) 0.54 (0.01)

TSR 0.66 (0.02) 0.68 (0.02) 0.27 (0.03) 0.68 (0.02)

FSR 0.11 (0.01) 0.13 (0.01) 0.25 (0.02) 0.59 (0.01)

TSRint – 0.06 (0.02) – –

FSRint – 0.02 (0.00) – –

BKMR LM LM-int

RMSE 0.69 (0.01) 1.13 (0.02) 0.99 (0.02)

Cvg 0.91 (0.01) 0.70 (0.01) 0.91 (0.00)

TSR 0.97 (0.01) 0.69 (0.02) 0.56 (0.02)

FSR 0.64 (0.03) 0.14 (0.01) 0.14 (0.01)

TSRint – – 0.12 (0.02)

FSRint – – 0.11 (0.01)
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A.4 Null, Complex Mixture, and Large Sample Size Simulation

Studies

A.4.1 Design

We conducted three additional simulation studies to assess robustness of our results. For all

of the additional simulations, we reported results from 100 simulated data sets.

First, we included a null scenario, h4(x), where none of the exposures are associated with

the response. That is,

h4(x) = 0. (A.1)

This scenario uses the same exposure data, covariates, and residual variance described in sce-

narios 1-3 in the main text.

Second, we included a complex mixtures scenario, h5(x), where we simulated data for seven

additional pollutants to have a total of 14 mixture components. For each data set, the first seven

pollutants are the exposures from the FACES data set as described in scenarios 1-3 in the main

text. The exposure values for the seven additional pollutants were simulated as random linear

combinations of the FACES exposure data using N(0,1) weights plus N(0,1) noise. All exposures

were then scaled to have mean 0 and variance 1. We simulated the response as a linear function

of 10 main effects and two pairwise interactions. Specifically,

h5(x) = x1 −x2 +x3 −x4 +1.4x5 +1.5x6 +1.2x7 − (A.2)

1.4x8 −1.5x9 −1.2x10 +0.7x1x2 −0.5x3x4.

The ten active mixture components x1, . . . , x10 were randomly selected for each data set. All 14

pollutants were included in the models as predictors. All other details of the data generating

mechanism are the same as previously described for the other scenarios.

131



Third, we replicated the simulation scenarios 1-3 in the main text but used a larger sample

size. We repeatedly sampled from the FACES exposure and covariate data to create a sample of

size n = 1000 for each data set. All other details are described in the main text.

A.4.2 Results

The methods performed more similarly to each other in the null scenario compared to the

other scenarios (Table A.6). NPBr, NPB, and BKMR had the lowest RMSE for the exposure-

response function and LM-int had the highest RMSE. All methods except SPR achieved the

nominal coverage level. FSR was lowest for NPBr and NPB, meaning these methods were the

best at not selecting any mixture components into the model when none are associated with

the response. FSR was highest for SPR.

Results from the complex mixture scenario are shown in Table A.7. Here NPB estimated the

exposure-response function with lowest RMSE and near-optimal coverage. BKMR had the next

lowest RMSE. LM-int achieved the nominal coverage, but with substantially higher RMSE. NPBr

and BKMR had highest TSR, followed by NPB and LM. NPB, UPR, LM, and LM-int all had mean

FSR at or below 0.10. NPB outperformed LM-int in variable selection rates for interactions.

Overall, NPB and BKMR were the top-performing methods in simultaneously estimating the

exposure-response function and identifying active mixture components in this complex mix-

ture scenario.

For the larger sample size simulation, our results remain generally the same as in our origi-

nal simulation study (Table A.8). NPB performed best in the linear scenario, followed by BKMR

and LM-int. BKMR performed best in the nonlinear and fixed profiles scenarios. TSR improved

for all methods in all scenarios. With the increased sample size, UPR and SPR often selected all

of the mixture components into the model, as evidenced by both high TSR and FSR.
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Table A.6: Summary of method performance in the null scenario. Results from simulation study across

100 simulated data sets in the null scenario. Reported values are means (standard errors) across all data

sets for: root mean squared error (RMSE) and coverage (Cvg) for the exposure-response function, false

selection rate for main effects (FSR), and false selection rate for interactions (FSRint). True selection rates

were not reported since there were no active mixture components in the exposure-response function.

NPBr NPB UPR SPR

RMSE 0.23 (0.02) 0.24 (0.02) 0.28 (0.02) 0.56 (0.06)

Cvg 0.98 (0.02) 0.98 (0.02) 0.98 (0.01) 0.74 (0.05)

FSR 0.00 (0.00) 0.00 (0.00) 0.28 (0.03) 0.74 (0.02)

FSRint – 0.00 (0.00) – –

BKMR LM LM-int

RMSE 0.25 (0.02) 0.44 (0.02) 0.77 (0.03)

Cvg 0.97 (0.01) 0.96 (0.01) 0.95 (0.01)

FSR 0.30 (0.04) 0.03 (0.01) 0.08 (0.01)

FSRint – – 0.07 (0.01)

Table A.7: Summary of method performance in the complex mixture scenario. Results from simula-

tion study across 100 simulated data sets in the complex mixture scenario. Reported values are means

(standard errors) across all data sets for: root mean squared error (RMSE) and coverage (Cvg) for the

exposure-response function, true selection rate for main effects (TSR), false selection rate for main ef-

fects (FSR), true selection rate for interactions (TSRint), and false selection rate for interactions (FSRint).

