
DISSERTATION

CONTINUITY OF OBJECT TRACKING

Submitted by

Haney W. Williams

Department of Systems Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2022

Doctoral Committee:

 Advisor: Steven J. Simske

Mahmood R. Azimi-Sadjadi

 Edwin K. P. Chong

 J. Ross Beveridge

Copyright by Haney Will Williams 2022

All Rights Reserved

ii

ABSTRACT

CONTINUITY OF OBJECT TRACKING

 The demand for object tracking (OT) applications has been increasing for the past few

decades in many areas of interest: security, surveillance, intelligence gathering, and

reconnaissance. Lately, newly-defined requirements for unmanned vehicles have enhanced the

interest in OT. Advancements in machine learning, data analytics, and deep learning have

facilitated the recognition and tracking of objects of interest; however, continuous tracking is

currently a problem of interest to many research projects. This dissertation presents a system

implementing a means to continuously track an object and predict its trajectory based on its

previous pathway, even when the object is partially or fully concealed for a period of time. The

system is divided into two phases: The first phase exploits a single fixed camera system and the

second phase is composed of a mesh of multiple fixed cameras. The first phase system is

composed of six main subsystems: Image Processing, Detection Algorithm, Image Subtractor,

Image Tracking, Tracking Predictor, and the Feedback Analyzer. The second phase of the system

adds two main subsystems: Coordination Manager and Camera Controller Manager. Combined,

these systems allow for reasonable object continuity in the face of object concealment.

iii

ACKNOWLEDGMENTS

 I would like to thank Dr. Steven Simske, professor, mentor, friend and dissertation

advisor extraordinaire. Without his help, advice, expertise and encouragement this research and

dissertation would not have happened. I also would like to thank the members of my dissertation

committee: Dr. Mahmood Azimi-Sadjadi, Dr. Edwin Chong and Dr. Ross Beveridge. Their

insight, feedback and advice were influential and essential throughout my dissertation process.

 A debt of gratitude to my wife, my daughter, my father, my late mother who passed away

earlier this year, my sisters and my family in-law who encouraged me throughout the toughest

times to continue my education and reach my educational dreams. They also were able to put up

with a busy and absentee husband, father and son most of the time throughout the program.

 I would like to thank my friends, coworkers and especially Father Gregory Bishay for

guiding me with ideas throughout this dissertation. Without the support of all the people

mentioned above none of my accomplishments would have happened.

 I appreciate Colorado State University Systems Engineering department for offering this

remote PhD program which allowed professional individuals like myself to reach their

educational goals. A special thanks to Ingrid Bridge for all the help she offers to all the students

with the process.

 Last but not least, I would like to thank the Boeing Company for offering the learning

together program to their employees to reach their dream.

iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF KEYWORDS ... xiii

CHAPTER 1 – SYSTEM ENGINEERING METHODOLOGY ... 1

Introduction ... 1

Needs Analysis.. 1

Operational Analysis ... 2

Analyze Projected Needs ... 2

Define the Operational Approach: ... 3

Functional Analysis .. 4

Translation into Functions ... 4

Allocation of Function into Subsystems .. 4

Feasibility Definition .. 6

Visualize Subsystem Technology .. 6

Define Feasibility Concept .. 9

Needs Validation ... 10

Design Effectiveness Model .. 10

Validate Needs and Feasibility .. 11

Concept Exploration ... 12

Operational Requirement Analysis ... 12

Analyzing Operation Objectives .. 12

Refining Operations Requirements .. 13

Performance Requirement Formulation .. 13

Derive Subsystem Functions.. 13

Formulate Performance Parameters ... 15

Implementation of Concept Exploration ... 17

Explore Implementation Concepts ... 17

v

Define Performance Characteristics .. 17

Performance Requirements Validation ... 18

Integrate Performance Characteristics ... 19

Validate Performance Requirements ... 19

Concept Definition .. 19

Performance Requirements Analysis .. 19

Analyze Performance Requirements .. 20

Refine Performance Requirements .. 20

Functional Analysis and Formulation ... 20

Define Components Functions ... 20

Formulate Functional Requirements .. 21

Concept Selection ... 22

Synthesize Alternative Concepts ... 22

Select Preferred Concept.. 23

Concept Validation ... 24

Conduct System Simulation ... 24

Validate Selected Concept ... 24

Risk Management ... 24

Project Management Related Risks .. 24

Qualitative Risk Assessment.. 25

Advanced Development .. 27

Requirements Analysis ... 28

Analyze System Functional Specs ... 28

Identify Immature Components ... 29

Functional Analysis and Design ... 29

Identity Functional Performance Issues ... 29

Resolve Issues Design Software .. 30

Prototype Development .. 30

Identify Unproven Technology .. 30

Design and Build Critical Components ... 32

Development Testing .. 32

Build Test Setup ... 33

vi

Evaluate Test Results ... 33

Software Systems .. 35

Engineering Design ... 37

Integration and Evaluation .. 38

Production ... 44

Operation and Support .. 44

CHAPTER 2 – SYSTEM OVERVIEW AND ARCHITECTURE .. 46

Introduction ... 46

System Overview .. 47

Image Processor Subsystem .. 49

Background Subtraction Subsystem ... 50

Detection Subsystem ... 51

Object Tracking Subsystem .. 52

Trajectory Predictor Subsystem .. 53

Feedback Analyzer Subsystem ... 54

CHAPTER 3 – OBJECT RECOGNITION USING DEEP NEURAL NETWORK 55

Introduction ... 55

Stanford Cars Dataset ... 57

Approach ... 58

Image Processing and Enhancement for Training .. 58

Data Augmentation ... 60

Learning Algorithm Architecture ... 60

VGG16 Convolutional Neural Network ... 63

VGG16 Architecture ... 63

VGG16 Results ... 66

VGG19 Convolutional Neural Network ... 67

VGG19 Architecture ... 67

VGG19 Results ... 68

DenseNet201 Convolutional Neural Network .. 69

DenseNet201 Architecture .. 69

DenseNet201 Results .. 71

NASNetLarge Convolutional Neural Network ... 72

vii

NASNetLarge Architecture .. 72

NASNetLarge Results ... 75

InceptionV3 Convolutional Neural Network .. 76

InceptionV3 Architecture .. 76

InceptionV3 Results .. 79

Xception Convolutional Neural Network ... 80

Xception Architecture ... 80

Xception Results ... 82

InceptionResNetV2 Convolutional Neural Network .. 83

InceptionResNetV2 Architecture .. 83

InceptionResNetV2 Results .. 85

MobileNetV2 Convolutional Neural Network.. 86

MobileNetV2 Architecture ... 86

MobileNetV2 Results.. 89

ResNet50V2 Convolutional Neural Network ... 90

ResNet50V2 Architecture ... 90

ResNet50V2 Results ... 93

ResNet152V2 Convolutional Neural Network ... 94

ResNet152V2 Architecture ... 94

ResNet152V2 Results ... 95

ResNeXt50 Convolutional Neural Network ... 96

ResNeXt50 Architecture ... 96

ResNeXt50 Results ... 99

Networks Performance Metrics and Network Comparisons .. 99

Networks Collaborative Approach ... 105

Equal Voting ... 105

Selective Voting .. 106

CHAPTER 4 – COMMON COORDINATE SYSTEM ... 112

Surveyed Positions Solution ... 113

Distant Point Calibration Solution .. 114

Point Correspondence Solution... 118

Point Correspondence Solution Data Gathering ... 120

viii

Point Correspondence Solution Detailed Algorithm .. 120

Scene Reconstruction and Testing .. 122

Error Estimation .. 124

Future Enhancements .. 127

CHAPTER 5 – CAMERA POSITION OPTIMIZATION ... 128

Introduction ... 128

Theory ... 129

Cepstral Analysis for Translation Estimation ... 131

Cepstral Analysis for Rotation and Scaling Estimation .. 132

Results ... 133

CHAPTER 6 – SUMMARY ... 139

BIBLIOGRAPHY ... 143

APPENDIX 1 .. 147

Python Version List .. 147

ix

LIST OF TABLES

Table 1 - System Functions... 4

Table 2 - Subsystems .. 5

Table 3 - Camera Subsystem .. 6

Table 4 - Power Subsystem... 7

Table 5 - Drive Train Subsystem .. 8

Table 6 - Communication Subsystem ... 9

Table 7 - Object Recognition .. 9

Table 8 - Alternative System Performance Characteristics .. 18

Table 9 - Subsystems Functional Definition ... 21

Table 10 - Subsystems Functional Requirements ... 21

Table 11 - Risk Matrix .. 26

Table 12 - Unproven Technologies... 31

Table 13 - Test Environment .. 34

Table 14 - Algorithm Image Sizes .. 59

Table 15 - VGG Convolutional Network Configuration .. 64

Table 16 - ResNet Various Layer Architectures ... 95

Table 17 - ResNet50 vs ResNeXt50 Architecture .. 98

Table 18 - CNN Architectures Performance Metrics ... 102

Table 19 - CNN Architectures Accuracy Metrics with Folds ... 102

Table 20 - Paired T-Test ... 103

Table 21 - Paired T-Test Interpretation .. 104

Table 22 - Best 4 CNN Architectures with Equal Voting .. 108

Table 23 - Best 9 Architectures with Equal Voting .. 108

Table 24 - Best 4 CNN Architectures with Selective Voting with Accuracy Weight Measurement

... 109

Table 25 - Best 4 CNN Architectures with Selective Voting with 1/error Weight Measurement

... 109

Table 26 - Best 9 CNN Architectures with Selective Voting with Accuracy Weight Measurement

... 110

Table 27 - Best 4 CNN Architectures with Selective Voting with 1/error Weight Measurement

... 111

x

LIST OF FIGURES

Figure 1 - Operational Approach Objectives .. 3

Figure 2 - OPM Diagram .. 14

Figure 3 - Functional Decomposition ... 20

Figure 4 - Preliminary Concept Diagram .. 23

Figure 5 - DSM Module .. 38

Figure 6 - (a) Performance of various sensors, (b) Sensors combined performance 46

Figure 7 - Three Design Phases .. 47

Figure 8 - System Block Diagram .. 49

Figure 9 - Image Processor Subsystem Block Diagram ... 50

Figure 10 - Background Subtraction Block Diagram ... 51

Figure 11 - Detection Subsystem Block Diagram .. 52

Figure 12 - Object Tracking Block Diagram .. 53

Figure 13 - Trajectory Predictor Block Diagram .. 54

Figure 14 - Feedback Analyzer Block Diagram ... 54

Figure 15 - Convolutional Neural Network .. 56

Figure 16 - Stanford Cars Dataset Images .. 57

Figure 17 - Example of Image Conditions .. 58

Figure 18 - Cyclical Learning Rate (a) Fixed Rate, (b) Linearly Decaying Rate, (c)Log Decaying

Rate ... 62

Figure 19 - VGG16 Architecture .. 65

Figure 20 - (a) VGG16 Accuracy, (b) VGG16 Loss .. 66

Figure 21 - VGG19 Architecture .. 67

Figure 22 - (a) VGG19 Accuracy, (b)VGG19 Loss ... 69

Figure 23 - DenseNet201 Architecture ... 70

Figure 24 - (a) DenseNet201 Accuracy, (b) DenseNet201 Loss .. 72

Figure 25 - NASNetLarge Architecture .. 73

Figure 26 - Overview of Neural Architecture Search ... 74

Figure 27 - Scalable Base Blocks ... 74

Figure 28 - (a) NASNet Search Space, (b) Convolutional Cell Choices of Operation 75

Figure 29 - (a) NASNetLarge Accuracy, (b) NASNetLarge Loss.. 76

Figure 30 - InceptionV3 Architecture ... 77

Figure 31 - (a) Naive Inception Module, (b) Inception Module ... 78

Figure 32 - (a) Inception Module, (b) InceptionV3 Module, (c) InceptionV3 Module with

expanded filter bank .. 78

Figure 33 - (a) InceptionV3 Accuracy, (b) InceptionV3 Loss .. 79

Figure 34 - Xception Architecture .. 80

Figure 35 - (a) Inception Module, (b) Simplified Inception Module .. 81

Figure 36 - (a) Reformulated Simplified Inception Module, (b) Xception Module 81

Figure 37 - Xception Architecture Flow ... 82

xi

Figure 38 - (a) Xception Accuracy, (b) Xception Loss .. 83

Figure 39 - InceptionResNetV2 Architecture ... 84

Figure 40 - InceptionResNetV2 Structure .. 85

Figure 41 - (a) InceptionResNetV2 Accuracy, (b) InceptionResNetV2 Loss 86

Figure 42 - MobilenetV2 Architecture ... 87

Figure 43 - (a)-(d) Evolution of Separable Convolution Blocks .. 88

Figure 44 - (a) Residual Connection Block, (b) Inverted Residual Connection Block 88

Figure 45 - (a) MobileNetV2 Accuracy, (b) MobileNetV2 Loss ... 89

Figure 46 - ResNet50 Architecture ... 91

Figure 47 - (a) Deep Plain Network Training Error, (b) Deep Plain Network Test Error 92

Figure 48 - ResNet Building Block .. 92

Figure 49 - Network Architectures Comparison Between Plain Networks and ResNet 93

Figure 50 - (a) ResNet Building Block, (b) Bottleneck Building Block 93

Figure 51 - (a) ResNet50V2 Accuracy, (b) ResNet50V2 Loss .. 94

Figure 52 - (a) Performance of Plain Deep Network on ImageNet, (b) Performance of ResNet

Network on ImageNet ... 95

Figure 53 - (a) ResNet152V2 Accuracy, (b) ResNet152V2 Loss .. 96

Figure 54 - (a) ResNet Building Block, (b) ResNeXt Building Block ... 97

Figure 55 - (a) ResNet50 vs ResNeXt50 Performance, (b) ResNet101 vs ResNeXt101

Performance .. 98

Figure 56 - (a) ResNeXt50 Accuracy, (b) ResNeXt50 Loss .. 99

Figure 57 - CNN Architectures Performance Metrics .. 101

Figure 58 - Enhanced System Block Diagram .. 112

Figure 59 - Surveyed Cameras Positions Solution Concept ... 113

Figure 60 - OOI Position Calculation ... 116

Figure 61 - Estimate Matching Features Subsystem... 118

Figure 62 - Estimate Fundamental Matrix and Relative Pose Subsystem 119

Figure 63 - Synthesized Data Overview ... 120

Figure 64 - Correspondence Features ... 121

Figure 65 - Synthesized Data Overview ... 121

Figure 66 - Relative Position and Orientation .. 122

Figure 67 - Scene Reconstruction ... 122

Figure 68 - First Example (a) Remap onto Camera1 Scene, (b) Remap onto Camera2 Scene .. 123

Figure 69 - Second Example (a) Remap onto Camera1 Scene, (b) Remap onto Camera2 Scene

... 124

Figure 70 - (a) Template, (b) Remapped ROI onto Camera1 Scene, (c) Remapped ROI onto

Camera2 Scene.. 125

Figure 71 - Cross-Correlation Result .. 125

Figure 72 - (a) Original Mapped Location onto Camera1 Scene, (b) Error Estimated onto

Camera2 Scene.. 126

Figure 73 - (a) Original Mapped Location onto Camera1 Scene, (b) Error Estimated onto

Camera2 Scene.. 126

Figure 74 - Test Scenario Trajectory .. 134

xii

Figure 75 - (a) I1/I1 Concatenation, (b) I1/I1 Concatenation Cepstrum 135

Figure 76 - (a) I1/I5 Concatenation, (b) I1/I5 Concatenation Cepstrum 136

Figure 77 - (a) I1/I10 Concatenation, (b) I1/I10 Concatenation Cepstrum, (c) I1/I10 Ceptrum

Closeup ... 137

Figure 78 - a) I1/I15 Concatenation, (b) I1/I15 Concatenation Cepstrum, (c) I1/I15 Ceptrum

Closeup ... 138

xiii

LIST OF KEYWORDS

Continuous Tracking

Object Recognition Tracking

Background Subtraction

Trajectory Prediction

Surveillance

VGG16 Convolutional Neural Network

VGG19 Convolutional Neural Network

DenseNet201 Convolutional Neural Network

NASNetLarge Convolutional Neural Network

InceptionV3 Convolutional Neural Network

Xception Convolutional Neural Network

InceptionResNetV2 Convolutional Neural Network

MobileNetV2 Convolutional Neural Network

ResNet50V2 Convolutional Neural Network

ResNet152V2 Convolutional Neural Network

ResNeXt50 Convolutional Neural Network

Collaborative Learning

Transfer Learning

Correlation of Camera Mesh Network

Camera Position Optimization

Cepstral Analysis

Systems Engineering Design Methodology

Standford Cars Dataset

1

CHAPTER 1 – SYSTEM ENGINEERING METHODOLOGY

Introduction

 The scope of this section is to use the system engineering methodology to develop a

system that continuously tracks an object of interest. The systems engineering methodology is

adapted from the book “Systems Engineering Principal and Practice” by Alexander Kossiakoff,

published in 2011. The methodology consists of the needs analysis; concept exploration;

concept definition; risk assessment and mitigation; advanced development; software systems;

engineering design; integration and evaluation; and the plan for production and operation

support. Since the system is considered to be a complex system, the research will be divided into

three phases: A single camera system performing object recognition and tracking, a multi-camera

system, and lastly a multi-camera fixed on a moving platform such as a drone. This chapter will

discuss the design aspect of the third phase as a whole; whereas, the following chapters will

focus on the technical development of the more complex subsystems of the other phases.

Needs Analysis

In 2011, I was serving as a Search and Rescue (S&R) volunteer at the Orange County

Sheriff Department (OCSD). During our S&R missions and disaster preparation training we

were exposed to various protocols for disaster preparation, searching and tracking of individuals,

and emergency response. The S&R team is composed of the search team and the rescue team.

The search team is responsible to locate and track an object of interest, and the rescue team is

responsible to develop a tactic to resolve the issue. In many cases, the search team discussed the

need to continuously track an object of interest. Some examples include continuously tracking a

sick or insured animal in a mountainous area, or continuously searching and tracking a fugitive.

2

Another example is the continuous monitoring of the rescue team during their mission to

evaluate their tactical moves. In other scenarios, an automated system was needed to assess a

disaster site, such as a collapsed building, or to track all the insured personnel and remap a site

after it was reconfigured by the disaster. Therefore, I saw a need to develop a system to assist the

S&R personnel to perform their job safely. The needs analysis is performed next to rationalize

the market analysis of the proposed system.

Operational Analysis

The “Systems Engineering Principal and Practice” book divides the operations analysis

process into two stages: (1) analysis of the projected needs, and (2) definition of the operational

approach. These two steps will be discussed in detail in the next subsections.

Analyze Projected Needs

The customers’ requirements were gathered by developing a user story board and user wish

list on what helps them the most to perform the job safely. The list below shows the items that

were requested by the customers.

● They require correlating different cameras that do not all have overlapping views.

● They require understanding the possible routes a fugitive can take and predict his/her

next move.

● They require optimizing camera positions to continuously track an object of interest

throughout a scene.

● They require deploying a swarm of autonomous vehicles to track an object of interest

throughout a city.

3

● They require the ability to optimize the images in various environmental conditions.

Define the Operational Approach:

Figure 1 below describes the operational approach objectives. The primary objects are an

autonomous network of cameras along with 3D scene reconstruction and proper classification

and localization of the object of interest. The secondary objective of the classification and

localization is applying these algorithms to real-time object recognition. The secondary objective

for the 3D scene reconstruction is to parameterize the various possibilities for the scene and the

camera tracking. This will facilitate the optimization of positioning the cameras. Lastly, the

secondary objective of the autonomous network will allow a collective knowledge of the scene

which will enable the global knowledge of the system.

Operational Approach

Continuous

Tracking of

Objects

Autonomous

Network

Scene 3D

Reconstruction

Classification and

Localization

Collective

Knowledge

between network

participants

Parameterize the

various

possibilities for

the scene and

camera track

Real Time Object

Recognition

Overarching Objectives

Primary Objectives

Secondary Objectives

Figure 1 - Operational Approach Objectives

4

Functional Analysis

According to the Systems Engineering process as described above, this process comprises

two steps: (1) translation into functions, and (2) allocation of functions to subsystems. The main

purpose of the functional analysis is to decompose the system into processes and operations to

achieve the designed operational needs.

Translation into Functions

The translation of the objects into main functions is described in Table 1 below.

Table 1 - System Functions

Function Description

Image Enhancement / Processing The ability to enhance the image (de-blurring,

sharpening, removing background)

Real Time Object Recognition This implies that the system will be able to

classify and localize the Object Of Interest

(OOI) in real time. It also means that the

system shall have a pre-trained Convolutional

Neural Network (CNN) already in place.

Networked system All cameras have collective knowledge of

each other and their location in the system

Central Knowledge. This implies that all cameras communicate

directly to a centralized computer that will

have the ability to command and control each

system asset.

3D Reconstruction The ability to reconstruct the scene. This will

allow better understanding of the options and

the surroundings of the Object of Interest.

Moving Cameras The ability to re-host for a later project the

application onto a moving camera.

Camera Placement The ability to place the moving cameras in

the scene to minimize occlusion, and camera

overlap and maximize the scene.

Allocation of Function into Subsystems

In this step, the previously identified functions, will be divided into subsystems. This

initial modulation will help the system engineer further design the complex system. The

5

CONOPS of the system/subsystem will adopt the end-goal of this project and is defined by Table

2 below. The next chapters will subdivide the end-goal into several phases to ensure a successful

completion of this project.

Table 2 - Subsystems

Candidate Subsystem Description

Camera System This subsystem will detail the minimum requirements for the

cameras for the entire system.

Camera System Picture

Resolution

The subsystem will detail the minimum resolution for the cameras

for the entire system.

Camera Data Range The camera system can be composed of various data ranges such

as Visual (RGB), Thermal, LiDar and Radar for complete scene

analysis. This is hyperspectral imaging.

Camera System Zoom

functionality

This subsystem will detail the minimum requirement for the zoom

level of the entire system.

Camera system Rotation This subsystem will detail the requirements for camera rotation.

Drone Structure and

support

The drone structure and support shall be ruggedized so it

withstands the environmental conditions dictated by the

application of the system

Power system This subsystem will detail the entire power distribution minimum

requirements to the drones and the cameras

Drive Train This subsystem will detail the requirements for the drivetrain of

the drone

Wireless Real-time

Vision

This subsystem will detail the requirements of the real-time

transmission of the data to a centralized computer.

