
THESIS

DETECTING NON-SECURE MEMORY DEALLOCATION WITH CBMC

Submitted by

Mohit K. Singh

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2021

Master’s Committee:

Advisor: Vinayak Prabhu
Co-Advisor: Indrajit Ray

Sudipto Ghosh
Indrakshi Ray
Steve Simske

Copyright by Mohit K. Singh 2021

All Rights Reserved

ABSTRACT

DETECTING NON-SECURE MEMORY DEALLOCATION WITH CBMC

Scrubbing sensitive data before releasing memory is a widely recommended but often

ignored programming practice for developing secure software. Consequently, sensitive

data such as cryptographic keys, passwords, and personal data, can remain in memory

indefinitely, thereby increasing the risk of exposure to hackers who can retrieve the data

using memory dumps or exploit vulnerabilities such as Heartbleed and Etherleak. We

propose an approach for detecting a specific memory safety bug called Improper Clear-

ing of Heap Memory Before Release, referred to as Common Weakness Enumeration

244. The CWE-244 bug in a program allows the leakage of confidential information when

a variable is not wiped before heap memory is freed. Our approach uses the CBMC

model checker to detect this weakness and is based on instrumenting the program using

(1) global variable declarations that track and monitor the state of the program variables

relevant for CWE-244, and (2) assertions that help CBMC to detect unscrubbed memory.

We develop a tool, SecMD-Checker, implementing our instrumentation based algorithm,

and we provide experimental validation on the Juliet Test Suite that the tool is able to

detect all the CWE-244 instances present in the test suite. The proposed approach has

the potential to work with other model checkers and can be extended for detecting other

weaknesses that require variable tracking and monitoring, such as CWE-226, CWE-319,

and CWE-1239.

ii

ACKNOWLEDGEMENTS

I am deeply grateful to Dr. Vinayak Prabhu for his support as my research advisor and

for ensuring that we followed through with this thesis to completion. I highly appreciate his

invaluable advice and assistance at every research stage, from fine-tuning the research

to giving prompt feedback on my reports.

I would also like to express my sincere gratitude to Dr. Indrajit Ray, Mr. Stefano Righi,

and American Megatrends International for initiating, commissioning, and supporting this

project.

I would also like to extend my sincere thanks to my committee members, Dr. Sudipto

Ghosh, Dr. Indrakshi Ray, and Dr. Steve Simske, for sharing their knowledge, insightful

comments, and suggestions on this thesis.

Finally, I would like to thank everyone who supported me to bring the best out of me

and helped me by sharing their expertise to complete the thesis.

iii

TABLE OF CONTENTS

ABSTRACT . ii
ACKNOWLEDGEMENTS . iii
LIST OF TABLES . vi
LIST OF FIGURES . vii

Chapter 1 Introduction . 1
1.1 Secure Memory Deallocation . 3
1.2 Analysis Tools . 6
1.3 Our Contributions . 8
1.4 Related Work . 9
1.5 Thesis Organisation . 11

Chapter 2 Preliminaries . 12
2.1 Common Weakness Enumeration 12
2.2 Shallow and Deep Copy . 13
2.3 Model Checker . 13

2.3.1 Software Model Checkers . 14
2.4 CBMC . 16

Chapter 3 SecMD-Checker: Detecting Non-secure Memory Deallocation 18
3.1 Wiping Confidential Information . 18
3.2 Overview and Scope of our Approach 19

3.2.1 Assumptions . 21
3.2.2 Limitations . 23

3.3 Instrumentation Algorithm . 24
3.3.1 Subroutines of the algorithm . 32

3.4 Realloc Handling . 43
3.5 Example: Instrumenting multi-function program 44
3.6 Dynamic tracking SecMD-Checker 52

3.6.1 May-Alias: False Witness to a Positive 54
3.7 Bad Compiler Optimization . 55
3.8 Recommended practices . 56

3.8.1 Checking Data after Null Character 56
3.8.2 Storing Hard coded or unprotected Key 57
3.8.3 Wiping non-volatile sensitive data on Restart 58

