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ABSTRACT

INVESTIGATING THE ENHANCEMENT OF AIR POLLUTANT PREDICTIONS AND

UNDERSTANDING AIR QUALITY DISPARITIES ACROSS RACIAL, ETHNIC, AND

ECONOMIC LINES AT US PUBLIC SCHOOLS

Ambient air pollution has significant health and economic impacts worldwide. Even in the

most developed countries, monitoring networks often lack the spatiotemporal density to resolve

air pollution gradients. Though air pollution affects the entire population, it can disproportionately

affect the disadvantaged and vulnerable communities in society. Pollutants such as fine particulate

matter (PM2.5), nitrogen oxides (NO and NO2), and ozone, which have a variety of anthropogenic

and natural sources, have garnered substantial research attention over the last few decades. Over

half the world and over 80% of Americans live in urban areas, and yet many cities only have one

or several air quality monitors, which limits our ability to capture differences in exposure within

cities and estimate the resulting health impacts. Improving sub-city air pollution estimates could

improve epidemiological and health-impact studies in cities with heterogeneous distributions of

PM2.5, providing a better understanding of communities at-risk to urban air pollution. Biomass

burning is a source of PM2.5 air pollution that can impact both urban and rural areas, but quantify-

ing the health impacts of PM2.5 from biomass burning can be even more difficult than from urban

sources. Monitoring networks generally lack the spatial density needed to capture the heterogene-

ity of biomass burning smoke, especially near the source fires. Due to limitations of both urban and

rural monitoring networks several techniques have been developed to supplement and enhance air

pollution estimates. For example, satellite aerosol optical depth (AOD) can be used to fill spatial

gaps in PM monitoring networks, but AOD can be disconnected from time-resolved surface-level

PM in a multitude of ways, including the limited overpass times of most satellites, daytime-only

measurements, cloud cover, surface reflectivity, and lack of vertical-profile information. Observa-
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tions of smoke plume height (PH) may provide constraints on the vertical distribution of smoke

and its impact on surface concentrations. Low-cost sensor networks have been rapidly expanding

to provide higher density air pollution monitoring. Finally, both geophysical modeling, statistical

techniques such as machine learning and data mining, and combinations of all of the aforemen-

tioned datasets have been increasingly used to enhance surface observations. In this dissertation,

we explore several of these different data sources and techniques for estimating air pollution and

determining community exposure concentrations.

In the first chapter of this dissertation, we assess PH characteristics from the Multi-Angle

Implementation of Atmospheric Correction (MAIAC) and evaluate its correlation with co-located

PM2.5 and AOD measurements. PH is generally highest over the western US. The ratio PM2.5:AOD

generally decreases with increasing PH:PBLH (planetary boundary layer height), showing that PH

has the potential to refine surface PM2.5 estimates for collections of smoke events.

Next, to estimate spatiotemporal variability in PM2.5, we use machine learning (Random Forests;

RFs) and concurrent PM2.5 and AOD measurements from the Citizen Enabled Aerosol Measure-

ments for Satellites (CEAMS) low-cost sensor network as well as PM2.5 measurements from the

Environmental Protection Agency’s (EPA) reference monitors during wintertime in Denver, CO,

USA. The RFs predicted PM2.5 in a 5-fold cross-validation (CV) with relatively high skill (95%

confidence interval R2=0.74-0.84 for CEAMS; R2=0.68-0.75 for EPA) though the models were

aided by the spatiotemporal autocorrelation of the PM2.5 measurements. We find that the most

important predictors of PM2.5 are factors associated with pooling of pollution in wintertime, such

as low planetary boundary layer heights (PBLH), stagnant wind conditions, and, to a lesser degree,

elevation. In general, spatial predictors are less important than spatiotemporal predictors because

temporal variability exceeds spatial variability in our dataset. Finally, although concurrent AOD is

an important predictor in our RF model for hourly PM2.5, it does not improve model performance

during our campaign period in Denver. Regardless, we find that low-cost PM2.5 measurements in-

corporated into an RF model were useful in interpreting meteorological and geographic drivers of
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PM2.5 over wintertime Denver. We also explore how the RF model performance and interpretation

changes based on different model configurations and data processing.

Finally, we use high resolution PM2.5 and nitrogen dioxide (NO2) estimates to investigate so-

cioeconomic disparities in air quality at public schools in the contiguous US. We find that a higher

proportion of Black and African American, Hispanic, and Asian or Pacific Islander students at-

tend schools in locations where the ambient concentrations of NO2 and PM2.5 are above the World

Health Organization’s (WHO) guidelines for annual-average air quality. Specifically, we find that

~95% of students that identified as Asian or Pacific Islander, 94% of students that identified as

Hispanic, and 89% of students that identified as Black or African American, attended schools in

locations where the 2019 ambient concentrations were above the WHO guideline for NO2 (10 µg

m−3 or ~5.2 ppbv). Conversely, only 83% of students that identified as white and 82% of those

that identified as Native American attended schools in 2019 where the ambient NO2 concentra-

tions were above the WHO guideline. Similar disparities are found in annually averaged ambient

PM2.5 across racial and ethnic groups, where students that identified as White (95%) and Native

American (83%) had the smallest percentage of students above the WHO guideline (5 µg m−3),

compared to students that identified with other minoritized groups (98-99%). Furthermore, the

disparity between white students and other minoritized groups, other than Native Americans, is

larger at higher PM2.5 concentrations. Schools with a higher percentage of students eligible for

free or reduced meals, which we use as a proxy for poverty, are also associated with ambient

air pollutant concentrations that exceed WHO guidelines. These disparities also tend to increase

in magnitude at higher concentrations of NO2 and PM2.5. We investigate the intersectionality of

disparities across racial/ethnic and poverty lines by quantifying the mean difference between the

lowest and highest poverty schools, and the most and least white schools in each state, finding that

most states have disparities above 1 ppbv of NO2 and 0.5 µg m−3 of PM2.5 across both. We also

identify distinct regional patterns of disparities, highlighting differences between California, New

York, and Florida. Finally, we also highlight that disparities do not only exist across an urban and

non-urban divide, but also within urban areas.
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Chapter 1

Introduction

1.1 An Overview of Air Pollution in Society

Air pollution has long been a plague on the World’s societies, and one exponentially heightened

as an unforeseen consequence of industrialization and urbanization. The impacts of air pollution

have been noted by many over the course of human history: smoke plumes from metallurgists,

pre-industrial workshops, and homes in ancient Rome were described as “heavy heavens” and “in-

famous air” (Hughes, 1996). The problems became more apparent and ubiquitous when societies

started burning fossil fuels instead of wood. Lamenting the state of London’s polluted atmosphere,

due to the increasing use of coal for residential heating, poet John Evelyn wrote in 1661:

“. . . that Hellish and dismall Cloud of SEA-COAL . . . perpetually imminent over her
head . . . mixed with the otherwise wholesome and excellent Aer, that her Inhabitants
breathe nothing but an impure and thick Mist accompanied with a fuliginous and filthy
vapour, which renders them obnoxious to a thousand inconveniences, corrupting the
Lungs, and disordering the entire habits of their Bodies; so that Catharrs, Phthisicks,
Coughs and Consumptions rage more in this one City than in the whole Earth besides.”
(Evelyn, 1976)

Despite the long history of intersection between human health and air pollution, it remains

the greatest environmental hazard for human health globally (Cohen et al., 2017; World Health

Organization, 2013). In 2019, ambient fine particulate matter (PM2.5) caused an estimated 4.2

million premature deaths worldwide (Murray et al., 2020). Exposure to PM2.5, as well as to other

toxins such as nitrogen oxides (NOx) and ozone (O3) are linked to a host of cardiovascular and

respiratory diseases (Atkinson et al., 2018; Cohen et al., 2017; Faustini et al., 2014; Hoek et

al., 2013; World Health Organization, 2013). Air pollution has also been linked to decreased

cognitive function, lower intelligence quotient (IQ) scores, and, most recently, to increased rates

of depression and anxiety (Myhre et al., 2018; Roberts et al., 2019).
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The health impacts of air pollution also result in huge economic losses worldwide. A study

over Europe found that a 1 µg m−3 increase in PM2.5 concentrations causes a 0.8% reduction in

real gross domestic product (GDP) (Dechezleprêtre et al., 2019), mostly due to increased worker

absenteeism and work productivity. Similarly, the World Bank estimated that North America loses

an estimated 2.4% GDP equivalent to welfare losses due to ambient PM2.5 (World Bank, 2016).

In 2013, air pollution cost the world economy an estimated $5.11 trillion in welfare losses and an

additional $225 billion in labor income losses (World Bank, 2016).

While air pollution impacts our entire society, the greatest burden of air pollution in the US

often disproportionately impacts groups that are already most at risk. Studies investigating the

intersection between air pollution and race/ethnicity as well as socioeconomic status, find that

racial/ethnically minoritized and impoverished people are more likely to be near emission sources

(Chakraborty et al., 2011; Maantay, 2007; Maantay et al., 2009; Mohai & Saha, 2007; Pastor et al.,

2004). Past studies have found that racially/ethnically minoritized groups in the US had dispro-

portionate exposures to atmospheric neurotoxins (Grineski & Collins, 2018), PM2.5 (Bell & Ebisu,

2012; O’Neill et al., 2003; Woo et al., 2019), and NO2 (Woo et al., 2019). Residential segrega-

tion is a crucial factor leading to disparities in air pollutant exposure: Woo et al. (2019) found

that segregating neighborhoods not only serves to keep minoritized people in separate residential

spaces but also keeps them in closer proximity to environmental pollution sources. Studies have

also found disproportionate health impacts in communities with larger proportions of people of

color such as increased PM2.5-attributable disease burdens (Castillo et al., 2021; Hajat et al., 2015;

Tessum et al., 2019). Populations may also have different health responses to the same levels of

exposure to various air pollutants (Bell & Dominici, 2008; Bell & Ebisu, 2012; Grineski et al.,

2010; Zanobetti & Schwartz, 2000), which is an open area of research. Finally, some communities

have less access to healthcare and are less able to mitigate pollution impacts.

Fortunately, due to regulations in the US, anthropogenic emissions of most primary air pollu-

tants have been declining for decades (e.g., Anenberg et al., 2021; Hammer et al., 2020), which

may serve to lessen the burden of air pollution on all communities, including those most at-risk.
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However, anthropogenic emissions are not the only important emission sources. Landscape fires

are a major source of both PM2.5 (~40% of primary emissions in the US) (EPA, 2017), and volatile

organic compounds (VOCs), including many hazardous air pollutants (HAPs) (Akagi et al., 2011).

Furthermore, due to a warming climate, the western US has become hotter and drier, and wildfires

have been increasing in frequency and intensity in much of the western US (Westerling, 2006;

Westerling et al., 2003). As a result, landscape fires and their contribution to US PM2.5 has been

increasing in the western US and are likely to continue increasing throughout the Contiguous US

(CONUS) as the climate changes (Brey et al., 2021; Ford et al., 2018; J. C. Liu et al., 2016; O’Dell

et al., 2019). It is unclear, however, whether there are racial/ethnic and socioeconomic dispari-

ties in the impact of landscape fires, and if so, how these disparities may change as the climate

continues to warm.

1.2 The Current State of Air Quality Monitoring

Measuring people’s exposure to air pollution from anthropogenic/natural sources, understand-

ing their impacts, and assessing the resulting social disparities, are not possible without sufficient

monitoring of air pollutants. Air quality monitoring, however, is a relatively recent phenomena.

After tragic events such as the lethal haze that enveloped Donora, PA (1948) and the frequent

episodes of smog that hit heavily trafficked Los Angeles, CA (beginning in the 1940s), the US

federal and state governments were pushed into action, culminating in the establishment of the

environmental protection agency (EPA) and passing of the Clean Air Act (1970). The Clean Air

Act and its amendments require that the EPA establish regulatory monitoring networks to capture

concentrations of six criteria pollutants, including PM2.5 and NO2, across the US. Though these

regulatory networks have provided invaluable information on air pollution over several decades,

they often have large spatial gaps, especially in sparsely populated areas of the US. These spatial

gaps make capturing the complex and heterogeneous nature of air pollution difficult and can limit

our ability to regulate emission sources, evaluate regulatory models, and accurately estimate the

health impacts of air pollutants (Bi et al., 2019; Gao et al., 2015; Just et al., 2015; Wang & Oliver
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Gao, 2011). Several methods have been developed to fill in the gaps of regulatory networks and

increase our understanding of air pollution including: (1) satellite observations; (2) low-cost sensor

networks; (3) chemical transport models; and (4) enhancing observations using data mining, data

fusion, machine learning, and other statistical techniques.

Satellite observations of aerosol optical depth (AOD), which are estimates of column-integrated

light extinction due to aerosols, are commonly used to estimate PM2.5 concentrations (e.g. Hu et

al., 2014; van Donkelaar et al., 2006, 2010, 2011). AOD observations, however, have a complex

relationship with surface PM2.5 measurements that depend on the aerosol size-distribution, hy-

groscopicity, vertical profile, and optical properties. These factors, especially the vertical profile

of aerosols can be especially important when interpreting AOD observations from landscape fire

smoke plumes. The height of smoke plumes can vary dramatically due to fire intensity and local

meteorology (Freitas et al., 2006; Vernon et al., 2018), which can result in very different surface

concentrations of aerosols. Furthermore, AOD measurements have often been at resolutions too

coarse (e.g. > 10 km) to properly capture the heterogeneity of air pollutant sources such as land-

scape fires (Lyapustin et al., 2019). Although recent satellite products such as high resolution (1

km) AOD and smoke plume height observations from the Multi-Angle Implementation of Atmo-

spheric Correction (MAIAC) data product may help remedy these issues (Lyapustin et al., 2018,

2019).

Due to the complex nature of the AOD:PM2.5 relationship, AOD measurements are often trans-

lated to PM2.5 estimates by combining satellite observations with a variety of modeling and sta-

tistical approaches. One common method is to use a global chemical transport model to simulate

the PM2.5:AOD relationship globally (or regionally) and then multiply satellite observations of

AOD by the modeled ratio, which results in satellite-derived PM2.5 estimates (Y. Liu et al., 2004;

van Donkelaar et al., 2010, 2011, 2015). However, the PM2.5:AOD relationship is still poorly

understood and requires further validation from ground based sensors. For that reason, the Sur-

face PARTiculate mAtter Network (SPARTAN) was developed to provide co-located, high-quality

AOD and PM2.5 measurements in different regions across the globe (Snider et al., 2015, 2016).
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Unfortunately, networks such as SPARTAN, traditional regulatory networks, and satellites all have

high costs associated with their development, implementation, and maintenance.

Both researchers and private businesses have investigated cheaper alternatives to the traditional,

high-cost air pollution measurement methods. Thus, low-cost sensor (LCS) networks of air quality

monitors have become increasingly used in conjunction with regulatory measurements at cheaper

costs. For example, the PurpleAir network, which uses low-cost light-scattering sensors to capture

sub-hourly PM2.5 measurements, has been growing rapidly over the past few years (Delp & Singer,

2020; Krebs et al., 2021). LCS networks have successfully been used in identifying pollution

hotspots and sources (Gao et al., 2015; Rickenbacker et al., 2019; Zikova et al., 2017) and targeting

pollution reduction targets (Gillooly et al., 2019). These low-cost networks also have the added

benefit of being easier to deploy and maintain than regulatory networks, which allows citizen

scientists to get involved, take measurements, and potentially learn more about local air quality

issues (e.g., Ford et al., 2019; Gupta et al., 2018). Despite the benefits of LCS networks, they

also have moderate-to-high uncertainties due to the lower quality of their sensors (Gupta et al.,

2018; Snyder et al., 2013). For example, many LCS networks like PurpleAir that measure PM2.5

use light-scattering sensors, which are sensitive to variations in particle size distributions, relative

humidity (RH), and aerosol refractive index (Austin et al., 2015; Levy Zamora et al., 2019; Singer

& Delp, 2018; Sousan et al., 2017; Tryner et al., 2020; Y. Wang et al., 2015). In particular,

variations in RH have been shown to result in large biases in measurements of PM2.5 from these

low-cost sensors (Jayaratne et al., 2018; Levy Zamora et al., 2019; Magi et al., 2020; Malings et

al., 2020; Tryner et al., 2020).

Another burgeoning field in air quality research is the use of data mining and machine learning

techniques (ML) to supplement regulatory monitoring networks, often through the use of multiple

additional data sources such as satellite observations, meteorological variables, and geographic in-

formation (e.g., Bellinger et al., 2017; Di et al., 2016; Lightstone et al., 2017; Y. Liu et al., 2018;

Reid et al., 2015; Suleiman et al., 2019; Xi et al., 2015). Data mining includes several distinct

statistical tools that are often used to discern patterns in large datasets, sometimes in an unsuper-
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vised manner, and then use those patterns to create predictions of new or unknown events. ML,

a subgroup of data mining, can create predictor functions from high-dimensional datasets, often-

times creating accurate predictions where traditional statistical models may fail due to underlying

assumptions (Bellinger et al., 2017). Since ML methods can recognize patterns in complex and

large datasets efficiently without making assumptions about the data, they have the potential to aid

interpretations of the drivers of air pollutants and develop highly skilled predictive models (e.g. Di

et al., 2016; Lightstone et al., 2017; Liu et al., 2018; Reid et al., 2015; Suleiman et al., 2019; Xi et

al., 2015). ML methods have already been shown to be more successful at predicting PM2.5 than

traditional chemical transport models in some cases (Lightstone et al., 2017; Xi et al., 2015) and

are generally easier to implement. Techniques such as data mining and ML will become increas-

ingly useful as future satellite missions, LCS networks, and even, perhaps, regulatory monitors

continue to produce ever-larger and more complex datasets.

1.3 Scope of Dissertation

In this dissertation, we conduct quantitative assessments of PM2.5 and its relationship with:

1) smoke-plume heights and satellite AOD over the Western US; 2) low-cost sensor AOD and

meteorological/geographical factors over wintertime Denver; and 3) poverty and racial/ethnic de-

mographics at all US public schools (in conjunction with NO2 concentrations). We do these assess-

ments with the goals of: 1) preparing for future investigations in landscape fires and their impacts

on human health; 2) providing guidance for future use of ML, especially random forests (RF), in

air quality prediction over urban areas; and 3) understanding how the legacy of racial/ethnic and

economic bias has impacted the air quality of our nation’s children. The following paragraphs

describe the direction of each chapter.

Chapter 2 is a research article that was published in Geophysical Research Letters (Cheeseman

et al., 2020). For this paper, we co-located high resolution (1 km) MAIAC smoke plume heights

and AOD with surface PM2.5 observations and planetary boundary layer heights. We quantified

the relationship between AOD and plume height to test the hypothesis that optically thicker smoke
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plumes may be more buoyant. We displayed regional patterns of plume height observations and

their relationship with co-located boundary layer heights. Finally, we quantified the PM2.5:AOD

relationship when smoke plumes either remain in the boundary layer or escape into the free tropo-

sphere.

Chapter 3 is a research article under review at Atmospheric Chemistry and Physics (Cheeseman

et al., 2021). We analyzed measurements taken from a citizen-science field campaign (Citizen En-

abled Aerosol Measurements for Satellites [CEAMS]) that used low-cost monitors deployed from

Nov 14th, 2019 to January 20th, 2020 in Denver, Colorado. We quantified the relationship between

coincident low-cost sub-hourly measurements of PM2.5 and AOD, as well as meteorological and

geographical variables using a RF ML framework. We assessed the added predictability of intra-

city PM2.5 based on whether AOD is used as a predictor. Finally, we describe our ML methods in

detail and discuss how they may be misused in future studies.