Navigation and Steering This subsystem will detail the requirements of the navigation

system.

Sensory System This subsystem will detail the requirements of the sensory system

required to ensure proper operation of the system. Ex. Anti-crash

system.

Wireless Command and

Control

This subsystem will detail the manual command and control

and/or the autonomous control to allow all drones to collaborate to

continuously track an Object Of Interest (OOI)

Scene Reconstruction This subsystem will detail the requirements for the scene

reconstruction to properly track each camera position in a given

environment

Object of Interest

Recognition

This subsystem will detail the two different aspects of recognition

which are: Localization and Classification.

6

Feasibility Definition

The feasibility definition process consists of two steps: (1) visualizing the subsystem

technology, and (2) defining the feasibility concept. This allows the systems engineer to realize

the system under-design and help him/her to perform the tradeoff analysis.

Visualize Subsystem Technology

The system will be mainly used for aforementioned applications; therefore, it needs to be

a ruggedized system with all its subcomponents meeting the overarching environmental

requirements of MIL-STD810G. To better design each of the subsystems, the subsystems

described in the previous section will be decomposed and visualized by the following tables and

discussions.

Table 3 - Camera Subsystem

Technology Advantage Disadvantage

Shutter Speed > 1/500 s - Be able to take still images

of fast-moving objects

- Reduce motion blur

- More expensive

- Underexposed photos

Aperture with f-stop at least

2.8

- Be able to capture faster

moving objects

- Able to capture greater

details

- Overexposed photos for

slower shutter speeds

Camera Weight < 1000g - Less payload on the drone - Inferior glass lens quality

High Definition Resolution - Higher quality images

- Ability to pick smaller

details and features of the

OOI

- Larger image to store

- Larger image to process

- Larger image to send real-

time.

Zoom Functionality - Ability to maintain higher

altitude of during flight while

registering the needed

- More expensive camera

Camera Rotation - Ability to swivel the camera

without changing the

direction of the drone

- More mechanical parts

Camera Data Type: RGB - High resolution

- High marking detection

- High range

- Low sensory cost

- Poor Performance in bad

weather conditions: fog,

snow, rain

7

- Small sensory size

- Average velocity detection

- Average glare resistance

- Average distance from

object

- Poor performance in sun

Blinding

- Poor in low light conditions

Camera Data Type: Thermal - High performance in sun

blinding condition

- Glare resistant

- High performance in low

light conditions

- Low sensor cost

- Small sensor size

- Average resolution

- Low performance in

marking detection

- Low performance in

velocity detection

Camera Data type: LiDar - High performance in low

light conditions

- Long distance from object

- High performance in

velocity detection

- High Performance in glare

condition

- Large sensor size

- High cost

- Low range

- Low resolution

- Low performance in bad

weather conditions: rain, fog

and snow

- Low performance in

marking detection

Camera Data Type: Radar - High performance in poor

weather conditions

- High performance in sun-

blinding conditions

- Glare resistant

- Low sensory cost

- High performance in High

Velocity detection

- High performance in low

light conditions

- High range

- Low performance in

marking detection

- Low distance from the

objects.

Table 4 - Power Subsystem

Technology Advantage Disadvantage

NiCa/NiCd Nickel Cadmium - Harder to damage

- Last longer, more

charge cycles

- Don’t last long in

high draining systems

- Higher cost

- Very toxic.

NiMH Nickel Metal Hydride - More affordable

- Better capacity

- Short shelf life since

they self discharge.

8

- Lasts longer than

NiCd.

- Not as durable as

NiCa

Li-Ion Lithium Ion - High energy

- Slow discharge rate

- Most energy capacity

- Light weight

- Overlong time they

lose their capacity

permanently

- Least durable

- Most expensive.

Table 5 - Drive Train Subsystem

Technology Advantage Disadvantage

Rover drivetrain with chains - More torque

- Off-roading capability

- Debris can get stuck

on the chain

- Harder to suddenly

rotate

Rover drivetrain with 4x4

drive free rotations

- More freedom to

rotate

- Less probability to get

stuck

- Easier to climb than

chain

- Less torque

Drone drivetrain –

quadcopter

- Faster to maneuver

than rover

- Easier to get birds eye

view of the site

- Harder to maneuver in

low light conditions

- Less stable than the

hexacopter.

Drone drivetrain – hexacopter - More stable than

quadcopter

- Faster to maneuver

than rover

- Easier to get birds eye

view of the site

- Harder to maneuver in

low light conditions

Stepping robot - Most torque

- Easiest to climb

- Slow Speed

9

Table 6 - Communication Subsystem

Technology Advantage Disadvantage

WiFi IEEE 802.11 Encrypted

Network

- Encrypted

- Already

developed/specified

protocol

- Might have limitation

- Cyber security breach

- Relatively short range

- Channel disturbance

RF Communication In house

developed protocol

- More secure

- Developed

specifically for this

application

- Longer range

- More expensive to

implement

- Allocate certain

frequencies for the

system.

Table 7 - Object Recognition

Technology Advantage Disadvantage

Supervised Learning – Using

Statistical analysis

approaches

- Easy to implement

- Faster to train

- Less accurate than

CNN.

-

Supervised Learning using

Convolutional Neural

Networks

- Highest accuracy

- There are already

developed trained

using ImageNet

- Works great in the

image recognition

application

- Slower than NN.

Unsupervised - Fastest Algorithms - Requires significant

amount of time for

verification.

Define Feasibility Concept

 To meet all the requirements mentioned above, the optimum model shall be a hexacopter

drone powered by Li-Ion batteries. The drone shall be equipped with various camera systems

assigned for the object detection system. These various cameras data types are to be RGB,

10

Thermal, LiDar, and RADAR cameras to complement each other for the tracking purposes. The

system shall be equipped with LiDar dedicated for object detection/avoidance. The RGB

cameras shall record high resolution images with at least 1/500s shutter speed and f-stop at least

2.8. The cameras shall have a mass of less than 1000g each. The cameras shall be zoom capable

up to 30x and fixed from rotation to facilitate the calculations since the drone is fully integrated

with the recognition system. The Recognition subsystem shall be a supervised CNN model for

optimum results. The cluster of drones shall be able to reconstruct the 3D scene.

Needs Validation

The needs validation process is composed of a design effectiveness model and will

validate needs and feasibility. The objective of this process is to verify that the operational needs

are being met.

Design Effectiveness Model

The Measure Of Effectiveness (MOE) is taken mainly out of the customer requirements

documents. The main requirements state that the system shall work for 2 hours without charge,

and that the drone agents shall calculate its way back to the recharge station. The drones shall

send the current view to a centralized computer to calculate trajectory and upload a mission to

each of the drones. The centralized computer shall be redundant. The centralized computer shall

map the robots relative to each other to better calculate schedules. The swarm system shall have

a global knowledge of the OOI at all times. The OOI recognition shall achieve accuracies above

90%. As far as the Measure Of Performance (MOP), it will be developed after refining the

subsystems.

11

Validate Needs and Feasibility

The proposed feasible concept addresses the needs of the S&R division. It is able to

satisfy the overarching objective described at the beginning of this section and meet all the

operational requirements. These operational requirements are:

- The system shall work for 2 hours without charge

- It shall be capable of withstanding the extreme environmental conditions.

- It shall be able to meet all the MIL-STD-810G

- The drone agents shall calculate its way back to the recharge station.

- The communication to a centralized computer is achieved by sending the current OOI position

independently.

- The centralized computer shall calculate the OOI trajectory and upload the information to the

drones.

- The centralized computer shall be redundant.

- The centralized computer shall map the robots relative to each other to better calculate

schedule, and reconstruct the scene.

- The drones shall be able to avoid obstacles

- The system shall be interrupted by a human user at any given time.

- The system shall be smart to detect the features of the OOI with a 90% accuracy. The Machine

Learning (ML) preferred technique is the CNN or Convolutional Neural Network (CNN) which

is used almost ubiquitously for image recognition and feature extraction.

12

- It shall be reliable for at least 10 years.

- It shall be maintainable. This is done by decomposing the system into subsystems.

Concept Exploration

The concept exploration stage of the systems engineering methodology is used to explore

alternative systems to produce a more neutral solution. The process of the concept exploration is

described by the diagram in Chapter 7 of Kossiaskoff’s textbook (Figure 7.2), “Systems

Engineering Principal and Practice”.

The input of this phase of the process is the output of the needs analysis phase. To

summarize the output of the previous phase, a system is needed to aid the S&R team to be able to

track an object of interest throughout a scene from various cameras that are not all overlapping.

The system shall be able to recognize an object of interest with at least 90% accuracy. It shall be

able to localize it on a given camera and be able to correlate its position with the other camera

systems. It shall be easily maintainable and have 10 years of reliability.

Operational Requirement Analysis

The Operational Requirement Analysis is mainly composed of two steps: Analyzing

Operational Objectives and Refining Operational Requirements. The purpose of this step is to

explore the different operational Requirements that may lead to alternative solutions.

Analyzing Operation Objectives

 Iterating through the project objective analysis:

● They required correlation of different cameras that do not all have overlapping views.

“Situational Awareness, Asset Correlation, Continuity of Tracking”

13

● They required understanding of the possible routes a fugitive can take and predict his/her

next move. “Situational Awareness, Trajectory Prediction, Continuity of Tracking”

● They required optimization of the camera positions to continuously track an object of

interest throughout a scene. “Continuity of Tracking with minimum assets”

● They required a deployment of a swarm of autonomous vehicles to track an object of

interest throughout a city. “Continuity of Tracking, Recognition and Localization,

Multiple Assets”

● They required the ability to optimize the images in various environmental conditions.

“Accuracy of Tracking through Unpredictable Conditions”

Refining Operations Requirements

 The more refined operational requirements demand that the system shall be able to

deploy at least 50 drones simultaneously and be able to position them such that there is a

minimum overlap between them. The positioning of the assets shall be according to the

trajectory prediction sent from the centralized system.

Performance Requirement Formulation

 The performance requirements formulation is composed of two steps: Derive subsystem

functions and formulate performance parameters. The objective of this process is to define the

subsystem functions so the MOP can be formulated.

Derive Subsystem Functions

This task is best visualized by the OPM diagram which is optimal in deriving subsystem

functions. The OPM diagram is composed of mainly three sections: (1) the operands: this is

where the subsystems are defined; (2) the value process: this is where the functional actions are

14

described; and (3) the instrument section: this is where the objects performing these functional

actions are defined.

Figure 2 shows the OPM diagram that describes our system. Operands show the basic

subsystems; the value processes show their function in the system and the instruments show the

means that allow them to perform these value processes or functions.

Figure 2 - OPM Diagram

15

Formulate Performance Parameters

The formulation of the MOP will be defined by the following requirements.

1) The system shall be ruggedized to withstand the environmental constraints. Therefore,

the system shall meet MIL-STD810G. The MIL-STD810G defines the requirements of

the following environmental conditions:

● Test Method 500.5 Low Pressure (Altitude)

● Test Method 501.5 High Temperature

● Test Method 502.5 Low Temperature

● Test Method 503.5 Temperature Shock

● Test Method 504.1 Contamination by Fluids

● Test Method 505.5 Solar Radiation (Sunshine)

● Test Method 506.5 Rain

● Test Method 507.5 Humidity

● Test Method 508.6 Fungus

● Test Method 509.5 Salt Fog

● Test Method 510.5 Sand and Dust

● Test Method 511.5 Explosive Atmosphere

● Test Method 512.5 Immersion

● Test Method 513.6 Acceleration

● Test Method 514.6 Vibration

● Test Method 515.6 Acoustic Noise

● Test Method 516.6 Shock

16

● Test Method 517.1 Pyroshock

● Test Method 518.1 Acidic Atmosphere

● Test Method 519.6 Gunfire Shock

● Test Method 520.3 Temperature, Humidity, Vibration, and Altitude

● Test Method 521.3 Icing/Freezing Rain

● Test Method 522.1 Ballistic Shock

● Test Method 523.3 Vibro-Acoustic/Temperature

● Test Method 524 Freeze / Thaw

● Test Method 525 Time Waveform Replication

● Test Method 526 Rail Impact.

● Test Method 527 Multi-Exciter

● Test Method 528 Mechanical Vibrations of Shipboard Equipment (Type I –

Environmental and Type II – Internally Excited)

2) The system shall be operational for at least 2 hours without need to charge.

3) The system shall be able to correlate all the assets.

4) The centralized computer shall contain redundant systems that can take over in case of

failures.

5) If drones need to be recharged, it shall return automatically to the initial deployment

point for further handling.

6) The centralized computer shall send the assets the trajectory based on the data received

from each asset.

7) The centralized computer shall deploy assets as needed based on their status.

8) The drones shall be able to avoid obstacles autonomously.

17

9) The robotic agents shall be able to capture the image with various data types namely:

RGB, Thermal, LiDar, RADAR.

10) The robotic agents shall be able to recognize a given OOI with accuracy of at least 90%.

Implementation of Concept Exploration

The implementation of concept exploration is composed of two steps: Explore

Implementation of the concepts and define performance characteristics. The objective of this

step of the process, is to evaluate alternative solutions; this is to explore the design space and

allow the systems engineer to come up with a solution neutral system, doing so will eliminate

focusing on only single point solutions.

Explore Implementation Concepts

 The alternative concepts are:

- Rover that with a chain drive train

-Rover with drive 4 wheels drive train with full degree of rotation freedom

- Quadcopter drone

- Hexacopter drone

- Stepping drone

- Already existing cameras such as traffic cameras and ATM cameras

Define Performance Characteristics

 In the previous section the key advantages and disadvantages of the alternative concepts

were discussed. Table 8 below reiterates these design concepts for the drivetrain; however, the

concept of utilizing the existing cameras such as traffic, security and ATM cameras is added.

18

Table 8 - Alternative System Performance Characteristics

Technology Advantage Disadvantage

Rover drive train with Chains - More torque

- Off-roading capability

- Debris can get stuck

on the chain

- Harder to suddenly

rotate

Rover drivetrain with 4x4

drive free rotations

- More freedom to

rotate

- Less probability to get

stuck

- Easier to climb than

chain

- Less torque

Drone drivetrain –

quadcopter

- Faster to maneuver

than rover

- Easier to get birds eye

view of the site

- Harder to maneuver in

low light conditions

- Less stable than the

hexacopter.

Drone drivetrain – hexacopter - More stable than

quadcopter

- Faster to maneuver

than rover

- Easier to get birds eye

view of the site

- Harder to maneuver in

low light conditions

Stepping robot - Most torque

- Easiest to climb

- Slow speed

Existing Cameras - Cheaper to implement - Fixed locations

- Not having multiple

sensors

- Different resolutions

Performance Requirements Validation

 The performance requirement validation is composed of two steps: (1) integrate

performance characteristics and (2) validate performance requirements. The objective of this

step is to validate that the performance requirements are met by exploring the various

alternatives in this section.

19

Integrate Performance Characteristics

 Most of the alternative designs above are feasible, and with currently available

technology, it is possible to get many COTS subsystems. However, some of the features

accompanying each alternative design brings an undesirable side effect. For instance, no rover

robot will not be able to perform tracking efficiently as a drone. It is also hard to maneuver a

driving object in such an environment. The stepping robot is undesirable because it is much

slower and not efficient. Despite the fact that the existing cameras are appealing, it is not easy to

optimize their positions to truly have a continuity of tracking. The network of hexacopter-

drones present the best scenario for our needs because of the degree of freedom it presents as

well as the speed and stability needed to keep the target in track.

Validate Performance Requirements

The performance requirements validation, a Model Based Systems Engineering (MBSE)

model, will be created to model the integrated behavior and better understand the emergent

behavior in different conditions. All basic requirements described in this section shall be met.

Concept Definition

 The concept definition discussed in this section follows the systems engineering

methodology described in Chapter 8 of the Kossiakoff textbook. The objective of this process is

to further define the chosen system.

Performance Requirements Analysis

 The performance requirement analysis is composed of two steps: Analyze performance

requirements, and refine performance requirements. The objective of this section is further

analyzing the system and developing more detailed requirements.

20

Analyze Performance Requirements

 The system at this step has been well defined from the previous sections; however, each

of the requirements can be further broken down to detailed requirements.

Refine Performance Requirements

The system has been adequately refined in the previous section; therefore, no further

refinement is needed at this point.

Functional Analysis and Formulation

The functional analysis and formulation phase is composed of two steps: Define

components functions, and formulate functional requirements. The objective of this design step

is to formulate the design into functions that meet all the objective requirements

Define Components Functions

The first decomposition diagram is shown on Figure 3 below. It is composed of six main

functions: Structure and Support, Power Supply and Distribution, Drivetrain, Vision, Navigation

and Steering, and Wireless Transmission. The Objective of these functions will be detailed in

Table 9 below.

Figure 3 - Functional Decomposition

21

Table 9 below details each of the functions specified by the preliminary functional

diagram discussed above.

Table 9 - Subsystems Functional Definition

Component Function

Structure and Support

Provides the ruggedized structure and linkage of the system

to each of its subcomponents.

Power supply and

distribution

Provides power to the whole system. It provides means to

recharge its on-board batteries.

Drive Train Provide the means for the drone to fly.

Vision Provides the drones with capabilities to capture images in

various data formats: RGB, Thermal, LiDar, and RADAR.

The system is also composed of the microprocessors that

provide the means for the drone to perform the object

recognition and tracking.

Navigation and Steering Provides the means for the drones to be controlled in manual

mode or submitted to its mission files. It also contains an

object avoidance sensory system.

Wireless Transmission Provides the means to transmit the mission information and

flight profile from the centralized system

Formulate Functional Requirements

Table 10 below provides the requirements of the functional definition:

Table 10 - Subsystems Functional Requirements

Component Function

Structure and Support

-It shall be ruggedized to withstand all the environmental

conditions.

-It shall provide an enclosure for the entire system that meets

with MIL-STD810G.

Power supply and

distribution

- It shall provide the system with the energy needed to

properly operate the system. (this energy/hr will be defined at

a later stage)

- It shall provide the system with uninterrupted power for full

operation for 2 hours.

- It shall provide the system with power protection.

Drive Train - It shall provide the drone the means to lift to an altitude that

will be specified at a later stage.

- It shall provide the drone the means to move at a different

speed

- It shall provide the drone to land

22

Vision - The system shall contain multiple cameras to detect the

OOI. The cameras can be of various data types such as

Thermal, LiDAR, RGB, and RADAR

- The system shall have high resolution through zoom and

sensitive cameras to detect the OOI at an altitude that will be

specified at a later stage.

- The system shall be able to recognize and track a give OOI

with an accuracy of at least 90%

- The recognition SW shall take 100ms to scan the entire

image.

- The recognition SW shall take 1ms to recognize the OOI.

Navigation and Steering - It shall allow the drone to receive navigation and steering

commands manually

- It shall provide the means for the drone to navigate

autonomously.

- The system shall provide the drone the means to avoid

obstacles.

Receive Mission Information - It shall provide the user with real-time feedback with at

most 5 seconds delay.

- It shall provide the centralized computer the position

information of the OOI from each of the drones that has it on

sight.

- The drone system shall be able to receive information from

the centralized computer to start a mission

- The drone system shall be able to receive information from

the centralized computer to update the current mission

Concept Selection

 The concept selection is composed of two steps: synthesize alternative concepts and

select preferred concepts. The objective of this section is to select the preferred method to start

forming the architecture.

Synthesize Alternative Concepts

 The system as was selected by the previous steps doesn’t require further search for

alternative concepts due to the stringent requirements given. Thus, the preferred concept that will

meet all the requirements is composed of a mesh network of maximum 50 hexacopters drones

that are equipped with several cameras to primarily object track certain OOI. The system is also

23

equipped with a centralized system that commands the drones with missions based on the

trajectory calculation. The drone system is capable of avoiding obstacles. All camera systems are

commonly coordinated so any of the drones has the OOI relative position.

Select Preferred Concept

 Based on the analysis that has been performed by the concept exploration, the preferred

concept is the hexacopter drone, as Figure 4 shows with the preliminary design below.

Figure 4 - Preliminary Concept Diagram

24

Concept Validation

The concept validation process is composed of two steps: conduct system simulation and

validate the selected concept. The objective of this section is to validate the preferred concept

meeting the primary objectives of the project.

Conduct System Simulation

 Much research has been done in the area of object recognition using CNN. The best

algorithm fit for the type of object, in our case is make and model of cars, needs to be determined

after retraining the CNN algorithms. Chapter 3 of this dissertation discusses in detail the CNN

algorithms that were trained using the transfer learning techniques and results achieved.

Similarly, correlating the cameras in the network to a common coordinate system is discussed in

detail with the simulation performed in Chapter 4 of this dissertation. The entire system will be

integrated and simulated using the MBSE approach to simulate the entire system before

prototyping it.

Validate Selected Concept

The validation of the concept performed in the previous section is valid up to this point of

the design. No further validation is needed, as it showed previously. All primary objectives have

been met using this approach.

Risk Management

Project Management Related Risks

There are several risks to this project, some of which are project management risks and

others are risks associated with technical maturity and development.

25

1) TRL-7: Customer indicated that they require a Technology Readiness Level (TRL) of 7

before paying for the manufacturing of the product. This resembles a financial risk on the

development of the product. TRL 7 means that the model is demonstrable in the operational

Environment.

2) Authority to Operate (ATO) in the airspace: This item requires the Federal Aviation

Authorization (FAA) approval before deploying these autonomous tracking vehicles.

3) Due to COVID-19 the supply of memory and chips is very short and has a long lead time.

4) Object detection algorithm: Developing a custom object detection algorithm for a specific

application, such as cars, could be challenging due to the fact not many datasets are available

and the class features are very closely correlated.

5) Camera coordination: Correlating all the cameras to a common coordinate system has not

been a top priority in object tracking; thus, developing an algorithm that can correlate all the

cameras in a given network could be challenging.

6) Camera position optimization: A nested risk in developing a camera correlation algorithm is

optimizing the camera positions to cover a given scene.

7) Drone Integration: Integrating the object detection, tracking the camera correlation, and

determining the object trajectory are challenging tasks. In particular, the movement space has

6 degrees of freedom.

8) Allocating a radio frequency: Allocating a radio frequency to command and control the drone

as well as send a receive mission file and high definition images can be challenging

Qualitative Risk Assessment

 The risk assessment was assessed on Table 11 which is 3x3 matrix; it can be easily

translated to a 5x5 matrix.