Chapter 4 Experiments . 59
4.1 Environment . 59
4.2 Juliet Test Suite . 59
4.3 Result for detecting other memory related CWEs 61

4.3.1 CBMC Properties . 62

iv

4.4 SecMD-Checker Test Results . 63

Chapter 5 Conclusions and Future Directions . 64

Bibliography . 65

v

LIST OF TABLES

4.1 Environment. 59
4.2 Relevant Common Weakness Enumerations. 60
4.3 Test Results: Detection of memory related CWEs 62
4.4 Test Results: Detection of CWE-244 . 63

vi

LIST OF FIGURES

1.1 NVD Vulnerability Growth Statistics. 1

2.1 ShallowCopy . 13
2.2 DeepCopy . 14
2.3 Software Model Checker. 15
2.4 CBMC Architecture. 17

3.1 Wiping Confidential Information before freeing 19
3.2 Overview of our Approach. 20
3.3 Generation of Graph Nodes. 37
3.4 Generation of Graph Edges. 38
3.5 Code Formatting: Adding braces to one-line conditional statements. 39
3.6 Code Formatting: Broken braces and splitting statements by newline. 40
3.7 Example: Generated graph vertices. 46
3.8 Example: Generated graph edges. 47
3.9 Checking Data after Null Character. 57

4.1 CBMC Test Result on Juliet Test Suite. 61

vii

Chapter 1

Introduction

Software is omnipresent; it drives all the appliances that we use throughout the day

like television, microwaves, telephone, automobile computer system, and many more.

Software has become an integral part of our lives; thus, making it vulnerability or bug free

is more pivotal now than before. All software execution paths should be predictable and

consistent in a system as per the design and requirement, with no surprises to the users.

Software testing, which aims to improve quality by identifying and removing the prod-

uct’s errors and checking if the product is not doing anything unintended is, consequently,

extremely important. However, even after the widespread adoption of software testing, a

drastic increase in the number of reported vulnerabilities can be seen every year (depicted

in Figure 1.1). The bar chart is generated by the National Vulnerability Database (NVD)

search engine. These vulnerabilities can cause car model throttle control failures [1],

malicious take over of automobiles [2, 3], untrusted modifications in bootloaders [4] and

several others.

Figure 1.1: NVD Vulnerability Growth Statistics.

1

Vulnerability in the software can potentially be exploited to cause security breaches in

itself and any dependent modules. The exploitation of software vulnerabilities could lead

to loss of confidentiality, integrity, and availability. Furthermore, fixing the bugs adds an

overhead to the system since it requires all dependable functionalities to be turned off

during patching. Therefore rigorously detecting the bugs in an early development phase

is essential to software. Otherwise, it can substantially impact security, including system

instability, information leakage, and system failure. For example, a complex system like a

computer contains three primary software layers: firmware, operating system (OS), and

application layer. Each layer has its own importance, as firmware works as a software

interface between the operating system and hardware. So if a vulnerability is present in

the firmware, it can cause a security breach to the OS because the OS is dependent on

firmware for interaction with hardware. Fixing a vulnerability in firmware will require the

OS to stop its functionality. Therefore, to decrease the overhead to the system, every

running software should be thoroughly tested before the final production phase.

Many applications are written in C because it is a middle-level language providing the

features of both high-level and low-level languages. Low-level languages allow the pro-

gram to access the system resources directly, making it easy for a programmer to create

software that interacts with hardware efficiently and effectively. This is the reason why

most drivers and kernels are written in low-level languages. High-level languages are

mainly used for better comprehensibility and faster software development. Even though

C is widely used, its benefits come with a trade-off: it is a memory unsafe language. It al-

lows users to use arbitrary pointer arithmetic with pointers implemented as direct memory

addresses with no provision for bounds checking. Memory unsafe languages are suscep-

tible to errors such as buffer-overflow, buffer-overread, invalid memory access, memory

leak etc. These errors increase vulnerabilities in systems, consequently exposing them

to undetectable disclosure of confidential data, inconsistent and unpredictable program

behavior, run-time errors, and system crashes. In this era, a significant number of such

2

errors are still found in software that are rigorously tested before the production release.