NPBr NPB UPR SPR

RMSE 1.00 (0.03) 0.69 (0.03) 3.22 (0.12) 2.97 (0.12)

Cvg 0.77 (0.02) 0.91 (0.01) 0.46 (0.01) 0.32 (0.02)

TSR 0.62 (0.02) 0.58 (0.02) 0.00 (0.00) 0.29 (0.04)

FSR 0.19 (0.03) 0.10 (0.02) 0.00 (0.00) 0.31 (0.05)

TSRint – 0.39 (0.03) – –

FSRint – 0.01 (0.00) – –

BKMR LM LM-int

RMSE 0.86 (0.05) 1.00 (0.03) 1.68 (0.06)

Cvg 0.90 (0.01) 0.80 (0.02) 0.96 (0.01)

TSR 0.65 (0.02) 0.56 (0.01) 0.23 (0.01)

FSR 0.28 (0.04) 0.08 (0.01) 0.04 (0.01)

TSR_int – – 0.07 (0.02)

FSR_int – – 0.04 (0.01)
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Table A.8: Summary of method performance in large sample size (n = 1000) simulation study. Results

from the large sample size simulation study across 100 simulated data sets in all three exposure-response

scenarios. Reported values are means across all data sets for: root mean squared error (RMSE) and cov-

erage (Cvg) for the exposure-response function, true selection rate for main effects (TSR), false selection

rate for main effects (FSR), true selection rate for interactions (TSRint), and false selection rate for inter-

actions (FSRint). Results for top-performing methods are listed in bold.

Method RMSE Cvg TSR FSR TSRint FSRint

h1(x): linear with multiplicative interactions

NPBr 0.91 0.37 0.96 0.69 – –

NPB 0.14 0.96 1.00 0.01 1.00 0.00

UPR 1.53 0.28 1.00 1.00 – –

SPR 1.40 0.28 1.00 1.00 – –

BKMR 0.23 0.96 1.00 0.04 – –

LM 0.90 0.37 0.96 0.68 – –

LM-int 0.30 0.95 0.99 0.04 0.92 0.06

h2(x): nonlinear with multiplicative interactions

NPBr 0.65 0.45 0.96 0.44 – –

NPB 0.48 0.67 0.96 0.24 0.74 0.20

UPR 1.08 0.32 0.99 1.00 – –

SPR 1.10 0.33 1.00 1.00 – –

BKMR 0.29 0.92 1.00 0.25 – –

LM 0.65 0.46 0.95 0.49 – –

LM-int 0.58 0.71 0.86 0.27 0.62 0.25

h3(x): constant function of fixed profiles

NPBr 1.08 0.33 0.87 0.50 – –

NPB 0.75 0.57 0.93 0.51 0.54 0.39

UPR 1.15 0.35 0.99 1.00 – –

SPR 1.17 0.35 0.99 1.00 – –

BKMR 0.43 0.87 0.99 0.67 – –

LM 1.09 0.33 0.89 0.54 – –

LM-int 0.77 0.63 0.83 0.53 0.58 0.44
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A.5 Additional Data Analysis Results

Table A.9: Additional results from analysis of FACES data set using LM-int. Table shows main effect

and interaction regression coefficient estimates (β̂), 95% confidence intervals (CI), and p-values. The

regression coefficient β̂ is the expected change in FEV1 for a 1 standard deviation increase in the square

root transformed exposures.

β̂ 95% CI p-value

Main Effects

C 0.05 ( -0.08 , 0.19 ) 0.44

MeBr 0.17 ( 0.05 , 0.29 ) 0.01

OP 0.02 ( -0.17 , 0.22 ) 0.80

O3 -0.13 ( -0.32 , 0.06 ) 0.17

NO2 -0.68 ( -1.10 , -0.25 ) 0.00

PM2.5 -0.11 ( -0.48 , 0.26 ) 0.55

PM10 0.50 ( 0.08 , 0.93 ) 0.02

Interactions

C:MeBr -0.04 ( -0.14 , 0.07 ) 0.51

C:OP 0.15 ( -0.18 , 0.47 ) 0.38

C:O3 -0.01 ( -0.18 , 0.16 ) 0.91

C:NO2 -0.06 ( -0.35 , 0.23 ) 0.67

C:PM2.5 0.28 ( 0.01 , 0.54 ) 0.04

C:PM10 -0.08 ( -0.31 , 0.14 ) 0.48

MeBr:OP 0.01 ( -0.26 , 0.28 ) 0.93

MeBr:O3 -0.03 ( -0.20 , 0.15 ) 0.77

MeBr:NO2 -0.11 ( -0.43 , 0.21 ) 0.50

MeBr:PM2.5 0.18 ( -0.06 , 0.42 ) 0.14

MeBr:PM10 0.08 ( -0.11 , 0.28 ) 0.41

OP:O3 -0.04 ( -0.20 , 0.12 ) 0.63

OP:NO2 -0.10 ( -0.33 , 0.12 ) 0.37

OP:PM2.5 -0.23 ( -0.58 , 0.12 ) 0.19

OP:PM10 0.31 ( -0.01 , 0.62 ) 0.05

O3:NO2 -0.12 ( -0.54 , 0.29 ) 0.56

O3:PM2.5 0.04 ( -0.23 , 0.30 ) 0.78

O3:PM10 -0.02 ( -0.31 , 0.27 ) 0.88

NO2:PM2.5 -0.27 ( -0.70 , 0.16 ) 0.21

NO2:PM10 0.33 ( -0.05 , 0.72 ) 0.09

PM2.5:PM10 0.01 ( -0.38 , 0.40 ) 0.95
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Table A.10: Additional results from analysis of FACES data set using NPB. Table shows main effect and

interaction regression coefficient estimates (β̂), 95% credible intervals, and posterior inclusion probabil-

ities (PIP). The regression coefficient β̂ is the expected change in FEV1 for a 1 standard deviation increase

in the square root transformed exposures.