26

Table 11 - Risk Matrix

 Consequences

Likelihood

 Low Medium High

High
 6 1 ,7, 8

Medium
 4,5 2

Low
 3

For item #1, the likelihood of this happening is high due to the fact the customer has

stated that they don’t invest in any new technology less than TRL-7. The consequences of this

risk are high due to the fact it will cost the company a large amount of money in research,

modeling, developing prototypes, and testing without aided investment. The risk has been

accepted and the proposed solution is to find investors for this product.

For item#2, the likelihood of this happening is high due to the fact the FAA has restricted

the airspace for the desirable altitude for autonomous vehicles. The consequences of this risk are

medium because it is necessary to test the drone in a controlled environment before deployment

to ensure all the safety standards are met. This risk will be transferred to the customer to seek the

appropriate approvals through the FAA.

For item #3, the likelihood is low because currently a lot of car manufacturing and

computer manufacturing are waiting for microchips and memory. By the time this product is

fully designed and ready for production, this limited supply might be exhausted. The

consequences are medium because ordering the necessary parts can be well coordinated with the

supply chain organization.

27

For item #4, the likelihood is medium because this is an area this dissertation needs to

investigate and resolve and the consequences are medium as well because finding a promising

object detection algorithm can be challenging.

For item #5, the likelihood is medium because this is an area this dissertation needs to

investigate and resolve and the consequences are medium as well because finding a promising

camera correlation algorithm can be challenging.

For item #6, the likelihood is high because this is an area this dissertation needs to

investigate and resolve and the consequences are medium as well because finding a promising

and cheap way to optimize the camera position can be challenging yet not mandatory.

For item #7, the likelihood is high because integrating autonomy, object detection and

tracking and a 6-degrees of freedom device is challenging in its nature. The consequences are

also high because this is what most of the project needs to address.

For item #8, the likelihood is high because there are some drones that currently are

commercially available that send and receive the required information; however, further research

is necessary to ensure that these frequencies can cover the altitude and distance required by the

customers’ needs. The consequences are high because if the currently developed frequency

ranges do not work further research is required to establish the proper bandwidth and accepted

amplification.

Advanced Development

 The advanced development follows the process diagram in Figure 10.2 of the “Systems

Engineering Principal and Practice” book. The purpose of the advanced development is to

28

reexamine the validity of the system functional specifications developed and identify the

components that are not fully matured.

Requirements Analysis

 The requirement analysis is composed of analyzing system functional specifications and

identifying immature components that require further study and mitigation.

Analyze System Functional Specs

 The preliminary functional requirements were specified by Table 10. The main

components of the systems were: structure and support, power supply and distribution, drive

train, wireless vision, navigation and steering, sensory system, receive mission information,

camera system and recognition and tracking. These preliminary requirements were inserted to

guarantee that the system will meet its primary objective in the rough environmental conditions

specified. In this section we will analyze the functional requirements specified on the

aforementioned table and identify redundant systems. Please note that these requirements can be

greatly explored on a much finer granularity level. The most important requirement identified by

the customer is the accuracy of tracking. Thus, building a detailed model that shows the expected

accuracy is necessary. The second most important requirement identified by the customer is to

meet all the environmental constraints specified by MIL-STD810G. The customer specified to

ensure that the drone is fully operational for 2 hours to meet the field needs. Thus, A detailed

MBSE model is needed to estimate the energy needed and the power budget required to meet the

customer's need. The system shall provide the user with real-time feedback with a maximum 5

for upload and download data on a private frequency range. The drones shall be able to

communicate constantly with the centralized computer. Lastly, all the drones shall have a

29

common and global knowledge of the OOI throughout the scene even if they don’t have it on

sight.

Identify Immature Components

There are several components that require immediate assessment to ensure the feasibility

of the project. The first one is that the recognition and the object tracking must achieve at least

90% accuracy. The second is to ensure that all of the cameras achieve a common coordinate

system so they can reference a point in space regardless if they have it in sight. The third is to

ensure that the radio frequencies required to upload and download the data are suitable for real-

time high definition feed. The fourth is to ensure that the proper estimation of weight and

structure of the drone. Lastly, power needs to be modeled to ensure the proper estimation of the

power budget. These tools will include: Matlab, Simulink, Python, Pspice, CATIA, SketchUP,

CAMEO and Capella.

Functional Analysis and Design

Identity Functional Performance Issues

 Each of these components present a critical characteristic that needs further identification.

Table 10.3 of Kossiakoff best describes the functional elements and their related critical

characteristics. In regards to the structure and support, the functional requirements that were

described previously stated that the structure and support shall be ruggedized to withstand all

environmental constraints described by the MIL-STD810G. The critical characteristics that need

further specifications to meet such requirements can stress the strength and the versatility of the

materials as well as the form and the join material should be designed in accordance with the

total weight, capacity of the body. That is why a prototype is essential for such a purpose. Power

supply and distribution requirements are: the system shall provide uninterrupted power for 2

30

hours straight, and it shall provide enough energy to operate the vehicle, and lastly provide

power protection. In this case a full simulation and later verifying it on the prototype is needed.

The coordinated effort of the tracking of OOI is a new technology that needs to be proven in

various environmental conditions. The wireless communication needs to be verified in such

environmental conditions and ensured at the desired altitude of operation.

Resolve Issues Design Software

Most of the design issues can be resolved using simulation tools for MBSE as well as

functional simulations using Matlab, Python and CAD modeling tools. However, to validate the

performance specifications that are required to meet certain environmental conditions, simulation

development benches need to be built.

Prototype Development

 In this section, the systems engineer will identify the subsystems and the components that

will present a risk to the development of the project and will require the advanced development

of the subsystems and /or the components. In this section, the systems engineer asks mainly

three questions as the book suggests:

1) What things could go wrong?

2) How will they first manifest themselves

3) What could then be done to make them right?

Identify Unproven Technology

 There are numerous unproven technologies. Table 12 below lists all the issues that need

to be developed by the advanced development team.

31

The objective of this exercise is to design a system that is failsafe to the user and the

objects in-site.

Table 12 - Unproven Technologies

Unproven Technology What things could

go wrong

How will it first

manifest itself

What could be

done to make it

right?

Chassis and structure Not properly

ruggedized due to the

environmental

challenges.

The electronic

components and the

integrity of the

product will be

compromised

Materials for the

ruggedization shall

be identified to

withstand the

environmental

challenges given in

a disastrous site.

Structural design

shall be done to

guarantee the

stress load on the

drone given that it

will be in harsh

conditions.

Power Not enough power

Not well-designed

heat dissipation.

Not well shielded

wiring harnesses.

Not well power

distribution and

protection

Assets will not work

at its full potential.

The battery will die in

a much shorter time.

Overheat of

components which

may cause fire.

Electro-Magnetic

Interference(EMI)

with other radios or

components which

will decay or distort

the signal with a

significant noise.

Simulate the power

subsystem by

using electrical

simulation

programs such as

pspice or matlab

Simulink.

Generate the

proper modeling

for the heat

generated by all

the components

and identify the

cooling method

and the locations

of the vents and

how heat will

dissipate from the

enclosure.

Networking Not able to

communicate with

the centralized

computer due to

The drone will be

completely

disconnected from the

Verify that radio

frequency and the

technology will

work in a given

32

noise and blocked

signal.

Not able to

communicate with

the operator and send

visual feedback

scheduling and

feedback system.

scenario and at the

specified altitudes.

Object Recognition and

tracking

Not able to visualize

the OOI due to

environmental

conditions

The OOI will not be

lost from all cameras

sight

Ensure that the

other camera data

types will remain

locked on target

and measure the

effectiveness of

having a

complementing

system.

Centralized computer Not be able to

process all the data

due to high volume

of requests and

scheduling

Drone positioning

might not be

optimized.

Maximize its

memory and CPU.

Also, create the

code to be as

highly efficient as

possible.

Design and Build Critical Components

 In this section, the advanced development team will start simulating the identified items

above, as well as they will start developing the prototype for this project.

Development Testing

 In this section, the advanced development team along with the systems test engineer will

be developing the test cases that will determine that all of the design issues identified during the

advanced development phase have been satisfactorily resolved by doing a simulation, or building

a prototype. Another objective for this development testing is to assure that the subsystem

interfaces are properly selected. During this testing phase, the system will be tested against the

upper and the lower limits. This will give the team a high confidence that the system will

properly work in the specified environment. One of the more important reasons for the advanced

development team to build the prototype is to determine the cost and the manpower required to

33

build and test the system. Lastly, this step will help the systems engineers, and the test engineers

developed a detailed TEMP document which will be described in section 6.0 below. Kossiakoff

stated that a well-planned development test program generally requires the following procedures.

1) development of a test plan, test procedures, and test analysis plan;

2) development or acquisition of test equipment and special test facilities;

3) conduct of demonstration and validation tests, including software validation;

4) analysis and evaluation of test results; and

5) correction of design deficiencies.

This test is normally done by the developers along with some test engineers and normally it is

done at the unit level then at the subsystem level, in other words, there are unit tests followed by

integration tests that validate that all components are working properly together.

Build Test Setup

In this section, the test cases for the advanced development team will be created to verify

the risk presented above has been addressed with high confidence. Table 13 below shows the test

environment needed to meet all the customer requirements.

Evaluate Test Results

 In this section, the tests will be evaluated and reported upon completing all the

simulations. The evaluation is normally documented to ensure the proper traceability of all the

risks presented at the beginning of this phase. For any deficiencies, the advanced development

team will suggest corrective actions that can be re-prototyped or simulated to close the risk

items.

34

Table 13 - Test Environment

Subsystem/component Equipment Facilities needed Test functions

Chassis and Structure Stress facility

High-temperature chamber

Low-temperature chamber

Vibration benches

Explosive chamber

High humidity chamber

Low humidity chamber

Electrical shock bench

Electro-Magnetic Interference

chamber

Salt and humidity

environment

Hydrostatic chamber

Radiation chamber

Shock benches

This test will verify that the

structure and enclosure will be

able to withstand the harsh

environmental conditions.

Power Electrical shock bench

Stress test

This test will allow the system

to meet the electrical shock test

in MIL-STD810G.

The stress test will operate the

prototype for an extended

period of time on a mission

case for testing purposes. This

test will verify the battery life

and the functionality over a

long period of time.

Networking Restrictive chambers and

facilities to radio signals that

mimic various altitude and.

combined environmental

challenging conditions.

This will verify that the

networking using the proposed

Radio frequencies will meet the

mission demands.

Object Recognition and

tracking

Simulated OOI site condition

at various speeds and

directions.

This test will verify that the

object detection and tracking

system will properly operate in

the specified conditions.

Centralized computer ATP for request submittals to

simulate drone requests and

simultaneous uploads

This test will allow testing the

centralized computer under a

stress test.

35

Software Systems

 The software system for this project is composed of:

1) Hardware embedded software and firmware

2) Real-time Operating System

3) Application program and backend software

4) Data structures and data storage

5) User Interface.

6) Documentation

The application systems engineer will be responsible to create the software requirements

whereas the embedded software and hardware firmware will define the protocol for motors,

sensors, on-board processor, and on-board memory to process the data for autonomous

capability. The coding language recommended is C since it is a universal language; thus, it can

be portable and the drones’ capabilities can be upgraded later.

There are two operating systems for this project. The first operating system is the on-

board Real Time Operating System (RTOS). This operating system is the one that is responsible

to handle all the autonomous scheduling between all the components of the drone. It also

receives and schedules operations from the centralized computer. The second type of operating

system is a distributed operating system. This is the operating system that is running on the

centralized computer where it allows each drone to have its own RTOS while scheduling the

main tasks and receives and handles all the data coming from the field assets. The recommended

RTOS is: RTLinux since it is a microkernel that runs the entire Linux OS as a fully preemptive

process.

36

The application software and the backend. Is the software that is running in the

background that handles all the communications schemas. The recommended language for this

backend software is C++ since it is one of the mostly efficient languages. Also, since the front

end, which will be discussed shortly, needs to communicate with the centralized computer. A

good web request can be done using the Simple Object Access Protocol (SOAP). To build the

SOAP functions, an automatic translation from the schema can be done using the C++ language.

The data structures and data storage are needed to handle all the submitted data from all

the drones, which will allow the centralized computer to re-task the drones properly based on the

predictive analysis of the OOI. The recommended data structures are Network Attached Storage

(NAS) devices as well as databases that associate the location on the map with the path to the

files.

The user interface is what allows the user to see the latest site, print it, see what the drone

is seeing real-time, and command it to perform certain actions. Upon requesting the drone to

perform a certain action, this command will be delivered to the centralized computer to properly

schedule the drone to perform the action. This allows for data coherency of the whole system.

The recommended user interface is Hyper Text Markup Language -5 (HTML-5) which allows

the developer to update the content and the look and feel of the user interface more easily.

The documentation shall use the UML tools to explain the use cases, the structure of the

software, the behavioral and the interactional cases with the software.

The software shall use the agile life-cycle which allows the developers to release the

software on an incremental basis fully tested and qualified. The duration for each scrum is

recommended to be 2 weeks and a release product every 3 scrums. The product owner and the

37

scrum masters are encouraged to change the scrum period. Some of the software systems will be

prototyped in the next chapter.

Engineering Design

The objective of this phase is to design systems components to the desired performance,

cost and schedule per the requirements. In this phase all interfaces and interactions are well

identified and defined. The system is configured on a modular base where it groups the tightly

coupled components together in a single module. In this phase all components are designed and

prototyped. During this phase there are two major design reviews: Preliminary Design Review

(PDR) and Critical Design Review (CDR)

In this step all the interfaces and the interactions are identified. Normally the design

starts with a preliminary concept diagram as was shown on Figure 4 in the previous section.

Then the interfaces and interactions are identified on the block diagram. The obvious external

interface is the application specific radio, which allows the communication with the central

computer, or sends visual real-time feedback to the user. The second obvious external interface

is the camera, and sensory components. This allows the drone to gather data and imagery about

the OOI. There are numerous internal interfaces, since the objective is to modularize this system

for maintainability. Also, modularizing the drone will increase the reliability since the system

will be partially mission-capable upon a failure of a component. These interfaces are indicated

by the arrows to each component listed below. Some of these interfaces include Ethernet

connectors, J-type connectors and wireless interfaces.

A great tool that I learned from the systems engineering certificate I achieved from MIT

is to use the Design Structure Matrix (DSM). This tool allows the system engineer to visualize

38

and to modularize the subsystems into smaller modules, as well as the interfaces between the

modules. The DSM for this project is shown on Figure 5 below.

Figure 5 - DSM Module

Integration and Evaluation

The objective of the integration and evaluation phase is to test and evaluate the system

performance and the system-emergent behavior meets all the operational requirements. During

this step the system will be validated and verified. In the validation step the system will be tested

against the requirements of the customer to guarantee that it meets the mission needs of the

customer. In other words, a given scenario will be built with a known ground truth table provided

then a quantitative accuracy measurement will be performed against all system components such

as the user interface, the centralized computer, the drones data gathered and their prediction on

39

all the measurements against the ground truth. This step will involve acceptance and suitability

with external customers. In the verification step the whole system will be tested against the

requirements as a formal test with the presence of the Quality Assurance team. The test

procedure will be written by the systems test engineers according to the requirements document.

Each requirement will be mapped to a test case. During this phase the Test and Evaluation

Master Plan TEMP document will dictate the plan for the testing criteria. A simplified TEMP

document to show the sections and the potential content of each section.

- System Introduction

The network of autonomous drones will assist the S&R team with the aforementioned

applications. The drones also will send visual feedback to the user.

o Mission Description

The mission for this document is to describe what is planned to be done at each

stage of the development of the system.

o Operational Environment

The Operational Environment will be described in this section where the normal

operation will be specified. However, the environmental testing will be

completely outside of the operating range. Normally, it specifies a standard to

meet, such as MIL-STD810G as described by the requirements stated above.

o Measure of Effectiveness and suitability.

The measure of effectiveness and suitability is described by the proper operation

of data retention and recording capability during all the extreme testing described

40

by MIL-STD810G, as well as the ability to communicate real time with the

centralized computer.

o System Description

In this section is described the functional and operational system description. As

well as the functional decompositions of the subsystems.

o Critical Technical Parameters.

This section will identify all the critical technical parameters that the system

needs. Such as the number of channels, input, output, buffer range, expected

message flow in the worst case, restricted access and loss of communication with

the centralized computer.

- Integrated Test Program Summary

o Test Program Schedule Management

In this section the schedule will be set for all the testing procedures. In this section

it will indicate how it will be weaved into the development process. For instance,

all the unit testing will be done after some sprints in case the development is

following an agile process. Then some integration testing will be done at every

major release. Going back to the project on hand, it is following an agile process

with every other week we have an iteration. During this iteration, a hardware

system is built, unit tested and the associated software is built and unit tested.

Every 3 iterations we have a major release. In this release a major functionality of

the system is integrated and tested. In a way, the testing is following the right

41

branch of the V model. During the integration testing, the unit undergoes

environmental testing according to MIL-STD810G and functional testing of the

whole functionality. Any undeveloped software or hardware driver/stubs will be

created to emulate the undeveloped sections of the project.

o Participating Organizations

In this section, all the participating organizations will be specified. This includes

the testing team, the validation team, the simulation team, the systems engineering

team including testing the hardware team, the software team, the human factors

team, and safety and reliability and quality assurance (QA) team.

- Developmental Test and Evaluation

o Method of Approach

In this section, the method of testing will be developed. For instance, some of the

algorithms will be simulated or emulated using driver and stubs software because

the hardware sometimes is not in line with the software. Therefore, the software

emulators will be used to temporarily replace the hardware until it is done.

Therefore, this section will be describing the methods that will be used.

o Configuration Description

In this section, the configuration will be specified for the test and evaluation for

each release. This will hold the whole system configuration of the test. This is the

configuration that was agreed on at the Critical Design Review (CDR).

42

o Test Objectives

In this section we specify the objectives for this test, for instance, the test will be

used for integration of the specific release, durability test, unit test. Each test

section will be specified.

o Event and Scenarios

This section describes the events used for each test. As well as scenarios in which

the system will be properly operating outside the specified range, it has a failsafe

in case of a specific event to not cause harm to the operator, or anything on-site.

- Operational Test and Evaluation

o Purpose

The purpose of this section is to specify the test needed to guarantee the

operational requirements.

o Configuration Description

Similar as above but to guarantee the operational needs.

o Test Objectives

Similar as above but to guarantee the operational needs.

o Event and Scenarios

Similar as above but to guarantee the operational needs.

- Test and Evaluation Resource Summary

43

o Test Articles

This section will specify the articles of the requirements that will be tested

against. This is normally created and traced in doors.

o Test Sites

This section will specify a special location that needs to be used such as a

building that has a deep pool for compression and submersion testing, or another

building for explosive testing, or specify a certain vibration bench, or in a certain

location such as a simulated operational site.

o Test Instrumentation

This section will specify the tools needed: such as a multimeter or spectrum

analyzer.

o Test Environment and sites

Similar as above in a greater level of detail.

o Test Support Operations

Personal needs and support such as simulator support personal

o Computer Simulations and models

In this section, we can specify the requirements for a given simulator that will

allow us to properly test the system.

o Special Requirements.

44

In this section, we specify any special requirements for the testing such as

humidity level, or any other condition needed.

Production

The production phase objective is to lay the groundwork to be able to reproduce identical

hardware and software of the prototype developed for this project. The requirements for the

tooling, facilities, and the technology that will be used for production are normally defined

concurrently during the previous phases of the design. Other than the facilities needed for the

testing, the facility for production will require a set of stations where the production can be

pipelined to maximize the throughput. Each stage will be responsible for a subsection of the

system all the way to final assembly and full integration phase. These stages are going to be

defined after the simulation of the most efficient critical path. All the tooling and the equipment

will be well defined after finalizing the configuration. All the parts will be taken from cutout

trays to reduce any missing parts to the final product. A full design should have been done

concurrently to the project and include in the design phases the appropriate facility and tooling

experts to better define and simulate the production facility.

Operation and Support

The objective of this phase is to define the operation and support of the lifecycle of the

product including sustainment and modernization. This product can be offered through three

packages: the first package is the silver package where the customer buys the system and he/she

is responsible to maintain the system and operate it. The second package is the golden package

where the customer buys the system with limited maintenance. The third package is the

platinum package where the customer buys the system including full maintenance and full

support, data analysis and upgrades by paying a monthly fee; in other words, it is a turn key

45

service. These packages are designed to attack the various levels of customers. For the

platinum package, our company will be responsible for the operation and support including

installation and assembly, test, in-service support and upgrades. During the fielding and

sustainment of the product, a detailed analysis will be collected to incorporate the field issues in

the second generation of the autonomous network of drones.

46

CHAPTER 2 – SYSTEM OVERVIEW AND ARCHITECTURE1

Introduction

Object tracking is an active research area in computer vision thanks to the increasing

demands in the Intelligence, Surveillance and Reconnaissance (ISR) applications and the

Autonomous Vehicles Systems (AVS). The tasks of computer vision object tracking consist of:

Image sensing, image enhancement, background extraction, object classification, tracking of the

object of interest and feedback analyzer. To facilitate the development process, a visual sensing

system is used; however, it is recommended to use a quadruple redundant system such that they

complement each other. This quadruple redundant sensory system is composed of LiDAR,

Visual Camera (RGB), and Thermal Camera, and RADAR sensor the performance of each

system is shown on Figure 6a. The Web-graph on Figure 6b shows the combined performance of

the four sensors and shows how they complement each other.

Figure 6 - (a) Performance of various sensors, (b) Sensors combined performance

1 H.Williams and S.Simske, “Object Tracking Continuity through Track and Trace Method,” IS&T, 2020

47

System Overview

The proposed system will span across three phases as listed below; however, this

dissertation will mainly cover the first two phases of the design.

● Phase-1: A single static camera that observes the seen,

● Phase-2: Multi static cameras that slightly overlap their fields of view,

● Phase-3: A Moving camera, where the system controls the 6 degrees of freedom of the

camera source assuming it is fixed on a rigid body as shown on Figure 7 below.

Figure 7 - Three Design Phases

The modules are divided as the tasks mentioned above to facilitate the enhancement of

any of the subsystems independently.