Chapter 4 is a letter-length manuscript in preparation for a journal yet to be determined. We

used high-resolution annually averaged PM2.5 (1 km) and NO2 (~2.8 km) estimates to quantify

disparities in air pollutants across residential categories (urban, suburban, town, rural), racial/ethnic

demographics, and poverty levels at US public school locations. We quantified disparities for each

state across poverty and racial/ethnic lines. Additionally we evaluated distinct regional patterns

of disparities and investigated the intersectional nature of residential classification, poverty, and

racial/ethnic demographics as they pertain to air quality at school. We also highlight intra-urban

disparities in the Bay Area of California. Finally, in Chapter 5, we provide a summary of the

conclusions from the aforementioned chapters. We also discuss the implications of this dissertation

and how it may influence future work.
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Chapter 2

The Relationship Between MAIAC Smoke Plume

Heights and Surface PM 1

2.1 Introduction

The Global Burden of Disease (GBD) study estimates that human exposure to PM2.5 (parti-

cles with diameters smaller than 2.5 µm) is the fifth leading risk factor for premature mortality

worldwide (healthdata.org). PM2.5 consists of particles small enough to penetrate deeply into the

lungs, with prolonged exposure resulting in respiratory and cardiovascular diseases (Barregard

et al., 2006; Gan et al., 2017; J. C. Liu et al., 2015). Biomass burning (defined here as wild,

prescribed, and agricultural fires) is a major source of PM2.5 (e.g., Akagi et al., 2011; Koss et

al., 2018). Wildfires have been increasing in severity and frequency in the western United States

(Dennison et al., 2014; Westerling, 2006) impacting PM2.5 (McClure & Jaffe, 2018; O’Dell et al.,

2019), and this trend is predicted to continue (Ford et al., 2018; Spracklen et al., 2009; Yue et al.,

2013). Therefore, the health impacts of biomass burning smoke are important and may become

increasingly so.

Exposure to smoke PM2.5 has been linked to respiratory health impacts (Gan et al., 2017; J.

C. Liu et al., 2015; Reid et al., 2016), higher all-cause mortality rates (J. C. Liu et al., 2015; Reid

et al., 2016), higher hospitalization rates (Gan et al., 2017; J. C. Liu et al., 2017), emergency

room admissions (Wettstein et al., 2018), and low birth weights (Holstius et al., 2012). However,

quantifying the extent and variety of health impacts due to biomass burning smoke is challenging

due to the episodic nature of these events and our inability to estimate exposure accurately (J. C.

Liu et al., 2015).

1Cheeseman, M., Ford, B., Volckens, J., Lyapustin, A., & Pierce, J. R. (2020). The Relationship Be-
tween MAIAC Smoke Plume Heights and Surface PM. Geophysical Research Letters, 47(17), e2020GL088949.
https://doi.org/10.1029/2020GL088949
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Previous estimates of smoke PM2.5 exposure in the United States tend to rely on ground-based

monitoring networks (J. C. Liu et al., 2015). Unfortunately, surface monitors, though accurate,

are sparsely distributed in many regions of the country, making it difficult to capture the heteroge-

neous nature of smoke plumes, especially in rural/remote areas (Lassman et al., 2017). Further-

more, monitoring data often cannot directly distinguish biomass burning smoke from other PM2.5

sources. Alternatively, chemical transport models (CTMs) can produce spatially continuous PM2.5

estimates that can be attributed to specific sources. However, CTMs struggle simulating biomass

burning events, particularly smoke heights (Baker et al., 2016; Lassman et al., 2017; Paugam et al.,

2016; Val Martin et al., 2012). Finally, satellite retrievals of aerosol optical depth (AOD), which

measures light extinction due to aerosols in an atmospheric column, have become increasingly

important for PM2.5 exposure estimates (Cohen et al., 2017; Jerrett et al., 2017). By providing

near-global coverage of clear-sky regions every day, satellite retrievals of AOD can fill the spatial

gaps within monitoring networks. However, most satellite AOD products are from polar-orbiting

satellites, which only provide retrievals during specific daytime overpass times. Furthermore, as

a column-integrated value, AOD products do not provide information on aerosol loading at the

surface.

A common technique for translating AOD to PM2.5 involves establishing a relationship between

co-located PM2.5 and AOD (i.e., the ratio PM2.5:AOD) using either ground-based monitoring net-

works (Engel-Cox et al., 2004; Y. Liu et al., 2007; Wang, 2003) or chemical transport models

(van Donkelaar et al., 2006, 2010). The PM2.5:AOD values are then applied to satellite-retrieved

AOD as a scaling factor to estimate surface PM2.5 (van Donkelaar et al., 2010). However, a crucial

source of uncertainty in estimating PM2.5 from AOD is the vertical profile of aerosol loading in

the atmosphere (Snider et al., 2015; van Donkelaar et al., 2010). This profile is important during

biomass burning events because the vertical profile of smoke depends on the altitude reached by

the plume (i.e., the plume height, PH) (Vernon et al., 2018). For example, if a smoke plume en-

tirely escapes the boundary layer into the free troposphere (i.e., the PH is higher than the PBLH)

the PM2.5:AOD will be small because the surface concentration is low relative to the column total.
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Thus, the common techniques for estimating PM2.5:AOD may fail during smoke events because

regionally averaged PM2.5:AOD from monitors may not be representative of the smoke event, and

chemical transport models often struggle with predicting smoke PHs (Freitas et al., 2006). In fact,

many models prescribe PHs (e.g., all emissions at the surface or within the boundary layer such as

the base model described by Zhu et al., 2018). Therefore, accurate estimates of smoke PH could

improve predictions of PM2.5 concentrations by constraining PM2.5:AOD estimates during smoke

events.

Space-borne PH retrievals are currently available from three sources: (1) the Cloud-Aerosol

LiDAR with Orthogonal Polarization (CALIOP) (Winker et al., 2009); (2) the Multi-angle Imag-

ing SpectroRadiometer (MISR) (Kahn et al., 2007; Nelson et al., 2013); and, more recently, (3)

the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm using the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) instruments aboard both Terra and Aqua

satellites (Lyapustin et al., 2019). Space-borne lidars, such as CALIOP, can capture aerosol layer

heights with high precision but have poor spatial sampling. Space-borne stereo imaging from

MISR has greater horizontal sampling than CALIOP but has global coverage only every 9 days.

Therefore, we use PH from the MAIAC algorithm to investigate the relationship between PH and

PM2.5:AOD ratios. Since MODIS is on both Terra and Aqua satellites, and swaths from different

overpasses can overlap, MODIS can observe a location up to four times a day in the midlatitudes.

Lyapustin et al. (2019) found that MAIAC and MISR PH products were in good agreement: 60%

of MAIAC PH were within 500 m of the MISR PH but ~450 m lower on average. Similar statistics

were found in the comparison of MAIAC and CALIOP PH retrievals, namely a 216 m low bias in

MAIAC (Lyapustin et al., 2019). The low bias compared to MISR and CALIOP is to be expected

because MISR and CALIOP PH retrievals tend to be associated with plume tops, while MAIAC

estimates the effective PH using a thermal technique that is reliant on 11 µm absorption of emitted

gases entrained in the plume. Therefore, MAIAC retrievals may be associated with altitudes closer

to plume tops only for plumes that are very optically thick at 11 µm. Due to MAIAC’s use of 11

µm absorption optical thickness, we hypothesize that there may be a relationship between MAIAC
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PH and the extinction AOD (if AOD is correlated with the absorption optical depth at 11 µm).

However, PH and AOD may also be positively correlated due to a physical mechanism: Smoke

plumes from extreme wildfire events generally have higher emissions and greater buoyancy than

smaller, optically thinner, plumes, which may cause a positive correlation between PHs and AOD

values.

In this study, we present regional characteristics of PH from MAIAC over the United States,

and we investigate (1) the spatial relationship between PH and PBLH to estimate the frequency

that smoke may be lofted above the boundary layer, (2) the correlation between PH and AOD, and

(3) the relationship between PM2.5:AOD and PH:PBLH over the western United States.

2.2 Data and Methods

For all data sources described below, we gathered data over the contiguous United States dur-

ing the months of July to September over a 9 year period (2010-2018). We limited our analysis to

these 3 months each year because they are generally the most active wildfire months in the west-

ern United States (Brey et al., 2018). When analyzing the relationship between PM2.5:AOD and

PH:PBLH, we limit our analysis to the western United States, which we define as the contiguous

United States west of -103° longitude.

We used AOD and PH data from the daily MAIAC atmospheric product MCD19A2, which is

part of the MODIS Collection 6 record (Lyapustin et al., 2018, 2019; Lyapustin & Wang, 2018). It

should be noted that the PH data in MAIAC are labeled as “plume injection height.” However, as

the PH may change after injection but still be measured by MAIAC, we refer to the MAIAC smoke

height product as “plume height.” It should also be noted that each MAIAC retrieval only provides

a single PH altitude, regardless of the plume vertical depth. MODIS has global coverage every 1–2

days at ~10:30 local time (Terra) and ~13:30 local time (Aqua). We use both Terra and Aqua orbits

separately to test how the different overpass times (morning and afternoon, respectively) affect our

analysis. Smoke plumes have high concentrations of gases that absorb 11 µm radiation such as

ammonia, nitric acid, and some VOCs. For plumes with high enough gas concentration, the smoke
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pixels have a colder brightness temperature (Tb) at 11 µm relative to nearby smoke-free pixels.

MAIAC uses the thermal contrast between detected smoke and neighboring smoke-free pixels

(∆Tb) to estimate PH assuming a lapse rate. Lyapustin et al. (2019) found that three conditions

are necessary to have confidence in PH retrievals: (1) MAIAC detected smoke (Lyapustin et al.,

2012a, b) and the total AOD in the 0.47 µm channel is high enough (≥0.8) to ensure sufficient

gaseous absorption at 11 µm; (2) there must be enough nearby smoke/cloud-free land surface

pixels available to determine the thermal contrast (∆Tb); and (3) the contrast is negative (∆Tb

< 0), that is, the smoke pixel is “colder” than the background. The current version of MAIAC

assumes a fixed 6.5° km−1 lapse rate to convert from brightness temperature to PH, which could

introduce errors. The next public version of MAIAC will use reanalysis meteorology to achieve

more realistic spatiotemporal variability in lapse rates. We used the 0.55 µm total AOD in the

MCD19A2 product. Finally, Lyapustin et al. (2019) recommends that MAIAC PH retrievals only

be used within a buffer distance of 75-150 km away from the detected fire hotspots (reported in

MAIAC QA) because of poor observed agreement between MISR and MAIAC over transported

smoke. This poor agreement is likely due, in part, to the dilution and short chemical lifetimes of

gases that absorb 11 µm. Thus, we repeat our analysis using MAIAC retrievals only within 150

km of detected fires and find similar qualitative results, but a 67% reduction in data.

We used in situ PM2.5 measurements from the Environmental Protection Agency’s (EPA) Air

Quality System (AQS) monitoring network (https://aqs.epa.gov/aqsweb/airdata.html). The AQS

network includes federal, state, and tribal monitors in both rural and urban areas. Measurements

were taken from sites using the federal reference method (FRM) (EPA parameter code 88101)

and acceptable non-FRM methods (EPA parameter code 88502) in the western United States (as

defined above), and we used 24 hr averaged data.

Planetary boundary layer heights (PBLH) from the National Center for Environmental Pre-

diction (NCEP) North American Regional Reanalysis (NARR) product (Mesinger et al., 2006)

were used in our analysis. The NCEP-NARR is an extension of NCEP’s Global Reanalysis and

assimilates precipitation and weather observations, land surface models, and other supporting in-

12



formation in order to predict a suite of atmospheric variables including PBLH. The PBLH is output

eight times daily (3-hourly) as instantaneous values with a 32 km grid resolution.

In order to observe the relationship between PH:PBLH and PM2.5:AOD, we matched the PH,

AOD, PM2.5, and PBLH data sets in space and time. The PBLH was linearly interpolated spatially

from the NCEP grid (32 km) to the MAIAC grid resolution (1 km) and temporally interpolated

to satellite overpasses. Next, we colocated the MAIAC and NCEP data to the EPA-AQS sites by

averaging all PH, AOD, and PBLH data within a 10 km radius from each monitor (results were

similar when using a 5 km radius but with less data included). We used the averages of the AOD,

PH, and PBLH data within 10 km of each EPA site independently, even if there is overlap between

data selected for each EPA monitor (i.e., if monitors are close together). Finally, we found the

ratio of colocated PH:PBLH and PM2.5:AOD around each EPA site. It should be noted that the

variability in the AOD during smoke events was low relative to the variability in PM2.5, and thus

PM2.5 described most of the variability in the PM2.5:AOD values used in our analysis.

2.3 Results

We show an example of the different data sets used in this study in Figure 2.1, which displays

PH and AOD retrievals, PM2.5 concentrations, and PBLH for 18 August 2016 in central Califor-

nia. There were three major fires in the region on this day: the Cedar, Soberanes, and Chimney

fires (https://fire.ca.gov/) (Figure 2.1a). There is a strong gradient in AOD between the plumes and

background air (Figure 2.1b). This scene displays the potential usefulness of satellite-retrieved

PH. For example, the Cedar fire shows a clear smoke plume with high AOD (Figure 2.1b) but

relatively low PH (Figure 2.1c) and PH:PBLH (Figure 2.1d) values. This indicates that the smoke

plume is remaining within the boundary layer; thus, we would expect high PM2.5 concentrations

downwind of the fire as confirmed by enhancements in PM2.5 measured at the downwind monitor.

The Soberanes fire, on the other hand, shows relatively high PH and PH:PBLH and the downwind

monitors of this fire, though clearly below a layer of smoke indicated by the AOD, do not show

large PM2.5 enhancements. These examples indicate that satellite-retrieved PH may be indicative
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of the PM2.5:AOD relationship for smoke plumes. It should be emphasized that the PM2.5 mea-

surements shown in Figure 2.1 are 24 hr averages, which means the reported PM2.5 may not be

representative of the aerosol concentrations during the satellite overpass time. The 24 hr PM2.5

averaging could explain why some monitors indicate high PM2.5 concentrations (~15-20 µg m−3)

downwind of the Chimney fire even though the AOD is relatively low (~0.2) (Figure 2.1b).

Figure 2.1: (a) MODIS Terra true-color image of multiple fires in California on 18 August 2016 from NASA
Worldview (https://worldview.earthdata.nasa.gov/). The red dots indicate MODIS thermal anomalies from
worldview. (b) Terra MODIS-MAIAC AOD measurements, 24 hr mean PM2.5 from EPA-AQS monitors
(filled triangles), and Terra MODIS thermal anomalies (red dots). (c) Terra MODIS-MAIAC PH retrievals
and repeated 24 hr mean PM2.5 and thermal anomalies. (d) The ratio of MODIS-MAIAC PH and colocated
PBLH and repeated 24 hr mean PM2.5 and thermal anomalies.

Figure 2.2 shows large regional differences in the number of days with PH retrievals and their

relationship to colocated PBLH for July to September across 2010–2018. For this time period, the

MAIAC algorithm identified an order of magnitude more days with PH retrievals on the West Coast

of the United States and northern Rockies than the East Coast for both Aqua and Terra retrievals

(Figures 2.2a and 2.2b). The West Coast and a few states in the eastern United States generally have
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the highest percentages of PH:PBLH that are greater than 1.2 (i.e., PH ≥ PBLH * 1.2), which we

use as a proxy here to indicate plumes that may have escaped the boundary layer (the sensitivity of

this ratio for determining PM2.5:AOD is discussed later). We repeated this analysis while including

PH retrievals greater than 150 km away from MAIAC thermal hotspots (Figures A.3–A.5 in the

supporting information) and found similar regional patterns. We suspect that the high percentage

of smoke plumes exceeding our PH:PBLH > 1.2 criteria in some eastern states may be due to

free-tropospheric long-range transport of smoke from the western United States or Canada. See

the supporting information for examples of long-range transport of smoke with PH:PBLH > 1.2

(Figures A.6 and A.7). These states have significantly fewer PH retrievals (Figure A.2); thus, a

small number of long-range transport events could bias the average PH high in these states.

Figure 2.2: The number of days with MAIAC PH retrievals during the study period in each state for Terra
(a) and Aqua (b), and the percentage of PH retrievals that are greater than PBLH by a factor of 1.2 from
Terra (c) and Aqua (d).

In addition to analyzing regional characteristics of PH, we investigated the relationship between

PH and AOD. We hypothesized there may be a relationship between MAIAC PH and extinction
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AOD for two reasons: (1) larger, more optically thick plumes, also tend to be more buoyant, and

thus optical thickness may be correlated with PH; and (2) the MAIAC thermal technique’s reliance

on absorption optical thickness may lead to a positive correlation between PH and the AOD of

the plume. We examine this hypothesis by segregating PH values into AOD bins (Figure 2.3) and

calculating a 25th, 50th, and 75th quartile for each AOD bin. All of the 25th, 50th, and 75th

quartiles of PH distributions (calculated for each AOD bin) increase with increasing AOD (Figure

2.3), and the correlation between mean AOD and mean PH for each bin is high (R2 = 0.97, slope =

527). However, in the absence of binning and averaging, the correlation of colocated PH and AOD

is low (R2 = 0.09, slope = 546 m) (Figure A.8). Though there is clearly a relationship between

PH and AOD, the relative contributions of (1) the physical “buoyancy” mechanism and (2) the

relationship between absorption optical depth at 11 µm and AOD are still unknown. However, we

suspect that the physical buoyancy mechanism may be the leading contributor because we repeated

this analysis using data only within 150 km of detected fires (Figure A.9), which is the distance

within which MAIAC PH showed good agreement with MISR and CALIOP (Lyapustin et al.,

2019), and found similar results with and without the buffer.

Figure 2.3: The 25th, 50th, and 75th quartiles of PH of colocated PH and AOD retrievals for binned AOD
values. The number of PH retrievals for each AOD bin are shown at the top.
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As discussed in section 1, PM2.5:AOD is used to translate satellite AOD into PM2.5 estimates.

However, the PM2.5:AOD value is especially uncertain during smoke events because smoke may

be injected into the boundary layer or the free troposphere (Lassman et al., 2017). Thus, we

hypothesized that PH could be used to constrain PM2.5:AOD during smoke events because smoke

plumes injected entirely into the free troposphere would cause low PM2.5:AOD ratios downwind

of the fire because the smoke would lead to high AOD values but smaller PM2.5 enhancements.

Alternatively, if smoke remains trapped in the boundary layer, PM2.5 would be enhanced, leading

to relatively higher PM2.5:AOD values. To test this hypothesis, we assess the relationship between

PH:PBLH and PM2.5:AOD using MODIS-MAIAC Terra (Figure 2.4a) and Aqua (Figure 2.4b). We

find that the 25th, 50th, and 75th quartiles of PM2.5:AOD decrease monotonically (other than the

highest PH:PBLH bin for Aqua and the central bin for Terra) with increasing PH:PBLH bins. Note

that the bins are spaced unevenly due to the lower number of high PH:PBLH values colocated with

PM monitors. The variability of PM2.5:AOD is large within most PH:PBLH bins less than 2. The

high variability in PM2.5:AOD is likely because (1) high PH:PBLH does not preclude high PM2.5

concentrations and (2) monitor 24 hr averages may not be representative of smoke concentrations

at satellite overpass times. Linear-regression models were fit to all colocated PH:PBLH versus

PM2.5:AOD data points (Figure A.10) and binned means of PH:PBLH and PM2.5:AOD (Figure

2.4) for the combined Aqua and Terra record. The linear models were created as follows:

PH : PBLH = m× [PM2.5 : AOD] + b, (2.1)

The slopes (m) were -9 µg m−3 and the intercepts (b) were 48 µg m−3 both when using all

individual data points (no binning and averaging) and when using the mean PM2.5:AOD values in

the PH:PBLH bins. The correlation coefficients were -0.12 when using all individual data points

and -0.97 when using the mean PM2.5:AOD values in the PH:PBLH bins. The low correlation when

fitting all individual data points is due to the spread of PM2.5:AOD when PH:PBLH is low. On the

other hand, the strong anticorrelation when using the mean PM2.5:AOD values in the PH:PBLH

bins shows that PH:PBLH has skill for predicting PM2.5:AOD for large collections of data. The
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overall relationship displayed in Figure 2.4 and the results of the linear model are consistent with

our hypothesis that a smoke plume injected higher into the atmosphere (relative to the PBLH) will

result in enhanced AOD but a relatively low PM2.5. We found that removing data outside of the

150 km buffer distance (PH retrievals >150 km away from a thermal hot spot) did not change the

main result, (Figure A.11), though the number of data points decreased by over half.