β̂ 95% CI PIP

Main Effects

C 0.00 ( 0.00 , 0.03 ) 0.07

MeBr 0.00 ( -0.01 , 0.00 ) 0.06

OP 0.01 ( 0.00 , 0.11 ) 0.16

O3 -0.01 ( -0.12 , 0.01 ) 0.11

NO2 -0.12 ( -0.36 , 0.00 ) 0.60

PM2.5 0.00 ( -0.09 , 0.05 ) 0.12

PM10 0.02 ( -0.01 , 0.2 ) 0.19

Interactions

C:MeBr 0.00 ( 0.00 , 0.00 ) 0.02

C:OP 0.00 ( 0.00 , 0.00 ) 0.02

C:O3 0.00 ( 0.00 , 0.00 ) 0.01

C:NO2 0.00 ( 0.00 , 0.00 ) 0.01

C:PM2.5 0.00 ( 0.00 , 0.00 ) 0.01

C:PM10 0.00 ( 0.00 , 0.00 ) 0.01

MeBr:OP 0.00 ( 0.00 , 0.00 ) 0.01

MeBr:O3 0.00 ( 0.00 , 0.00 ) 0.01

MeBr:NO2 0.00 ( 0.00 , 0.00 ) 0.01

MeBr:PM2.5 0.00 ( 0.00 , 0.00 ) 0.02

MeBr:PM10 0.00 ( 0.00 , 0.00 ) 0.02

OP:O3 0.00 ( 0.00 , 0.00 ) 0.02

OP:NO2 0.00 ( 0.00 , 0.00 ) 0.01

OP:PM2.5 0.00 ( 0.00 , 0.00 ) 0.01

OP:PM10 0.00 ( 0.00 , 0.00 ) 0.01

O3:NO2 0.00 ( 0.00 , 0.00 ) 0.01

O3:PM2.5 0.00 ( 0.00 , 0.00 ) 0.01

O3:PM10 -0.01 ( -0.09 , 0.00 ) 0.06

NO2:PM2.5 0.01 ( 0.00 , 0.16 ) 0.11

NO2:PM10 0.01 ( 0.00 , 0.13 ) 0.12

PM2.5:PM10 0.00 ( 0.00 , 0.06 ) 0.05
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Table A.11: Variable selection results from FACES data analysis using BKMR with component-wise vari-

able selection. Table shows posterior inclusion probabilities (PIP) for each exposure.

Exposure PIP

C 0.08

MeBr 0.06

OP 0.10

O3 0.16

NO2 0.96

PM2.5 0.20

PM10 0.34

Table A.12: Variable selection results from FACES data analysis using BKMR with hierarchical variable se-

lection. Table shows posterior inclusion probabilities for each group (Group PIP) as well as conditional

posterior inclusion probabilities for each exposure given the group to which it belongs is included (Con-

ditional PIP). Component-wise PIPs are calculated from the group and conditional PIPs by multiplying

the group PIP by the conditional PIP for each exposure.

Exposure Group PIP Conditional PIP Component-wise PIP

C 0.20 0.18 0.03

MeBr 0.20 0.13 0.03

OP 0.20 0.70 0.14

O3 0.98 0.00 0.00

NO2 0.98 0.98 0.96

PM2.5 0.98 0.01 0.01

PM10 0.98 0.00 0.00
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Table A.13: Variable selection results from FACES data analysis using UPR and SPR. Table shows posterior

inclusion probabilities (PIP) for each exposure in each method.

PIP

Exposure UPR SPR

C 0.03 0.02

MeBr 0.21 0.71

OP 0.57 0.51

O3 0.54 0.75

NO2 0.61 0.67

PM2.5 0.56 0.63

PM10 0.24 0.03

Figure A.1: Estimated bivariate exposure-response function from FACES data analysis using BKMR. Each

grid panel is an image plot of the predicted exposure-response function ĥ for varying levels of two ex-

posures, while holding all other exposures at their median value. Evidence of an interaction would be

reflected by changes in the predicted exposure-response function with changes in the levels of both ex-

posure 1 and exposure 2. Figure shows no notable evidence of interactions, but does depict the main

effect of NO2.
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Appendix B

Infinite Hidden Markov Models for Multiple

Multivariate Time Series with Missing Data

B.1 Convergence Diagnostics for Simulation Study

Figure B.1: Convergence diagnostics from our proposed joint cyclical model in the simulation study.

The figure shows traceplots of imputed values for a sample of 9 missing at random (MAR) observations.

Imputations were taken at 800 equally spaced iterations in an MCMC chain of 10,000 total iterations.
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Figure B.2: Convergence diagnostics from our proposed joint cyclical model in the simulation study. The

figure shows traceplots of imputed values for a sample of 9 below LOD observations. Imputations were

taken at 800 equally spaced iterations in an MCMC chain of 10,000 total iterations.
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Figure B.3: Convergence diagnostics from our proposed joint cyclical model in the simulation study. The

figure show a traceplot of estimated number of hidden states for 10,000 iterations of the MCMC sampler.

B.2 Formula for Calculating Mean Squared Error for Estimated

State-Specific Means

Here we describe the formula for calculating MSE for state-specific means in our simulation

study. Let N be the total number of sampling days (i.e. N =
∑n

i=1 Si ). For iterations b = 1, . . . ,B

post burn-in, we calculated

µMSE =

(
1

B N T p

) B∑

b=1

n∑

i=1

Si∑
s=1

T∑
t=1

(
µ̂(b)

ẑi st
−µzi st

)′ (
µ̂(b)

ẑi st
−µzi st

)
, (B.1)

where µ̂(b)
ẑi st

is the vector of estimated exposure means for the state to which observation yi st

is assigned at iteration b and µzi st
is the vector of true exposure means for the state in which

observation yi st truly belongs.
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B.3 Additional Simulation Study Results

Table B.1: Standard errors from the shared trends scenario simulation study. The two variations of our

proposed joint iHMM approach are the model with cyclical trends (joint cyclical) and the model with no

covariates (joint no covariates). We include the model with cyclical trends fit independently to each time

series (indep. cyclical) and the model with no covariates fit independently to each time series (indep.

no covariates). Last is the Dirichlet process mixture model (joint DPMM) fit jointly to all time series.