Testing methods are further explained in section 1.2. Different types of errors and weak-

nesses in software and hardware have been categorized into a community-developed

list known as Common Weakness Enumeration (CWE); We will further discuss CWE in

section 2.1.

1.1 Secure Memory Deallocation

Thorough cleaning of sensitive data such as cryptographic keys of Heap Memory be-

fore release is widely accepted practice for developing secure software [5,6]. Otherwise,

it could lead to CWE-244: Improper Clearing of Heap Memory Before Freeing (’Heap

Inspection’) [7]. For example, all versions of Dell RSA BSAFE Crypto-C Micro Edition be-

fore 4.1.4 were affected by the CWE-244. This led to CVE-2019-3733 vulnerability [8] that

could potentially allow a malicious remote user to extract the sensitive information leaving

data at risk of exposure. Aim of this thesis is to focus on the model checking approach for

detecting CWE-244. Reasons for CWE-244 occurrence:

• Confidential information (such as a password or encrypted key) not wiped from

memory before freeing.

• Usage of the "realloc()" function. The "realloc()" function is used to extend or shrink

the allocated memory block. It copies the data from the old memory block and

pastes it into the new memory block. Making the old memory block inaccessible

to the program. Therefore, "realloc()" usage makes program susceptible to heap

inspection as the original memory remains intact even after memory reallocation.

Due to CWE-244, an attacker can retrieve confidential information by taking a memory

dump or utilizing other methods.

Security practices like zeroing out memory before freeing, also known as scrubbing

or secure memory deallocation, are often overlooked by the programmer when it comes

3

to protecting sensitive data. These practices are frequently not followed in applications

such as web browsers and web servers that currently handle most of the world’s sensi-

tive data, such as passwords and confidential documents. Consequently, sensitive data

could be found throughout the user and kernel memory and stay there for an indefinite

period [9]. Sensitive data buildups are formed because data can remain in the memory

for an indefinite time. Therefore, sensitive data buildups increase the risk of exposure,

the chance of revealing information, and attack severity in case of system compromise.

Generally, the natural lifecycle of data ends when new data overwrites the old data during

the subsequent allocation of the same memory location. However, waiting for the data to

be overwritten produces a data lifetime of 10 to 100 times the minimum lifetime, which is

from the first write to the last read. A lifetime of sensitive data could be reduced within

1.35 times the minimum possible data lifetime by zeroing the data at deallocation [10].

Sensitive information can be exposed by running a program on a system with access

privileges to read the system memory. Password managers like 1Password7 are used to

store and retrieve sensitive information. However, this was breached [11] by running pro-

grams on the system that allowed the attacker to read the system memory. Consequently,

program revealed the stored passwords because 1Password7 never scrubbed the master

key, individual passwords, or secret key before freeing the respective memory.

Leaks could also happen by exploiting other vulnerabilities. For example, Heartbleed

is a serious vulnerability present in OpenSSL cryptographic software library. This library

is used on a wide scale on the web for providing secure communication. SSL protocol

includes a heartbeat option, which allows one computer to know that the computer at the

other end is still online by sending a short message and getting a response back. It was

found that a cleverly formed heartbeat message could be sent to the computer, allowing

the attacker to exploit the system by buffer overread vulnerability, where more data is

read than should be allowed. Therefore, this attack can reveal the sensitive information

buildups from the server’s memory (RAM) [12]. This vulnerability occurred because of

4

the missing bound checks. A similar buffer overread problem has been encountered in

curl [13].

Program errors could lead to accidental data leaks. For example, Etherleak [14] oc-

curred in ethernet Network Interface Card (NIC) device drivers. It occurred due to incor-

rect implementations of RFC requirements and poor programming practices. Therefore,

this attack can expose the portions of kernel memory. Etherleak could be violated quickly

by sending an ICMP echo message to the vulnerable machine, which returns the portions

of kernel memory in the padding of the response messages.