Figure 2.4: The PM2.5:AOD as a function of PH:PBLH using PH and AOD estimates from Terra (a) and
Aqua (b), PBLH, and PM2.5 measurements for all colocated data (within 10 km of a monitor) over the
western United States for July to September between 2010 and 2018. The number of observations in each
PH:PBLH bin is listed above each box plot. The horizontal lines on each box indicate the 25th, 50th, and
75th percentiles of each PM2.5:AOD distribution. The whiskers indicate the 10th and 90th percentiles of
each distribution. The box-and-whisker color ranges from blue to red indicating an increase in PH:PBLH.

2.4 Conclusions

This work adds to the analysis of the MAIAC “plume injection height” product (Lyapustin

et al., 2019), and our results suggest that incorporating PH information could improve PM2.5 es-

timates in smoke plumes when aggregating across many smoke events. However, more work is

needed to assess the value of PH for predicting PM2.5 from individual AOD retrievals. We found

that the western United States and northern Rockies had the highest number of days with PH

retrievals (Figure 2.2) and relatively high average PH (Figures A.1a and A.1b in the supporting

information). We also found a correlation between the mean PH values within AOD bins from
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MAIAC, which may indicate that optically thicker smoke plumes are associated with higher PHs,

but possibly the correlation may be due to the MAIAC PH retrieval algorithm, which can have

a low bias for thin plumes. Finally, our analysis found that, on average, increasing PH:PBLH

values are associated with decreasing PM2.5:AOD, which indicates that smoke plumes escaping

the boundary layer are associated with lower PM2.5 concentrations. Therefore, this relationship

could improve satellite-derived estimates of PM2.5 during smoke events by providing a constraint

on PM2.5:AOD values if many AOD and PH retrievals are used in aggregate. This relationship

could be especially impactful in regions where surface monitors do not exist. However, there is

variability for all PH:PBLH bins, where high PH:PBLH cases may have smoke that extends below

into the boundary layer and low PH:PBLH cases may be free-tropospheric plumes that are not

opaque at 11 µm.

There are several additional aspects of the MAIAC PH retrievals that should be investigated

in order to improve their ability to constrain PM2.5 and provide more accurate PH constraints for

CTMs, such as (1) understanding the accuracy of MAIAC PH as a function of AOD; (2) quantifying

the chemical components of the plume that dominate the optical absorption at 11 µm and how the

relative concentrations of these components change with dilution, chemistry, fire intensity, and fuel

type; (3) studying the effect of regional smoke mixing with fresh smoke; and (4) testing MAIAC

PIH against recent field airborne campaigns (e.g., WE-CAN, FIREX-AQ) with lidar measurements

of vertical plume extent.

2.5 Funding and Data Availability

This work was funded by NASA Grant 80NSSC18M0120. Data sets for this research are avail-

able in these in-text citations: Lyapustin et al. (2019), Lyapustin and Wang (2018), Mesinger et al.

(2006), and the EPA-AQS website (www.epa.gov/outdoor-air-quality-data). NARR data were pro-

vided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their website (psl.noaa.gov/data/gridded/data.narr

MAIAC data can be found at the USGS website (https://lpdaac.usgs.gov/products/mcd19a2v006/).

We acknowledge the use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov).
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Chapter 3

Investigating Sub-City Gradients of Air Quality:

Lessons Learned with Low-Cost PM2.5 and AOD

Monitors and Machine Learning2

3.1 Introduction

Exposure to high concentrations of airborne particulate matter, especially particles with aero-

dynamic diameters smaller than 2.5 µm (PM2.5), has adverse effects on public health (Forouzanfar

et al., 2016; Hennig et al., 2018; Lelieveld et al., 2019; Pope et al., 2002; Schwartz et al., 1996).

Increased exposure to PM2.5 also imposes large economic burdens due to medical costs, welfare

loss, disruptions to work productivity, and elevated crime rates (Burkhardt et al., 2019; Deche-

zleprêtre et al., 2019). As PM2.5 concentrations are generally higher in urban areas, this burden

can be especially large in major cities (Anenberg et al., 2019; Marlier et al., 2016). Research has

shown that urban concentrations of PM2.5 can be uniform with relatively larger heterogeneity in

black carbon, organic aerosol, and particle number concentrations (Gu et al., 2018; Saha et al.,

2021), though this likely varies by city. In addition, there can still be sub-city spatial and sub-daily

temporal gradients in PM2.5 that are difficult to measure due to the low spatial density of reference

monitoring networks (Just et al., 2015; Bi et al., 2019; Gao et al., 2015; Wang and Oliver Gao,

2011). Improving predictions of PM2.5 across cities could aid epidemiological investigations into

the public health impacts of poor air quality (Southerland et al., 2021).

Low-cost sensor networks have been increasingly used to supplement reference networks and

increase the spatiotemporal density of PM2.5 measurements (Bi et al., 2020; Gao et al., 2015;

2Cheeseman, M., Ford, B., Rosen, Z., Wendt, E., DesRosiers, A., Hill, A. J., L’Orange, C., Quinn, C., Long, M.,
Jathar, S. H., Volckens, J., & Pierce, J. R. (2021). Technical note: Investigating sub-city gradients of air quality:
lessons learned with low-cost PM2.5 and AOD monitors and machine learning. Atmospheric Chemistry and Physics

Discussions, 1–30. https://doi.org/10.5194/acp-2021-751 (In review)
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Gupta et al., 2018; Snyder et al., 2013). These networks can be deployed by citizen scientists, thus

simultaneously contributing to our understanding of air pollution and increasing public awareness

of air quality issues (Ford et al., 2019; Gupta et al., 2018). For example, the PurpleAir network

(https://www.purpleair.com), which uses light-scattering sensors to estimate PM2.5 at sub-hourly

timescales, has thousands of citizen-deployed monitors across the US and has been growing rapidly

over recent years (Delp and Singer, 2020; Krebs et al., 2021). Despite the usefulness of low-

cost sensor networks, they are often limited by their lower quality monitors, which can result in

moderate to large uncertainties in their measurements (Gupta et al., 2018; Snyder et al., 2013).

Furthermore, many regions in the US lack both low-cost and reference measurements of PM2.5,

which limits our understanding of public exposure to air pollutants.

Satellite observations of aerosol optical depth (AOD), an estimate of light extinction due to

aerosols in an atmospheric column, can provide near-global coverage of clear-sky regions every

1-2 days; these observations are useful for filling in the gaps of PM2.5 monitoring networks. Since

satellite-retrieved AOD does not provide information about surface PM2.5 directly, various tech-

niques have been developed to leverage AOD measurements to inform surface PM2.5 predictions.

These techniques can generally be grouped into two categories: geophysical and statistical ap-

proaches. The geophysical approach to translate satellite AOD into PM2.5 uses chemical transport

models (CTMs) to simulate the relationship between PM2.5 and AOD (Hammer et al., 2020; Liu

et al., 2004, 2005; van Donkelaar et al., 2006, 2013, 2011) on global to local scales. The modeled

PM2.5:AOD ratios are then multiplied by the satellite AOD to derive an estimate of PM2.5. While

this approach is useful for annual-average concentrations (Hammer et al., 2020; van Donkelaar et

al., 2010) and on shorter timescales for some locations and seasons (van Donkelaar et al., 2012),

there are many limitations to this approach. For example, most satellites that capture AOD are

polar-orbiting satellites, which only provide coverage during specific daytime-only (and cloud-

free) overpass times, and hence fully rely on the model’s predicted diurnal cycles for daily mean

PM2.5 estimates. Modeled PM2.5:AOD relationships have also been found to be a large source

of uncertainty in satellite-derived PM2.5 (Ford and Heald, 2016; Jin et al., 2019), and a lack of
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reference measurements of PM2.5:AOD means they are difficult to validate. Monitoring networks

such as SPARTAN have been developed to provide high fidelity PM2.5:AOD observations but the

monitoring sites are expensive and there are few worldwide (Snider et al., 2015, 2016). Finally, the

resolution of satellite AOD measurements and CTM grid cells tends to be too coarse (e.g., >10 km)

to study the fine-scale spatiotemporal resolutions necessary to capture the heterogeneity of PM2.5

concentrations in urban areas, although recent satellite AOD products (Lyapustin et al., 2018) and

high-resolution simulations (Jena et al., 2021; Kirwa et al., 2021) may remedy these issues.

Alternatively, satellite AOD retrievals can be incorporated into a statistical model to estimate

surface PM2.5. The simplest of these approaches uses co-located satellite AOD and surface PM2.5

measurements in a linear regression model (Engel-Cox et al., 2004; Koelemeijer et al., 2006).

However the relationship between AOD and PM2.5 is complex and can vary due to changes in the

aerosols’ vertical distribution, water content, speciation, optical properties, and size distribution

(Ford and Heald, 2016; Snider et al., 2015; van Donkelaar et al., 2010, 2006, 2013). Thus, many

techniques for PM2.5 estimation have been developed to incorporate information from many data

sources including but not limited to AOD, meteorology, and geographic information such as land-

use regression (Hoogh et al., 2016; Song et al., 2014) and geographically weighted regression

(e.g. Lassman et al., 2017), not all of which are inherently suited to estimate both spatial and

temporal variability in PM2.5 concentrations. Even more complex computational and machine

learning (ML) methods are also becoming increasingly common in estimating PM2.5 (e.g. Di et

al., 2016; Lightstone et al., 2017; Liu et al., 2018; Reid et al., 2015; Suleiman et al., 2019; Xi et

al., 2015). Already, ML methods have been shown to be more accurate at predicting PM2.5 than

traditional CTM methods under certain conditions (Lightstone et al., 2017; Xi et al., 2015), and

they can require less expertise to operationalize than CTMs.

ML represents a range of computational methods that build predictive models without explicit

programming and with limited human intervention. One of the benefits of ML methods is that

most can capture complex, non-linear relationships between many predictors (e.g., wind speed,

AOD, land use) and a target variable (in this case, PM2.5) in order to produce explicit predictions
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of the target variable. Generally, ML models find relationships between predictors and the target

using a training dataset, which is then validated using an independent testing dataset. Although the

training and testing process is done with little human interference, the complexity and flexibility of

ML models must be decided beforehand, and it is difficult to know what model configurations will

result in the highest prediction skill. Thus, models must be tuned to find optimal configurations

that reduce the risk of overfitting or underfitting the training dataset. As ML methods become more

widely used, transparency in the execution of these methods and how they are validated will be key

for the research community to ensure the quality of results obtained.

In this work, we use ML methods to investigate spatiotemporal variability in wintertime Den-

ver. This work uses low-cost sensor measurements from the Citizen Enabled Aerosol Measure-

ments for Satellites (CEAMS) project in addition to regulatory PM2.5 measurements. The CEAMS

project has (1) developed a low-cost monitor that can capture sub-hourly coincident PM2.5 and

AOD measurements and (2) trained citizen scientists to deploy them to study fine-scale spatiotem-

poral variability in the relationship between PM2.5 and AOD. The CEAMS team conducted a de-

ployment of these monitors during the winter of 2019-2020 in Denver, Colorado, United States

(hereafter just “Denver”). To our knowledge, this was the first high-density network of low-cost,

coincident sub-hourly AOD and PM2.5 sensors deployed in a single city. We investigate the poten-

tial drivers of fine-scale PM2.5 spatiotemporal variability in wintertime Denver by incorporating

meteorological and geographical variables into a random forest (RF) ML regression framework

(Breiman, 2001). We use a permutation metric to assess the relative importance of different pre-

dictor variables. We test whether co-located AOD measurements are identified as an important

predictor of PM2.5 and whether they increase the overall RF prediction skill compared to RFs that

only used geographic and meteorological variables. The RF method was used here because it has

been used to skillfully estimate PM2.5 in past studies (Considine et al., 2021; Reid et al., 2015).

We also compare our analysis of CEAMS PM2.5 with results using reference PM2.5 measurements

from the Environmental Protection Agency (EPA). Finally, we discuss our RF methods in detail
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and discuss how decisions made during data processing and model configuration may have influ-

enced our results and the subsequent interpretation.

3.2 Methods

3.2.1 Data Sources

The CEAMS team developed two generations of low-cost monitors called the Aerosol Mass

and Optical Depth (AMOD) monitors (Wendt et al., 2021). The AMODs used in this study are

second-generation instruments (i.e., AMOD-v2) but, as the first version is no longer in use, we

simply refer to the devices as AMODs herein. The CEAMS team trained citizen scientists to

deploy AMODs in several different campaigns in northern Colorado (e.g. Ford et al., 2019). Here

we analyze data from the CEAMS deployment during the winter of 2019-2020 in Denver (Figure

3.1). Thirty-two participants were recruited from across Denver through collaboration with the

Community Collaborative Rain, Hail and Snow (CoCoRaHS) citizen scientist network (Cifelli et

al., 2005) and other media outreach. Participants were trained by CEAMS researchers to set up

devices using a mobile application (Quinn et al., 2019) and replace aerosol filters once a week.

Measurements were taken from 14 November 2019 to 20 January 2020.

The AMOD is a low-cost ($1,200 manufacturing cost) PM2.5 and AOD monitor that measures

PM2.5 in two ways: (1) real-time measurements using an inexpensive light-scattering sensor and

(2) time-integrated measurements by collecting particles onto a filter using a size-selective cyclone

separator and an ultrasonic pumping system (Volckens et al., 2017; Wendt et al., 2019, 2021).

The real-time PM2.5 sensor is the Plantower PMS5003, which has been widely deployed by net-

works such as PurpleAir, and validated in past work (Bulot et al., 2019; Sayahi et al., 2019). The

AMOD also measures AOD at four discrete wavelengths (440, 500, 675, and 870 nm) using opti-

cally filtered photodiodes. The AMOD uses a solar tracking procedure that allows for automated

AOD measurements throughout the day (Wendt et al., 2021). When AMODs were co-located with

Aerosol Robotics Network (AERONET) AOD monitors in a series of validation experiments, the

mean absolute error was 0.057 over AOD values ranging from 0.030 to 1.51 (Wendt et al., 2021).
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Figure 3.1: Map of elevation (Amante and Eakins, 2009) over Denver, CO, with locations of CEAMS
Aerosol and Mass Optical Depth (AMOD) monitors (purple), EPA reference PM2.5 monitors (red), outlines
of the GEOS-FP grid-boxes (black), and outlines of the greater Denver-Aurora area (blue; based on carto-
graphic files from 2015 TIGER/Line Shapefiles).

Real-time PM2.5 and AOD can be sent to a central server by the AMOD over Wi-Fi every 20-

minutes. The real-time PM2.5 values used in this study were an average of instantaneous 1s values

reported every 15-seconds over a period of 2.5 minutes (after a 30 second warm up period), taken

every 20 minutes.

The real-time PM2.5 data were quality controlled for possible sources of error and bias. First,

any real-time PM2.5 measurement reported over 500 µg m−3 was removed based on the manu-

facturer’s guidance, similar to (Lu et al., 2021). Second, the AMOD PM2.5 measurements were

aggregated in two different temporal resolutions: 1-hour and 24-hour averages. The 24-hour aver-

aged PM2.5 measurements were only used if there were measurements for at least ¾ of the day to

ensure it was representative of the entire day. Third, to correct for known biases of Plantower data

tied to relative humidity (RH), we applied the following simple additive model in Eq. (1) tested by

the US EPA (Barkjohn and Clements, 2020):
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PM2.5 = 0.524×AMODCF1 − 0.0862×RH+ 575, (3.1)

The Plantower reports multiple PM2.5 values based on different corrections, but AMODCF1

refers to PM2.5 reported by the Plantower that was not corrected by the manufacturer’s built-in

atmospheric correction. The RH values used to correct each PM2.5 data point were taken from the

Plantower sensor as well. The Barkjohn and Clements (2020) model was developed specifically

for the low-cost PurpleAir PM monitoring network, which uses either the PMS5003 or PMS7001

Plantower sensors. In this study, the Plantower PM2.5 data were not corrected using the time-

integrated filter measurements of PM2.5 taken by the AMODs as in Ford et al. (2019).

The AMOD 500 nm AOD data were quality controlled based on a procedure previously de-

scribed by Ford et al. (2019) that is based on similar methods used by AERONET. As long as the

sun is greater than 10 degrees above the horizon (estimated by the solar tracking algorithm), the

device will attempt to take 3 AOD measurements, or a triplet, within a 1-minute period at the start

of each 20-minute interval. We did not require that AOD was measured over ¾ of the day, as we

did with PM2.5, since successful AOD measurements were less frequent and similar measurements

from satellites only capture 1-2 times per day. Quality control and cloud screening were then ap-

plied in post-processing on each triplet at each wavelength. If less than 2 measurements per triplet

attempt were taken or the range of AOD values was too large (>0.02) at any wavelength, then

no measurements from that interval were used in this analysis. AOD was also filtered to remove

measurements with air mass factors > 5 or an Ångström exponent < 0. The Angstrom exponent

was measured between the 440 nm and 875 nm wavelengths. Finally, we assumed that 500 nm

AOD values that were outside of the range 0-1 were likely the result of measurement errors, such

as cloud contamination, though we acknowledge this may be wrong for dust or smoke-impacted

scenes (which are uncommon in wintertime Denver).

We used 24-hour averaged PM2.5 measurements from the Environmental Protection

Agency’s (EPA) Air Quality System (AQS) network from eight sites based in Denver

(https://aqs.epa.gov/aqsweb/airdata.html) as shown in Figure 3.1. We limited our analysis to the
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eight sites that use federal reference methods or federal equivalent methods for PM2.5 and report

local conditions (EPA parameter code 88101). We show in Table B1 the characteristics of each

EPA monitoring site used in this study. Since EPA AQS PM2.5 data is available for multiple years,

we analyze data from November 1st - January 31st for the winters of 2017-2018, 2018-2019, 2019-

2020. In Section 3.3, we choose to show results using the three years of data rather than limiting

to the time period of the CEAMS deployment. However, we did the analysis for both time periods,

and as we will discuss, the EPA RF results are similar, though noisier, if we limit EPA data to the

time period of the CEAMS deployment.

We used meteorological data (Table 3.1) from the Goddard Earth Observing System forward-

processing dataset (GEOS-FP) provided by the Global Modeling and Assimilation Office. GEOS-

FP is produced with a native resolution of 0.25° (longitude) x 0.3125° (latitude) ( ~25 km hori-

zontal resolution) with 72 hybrid vertical layers. The GEOS-FP data used were hourly or 3-hourly

time averaged, depending on the variable. The 3-hourly data were linearly interpolated to hourly

time resolution. Finally, all of the GEOS-FP variables were linearly interpolated spatially to the

CEAMS and EPA monitor locations to better relate PM2.5 observations with the environment for

RF predictions.

We used multiple spatially varying datasets to describe each CEAMS and EPA monitoring

location. Elevation information at each monitor location was extracted from the Global Multi-

resolution Terrain Elevation Data 2010 (GMTED2010) provided by the US Geological Survey

(USGS) and the National Geospatial-Intelligence Agency (NGA) (Danielson and Gesch, 2011).

The GMTED2010 data used in this analysis were at a 15-arc second (450 meters) horizontal res-

olution, which provides a unique elevation value for each CEAMS AMOD and EPA site. The

slope of the terrain at the dataset resolution was calculated from GMTED’s elevation data using

QGIS. Additionally, we considered two predictors that have been found to be significant in land

use regression (LUR) modeling: population density and travelled miles. We used census tract

population density estimates from the Colorado Department of Public Health and Environment

(CDPHE) (https://data-cdphe.opendata.arcgis.com) as a predictor in our RF models. Population
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density estimates on the CDPHE site, measured in population density per square mile of land

area within the given census tract, are directly from the 2013-2017 American Community Sur-

vey. Finally, we also incorporated traffic and road density data into our RF PM2.5 predictions.