● The image sensing requirements dictates the camera technology to be used. The camera

technology is not limited to only the resolution and the field of view of the camera but

also the frequency range for example the frequency requirements could be outside of the

visual range such as in the microwave and infrared range in the military application and

in the x-rays or higher in the medical application.

● The image enhancement also referred to as the image processing module is responsible

for noise removal, sharpening, deblurring, and normalizing the image.

48

● The background extraction can be achieved with background subtraction; however, a

more elaborate subsystem needs to be in place to account for the dynamic scene changes

for instance, changing in illumination, shadow casting. In static the cameras, the system

shall account for subtle changes as part of the background such as flying flag or tree

branches moving; however, moving camera, on design phase-3 the system shall account

for moving background.

● The object classifier is responsible to detect and recognize the object of interest with a

machine learning algorithm. These algorithms can be chosen from many different

algorithms such as Convolutional Neural Networks (CNN), Support Vector Machines

(SVM), or statistical based models such as the likelihood ratio.

● The tracking subsystem is responsible for predicting the next location of the Object Of

Interest (OOI) based on the previous trajectory. Part of the tracking subsystem is

gathering enough data from the camera mesh system to simultaneously localize and map

using a SLAM (Simultaneous Localization and Mapping) system. This will enable the

devices to properly route track the OOI over the geographical maps which in return will

enhance the overall route prediction. The drones SLAM function will also enhance the

photogrammetric quality of the reconstructed 3D scene.

● The feedback analyzer assigns the figure of merit to the system.

● The camera controller decides which camera to turn on to keep OOI in view for phase-2

and controls the vehicle in phase-3.

● Lastly, the camera-correlator performs the affine transformation between the various

cameras field of view in Phase-2.

49

Figure 8 shows the system overview of system for Phase-1 which is discussed in this paper.

To better control the scenario / testing the scene was synthesized. This paper discusses the

related work, the theory of each subsystem, then follows with the results.

Figure 8 - System Block Diagram

Image Processor Subsystem

The input to the image/video processing subsystem is a video steam. The input is

separated into image frames, where each frame is normalized, histogram equalized, deblurred

and sharpened. Then each frame is assigned to a red, green and blue channel as well as the hue,

saturation and intensity channels. This allows for a custom usage of each channel in the detection

and the tracking subsystem. Thus, the output of this subsystem is the processed RGB and HSI

50

subframes channels as well as an image enhanced grayscale. Figure 9 shows the block diagram

of the image processor subsystem.

Figure 9 - Image Processor Subsystem Block Diagram

Background Subtraction Subsystem

The Background Subtraction2 subsystem takes the output of the prior subsystem which

consists of the RGB and the HSI subframes and performs edge detection, and mathematical

morphology functions and thresholding also known as opening, closing, erosion and dilation on

each subframe to extract the object in the scene. This subsystem also performs segmentation

such as watershed function to separate multiple overlapping objects. The result is then subtracted

from the base image to extract the moving objects from the fixed ones. At a later stage, another

function will be added to remove subtle movements that are based on repetitive temporal-spatial

characteristics such as flying flag, or tree branches moving to better perform in the outdoor

2 L. Maddalena and A. Petrosino, "A Self-Organizing Approach to Background Subtraction for Visual Surveillance

Applications," IEEE, vol. 1057, no. 7149, pp. 1169-1177, 2008.

51

environment. Figure 10 below shows the output of this subsystem which is a frame that consists

of only the moving objects.

Figure 10 - Background Subtraction Block Diagram

Detection Subsystem

The input to the detection subsystem is the output of the image processor subsystem

which consists of the RGB and the HSI subframes. This subsystem is responsible to locate the

Object Of Interest (OOI) in the scene. Later, this block utilizes a variety of custom pre-trained

learning algorithms that the user can select; however, up to this point a Convolutional Neural

Network (CNN) was developed and is presented in this paper. This subsystem outputs the

centroid of the OOI. The centroid is calculated based on the binary image of the OOI shape; thus,

it is morphology-based calculation of the centroid. This subsystem only executes at the

beginning when the system gets powered up and locates the OOI or when an interrupt occurs.

The interrupt occurs if the object tracking subsystem fails to locate the OOI due to obfuscation of

the OOI in the scene. Figure 11 below shows the block diagram of the detection subsystem.

52

Figure 11 - Detection Subsystem Block Diagram

Object Tracking Subsystem

The input of the object tracking subsystem consists of the OOI centroid that was

previously calculated by the detection module, the OOI valid bit, and the grayscale image output

from the background subtraction module. The subsystem consists of multiple tracking algorithm

that are native to openCV. Some of these algorithms are Boosting, Multiple Instance Learning

(MIL), Kernelized Correlation Filter (KCF), Tracking and Learning Detection (TLD), CNN

tracker (GOTURN), Minimum Output Sum of Squared Error (MOSSE)3 and Discriminative

Correlation Filter also known as DCF-CSR. All these algorithms and their performance will be

compared and contrasted in a later paper. A compressed version of the OOI will be used to

expedite the process. In this paper, this subsystem is not developed yet. The output of this

subsystem consists of the binary centroid of the OOI and a validity bit that indicates that the

object has been found by one of the algorithms stated above. The main difference of this module

3 D. Bolme, R. Beveridge, et al. “Visual object tracking using adaptive correlation filters” IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp. 2544-2550, 2010.

53

and the detection module is that this module is dependent on a temporal knowledge based on the

multiple frames; thus, it performs faster than the detection module. Figure 12 below shows the

block diagram of this subsystem.

Figure 12 - Object Tracking Block Diagram

Trajectory Predictor Subsystem

The inputs to this module are the centroid of the OOI, the validity bit, and a user defined

number that dictates the amount of time to extrapolate the trajectory path. This subsystem stores

the discrete centroid location of all open hypotheses then performs a cubic spline interpolation to

extrapolate the prediction to the amount of time requested by the user. This interpolation curve

describes the characteristics and the behavior of the OOI which assist in building a model for the

OOI. Figure 13 shows the block diagram of the trajectory predictor subsystem.

54

Figure 13 - Trajectory Predictor Block Diagram

Feedback Analyzer Subsystem

The input to this subsystem is the coordinates of centroid and the predicted trajectory

calculated from the trajectory predictor module. In this subsystem, the accuracy of the overall

system gets accessed by comparing the trajectory to the detected module, then a figure of merit

gets assigned to each coordinate as Figure 14 shows below in the block diagram.

Figure 14 - Feedback Analyzer Block Diagram

55

CHAPTER 3 – OBJECT RECOGNITION USING DEEP NEURAL NETWORK

Introduction

Proper object recognition and classification is an essential task in object tracking.

Traditionally, object recognition has been performed using three specific stages: The first is

object localization which is done by a sliding multiscale window. Understandably, this is a

computationally challenging task. The second stage is to perform feature extraction using Scale-

Invariant Feature Transformation (SIFT), the Histogram of Oriented Gradients (HOG), a Hough

Transformation or other digital signal/image processing techniques which mainly compares the

most remarkable features to features in a known database from the supervised learning phase.

Lighting, orientation and partial obfuscation pose challenges to these techniques. The last stage

is to utilize Support Vector Machines (SVM) to make the representation more hierarchical and

semantically descriptive. These traditional techniques are very successful in simplistic scenes;

however, in more complex scenes – with lighting, shading, partial obfuscation, and orientation

challenges – these techniques face multiple drawbacks. For this reason, more modern techniques

have emerged. Convolutional Neural Network (CNN) is one of the modern techniques that

showed remarkable results in the last decade. Some of the CNN algorithms combine the main

three stages discussed above: localization, feature extraction and the classification within the

algorithm itself such as RCNN. Other CNN algorithms combine only the latter two.

The Convolutional Neural Network is composed of the following functions and

subfunctions as Figure 15 shows below: 4

4
 https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53

56

● Feature Learning Section

o Convolutional layers

o Pooling layers

● Classification Section

o Flatten Layer

o Fully Connected Layer

o SoftMax Layer

Figure 15 - Convolutional Neural Network

The Feature Learning Section is composed of a series of Convolution and Pooling

Layers. The Convolution Layer is responsible for extracting the high-level features in the image

such as the objects and shapes; this level of extraction is not normally done in one convolutional

step; thus, an effective CNN is composed of multiple convolutional layers. The first layers are

responsible for low-level features such as dots, lines, edges, color, orientation, then the more

layers added, the CNN captures and extracts a more refined set of features referred to as high

level features. The second main operation in the feature extraction is called the pooling layer.

The pooling layer is responsible for reducing the spatial size of the features. This is mainly to

reduce the computation complexity and extracts only the more dominant features through

57

dimensionality reduction techniques. In other words, pooling is responsible for noise

suppression.

The Classification section is composed of a flattened layer, fully connected layer and a

SoftMax layer. The flattened layer and the fully connected layer create a non-linear combination

of the high-level features extracted by the prior section. Lastly, an activation function such as

SoftMax is used as a logistic function to normalize the output of the network to a probability

distribution over the various classes.

This chapter shows various CNN architectures and compares their performance; it also

shows a technique in combining these architectures as an architectural collaborative approach to

enhance the results. The dataset that is used to perform this benchmark is the Stanford Cars

dataset, which is discussed in detail in the next section.

Stanford Cars Dataset

The Stanford Cars dataset is available to be used for research purposes only, similar to

the ImageNet license. It comprises 16,185 images of 196 classes of cars as shown on Figure 16

below.

Figure 16 - Stanford Cars Dataset Images

58

These images are taken in various lighting conditions, backgrounds, size, orientation and

even motion blur, all these conditions create a great representation when trying to resolve

recognition in real world applications. Examples of these conditions are shown on Figure 17.5

Figure 17 - Example of Image Conditions

The dataset is composed of the aforementioned images, and development kit which contains

a table with the following fields:

● File name,

● Corresponding class label

● Bounding box for the car in the image.

● Training/Testing label suggestion field.

Approach

Image Processing and Enhancement for Training

To prepare the image for the CNN training, each of the images was cropped according to

the bounding box as specified in the dataset development kit. This allows the training algorithm

to properly learn the object of interest features of each class without contaminating the features

5
 http://ai.stanford.edu/~jkrause/cars/car_dataset.html

59

with objects in the background or the surrounding including features of other cars in the

background.

Since the learning used in this approach was the transfer learning methodology, the size

of the images had to follow the image size previously specified by the algorithm. Thus, the next

step in the preparation is to change the size of each image according to the algorithm as

described by Table 14.

Table 14 - Algorithm Image Sizes

Algorithm Image Length Image Width # of Channels

VGG16 224 224 3

VGG19 224 224 3

DenseNet201 224 224 3

NASNetLarge 331 331 3

InceptionV3 299 299 3

Xception 299 299 3

InceptionResNetV2 299 299 3

MobileNetV2 224 224 3

ResNet50V2 224 224 3

ResNet152V2 224 224 3

ResNeXt50 224 224 3

The size adjustment also created an effective data augmentation since the features of each

class was changed due to the compression or expansion of the shape differently and dictated by

the pose of the object in the image.

The last step in the image preparation was to change the dynamic range of the images and

perform histogram equalization. Lastly, all the images were normalized.

The data was assigned to a training (80%) and a testing (20%) set. From the 20% of the

testing set, 15% was used for validation and the 5% was used for final testing.

60

Data Augmentation

Due to the fact that the training data is small for some of the non-robust algorithms, data

augmentation was necessary to accomplish an effective training. Thus, the following data

augmentation were performed to increase the data size:

● Random Crop (between 10% to 15%) from either direction randomly

● Horizontal Flip

● Vertical Flip

● Rotation (between -15 degrees to 15 degrees)

● Shear Distortion (between -10% to 10%)

● Change the Hue and Saturation of the images (between -20% to 20%)

● Apply Gaussian Blur (between 0 to 1.5)

● Apply Sharpening (between 0.7 to 1.3)

● Apply Embossing (between 0 to 1.5)

Learning Algorithm Architecture

 Initially, the architecture of the Convolutional Neural Network was constructed without

any prior knowledge of the images or classification using a blank VGG16 sequential model. The

result was understandably unsuccessful, the optimum accuracy achieved was less than 1%. Thus,

I resorted to the transfer learning methodology.

 Transfer learning is a machine learning technique where the model that was developed

for a specific task is partially reused for another task. In other words, the transfer learning

methodology allows to take features learned on one problem and leveraging for a similar

problem. This is normally done by freezing the top layers of the model and training only the last

layers of the model. In the next sections all the architectures discussed below used transferred

61

learning with the initial weights of the training performed on the imageNet dataset. Lastly, the

last dense layers were unfrozen to allow the model to be trained on the distinct features of the

196 classes of cars. This methodology achieved much higher accuracy, as shown by each

architecture below.

Another methodology employed in our application which contributed to the faster

learning was the cyclical learning rates for training neural networks6. In traditional learning rate,

it is not a trivial task to choose the optimal initial learning rate; also, it is difficult to

monotonically change the rate because it may plateau (asymptote at a non-global optimum) or

jump over the minima. Thus, the cyclical learning rate was developed by Leslie Smith in 2017 to

address these shortcomings. As discussed in Smith’s paper, the most important hyper-parameter

to tune for training neural networks is the learning rate. In the referenced paper, a new method

named cyclical learning was developed to find the best values and schedule for the global

learning rates by cyclically varying the rate between two reasonable rates; namely, the base

learning rate and the maximum learning rate. Initially the learning rate is very small, over time,

the learning rate increases until it reaches the maximum learning rate (Step Size). It then cycles

back down to the minimum value again and continues cycling throughout the training as shown

on Figure 18. Another variation of this method is to decrease the Maximum Rate either linearly

or logarithmically which allows the algorithm to reach lower loss areas.

6
 L. Smith, “Cyclical Learning Rates for Training Neural Networks” IEEE Winter Conference on Application of

Computer Vision (WACV), 2017 pp.464-472

62

Figure 18 - Cyclical Learning Rate (a) Fixed Rate, (b) Linearly Decaying Rate, (c)Log Decaying Rate

The cyclical learning rate method promised to achieve a higher accuracy in just a few

epochs. The result of this learning rate is clear in each of the accuracy graphs discussed in the

next sections. Each architecture model achieved at least 80-90% accuracy within the first 4 to 6

epochs.

 Our learning algorithm was developed in python with the configuration and package

versions listed in appendix 1. The learning algorithm has the following parameters: for the

cyclical rate, the base learning rate was set to 1e-7 and the maximum rate was set to 2e-4 the step

size was set to be 4 times the training size / batch size. The learning rate was set to be

logarithmically decaying. All the algorithms below used the transfer learning CNN with the

initial weights of the imageNet. Lastly, the top layers were frozen from the training; thus, only

the later dense layers were unfrozen for the training. The next section discusses each of the

architectures used and the results that were achieved. The last section discusses a collaborative

63

technique that was developed to reduce the error even further. To check the learning and the

progress of the training, the images were divided into 5 folds, where each fold contains different

images from the dataset. This enabled a proper average of the accuracy across the various

architectures.

VGG16 Convolutional Neural Network

VGG16 Architecture

The VGG16 is a convolutional neural network model that was proposed by the Visual

Geometry Group (VGG) at Oxford University by Simonyan and Zisserman in 2015 in the paper

“Very Deep Convolutional Network for Large-Scale Image Recognition”7 when it was one of

the first networks that achieved remarkable results for the ImageNet dataset (which is composed

of roughly 14 million images from 1000 classes). The main premise of the VGG architectures is

that the convolutional layer kernel is fixed at a 3x3 size, and more depth is added to the network

to accomplish the learning needed. For this reason, this group created several VGG architectures

starting with VGG11 to VGG19 as Table 15 shows below.

7
 K. Simonya, A Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition” ICLR, 2015.

64

Table 15 - VGG Convolutional Network Configuration

 The VGG16 architecture is composed of 41 layers “L” and 40 “L-1” connection this is

because the VGG16 network is a sequential network. The input layer is fixed size of 224 x 224 x

3 as Table 14 showed previously. The image is passed through a stack of the convolutional

layers separated pooling layers as Figure 19 shows. More precisely, the input layer is followed

by two sets of double convolutional layers then a pooling layer, then three sets of 3 convolutional

layers then a pooling layer, then followed by 3 single fully connected layers and subsequently a

dropout layer. The first fully connected layers were of size 4096 and the later one was 1000.

65

Figure 19 - VGG16 Architecture

In our application, the fully connected layers were the only ones that were not frozen. At

first the same architecture discussed above was used, then the fully connected layers size and

quantity were increased and decreased to test the performance. The next section discusses the

best results achieved with five fully connected layers where the first one size was set to 4096; the

second layer size was set to 2048; the third layer was set to 1024; the fourth layer was set to 512;

and the last layer was set to 196 to match our class size.

66

VGG16 Results

 Despite the fact that VGG16 achieved remarkable results on the ImageNet Dataset, as

well as it had significant performance on Benavides and Tae paper8, this architecture performed

very poorly on the cars dataset (as Figure 20 shows below) and I was not able to replicate the

results in the paper referenced above. The highest accuracy achieved on the validation was

1.044% and the log loss never fell below 5.2.

Figure 20 - (a) VGG16 Accuracy, (b) VGG16 Loss

 The results were likely poor because all the car features were very similar. The results

improved only when the class size was reduced from 196 classes to 3 classes, the largest number

of classes for which accuracy exceeded 80%. For this reason, this architecture cannot be used for

the application proposed in this paper.

8 N. Benavides, C. Tae, “Fine-Grained Image Classification for Vehicle Makes and Models using Convolutional

Neural Networks” CS230 Stanford

67

VGG19 Convolutional Neural Network

VGG19 Architecture

 The VGG19 is another convolutional neural network model that was also proposed by the

Visual Geometry Group (VGG) at Oxford University. The main difference between VGG16 and

VGG19 is the number of the convolutional layers as Figure 21 shows.

Figure 21 - VGG19 Architecture

The VGG19 architecture comprises 47 layers “L” and 48 “L-1” connections. This is

because the VGG19 network is a sequential network, just like the VGG16 described in the prior

section. The input layer is fixed size of 224 x 224 x 3 as Table 14 showed previously. The image

is passed through a stack of the convolutional layers separated pooling layers as Figure 21

68

shows. More precisely, the input layer is followed by two sets of 2 convolutional layers then a

pooling layer, then three sets of 4 convolutional layers then a pooling layer, then followed by 3

single fully connected layers followed by a dropout layer. The first fully connected layers were

of size 4096 and the later one was 1000.

In our application, the fully connected layers were the only ones that were not frozen. At

first the same architecture discussed above was used, then the fully connected layers size and

quantity were increased and decreased to test the performance (a form of sensitivity analysis),

similar to the VGG16 experiment discussed above. The next section discusses the best results

achieved with five fully connected layers where the first one size was set to 4096, then the

second layer size was set to 2048, the third layer to 1024, the fourth layer to 512, and the last

layer to 196 to match our class size.

VGG19 Results

Again, even though VGG19 achieved remarkable results on the ImageNet Dataset, and

most of the high-level and low-level features were transferred to our application using the

transfer learning techniques, this architecture performed very poorly on the cars dataset (as

Figure 22 shows below). The highest accuracy achieved on the validation was 1.105% and the

log loss never fell below 5.2 as well.

The results were poor, in all likelihood, because all the car features were very similar.

The results improved only when the class size was reduced from 196 classes to 5 classes, the

largest number of classes for which accuracy exceeded 80%. For this reason, this architecture

cannot be used for the application proposed in this paper.

69

Figure 22 - (a) VGG19 Accuracy, (b)VGG19 Loss

DenseNet201 Convolutional Neural Network

DenseNet201 Architecture

The DenseNet201 is a convolutional neural network model that was proposed by Huang,

Liu and other authors in 2017 in the paper “Densely Connected Convolutional Networks”9 It is a

substantially denser network than all predecessor architectures discussed in the previous sections.

It achieved remarkable results in the CIFAR-10, CIFAR-100, SVHN and ImageNet datasets. The

DenseNet201 Architecture is shown in Figure 23.

9
 G.Huang, Z.Liu, et. al, “Densely Connected Convolutional Networks” Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition (CVPR) 2017 pp. 4700-4708.

70

Figure 23 - DenseNet201 Architecture

The DenseNet201 architecture is composed of 708 layers “L” and 805 connections. The

main difference from the previously discussed architectures is that it is composed of several

71

dense convolutional blocks with “l” layers where these layers are connected to every other layer

on that convolutional block with “l(l+1)/2” connections. This allows the feature maps of each

layer to be passed to the subsequent layers as inputs. It is often a concern that DenseNets are

costly and grow out of proportions; however, this is resolved by inserting a transitional block

between every dense layer. The transitional block is composed of a 1x1 convolutional layer

followed by a pooling layer. The input layer is fixed size of 224 x 224 x 3 as Table 14 showed.

The input layer is followed by five dense blocks, with each one increasing in size: it starts with 1,

followed by 6, followed by 12, followed by 48, and lastly followed by 6 convolutional blocks in

each of the dense blocks, respectfully. The paper discusses several advantages to the

DenseNet201 architecture: The network alleviates the vanishing-gradient, strengthens feature

propagation, promotes feature reuse, and substantially reduces the number of parameters needed

to perform the learning.

DenseNet201 Results

 DenseNet201 has shown a significant improvement from the previously mentioned

architectures. As Figure 24 shows, it consistently achieved 90% or above accuracy, with the

highest being 92.33% on the validation accuracy. The loss dropped to 0.37 without any data

augmentation.

72

Figure 24 - (a) DenseNet201 Accuracy, (b) DenseNet201 Loss

NASNetLarge Convolutional Neural Network

NASNetLarge Architecture

The NASNetLarge is a convolutional neural network model that was proposed by Zoph,

Vasudevan and other authors in 2018 in the paper “Learning Transferable Architectures for

Scalable Image Recognition”10 It is a substantially denser network than all predecessor

architectures discussed above. The NASNetLarge is based on a Neural Architecture Search

(NAS) framework which means it uses reinforcement learning to optimize the network

configuration autonomously. The NASNetLarge is composed of 1243 layers with 1462

transitions. These layers are composed of Normal Cells and Reduction Cells as the architecture is

10

 B. Zoph, V. Vasudevan et. al, “Learning Transferable Architectures for Scalable Image Recognition” Proceedings

of the IEEE conference on Computer Vision and Pattern Recognition (CVPR) 2018 pp. 8697-8710.

73

modeled on Figure 25. The Normal Cells return a feature map with the same dimensions as the

input and the Reduction Cells returns a feature map reduced by half.