Unintended feature interactions could also result in an accidental leak through core

dumps or logging. In one study, 2.5 million crash reports were examined [15]. This

revealed that memory dumps from the crash reports contained an extensive amount of

private data, including session Ids, clear passwords, and other personal information. For

instance, Mozilla could leak bits of uninitialized memory when rendering certain types of

truncated images [16]. Leaking of private kernel information from previous executions

to the userspace processes [17]. Solaris leaked passwords that were left in memory by

dumping core files to a directory accessible via anonymous FTP [18].

Sensitive data remnants also make the system susceptible to Cold Boot attacks [19]

where an attacker has physical access to a machine and can lay their hands on the

encryption keys. It can stay in memory for an indefinite time if the information leaks from

the disk by paging or any other technique, extraordinarily expanding the risk of exposure.

Even information that has been overwritten on a disk can be recovered [20].

Non-secure memory deallocation in software that stores encryption keys on Read-

Only Memory (ROM) has a more severe impact. The purpose of using flash memory,

ROM, EPROM, or EEPROM is to make sure that anything stored in them cannot be

changed, i.e., making it immutable. Hence, specific system design such as Root-of-trust

requires passwords/keys to be stored in ROM to be utilized during the software authen-

tication procedures. Therefore, storing sensitive data in ROM ensures that the malicious

5

entity cannot alter the software. However, for authentication, we need to bring that key

in the RAM, and if we carelessly free the memory without zeroing them out, keys can be

exposed by Heap Inspection. In such cases, companies could require physical replace-

ment of the chip holding the software or be reprogrammed through a particular upgrading

procedure [21]. Physical replacement or reprogramming the chips is expensive and a

hectic task as it requires all the component functionalities and dependent services to be

turned off during the procedure. Therefore, this makes CWE-244 a serious weakness in

a system.

As explained, data could be exposed in numerous ways. Additionally, we have to con-

sider that the system could be compromised and could have memory leaks. Therefore,

rigorously detecting the data exposure weakness in early development is crucial as the

weakness could lead to a vulnerability. Hence, it is incumbent to detect sensitive data

exposure in a system at the early development phase.

1.2 Analysis Tools

Software Testing has become an integral part of the software development process.

It is performed to check if the software product is free of defects when delivered to the

customer. It helps to prevent bugs, improve performance, and reduce development costs.

Software testing involves multiple types of tests [22] such as integration, unit, functional,

acceptance, performance, stress, regression, security, and many more. These tests can

be done in a manual or automated manner. A manual approach is an expensive option

and not always practical, as it is a very time-consuming process. Therefore, tests are

generically automated, and their testing reports serve as information regarding the quality

of the software product.

Security testing is done to reveal weaknesses, vulnerabilities, threats, and risks in

software. A few of the famous security tools are Metasploit [23], Nessus [24], and Snort

[25]. There are several techniques for bug detection such as static analysis, dynamic

6

analysis [26], model checking [27] or a combination of these techniques. Static Analysis

and Model Checking are used to detect bugs without running the program. Static analysis

determines run-time properties by inspecting code structures, whereas model checking

explores the relevant computational states. Both techniques have their own tradeoffs [28].

Static program analysis examines the text of a program statically without attempting

to execute it. Static analysis constructs an abstract representation of the program be-

haviors and examines its states. Generated representation is an approximation of the

parsed program. Therefore, examination of these created states can expose the hidden

vulnerabilities. Static analyzers consider the run time properties/errors at compilation time

automatically. They do not require any code instrumentation or supervision. It is much

faster than manual auditing and saves time for the auditor to learn the weaknesses and

vulnerabilities. A few of the benefits are faster execution speed, less level of environ-

ment knowledge required before the testing, ability to cover all the code paths, and easy

addition of properties.