The table shows the standard error for the following measures: estimated number of hidden states (K̂);

Hamming distance, which is a measure of the distance between the estimated hidden state trajectories

and the true hidden state trajectories; MSE for the state-specific means (µMSE); MSE and bias for the

MAR and below LOD data imputations. Results are shown for four levels of missing data: 0%, 5%, 10%,

and 20%.

MAR LOD MAR LOD

Method K̂ Hamming µMSE MSE MSE bias bias

0%

joint cyclical 0.34 0.02 0.01 – – – –

joint no covariates 0.38 0.01 0.01 – – – –

indep. cyclical 1.55 0.01 0.01 – – – –

indep. no covariates 1.68 0.00 0.01 – – – –

joint DPMM 1.25 0.02 0.01 – – – –

5%

joint cyclical 0.37 0.02 0.02 0.04 0.82 0.01 0.12

joint no covariates 0.29 0.02 0.01 0.07 0.93 0.02 0.13

indep. cyclical 1.77 0.01 0.01 0.04 0.58 0.01 0.08

indep. no covariates 1.99 0.01 0.01 0.04 0.51 0.01 0.07

joint DPMM 1.61 0.01 2.12 30.93 96.85 0.68 1.37

10%

joint cyclical 0.40 0.02 0.09 0.19 2.32 0.01 0.20

joint no covariates 0.42 0.02 0.05 0.13 1.22 0.02 0.15

indep. cyclical 1.86 0.01 0.02 0.04 0.79 0.01 0.12

indep. no covariates 1.77 0.01 0.02 0.04 0.60 0.01 0.10

joint DPMM 1.45 0.02 5.83 34.34 115.52 0.60 1.74

20%

joint cyclical 0.42 0.02 0.07 0.13 0.87 0.02 0.14

joint no covariates 0.38 0.02 0.05 0.08 0.65 0.02 0.11

indep. cyclical 2.38 0.01 0.03 0.11 0.94 0.01 0.12

indep. no covariates 1.66 0.01 0.02 0.06 0.76 0.01 0.11

joint DPMM 1.20 0.01 11.90 52.05 123.41 0.95 1.30
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Table B.2: Results from the distinct trends scenario simulation study. The two variations of our proposed

joint iHMM approach are the model with cyclical trends (joint cyclical) and the model with no covariates

(joint no covariates). We include the model with cyclical trends fit independently to each time series

(indep. cyclical) and the model with no covariates fit independently to each time series (indep. no co-

variates). Last is the Dirichlet process mixture model (joint DPMM) fit jointly to all time series. The table

shows the following measures: mean estimated number of hidden states (K̂); mean Hamming distance,

which is a measure of the distance between the estimated hidden state trajectories and the true hidden

state trajectories; mean MSE for the state-specific means (µMSE); mean MSE and bias for the MAR and

below LOD data imputations. Results are shown for four levels of missing data: 0%, 5%, 10%, and 20%.

MAR LOD MAR LOD

Method K̂ Hamming µMSE MSE MSE bias bias

0%

joint cyclical 11.67 0.44 0.11 – – – –

joint no covariates 11.18 0.45 0.10 – – – –

indep. cyclical 122.82 0.52 0.37 – – – –

indep. no covariates 94.92 0.61 0.45 – – – –

joint DPMM 27.33 0.38 0.06 – – – –

5%

joint cyclical 11.45 0.50 0.11 0.60 3.08 -0.08 -0.85

joint no covariates 11.20 0.51 0.11 0.63 0.72 -0.03 -0.46

indep. cyclical 127.19 0.51 0.28 1.03 5.63 -0.05 -1.28

indep. no covariates 102.02 0.59 0.35 1.18 4.56 -0.05 -1.15

joint DPMM 47.21 0.60 6.93 86.17 300.86 -2.13 -6.52

10%

joint cyclical 11.43 0.54 0.23 0.83 4.65 -0.10 -1.20

joint no covariates 11.38 0.52 0.27 1.05 5.74 -0.11 -1.27

indep. cyclical 121.55 0.53 0.38 1.32 9.68 -0.08 -1.66

indep. no covariates 95.50 0.62 0.44 1.44 8.05 -0.09 -1.47

joint DPMM 57.33 0.60 24.46 165.96 504.72 -4.41 -10.37

20%

joint cyclical 11.92 0.60 0.54 1.20 6.10 -0.13 -1.16

joint no covariates 12.03 0.60 1.10 2.31 12.34 -0.21 -1.67

indep. cyclical 111.00 0.57 0.46 1.46 6.55 -0.11 -1.28

indep. no covariates 83.20 0.67 0.55 1.62 5.37 -0.10 -1.09

joint DPMM 60.80 0.66 59.39 264.84 496.36 -7.43 -10.69

B.4 Sensitivity Analysis of Multiple Imputation Approach

In our validation study using FCCS data (Section 3.5.1), we assessed the sensitivity of our

imputation approach to the hyperparameter λ in the emission distribution. In the main analy-

sis, we used λ= 10. As a sensitivity analysis, we tested the additional values of λ= 1 and λ= 25.