Figure 25 - NASNetLarge Architecture

Applying the NAS framework to a large dataset can be computationally expensive; thus,

Zolph’s paper proposes a method to search for a good architecture on a smaller dataset and then

transfer the search space to a larger space with more cells with identical structure. The main

premise of the NAS architecture is best described by Figure 26. A Controller Recursive Neural

Network (RNN) predicts architecture “A” from a search space with probability “p.” A child

74

network with architecture “A” is trained to converge, achieving accuracy “R”. Then the gradients

of “p” are scaled by “R” to update the RNN controller.

Figure 26 - Overview of Neural Architecture Search

The scalable architecture concept is shown in Figure 27, where the diagram highlights on

the left the model architecture using a smaller dataset such as CIFAR-10, then scaled on the right

diagram to match the needs of a larger dataset such as ImageNet. The choice for the number of

Normal Cells stacked in between the reduction cells can be experimentally/empirically changed.

Figure 27 - Scalable Base Blocks

75

Each of the cells are constructed recursively in block stages. Each block consists of the

controller selecting a pair of hidden layers and randomly chooses an operation described by

Figure 28(b); it then randomly chooses a combination operation. The combination operations

consist of either adding or concatenating the result. The resultant hidden layer is passed to the

following block to be added as a choice as shown on Figure 28(a).

Figure 28 - (a) NASNet Search Space, (b) Convolutional Cell Choices of Operation

Lastly, the previously mentioned procedure is repeated until an optimum cell structure is

constructed for each of the two cell types. In our application, we utilized the same structure as

ImageNet which is much larger than the Stanford car dataset and adapted through transfer

learning for our application. For this reason, it achieved an effective result which will be

discussed in the next section.

NASNetLarge Results

NASNetLarge has taken much longer to train; however, it showed a slight improvement

from the previously mentioned architectures. Figure 29 shows it consistently achieved accuracies

above 92%, with the highest being 92.41% on the validation accuracy. The loss dropped to 0.36

without any data augmentation.

76

Figure 29 - (a) NASNetLarge Accuracy, (b) NASNetLarge Loss

InceptionV3 Convolutional Neural Network

InceptionV3 Architecture

The InceptionV3 is a convolutional neural network model that was proposed by Szegedy,

Vanhouche and other authors in 2016 in the paper “Rethinking the Inception Architecture for

Computer Vision”.11 InceptionV3 is based on the Inception framework and GoogLeNet; The

network that is trained on ImageNet is composed of 315 layers and 349 connections (as Figure

30 shows below).

11

 C. Szegedy, V. Vanhouche et. al, “Rethinking the Inception Architecture for Computer Vision” Proceedings of

the IEEE conference on Computer Vision and Pattern Recognition (CVPR) 2016 pp. 2818-2826.

77

Figure 30 - InceptionV3 Architecture

The main principle of the Inception architecture is based on the Hebbian Principle which

states: neurons that fire together, wire together. For this reason, to cover the various clusters in a

given image, it was thought to concatenate a 1x1 convolutional layer with 3x3 convolutional

layer and 5x5 convolutional layer to form the first Naïve Inception module (as shown Figure

31(a)). This approach posed a computational problem due to the channel dimensionality

78

increasing drastically. Therefore, the Inception architecture changed the Naïve based inception

by inserting a dimensionality reduced set of convolutional layers to the stack as shown in Figure

31(b) below.

Figure 31 - (a) Naive Inception Module, (b) Inception Module

 The InceptionV3 is based on the Inception module described above; however, Szegedy’s

paper proposed to change the 5x5 convolutional filter with a stack of 3x3 convolutional filters to

reduce the computational cost. This contributes to faster learning, since the stack of 3x3

convolutional filters has the same receptive fields as the 5x5 convolutional filter but requires less

computation. Similarly, any higher dimensionality convolutional filter can be replaced with a

concatenation of 1xn and nx1 convolutional filters. Figure 32 shows the convolutional layer filter

transformation.

Figure 32 - (a) Inception Module, (b) InceptionV3 Module, (c) InceptionV3 Module with expanded filter bank

79

InceptionV3 Results

InceptionV3 has converged faster than any of the architectures mentioned above. Figure

33 shows that it consistently achieved accuracies above 90%, with the highest accuracy of

91.01% being observed for the validation accuracy. The optimum loss achieved was 0.377

without any data augmentation.

Figure 33 - (a) InceptionV3 Accuracy, (b) InceptionV3 Loss

80

Xception Convolutional Neural Network

Xception Architecture

 The Xception is a convolutional neural network model that was proposed by Chollet, in

2016 in the paper “Deep Learning with Depthwise Separable Convolutions”.12 The Xception

name comes from Extreme Inception since the architectural core block is based on the Inception

block discussed in the previous section. The network that is trained on ImageNet is composed of

170 layers and 181 connections (as Figure 34 shows below).

Figure 34 - Xception Architecture

12

F. Chollet, “Deep Learning with Depthwise Separable Convolutions” Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition (CVPR) 2017 pp. 1251-1258.

81

 The main premise of Xception is to simplify the architecture of the InceptionV3

architecture; in essence, instead of performing a combination of 3x3 filters and 1x1 filters and

pooling with various stacks, the paper proposes an architecture to use 3x3 filters and 1x1 (as

Figure 35 shows below).

Figure 35 - (a) Inception Module, (b) Simplified Inception Module

 The next concept that the paper discusses is to perform group convolution on the

simplified inception; in other words, after performing a 1x1 convolution a group of channels is

selected, and a 3x3 convolution is performed on this group of channels. This idea can be more

generalized; rather than using a group of channels, the convolution can be performed on a single

channel (as Figure 36 shows below). This concept of separating the channels and performing the

3x3 convolution on each single channel is the main feature of the Xception architecture; this is

often referred to as depthwise separable convolution.

Figure 36 - (a) Reformulated Simplified Inception Module, (b) Xception Module

82

 Figure 34 shows that the architecture is not composed of the same building block

discussed above. This is because the architecture is mainly composed of three main flows as

Figure 37 shows: Entry Flow, Middle Flow and Exit Flow. The Entry and Exit flows are

responsible for changing the dimensionality of the data by performing the stride operation,

whereas the middle flow is only composed of the separable convolution repeated 8 times.

Figure 37 - Xception Architecture Flow

Xception Results

Xception has performed one of the top three architectures that this project implemented.

Figure 38 shows that it consistently achieved accuracy above 90%, with the highest being

91.53% on the validation accuracy. The optimum loss achieved was 0.40 without any data

augmentation.

83

Figure 38 - (a) Xception Accuracy, (b) Xception Loss

InceptionResNetV2 Convolutional Neural Network

InceptionResNetV2 Architecture

The InceptionRestNet architecture is a convolutional neural network model that was

proposed by Szegedy, Iofee, and other authors in 2017 in the paper “Inception-v4, Inception-

ResNet and the Impact of Residual Connections on Learning”.13 The InceptionResNet is based

on the Inception model in conjunction with the Residual Network (ResNet) architecture. The

13

C. Szegedy, S. Ioffe, et al., “Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning” Thirty-First AAAI Conference on Artificial Intelligence.

84

network that is trained on ImageNet is composed of 824 layers and 921 connections (as Figure

39 shows below).

Figure 39 - InceptionResNetV2 Architecture

85

 The macro structure of this algorithm is composed of the input layer, which takes an

input of 299x299x3 (as described in Table 14) followed by a stem layer; then a series of

inception cells and reduction cells; then, lastly, a layer of average pooling and a softmax. Figure

40 shows the macro structure of the InceptionResNetV2 architecture and the details of every

block discussed above.

Figure 40 - InceptionResNetV2 Structure

InceptionResNetV2 Results

InceptionResNetV2 has consistently achieved accuracies above 85%, with the highest

being 89.44% on the validation accuracy. The optimum loss achieved was 0.41 (as Figure 41

shows). Despite the fact that it didn’t perform as well as the previously mentioned architectures,

it performed overall rather well without any data augmentation.

86

Figure 41 - (a) InceptionResNetV2 Accuracy, (b) InceptionResNetV2 Loss

MobileNetV2 Convolutional Neural Network

MobileNetV2 Architecture

 The MobileNetV2 architecture is a convolutional neural network model that was

proposed by Sandler, Howard, and other authors in 2018 in the paper “MobileNetV2: Inverted

Residuals and Linear Bottlenecks”.14 MobileNet architectures target resource constrained

environments; for this reason, the size of these networks is relatively small in comparison with

14

M.Sandler, A.Howard, et al., “MobileNetV2: Inverted Residuals and Linear Bottlenecks” Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition (CVPR) 2018 pp. 4510-4520.

87

the previously discussed architectures. The network that is trained on ImageNet is composed of

154 layers and 163 connections as Figure 42 shows below.

Figure 42 - MobilenetV2 Architecture

88

Before discussing the MobileNetV2 architecture, it is worth mentioning the evolution of

the separable convolutional blocks. Figure 43(a) shows the regular convolution, whereas Figure

43(b) shows the separable convolutional block. The light color block indicates that it is on the

next layer. Figure 43(c) shows the concept of the separable block with a linear bottleneck,

whereas Figure 43(d) shows the separable block with an expanded layer bottleneck. The smaller

hashed blocks indicate layers that do not contain non-linearities. The ReLu6 is a ReLu activation

function that is fully saturated at value 6 rather than continuously increasing as the regular ReLu

activation function does.

Figure 43 - (a)-(d) Evolution of Separable Convolution Blocks

MobileNetV2 architecture is based on the MobileNet framework with an added layer that

implements an inverted residual with linear bottleneck. This module takes a low-dimensionality

compressed representation input, then expands it to a higher dimensionality before filtering with

a lightweight depthwise convolution. Then transforms it to a low dimensionality output with a

linear convolution as Figure 44 shows.

Figure 44 - (a) Residual Connection Block, (b) Inverted Residual Connection Block

89

MobileNetV2 Results

MobileNetV2 has consistently achieved accuracies above 85%, with the highest being

89.25% on the validation accuracy. The optimum loss achieved was 0.6 (as Figure 45 shows).

Despite the fact that it didn’t perform as well as the previously mentioned architectures, it still

provided high accuracy without any data augmentation while being the smallest and fastest

network than any of the architectures implemented on this project.

Figure 45 - (a) MobileNetV2 Accuracy, (b) MobileNetV2 Loss

90

ResNet50V2 Convolutional Neural Network

ResNet50V2 Architecture

 The ResNet architecture is a convolutional neural network model that was proposed by

He, Zhang, and other authors in 2016 in the paper “Deep Residual Learning for Image

Recognition”.15 The ResNets paper is one of the most cited papers in the image recognition

field; it has been cited over 105,000 times to date, largely because it introduced the concept of

residual connections which resolved an anomaly with deep networks. ResNet50V2 is based on

the ResNet architecture with 50 parametrized layers of depth. The ResNet50V2 network that is

trained on ImageNet is composed of 177 layers and 192 connections (as Figure 46 shows below).

 To appreciate the premise of ResNet and the solution that the paper by He et al. proposed,

it is best to visualize the problem that was posed by deep networks as it is a crucial building

block to solve more complex learning problems. It is widely believed that the deeper the network

gets, the better accuracy it achieves. This is intuitive: the more capacity a network has, the more

receptive fields it consumes for better learning. Counterintuitively, the exact opposite was

discovered here. When a given 56-layer deep plain network was trained on the CIFAR-10

dataset, it consistently performed more poorly than a 20-layer deep plain network (as Figure 47

shows below). Similar results were observed when a deep network was trained on ImageNet

dataset.

15

K. He, X. Zhang, et al., “Deep Residual Learning for Image Recognition” Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition (CVPR) 2016 pp. 770-778.

91

Figure 46 - ResNet50 Architecture

92

Figure 47 - (a) Deep Plain Network Training Error, (b) Deep Plain Network Test Error

 The degradation is not caused by overfitting; instead, it is mainly due to the difficulty of

readily optimizing all of the systems in the network. For this reason, the paper introduced the

concept of residual connections as shown in Figure 48 below. In essence, it is a self-pruning or

self-organizing network. If a convolutional layer is not needed, the network will choose the

identity path to overpass the “unnecessary” layers.

Figure 48 - ResNet Building Block

The output function 𝑦𝑦 = 𝐹𝐹(𝑥𝑥) + 𝑥𝑥 can be written with the following equations. The first

equation can be used when the convolutional layer mapping has the same number of parameters,

depth, width and computations; however, the second equation can be used if the mapping doesn’t

have the same dimension (as Figure 49 shows below. All the dashed residual connections are not

the same dimensions; thus, the second equation will be used.

𝑦𝑦 = 𝐹𝐹(𝑥𝑥, {𝑊𝑊𝑖𝑖}) + 𝑥𝑥 𝑦𝑦 = 𝐹𝐹(𝑥𝑥, {𝑊𝑊𝑖𝑖}) + 𝑊𝑊𝑠𝑠𝑥𝑥

93

Figure 49 - Network Architectures Comparison Between Plain Networks and ResNet

 Another important concept was introduced in He’s paper for ResNet50, ResNet101 and

ResNet152: the concept of bottleneck. Figure 50 shows the difference between the ResNet

building block mentioned above and the bottleneck. As the size of the convolutional layer

becomes larger, it becomes costlier. Therefore, changing the dimensions to a smaller size by

performing a 1x1 filter, then performing the 3x3 followed by a reprojection to the larger space,

performs much faster.

Figure 50 - (a) ResNet Building Block, (b) Bottleneck Building Block

ResNet50V2 Results

ResNet50V2 has consistently achieved accuracies above 88%, with the highest accuracy

being 91.19% on the validation accuracy. The optimum loss achieved was 0.50 (as Figure 51

shows). It performed well without any data augmentation and outperformed several of the

networks discussed above by implementing the residual connection concept.

94

Figure 51 - (a) ResNet50V2 Accuracy, (b) ResNet50V2 Loss

ResNet152V2 Convolutional Neural Network

ResNet152V2 Architecture

 ResNet152V2 is a convolutional neural network that was introduced by the same paper

discussed in the ResNet50V2 section above. It is using the same concept discussed above;

however, it is composed of 152 parameterized layers (where the 152 in the name comes from).

Table 16 shows the architectural differences between the various ResNet Architectures.

95

Table 16 - ResNet Various Layer Architectures

 The paper showed the performance of the 18-layer and 34-layer deep network of plain

networks and ResNet networks on the imageNet dataset. The ResNet showed improvement over

the deep network anomaly discussed in the previous section, and also showed that a deeper

ResNet network can improve the error rate (as Figure 52 shows). For this reason, the ResNet152

was tested in the application presented in this paper.

Figure 52 - (a) Performance of Plain Deep Network on ImageNet, (b) Performance of ResNet Network on ImageNet

ResNet152V2 Results

 ResNet152V2 has consistently achieved accuracies above 89%, with the highest being

90.79% on the validation accuracy. The optimum loss achieved was 0.40 (as Figure 53 shows). It

slightly outperformed ResNet152V2 as expected.

96

Figure 53 - (a) ResNet152V2 Accuracy, (b) ResNet152V2 Loss

ResNeXt50 Convolutional Neural Network

ResNeXt50 Architecture

The ResNet architecture is a convolutional neural network model that was proposed by

Xie, Girshick, and other authors in 2017 in the paper “Aggregated Residual Transformation for

Deep Neural Networks”.16

The main premise of the paper is to introduce the concept of group operation to the

ResNet architecture discussed in the prior sections. Starting with the ResNet bottleneck block, it

16

S. Xie, R. Girshick, et al., “Aggregated Residual Transformation for Deep Neural Networks” Proceedings of the

IEEE conference on Computer Vision and Pattern Recognition (CVPR) 2017 pp. 1492-1500.

97

is equivalent to architecture (a) in the equivalent dashed block on Figure 54 by dividing the (256,

1x1, 64) into smaller blocks namely 32x (256, 1x1, 4). The reason for choosing this block size

and this depth is because the two architectures thereby have the same number of parameters. This

makes it easier to compare and benchmark the architecture performance properly. Concatenating

the 2nd convolutional blocks, then projecting them on a higher space, is equivalent and

computationally cheaper to perform. For this reason, the paper introduced block (b) in the

equivalent dashed block on Figure 54. This operation by definition is called group operation

which was first introduced above by the inception architecture. Table 17 shows the architecture

differences between ResNet50 and ResNeXt50. The C stands for Cardinality which is the group

operation discussed previously.

Figure 54 - (a) ResNet Building Block, (b) ResNeXt Building Block

98

Table 17 - ResNet50 vs ResNeXt50 Architecture

 The paper showed the difference in performance between the ResNet50 and ResNeXt50

and, separately, the ResNet101 and ResNeXt101, on the ImageNet dataset (as Figure 55 shows

below).

Figure 55 - (a) ResNet50 vs ResNeXt50 Performance, (b) ResNet101 vs ResNeXt101 Performance

99

ResNeXt50 Results

 ResNeXt50 has consistently achieved accuracies above 90.5%, with the highest being

92.14% on the validation accuracy. The optimum loss achieved was 0.34 (as Figure 56 shows).

ResNext50 outperformed all the architectures implemented in this project, achieving the highest

accuracy and the lowest loss.

Figure 56 - (a) ResNeXt50 Accuracy, (b) ResNeXt50 Loss

Networks Performance Metrics and Network Comparisons

All the architectures are compared across various parameters as Table 18 and Table 19.

Figure 57 shows these comparisons visually. These parameters are:

100

● Number of parameters

● Model size expressed in megabytes

● Validation accuracy

● Training time per epoch expressed in seconds

● Number of epochs to reach convergence

● Validation accuracy per fold

● Time to validate all images

The architecture with the highest number of parameters was the NASNetLarge with almost

90M parameters, while the smallest architecture parameter was the MobileNet, with only 3M

parameters for the entire network. Another important observation is that the number of

parameters of the ResNeXt50 and ResNet50V2 is the same size as discussed in the previous

section, yet the accuracy was improved by almost 3% (as expected). The size of the network is

dependent on the number of parameters; thus, the largest architecture was the NASNetLarge with

a 349MB model. The smallest was the MobileNetV2, only 14MB in size. For this reason, the

MobileNetV2 architecture is the most efficient on devices with limited resources such as drones

and cell phones. The slowest architecture was the NASNetLarge, taking 810 seconds per epoch,

while the fastest was MobileNetV2, taking only 33 seconds per epoch. The architecture that

reached a convergent state with the least number of epochs was the NASNetLarge, followed by

ResNeXt50. The architecture that took the longest until it reached convergence was

MobileNetV2. Lastly, the best performing architecture achieving a mean accuracy of 92.5% was

the ResNeXt architecture, while the lowest performing architecture excluding the VGG16 and

VGG19 architectures was the InceptionResNetV2 architecture, achieving a mean accuracy of

89.7% accuracy. Table 20 and Table 21 show the paired T-Test between the various algorithms

101

as shown on Figure 57 last graph on the left. While some results show that is no significant

statistical difference between the algorithms, this conclusion can’t be inferred with high

confidence due to the fact that the sample size is low. The Next section will discuss an approach

to utilize a collaborative voting to enhance the accuracy of the overall system.

Figure 57 - CNN Architectures Performance Metrics

102

Table 18 - CNN Architectures Performance Metrics

ResNeXt50 DenseNet201 Xception NASNetLarge ResNet152V2 InceptionV3 ResNet50V2 MobileNetV2 InceptionResNetV2 VGG16 VGG19

Number Of

Parameters

25,347,204 20,489,988 25,257,708 89,247,510 60,630,724 24,101,860 25,863,876 3,770,628 56,111,524 15,440,900 20,750,596

Model Size

(MB)

99 80 99 349 237 94 101 14 220 60 81

Validation

Set

Accuracy

92.138% 92.327% 91.529% 91.406% 90.792% 91.099% 89.626% 89.251% 89.441% 1.044% 1.105%

Training

Time Per

Epoch (s)

234 92 160 810 130 68 51 33 170 60 70

Number of

Epochs until

Convergence

65.2 83.6 102.4 51.8 101.4 75 110.6 139.8 94.2

Table 19 - CNN Architectures Accuracy Metrics with Folds

Validation ResNeXt50 DenseNet201 Xception NASNetLarge ResNet152V2 InceptionV3 ResNet50V2 MobileNetV2 InceptionResNetV2 VGG16 VGG19

Fold-1 91.069% 91.037% 91.651% 91.590% 90.546% 90.731% 90.731% 89.626% 89.994% 0.737% 0.737%

Fold-2 92.572% 92.818% 92.388% 92.818% 91.590% 91.897% 91.958% 91.344% 86.863% 1.044% 0.859%

Fold-3 92.634% 92.449% 92.204% 91.283% 92.449% 91.406% 91.467% 90.976% 89.503% 0.921% 0.921%

Fold-4 93.002% 92.756% 92.511% 91.958% 91.651% 92.449% 91.958% 89.564% 91.344% 0.798% 0.798%

Fold-5 93.612% 92.752% 92.076% 92.445% 92.076% 91.769% 91.523% 90.541% 91.216% 0.921% 0.676%

Mean

Accuracy

92.578% 92.363% 92.166% 92.019% 91.663% 91.650% 91.528% 90.410% 89.784% 0.884% 0.798%

Time For

Val. (s)

9 4 6 24 6 3 3 1 9 3 4

103

Table 20 - Paired T-Test

Paired T-Test (2 Tails) ResNeXt50 DenseNet201 Xception NASNetLarge ResNet152V2 InceptionV3 ResNet50V2 MobileNetV2 InceptionResNetV2

ResNeXt50 T-Test 0.303167 0.292513 0.225324 0.022073 0.027041 0.024646 0.008723 0.025753

DenseNet201 T-Test 0.417191 0.316382 0.033957 0.012899 0.005253 0.004714 0.046266

Xception T-Test 0.603506 0.128822 0.030500 0.001751 0.006747 0.047974

NASNetLarge T-Test 0.445761 0.265274 0.110290 0.010737 0.078554

ResNet152V2 T-Test 0.970450 0.641427 0.015977 0.092163

InceptionV3 T-Test 0.319386 0.047587 0.086502

ResNet50V2 T-Test 0.029957 0.119922

MobileNetV2 T-Test 0.598646

104

Table 21 - Paired T-Test Interpretation

H0 There is no statistical significant difference between the various algorithms

H1 There is a statistical significant difference between the various algorithms

H0 between

ResNeXt50

and

DenseNet201

H0 between

ResNeXt50

and Xception

H0 between

ResNeXt50

and

NASNetLarge

H1 between

ResNeXt50

and

ResNet152V2

H1 between

ResNeXt50

and

InceptionV3

H1 between

ResNeXt50

and

ResNet50V2

H1 between

ResNeXt50

and

MobileNetV2

H1 between

ResNeXt50 and

InceptionResNetV2

H0 between

DenseNet201

and Xception

H0 between

DenseNet201

and

NASNetLarge

H1 between

DenseNet201

and

ResNet152V2

H1 between

DenseNet201

and

InceptionV3

H1 between

DenseNet201

and

ResNet50V2

H1 between

DenseNet201

and

MobileNetV2

H1 between

DenseNet201 and

InceptionResNetV2

H0 between

Xception and

NASNetLarge

H0 between

Xception and

ResNet152V2

H1 between

Xception and

InceptionV3

H1 between

Xception and

ResNet50V2

H1 between

Xception and

MobileNetV2

H1 between

Xception and

InceptionResNetV2

H0 between

NASNetLarge

and

ResNet152V2

H0 between

NASNetLarge

and

InceptionV3

H0 between

NASNetLarge

and

ResNet50V2

H1 between

NASNetLarge

and

MobileNetV2

H0 between

NASNetLarge and

InceptionResNetV2

H0 between

ResNet152V2

and

InceptionV3

H0 between

ResNet152V2

and

ResNet50V2

H1 between

ResNet152V2

and

MobileNetV2

H0 between

ResNet152V2 and

InceptionResNetV2

H0 between

InceptionV3

and

ResNet50V2

H1 between

InceptionV3

and

MobileNetV2

H0 between

InceptionV3 and

InceptionResNetV2

H1 between

ResNet50V2

and

MobileNetV2

H0 between

ResNet50V2 and

InceptionResNetV2

H0 between

MobileNetV2 and

InceptionResNetV2

105

Networks Collaborative Approach

 Last section discussed the performance differences between the various architectures

implemented in this project. ResNeXt achieved consistently the best accuracy of 92.5%,

followed by DenseNet201, Xception and NASNetLarge (all of which achieved mean accuracies

of approximately 92%). In this section, a collaborative approach was implemented to test the

overall improvement possible for the system if most or all of the architectures have a voting

option. This approach was implemented from the idea about collaborative learning in classroom

settings; in other words, not all confusion matrices of the architectures discussed have the same

outcome. Thus, two voting schemas have been implemented by this project to enhance the

outcome of a selected architecture. These voting schemas are equal voting schema, and a

selective voting schema.