Model Checking [29,30] computes the run-time states of the program without actually

running the program, which is further utilized to check whether a specific property/speci-

fication holds for the program. If the program is small or has a finite number of states, the

model checker can do an exhaustive analysis on the states. However, if the program does

not have a finite number of states, then approximations are needed. Otherwise, it could

lead to a state explosion problem. With the approximations, we can provide assurance for

error/bug detection within the defined bound for the checked property. Furthermore, if a

particular property is violated, then the model checker provides an execution path (trace)

that leads to the specific violation, also referred to as a counterexample. Model-checking

requires a deep understanding of the system because it requires a carefully crafted en-

vironment model for checking the properties. A difference between model checker and

static analysis is that model checking executes only those paths that are explicitly trig-

gered by the generated model. Model checker performs better when it comes to checking

7

for more affluent set properties, finding the corner cases, and exploring the system’s in-

volute behaviors. One of the bounded model checkers is the C-Bounded model checker

(CBMC) [31] created by Daniel Kroening at Carnegie Mellon University. Capabilities of

CBMC have been showcased on Common Weakness Enumerations (CWEs) and Ama-

zon Web Services [32, 33]. Recent advances have made it possible to use both the

techniques, static analysis and model checking on large systems. Although both ap-

proaches have significant differences, they are well suited in detecting errors/bugs in the

programs [34].

1.3 Our Contributions

In this work, we propose an instrumentation based approach for detecting non-secure

memory deallocation and develop a tool – SecMD-Checker – implementing the proposed

algorithm. Our tool takes two inputs: (1) compilable C programs and (2) the name of a

pointer to a location holding sensitive data. The tool then checks if this original memory

location, and other memory locations that have been copied from it, are always zeroed

out before they are freed.

Our algorithm has three main phases: (1) first, it performs a coarse flow-insensitive

interprocedural static analysis on the program to construct a set of pointer variables that

could point to memory locations containing sensitive data; (2) then, it instruments the pro-

gram by inserting required variable tracking, monitoring, and assertion logic, utilizing the

set of variables inferred in the previous phase. (3) finally, the tool invokes the C Bounded

Model Checker (CBMC) to check for assertion violations in the instrumented program –

an assertion violation, in this case, is a probable instance of non-secure memory deallo-

cation.

Our tool implementation can handle the original tracked variable’s shallow copies (ref-

erences) and also deep copies (copy by value). To handle shallow copies, we track the

memory address pointed by the variable name, not the variable name. Moreover, we treat

8

each deep copy as an individual variable and do instrumentation for both the input and

deep copies. While we use CBMC in our work, our algorithm is also applicable to other

model checkers and static analyzers, with appropriate minor changes to the tool-specific

assertion logic code.

For experimental validation of our technique, we utilized the Juliet Test Suite [35], a

collection of test cases in C/C++ classified under different CWEs maintained by NSA.

We ran SecMD-Checker on the 72 CWE-244 test cases present in the Juliet Test Suite.

Our tool correctly pointed out the functions which had non-secure memory deallocation

instances in all the cases. Moreover, SecMD-Checker did not raise any false alarms in

functions that did not have non-secure memory deallocation.

1.4 Related Work

Computer scientists have done their research on how the Static Analysis can be

used for finding Common Vulnerabilities and Exposures (CVEs) in stripped firmware im-

ages [36]. They were able to find vulnerabilities in real-world firmware with high accuracy

efficiently. By utilizing static analysis, researchers can also analyze the embedded-device

firmware by modelling and tracking multi-binary interactions. In their approach, they prop-

agated taint information between binaries to detect non-secure interactions and identify

vulnerabilities [37]. Studies have been conducted focusing only on individual vulnerabili-

ties such as Mirai Exploitable Vulnerability [38], and Intrusion detection [39].

Recent research suggests that model checking is viable for finding and eradicating

security bugs quickly [40]. Evolution in model checking has shown that model check-

ers can be used on the whole Linux Distribution for security violations and can become

an integral part of the software development process [41], where researchers make use

of MOPS [42]. Kronos is a model checking tool [43] that is available for real-time sys-

tems which includes real-time communication protocols [44, 45], timed asynchronous

circuits [46], and hybrid systems [45, 47]. SMV model checker [48] has been used to

9

analyze a specification of a software system for aircraft collision avoidance [49] and net-

work vulnerabilities [50]. SPIN [51] and DiVinE [52] could be used on multi-threaded

software [53,54]. DiVinE could also be used efficiently on large scale systems [55,56].