Results were similar when λ = 25 (Table B.3). When λ = 1 (Table B.4), we obtained a few data

143



sets with very high MSE for imputations in all of our proposed iHMMs. Our method estimates

an unknown number of hidden states, where both the number of hidden states and the size

of each state are estimated from the data. Some very small states can be estimated. In these

small states with little data informing the emission distribution, the prior distribution is very

influential. When λ = 1, the prior emission distribution is such that the variation of the state-

specific means around the prior mean is just as large as the variation of the data within each

state. Hence, small states can have estimated means that are far away from the prior mean

when there is high variability in the data or a large percentage of missing data within the state.

We found that the data sets with particularly poor imputations estimated more small clusters

with a large percentage of missing data than did data sets with better imputations. The fixed-

state methods were not sensitive to the specification of λ because the large amount of data in

each state (i.e. all data pooled together or pooled within each microenvironment) outweighs

the prior. For applications, the hyperparameter λ can be chosen through a validation study

such as this one or it can be modeled as a state-specific parameter.
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Table B.3: Results from the sensitivity analysis of the imputation validation using FCCS data with λ= 25.

The table shows the minimum (min), median, mean, and maximum (max) mean squared error (MSE)

for imputations of MAR and below LOD data. The five variations of our proposed joint iHMM approach

include the model with no covariates (joint no covariates), the model with cyclical trends (joint cyclical),

the model with subject-specific cyclical trends (joint s.s. cyclical), the model with microenvironments as

categorical predictors (joint microenv.), and the model with subject-specific microenvironment effects

(joint s.s. microenv.) In the pooled approach, a single multivariate normal distribution was fit to all

data. In the stratified approach, multivariate normal distributions were fit to all data within each FCCS

assigned microenvironment. Last is the Dirichlet process mixture model (joint DPMM) fit jointly to all

time series.

MAR MSE LOD MSE

min median mean max min median mean max

joint no covariates 1.11 1.24 1.30 1.92 0.87 2.10 2.17 5.29

joint cyclical 1.05 1.30 1.31 1.79 0.64 2.15 2.18 5.63

joint s.s. cyclical 0.99 1.15 1.19 1.49 0.97 2.31 2.39 4.12

joint microenv. 1.06 1.29 1.29 1.54 1.02 1.90 2.54 6.61

joint s.s. microenv. 1.05 1.23 1.23 1.47 1.04 2.11 2.45 4.74

pooled 2.12 2.18 2.20 2.31 1.10 1.13 1.13 1.19

stratified 1.97 2.04 2.05 2.18 1.10 1.12 1.13 1.19

joint DPMM 338.25 626.41 662.13 1407.50 777.49 1305.84 1736.05 6017.40
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Table B.4: Results from the sensitivity analysis of the imputation validation using FCCS data with λ= 1.

The table shows the minimum (min), median, mean, and maximum (max) mean squared error (MSE)

for imputations of MAR and below LOD data. The five variations of our proposed joint iHMM approach

include the model with no covariates (joint no covariates), the model with cyclical trends (joint cyclical),

the model with subject-specific cyclical trends (joint s.s. cyclical), the model with microenvironments as

categorical predictors (joint microenv.), and the model with subject-specific microenvironment effects

(joint s.s. microenv.) In the pooled approach, a single multivariate normal distribution was fit to all

data. In the stratified approach, multivariate normal distributions were fit to all data within each FCCS

assigned microenvironment. Last is the Dirichlet process mixture model (joint DPMM) fit jointly to all

time series.

MAR MSE LOD MSE

min median mean max min median mean max

joint no covariates 0.91 1.63 6.47 68.71 0.91 3.58 70.56 858.42

joint cyclical 0.86 1.34 3.39 28.00 0.71 2.88 25.49 386.98

joint s.s. cyclical 0.84 1.36 3.63 19.58 0.67 4.72 72.71 698.08

joint microenv. 0.99 1.35 2.55 8.40 0.79 4.60 15.36 93.12

joint s.s. microenv. 0.87 1.16 1.99 12.34 0.67 1.96 12.10 131.42

pooled 2.12 2.18 2.20 2.31 1.11 1.13 1.13 1.19

stratified 1.97 2.04 2.05 2.18 1.10 1.12 1.12 1.18

joint DPMM 36.08 50.46 61.36 124.03 87.19 137.65 170.58 494.62
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B.5 Convergence Diagnostics for Case Study

Figure B.4: Convergence diagnostics from our proposed joint subject-specific cyclical model in the case

study of the Fort Collins Commuter Study data. The figure shows traceplots of imputed values for a sam-

ple of 9 missing at random (MAR) observations. Imputations were taken at 800 equally spaced iterations

in an MCMC chain of 10,000 total iterations.
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Figure B.5: Convergence diagnostics from our proposed joint subject-specific cyclical model in the case

study of the Fort Collins Commuter Study data. The figure shows traceplots of imputed values for a

sample of 9 below limit of detection (LOD) observations. Imputations were taken at 800 equally spaced

iterations in an MCMC chain of 10,000 total iterations.
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Figure B.6: Convergence diagnostics from our proposed joint subject-specific cyclical model in the case

study of the Fort Collins Commuter Study data. The figure show a traceplot of estimated number of

hidden states for 10,000 iterations of the MCMC sampler.
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B.6 Additional Case Study Results

Table B.5: Results from the joint subject-specific cyclical model applied to the FCCS data. The table

shows the number of sampling days, unique people, and time points assigned to each of the 53 hidden

states estimated from the data.