We used model-assigned 2020 All-day Traffic Volumes from the Denver travel model, “Focus”

(Model Cycle: RTP-2020 and Focus 2.3; https://drcog.org/services-and-resources/data-maps-and-

modeling/travel-modeling) developed by the Denver Regional Council of Governments. This data

includes shapefiles of large, medium, and small (i.e., arterial, collector, and local) road segments

and a model estimate of annual average traffic volumes on each segment, which is measured in

vehicles that traveled on each segment per year. We determined the length of each road segment

within a 500 m buffer (i.e., intersection length) around each CEAMS and EPA monitor and then

multiplied the intersection lengths by the traffic volumes of each segment, thereby producing an

estimate of miles traveled by vehicles per year within 500 m of each monitor. As will be shown

later, both population density and traveled miles were not found to be significant in estimating

variability in PM2.5 and hence we decided not to include any more LUR predictors in our model.

A more comprehensive dataset of LUR predictors could be used in conjunction with geographical

and meteorological predictors in future RF modeling.

3.2.2 Random Forest Models

To investigate the complex relationships between meteorology, geography, and air quality as

well as the value that AOD can add to predicting air quality, we used RF ML regression models. RF

models are made up of a group of unique and weakly correlated decision trees that are leveraged

together to make a prediction. A decision tree begins with a random subset of the training data

at the first node (i.e., the root node) and successively splits the data into branch nodes (Figure

3.2). Here, a mean value of PM2.5 is predicted to represent all the samples in each node and the

mean squared error is found. The data samples are then split at each branch node using a true or

false question about one of the predictors (e.g., “is the temperature > 290 K?”), which is chosen

to reduce the mean squared error of the samples in the following nodes. This process continues
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until the decision tree reaches its termination criterion, such as when there are not enough samples

to form a new branch node or the tree depth (i.e., number of branches) reaches some maximum

set beforehand. At this point leaf nodes are formed with final predictions. These trees are built

during the training process and then the testing data will follow the split nodes until they arrive at

leaf nodes, which provide predictions for each value. This process is repeated using each tree in

the forest, and the final prediction for each testing sample is given as an average of the predictions

across all of the trees. The strength of RF models is that they leverage predictions from many

weakly correlated decision trees, which helps protect the model against biases. The RF ensures

that decision trees are weakly correlated and unique by giving a random subset of the samples and

predictors to each decision tree, and another random subset of the predictors to choose from at each

branch node during the training process. In this study, we created RF models with the scikit-learn

Python package (Pedregosa et al., 2011) to predict the spatial and temporal variability of PM2.5

using the predictors in Table 3.1.

Figure 3.2: Example schematic of a random forest decision tree. The root and branch nodes are in blue,
while the leaf nodes, which hold the final predictions, are in green. The black lines represent a splitting of a
branch node into two more nodes.
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Table 3.1: Predictor variables used in our RF models. The † symbol means that daytime (11am-3pm) and
nighttime (11pm-3am) averages of these variables were used as separate predictors when using the 24-hour
averaged PM2.5 from the CEAMS and EPA dataset. For hourly data, these predictors were taken from the
same location and hour of the PM2.5 data.

Predictors Description Units Data Source Models Used In

Temp† Surface skin
temperature

Kelvin GEOS-FP All CEAMS + EPA

RH† Relative humidity % GEOS-FP All CEAMS + EPA
Wind
Speed †

Wind speed
at 10m height

m s−1 GEOS-FP All CEAMS + EPA

U∗† Friction velocity m s−1 GEOS-FP All CEAMS + EPA

Precip † Precipitation
total

inches GEOS-FP All CEAMS + EPA

Cloud
Frac†

Cloud total
fraction

N/A GEOS-FP All CEAMS + EPA

LWGNT † Longwave
net radiation

W m−2 GEOS-FP All CEAMS + EPA

SWGDN †

Shortwave
downwelling
radiation

W m−2 GEOS-FP All CEAMS + EPA

PBLH † Planetary boundary
layer height

meters GEOS-FP All CEAMS + EPA

Elevation
Elevation above
sea level

meters
GMTED
1km grid

All CEAMS + EPA

Slope Terrain slope degrees
calculated
from GMTED

All CEAMS + EPA

Pop
Density

Population density
people
per mi2

US
Census

All CEAMS + EPA

Traveled
miles

Annual mean miles
traveled within
500m of monitor

mi yr−1 Focus 2.3 All CEAMS + EPA

AOD
Daily mean
500nm AOD

dimen
-sionless

CEAMS
AMODs

CEAMS Test - AOD
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In addition to investigating the relative importance of all of the different variables to predicting

wintertime Denver PM2.5, we also wanted to specifically test the skill that AOD adds to the pre-

diction of PM2.5. Thus, we created 3 subsets of both hourly and 24-hour CEAMS data, resulting

in 6 datasets. The first subset, called the “Full Dataset,” used all hourly or 24-hour CEAMS PM2.5

data points and the co-located meteorological and geographic variables; however, it did not use the

CEAMS AOD as a predictor. The second subset, called “Test - AOD,” only used hourly or 24-hour

CEAMS PM2.5 at times and sites where CEAMS AOD was also available. However, similar to

the first subset, the second subset did not use AOD as a predictor. Finally, the third subset, called

“Test + AOD,” is the same as the second, but CEAMS AOD was used as an additional predictor.

Using these 3 subsets allowed for the investigation of three questions: 1) What is the change in

prediction skill of our models if we limit the data to locations and days where AOD is available

but we do not use AOD as a predictor? 2) When we use AOD as an additional predictor, how

important is it for predicting PM2.5 over wintertime Denver using the permutation metric? 3) How

does the overall RF model skill change for predicting PM2.5 after AOD is included as a predictor?

Using models with both hourly and 24-hour data allowed us to analyze the relationships among air

quality, meteorological and geographical factors, and the prediction skill of AOD measurements at

different timescales.

To compare the CEAMS RF results to reference measurements, an additional RF model was

created to predict 24-hour averaged EPA PM2.5. We used the same predictors in our EPA RF model

as we did with the CEAMS data, except for AOD as the EPA monitors do not have co-located AOD

monitors. While there are fewer EPA monitors, they provide three full winters of data, allowing us

to test whether our conclusions are robust when applied to a longer time period. The length of the

datasets used in each CEAMS and EPA model can be found in Table 3.2.

When implementing a ML technique, such as RFs, models must be appropriately tuned. Tun-

ing is the process for configuring the structure and assumptions of the model. For RF models

specifically, the tuning process generally controls the number and complexity of the decision trees

that make up the random forest, the way in which data are sampled, and the number of predictors
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Table 3.2: The number of data points used for the training and testing of each RF model is listed. A dash is
used to indicate that a column is not applicable.

CEAMS Full

Dataset

CEAMS

Test +AOD

CEAMS

Test -AOD

EPA

model

Number of data points

in 24-hour models:
634 307 307 2411

Number of data points

in hourly models:
18969 1043 1043 -

that should be considered at each split in each tree (i.e., hyperparameters). Tuning is necessary

to ensure that the model does not underfit or overfit the training data. For an RF model, over-

fitting the training data occurs when the decision trees begin fitting onto the noise that exists in

the training dataset. As a consequence, the RF could skillfully re-create the PM2.5 values of the

training dataset if fed the same predictor values associated with those training values (i.e., the same

combination of meteorology, geography, etc.) because it learned to predict even the noise of the

training data. However, if this same RF model was given an unseen set of PM2.5 values and their

associated predictors, such as PM2.5 from a different time period or a different monitor, it could

perform poorly. Overfitting can go unnoticed if there is data leakage between the testing and train-

ing data, which could occur if the data in both sets are autocorrelated. Underfitting, on the other

hand, is more straightforward; it occurs when the decision trees are too simple and fail to capture

the relationships that exist between the predictor and target variables. Typically, to ensure against

over or underfitting, the data are split into separate tuning, training, and testing datasets. However,

since our dataset spans only a couple months, we tuned, trained, and tested our RF models using a

cross-validation (CV) method.

As ML methods become popular in air-quality research, we hope that transparency about our

tuning process allows for reproducibility and serves as a guide for future work. We used a k-fold

cross-validation method to tune each model over a selection of hyperparameters (Table 3.3) using

the scikit-learn package GridSearchCV (Pedregosa et al., 2011). GridSearchCV automatically

trains and validates an RF model for every combination of hyperparameters given to it (Table 3.3)

over k number of folds (in our case, 5 folds for each hyperparameter combination). A k-fold CV
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entails chunking the data into k number of equally sized groups, using k-1 number of folds for

training the RF model, validating that RF model using the remaining fold, and then repeating that

process until every fold has been used for validation. We chose the final hyperparameters for

our 6 CEAMS RF models and our EPA RF model based on the best MSE for each combination

of hyperparameters in each model. However, if a similar MSE was found for a hyperparameter

selection that allowed for simpler tree structures (shallower depth, fewer trees, etc.), the simpler

model was chosen instead of the more complex model. For example, Figure B.1a shows that RF

model skill when using 120 trees or 90 trees result in very similar distributions of model skill. Thus,

while tuning the RF model that used the 24-hour CEAMS Full Dataset, we chose 90 trees to limit

the complexity of the model without losing performance. Similarly, we also chose a maximum

depth of 15, 2 samples needed to form a leaf, and 5 samples needed to split a branch node. More

information about the hyperparameters chosen for each RF model is in the Supplement (Figure

B.1-B.7).

Table 3.3: Hyperparameters tested during the tuning of each random forest model.

Hyperparameters in

scikit-learn
Description Values tested

n_estimators Number of trees 20, 30, 40, 50, 60, 70, 90, 120
max_depth Maximum depth of each tree Varies with different models

min_samples_split
Minimum samples needed to
split an internal node

1, 2, 5

min_samples_leaf
Minimum samples needed to
split at a leaf node

1, 2, 4

max_features
Maximum number of predictors
to consider for each split

‘Sqrt’, ‘Auto’

bootstrap
Each decision tree will be
built with a bootstrapped
sample of the dataset

True, False

Once the final model hyperparameters were chosen, the models were trained and tested over

another 5-fold CV. Although the CV method was used in both our tuning and testing methodology,

each was done using a different random shuffling of the data. See Figure B.8 for an example
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of a comparison between CEAMS 24-hour PM2.5 and the RF prediction after validating against

1 testing fold. We estimated the uncertainty in our RF model predictions by calculating 95%

confidence intervals for the performance metrics of each RF model using a bootstrapping method.

Bootstrapping entailed taking random samples of the model predictions and the associated PM2.5

measurements, with replacement, and finding the errors statistics (e.g. the root mean squared

error [RMSE] and the coefficient of determination [R2]) of each random sample. This process

was repeated until a distribution of each error statistic was created. Then the error statistics were

sorted into ascending order and the values at the 2.5% and 97.5% percentiles represented the 95%

confidence interval. Finally, to investigate the relative importance of each predictor for the RF

predictions, a permutation importance metric was used, which tests the change in model prediction

skill after randomly shuffling one predictor of the validation data at a time. Thus, the higher the

permutation importance, the greater loss of prediction skill if that predictor was randomized. To

test the robustness of each permutation importance score, the metric was calculated 100 times

for each predictor for each of the 5 iterations of the 5-fold CV, resulting in a distribution of 500

permutation importance scores per predictor.

The CEAMS and EPA PM2.5 measurements were autocorrelated at both hourly and 24-hour

timescales. This lack of independence can result in information being shared between the training

and testing datasets. This information sharing makes it much easier for the RF models to predict

PM2.5 from the testing dataset because it looks very similar to the data the models were trained

on. Thus, the RF models’ prediction skills can be inflated. In our models, this information shar-

ing occurred when the PM2.5 and predictor variables were randomly shuffled before we chunked

the data into k-folds (i.e., “shuffled k-folds”), which is the default behavior of many k-fold CV

procedures because they assume each value is an independent sample. Alternatively, data can be

chunked into consecutive k-folds, which reduces information sharing between testing and training

datasets (Figure 3.3).

To understand the impact of autocorrelation on our models, we present results from training and

validation with shuffled and consecutive k-folds in the Results and SI, respectively. Our analysis of
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Figure 3.3: Example of CEAMS 24-hour data split into 5 randomly shuffled folds (a) and 5 consecutive
(i.e., chunked in time) folds (b) used in the RF model training and testing process. During a 5-fold CV, 4 of
these folds are used to train a model and the remaining fold is used to validate the model, which is repeated
iteratively until each fold has been used for validation.
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the CEAMS data, which was limited to several weeks of measurements, showed larger differences

between results using shuffled data and results using consecutive k-folds compared to our EPA

analysis, as discussed in Section 3.4. This is likely due to the greater noise, residual RH bias of

the Plantower sensors, and inconsistent sampling pattern of the citizen science deployment (Figure

B.9), which limited the predictability of CEAMS PM2.5. Thus, the CEAMS RF models using

consecutive folds often performed poorly and our confidence in the chosen predictors was low.

Hence, while the consecutive method is preferable for long, comprehensive data sets, we present

here the CEAMS results of our RF models using shuffled data because we found that, even though

their predictive ability appears inflated for unseen data due to the autocorrelation, they still allow

for useful interpretations of meteorological, geographical, and other predictors of PM2.5.

3.3 Results

3.3.1 CEAMS Denver Deployment Data

During the CEAMS pilot deployment in wintertime Denver our AMODs retrieved over 18,000

hourly averaged quality-controlled PM2.5 measurements (µ = 8.2 µg m−3; σ = 12.6 µg m−3) and

over 1000 hourly averaged quality-controlled AOD measurements (µ = 0.06; σ = 0.05) (Table

3.2). There were only a few periods of significantly elevated PM2.5 (24-hour means > 10 µg

m−3) during the deployment (Figure 3.4a), and they did not often coincide with a proportional

increase in daytime AOD (Figure 3.4b). Thus, there was a low correlation between PM2.5 and

AOD (Figure 3.4c). The days with elevated 24-hour averaged PM2.5 tended to be driven by late

afternoon and overnight buildup of air pollution potentially caused by automobile emissions and

residential heating during stable winter nighttime conditions over Denver (Figure B.10). There

were also strong sub-city gradients of concentrations during some periods as shown in Figure

B.11.

To enhance our understanding of the potential drivers of PM2.5 over wintertime Denver, prior

to creating ML models, we investigated the relationship between our CEAMS 24-hour PM2.5 mea-

surements and different spatial and spatiotemporal predictors (Figure 3.5). This analysis helps set
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Figure 3.4: (a) CEAMS AMODs’ 24-hour averaged PM2.5 measurements taken in Denver, CO by 32
citizen scientists between November 14th, 2019, and January 20th, 2020. EPA reference measurements
of 24-hour PM2.5 from 8 sites are also shown for the same period. (b) CEAMS AMODs daily averaged
AOD measurements taken by the same devices shown in panel a. (c) The relationship between 24-hour time
averaged PM2.5 and daily averaged AOD taken by the same CEAMS AMODs.
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Figure 3.5: Correlation matrix of CEAMS 24-hour PM2.5 data and all RF model predictors used in each
24-hour model. The “(D)” and “(N)” represent daytime (11am-3pm) and nighttime (11pm-3am) averages,
respectively, of each meteorological predictor. The predictors are in order from greatest to least correspond-
ing to the absolute value of the spearman rank correlation. The size of each box also corresponds to the
absolute value of the spearman rank correlation between each variable so that the least important predictors
have the smallest boxes. The same predictors are used in the RF models that predict hourly PM2.5 but hourly
averaged meteorological factors were used instead of daytime and nighttime averages.
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expectations for potentially important predictors in the ML models. We found that 24-hour PM2.5

was negatively correlated with daytime and nighttime planetary boundary layer heights (PBLH),

friction velocity (U*), wind speed, and nighttime temperature (all of which are positively corre-

lated with each other). The correlation between our PM2.5 measurements and these meteorological

predictors is likely due to wintry conditions in Denver that lead to stagnant air, thermal inversions,

and low boundary layers, which can all serve to slow the ventilation and downwind transport of ur-

ban air pollution. We also hypothesize that wintry conditions also may have led to increased wood

burning for residential heat, which would enhance PM2.5 build up, especially overnight. However,

this temperature-emission connection is a hypothesis that we do not test here. PM2.5 tended to be

elevated during higher RH conditions as well, which may be due to a combination of the phys-

ical connection between PM2.5 and meteorological conditions, as well as remaining RH bias in

the measurements that was not removed using the Barkjohn and Clements (2020) correction. We

explore this RH connection more in our discussion of variable importance in our CEAMS and EPA

RF models. The spatial-only predictors (elevation, slope, population density, and vehicle travelled

miles) were only weakly correlated with PM2.5 because temporal variability dominated over spatial

variability in our dataset; however, these spatial predictors may still provide information to refine

the ML estimates. Figure 3.5 shows that PM2.5 likely has a complicated and nonlinear relationship

with local meteorology during our deployment. However, it is difficult to interpret which variables

or combinations of variables are more useful for predicting PM2.5 which is why we chose to use RF

models to quantitatively determine predictors of spatiotemporal variability of PM2.5 in wintertime

Denver.

3.3.2 Random Forest Model Skill

In Figure 3.6, we present the 95% confidence intervals of the performance metrics for each RF

model using shuffled k-folds. We found that, of the RF models predicting 24-hour PM2.5 measure-

ments, the model using the CEAMS Full Dataset showed the highest coefficient of determination,

lowest RMSE, and a slope nearest to 1 between predictions and PM2.5 measurements. The 95%
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confidence intervals of the Full Dataset model overlapped with the Test - AOD and Test + AOD RF

models, which implies that limiting the CEAMS data to locations and days where AOD was avail-

able did not result in a significant reduction in model skill for 24-hour PM2.5 prediction. We did

see a small reduction in skill for hourly PM2.5 predictions (Figure 3.6e-g) after limiting the dataset

to only locations and hours where AOD was also taken. The 24-hour CEAMS Full Dataset model

also showed similar skill to the EPA model for all metrics (Figure 3.6a-d). However, results for the

RF models using consecutive k-folds showed a significant decrease in prediction skill, especially

for the CEAMS Full Dataset, while the EPA model results showed a less substantial decrease in

skill (Figure B.12). We also found that the RF models were better at capturing temporal variability

than spatial variability during the CEAMS deployment. The hourly PM2.5 observations showed

an average spatial standard deviation of ~2.5 µg m−3 while the RF model predictions showed an

average spatial standard deviation of ~1.5 µg m−3 for shuffled k-folds (Figure B.13) and only ~0.6

for consecutive k-folds (Figure B.14).

By comparing the CEAMS Test - AOD and the CEAMS Test + AOD model performance met-

rics, we investigated the change in model performance if AOD was used as an additional predictor

of PM2.5. We found that the confidence intervals of the Test - AOD and Test + AOD models almost

entirely overlapped for 24-hour PM2.5 predictions (Figure 3.6a-d), which shows that the daily aver-

aged AOD did not add to the overall prediction skill of the RF models. We found a small increase

in mean model skill when comparing hourly PM2.5 predictions between the Test - AOD and Test +

AOD, indicated by the increased R2, decreased RMSE, and a slope nearer to 1 for the Test + AOD

model, but the confidence intervals overlap, which indicates that the difference between models had

low statistical significance. This finding may be because AOD can be disconnected from PM2.5

in a variety of ways. For example, daytime-only measurements such as AOD would be unable to

capture evening buildup of PM2.5 that we often saw in the Denver pilot deployment. Furthermore,

PM2.5 and AOD share a nonlinear relationship that can be altered by the aerosol hygroscopicity,

aerosol vertical profile, size distribution, and chemical composition. However, AOD would likely

provide greater predictive skill in the spatial variability of long-term averages in PM2.5 (Hu et al.,
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Figure 3.6: The 95% confidence interval of the error metrics for all of the CEAMS RF models (Full Dataset,
Test - AOD, and Test + AOD) in predicting both 24-hour and hourly PM2.5 and the error metrics for the 24-
hour EPA model. The 95% confidence intervals show an estimate of the uncertainty range and, thus, if the
intervals of two different models overlap, any difference in their error metrics are likely not statistically
significant. The error metrics for each 24-hour PM2.5 RF model includes (a) the coefficient of determination
(R2) (b) root mean squared error (RMSE), (c) mean bias, (d) and slope of the linear regression. Plots (e),
(f), (g), and (h) show analogous results but for the hourly PM2.5 predictions, which we did not predict for
the EPA dataset. The size of each 24-hour and hourly dataset, before being split into k-folds, is shown in the
bottom left corner of plot (a) and (e).
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2014; Liu et al., 2005; van Donkelaar et al., 2010) and locations where PM2.5 is driven by daytime

variability (van Donkelaar et al., 2011).