CBMC is a bounded model checker for C, C++, and Java programs. It can verify the

absence of violated assertions under a given loop unwinding bound, array bounds (buffer

overflows), pointer safety, and arithmetic exceptions. It can also provide a counterexample

if the assertion is violated. Research has been conducted on CBMC in an industrial

setting where they proved initial boot code in data centers at AmazonWeb Services is

memory safe [32]. CBMC could be effectively and efficiently be used for detecting CWEs

[33]. Our work applies to any sound model checker.

Research has shown that limiting data lifetime can reduce the risk of sensitive data ex-

posure when compromises occur. Additionally, this problem should be addressed across

all levels in the systems [57]. Zeroing the memory before deallocation or within a specific

time period can reduce the data lifetime within 1.35 times the minimum possible data life-

time; [10] proposes a way of ensuring this by making changes in the compiler, libraries,

and kernel. However, It is not always practical, and we cannot just believe these changes

will be present in kernels, compilers, and libraries in the application execution environ-

ment. This approach can be practical only if all existing systems consist of compiler, ker-

nel and library changes, which is not the case for all the systems. Therefore, it behooves

us to ensure that individual software is not increasing the lifetime of data unnecessarily.

Aliasing occurs when the memory location can be accessed by more than one name.

There exist two types of aliases must-alias and may-alias. must-alias are distinct

names for the same memory on every executable path, whereas may-alias are distinct

names for the same memory that may exist on some executable path. Alias analysis is a

research area for seeking out all the aliases in the program. Many techniques are present

for alias analysis, such as Interprocedural Pointer Alias Analysis [58], Type-Based Alias

Analysis [59], and Context-Sensitive Pointer Analysis [60].

10

1.5 Thesis Organisation

In Chapter 2 we give a brief background about the software model checker and ter-

minologies that will be required to understand our work. In Chapter 3, we describe a

software weakness (CWE-244: Heap Inspection) that should be addressed while writing

software that inherently cannot be detected by the model checker. This Chapter also de-

scribes our instrumentation approach for enabling the model checker for detecting CWE-

244 efficiently. In Chapter 4, we provide experimental validation of our proposed solution

by evaluating our tool SecMD-Checker on CWE-244 examples from the Juliet Test Suite.

Finally, Chapter 5 concludes the thesis and provides the future direction.

11

Chapter 2

Preliminaries

In this chapter, first, we discuss the Common Weakness Enumeration (CWE) in brief.

Next, we discuss Shallow and Deep copy. Next, we will provide an overview of a model

checker.

2.1 Common Weakness Enumeration

Weaknesses are faults, bugs, flaws, or other errors in software or hardware imple-

mentation. If left unaddressed, they could result in systems, networks, or hardware being

vulnerable to attacks. Weaknesses, attacks, and environmental conditions are combined

to create exploitable vulnerabilities in software systems which are known as Common

Vulnerabilities and Exposures (CVE). CWE is a community-developed category list for

software and hardware weakness types. It was created with a purpose in mind that was

to educate software and hardware architects, designers, programmers, and acquirers on

how to eliminate the known types of security weaknesses before products are delivered.

CWE works as a common language, measuring matrix and baseline for weakness identifi-

cation, mitigation, and prevention efforts. CWE has over 600 categories, including classes

for race conditions, buffer overflows, non-secure random numbers, and hardcoded pass-

words which have gone through many refinements. High-quality tools and services are

being developed to find security weaknesses that benefit from the CWE listing as it serves

as a measurement matrix. The MITRE Corporation currently maintains CWE. A detailed

CWE list is available at MITRE website [61].

12

2.2 Shallow and Deep Copy

Shallow Copy stores the reference of the object to the original memory address. It only

clones the reference, not the actual object. Therefore, any changes done on the shallow

copy reflect in the original object. A shallow copy is quicker because it only copies a

reference of the object. If a shallow copy is created of an object 2.1 then the user can free

the allocated memory using any reference object. After freeing the memory, none of the

reference pointers can be used to access the original data.

Figure 2.1: Shallow Copy.