hidden state days people time points hidden state days people time points

1 43 9 1196 28 24 9 104

2 38 9 1193 29 12 6 89

3 33 9 999 30 5 5 83

4 32 9 897 31 16 7 81

5 40 9 864 32 9 5 63

6 33 9 800 33 4 3 35

7 34 9 643 34 7 4 31

8 38 9 637 35 6 4 27

9 36 9 574 36 20 7 27

10 32 9 541 37 4 2 22

11 35 9 485 38 7 3 21

12 31 9 458 39 8 6 19

13 41 9 446 40 5 4 17

14 23 8 439 41 11 6 15

15 29 9 420 42 12 6 14

16 28 9 411 43 3 1 13

17 29 9 389 44 9 7 13

18 22 8 332 45 10 7 12

19 25 9 305 46 8 5 12

20 30 9 258 47 7 5 10

21 30 9 243 48 9 4 10

22 29 9 236 49 7 4 8

23 11 5 236 50 6 4 6

24 16 7 184 51 6 4 6

25 28 8 183 52 2 2 6

26 17 8 145 53 4 4 4

27 17 8 138
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Appendix C

Association Between Air Pollution and COVID-19

Disease Severity via Bayesian Multinomial Logistic

Regression with Partially Missing Outcomes

C.1 Demographic Characteristics of the Sample

Table C.1: Demographic characteristics of the Denver, CO COVID-19 cohort.

n = 55273
Peak severity, %
Asymptomatic 5.4
Symptomatic 28.3
Hospitalized 2.1
Admitted to ICU 0.4
Placed on mechanical ventilator 0.4
Death 1.2
Partially Unknown 62.2

Age (years), mean (SD) 37.1 (18.3)
Gender, %
Male 48.1
Female 50.9
Other <0.01
Unknown 1.0

Race/Ethnicity, %
Non-Hispanic Black 5.6
Non-Hispanic White 30.3
Hispanic 40.1
Asian 2.4
American Indian 0.7
Multiple 2.5
Unknown 18.4

Pregnant, %
Yes 0.7
No 63.4
Unknown 35.9

Census-tract variables, mean (SD)
Median income 39,473 (13,889)
Percent unemployed 3.8 (2.5)
Percent low education 13.8 (12.0)
Percent poverty 13.9 (8.1)

Annual average exposures, mean (SD)
PM2.5 (µg/m3) 7.4 (0.2)
1-hour daily maximum ozone (ppb) 48.9 (1.1)
Temperature (degrees Fahrenheit) 51.4 (0.5)
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C.2 Additional Simulation Study Results

Table C.2: Simulation study results for the data probabilities setting. Table shows mean across 500 data

sets for each measure in four simulation scenarios (“partially missing, signal," “fully missing, signal,"

“partially missing, null," and “fully missing, null"). The measures are root mean squared error (RMSE),

bias, 95% credible interval width (width), and coverage (cov) for covariate regression coefficients. The

table shows results from our proposed method and the complete case analysis for missing data levels of

0%, 20%, 50%, and 80%.

proposed method complete case analysis

RMSE bias width cov RMSE bias wid cov

partially missing, signal

0% 0.29 0.00 0.71 0.95 0.29 0.00 0.71 0.95

20% 0.31 0.00 0.75 0.95 0.32 0.00 0.79 0.95

50% 0.36 0.00 0.85 0.94 0.39 0.00 0.97 0.95

80% 0.44 0.00 1.01 0.93 0.55 -0.00 1.41 0.95

fully missing, signal

0% 0.29 0.00 0.71 0.95 0.29 0.00 0.71 0.95

20% 0.32 0.00 0.76 0.95 0.32 0.00 0.79 0.95

50% 0.38 0.00 0.89 0.93 0.39 0.00 0.97 0.95

80% 0.51 0.00 1.20 0.91 0.55 0.00 1.41 0.96

partially missing, null

0% 0.26 0.00 0.58 0.94 0.26 0.00 0.58 0.94

20% 0.30 0.00 0.64 0.94 0.30 0.00 0.66 0.94

50% 0.36 0.00 0.79 0.93 0.40 0.00 0.88 0.94

80% 0.46 0.00 1.06 0.94 0.58 0.01 1.41 0.95

fully missing, null

0% 0.26 0.00 0.58 0.94 0.26 0.00 0.58 0.94

20% 0.30 0.00 0.65 0.93 0.30 0.00 0.66 0.94

50% 0.37 0.00 0.81 0.93 0.40 0.00 0.88 0.94

80% 0.48 0.00 1.16 0.93 0.58 0.01 1.41 0.95
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Table C.3: Simulation study results for the equal probabilities setting. Table shows mean across 500 data

sets for each measure in four simulation scenarios (“partially missing, signal," “fully missing, signal,"

“partially missing, null," and “fully missing, null"). The measures are root mean squared error (RMSE),

bias, 95% credible interval width (width), and coverage (cov) for covariate regression coefficients. The

table shows results from our proposed method and the complete case analysis for missing data levels of

0%, 20%, 50%, and 80%.

proposed method complete case analysis

RMSE bias width cov RMSE bias wid cov

partially missing, signal

0% 0.11 0.00 0.29 0.94 0.11 0.00 0.29 0.94

20% 0.11 0.00 0.30 0.94 0.12 0.00 0.32 0.95

50% 0.13 0.00 0.34 0.93 0.15 0.00 0.40 0.95

80% 0.16 0.00 0.41 0.92 0.23 0.01 0.63 0.95

fully missing, signal

0% 0.11 0.00 0.29 0.94 0.11 0.00 0.29 0.94

20% 0.12 0.00 0.31 0.94 0.12 0.00 0.32 0.95

50% 0.14 0.00 0.38 0.92 0.15 0.00 0.40 0.95

80% 0.22 0.01 0.55 0.90 0.23 0.01 0.63 0.95

partially missing, null

0% 0.06 -0.00 0.16 0.95 0.06 -0.00 0.16 0.95

20% 0.06 -0.00 0.18 0.94 0.07 -0.00 0.18 0.95

50% 0.08 -0.00 0.21 0.93 0.08 -0.00 0.23 0.95

80% 0.10 -0.00 0.26 0.93 0.14 -0.01 0.38 0.94

fully missing, null

0% 0.06 0.00 0.16 0.95 0.06 0.00 0.16 0.95

20% 0.07 0.00 0.18 0.94 0.07 0.00 0.18 0.95

50% 0.08 0.00 0.22 0.93 0.08 0.00 0.23 0.95

80% 0.13 0.00 0.33 0.91 0.14 -0.01 0.38 0.94
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Table C.4: Summary of imputation performance in the data probabilities setting. Results are shown

for 20% and 50% missing data and four simulation scenarios (“partially missing, signal," “fully missing,

signal," “partially missing, null," and “fully missing, null"). The table shows mean across 500 data sets

for precision and recall for each outcome category.