3.3.3 Variable Importance for Spatiotemporal PM2.5 Predictions

We use our RF models not only to estimate PM2.5 concentrations but also to investigate the

variables importance in predicting PM2.5 for wintertime in Denver. We show distributions of per-

mutation importance for the top 10 predictors, ranked by their median permutation importance,

of each RF model that predicted CEAMS and EPA PM2.5 concentrations (Figure 3.7). We found

that the meteorological predictors vary largely between 24-hour (Figure 3.7a-d) and hourly (Fig-

ure 3.7e-g) models of PM2.5. The daytime (11am-3pm) averaged PBLH and RH were consistently

strong predictors in each CEAMS 24-hour RF model (Figure 3.7a-c) and daytime PBLH was the

strongest predictor in the EPA model (Figure 3.7d). It was not surprising that PBLH was a strong

predictor of PM2.5, though we expected nighttime PBLH to be a stronger predictor than daytime

PBLH because high PM2.5 usually occurs during the late evening to early morning hours (Figure

B.10). However, it may be that low daytime PBLH values were better correlated with periods

where PM2.5 was elevated for extended periods of time, because ventilation of air pollution was

hampered by stagnant air masses. Additionally, day and night PBLH are correlated so day PBLH

may act to predict nighttime PM2.5 buildup (Figure 3.5). The strength of daytime-averaged RH

in our CEAMS RF models may be due to physical connections between PM2.5 and RH, because

high RH is tied to colder conditions (Figure 3.5), which is subsequently correlated with bound-

ary layer heights (Figure 3.5). However, this may also be due to residual bias of the Plantower

measurements for which the Barkjohn and Clements (2020) correction was unable to account.

The nighttime (11pm-3am) averaged cloud fraction was the third most important predictor in the

CEAMS Full Dataset while daytime longwave net radiation was the third most important for the

CEAMS Test - AOD and Test + AOD models. As expected, since we saw no change in prediction

skill between the CEAMS Test - AOD and Test + AOD 24-hour predictions (Figure 3.6a-d), AOD

also did not have high permutation importance in the 24-hour CEAMS Test + AOD model.
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Figure 3.7: Box-and-whisker plots of the distribution of 500 permutation importance measurements from
the top 10 predictors of each model. The 500 permutation importance values are taken from 100 repeats of
permutation importance from each of the 5 testing folds. The whiskers of each box are the 10th and 90th
percentile of the permutation importance distribution. The edges of each box represent the 25th and 75th
percentile and, finally, the centerline of each box represents the median of the permutation importance dis-
tribution. (a) The 24-hour PM2.5 predictions of the CEAMS Full Dataset, (b) The 24-hour PM2.5 predictions
of the CEAMS Test - AOD dataset, (c) The 24-hour PM2.5 predictions of the CEAMS Test + AOD dataset.
Plots (d), (e), and (f) are analogous to the CEAMS 24-hour PM2.5 RF models in plots (a), (b), and (c) but
for hourly averaged PM2.5 and associated predictors. The permutation importance of every predictor used
for each model is in the Supplement (Figure B.15-B.16).
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The hourly RF models relied more on different meteorological variables than the 24-hour mod-

els (Figure 3.7e-g). The most important predictor for all three hourly models was hourly averaged

RH. We hypothesize that RH is the strongest predictor because the RH correction factor that we

applied to our hourly-averaged PM2.5 data is based on Barkjohn and Clements (2020), which used

24-hour averaged PM2.5. Thus, the importance of RH in our model may be more reflective of the

RH bias in the sensor measurement than the physical connection between PM2.5 and RH. Unlike

the 24-hour CEAMS models, hourly-averaged AOD was the second strongest predictor in our Test

+ AOD model, and we saw improvement in mean prediction skill of this model compared to the

hourly Test - AOD model (Figure 3.7e-h). This result implies that hourly AOD added some skill

in predicting hourly PM2.5 data. The increased importance of AOD in the hourly models relative

to the 24-hour models is likely because the AOD is co-located in time (within the hour) with the

PM2.5 measurement but not with most of the 24-hour period (as AOD is only available during day-

light hours). Finally, we expected spatial predictors such as elevation, vehicle miles traveled, and

population density to be more important for all of the RF models, because we hypothesized that

air pollution would pool at low elevations during the winter in Denver, as late evening traffic and

residential wood burning emissions were trapped over Denver by stagnant air. Instead, we found

that their permutation importance was near zero for all of these variables in the CEAMS models

(Figure B.15-B.18). However, our EPA model results indicated that elevation was a moderately

important predictor when we used shuffled k-folds (Figure 3.7d) and the 2nd most important when

we used consecutive k-folds (Figure B.19). Vehicle miles traveled and population density are gen-

erally not important predictors in our RF models, which may be due to temporal variability being

larger than spatial variability in our dataset as well as these predictors having no correlation with

PM2.5 (Figure 3.5).

3.3.4 Sensitivity of Results to Data Processing and RF Setup Decisions

One critical caveat to our CEAMS data analysis is that there is strong autocorrelation in daily,

and especially hourly, PM2.5. Thus, when we shuffle the PM2.5 data and their associated predictors
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before splitting the data into k-folds for training and testing, information will be shared between the

training and testing datasets. We tested the potential impact of autocorrelation on our model skill by

repeating the CEAMS and EPA analyses without shuffling the data before splitting it into k-folds.

We saw a significant decrease in skill for the CEAMS RF models, especially hourly (Figure B.12),

and a decrease in the consistency of predictor ranking (Figure B.17-B.18). Our analysis of the EPA

RFs, however, showed a smaller decrease in predictive skill when we compared the results from

models trained and tested using shuffled vs. consecutive k-folds. For example, the upper bound

of the 95% confidence intervals decreased by 0.5 and 0.3 for the CEAMS Full Dataset and EPA

24-hour models, respectively, when we used consecutive k-folds. Furthermore, the meteorological

and geographical predictors remained more consistent in the EPA model when we used consecutive

k-folds (Figure B.19). To test whether these results were due to the increased length of the EPA

dataset, we repeated the analysis only using EPA measurements from 15 November 2019 - 15

January 2020, the same time period as our CEAMS deployment, and found similar results for both

shuffled (Figure B.20) and consecutive (Figure B.21) k-folds. Thus, the sharp decrease in CEAMS

RF skill may be due to the quality of the Plantower sensor measurements and/or the inconsistent

sampling patterns of the CEAMS AMOD citizen science deployment, which means that the model

would not be able to train itself appropriately to compare well to unseen data. Furthermore, as

we mentioned in our discussion of Figure 3.2, there are only a few short periods of significantly

elevated PM2.5 during the CEAMS deployment, which led to consistent under-prediction of high

PM2.5 in the RF models (Figure 3.7d and 3.7h), especially in those that used consecutive k-folds

(Figure B.12). However, even though we do not have confidence that our CEAMS model would

have predictive skill for new time periods, we do have more confidence that our interpretation of

the top meteorological and geographical relationships is valid under the conditions of the CEAMS

campaign. In addition to the impact of autocorrelation and shuffling on our results, we found

that various decisions made in processing our data could lead to variations in the predictive skill

of our models and the order of variable importance’s. For example, we found that using a linear

interpolation method instead of nearest neighbor for co-locating the GEOS-FP meteorological data
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to the CEAMS monitors affected which predictors were considered most important (not shown

here), likely because the linear interpolation method introduced greater spatial variability among

predictors when comparing PM2.5 from monitors in the same grid-box. We also saw that our results

were sensitive to the use of an RH correction for the CEAMS PM2.5 because the relative importance

of RH variables decreased after the RH correction was applied in the 24-hour CEAMS RF models.

Finally, we found it useful to tune our models on a greater selection of hyperparameters than the

maximum depth and the number of trees. We recommend that future investigations of PM2.5 with

machine learning (RF in particular) carefully consider the decisions described above.

3.4 Conclusions

The CEAMS pilot campaign provided a novel high-spatial-density, low-cost network of citizen-

scientist-deployed monitors that captured coincident sub-hourly PM2.5 and AOD measurements in

Denver. For the measurements gathered in this work in Denver over wintertime, PM2.5 concentra-

tions varied much more with time than in space. This finding, that PM2.5 varies less with space

than time within an urban environment, is generally consistent with recent PM2.5 measurements

made in other US cities including Oakland, CA (e.g. Shah et al., 2018) and Pittsburgh, PA (Gu et

al., 2018).

To understand potential drivers of PM2.5 over wintertime Denver, we analyzed the importance

of various meteorological and geographical features in predicting spatiotemporal variability of

PM2.5 from both the CEAMS low-cost and EPA reference networks. We found that daytime-

averaged (11am-3pm) PBLH was the strongest predictor of intra-city spatiotemporal variability

for both low-cost and reference measurements of 24-hour averaged PM2.5. The ranking of less im-

portant predictors in our CEAMS and EPA RF models differed, however. For example, nighttime-

averaged PBLH and friction velocity were strong predictors of EPA 24-hour averaged PM2.5, while

daytime-averaged RH was a strong predictor of CEAMS 24-hour averaged PM2.5. We also found

that hourly averaged RH was the strongest predictor of CEAMS hourly-averaged PM2.5. However,

we expect that the RFs’ reliance on RH for CEAMS 24-hour and hourly PM2.5 prediction was
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likely due, in part, to residual RH bias in the Plantower measurements of PM2.5, especially since

RH was not one of the top 3 predictors in our EPA RF model. Spatial variables such as popula-

tion density and number of vehicle miles traveled were consistently unimportant predictors in our

RF models, although elevation was important in our multi-year EPA model. Perhaps due to the

lack of importance placed on spatial variables, our RF models were unable to fully capture the

extent of the spatial variability of PM2.5 seen over Denver (Figure B.12-B.13). Historically, most

LUR modeling has relied on spatial variables to explain differences in PM2.5 concentrations and

discounted temporal variability since the objective is usually to quantify the average PM2.5 expo-

sure over a time period of interest (e.g., seasonal, annual). In cases where studies have developed

spatiotemporal LUR models because there is an interest in quantifying the time-resolved PM2.5

exposure (Martenies et al., 2021), they do not appear to use meteorological variables directly. This

work suggests that LUR modeling can benefit from using meteorological variables (e.g., PBLH)

in addition to spatial and geographical variables in estimating PM2.5.

Finally, we tested whether coincident AOD measurements added predictive skill to hourly

and 24-hour averaged PM2.5 predictions beyond what was achievable using only geographical

and meteorological information in wintertime Denver, as may be possible with satellite AOD re-

trievals. We found that daily-averaged AOD measurements did not improve RF model predictions

of CEAMS 24-hour PM2.5, nor was AOD identified as a strong predictor of 24-hour PM2.5 based

on the permutation metric. The lack of skill added by AOD to 24-hour PM2.5 prediction is likely

because 24-hour PM2.5 in wintertime Denver is largely driven by evening and overnight build-up

of air pollution, which daytime-only measurements such as AOD cannot capture. However, when

incorporating CEAMS AOD as a predictor in our RF model of hourly-averaged PM2.5, we found

an increase in average prediction skill, and the hourly averaged AOD was the second strongest

predictor based on a permutation importance metric (although the 95% confidence intervals over-

lapped, which implies that the increase in model skill had low statistical significance). This implies

that AOD retrieved from geostationary satellites may be a better predictor of PM2.5 than AOD from

polar-orbiting satellites, because they may help capture more of the diurnal cycle of aerosols. We

47



also expect AMOD AOD to be a better predictor of daily and hourly averaged PM2.5 in other

seasons or locations where enhanced PM2.5 is not driven as strongly by nighttime conditions.

The CEAMS deployment in Denver for the winter of 2019-2020 was hampered by inconsisten-

cies in sampling locations, sampling times, and machine errors, which resulted in a limited dataset.

Despite these setbacks, this deployment provided a novel dataset that informed us about possible

interactions between meteorological and geographical variables, as well as the potential for low-

cost AOD measurements to aid in the prediction of high-resolution spatiotemporal variability in

PM2.5. We recommend that future work mostly concerned about predicting high PM2.5 days in

cities consider using classification RF models that only work to predict “low” and “high” PM2.5

days. This may provide more insight into how different spatiotemporal predictors play a role in

elevated PM2.5 events. We also recommend that future work incorporate a more thorough list of

spatial predictors or use a hybrid approach that combines traditional LUR techniques and ML, such

as Considine et al. (2021), to improve predictions of spatial variability for sub-city PM2.5.
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Chapter 4

Investigating Disparities of PM2.5 and NO2 at US

Public Schools3

4.1 Introduction

Air pollution poses significant health and economic burdens worldwide. Certain pollutants

have garnered significant research attention including, but not limited to, fine particulate mat-

ter (PM2.5), nitrogen dioxide (NO2), and ozone (O3). PM2.5, which has a variety of natural and

anthropogenic sources, is considered the greatest environmental risk factor for premature death

worldwide (Cohen et al., 2017; World Health Organization, 2013). NO2 is toxic gas and a com-

ponent of nitrogen oxides (NOx), which are primarily produced through fuel combustion. Strong

causal relationships have been found between PM2.5/NO2 pollution and cardiovascular/respiratory

diseases, lung cancer, and all-cause mortality (Atkinson et al., 2018; Cohen et al., 2017; Faustini

et al., 2014; Hoek et al., 2013; World Health Organization, 2013).

Although air pollution impacts people of all ages, it can be especially hazardous to chil-

dren. Children are at greater risk due to still developing organs (Brockmeyer & D’Angiulli,

2016; Gehring et al., 2013; Kulkarni & Grigg, 2008); increased pollutant intake to body mass

ratios (Brockmeyer & D’Angiulli, 2016); and generally spending more time outside (Bateson and

Schwartz, 2008). Exposure to high concentrations of air pollutants during childhood has been

linked to increased risk for developing or exacerbating respiratory diseases such as asthma, bron-

chitis, and pneumonia (Chatkin et al., 2021; Han et al., 2021; Madureira et al., 2015; van Zoest et

al., 2020), as well as reduced lung function (Gehring et al., 2013). Studies have also found links

between children’s exposure to air pollution and diminished cognitive function, lower intelligence

3This work is in preparation for GeoHealth: Cheeseman, M., Ford, B., Anenberg, S., C., Cooper, M. J., Fischer, E.,
V., Hammer, M., S., Magzamen, S., Martin, R., V., van Donkelaar, A., Volckens, J., & Pierce, J. R. (2022). Strong
disparities of air pollutants across racial/ethnic and poverty groups at US public schools.
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quotient (IQ) scores (Mohai et al., 2011; Sunyer, 2008), and emerging mental health problems such

as attention deficit/hyperactivity disorder, anxiety, and depression (Myhre et al., 2018; Roberts et

al., 2019).

There are many important factors that dictate which children in the US are exposed to high

levels of air pollution but the location of school that each child attends is important (e.g. Mohai et

al. (2011)). There are over 54 million children at US public and private schools (National Center

for Education Statistics, 2021) and they spend an average of 6.64 hours a day in school for 180

days a year (i.e. 1200 hours a year) (NCES Schools and Staffing Survey, 2008). Schools are often

in proximity to heavily trafficked roads and commercial areas (Shaori et al., 2019) and students

generally have little choice in what school they attend (Kweon et al., 2018). While at school,

students spend time in outdoor environments during activities like recess, physical education class,

free time between class, and extracurricular activities. Outdoor air pollutants can also infiltrate

indoor environments (e.g. Habre et al., 2014; Reche et al., 2015). Furthermore, depending on

the age and building quality of the school, children may also attend class in rooms with poor

ventilation. Students also spend time commuting to and from school, oftentimes aboard heavy

polluters such as diesel-powered buses.

As a result, studies have found that schools can be a crucial site of exposure for children. One

study of personal exposure for 250 students in London found that children are exposed to high

levels of PM2.5 and NO2 at schools and even more when commuting to and from school (Varaden

et al., 2018). Proximity to major roadways and high road density generally have positive corre-

lations with air pollutant concentrations or related health outcomes at schools, while proximity to

greenspaces have negative correlations, by acting as a buffer against air pollutants (Amram et al.,

2011; Dadvand et al., 2015; Hauptman et al., 2020; Kweon et al., 2018; Requia et al., 2021; Zeng

et al., 2020). Air pollution levels near schools have been linked to lower student test scores, grade

point averages, and attention retention (Mohai et al., 2011; Sunyer, 2008). Poorer air quality at

schools has also been associated with chronic absenteeism, which is a critical health performance

indicator, since absenteeism is often due to health reasons (such as asthma), as opposed to defiant
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behavior (Ready, 2010). Additionally, chronic absenteeism is associated with poorer academic

performance in kindergarten to 12th grade (Ready, 2010). Finally, a longitudinal study of 16,000

US primary school students revealed that higher concentrations of hazardous air pollutants (HAPs)

were associated with lower scores in reading, science, and math (Grineski et al., 2020).

The burden of air pollution often falls disproportionately on the most under-priveleged com-

munities in our society, both in terms of wealth and race/ethnicity. There is evidence that lower

economic positions are associated with higher levels of exposure to both NO2 and PM2.5 (Am-

ram et al., 2011; Clark et al., 2014; Fairburn et al., 2019; Fecht et al., 2015). Fecht et al., 2015

found that the poorest decile of people in England had NO2 levels that were 7.9 µg m−3 higher, on

average, than the wealthiest decile of citizens. The same study found that the poorest decile had

PM2.5 levels elevated by 2.6 µg m−3, on average, compared to the wealthiest decile (Fecht et al.,

2015). A meta-analysis over Western Europe found lower social dimensions (e.g., economic posi-

tion, gender, ethnicity, and occupation) were associated with higher air pollution levels. However,

when they investigated specific ethnicities, they found mixed results because some minoritized

groups had higher exposure to air pollutants while others had lower relative to the majority popu-

lation (Fairburn et al., 2019). Fairburn et al. (2019) also found that the most privileged and least

privileged societal groups in Europe can be exposed to similar pollution levels compared to other

social groups because they tend to concentrate in metropolitan areas. This can result in a U-shaped

exposure curve across socioeconomic levels (Fairburn et al., 2019; Walker et al., 2003). How-

ever, even within city and regional studies, the lowest income groups still were associated with

the highest levels of pollution. Studies have found similar results in the US and Canada. Gray et

al. (2013) found that lower socioeconomic status and a greater proportion of minoritized groups

were associated with higher levels of PM2.5 for census tracts in North Carolina. Gray et al. (2013)

found that the opposite was true for O3, however. Pinault et al. (2016) found correlations between

social/material deprivation and higher NO2 exposure in the three largest cities in Canada. Recent

studies have shown that air pollution contributes to the disparities in race of preterm births (Ben-
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marhnia et al., 2017, Heo et al, 2019) and low birth weight of infants (Heo et al., 2019) in the

US.