Deep Copy truly clones the data from the original memory address. A deep copy of

an object does not share the same reference; thus, any changes done to either object do

not affect the other. Deep Copy is slower because it copies the actual underlying object

value. If a deep copy is created of an object 2.1 then the user must free the allocated

memory for all the addresses separately. Otherwise, it could lead to a memory leak.

2.3 Model Checker

Model-checking is one of the successful approaches for formal verification, which can

verify if a system satisfies the desired property. Users define properties to ensure that our

system always remains within a set of finite behaviors, i.e., the undesirable state never

13

Figure 2.2: Deep Copy.

happens. In model checking, system design or requirements are referred to as models,

and specifications that need to be satisfied by the system are called properties. Properties

can be defined as the scenario or the action that should be performed mandatorily at any

point of time during the system run. Model checker outputs success if the system satisfies

the property and generates a counterexample otherwise. A counterexample explains why

the systems do not satisfy the property or why the property is violated. If our system is a

program/code, then a counterexample will be a trace of program execution, leading to a

scenario where the specified property does not hold. By examining the counterexample,

the user can find out the source of error in the model and can fix/correct it. Model-checking

has shown great promise in detecting security bugs or vulnerability [32,62–64]. They are

being used in many domains varying from car automation, IoT, textile industry, and many

more.

2.3.1 Software Model Checkers

Software model checkers can be easily explained if we divide them into modules,

i.e., 1) parsing and program transformation, 2) instrumentation and 3) verification, as

shown in Figure 2.3. In the first step, the program is parsed and transformed into a

model which the verifier can recognize. After the model has been generated, the model

checker instruments the code according to the property the user wants the system to

14

follow. Global variables, assertion logic and pattern matching transitions are defined in

the code during the instrumentation phase. This instrumentation defines a finite state in

the form of a program, where the state changes when a particular pattern is matched.

Pattern matching can trigger the assertion logic during failure and move the system to the

error state, resulting in a property violation. Finally, instrumented code is passed to the

verifier for checking if the defined properties are violated in the system. The error trace is

produced if the property is violated.

Some model checkers enable users with a mechanism to define a property that could

save the efforts required by the user to do the instrumentation. Blast enables the user to

define a property utilizing a Spec tool [65]. If such a mechanism is absent, then the prop-

erty can be directly defined by changing the source code. However, this approach needs

deep knowledge on how model checkers internally work at the code level. Otherwise,

users need to instrument the code by treating the model checker as a black box.

Figure 2.3: Software Model Checker.

Internal functioning of CBMC and property definition can be understood by [63]. In our

research, we have used CBMC [31] for running the experiments. We created two environ-

15

ments for running CBMC on the CWEs present in the Juliet Test Suite [35] provided by the

MITRE. Multiple weaknesses were researched that were not detected by the CBMC and

can leave the system vulnerable and exploitable. We proposed a pragmatic solution for

checking such weaknesses, and our approach aligns with instrumenting the code before

invoking the CBMC, where CBMC is treated as a black box. We describe the detected

weaknesses in section 3.1 and our approach for validating such properties in section 3.2.

2.4 CBMC

CBMC stands for C - Bounded Model Checker. It can be used on C and C++ programs

developed by Daniel Kroening and has been maintained for more than ten years [31].

It can verify the assertions under a given loop unwinding bound, array bounds (buffer

overflows), pointer safety, arithmetic exceptions and can provide a counterexample during

assertion violations. Currently, it supports C89, C99, most of C11 and most compiler

extensions provided by GCC and Visual Studio.

Figure 2.4 depicts the steps involved in CBMC internal processing. The steps involved

are as follows:

• C program and command options are passed as input to the CBMC. Parse tree is

then generated corresponding to the passed input.

• Language Type Checking stage generates a symbol table, i.e., mapping identifiers

to symbols utilizing the parse tree.

• CBMC converts all the symbols from the symbol table with function type to construct

a corresponding GOTO program.

• CBMC adds checks for null-pointer dereferences, arithmetic overflow, and other un-

defined behavior according to the passed command options, including the code

coverage assertions.

16

• CBMC transforms the GOTO program by unwinding the verification loops until a

fixed bound and then translates the GOTO program into Static Single Assignment

(SSA) Form.