outcome category

1 2 3 4 5 6

partially missing, signal

20% missing
precision 0.92 0.70 0.54 0.45 0.33 0.32

recall 0.92 0.69 0.54 0.44 0.33 0.33

50% missing
precision 0.92 0.69 0.54 0.44 0.33 0.32

recall 0.92 0.69 0.54 0.44 0.33 0.32

fully missing, signal

20% missing
precision 0.85 0.48 0.31 0.24 0.15 0.15

recall 0.85 0.48 0.31 0.23 0.15 0.15

50% missing
precision 0.85 0.48 0.31 0.23 0.15 0.14

recall 0.85 0.48 0.31 0.23 0.15 0.14

partially missing, null

20% missing
precision 0.88 0.50 0.28 0.14 0.07 0.07

recall 0.88 0.50 0.28 0.13 0.07 0.07

50% missing
precision 0.88 0.50 0.28 0.14 0.08 0.06

recall 0.88 0.50 0.28 0.14 0.08 0.06

fully missing, null

20% missing
precision 0.77 0.16 0.05 0.01 0.01 0.01

recall 0.77 0.16 0.05 0.01 0.01 0.01

50% missing
precision 0.77 0.16 0.05 0.01 0.01 0.01

recall 0.77 0.16 0.05 0.01 0.01 0.01
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Table C.5: Summary of imputation performance in the equal probabilities setting. Results are shown

for 20% and 50% missing data and four simulation scenarios (“partially missing, signal," “fully missing,

signal," “partially missing, null," and “fully missing, null"). The table shows mean across 500 data sets

for precision and recall for each outcome category.

outcome category

1 2 3 4 5 6

partially missing, signal

20% missing
precision 0.71 0.67 0.63 0.63 0.59 0.62

recall 0.71 0.68 0.64 0.63 0.59 0.62

50% missing
precision 0.71 0.67 0.63 0.63 0.59 0.62

recall 0.71 0.68 0.63 0.63 0.59 0.62

fully missing, signal

20% missing
precision 0.56 0.51 0.45 0.45 0.39 0.43

recall 0.56 0.51 0.45 0.45 0.39 0.42

50% missing
precision 0.56 0.51 0.45 0.45 0.39 0.42

recall 0.56 0.51 0.45 0.44 0.39 0.42

partially missing, null

20% missing
precision 0.28 0.31 0.35 0.36 0.27 0.35

recall 0.28 0.31 0.35 0.36 0.27 0.35

50% missing
precision 0.28 0.31 0.35 0.36 0.27 0.35

recall 0.29 0.31 0.35 0.36 0.27 0.34

fully missing, null

20% missing
precision 0.14 0.16 0.19 0.19 0.14 0.18

recall 0.14 0.16 0.19 0.19 0.14 0.18

50% missing
precision 0.14 0.16 0.19 0.19 0.14 0.18

recall 0.14 0.16 0.19 0.19 0.14 0.18
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C.3 Additional Data Analysis Results

Table C.6: Results from the analysis of the Denver, CO COVID-19 cohort using our proposed method.

The table shows the posterior mean, 0.025 quantile (lwr), and 0.975 quantile (upr) for the estimated ex-

ponentiated regression coefficients of the main effects of PM2.5, ozone, and temperature and all pairwise

interactions for each category. Estimated exponentiated regression coefficients with 95% posterior cred-

ible intervals that do not cross 1.00 are denoted in bold.

mean lwr upr

PM2.5

Symptomatic 0.94 0.90 0.98

Asymptomatic 0.85 0.77 0.94

Hospitalized 1.24 1.08 1.43

ICU 0.93 0.73 1.20

Ventilator 1.14 0.87 1.53

Ozone

Symptomatic 1.02 0.89 1.17

Asymptomatic 0.96 0.73 1.27

Hospitalized 1.03 0.72 1.45

ICU 1.02 0.54 1.92

Ventilator 0.66 0.33 1.31

Temperature

Symptomatic 0.94 0.86 1.04

Asymptomatic 1.19 0.96 1.47

Hospitalized 0.98 0.74 1.30

ICU 1.07 0.67 1.72

Ventilator 0.73 0.43 1.23

PM2.5*Ozone

Symptomatic 0.97 0.87 1.08

Asymptomatic 0.69 0.55 0.87

Hospitalized 1.45 1.06 1.97

ICU 1.83 1.01 3.33

Ventilator 1.73 0.92 3.37

PM2.5*Temperature

Symptomatic 1.03 0.98 1.09

Asymptomatic 0.95 0.85 1.06

Hospitalized 0.96 0.83 1.10

ICU 1.48 1.12 2.00

Ventilator 1.27 0.92 1.74

Ozone*Temperature

Symptomatic 1.08 1.01 1.15

Asymptomatic 1.11 0.97 1.28

Hospitalized 0.92 0.77 1.10

ICU 1.15 0.84 1.59

Ventilator 0.83 0.57 1.21
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(a) 25th percentiles of PM2.5 and temperature

(b) 50th percentiles of PM2.5 and temperature

(c) 75th percentiles of PM2.5 and temperature

Figure C.1: Results from the analysis of the Denver, CO COVID-19 cohort using our proposed method.