Understanding the disparities in air pollution that children of various racial/ethic and socioe-

conomic backgrounds are exposed to at schools in the US is crucial to future school siting plans

and adequately devising policies to combat inequalities that currently exist. Past studies of dis-

parities in air pollutants at public schools have focused on school districts in California (Gaffron

& Niemeier, 2015; Green et al., 2004; Pastor et al., 2004, 2006, 2002) and Utah (Collins and

Grineski, 2020; Mullen et al., 2020). These studies found that modeled average pollutant concen-

trations were higher (Morello-Frosch et al., 2002) or the proximity to polluters was more likely at

schools that had higher percentages of Black and African American, Hispanic, and multi-ethnic

students (Chakraborty & Zandbergen, 2007; Green et al., 2004; Maantay, 2002). Gaffron and

Niemeier (2015) found that PM2.5 emissions from road traffic were positively correlated with the

percentage of students eligible for subsidized meals, which is often used as a proxy for poverty in

school (and a measure we use in our analysis). Another study co-located the schools and homes

of individual students in Orange County, FL to nearby major point sources, small area emitters,

and major roadways, and found that Black and Hispanic children were significantly more likely to

be in proximity to major polluters (Chakraborty and Zandbergen, 2007). Similar disparities have

been found at schools outside the US such as in Canada (Amram et al., 2011; Batisse et al., 2017)

and the United Kingdom (Shaori et al., 2019). Air pollution inequalities at schools have also been

found to be dynamic due to changing weather conditions. For example, Mullen et al. (2020) found

that public schools in Salt Lake County, Utah that served a higher proportion of low-income stu-

dents had disproportionately higher concentrations of PM2.5 under clean air conditions and during

moderate strength persistent cold air pool events, which consist of cold air and high pressure sys-

tems trapping air pollutants near the surface. However, during strong cold air pool events when

PM2.5 was especially high over the region, disparities in PM2.5 exposure disappeared.

To our knowledge, few studies have investigated pollution disparities at schools across the US

nationally. Recently, the first nationwide study on air pollution disparities between schools focused
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on airborne neurotoxins (Grineski and Collins, 2018). This study used the Environmental Protec-

tion Agency’s (EPA) National Air Toxics Assessment (NATA), which is based on state and federal

emissions data, a chemical transport model, and a dispersion model that produces census-tract level

concentrations of HAPs. They found that students attending schools considered to be “high risk”

for neurotoxin concentrations were significantly more likely to be Hispanic, Black, or Asian/Pacific

Islander, and eligible for subsidized meals. As a result, they found that students attending high risk

schools were much less likely to be white or races other than those in the last sentence. An analo-

gous work to Grineski and Collins (2018) has not been done for two crucial pollutants: PM2.5 and

NO2. Furthermore, census-tract modeled concentrations may lack the spatial resolution to capture

the heterogeneity of air pollution gradients that could cause disparities between nearby schools.

The recent development of high-resolution PM2.5 (Hammer et al., 2020) and NO2 (Anenberg et al.,

2021; Cooper et al., 2020) products allow us to better understand the intersection of race, poverty,

and air pollution. We hope our analysis provides motivation and guidance for future public school

siting priorities and increased awareness of the air pollutant disparities that currently exist at US

public schools.

4.2 Methods

We retrieved general information, demographics, and financial information for 85150 pub-

lic schools for the continental United States (CONUS) from the National Center for Education

Statistics (NCES). The NCES dataset can be found and indexed using the Elementary/Secondary

Information System (ElSi) table generator tool (https://nces.ed.gov/ccd/elsi/tableGenerator.aspx).

The NCES data has been used for several past studies investigating disparities in various pollutants

near public schools (e.g. Collins et al., 2019; Grineski and Collins, 2018; Mullen et al., 2020).

The NCES data is based on data retrieved by the Common Core of Data, which is run by the

US Department of Education and retrieves financial and non-financial information on US public

schools, school districts, and state education agencies every year. Private School information was

also collected, but as no geographic coordinates were provided, they could not be integrated into
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our analysis. We used data collected for the 2019-2020 school year. We found the fraction of

white and non-white students at each school and the fraction of students eligible for free and re-

duced lunch. We limit our analysis to only schools with at least 100 students. We use the fraction

of students eligible for free or reduced lunch as a proxy for poverty levels in schools, which has

been commonly used in previous research (Grinesk and Collins, 2018, Mohai et al., 2011, Morello-

Frosch et al., 2002; Pastor et al., 2006). This proxy is not a perfect measure of poverty (National

Center for Education Statistics, 2015) for multiple reasons. For example, eligibility for the free

and reduced lunch program in the US is based on poverty levels set at the federal level, which

means that eligibility for this program relative to regional cost of living and standard of living can

vary across the US. The NCES also categorizes school urbanity as City (though we define here as

Urban), Suburban, Town, or Rural locations, and each of these categories have subcategories of

large, mid-size, and small (Urban and Suburban) and fringe, distant, and remote (Town and Rural).

We use NCES categories of urbanity as well as the demographics and poverty levels of students at

each school to investigate disparities in air pollutant concentrations.

To study disparities in particulate matter across US public schools, we use annually averaged

PM2.5 concentrations from Hammer et al. (2020), which combined AOD measurements from

NASA MODIS, MISR, and SeaWIFs with the GEOS-Chem chemical transport model (Figure

C.1). The PM2.5 estimates were then calibrated regionally to surface observations using a geo-

graphically weighted regression model. Data is provided at the finest resolution possible (0.01°

× 0.01°), though particulate matter gradients at this resolution are not truly resolved due to data

inputs at coarser resolution (Hammer et al., 2020). We analyze 2018 for our study since this was

the last available year. As these were gridded hybrid-model datasets, we co-located each school to

the nearest gridcell.

We used a variety of national, annually averaged NO2 products over CONUS for our analysis

including datasets developed by Anenberg et al. (2021) and Cooper et al. (2020). We show

results from the Anenberg et al. (2021) dataset in Section 4.3 since this dataset was at a higher

resolution than Cooper et al. (2020). Also, the use of a land use regression (LUR) model allowed
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Anenberg et al. (2021) to explicitly incorporate traffic data when developing their NO2 estimates.

The reliance on traffic data is important in our analysis since previous studies have shown that

schools with higher poverty levels also tended to be closer to major roadways (Amram et al., 2011;

Green et al., 2004). We present results using the Cooper et al. (2020) dataset as a sensitivity

analysis in the Supplement. The Anenberg et al. (2021) NO2 dataset contains annually averaged

NO2 estimates at a 1km resolution from 1990-2019 (Figure C.2). The NO2 estimates were created

using a combination of LUR model predictions and column density NO2 observations from the

Ozone Monitoring Instrument (OMI) satellite sensor. The Cooper et al. (2020) dataset used a

chemical transport model in combination with satellite observations from the TROPOMI satellite

(Figure C.3). We use data from 2019, the last year of data available, for our analysis and co-locate

each school to the nearest gridcell.

4.3 Results

4.3.1 Nationwide Disparities in PM2.5 and NO2

Figure 4.1a shows the complementary cumulative distribution function (CDF) of NO2 for stu-

dents in CONUS public schools from each NCES racial/ethnic demographic category (except those

who identify as 2 or more races). White and Native American students were the least likely to at-

tend schools with ambient air quality levels that exceed the recently updated WHO guideline for

annual average NO2 concentrations (83% and 82% above the WHO guideline). Conversely, Black

and African American (89% above the WHO guideline), Asian/Pacific Islander (95% above the

WHO guideline), and Hispanic (94% above the WHO guideline) students were the most likely to

attend schools with ambient NO2 levels that exceed the WHO guideline.

Figure 4.1b shows the complementary CDF of PM2.5 for students in CONUS public schools.

PM2.5 had a much steeper curve than NO2 and shows that the vast majority of students in the

US went to schools with annually averaged PM2.5 concentrations below 8 µg m−3. The WHO

recently updated the guideline for annually averaged PM2.5 to 5 µg m−3. Thus, over 95% of

every racial/ethnic demographic, except Native Americans, attended schools in locations where
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Figure 4.1: Complementary cumulative distribution functions (CDF) of annually averaged NO2 (a) and
PM2.5 (b) at schools for students that belong to specific racial/ethnic demographics. Complementary CDFs
of annually averaged NO2 (c) and PM2.5 (d) at schools of differing poverty levels, measured by the fraction
of students eligible for subsidized meals at each school. Each plot shows the percentage of the students that
attend schools where the co-located annually averaged mean of each pollutant is above a given concentration.
The current WHO guidelines for annually averaged NO2 and PM2.5 are shown in red dashed lines.
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the ambient concentrations of PM2.5 were above the WHO guideline. If we repeat this analysis

relative to the previous WHO guideline for PM2.5 (i.e., 10 µg m−3), we find that Asian/Pacific

Islander (25% above the WHO guideline), Hispanic (23% above the WHO guideline), and Native

Hawaiian/Other Pacific Islander (18% above the WHO guideline) students were the most likely

to attend schools that exceeded the previous WHO guideline. Black and African American (9%),

Native American (6%), and white students (4%) were the least likely to attend schools with ambient

PM2.5 concentrations above the previous WHO guideline. However, Black and African American

students attend schools with PM2.5 concentrations above Native American and white students for

concentrations below ~8 µg m−3. The steep drop-off in concentrations for Black and African

American students likely occurs because there are more Black and African American students in

the rural and suburban South and they are less concentrated in the Central Valley of California

(Figure C.4-C.8), which is the region with the highest concentrations of annually averaged PM2.5

in the Hammer et al. (2020) dataset (Figure C.1).

We also calculated the complementary CDF of students’ co-located NO2 (Figure 4.1c) and

PM2.5 (Figure 4.1d), where students were grouped by the fraction of students eligible for subsidized

meals at the schools that each student attends. We found that 92% of students that attended schools

with the highest poverty levels (i.e., the percentage of students eligible for subsidized meals was

greater than 80%) attended schools with ambient NO2 concentrations above the WHO guideline

(Figure 4.1c). In contrast, only ~85-88% of students that attended schools with moderate-to-low

levels of poverty attended schools with NO2 concentration above the WHO guideline. Similarly,

99% of students that attended the highest poverty schools were at schools with PM2.5 concentra-

tions above the 2021 WHO guideline, while 97% of the students that attended the lowest poverty

schools were above the WHO guideline. This disparity may seem relatively insignificant, but it is a

large number of actual students. Additionally, if we compare the levels of PM2.5 between the rich-

est and poorest schools relative to the previous WHO guideline for PM2.5 (i.e., 10 µg m−3), over

23% of the poorest schools were above the previous guideline, compared to only 9% of the richest

57



schools. Figure 4.1 demonstrates that there were differences in the air quality levels experienced

by children attending public schools in the US across both on racial and economic lines.

We further investigated the intersection of poverty levels, locale categories, race, and pollu-

tant concentrations for NO2 and PM2.5 around CONUS public schools in Figure 4.2. Figure 4.2a

shows that the 25th, 50th, and 75th quartiles of NO2 concentrations increased monotonically from

the least to the most impoverished schools at urban locations. In contrast, quartiles of NO2 at

suburban, town, and rural schools overlapped considerably from the least to most impoverished

schools. Schools that were the most white (greater than 65% white students, based on the 60th

percentile nationwide) were more likely to be wealthier (depicted by box widths), and concen-

trated in suburbs, town, and rural areas, especially in the northeastern and midwestern US (Figure

4.2c). Schools that were the most non-white (fewer than 39.3% white students, based on the 40th

percentile nationwide) were more likely to be poorer and disbursed in urban areas nationwide,

as well as in suburban, town, and rural areas in the southeastern US, Texas, and California (Fig-

ure 4.2c). When we separate suburban schools from town and rural schools, we find that NO2

concentrations at suburban schools generally increase with increasing poverty levels for mostly

non-white schools and stay the same for mostly white schools (Figure C.9a). Additionally, NO2

concentrations around schools in town and rural areas generally decrease with increasing poverty

level (Figure C.10a). Thus, generally, the poorest urban schools had the highest distribution of

NO2 concentrations, while the poorest rural schools had the lowest distribution of NO2 concen-

trations. At each poverty level and locale category, non-white schools were more likely to have

higher concentrations of NO2 than their white counter-part (Figure 4.2a). For example, around the

poorest urban schools, the median NO2 at mostly non-white schools was approximately 1.5 ppbv

higher than mostly white schools. Similarly at suburban, town, and rural schools, the median NO2

concentrations were approximately 2 ppbv higher at mostly non-white schools than at mostly white

schools. As NO2 concentrations are higher in urban areas, these locale categories exacerbate the

disparities in ambient NO2 concentrations across poverty levels. Thus, when we compared the me-

dian NO2 concentration of the mostly non-white urban high-poverty schools against mostly white
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suburban, town, and rural moderate-poverty schools, we found a disparity of approximately 4 ppbv

(urban high-poverty schools ~50% higher) of annually averaged NO2 and even larger disparities in

the tails of the distributions.

Figure 4.2: Boxplots of annually averaged (a) NO2 and (b) PM2.5 surface mixing ratios split into categories
of poverty level, which is defined by the fraction of students eligible for free or reduced lunch. A greater
fraction of free or reduced lunch indicates a higher level of poverty. Within each poverty-level bin, separate
boxplots are shown for schools in urban and combined suburban, town, and rural locations for mostly white
schools (>65% white students) and mostly non-white schools (<39.3% white students). The thresholds for
mostly white and mostly non-white schools are based on the 60th and 40th percentile of the percentage of
white students in all public schools across CONUS. The width of each boxplot is proportional to the number
of schools in each distribution. (c) A map of schools that belong in each race and locale category.

Relative to NO2, there was more overlap in PM2.5 concentrations across poverty levels and

between urban and suburban, town, and rural schools (Figure 4.2b). This is unsurprising since the

chemical lifetime of NO2 is much shorter than for PM2.5, which allows PM2.5 to become more

regionally uniform. In Figure 4.2b, the median PM2.5 at mostly white schools increased from
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lowest to highest poverty level (0.9 µg m−3 increase). Contrastingly, the median PM2.5 decreased

at mostly non-white schools from lowest to highest poverty level (0.8 µg m−3 decrease), though

there are two orders of magnitude more non-white schools in the highest poverty bin than the low-

est poverty bin (Table C.1), and the tails of the distribution are similar. For both mostly white

and mostly non-white schools, the concentrations of PM2.5 at urban schools largely overlapped

with those at suburban, town, and rural schools, but the mostly non-white schools had higher dis-

tributions of PM2.5 than their mostly white counterparts within each poverty bin. Furthermore,

similarly to NO2, the largest disparities were the result of mostly white schools being concentrated

in wealthier and more suburban, town, and rural areas, while mostly non-white schools were con-

centrated in the poorest and mostly urban and suburban areas (Figure 4.2c). Thus, the median

PM2.5 concentrations for mostly white schools in moderately impoverished schools were 2 µg m−3

lower (~25% decrease) than mostly non-white, urban schools.

Although, Figure 4.2 shows that nationwide disparities exist, in part, due to regional differences

in the location of different racial/ethnic groups, we also found distinct patterns of disparities in

different states across the US. To investigate how the disparities across race and poverty compare

between states, we calculated the differences in mean NO2 and PM2.5 between the most white and

least white schools (Figure 4.3a-b) and most impoverished and least impoverished schools (Figure

4.3c-d) in each state. We combined schools from urban, suburban, town, and rural locations in

Figure 4.3. Again, we defined the “most white” and “most non-white” schools as those with

greater than 65% white students and fewer than 39.3% white students, based on the 60th and 40th

percentiles for the percentage of white students at schools nationwide. States in the Northeast

and Midwest show the largest disparities in NO2 across racial/ethnic lines (Figure 4.3a-b). For

example, there were large disparities in ambient NO2 concentrations between the most white and

non-white schools in New York (8.5 ppbv), Illinois (5.9 ppbv), and Michigan (4.5 ppbv). Figure

4.3c displays the differences in mean NO2 between “high poverty” and “low poverty” schools,

which are schools that have a percentage of students eligible for subsidized meals above 75% or

below 25%, respectively. Figure 4.3b shows similarly that Northeastern and Midwestern states
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such as New York (7.7 ppbv), Illinois (4.4 ppbv), and Michigan (2.8 ppbv) have the strongest

disparities between high and low poverty schools. On average, racial/ethnic disparities appear to

be larger than just poverty disparities for most states, though these problems are intersectional and

not independent of each other. Much of the disparities displayed for NO2 are driven by racial

divides across urban, suburban, town, and rural areas. We investigate regional disparities in NO2

in more detail in Section 4.3.2.

Figure 4.3: Difference in mean (a) NO2 and (b) PM2.5 between mostly non-white schools (fewer than
39.3% white students based on the 40th percentile nationwide) and mostly white schools (greater than 65%
white students based on the 60th percentile nationwide). Difference in mean (c) NO2 and (d) PM2.5 between
high poverty (greater than 75% students eligible for free or reduced lunch) and low poverty schools (fewer
than 25% students eligible for free or reduced lunch). The colors are lighter shades if fewer than 300 total
schools are used to find the difference between each category in each state. The colors are grey if there is
no data for that state or there are fewer than 10 schools in either poverty or racial/ethnic categories.

PM2.5 shows different patterns of disparities across race and poverty categories (Figure 4.3b

and d) but most states still show increased PM2.5 at schools with higher poverty levels and with
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more non-white students. California had the largest difference in annually averaged PM2.5 between

mostly white and mostly non-white schools (2.1 µg m−3) and the third largest across poverty

levels (1.6 µg m−3). Oregon and Rhode Island show the largest disparities across poverty levels

(1.8 µg m−3 for both), though fewer than 300 schools were used to calculate the difference in

Rhode Island. Michigan shows large disparities across racial/ethnic categories (1.9 µg m−3) but

a smaller difference across poverty levels (1.1 µg m−3). The magnitudes of these disparities may

be dependent on the thresholds used to divide racial/ethnic categories and poverty levels, but the

patterns of disparity remain consistent.

4.3.2 Regional Disparities in NO2

Concentrations of NO2 are higher in cities, especially near sources such as major roadways

and industrial areas (e.g. Anenberg et al., 2021). Thus, unsurprisingly, there were clear dispar-

ities in NO2 concentrations at public schools across CONUS based on whether schools were in

urban, suburban, town, or rural areas (Figure 4.2a). However, in certain regions, this urban/rural

divide strongly intersects with poverty and race divisions (Figure 4.4). For example, in New York

(Figure 4.4a), wealthier white public school students tended to be more dispersed across the state

in suburban, town, and rural areas, while students from racially/ethnically minoritized and eco-

nomically disadvantaged groups were heavily concentrated in urban areas, leading to disparities of

up to ~11 ppbv NO2 between mostly white and non-white schools. Note that in Figures 4.4-4.5,

we define “most white” and “most non-white” based on statewide percentiles of the percentage of

white students in each school, instead of the nationwide percentiles used in Figures 4.2-4.3.

In other regions, segregation in residential classification did not strictly coincide with economic

status. In California, most schools were classified as urban or suburban, but NO2 and PM2.5 dis-

tributions still increased with increasing poverty levels and were generally higher for non-white

schools regardless of locale category. Thus, in California, we saw large disparities across poverty

levels that were not captured by segregation in residential classifications (Figure 4.4b). Finally, in

some states, such as Florida (Figure 4.4c), there is a mix of white and non-white students in urban
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Figure 4.4: Boxplots of annually averaged NO2 at mostly white schools (based on the 60th percentile of
the percentage of white students in the state) and mostly non-white (based on the 40th percentile of the
percentage of white students in the state) split into bins of poverty level in New York (a), California (b), and
Florida (c).
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areas around the state, especially in Tampa and Jacksonville, and yet, there are clear disparities

across racial lines that do not also correspond to poverty lines. Thus, we find that there are three

major types of disparities that appear to exist in NO2 concentrations at US public schools in dif-

ferent regions: 1) wealthy white students in suburban, town, and rural environments have lower

concentrations than poorer, racially/ethnically minoritized students concentrated in urban areas; 2)

within many suburban/urban environments, wealthier, whiter schools have lower concentrations

than corresponding poorer, less white schools; or 3) less white schools have higher concentrations

regardless of poverty level. We further investigated these second and third points, by repeating

our analysis only looking at schools in urban regions. This analysis shows that there are still air

quality disparities across race and poverty categories. For example, in the Bay Area of California,

we found higher concentrations of NO2 at mostly non-white schools located in Chinatown, the

Mission District, and Oakland, while more white schools had lower NO2 in the Richmond district,

which is near the greenspace of Golden Gate Park, and other surrounding areas (Figure C.11). The

analyses of each state separately shows that disparities across racial/ethnic and poverty lines are

complex and generally ubiquitous in the US.