Equal Voting

 Equal voting schema is a collaborative approach where all participating architectures

have an equally weighted election also referred to as familiar voting pattern17 18. Analogously, if

a student is gathering information, he/she will gather the information from various teachers

without any prior knowledge about their prior backgrounds. In this case, upon classifying a given

image all participating architectures will vote on that class, the system will choose among the

highest count of a given class. If there is a tie, the system will choose the same classification as

ResNeXt since it achieved the highest outcome. Table 22 has the four architectures that have the

highest accuracy participating in the collaborative voting; whereas, Table 23 has all nine

architectures participating in the collaborative voting. As the results, on the first table where only

17

 S. Simske, “Meta-Algorithmics Patterns for Robust, Low Cost, High Quality Systems”, 2013 John Wiley & Sons
18 Dietterich, Thomas G. "Ensemble methods in machine learning." International workshop on multiple classifier

systems. Springer, Berlin, Heidelberg, 2000

106

the highest accuracy architectures collaborated, the collaborative results raised the accuracy by

1.38% in the mean, achieving 93.67% as an overall accuracy of the system. On the second table

where all the architectures collaborated, it achieved 93.64% accuracy and raised the accuracy by

1.91% in the mean.

Selective Voting

 Selective voting schema is a collaborative approach where all participating architectures

have a non-equally weighted election also referred to as Weighted Voting17 18; the weights are

dependent on prior knowledge of the participating networks performance. Analogously, if a

student is gathering information about a science experiment, he/she will gather the information

from various teachers while believing the teachers that have a scientific background more. In this

case, upon classifying a given image all participating architectures will vote on that class, the

system will assign a weight to all the participating networks answers then choose the highest

count of a given class. If there is a tie, the system will choose the same classification as ResNeXt

since it achieved the highest outcome. Two weights were implemented: The accuracy as weight,

and 1/error as a weight. Table 24 and Table 25 have the four architectures participating that have

the highest accuracy in the collaborative voting with weights assigned to these networks as

accuracy and 1/error respectively. Table 26 and Table 27 have all nine architectures participating

in the collaborative voting with weights assigned as accuracy and 1/error respectively. As the

results, on the first tables where only the highest accuracy architectures are used in collaboration,

the collaborative results raised the accuracy by 1.36% in the mean achieving 93.65% as an

overall accuracy of the system. When all of the architectures are used in the collaboration, it

achieved 93.5% accuracy and raised the accuracy by 1.95% in the mean. The collaboration

techniques with selective voting achieved similar, but slightly lower, accuracy improvement than

107

the equal voting approaches, because they slightly accentuate the error of the high performing

architectures.

In conclusion, the collaborative techniques enhanced the overall accuracy of the system

by lowering the error by more than 10% compared to the best individual architecture.

108

Table 22 - Best 4 CNN Architectures with Equal Voting

4- Collective Collaboration Validation Equal Voting

ResNeXt50 DenseNet201 Xception NASNetLarge

Fold-1 0.910988 0.910374 0.916513 0.915899

Fold-2 0.925721 0.928177 0.92388 0.928177

Fold-3 0.926335 0.924494 0.922038 0.91283

Fold-4 0.930018 0.927563 0.925107 0.919583

Fold-5 0.936157 0.927563 0.92081 0.924494

Mean Accuracy 92.584% 92.363% 92.167% 92.020%

Overall Accuracy Score 93.665%

Improvement % 1.080% 1.301% 1.498% 1.645%

Table 23 - Best 9 Architectures with Equal Voting

9- Collective Collaboration Validation Equal

Voting

ResNeXt50 DenseNet201 Xception NASNetLarge ResNet152V2 InceptionV3 ResNet50V2 MobileNetV2 InceptionResNetV2

Fold-1 91.099% 91.037% 91.651% 91.590% 90.546% 90.731% 90.731% 89.626% 89.994%

Fold-2 92.572% 92.818% 92.388% 92.818% 91.590% 91.897% 91.958% 91.344% 86.863%

Fold-3 92.634% 92.449% 92.204% 91.283% 92.449% 91.406% 91.467% 90.976% 89.503%

Fold-4 93.002% 92.756% 92.511% 91.958% 91.651% 92.449% 91.958% 89.564% 91.344%

Fold-5 93.616% 92.756% 92.081% 92.449% 92.081% 91.774% 91.529% 90.546% 91.222%

Mean

Accuracy
92.584% 92.363% 92.167% 92.020% 91.664% 91.651% 91.529% 90.411% 89.785%

Overall

Accurac

y Score

93.481%

Improv.

%

0.896% 1.117% 1.314% 1.461% 1.817% 1.829% 1.952% 3.069% 3.696%

109

Table 24 - Best 4 CNN Architectures with Selective Voting with Accuracy Weight Measurement

4- Collective Collaboration Validation Selective Voting (accuracy Weight)
ResNeXt50 DenseNet201 Xception NASNetLarge

Fold-1 0.910988 0.910374 0.916513 0.915899

Fold-2 0.925721 0.928177 0.92388 0.928177

Fold-3 0.926335 0.924494 0.922038 0.91283

Fold-4 0.930018 0.927563 0.925107 0.919583

Fold-5 0.936157 0.927563 0.92081 0.924494

Mean Accuracy 92.584% 92.363% 92.167% 92.020%

Overall Accuracy Score 93.653%

Improvement % 1.068% 1.289% 1.486% 1.633%

Table 25 - Best 4 CNN Architectures with Selective Voting with 1/error Weight Measurement

4- Collective Collaboration Validation Selective Voting (1/error Weight)
ResNeXt50 DenseNet201 Xception NASNetLarge

Fold-1 0.910988 0.910374 0.916513 0.915899

Fold-2 0.925721 0.928177 0.92388 0.928177

Fold-3 0.926335 0.924494 0.922038 0.91283

Fold-4 0.930018 0.927563 0.925107 0.919583

Fold-5 0.936157 0.927563 0.92081 0.924494

Mean Accuracy 92.584% 92.363% 92.167% 92.020%

Overall Accuracy Score 93.640%

Improvement % 1.056% 1.277% 1.473% 1.621%

110

Table 26 - Best 9 CNN Architectures with Selective Voting with Accuracy Weight Measurement

9- Collective Collaboration Validation Selective Voting

(Accuracy)

ResNeXt50 DenseNet201 Xception NASNetLarge ResNet152V2 InceptionV3 ResNet50V2 MobileNetV2 InceptionResNetV2

Fold-1 91.099% 91.037% 91.651% 91.590% 90.546% 90.731% 90.731% 89.626% 89.994%

Fold-2 92.572% 92.818% 92.388% 92.818% 91.590% 91.897% 91.958% 91.344% 86.863%

Fold-3 92.634% 92.449% 92.204% 91.283% 92.449% 91.406% 91.467% 90.976% 89.503%

Fold-4 93.002% 92.756% 92.511% 91.958% 91.651% 92.449% 91.958% 89.564% 91.344%

Fold-5 93.616% 92.756% 92.081% 92.449% 92.081% 91.774% 91.529% 90.546% 91.222%

Mean

Accuracy

92.584% 92.363% 92.167% 92.020% 91.664% 91.651% 91.529% 90.411% 89.785%

Overall

Accuracy

Score

93.481%

Improv.

%

0.896% 1.117% 1.314% 1.461% 1.817% 1.829% 1.952% 3.069% 3.696%

111

Table 27 - Best 4 CNN Architectures with Selective Voting with 1/error Weight Measurement

9- Collective Collaboration Validation Selective Voting

(1/error)

ResNeXt50 DenseNet201 Xception NASNetLarge ResNet152V2 InceptionV3 ResNet50V2 MobileNetV2 InceptionResNetV2

Fold-1 91.099% 91.037% 91.651% 91.590% 90.546% 90.731% 90.731% 89.626% 89.994%

Fold-2 92.572% 92.818% 92.388% 92.818% 91.590% 91.897% 91.958% 91.344% 86.863%

Fold-3 92.634% 92.449% 92.204% 91.283% 92.449% 91.406% 91.467% 90.976% 89.503%

Fold-4 93.002% 92.756% 92.511% 91.958% 91.651% 92.449% 91.958% 89.564% 91.344%

Fold-5 93.616% 92.756% 92.081% 92.449% 92.081% 91.774% 91.529% 90.546% 91.222%

Mean

Accuracy

92.584% 92.363% 92.167% 92.020% 91.664% 91.651% 91.529% 90.411% 89.785%

Overall

Accuracy

Score

93.579%

Improv. % 0.995% 1.215% 1.412% 1.559% 1.915% 1.928% 2.050% 3.168% 3.794%

112

CHAPTER 4 – COMMON COORDINATE SYSTEM

As previously discussed, object tracking is an active research area in computer vision thanks

to the increasing demands in the Intelligence, Surveillance and Reconnaissance (ISR)

applications and the Autonomous Vehicles Systems (AVS). Many algorithms have been

developed to track the Object of Interest (OOI) across the view of the camera, and even predict

its position when it is obfuscated; however, the tracking system doesn’t coordinate its finding

about the OOI position with nearby cameras. This section discusses ways to resolve this issue,

and will introduce a method to unify the mesh of cameras to a common coordinate system and

relay information about the OOI on a common grid with and without prior knowledge of the

location and orientation of the cameras as shown on Figure 58 below.

Figure 58 - Enhanced System Block Diagram

113

Surveyed Positions Solution

This solution requires to have a priori knowledge of the location and orientation of each

camera in the mesh19.

Assuming that latitude and longitude (lat/long) of each camera are expressed as 𝜑𝜑 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆(radians) respectively; then the distance can be calculated using the great-circle between

two points, also known as the ‘haversine’ formula. In the case shown on Figure 59 below, the

focal center of the image was chosen to be the reference lat/long point of the camera.

Figure 59 - Surveyed Cameras Positions Solution Concept

The distance is calculated as following: 𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑎𝑎2(
𝛥𝛥𝜑𝜑
2

) + 𝑐𝑐𝑐𝑐𝑠𝑠(𝜑𝜑1) 𝑐𝑐𝑐𝑐𝑠𝑠(𝜑𝜑2) 𝑠𝑠𝑠𝑠𝑎𝑎2(
𝛥𝛥𝜑𝜑
2

)

19 V. Nastro and U. Tancredi, ”Great Circle Navigation with Vectorial Methods” The Journal of Navigation,

Vol. 63, Iss. 3, 557-563 Cambridge, July, 2010.

114

𝑐𝑐 = 2 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(�(𝑎𝑎),�(1 − 𝑎𝑎)) 𝑎𝑎 = 𝑅𝑅 𝑐𝑐

Where R is the earth mean radius (6,371km), a is the square of half the chord length between the

points and c is the angular distance in radians. To properly localize the object of interest (OOI) a

stereo vision system must be in place. The vector 𝑣𝑣 pointing to the OOI centroid is expressed by

an azimuth and elevation. Thus, the distance from any camera on the network can be calculated

by adding these aforementioned steps. The advantage of this method is its accuracy of defining

the mesh parameters; whereas the main disadvantage of this method is the amount of information

needed makes it harder to be autonomous and self-calibrating.

Distant Point Calibration Solution

Given two stereo camera systems, the general idea of this method to determine where the

OOI is with respect to a second stereo camera system is to determine, via the calibration process,

the relative alignment of the cameras using the “distant point method” explained below and the

relative position vector connecting the cameras. The relative position vector is determined by

using the cameras relative alignment and their view the same object that is close enough for a

reasonably accurate position determination from the stereo cameras; in other words, no external

position survey is required. Using the results of the aforementioned camera calibration which

will be discussed later in this section, and the first camera system’s position vector measurement

of the OOI position, the expected position of the OOI with respect to the second camera can be

calculated. The OOI’s expected position with respect to the second camera can be far out of its

field of view because that position can be converted to a fully spherical azimuth and elevation to

which the second camera can be commanded to point. The advantages of this method are:

115

● The expected azimuth and elevation with respect to the second camera can be far out of

its field of view (e.g. behind or far above where the camera is pointing).

● The mathematics is much simpler, and therefore easier to debug than the mathematics of

determining the camera’s relative alignment and relative positions using multiple parallax

observations of the same objects by two non-stereo camera systems

● Trajectory estimation/prediction are not required.

Once the camera calibration is completed, the equation below provides the OOI expected

position with respect to the second camera given the information from the first camera from

which an azimuth and elevation can calculated with the following equation and as Figure 60

shows below.

[𝑅𝑅2𝑂𝑂𝑂𝑂𝑂𝑂]2 = [𝑅𝑅21]2 + 𝐶𝐶12[𝑅𝑅1𝑂𝑂𝑂𝑂𝑂𝑂]1

Where,

[𝑅𝑅2𝑂𝑂𝑂𝑂𝑂𝑂]2 is the position vector of OOI relative to camera 2 in camera 2 frame of reference

coordinate system.

[𝑅𝑅21]2 is the position vector of camera 1 relative to camera 2 in camera 2 frame of reference

coordinate system.

𝐶𝐶12 is the direction cosine matrix which transforms camera 1 vector to coordinates to vector

coordinates of camera 2 frame of reference coordinate system.

Lastly, [𝑅𝑅1𝑂𝑂𝑂𝑂𝑂𝑂]1 is the position vector of OOI relative to camera 1 in camera 1 frame of reference

coordinate system.

116

Figure 60 - OOI Position Calculation

When equation described above is solved for the “position vector of camera 1 relative to

camera 2 in camera 2 coordinates” the position measurements made by the two stereo cameras

provide the calibration process’s determination of the relative position between the cameras. If a

position survey were to be used, the camera’s orientation relative to the Earth would be needed

because survey coordinates such as latitude, longitude, and altitude are relative to Earth Centered

Earth Fixed axis. Obtaining the camera’s orientation relative to Earth would be very

inconvenient. The distant point method of determining the camera’s relative alignment will

finally be discussed. The fundamental principal employed is that the directions of position

vectors connecting the cameras to distance points such as stellar constellations do not depend on

the camera’s position. Thus, if the two cameras measure the directions specified by a unit vector

or equivalently azimuth and elevation of three distant points, two different views of the same

coordinate system are obtained. The coordinates of each camera’s view of the common

coordinate system is used to determine the direction cosine matrix relating the cameras.

Each distant point of the three will be expressed in a different coordinate system for each of

the camera. We can express these unit vectors to the three points with 𝑎𝑎1�,𝑎𝑎2�,𝑎𝑎3�. We can

117

orthogonize the system using the Gram-Schmidt as the following equations then normalize the

system.

{𝐷𝐷1� = 𝑎𝑎1� 𝐷𝐷2� = 𝑎𝑎2� −
𝑎𝑎2𝑇𝑇� 𝐷𝐷1�𝐷𝐷1𝑇𝑇� 𝐷𝐷1� 𝐷𝐷1� 𝐷𝐷3� = 𝑎𝑎3� −

𝑎𝑎3𝑇𝑇� 𝐷𝐷1�𝐷𝐷1𝑇𝑇� 𝐷𝐷1� 𝐷𝐷1� −
𝑎𝑎3𝑇𝑇� 𝐷𝐷2�𝐷𝐷2𝑇𝑇� 𝐷𝐷2� 𝐷𝐷2�

Where 𝐷𝐷� the axis system is common to all the cameras but different coordinates for each camera;

in other words, they are different coordinate because each camera is pointed differently;

however, unit vectors 𝐷𝐷1�,𝐷𝐷2� ,𝐷𝐷3� point in the same direction because the points are too far away.

The Direction Cosine Matrix 𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠 1𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠 2 transforms the axis from system 1 to system 2. It is

expressed in the following matrix:

𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠 1𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠 2 = [〈𝑥𝑥2�, 𝑥𝑥1�〉 〈𝑥𝑥2�, 𝑦𝑦1�〉 〈𝑥𝑥2�, 𝑧𝑧1� 〉 〈𝑦𝑦2�, 𝑥𝑥1�〉 〈𝑦𝑦2�,𝑦𝑦1�〉 〈𝑦𝑦2�, 𝑧𝑧1� 〉 〈𝑧𝑧2� , 𝑥𝑥1�〉 〈𝑧𝑧2� ,𝑦𝑦1�〉 〈𝑧𝑧2� , 𝑧𝑧1� 〉]
Where 〈𝑥𝑥2�, 𝑥𝑥1�〉 are the inner product of vectors 𝑥𝑥2� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥1�; where 𝑥𝑥1�,𝑦𝑦1� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧1� are the basis

vector coordinates of the two axis systems

Thus, changing from the old coordinate to the new coordinate can be expressed as following:

[𝑥𝑥2 𝑦𝑦2 𝑧𝑧2] = 𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠 1𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠 2 [𝑥𝑥1 𝑦𝑦1 𝑧𝑧1]

The Direction Cosine Matrix 𝐶𝐶1𝐷𝐷 ,𝐶𝐶𝐷𝐷2 relating the two cameras, where 𝐶𝐶1𝐷𝐷transforms a given

vector from camera 1 axis to D axis described above, and 𝐶𝐶𝐷𝐷2 transforms a given vector from D

axis to camera 2 axis can be calculated as following:

 𝐶𝐶1𝐷𝐷 = �𝐷𝐷1𝑎𝑎 𝐷𝐷1𝑦𝑦 𝐷𝐷1𝑧𝑧 𝐷𝐷2𝑎𝑎 𝐷𝐷2𝑦𝑦 𝐷𝐷2𝑧𝑧 𝐷𝐷3𝑎𝑎 𝐷𝐷3𝑦𝑦 𝐷𝐷3𝑧𝑧 � ,
 𝐶𝐶𝐷𝐷2 = �𝐷𝐷1𝑎𝑎 𝐷𝐷2𝑎𝑎 𝐷𝐷3𝑎𝑎 𝐷𝐷1𝑦𝑦 𝐷𝐷2𝑦𝑦 𝐷𝐷3𝑦𝑦 𝐷𝐷1𝑧𝑧 𝐷𝐷2𝑧𝑧 𝐷𝐷3𝑧𝑧 �

Where 𝐷𝐷� is the new axis coordinate system in the 𝐶𝐶1𝐷𝐷 transformation where its components are

calculated by the Gram-Schmidt above and expressed as the following:

𝐷𝐷1� = �𝐷𝐷1𝑎𝑎 𝐷𝐷1𝑦𝑦 𝐷𝐷1𝑧𝑧 � , 𝐷𝐷2� = �𝐷𝐷2𝑎𝑎 𝐷𝐷2𝑦𝑦 𝐷𝐷2𝑧𝑧 � , 𝐷𝐷3� = �𝐷𝐷3𝑎𝑎 𝐷𝐷3𝑦𝑦 𝐷𝐷3𝑧𝑧 �

118

Thus, the transformation from camera 1 to camera 2 can be calculated as following 𝐶𝐶12 =𝐶𝐶𝐷𝐷2 𝐶𝐶1𝐷𝐷.

The main disadvantage of this method is that a stereo camera needs to be used for every camera

position.

Point Correspondence Solution

This method of coordinating and calibrating the camera network relies on overlap between

the cameras. The system is composed of two subsystems. The first subsystem extracts the

matching features between two frames of a video feeds from two difference sources. This is done

by detecting the edges and corner, then it extracts the neighborhood features to these corners and

edges. Next it finds the matching features in the correspondent image. The subsystem is shown

on Figure 61 below.

Figure 61 - Estimate Matching Features Subsystem

119

The second subsystem estimates the Fundamental Matrix 𝐹𝐹 and estimates the relative pose

between the two cameras; in other words, it estimates the relative rotation and translation

between the cameras20. There are several methods to estimate the Fundamental Matrix for

example:

● The Random Sample Consensus algorithm (RANSAC)

● The M-Estimator Sample Consensus (MSAC) which converges faster than RANSAC.

● The Least Median Squares algorithm (LMedS).

● Least Trimmed Squares (LTS) which converges faster than LMedS.

● Or by the 8 point correspondent algorithm developed by Longuet-Higgins.