The figure shows the posterior mean (black line) and 95% credible interval (gray shaded area) of the

estimated odds ratio (OR) for categories symptomatic, hospitalized, admitted to the ICU (ICU), placed

on a mechanical ventilator (ventilator) and death, relative to asymptomatic. The OR was calculated as

a function of annual average ozone exposure (ppb) relative to the mean exposure, holding PM2.5 and

temperature at their 25th (a), 50th (b), and 75th (c) percentiles.
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(a) 25th percentiles of PM2.5 and temperature

(b) 50th percentiles of PM2.5 and temperature

(c) 75th percentiles of PM2.5 and temperature

Figure C.2: Results from the analysis of the Denver, CO COVID-19 cohort using our proposed method.

The figure shows the posterior mean (black line) and 95% credible interval (gray shaded area) of the

estimated incremental odds ratio (IOR) for categories symptomatic, hospitalized, admitted to the ICU

(ICU), placed on a mechanical ventilator (ventilator) and death, relative to all less severe categories. The

IOR was calculated as a function of annual average ozone exposure (ppb) relative to the mean exposure,

holding PM2.5 and temperature at their 25th (a), 50th (b), and 75th (c) percentiles.
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(a) 25th percentiles of PM2.5 and ozone

(b) 50th percentiles of PM2.5 and ozone

(c) 75th percentiles of PM2.5 and ozone

Figure C.3: Results from the analysis of the Denver, CO COVID-19 cohort using our proposed method.

The figure shows the posterior mean (black line) and 95% credible interval (gray shaded area) of the

estimated odds ratio (OR) for categories symptomatic, hospitalized, admitted to the ICU (ICU), placed

on a mechanical ventilator (ventilator) and death, relative to asymptomatic. The OR was calculated as

a function of annual average temperature (degrees Fahrenheit) relative to the mean exposure, holding

PM2.5 and ozone at their 25th (a), 50th (b), and 75th (c) percentiles.
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(a) 25th percentiles of PM2.5 and ozone

(b) 50th percentiles of PM2.5 and ozone

(c) 75th percentiles of PM2.5 and ozone

Figure C.4: Results from the analysis of the Denver, CO COVID-19 cohort using our proposed method.

Figure shows the posterior mean (black line) and 95% credible interval (gray shaded area) of the esti-

mated incremental odds ratio (IOR) for categories symptomatic, hospitalized, admitted to the ICU (ICU),

placed on a mechanical ventilator (ventilator) and death, relative to all less severe categories. The IOR

was calculated as a function of annual average temperature (degrees Fahrenheit) relative to the mean

exposure, holding PM2.5 and ozone at their 25th (a), 50th (b), and 75th (c) percentiles.
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Table C.7: Results from the complete case analysis of the Denver, CO COVID-19 cohort. The table shows

the posterior mean, 0.025 quantile (lwr), and 0.975 quantile (upr) for the estimated exponentiated re-

gression coefficients of the main effects of PM2.5, ozone, and temperature and all pairwise interactions

for each category. Estimated exponentiated regression coefficients with 95% posterior credible intervals

that do not cross 1.00 are denoted in bold.

mean lwr upr

PM2.5

Symptomatic 0.94 0.90 0.99

Asymptomatic 0.88 0.79 0.98

Hospitalized 1.27 1.10 1.46

ICU 0.95 0.74 1.22

Ventilator 1.16 0.87 1.54

Ozone

Symptomatic 1.04 0.90 1.21

Asymptomatic 0.94 0.69 1.28

Hospitalized 1.08 0.74 1.57

ICU 1.04 0.54 1.98

Ventilator 0.75 0.38 1.51

Temperature

Symptomatic 0.98 0.87 1.09

Asymptomatic 1.20 0.95 1.53

Hospitalized 1.04 0.77 1.40

ICU 1.11 0.68 1.80

Ventilator 0.83 0.48 1.43

PM2.5*Ozone

Symptomatic 0.99 0.88 1.12

Asymptomatic 0.74 0.57 0.96

Hospitalized 1.48 1.08 2.03

ICU 1.83 0.99 3.43

Ventilator 1.67 0.86 3.16

PM2.5*Temperature

Symptomatic 1.05 0.99 1.11

Asymptomatic 0.96 0.84 1.09

Hospitalized 0.96 0.83 1.12

ICU 1.46 1.09 2.02

Ventilator 1.23 0.89 1.72

Ozone*Temperature

Symptomatic 1.11 1.04 1.19

Asymptomatic 1.12 0.96 1.30

Hospitalized 0.95 0.78 1.15

ICU 1.17 0.85 1.66

Ventilator 0.89 0.61 1.31
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C.4 Sensitivity Analysis Results

Table C.8: Results from the sensitivity analysis of complete cases in the Denver, CO COVID-19 cohort

using the logistic regression model. COVID-19 peak severity outcomes were collapsed to two categories:

severe (hospitalized, admitted to the ICU, placed on a mechanical ventilator, or died) and not severe

(asymptomatic or symptomatic). The table shows the posterior mean, 0.025 quantile (lwr), and 0.975

quantile (upr) for the estimated exponentiated regression coefficients of the main effects of PM2.5, ozone,

and temperature and all pairwise interactions for each category. Estimated exponentiated regression

coefficients with 95% posterior credible intervals that do not cross 1.00 are denoted in bold.

mean lwr upr

PM2.5 1.09 1.02 1.18

Ozone 0.96 0.77 1.18

Temperature 0.86 0.73 1.02

PM2.5*Ozone 1.18 1.00 1.40

PM2.5*Temperature 1.00 0.92 1.09

Ozone*Temperature 0.86 0.77 0.94
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