4.3.3 Regional Disparities in PM2.5

Consistent with the national analysis, there were similar but smaller disparities in PM2.5 con-

centrations, relative to NO2, in New York (Figure 4.5a), California (Figure 4.5b), and Florida

(Figure 4.5c), likely due to PM2.5’s longer chemical lifetime. In New York, the largest dispar-

ities in PM2.5 were a result of racial/ethnic stratification across urban and suburban, town, and

rural areas, which led to disproportionately high concentrations of PM2.5 at mostly non-white ur-

ban schools (1.0-1.5 µg m−3 higher median PM2.5 than mostly white suburban, town, and rural

schools). In California, the most white and non-white urban schools had similar median concen-

trations of PM2.5 and both had higher median PM2.5 with increasing levels of poverty ( ~1.3-1.5

µg m−3 increase from lowest to highest poverty levels). However, the most non-white schools in

suburban, town, and rural areas were consistently higher ( ~13.6 µg m−3) than their white coun-
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terparts ( ~11 µg m−3). We found very little disparities of PM2.5 concentrations in Florida (Figure

4.5c) across poverty levels. The largest difference across poverty levels occurred in mostly white,

urban schools, where the wealthiest schools had slightly higher median concentration of PM2.5

than the poorest schools (0.8 µg m−3 decrease in median PM2.5). There were small disparities

across racial/ethnic categories in suburban, town, and rural schools, resulting in a modest increase

in median PM2.5 at the poorest non-white schools compared to their white counterparts (0.8 µg

m−3 increase).

Figure 4.5: Boxplots of annually averaged PM2.5 at mostly white schools (based on the 60th percentile
of the percentage of white students in the state) and mostly non-white (based on the 40th percentile of the
percentage of white students in the state) split into bins of poverty level in New York (a), California (b), and
Florida (c).
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4.4 Conclusions

Children spend a considerable amount of early life at schools in the US (NCES Schools and

Staffing Survey, 2008), and while there, they are potentially being exposed to high levels of air

pollutants. Greater than 95% of all US public school students are attending locations above the

2021 WHO guideline for ambient annually averaged PM2.5 concentrations ( ~10% students above

the 2005 WHO guideline) and greater than 87% are above the 2021 WHO guideline for annually

averaged NO2. Exposure to air pollutants such as PM2.5 and NO2 can have significant impacts on

respiratory and cardiovascular health (Atkinson et al., 2018; Cohen et al., 2017; Faustini et al.,

2014; Hoek et al., 2013; World Health Organization, 2013), especially in children (Brockmeyer &

D’Angiulli, 2016; Gehring et al., 2013; Kulkarni & Grigg, 2008), and has been linked to higher

levels of depression, anxiety, and ADHD (Myhre et al., 2018; Roberts et al., 2019). Thus, it is

unsurprising that air pollution at schools has been linked to lower cognitive functioning, test and

IQ scores, performance in math, science, reading, and overall performance. These impacts do not

necessarily stop with impacts on school performance: instead, the lifetime work and productivity of

students may be degraded by these higher exposures to air pollutants, which could have significant

impacts on future generations of workers in the US.

Furthermore, the brunt of this pollution is not being shared equally across racial/ethnic and

poverty lines. Instead, in most regions of the US, school children that attend schools with higher

percentages of racially/ethnically minoritized students and higher levels of poverty are significantly

more likely to be near higher concentrations of both PM2.5 and NO2. Much of these disparities ap-

pear to be due to the increased likelihood of economically disadvantaged and racially/ethnically

minoritized children to live in urban areas, but we also find that even within urban environments,

disparities still exist across racial/ethnic and poverty lines. This is likely because poorer and more

non-white schools are more likely to be placed near major pollution sites (Chakraborty & Zand-

bergen, 2007; Green et al., 2004; Maantay, 2002). We did note that, nationally, the poorest town

and rural schools had the lowest distribution of NO2 but the poorest schools were more likely to be

suburban or urban, which had the highest distribution of NO2 (Figure C.10). Disparities nationally

66



do not occur only because certain demographics tend to live in different regions of the US (Figure

4.2c). Instead, within specific regions of the US, we found that schools with even slightly more

white students were more likely to have better air quality (Figure 4.4-4.5). Finally, disparities in air

pollutants at schools will likely only exacerbate already existing disparities in our society because

poorer and more impoverished students will also suffer disproportionate impacts due to air quality

on school and future job performance, as well as mental and physical health, which can in itself

result in higher medical costs.

To our knowledge, this is the first investigation of NO2 and PM2.5 disparities across race and

poverty in CONUS public schools though it builds on and is in agreement with work by Grineski

and Collins (2018) and Mullen et al. (2020) that focused on disparities in atmospheric neurotoxins

and PM2.5 over Salt Lake City schools, respectively. Currently, there are no federal or specific

guidelines to protect children from pollutants while attending schools (Sampson, 2012). Instead,

the EPA releases school siting guidelines (EPA, 2011) that others can use voluntarily to inform

decision making. Our work suggests that specific policies are needed to avoid future disparities in

air pollution at schools, and certain states will have to face distinct challenges. For example, the

stark racial segregation of students in New York state across rural/urban lines will likely be diffi-

cult to overcome with policy changes in future school sitings. More research is needed to devise

sound policies that can lessen current disparities and avoid future disparities, though past research

has shown that proximity to major roadways and industrial areas (Chakraborty and Zandbergen,

2007; Green et al., 2004; Kweon et al., 2018; Maantay 2002) are detrimental while proximity to

green spaces (Amram et al., 2011) is beneficial. Future school siting guidelines should also take

into account factors in addition to the pollutant levels of the possible school site. For example,

children’s exposure to pollution during long commutes or commutes through densely trafficked

areas may diminish the benefits of siting schools in locations with better air quality (Wolfe et al.,

2020).

There are several caveats to take into account for our study: 1) It is important to note that

ambient concentrations of pollutants are different from personal exposure estimates, especially
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when children do not spend all of their time at schools and spend more time indoors than out

while at school. Thus, we did not measure US children’s personal exposure to PM2.5 and NO2 at

and within schools; instead, we used spatially gridded estimates of annual-mean concentrations

of ambient PM2.5 and NO2 around current school locations. 2) The high resolution datasets of

PM2.5 and NO2 have moderate uncertainties and spatial gaps in reference monitoring networks

make consistent calibration and evaluation throughout CONUS difficult, especially in remote areas

(Anenberg et al., 2021). 3) Fine scale gradients of PM2.5 used in this study are not fully resolved

because the model inputs were coarser than the output PM2.5 resolution (Hammer et al., 2020). 4)

Our sensitivity analysis using the Cooper et al. (2020) dataset revealed similar qualitative results

but much lower concentrations of NO2 on average across most of the US and, likely due to the

coarser resolution, we saw smaller differences between urban and suburban, town, and rural NO2

concentrations in California (Figure C.12-C.15). 5) We were unable to include private schools in

our analysis, which account for roughly 10% of students from kindergarten to grade 12 (National

Center for Education Statistics, 2021). It is unclear if including private schools would reinforce the

patterns we have seen here or would increase the number of mostly white urban schools that are

potentially exposed to high concentrations of pollution. 6) Finally, the fraction of students eligible

for subsidized meals is an imperfect proxy for poverty and should not be confused with a measure

for socioeconomic status, which requires knowledge of several financial and personal factors for

each student.

Our study highlights the importance of investigating current and potential future disparities

in environmental pollutants in the US. Future investigations of disparities in air pollution at US

schools should consider the following points: 1) It is crucial that we have estimates of indoor air

pollution and personal exposure estimates for children in US schools. 2) Investigation is needed

into how age and socioeconomic factors of schools impact the infiltration of outdoor air into the

indoor environment. 3) We need estimates of air pollutant concentrations and exposure during

school commutes, especially on diesel powered buses. 4) In-depth analyses are needed to under-

stand the many social, environmental, geographical, and financial factors that lead to disparities in
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schools, so that they may be avoided in the future. Work such as Shaori et al. (2020) serves as

an example. This could also be done using a machine learning approach that predicts air quality

at schools using these measurable factors. 5) As anthropogenic air pollutants continue to decrease

in upcoming decades, the importance of landscape fires for pollutant exposure at US schools will

increase. Thus, we need to understand students’ exposure to smoke at schools and whether smoke

disproportionately affects various specific racial/ethnic and socioeconomic groups.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Ambient PM2.5 is the greatest environmental risk factor for global health, and yet, much of

the world lacks sufficient regulatory networks to provide accurate, high-spatiotemporal resolution

estimates of PM2.5, which is crucial for population exposure estimates. Thus, this dissertation

provides quantitative assessments of PM2.5 and its relationship to environmental, geographical,

meteorological, and socioeconomic variables with the goals of improving future predictions of

PM2.5 and contributing to our understanding of environmental injustices at US public schools.

In Chapter 2, we found that the number of smoke plume height observations and the number of

observed smoke plume heights above co-located reanalysis boundary layer heights were greater by

orders of magnitude in California, the Pacific Northwest, and the Northern Rockies. The disparities

in the number of smoke plume observations may also suggest that small agricultural fires are being

missed by the thermal observation technique in MAIAC, perhaps due to the low optical thickness of

small plumes at 11 µm and cloud screening. Smoke plumes with higher AOD were also associated

with higher smoke plume heights, which may be due to a physical tendency for more optically

thick plumes being more bouyant, or due to a bias in the plume height observations for optically

thick plumes. Finally, we found that PM2.5 and the ratio of PM2.5:AOD tended to be lower near

smoke plumes that were higher than co-located boundary layer heights. This work suggests that

plume height observations could be incorporated into future predictive models of PM2.5, especially

when smoke plume heights are determined near source fires.

In Chapter 3, we developed RF machine learning models to predict sub-city gradients of PM2.5,

finding that meteorological variables including boundary layer heights, wind speeds, and RH pro-

vided most of the prediction skill for PM2.5. Contrastingly, AOD provided little additional skill for

PM2.5 prediction in wintertime Denver, especially for 24-hour PM2.5 predictions. AOD was iden-
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tified as a stronger predictor for hourly averaged PM2.5, though it did not provide additional model

skill overall when used as an additional predictor. Thus, for wintertime Denver, daytime-only AOD

was disconnected from diurnal drivers of PM2.5. To aid future investigations into fine-scale PM2.5

predictions, we provide in-depth instructions of the RF technique, model tuning, and how choices

in our methodology impacted our results.

In Chapter 4, we found that Hispanic, Asian/Pacific Islander, and Black or African American

students were significantly more likely to attend schools above the WHO guidelines for ambient

PM2.5 and NO2 concentrations than students that identified with any other racial or ethnic group.

There were disparities in pollutant concentrations (especially NO2) in most of CONUS and strong

disparities clustered in the Northeast and Midwest regions. We identified three distinct patterns

of disparities that occur in different regions of the US: 1) disparities driven mostly by residen-

tial segregation, where wealthier, more white schools were dispersed outside of urban areas and

poorer, less white schools were clustered in urban areas; 2) disparities existing across poverty and

racial/ethnic lines occurring even within urban and suburban environments; and 3) little dispari-

ties across poverty levels but disparities persisted across racial/ethnic demographics. This work

contributes to a growing body of environmental justice literature that assesses the legacy of racial,

ethnic, and economic bias in the US and the resulting disproportionate impacts that this legacy

may be having on the health of at-risk communities.

Our work in Chapters 2-3 suggests that the incorporation of multiple aerosol and geophysical

data products into a flexible ML framework could allow PM2.5 predictions to account for various

weaknesses of each individual dataset. For example, in Chapter 2, we found that there are likely

circumstances where plume height, PBLH, and AOD could potentially be used in conjunction

to predict PM2.5. Furthermore, we found that our RF models in Chapter 3 were likely able to

leverage the physical relationships between PM2.5 and Denver meteorology and geography. These

methods have already been used to fill-in spatial and temporal gaps in PM2.5 observation networks

(e.g. Di et al., 2016; Lightstone et al., 2017; Liu et al., 2018; Reid et al., 2015; Suleiman et

al., 2019; Xi et al., 2015), but we will likely see great improvements in predictive models in the
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near future. However, our work emphasizes the importance of understanding the autocorrelation

present in machine learning datasets. It is also crucial to understand the biases in observations used

in machine learning, as they may impact the interpretability of the results.

Our work also suggests that AOD likely should not be used alone for predicting PM2.5 in many

regions and circumstances. For example, during landscape fire events, we found large variabilities

in PM2.5:AOD, especially when the plume height was low. We also found that satellite AOD and

co-located in situ AOD was poorly correlated with PM2.5 over wintertime Denver, though this is

not surprising since AOD and PM2.5 are generally less correlated during wintertime conditions and

when daily mean PM2.5 variability is driven by nighttime conditions. Finally, our work in Chapter 4

only emphasizes the importance of improving our ability to estimate PM2.5 and other air pollutants

at a high spatiotemporal resolution. Without future improvements to air pollutant concentration

predictions, we will be limited in our ability to: 1) identify various emission sources; 2) accurately

estimate health and economic costs of air pollutants, especially in a changing climate; 3) identify

current injustices in air pollutant exposure and their causes; 4) devise policies to reduce future

pollution exposures and subsequent injustices in our society.

5.2 Recommendations for future work

5.2.1 Concerning predictions of the PM2.5 during landscape fires

As discussed in Chapter 2, smoke plume heights have the potential to aid in PM2.5 predictions

during landscape fire events, especially near the fire. However, most current satellite products

are polar-orbiting satellites, and thus limited to 1-2 overpasses per day in most cloud-free regions

of the world. This limits our ability to capture smoke plume characteristics at a sub-daily tem-

poral resolution needed for reliable PM2.5 prediction near fires, since the direction and height of

smoke plumes can change rapidly due to changes in prevailing winds, fire intensity, and boundary

layer dynamics; in particular, fire intensity has a strong diurnal cycle. With the implementation

of thermal smoke-height retrievals from current geostationary satellites (GOES-West and East) as

well as future retrievals from upcoming geostationary platforms, there is potential to improve our
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understanding of PM2.5:AOD. Geostationary satellites can retrieve sub-hourly estimates of AOD

and plume height, which could be incorporated into a ML framework to predict surface PM2.5 or

PM2.5:AOD under smoke plumes. Improving prediction accuracy of PM2.5:AOD during smoke

episodes could improve worldwide estimates of exposure in landscape fire smoke and the resulting

health impacts.

5.2.2 Intersectionality in poverty, race, ethnicity, and air pollution

Our results in Chapter 4 suggest large disparities in ambient air pollution along poverty and

racial/ethnic lines at US public schools, yet there is more research needed to better understand the

nature, scale, and impact of these disparities, and, crucially, how to reduce them. Given the poten-

tially large impacts that air pollution may be having on US schoolchildren, future research should

focus on capturing student exposure to indoor air pollution at school. Furthermore, since the US

lacks mandatory federal guidelines for future US public school sitings and for reducing current air

pollution exposures, research should be directed toward providing solutions that can be adopted on

smaller scales than the federal level. Additionally, future studies of pollution exposure at schools

should consider investigating: 1) how much ambient air pollution dictates the indoor air of schools

and how that changes based on physical and socioeconomic characteristics of each school (e.g.

age of the school, demographics, poverty levels, HVAC system); 2) student exposure to pollutants

during commutes to/from school, especially in heavily trafficked areas or on diesel-powered school

buses, which could be accomplished through a mobile monitoring campaign; and 3) differences in

disparities based on student age, giving special attention to the youngest schoolchildren (middle

school age and below) since they are more susceptible to health impacts from air pollution.

In addition to investigating personal exposure to air pollutants at schools, insight may be gained

by quantifying how disparities have developed or changed over time. The PM2.5 dataset (Hammer

et al., 2019) used in Chapter 4, for example, is available from 1991 to the present. Thus, our method

in Chapter 4 could be applied to quantify trends in air pollution disparities over CONUS for the

last two decades, and we may consider this before submitting for peer review. Furthemore, special
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attention could be given to school districts that have adopted the EPA’s voluntary school siting

guidelines (EPA, 2011) by comparing disparities before and after these policies were adopted.

Investigations should also consider using a combination of regulatory and low-cost sensor networks

to quantify community-level pollution disparities across racial/ethnic and poverty lines. Using a

high density network of monitors taking sub-hourly measurements could provide crucial insights

into the nature and patterns of pollution disparities, especially since regulatory networks routinely

miss pollution (Reuters, 2020). For example, a future study could use PurpleAir monitors in Los

Angeles county to investigate diurnal patterns of pollution hotspots, identify potential sources, and

quantify how they relate to the socioeconomic characteristics of various schools or, given data

availability, neighborhoods. However, it should be noted that PurpleAir monitors are less likely

to be located in low-income and vulnerable communities. Therefore, it will also be essential for

future research to prioritize increasing the monitoring capabilities in these communities so that we

can more accurately assess their pollution patterns.

The influence of smoke on air pollution and health disparities is an open area of research and

has yet to be investigated at schools. There is no clear mechanism for landscape fire smoke to

disproportionately impact minoritized or socioeconomically disadvantaged groups, but regional

patterns in where various groups live and attend school may overlap with regional patterns of

smoke abundance. This is especially true in California, where wildfires are common and there is

a large proportion of minoritized people. However, smoke has large impacts on people’s health in

the eastern US as well as the West (O’Dell et al., 2021), which may negate any disproportionate

impacts that smoke may have on minoritized groups in California. Even if smoke does not impact

regions with high proportions of minoritized groups more than others, differences in the quality of

building materials and filtration systems of homes and schools that belong to minoritized groups

compared to the majority population may create disparities in health outcomes, as indoor air may

be worse during smoke events in lower-quality buildings.

Future studies should also consider using interpretable ML techniques (such as RFs) to de-

rive quantitative estimates of driving factors in environmental disparities at US schools and within
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communities in general. For example, predictive ML models could be built using socioeconomic,

geographic, and demographic information of each school (or each census block) to predict pol-

lution levels and discern prevailing patterns of disparities in PM2.5, NO2, and O3. Our work in

Chapter 3 and 4 also suggests that there is great opportunity to leverage citizen science and low-

cost networks to address environmental injustices. Our results in Chapter 2 show that low-cost

sensors, despite having greater noise and biases than traditional reference measurements, are able

to capture temporal variability in surface PM2.5 that resulted in similar interpretations of meteoro-

logical drivers over wintertime Denver. There are many non-profit and community organizations

that are working to improve the lives of low-income and minoritized people. By developing part-

nerships between academics, nonprofit organizations, and community leaders, there are critical

opportunities for improving air quality monitoring in historically under-monitored areas of the US

and developing practices and policies that help mitigate the health impacts of air pollution dispari-

ties.

Finally, to understand the full breadth of potential health impacts that air pollution has on US

children, future work should also quantify the combined exposure of children to multiple pollutants

including various HAPs and the EPA’s 6 criteria pollutants (NO2, ground-level O3, particulate mat-

ter, carbon monoxide, sulfur dioxide) both at home and school. Quantifying the personal exposure

of children around the US to multiple pollutants and their combined health impact may portray

varying patterns of disparities across racial, ethnic, and poverty groups due to regional, local, and

seasonal differences in sources of the air pollutants and the resulting exposures. Considering mul-

tiple pollutants may also show that the combined health impacts due to pollutants from different

sources either exacerbate pollution disparities, similar to those we investigate here, or diminish

disparities due to different populations being exposed to different pollutants.
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Appendix A

Supplementary information for Chapter 2

A.1 Supplementary Figures

Figure A.1: Average smoke PH values from MAIAC Terra (a) and Aqua (b). Average reanalysis PBLH
values that were co-located to PH retrievals for Terra (c) and Aqua (d).
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Figure A.2: Count of MAIAC PH retrievals for Terra (a) and Aqua (b) in each state, as well as the number
of days that had a PH:PBLH values greater than 1.2 for Terra (c) and Aqua (d).