The estimate pose is calculated and it is dependent on the camera intrinsic calibration. Figure

62 shows the block diagram of the second subsystem.

Figure 62 - Estimate Fundamental Matrix and Relative Pose Subsystem

20 QT. Luong and O.D. Faugeras, “The fundamental matrix: Theory, algorithms, and

stability analysis.” Int J Computer Vision 17, 43–75, 1996.

120

In other words, this method leverages the stereo vision concept and applies it to a much

higher scale. If camera X locates the Object of Interest, All the cameras in the network can

coordinate their relative position to that camera X, by performing the cumulative transformation.

The next section will describe the algorithms used for each subsystem and will show the results.

Point Correspondence Solution Data Gathering

The data was generated by a movie created by Google Earth Studio, the cameras were then

placed at random positions where there was some overlap between them. Figure 63 shows below

the trail of the camera where each white dot shows the major keyframe that was used as camera

placement.

Figure 63 - Synthesized Data Overview

Point Correspondence Solution Detailed Algorithm

In the first subsystem mentioned above, the features of the image are detected using the

Harris Features detection algorithm. Then the features were extracted between the images by a

combination of algorithms namely Speeded-Up Robust Features (SURF) and Fast Retina

121

Keypoint algorithms. Then these features get corresponded between the images. Figure 64

visualizes the point correspondence between the two algorithms.

Figure 64 - Correspondence Features

Figure 65 below shows the strongest corresponding points between the two images after

removing the outliers.

Figure 65 - Synthesized Data Overview

In the second subsystem, the fundamental matrix is generated by the Random Sample

Consensus (RANSAC) algorithm such that the following equation is satisfied.

𝑥𝑥2𝑇𝑇𝐹𝐹 𝑥𝑥1 = 0

To estimate the relative location of the cameras, the intrinsic properties of the cameras were

assumed to be ideal for distortion and skew factors since the data was synthesized. The focal

122

length is assumed to be 3000 millimeters in the x and y directions and the optical center of the

camera is exactly in the middle. The focal length for simulated data is infinite, an analysis was

performed to achieve a realistic estimate. Focal length was tested from 1600 to 5000, beyond that

3000 there was insignificant improvement; thus, focal length of 3000 was chosen. Figure 66

below shows an example of the result of the relative orientation and relative position of the two

cameras. Where camera 1 (on left) is placed at the origin (0,0,0) and camera two (on the right) is

relatively placed based on the position described by the Rotation and Translation matrices.

Figure 66 - Relative Position and Orientation

Scene Reconstruction and Testing

To assess the proposed algorithm, the scene has been reconstructed by triangulating the

matched points calculated by the correspondence algorithm that was discussed in the previous

section. Figure 67 below shows the scene reconstruction.

Figure 67 - Scene Reconstruction

123

By inserting more overlapping cameras in the scene, the accuracy and the quality of the

photogrammetry will increase substantially. To calculate the error from the reconstructed scene,

several points were chosen randomly to remap them into the projected space onto the two

images, as shown by Figure 68 and Figure 69 below. These set of images show there is an error

when comparing the two images; for instance, the point chosen shows that it is at the corner of

the building by the middle of the window, whereas the second camera remaps it into the corner

of the building by the top of the window.

Figure 68 - First Example (a) Remap onto Camera1 Scene, (b) Remap onto Camera2 Scene

124

Similarly, for the second example, there was an error when comparing the two images. Thus,

the next section will discuss the method used to quantify the associated error.

Figure 69 - Second Example (a) Remap onto Camera1 Scene, (b) Remap onto Camera2 Scene

Error Estimation

The error was estimated by performing a normalized 2-D cross-correlation between a

template taken from image one and a section of image 2. For example, Figure 70(a) shows the

template to be chosen as the 50x50 pixels from the center of the remapped point from camera 1;

125

Figure 70(b and c) show a window around the of 200x200 pixels from the centers of the

remapped points from camera 1 and camera 2 respectively.

Figure 70 - (a) Template, (b) Remapped ROI onto Camera1 Scene, (c) Remapped ROI onto Camera2 Scene

Figure 71 shows the results of the 2-D cross-correlation as a surface map, where x,y are the

pixels of the image and the z axis is the correlation coefficient magnitude.

Figure 71 - Cross-Correlation Result

126

Figure 72 below shows the estimated error. Figure 72(a) shows the original location from

camera 1 indicated by the blue-cross/dark-cross; whereas, Figure 72(b) shows the original

mapped location indicated by the red-cross/dark-cross and the found location with the cross-

correlation indicated by the green-cross/light-cross. The error is estimated to be -38 in the Y

direction and about -2 in the X direction.

Figure 72 - (a) Original Mapped Location onto Camera1 Scene, (b) Error Estimated onto Camera2 Scene

Similarly, the same process was done to the second random point discussed above. In this

case, the error was estimated to be -40 in the Y direction and 1 in the x direction as shown on

Figure 73.

Figure 73 - (a) Original Mapped Location onto Camera1 Scene, (b) Error Estimated onto Camera2 Scene

127

Future Enhancements

The first enhancement to the proposed algorithm will deal with optimizing the cameras distances

and pose estimation21, where the minimum overlap between the two images will be estimated.

Another enhancement is to optimize the execution time; currently the execution time for 7

cameras is approximately 15.2 seconds. Another enhancement to the system is to implement a

method that mimics the idea of MPEG-2 “I” frame to change the frame of reference after N

number of cameras to minimize the error from accumulating the rotation and translation from

one camera to another. Lastly, the aforementioned system will be integrated with the overall

system described by the previously published paper to locate the Object Of Interest (OOI)

21 A. Trabelsi, M. Chaabane, N. Blanchard and R. Beveridge, “A Pose Proposal and Refinement Network for Better

6D Object Pose Estimation.” Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision

(WACV), pp. 2382-2391, 2021.

128

CHAPTER 5 – CAMERA POSITION OPTIMIZATION

Introduction

The previous chapter, a method to unify the camera system to a common coordinate

scheme was introduced. This method uses the feature overlap between the two cameras without

addressing the optimized camera positions. In other words, it didn’t answer the following

questions: (1) “How many cameras are needed to cover a given scene?” (2) What is the optimum

position for each camera to minimize the numbers of cameras needed?” In real-life scenarios, it

is necessary (or at least cost-sensitive and thus practical) to utilize the minimum number of

cameras to cover a given scene. Answering the previous two questions is essential for

autonomous systems applications.

In drone applications, estimating the overlap between the captured drone images has to be

done in real time; for this reason, one of the main requirements is that it must be done by an

efficient function that can adapt to the scene changes seamlessly. Performing such functions with

neural networks and object recognition is not feasible due to the fact that deep learning and scene

recognition are not trivial functions and may not be robust to changes in lightning, perspective,

and other variable imaging concerns. Thus, more rudimentary signal and image processing

applications are essential in such applications.

Overlap in a given scene can be thought of as analogous to an echo in voice application

signals. One of the most effective algorithms developed in the early 60s22 to detect and remove

the echo in voice applications is the Cepstral analysis.

22

 B. Bogert, et al: "The Quefrency Alanysis of Time Series for Echoes: Cepstrum, Pseudo Autocovariance, Cross-

Cepstrum and Saphe Cracking” M. Rosenblatt, Ed Chap.15, 1963.

129

Theory

The word “cepstral” is the juxtaposition of the first four letters of the word “spectral.” Cepstrum

analysis is a nonlinear mapping of the magnitude spectrum in order to redistribute the energy of

the image in the transform domain while the phase remains unchanged23. The idea of cepstrums

came about, as discussed previously, from Bogert’s famous paper that introduced the concept

along a whole set of glossary terms such as quefrency, saphe, and alanysis (for frequency, phase,

and analysis, respectively). To understand where these terminologies came about, we need to

take a look at the theoretical representation below24. The simple echo in a 1D signal, x(t), is

represented as follows:

𝑥𝑥(𝑎𝑎) = 𝑠𝑠(𝑎𝑎) + 𝛼𝛼 𝑠𝑠(𝑎𝑎 − 𝜏𝜏)

Where 𝛼𝛼 is the attenuation and 𝜏𝜏 is the delay. The Fourier spectral density (spectrum) of such a

signal is represented as follows:

|𝑋𝑋(𝑓𝑓)|2 = |𝑆𝑆(𝑓𝑓)|2 [1 + 𝛼𝛼2 + 2𝛼𝛼 cos(2𝜋𝜋𝑓𝑓𝜏𝜏)]

Thus, the spectral density of the signal with an echo has the form of an envelope of the spectrum

of the original signal and the spectrum of the contribution of the echo. By taking the logarithm of

the spectrum, the product is converted to the sum of the two components as shown below:

𝐶𝐶(𝑓𝑓) = log|𝑋𝑋(𝑓𝑓)|2 = log|𝑆𝑆(𝑓𝑓)|2 + log[1 + 𝛼𝛼2 + 2𝛼𝛼 cos(2𝜋𝜋𝑓𝑓𝜏𝜏)]

Here, C(f) is a waveform that has an additive periodic component whose fundamental frequency

is the echo delay 𝜏𝜏. This new “spectral” representation is not in the frequency domain, nor is it in

23

 M. Azimi-Sadjadi “Digital Image Processing” Lectures 21 & 22, Colorado State University, 2017
24

 A. Oppenheim, et al. “From Frequency to Quefrency: a History of the Ceptrum” IEEE Signal Processing

Magazine vol.21, no.5 pp. 95-106, 2004

130

the time domain; for this reason, Bogart chose to refer to this new domain as “Quefrency

Domain.” He also termed the spectrum of the log “Cepstrum.”

A similar thread of research was performed by Oppenheim during his dissertation at MIT

in the early 1960s, focused on homomorphic mapping between algebraic groups and vector

spaces. He developed a theory for nonlinear signal processing referred to as homomorphic

mapping systems. The essential idea of such systems is that many operations satisfy the same

algebraic forms as additions; thus, homomorphic mapping between the signal spaces plays an

essential role in linear combination in the general sense. The homomorphic mapping system

comprises three cascading subsystems: the first is an invertible nonlinear operation that maps a

nonadditive combination operation such as convolution into an ordinary addition. The second

subsystem is a linear system obeying the additive superposition rules. The last subsystem is the

inverse of the first nonlinear system. If we have two signals that are convolved, their Fourier

transforms are multiplied and the complex logarithm will produce the sum of the two log Fourier

transforms. After this, the inverse Fourier transform of a sum is the sum of the individual inverse

transforms. Thus, this cascading operation transforms two convolved signals into the sum of the

corresponding signals. Oppenheim’s homomorphic mapping in essence is the same concept

described by Bogart’s “Cepstrum”.

Similarly, if the Cepstrum and the homomorphic mapping concepts are extrapolated into

2D applications, an echo in a 2D signal which is in essence the overlap between two images can

be detected using the same three cascading operations discussed previously. Here, it is often

referred to as image registration. The main reason that this method is not employed in 2D

applications such as image registration is that not as simple as previously discussed in 1D

application; that is because in 2D applications the echo signal can be translated, scaled, rotated or

131

any combination thereof which means the echo signal may be completely distorted beyond

recognition from the original signal. For this reason, early attempts to apply cepstral analysis to

images was only limited by translation and small rotations (<2 degrees)25 26. Later papers

proposed methods that extend these concepts to rotation and scaling; however, the authors

demonstrated that it had overall inferior performance. The theory of each of the cases will be

discussed in detail here. The general form of Cepstral in 2D (𝑓𝑓(𝑥𝑥,𝑦𝑦)) is expressed by the

following formula, which is defined as the magnitude of the inverse Fourier of the logarithmic

magnitude of the Fourier transform of the image.

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = |ℱ−1{log|ℱ{𝑓𝑓(𝑥𝑥,𝑦𝑦)}|}|

Cepstral Analysis for Translation Estimation

If we let 𝑓𝑓1(𝑥𝑥,𝑦𝑦) and 𝑓𝑓2(𝑥𝑥,𝑦𝑦) represent two images, where 𝑓𝑓2 is the translated version of 𝑓𝑓1

displaced by an arbitrary vector 𝛵𝛵 (𝜏𝜏𝑎𝑎, 𝜏𝜏𝑦𝑦) and attenuated by 𝛼𝛼, we get the following equation:

𝑓𝑓2(𝑥𝑥, 𝑦𝑦) = 𝛼𝛼 𝑓𝑓1(𝑥𝑥,𝑦𝑦) + 𝛵𝛵 (𝜏𝜏𝑎𝑎, 𝜏𝜏𝑦𝑦)

If ℎ(𝑥𝑥,𝑦𝑦) is the sum of the two images 𝑓𝑓1 and 𝑓𝑓2, then the previous equation can be written as

following:

ℎ(𝑥𝑥,𝑦𝑦) = 𝑓𝑓1(𝑥𝑥, 𝑦𝑦) + 𝑓𝑓2(𝑥𝑥,𝑦𝑦) = 𝑓𝑓1(𝑥𝑥,𝑦𝑦) + 𝛼𝛼 𝑓𝑓1�𝑥𝑥 + 𝜏𝜏𝑎𝑎,𝑦𝑦 + 𝜏𝜏𝑦𝑦�
By taking the 2D Fourier Transform of both sides we get:

𝐻𝐻(𝑢𝑢, 𝑣𝑣) = ℱ1(𝑢𝑢, 𝑣𝑣) + 𝛼𝛼 ℱ1(𝑢𝑢, 𝑣𝑣)𝑒𝑒−𝑗𝑗(𝑢𝑢𝜏𝜏𝑥𝑥+𝑣𝑣𝜏𝜏𝑦𝑦)

25

 R. Gonzalez “Robust Image Registration via Cepstral Analysis” International Conference on Digital Image

Computing: Techniques and Applications, 2011, pp 40-50
26

 DJ Lee, et al. “Power Cepstrum and Spectrum Techniques Applied to Image Registration” Applied Optics, 1988,

vol 27, pp.1099-1106

132

Factoring out 𝐹𝐹1(𝑢𝑢, 𝑣𝑣) we get:

𝐻𝐻(𝑢𝑢, 𝑣𝑣) = ℱ1(𝑢𝑢, 𝑣𝑣) �1 + 𝛼𝛼 𝑒𝑒−𝑗𝑗�𝑢𝑢𝜏𝜏𝑥𝑥+𝑣𝑣𝜏𝜏𝑦𝑦��
By taking the log of both sides and simplifying using the Taylor series expansion of log(1+x), we

obtain the following equality and series representation:

log�𝐻𝐻(𝑢𝑢, 𝑣𝑣)� = log|ℱ1(𝑢𝑢, 𝑣𝑣)| + log�1 + 𝛼𝛼 𝑒𝑒−𝑗𝑗�𝑢𝑢𝜏𝜏𝑥𝑥+𝑣𝑣𝜏𝜏𝑦𝑦��

 log�𝐻𝐻(𝑢𝑢, 𝑣𝑣)� = log|ℱ1(𝑢𝑢, 𝑣𝑣)| + � (−1)𝑛𝑛𝛼𝛼𝑛𝑛𝑎𝑎∞
𝑛𝑛=1 𝑒𝑒−𝑗𝑗�𝑢𝑢𝜏𝜏𝑥𝑥+𝑣𝑣𝜏𝜏𝑦𝑦�

By taking the inverse Fourier Transform of both sides, we get the Cepstrum as following:

ℎ�(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓1� (𝑥𝑥,𝑦𝑦) +
(−1)𝑛𝑛𝛼𝛼𝑛𝑛𝑎𝑎 𝛿𝛿(𝑥𝑥 − 𝜏𝜏𝑎𝑎,𝑦𝑦 − 𝜏𝜏𝑦𝑦)

Where the location of the Dirac delta function is given by (𝜏𝜏𝑎𝑎, 𝜏𝜏𝑦𝑦), which is the relative

displacement between the two images.

Cepstral Analysis for Rotation and Scaling Estimation

If we let 𝑓𝑓1(𝑥𝑥,𝑦𝑦) and 𝑓𝑓2(𝑥𝑥,𝑦𝑦) represent two images where 𝑓𝑓2 is the rotated version of 𝑓𝑓1 by an

arbitrary angle 𝜃𝜃 and scaled by a factor 𝑠𝑠, we get the following equation:

𝑓𝑓2(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓1(𝑠𝑠 𝑥𝑥 cos 𝜃𝜃 + 𝑠𝑠 𝑦𝑦 sin𝜃𝜃 − 𝑥𝑥0 , 𝑠𝑠 𝑦𝑦 cos 𝜃𝜃 − 𝑠𝑠 𝑥𝑥 sin𝜃𝜃 − 𝑦𝑦0)

Taking the Fourier transform of both sides

ℱ2(𝑢𝑢, 𝑣𝑣) =
1

|𝑠𝑠|
 𝑒𝑒−𝑗𝑗(𝑢𝑢𝑎𝑎0+𝑣𝑣𝑦𝑦0)ℱ1 �𝑢𝑢𝑠𝑠 cos 𝜃𝜃 +

𝑣𝑣𝑠𝑠 sin𝜃𝜃 ,
𝑢𝑢𝑠𝑠 cos 𝜃𝜃 −

𝑣𝑣𝑠𝑠 sin𝜃𝜃�

Taking the magnitude of both sides we get:

|ℱ2(𝑢𝑢, 𝑣𝑣)| =
1

|𝑠𝑠|
 �ℱ1 �𝑢𝑢𝑠𝑠 cos 𝜃𝜃 +

𝑣𝑣𝑠𝑠 sin𝜃𝜃 ,
𝑢𝑢𝑠𝑠 cos 𝜃𝜃 −

𝑣𝑣𝑠𝑠 sin𝜃𝜃��

133

Transforming the polar coordinate (u,v) on the right hand side to polar coordinate expressed in

(r,φ) by substituting u = r cos φ and v = r sin φ, we obtain:

|ℱ2(𝑢𝑢, 𝑣𝑣)| =
1

|𝑠𝑠|
 �ℱ1 �𝑟𝑟𝑠𝑠 cos 𝜃𝜃 cos𝜑𝜑 +

𝑟𝑟𝑠𝑠 sin 𝜃𝜃 sin𝜑𝜑 ,
𝑟𝑟𝑠𝑠 sin𝜃𝜃 cos𝜑𝜑 +

𝑟𝑟𝑠𝑠 cos 𝜃𝜃 sin𝜑𝜑��
By applying the product to sum trigonometric identity, we get:

|ℱ2(𝑢𝑢, 𝑣𝑣)| =
1

|𝑠𝑠|
 �ℱ1 �𝑟𝑟𝑠𝑠 cos(𝜃𝜃 + 𝜑𝜑) ,

𝑟𝑟𝑠𝑠 sin(𝜃𝜃 + 𝜑𝜑)��
By transforming the previous equation into polar coordinate system where 𝑟𝑟 = √𝑢𝑢2 + 𝑣𝑣2 and 𝜑𝜑 =𝑎𝑎𝑟𝑟𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑟𝑟𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎

𝑢𝑢𝑣𝑣 results in the following equation:

|ℱ2(𝑟𝑟,𝜑𝜑)| =
1

|𝑠𝑠|
 �ℱ1 �𝑟𝑟𝑠𝑠 ,𝜃𝜃 + 𝜑𝜑��

By taking the log of both sides we get:

log|ℱ2(𝑟𝑟,𝜑𝜑)| = log
1

|𝑠𝑠|
+ log �ℱ1 �𝑟𝑟𝑠𝑠 ,𝜃𝜃 + 𝜑𝜑�� =

log
1

|𝑠𝑠|
+ |ℱ1(log 𝑟𝑟 − log 𝑠𝑠 ,𝜃𝜃 + 𝜑𝜑)|

The rotation and the scaling difference between |ℱ1| and |ℱ2| are recovered in the polar

coordinate system using the cepstrum method as if it were translated in Cartesian space22.

Results

The performance of cepstral analysis in image registration and disparity estimation was

evaluated using several images incorporating only the translation displacement schema. The data

was generated from Google Earth Studio using only trans-lateral trajectory, as Figure 74 shows.

The camera was fixed at 65 degrees tilt angle and 225 degrees pan angle and constantly flying at

altitude 179 feet between longitude/latitude -122.387/37.792 and -122.388/37.793.

134

Figure 74 - Test Scenario Trajectory

To first test the disparity estimation using Cepstral analysis, a portion of the first frame

image was concatenated with the whole first frame image as shown in Figure 75a below. The

Cepstrum was calculated using the equations described in the previous section. The graph on

Figure 75b shows two Dirac deltas. The Dirac deltas are at locations 1153 and 385, with a

magnitude of 1 and 0.018, respectively. This means that the displacement of the echo signal is at

pixel location 768 of the test image. This pixel location is calculated by subtracting the two

location values of the Dirac deltas. The marker in Figure 75a shows the location at which the

cepstral analysis indicated that the overlap captured.

135

Figure 75 - (a) I1/I1 Concatenation, (b) I1/I1 Concatenation Cepstrum

The second test of disparity estimation concatenates the same slice from the first image

used in the previous experiment, with the 5th frame image as shown in Figure 76a below. The

cepstrum was calculated using the equations described in the previous section. The graph on

Figure 76b shows two Dirac deltas. The Dirac deltas are at locations 1153 and 534, with a

magnitude of 1 and 0.0013, respectively. This means the displacement of the echo signal is at

pixel location 619 of the test image. This pixel location is calculated by subtracting the two

136

location values of the Dirac deltas. The marker in Figure 76a shows roughly the location at

which the cepstral analysis indicated: this is indeed where the overlap was captured.

Figure 76 - (a) I1/I5 Concatenation, (b) I1/I5 Concatenation Cepstrum

The third test of disparity estimation concatenated the same slice from the first image that

is used in the previous experiment with the 10th frame image as shown in Figure 77a below. The

cepstrum was calculated using the equations described in the previous section. The graph on

Figure 77b shows two Dirac deltas. The Dirac deltas are at locations 1153 and 683 with a

137

magnitude of 1 and 0.00103, respectively. This means the displacement of the echo signal is at

pixel location 470 of the test image. This pixel location is calculated by subtracting the two

location values of the Dirac deltas. The marker in Figure 77a shows the location at which the

cepstral analysis indicated. This is indeed where the overlap was captured. The overlap was still

visible despite the fact that the cepstral is becoming weaker as the closeup graph in Figure 77c

shows.