107



Figure A.3: This figure is the same as Figure 2 (in text) but only uses PH retrievals within 150 km of active
fires (determined by the MAIAC thermal hotspots). This figure shows the number of days with PH retrievals
during the study period using Terra (a) and Aqua (b). This figure also shows the percent of co-located
PH:PBLH values in each state that exceed our 1.2 criteria from Terra (c) and Aqua (d). Gray states indicate
that there were no retrievals within 150 km of detected thermal hotspots during the study period.
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Figure A.4: This figure is the same as Figure A.1 but only uses PH retrievals within 150 km of active
fires (determined by the MAIAC thermal hotspots). This figure shows the average smoke PH values from
MAIAC Terra (a) and Aqua (b) and average reanalysis PBLH values that were co-located to PH retrievals
for Terra (c) and Aqua (d). Gray states indicate that there were no retrievals within 150 km of detected
thermal hotspots during the study period.
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Figure A.5: This figure is the same as Figure A.2 but only uses PH retrievals within 150 km of active fires
(determined by the MAIAC thermal hotspots). This figure shows the count of MAIAC PH retrievals in each
state for Terra (a) and Aqua (b), as well as number of days that had a PH:PBLH values greater than 1.2 for
Terra (c) and Aqua (d). Gray states indicate that there were no retrievals within 150 km of detected thermal
hotspots during the study period.
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Figure A.6: MODIS Terra true-color image with Terra Dark Target 3km AOD from NASA Worldview
(https://worldview.earthdata.nasa.gov/) (a), MAIAC AOD and EPA-AQS PM2.5 (b), MAIAC PH (c), and
PH:PBLH (d) values using MAIAC PH and NCEP PBLH. This figure displays potential long range transport
of smoke from Canada to the eastern US, causing high PH retrievals over Mississippi, despite the lack of
any large local fires.
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Figure A.7: MODIS Terra true-color image with Terra 3km AOD from NASA Worldview
(https://worldview.earthdata.nasa.gov/) (a), MAIAC AOD and EPA-AQS PM2.5 (b), MAIAC PH (c), and
PH:PBLH (d) values using MAIAC PH and NCEP PBLH. This figure displays potential long range trans-
port of smoke from Canada to the eastern US, causing high PH retrievals over Virginia and North Carolina,
despite the lack of any large local fires.
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Figure A.8: Hexagonal 2D histogram of co-located PIH and AOD retrievals for the western US from the
combined MODIS Terra and Aqua data record.
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Figure A.9: This is the same as Figure 3 in the text but only uses PH retrievals within 150 km of active fires
(determined by the MAIAC thermal hotspots). This figure shows the 25th, 50th, and 75th quartile of PH of
co-located PH and AOD retrievals for binned AOD values. The number of PH retrievals for each AOD bin
are shown at the top.
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Figure A.10: Hexagonal 2D histogram of co-located PH:PBLH and PM2.5:AOD using PH and AOD esti-
mates from MODIS both Terra and Aqua MAIAC datasets, PBLH from NCEP reanalysis, and EPA-AQS
24-hour PM2.5 measurements for all co-located data (within 10 km) over the western US for July-September
between 2010-2018.

Figure A.11: This figure is the same as Figure 4 in the main text except that the 150 km buffer was applied
in this figure. This figure shows the PM2.5:AOD as a function of PH:PBLH using PH and AOD estimates
from Terra (a) and Aqua (b), PBLH, and PM2.5 measurements for all co-located data (within 10 km of a
monitor) over the western US for July-September between 2010-2018. The number of observations in each
PH:PBLH bin is listed above each box plot. The horizontal lines on each box indicate the 25th, 50th, and
75th percentile of each PM2.5:AOD distribution. The whiskers indicate the 10th and 90th percentile of each
distribution. The box-and-whisker color ranges from blue to red indicating an increase in PH:PBLH.
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Appendix B

Supplementary information for Chapter 3

B.1 Supplementary Tables

Table B.1: Description of EPA-AQS regulatory monitors in Denver, Colorado.

EPA AQS-ID
Latitude,

Longitude

Sampling

Frequency

Sample Collection

Method

Sample

Analysis Type

08-001-0010 39.83, -104.94 24 hour
R & P Model 2025
PM-2.5 Sequential Air
Sampler w/VSCC

Gravimetric

08-031-0028 39.79, -104.99 1 hour
GRIMM EDM Model
180 with naphion
dryer

Laser Light
Scattering

08-031-0026 39.78, -105.01 1 hour
Teledyne T640 at
5.0 LPM

Broadband
spectroscopy

08-031-0002 39.75, -104.99 24 hour
R & P Model 2025
PM-2.5 Sequential Air
Sampler w/VSCC

Gravimetric

08-031-0027 39.73, -105.02 24 hour
R & P Model 2025
PM-2.5 Sequential Air
Sampler w/VSCC

Gravimetric

08-031-0013 39.74, -104.94 1 hour
Teledyne T640 at
5.0 LPM

Broadband
spectroscopy

08-005-0005 39.60, -105.02 24 hour
R & P Model 2025
PM-2.5 Sequential Air
Sampler w/VSCC

Gravimetric

08-035-0004 39.53, -105.07 24 hour
R & P Model 2025
PM-2.5 Sequential Air
Sampler w/VSCC

Gravimetric
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B.2 Supplementary Figures

Figure B.1: (a) The probability distribution, smoothed using a kernel function, of mean squared errors of
model skill for predicting CEAMS 24-hour PM2.5 grouped by the number of trees used in each Random
Forest model run. The spread of the distribution is due to how the other hyperparameters are changing (see
Table 2 for full list) as well as randomness introduced during the cross-validation. Similarly, the other plots
show the kernel density distribution of mean squared errors of model skill grouped by (b) the maximum
depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) minimum samples
needed to split an internal node of a tree.
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Figure B.2: (a) The probability distribution, smoothed using a kernel function, of mean squared errors of
model skill for predicting the “Test - AOD” CEAMS 24-hour PM2.5 grouped by the number of trees used in
each Random Forest model run. The spread of the distribution is due to how the other hyperparameters are
changing (see Table 2 for full list) as well as randomness introduced during the cross-validation. Similarly,
the other plots show the kernel density distribution of mean squared errors of model skill grouped by (b)
the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d)
minimum samples needed to split an internal node of a tree.
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Figure B.3: (a) The probability distribution, smoothed using a kernel function, of mean squared errors of
model skill for predicting the “Test + AOD” CEAMS 24-hour PM2.5 grouped by the number of trees used in
each Random Forest model run. The spread of the distribution is due to how the other hyperparameters are
changing (see Table 2 for full list) as well as randomness introduced during the cross-validation. Similarly,
the other plots show the kernel density distribution of mean squared errors of model skill grouped by (b)
the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d)
minimum samples needed to split an internal node of a tree.
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Figure B.4: (a) The probability distribution, smoothed using a kernel function, of mean squared errors of
model skill for predicting the “Full dataset” CEAMS hourly PM2.5 grouped by the number of trees used in
each Random Forest model run. The spread of the distribution is due to how the other hyperparameters are
changing (see Table 2 for full list) as well as randomness introduced during the cross-validation. Similarly,
the other plots show the kernel density distribution of mean squared errors of model skill grouped by (b)
the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d)
minimum samples needed to split an internal node of a tree.
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Figure B.5: (a) The probability distribution, smoothed using a kernel function, of mean squared errors of
model skill for predicting the “Test - AOD” CEAMS hourly PM2.5 grouped by the number of trees used in
each Random Forest model run. The spread of the distribution is due to how the other hyperparameters are
changing (see Table 2 for full list) as well as randomness introduced during the cross-validation. Similarly,
the other plots show the kernel density distribution of mean squared errors of model skill grouped by (b)
the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d)
minimum samples needed to split an internal node of a tree.
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Figure B.6: (a) The probability distribution, smoothed using a kernel function, of mean squared errors of
model skill for predicting the “Test + AOD” CEAMS 24-hour PM2.5 grouped by the number of trees used in
each Random Forest model run. The spread of the distribution is due to how the other hyperparameters are
changing (see Table 2 for full list) as well as randomness introduced during the cross-validation. Similarly,
the other plots show the kernel density distribution of mean squared errors of model skill grouped by (b)
the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d)
minimum samples needed to split an internal node of a tree.
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Figure B.7: (a) The probability distribution, smoothed using a kernel function, of mean squared errors of
model skill for predicting the EPA 24-hour PM2.5 grouped by the number of trees used in each Random
Forest model run. The spread of the distribution is due to how the other hyperparameters are changing (see
Table 2 for full list) as well as randomness introduced during the cross-validation. Similarly, the other plots
show the kernel density distribution of mean squared errors of model skill grouped by (b) the maximum
depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) minimum samples
needed to split an internal node of a tree.
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Figure B.8: RF 24-hour PM2.5 predictions from 1 testing fold during the 5-fold cross-validation versus
the CEAMS 24-hour PM2.5 measurements. The mean bias (MB), mean absolute error (MAE), root mean
squared error (RMSE), and coefficient of determination (R2) are given.
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Figure B.9: Time series of the number of AMODs operating per hour of the CEAMS deployment in Denver.
CO.

Figure B.10: Median hourly averaged diurnal cycles of weekend (blue) and weekday (black) PM2.5 from
the Denver, CO wintertime CEAMS deployment. PM2.5 measurements from major holidays were removed.
The range between the 25th and 75th percentile of each hourly average is shown for the weekend (blue
shading) and weekday (grey shading) averages.
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Figure B.11: Map of elevation (Amante and Eakins, 2009) and 24-hour PM2.5 averages (points) from the
22 CEAMS low-cost sensors on December 6th, 2019, in Denver, CO. The greater Denver-Aurora area is
outlined in blue (based on cartographic files from 2015 TIGER/Line Shapefiles).
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Figure B.12: RF model performance metrics for PM2.5 measurements using unshuffled or “consecutive”
k-folds (24-hour in the top row and hourly in the bottom row). The 95% confidence interval of the error
metrics for all of the CEAMS RF models (Full Dataset, Test - AOD, and Test + AOD) in predicting both
24-hour and hourly PM2.5 and the error metrics for the 24-hour EPA model. The 95% confidence intervals
show an estimate of the uncertainty range and, thus, if the intervals of two different models overlap, any
difference in their error metrics are likely not statistically significant. The error metrics for each 24-hour
PM2.5 RF model includes (a) the coefficient of determination (R2) (b) root mean squared error (RMSE), (c)
mean bias, (d) and slope of the linear regression. Plots (e), (f), (g), and (h) show analogous results but for
the hourly PM2.5 predictions, which we did not predict for the EPA dataset. The size of each 24-hour and
hourly dataset, before being split into k-folds, is shown in the top left corner of plot (a) and (e).
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Figure B.13: Time series that shows the standard deviation of the hourly PM2.5 for each hour of observations
(light blue squares) and CEAMS RF predictions (dark blue circles) for hours that had at least 10 monitors
operating at the same time. This plot shows results from RF models that used shuffled k-folds.

Figure B.14: The same as Figure B.13 but when unshuffled k-folds were used during the training and
validation of the RF models predicting CEAMS hourly PM2.5.
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Figure B.15: Box-and-whisker plots of 500 permutation importance values for all of the predictors in the
RF models that predict CEAMS 24-hour PM2.5. The 500 permutation importance values are taken from 100
repeats of permutation importance from each of the 5 testing folds. The whiskers of each box are the 10th
and 90th percentile of the permutation importance distribution. The edges of each box represent the 25th
and 75th percentile and, finally, the centerline of each box represents the median (i.e., 50th percentile) of
the permutation importance distribution. (a) The 24-hour PM2.5 predictions of the CEAMS “Full dataset”,
which contained all of the available 24-hour PM2.5 averages regardless of whether daily AOD was available
from each location and day. (b) The 24-hour PM2.5 predictions of the CEAMS “Test - AOD” dataset, which
only contained 24-hour PM2.5 averaged and the associated predictors at locations and days where daily AOD
was also available, but we did not use AOD as a predictor for this model. (c) The 24-hour PM2.5 predictions
of the CEAMS “Test + AOD” dataset, which only contained PM2.5 data where AOD was available and we
used AOD as an additional predictor to the meteorological and geographical predictors.
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Figure B.16: Box-and-whisker plots of 500 permutation importance values for all of the predictors in the
RF models that predict CEAMS hourly PM2.5. The 500 permutation importance values are taken from 100
repeats of permutation importance from each of the 5 testing folds. The whiskers of each box are the 10th
and 90th percentile of the permutation importance distribution. The edges of each box represent the 25th
and 75th percentile and, finally, the centerline of each box represents the median (i.e., 50th percentile) of the
permutation importance distribution. (a) The hourly PM2.5 predictions of the CEAMS “Full dataset”, which
contained all of the available 24-hour PM2.5 averages regardless of whether daily AOD was available from
each location and hour. (b) The hourly PM2.5 predictions of the CEAMS “Test - AOD” dataset, which only
contained 24-hour PM2.5 averaged and the associated predictors at locations and days where daily AOD was
also available, but we did not use AOD as a predictor for this model. (c) The hourly PM2.5 predictions of
the CEAMS “Test + AOD” dataset, which only contained hourly PM2.5 data where AOD was available and
we used AOD as an additional predictor to the meteorological and geographical predictors.
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Figure B.17: The same as Figure B.14 but when unshuffled k-folds were used during the training and
validation of the RF models predicting CEAMS 24-hour PM2.5.

Figure B.18: The same as Figure B.16 but when unshuffled k-folds were used during the training and
validation of the RF models predicting CEAMS hourly PM2.5.
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Figure B.19: Box-and-whisker plots of 500 permutation importance values for all of the predictors in the
RF models that predict EPA 24-hour PM2.5 using consecutive k-folds. The 500 permutation importance
values are taken from 100 repeats of permutation importance from each of the 5 testing folds. The whiskers
of each box are the 10th and 90th percentile of the permutation importance distribution. The edges of each
box represent the 25th and 75th percentile and, finally, the centerline of each box represents the median (i.e.,
50th percentile) of the permutation importance distribution.
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Figure B.20: (a) All points from the testing folds of the 5-fold CV for the EPA 24-hour RF model for only
one winter (Dec. 15 - Jan. 15, 2019) and shuffled k-folds. (b) Box-and-whisker plots of the distribution
of 100 permutation importance metrics for the top 10 ranked predictors of the 24-hour EPA PM2.5 for one
winter (Dec. 15 - Jan. 15, 2019) and shuffled k-folds.

Figure B.21: (a) All points from the testing folds of the 5-fold CV for the EPA 24-hour RF model for one
winter (Dec. 15 - Jan. 15, 2019) and consecutive k-folds. (b) Box-and-whisker plots of the distribution
of 100 permutation importance metrics for the top 10 ranked predictors of the 24-hour EPA PM2.5 for one
winter (Dec. 15 - Jan. 15, 2019) and consecutive k-folds.
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Appendix C

Supplementary information for Chapter 4

C.1 Supplementary Tables

Table C.1: Count of public schools used for each distribution of Figure 4.2.

Fraction of students eligible

for subsidized meals
<0.3 0.3-0.6 >0.6

Urban most white

school count
1285 917 281

Urban most non-white

school count
637 2230 12408

Suburban, town and rural

most white school count
10225 14217 4098

Suburban, town and rural

most non-white school count
953 3278 11517
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C.2 Supplementary Figures

Figure C.1: Hammer et al. (2020) annually averaged PM2.5 concentrations over the continental US.
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Figure C.2: Cooper et al. (2020) annually averaged NO2 surface mixing ratios over the continental US.
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Figure C.3: Anenberg et al. (2021) annually averaged NO2 surface mixing ratios over the continental US.
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Figure C.4: Gridded counts of students at public schools in the continental US that identified as white based
on the National Center for Education Statistics.
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Figure C.5: Gridded counts of students at public schools in the continental US that identified as Black or
African American based on the National Center for Education Statistics.
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Figure C.6: Gridded counts of students at public schools in the continental US that identified as Hispanic
based on the National Center for Education Statistics.
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Figure C.7: Gridded counts of students at public schools in the continental US that identified as Asian or
Pacific Islander based on the National Center for Education Statistics.
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Figure C.8: Gridded counts of students at public schools in the continental US that identified as Native
American based on the National Center for Education Statistics.
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Figure C.9: Boxplots of annually averaged (a) NO2 and (b) PM2.5 surface mixing ratios split into categories
of poverty level, which is defined by the fraction of students eligible for free or reduced lunch. A greater
fraction of free or reduced lunch indicates a higher level of poverty. Within each poverty-level bin, separate
boxplots are shown for schools in suburban and combined town and rural locations for mostly white schools
(>65% white students) and mostly non-white schools (<39.3% white students). The thresholds for mostly
white and mostly non-white are based on the 60th and 40th percentile of the percentage of white students
in all public schools across CONUS. The width of each boxplot is proportional to the number of schools in
each distribution. (c) A map of schools that belong in each race and locale category.
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Figure C.10: Boxplots of annually averaged (a) NO2 and (b) PM2.5 split into bins of poverty level, which
is defined by the fraction of students eligible for free or reduced lunch. A greater fraction of free or reduced
lunch indicates a higher level of poverty. Within each poverty-level bin separate boxplots are shown for
schools in urban, suburban, and combined town and rural locations. Boxplots of annually averaged (c) NO2

and (d) PM2.5 at mostly white (>50% white students) and mostly non-white (<50% white students) schools,
split into bins of poverty level.
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Figure C.11: Boxplots of annually averaged NO2 at mostly white schools and mostly non-white schools
(based on the 60th and 40th percentile of percentage of white students in each school within the region of
the map) in the Bay Area of California, United States, split into bins of poverty level.
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Figure C.12: (a) Complementary cumulative distribution functions (CDF) of annually averaged NO2 from
the Cooper et al. (2020) dataset at schools for students that belong to specific racial/ethnic demographics.
(b) Complementary CDFs of annually averaged NO2 at schools of differing poverty levels, measured by
the fraction of students eligible for subsidized meals at each school. Each plot shows the percentage of the
students that attend schools where the co-located annually averaged mean of each pollutant is above a given
concentration. The current WHO guidelines for annually averaged NO2 are shown in red dashed lines.
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Figure C.13: Boxplots of annually averaged NO2 surface mixing ratios from the Cooper et al. (2020)
dataset split into categories of poverty level, which is defined by the fraction of students eligible for free or
reduced lunch. A greater fraction of free or reduced lunch indicates a higher level of poverty. Within each
poverty-level bin, separate boxplots are shown for schools in urban and combined suburban, town, and rural
locations for mostly white schools (>65% white students) and mostly non-white schools (<39.3% white
students). The thresholds for mostly white and mostly non-white are based on the 60th and 40th percentile
of the percentage of white students in all public schools across CONUS. The width of each boxplot is
proportional to the number of schools in each distribution.
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Figure C.14: (a) Difference in mean Cooper et al. (2020) annually averaged NO2 between mostly non-
white schools (fewer than 39.3% white students based on the 40th percentile nationwide) and mostly white
schools (greater than 65% white students based on the 60th percentile nationwide). (b) Difference in mean
Cooper et al. (2020) NO2 between high poverty (greater than 75% students eligible for free or reduced
lunch) and low poverty schools (fewer than 25% students eligible for free or reduced lunch). The colors are
lighter shades if fewer than 300 total schools are used to find the difference between each category in each
state. The colors are grey if there is no data for that state or there are fewer than 10 schools in either poverty
or racial/ethnic categories.
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Figure C.15: Boxplots of annually averaged NO2 from the Cooper et al. (2020) dataset at mostly white
schools (based on the 60th percentile of the percentage of white students in the state) and mostly non-white
(based on the 40th percentile of the percentage of white students in the state) split into bins of poverty level
in New York (a), California (b), and Florida (c).
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