Figure 77 - (a) I1/I10 Concatenation, (b) I1/I10 Concatenation Cepstrum, (c) I1/I10 Ceptrum Closeup

The last test of disparity estimation that was performed concatenated the same slice from

the first image that is used in the previous experiment with the 15th frame image, as shown in

Figure 78a below. The Cepstrum was calculated using the equations described in the previous

section. The graph on Figure 78b shows two Dirac deltas. The Dirac deltas are at locations 1153

and 714, with a magnitude of 1 and 0.00061, respectively. This means the displacement of the

138

echo signal is at pixel location 442 of the test image. This pixel location is calculated by

subtracting the two location values of the Dirac deltas. The marker in Figure 78a shows the

location at which the cepstral analysis indicated. This is indeed where the overlap was captured.

The overlap was at this point harder to detect due to the fact the Dirac delta was obscured in the

noise, as the closeup graph in Figure 78c shows. The reason for this is that, despite the camera

movement being lateral, the projected information from the 3D captured scene has added

information that was not previously available in the original perspective.

Figure 78 - a) I1/I15 Concatenation, (b) I1/I15 Concatenation Cepstrum, (c) I1/I15 Ceptrum Closeup

In summary, even though the cepstral worked well in the closeup scene and it is a

relatively cheap function to perform, it is hard to auto detect the overlap between the images as

they get further apart. Thus, a more robust method has to be developed to estimate image

disparity to optimize the camera positions.

139

CHAPTER 6 – SUMMARY

 This dissertation addressed a solution for the continuity aspect of tracking. The solution

utilized Systems Engineering methodology throughout the design process. The design process

started with the needs analysis, wherein the operational concept and the functional analysis were

performed to fully estimate the feasibility of the project and how to meet the needs identified by

the analysis. The next step in the design process detailed the concept through the performance of

a trade study to address all the requirements, while leaving room for follow-up experiments. The

next step in the design process identified the risks with the design and the implementation of the

project. The risk analysis identified several areas of concerns for reasons such as drone

integration, object detection algorithm, camera coordination, and camera position optimization.

After the risks were identified, the concept was outlined and the requirements were hardened by

performing the advanced development. The advanced development is also responsible for

developing the concepts and the prototypes of the algorithms. Some of the more complex

subsystems that posed higher risk were designed and prototyped in the subsequent chapters. The

last sections of the first chapter conceptually detailed the software system, the engineering

design, the integration and evaluation, the production and operation, and the support of the

product. All these sections preliminarily detailed the operations, since the product is not going to

be produced or fielded by this dissertation.

 Chapter 2 discussed the first publication for this design. This chapter detailed the system

block diagram, as well as each of the subsystem functional diagrams. The system is composed of

the following subsystems: image processor; object detector; background subtractor; the tracking

subsystem which is composed of an object tracker; a trajectory predictor; the feedback analyzer;

140

the camera mesh calibration system which is composed of a matching feature estimator and a

relative pose estimator; and lastly the camera controller. The chapter discussed the three phases

of implementation. The first proposed phase suggested a single camera that performed the first

six functions described above. The second proposed phase suggested a multi-camera stationary

system. This system used all the nine subsystems described above. The last proposed phase

suggested a multi-drone mesh network, where the coordination of all the cameras have six

degrees of freedom. The rest of the chapters addressed the high-risk subsystems for the multi-

camera applications.

 Chapter 3 addressed the object detector subsystem. It discussed several deep neural

networks and benchmarked their performance using the Stanford Cars Dataset. This dataset

comprises 16,185 images of 196 classes of cars. This dataset resembles realistic scenarios for our

application since the images are taken in various lighting conditions, backgrounds, size,

orientation and blur effects. The deep neural networks that were benchmarked are: VGG16,

VGG19, DenseNet201, NASNetLarge, InceptionV3, Xception, InceptionResNetV2,

MobileNetV2, ResNet50V2, ResNet152V2, ResNeXt50. The chapter discussed the architecture

of each network and its performance. The network ranked as following: ResNeXt50,

DenseNet201, Xception, NASNetLarge achieved above 92% accuracy; ResNet152V2,

InceptionV3, ResNet50V2 achieved above 91% accuracy; and MobileNetV2 and

InceptionResNetV2 achieved above 90%. The VGG16 and VGG19 approaches did not perform

well with this dataset and I was not able to reproduce the results achieved by Benavides and Tae

paper. The chapter introduced two collaborative approaches to enhance the performance. The

first collaborative approach is the Equal Voting technique where all the participating networks

had equal voting in selecting the proper class. The second collaborative approach is called

141

Selective or Weighted Voting where each network has a different voting weight based on its

achieved performance during the training. Both approaches appreciably reduced the error (by

approximately 10%).

 Chapter 4 discussed the second publication for this dissertation. It addressed three

methods to correlate a mesh (multi-camera) system. The first method had to have a priori

knowledge of the camera locations and orientation. The second method correlated the cameras

based on several non-orthogonal distant points such as a stellar constellation. The last method

proposed a system that leverages the idea of stereo vision at a larger scale. This method relied on

overlap between the images since it corresponds to the matching features between the two

images before finding the fundamental matrix. This matrix is essential in estimating the pose

between the two images to reconstruct the scene in three dimensions. This Chapter implemented

the latter system, showing the results and the corrections that were made to optimize the results.

 Chapter 4 used the feature overlap between the two cameras without addressing the

optimized camera positions. Chapter 5 attempted to address the camera position optimization

using Cepstral Analysis since it is a more rudimentary image processing function. The chapter

discussed the history and the theory of Cepstral Analysis, and then showed the results achieved

by calculating the cepstrum between frames of translation displacement simulated video. Even

though the cepstral analysis worked well in the closeup scene and is a relatively cheap function

to perform, it is hard to auto detect the overlap between the images as they get further apart.

Thus, a more robust method has to be developed to estimate image disparity to optimize the

camera positions.

 This dissertation designed and implemented some of the complex subsystems. Several

enhancements will be implemented during the post-doctoral research to complete additional

142

aspects of this research. The first is to develop a more robust, yet rudimentary, method to

estimate the image disparity and optimize the camera position. Another necessary optimization is

to implement the idea of an MPEG-2 “I” frame to change the frame of reference after N number

of cameras to minimize the accumulated error of rotation and translation, while correlating the

images. Another area that needs to be prototyped is the trajectory predictor, which is essential to

predict the next move of the object of interest. The last area that needs to be researched further is

the integration of this system on 6-degrees of freedom drones so it can track the desired object of

interest throughout space.

143

BIBLIOGRAPHY

[1] A. Kossiakoff, Systems Engineering Principal and Practice, Wiley, 2011.

[2] L. Maddalena and A. Petrosino, "A Self-Organizing Approach to Background Subtraction

for Visual Surveillance Applications," IEEE Transactions on Image Processing, pp. Vol.

17, no. 7, pp. 1168-1177 , 2008.

[3] H. Williams and S. Simske, "Object Tracking Continuity through Track and Trace

Method," in Electronic Imaging, Autonomous Vehicles and Machines, San Francisco, CA,

USA, 2020.

[4] S. Saha, 2018. [Online]. Available: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[5] J. Krause, 2013. [Online]. Available: http://ai.stanford.edu/~jkrause/cars/car_dataset.html.

[6] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks For Large-Scale

Image Recognition," in ICLR, 2015.

[7] D. S. Bolme, J. R. Beveridge, B. A. Draper and Y. M. Lui, "Visual object tracking using

adaptive correlation filters," in IEEE Computer Society Conference On Computer Vision

and Pattern Recognition, San Francisco, CA, USA, 2010.

[8] G. Huang, Z. Liu, L. Van Der Maaten and K. Weinberger, "Densely Connected

Convolutional Networks," in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[9] J. Krause, M. Stark, J. Deng and L. Fei-Fei, "3D Object Representations for Fine-Grained

Categorization," in IEEE International Conference on Computer Vision (ICCV), Sydney,

Australia, 2013.

[10] L. N. Smith, "Cyclical Learning Rates for Training Neural Networks," in IEEE Winter

Conference On Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 2017.

[11] B. Zoph, V. Vasudevan, J. Shlens and Q. V. Le, "Learning Transferable Architectures for

Scalable Image Recognition," in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception

Architecture for Computer Vision," in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

144

[13] F. Chollet, "Deep Learning with Depthwise Separable Convolutions," in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

[14] C. Szegedy, S. Ioffe, V. Vanhoucke and A. Alemi, "Inception-v4, Inception-ResNet and

the Impact of Residual Connections on Learning," in AAAI Publications, Thirty-First AAAI

Conference on Artificial Intelligence, 2017.

[15] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," in

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[16] S. Xie, R. Girshick, P. Dollar, Z. Tu and K. He, "Aggregated Residual Transformation for

Deep Neural Networks," in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[17] S. J. Simske, Meta-Algorithmics Patterns for Robust, Low Cost, High Quality Systems,

John Wiley & Sons, 2013.

[18] V. Nastro and U. Tancredi, "Great Circle Navigation with Vectorial Methods," The Journal

of Navigation, pp. Vol. 63, Issue 3, pp. 557-563, 2010.

[19] Q.-T. Luong and O. Faugeras, "The fundamental matrix: Theory, algorithms, and stability

analysis.," International Journal of Computer Vision, pp. Vol. 17, pp. 43-75, 1996.

[20] A. Trabelsi, M. Chaabane, N. Blanchard and R. Beveridge, "Pose Proposal and Refinement

Network for Better 6D Object Pose Estimation," in IEEE/CVF Winter Conference on

Applications of Computer Vision (WACV), 2021.

[21] H. Williams, S. Simske and F. G. Bishay, "Unify The View of Camera Mesh Network to a

Common Coordinate System," in Electronic Imaging, Autonomous Vehichles and

Machines, 2021.

[22] B. Bogert, "The Quefrency Alanysis of Time Series for Echoes: Cepstrum, Pseudo

Autocovariance, Cross-Cepstrum and Saphe Cracking," Time Series Analysis, pp. 209-243,

1963.

[23] A. Oppenheim and R. Schafer, "From Frequency to Quefrency: a History of the Ceptrum,"

IEEE Signal Processing Magazine, pp. Vol. 21, Issue 5, pp. 95-106, 2004.

[24] M. Azimi-Sadjadi, Digital Image Processing Lectures 21-22, Colorado State University,

2017.

[25] R. Gonzalez, "Robust Image Registration via Cepstral Analysis," in IEEE International

Conference on Digital Image Computing: Techniques and Applications, Noosa, Australia,

2011.

145

[26] D.-J. Lee, T. Krile and S. Mitra, "Power Cepstrum and Spectrum Techniques Applied to

Image Registration," Optical Society of America, pp. Vol. 27, Issue 6, pp.1099-1106, 1988.

[27] C. Veness, 2020. [Online]. Available: https://www.movable-

type.co.uk/scripts/latlong.html.

[28] S.-C. Cheung and C. Kamath, "Robust techniques for background subtraction in urban

traffic video," in SPIE Visual Communications and Image Processing, 2004.

[29] L. Maddalena and A. Petrosino, "A Self-organizing Approach to Detection of Moving

Patterns for Real-Time Applications," in International Symposium on Brain, Vision, and

Artificial Intelligence (BVAI), Berlin, Heidelberg, 2007.

[30] P. Torr and D. Murray, "The Development and Comparison of Robust Methods for

Estimating the Fundamental Matrix," in International Journal of Computer Vision, 1997.

[31] C. Park, J.-E. Lee and K.-H. Bae, "Corresponding Metadata-Based Stereo Object Tracking

System Using Disparity-Motion Estimation," Journal of Image Science and Technology,

pp. Vol 53, Issue: 1, pp.10502-1-10502-6, 2009.

[32] E. Reyes-Santos, H. Jimenez-Hernandez, L. Barriga-Rodriguez, J. Soto-Cajiga, H. H and F.

Carrizo-Corral, "Tracking and Estimating Tridimensional Position Through Camera-PT

Array," Electronic Imaging, Video Surveillance and Transport Imaging Applications, pp.

1-7, 2016.

[33] J. Li, H. Aghajan, J. R. Casar and W. Philips, "Camera Pose Estimation by Vision-inertial

Sensor Fusion: An Application to Augmented Reality Books," Electronic Imaging, The

Engineering Reality of Virtual Reality, pp. 1-6, 2016.

[34] J. Li-Chee-Ming and C. Armenakis, "UAV navigation system using line-based sensor pose

estimation," Geo-spatial Information Science, pp. Vol.21, Issue 1, pp. 2-11, 2018.

[35] Z. Zhou, D. Yin, J. Ding, Y. Luo, M. Yuan and C. Zhu, "Collaborative Tracking Method in

Multi-Camera System," Journal of Shanghai Jiaotong University (Science), pp. Vol.25,

pp.810-810, 2020.

[36] D. H. Ye, J. Li, Q. Chen, J. Wachs and C. Bouman, "Deep Learning for Moving Object

Detection and Tracking from a Single Camera in Unmanned Aerial Vehicles (UAVs),"

Electronic Imaging, Imaging and Multimedia Analytics in a Web and Mobile World, pp.

466-1-466-6, 2018.

[37] E. Unlu, E. Zenou, N. Riviere and P.-E. Dupouy, "An autonomous drone surveillance and

tracking architecture," in Electronic Imaging, Autonomous Vehicles and Machines

Conference, 2019.

146

[38] S. Campbell, N. O'Mahony, L. Krpalcova, D. Riordan, J. Walsh, A. Murphy and C. Ryan,

"Sensor Technology in Autonomous Vehicles : A review," in IEEE 2018 29th Irish Signals

and Systems Conference (ISSC), Belfast, UK, 2018.

[39] M. Walters, "Sensor Techologies for Autonomous Vehicles," in Electronic Imaging,

Autonomous Vehicles and Machines, 2020.

[40] Y.-J. Chang and Y.-S. Ho, "Disparity Estimation Using Fast Motion-Search Algorithm and

Local Image Characteristics," in Electronic Imaging, Image Processing: Algorithms and

Systems XVI, 2018.

[41] J. W. Davis and A. Bobick, "The Representation and Recognition of Human Movement

Using Temporal Templates," IEEE, pp. 928-934, 1997.

[42] E. P. Ijjina, "Human Fall Detection in Depth-Videos Using Temporal Templates and

Convolutional Neural Networks.," Learning and Analytics in Intelligent Systems, pp. 217-

236, 2022.

[43] J.-H. Mun and Y.-S. Ho, "Guided Image Filtering based Disparity Range Control in Stereo

Vision," Electronic Imaging, Stereoscopic Displays and Applications XXVIII, pp. 130-136,

2017.

[44] N. Benavides and C. Tae, "Fine-Grained Image Classification for Vehicle Makes & Models

using Convolutional Neural Networks," CS230 Standford.

[45] T. G. Dietterich, "Ensemble Methods in Machine Learning. In: Multiple Classifier

Systems.," MCS 2000. Lecture Notes in Computer Science, pp. vol 1857, pp. 1-15, 2000.

[46] S.-H. Seo and M. R. Azimi-Sadjadi, "A 2-D Filtering Scheme for Stereo Image

Compression Using Sequential Orthogonal Subspace Updating," IEEE Transactions on

Circuits And Systems For Video Technology, vol. 11, no. 1, pp. 52-66, 2001.

[47] S.-W. Seo, M. Azimi-Sadjadi and B. Tian, "A least-squares-based 2-D filtering for

disparity estimation," in Proceedings of International Conference on Image Processing,

Santa Barbara, CA, USA, 1997.

147

APPENDIX 1

Python Version List

Package Version

python 3.9 Python 3.9.7

Jinja2 3.0.1

Keras-Applications 1.0.8

Keras-Preprocessing 1.1.2

Markdown 3.3.4

MarkupSafe 2.0.1

Pillow 8.3.2

PyWavelets 1.1.1

PyYAML 5.4.1

Pygments 2.10.0

Shapely 1.7.1

Werkzeug 2.0.1

absl-py 0.13.0

adam 0.0.0.dev0

albumentations 1.0.3

astunparse 1.6.3

backcall 0.2.0

bokeh 2.4.0

cachetools 4.2.2

certifi 2021.5.30

charset-normalizer 2.0.5

clang 5

colorama 0.4.4

console-progressbar 1.1.2

cycler 0.10.0

daytime 0.4

decorator 5.1.0

easydict 1.9

efficientnet 1.0.0

flatbuffers 1.12

gast 0.4.0

google-auth 1.35.0

google-auth-oauthlib 0.4.6

google-pasta 0.2.0

148

graphviz 0.19.1

grpcio 1.40.0

h5py 3.1.0

idna 3.2

image-classifiers 1.0.0

imageio 2.9.0

imgaug 0.4.0

ipython 7.27.0

jedi 0.18.0

joblib 1.1.0

keras 2.6.0

kiwisolver 1.3.2

livelossplot 0.5.4

matplotlib 3.4.3

matplotlib-inline 0.1.3

networkx 2.6.3

numpy 1.19.5

oauthlib 3.1.1

opencv-python 4.5.3.56

opencv-python-

headless

4.5.3.56

opt-einsum 3.3.0

packaging 21

pandas 1.3.3

parso 0.8.2

pickleshare 0.7.5

pip 21.3.1

prompt-toolkit 3.0.20

protobuf 3.18.0

pyasn1 0.4.8

pyasn1-modules 0.2.8

pydot 1.4.2

pydot2 1.0.33

pydot3 1.0.9

pyparsing 2.4.7

python-dateutil 2.8.2

pytz 2021.1

requests 2.26.0

requests-oauthlib 1.3.0

rsa 4.7.2

scikit-image 0.18.3

scikit-learn 1

scipy 1.7.1

149

seaborn 0.11.2

segmentation-models 1.0.1

sequence 0.3.4

setuptools 57.0.0

six 1.15.0

sklearn 0

tensorboard 2.6.0

tensorboard-data-

server

0.6.1

tensorboard-plugin-

wit

1.8.0

tensorflow 2.6.0

tensorflow-estimator 2.6.0

termcolor 1.1.0

threadpoolctl 3.0.0

tifffile 2021.8.30

torch 1.9.1

torchvision 0.10.1

tornado 6.1

tqdm 4.62.2

traitlets 5.1.0

typing-extensions 3.10.0.2

urllib3 1.26.6

wcwidth 0.2.5

wheel 0.36.2

wrapt 1.12.1

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF KEYWORDS
	CHAPTER 1 – SYSTEM ENGINEERING METHODOLOGY
	Introduction
	Needs Analysis
	Operational Analysis
	Analyze Projected Needs
	Define the Operational Approach:

	Functional Analysis
	Translation into Functions
	Allocation of Function into Subsystems

	Feasibility Definition
	Visualize Subsystem Technology
	Define Feasibility Concept

	Needs Validation
	Design Effectiveness Model
	Validate Needs and Feasibility

	Concept Exploration
	Operational Requirement Analysis
	Analyzing Operation Objectives
	Refining Operations Requirements

	Performance Requirement Formulation
	Derive Subsystem Functions
	Formulate Performance Parameters

	Implementation of Concept Exploration
	Explore Implementation Concepts
	Define Performance Characteristics

	Performance Requirements Validation
	Integrate Performance Characteristics
	Validate Performance Requirements

	Concept Definition
	Performance Requirements Analysis
	Analyze Performance Requirements
	Refine Performance Requirements

	Functional Analysis and Formulation
	Define Components Functions
	Formulate Functional Requirements

	Concept Selection
	Synthesize Alternative Concepts
	Select Preferred Concept

	Concept Validation
	Conduct System Simulation
	Validate Selected Concept

	Risk Management
	Project Management Related Risks
	Qualitative Risk Assessment

	Advanced Development
	Requirements Analysis
	Analyze System Functional Specs
	Identify Immature Components

	Functional Analysis and Design
	Identity Functional Performance Issues
	Resolve Issues Design Software

	Prototype Development
	Identify Unproven Technology
	Design and Build Critical Components

	Development Testing
	Build Test Setup
	Evaluate Test Results

	Software Systems
	Engineering Design
	Integration and Evaluation
	Production
	Operation and Support

	CHAPTER 2 – SYSTEM OVERVIEW AND ARCHITECTURE0F
	Introduction
	System Overview
	Image Processor Subsystem
	Background Subtraction Subsystem
	Detection Subsystem
	Object Tracking Subsystem
	Trajectory Predictor Subsystem
	Feedback Analyzer Subsystem

	CHAPTER 3 – OBJECT RECOGNITION USING DEEP NEURAL NETWORK
	Introduction
	Stanford Cars Dataset
	Approach
	Image Processing and Enhancement for Training
	Data Augmentation
	Learning Algorithm Architecture

	VGG16 Convolutional Neural Network
	VGG16 Architecture
	VGG16 Results

	VGG19 Convolutional Neural Network
	VGG19 Architecture
	VGG19 Results

	DenseNet201 Convolutional Neural Network
	DenseNet201 Architecture
	DenseNet201 Results

	NASNetLarge Convolutional Neural Network
	NASNetLarge Architecture
	NASNetLarge Results

	InceptionV3 Convolutional Neural Network
	InceptionV3 Architecture
	InceptionV3 Results

	Xception Convolutional Neural Network
	Xception Architecture
	Xception Results

	InceptionResNetV2 Convolutional Neural Network
	InceptionResNetV2 Architecture
	InceptionResNetV2 Results

	MobileNetV2 Convolutional Neural Network
	MobileNetV2 Architecture
	MobileNetV2 Results

	ResNet50V2 Convolutional Neural Network
	ResNet50V2 Architecture
	ResNet50V2 Results

	ResNet152V2 Convolutional Neural Network
	ResNet152V2 Architecture
	ResNet152V2 Results

	ResNeXt50 Convolutional Neural Network
	ResNeXt50 Architecture
	ResNeXt50 Results

	Networks Performance Metrics and Network Comparisons
	Networks Collaborative Approach
	Equal Voting
	Selective Voting

	CHAPTER 4 – COMMON COORDINATE SYSTEM
	Surveyed Positions Solution
	Distant Point Calibration Solution
	Point Correspondence Solution
	Point Correspondence Solution Data Gathering
	Point Correspondence Solution Detailed Algorithm
	Scene Reconstruction and Testing
	Error Estimation
	Future Enhancements

	CHAPTER 5 – CAMERA POSITION OPTIMIZATION
	Introduction
	Theory
	Cepstral Analysis for Translation Estimation
	Cepstral Analysis for Rotation and Scaling Estimation

	Results

	CHAPTER 6 – SUMMARY
	BIBLIOGRAPHY
	APPENDIX 1
	Python Version List