• SSA form is then converted into a CNF formula.

• CNF formula is passed to SAT solver to check its satisfiability.

• If not satisfied, the SAT solver generates a counterexample that needs processing

to convert it into a human-readable format.

Figure 2.4: CBMC Architecture.

By default, CBMC comes with a MiniSat solver. CBMC can verify memory safety

checks for array bounds, safe use of pointers, exceptions, variants of undefined behavior,

and user-specified assertions [66].

17

Chapter 3

SecMD-Checker: Detecting Non-secure

Memory Deallocation

In this chapter, we discuss the probable causes that lead to CWE-244 in section 3.1.

We discuss our approach for C programs to detect if sensitive memory locations are

wiped before freeing by invoking CBMC. We have created a tool SecMD-Checker that

implements our approach for detecting the non-secure memory deallocation (CWE-244).

It is described in detail in section 3.2.

3.1 Wiping Confidential Information

Generally, a programmer thinks their job ends after freeing the allocated memory by

calling the function "free()" without considering the consequences of data exposure. The

function "free()" deallocates the allocated heap memory. It takes an argument as a pointer

to the memory that the programmer wishes to deallocate. It marks the memory as free

so that the processor can assign it to other processes for their usage and reducing the

memory wastage, as depicted in fig 3.1. However, the data in heap memory exists in

the RAM until the system restarts, or completes its natural lifetime, i.e., another program

overwrites the memory. If the confidential information is not wiped before freeing, then the

sensitive information will live in the memory after freeing and will be inaccessible to the

user. Moreover, in such cases, an attacker can use tools such as Dumpit and Volatility

to extract the data from the RAM, leading to leakage of the information. This memory

leakage is also described by Common Weakness Enumeration 244 (CWE-244) Improper

Clearing of Heap Memory Before Release [7] which is well known in academia.

Another reason for CWE-244 is the usage of the "realloc()" function. The "realloc()"

function is utilized to extend or shrink the allocated memory block size. It may allocate the

18

Figure 3.1: Wiping Confidential Information before freeing.

memory to the new address because space after the end of the old memory block may

be in use [67]. This results in copying data from the old memory block to the new one -

making the old memory block with the data intact inaccessible to the program. Therefore,

using "realloc()" makes code susceptible to heap inspection.

We need to make sure such weakness is not present in the code, leading to sensitive

data exposure. Hence, we proposed a solution that can be used to detect non-secure

memory deallocation.

3.2 Overview and Scope of our Approach

We implemented our SecMD-Checker in Python 3.7 version. It takes two arguments

as an input 1) a compilable C program 2) name of the variable holding sensitive data1.

1For multiple variables, we can rerun the program

19

Currently, it only supports single file processing at a time. After we pass the input to

the program, SecMD-Checker does a flow insensitive interprocedural analysis on the C

program for fetching information about sensitive variables such as deep copies, shallow

copies (aliases), data allocated on heap memory. Next, SecMD-Checker instruments the

program for detection of non-secure memory deallocation. Instrumentation includes 1)

declaring variables that track and monitor program variables containing sensitive data

without changing the coding logic, 2) embedding assertion logic (that we define) before

every "free()" statement that deallocates memory containing sensitive data, 3) inserting

logic for tracking copies of sensitive data into the program. This instrumented file has suffi-

cient information to know when and how to validate the non-secure memory deallocation.

CBMC is then invoked to analyze the instrumented C program file. if non-secure memory

deallocation is present in the program, an alert is raised, and a failure trace could be ob-

tained for CWE-244. Otherwise, CBMC indicates successful validation of the CWE-244

test.

Figure 3.2: Instrumenting File to include wiping confidential information

Figure 3.2 shows the high level design of SecMD-Checker. SecMD-Checker requires a

programmer to input the variable name which will be containing the sensitive information.

Let us say the variable is X. The reason for requesting the user for the variable is to

reduce the false positives. Suppose all the variables present in the code are checked

for the CWE-244. In that case, the variable pointing at non-sensitive data will also be

validated for the CWE-244. This validation is not required because non-sensitive data is

20

not mandatory to be wiped before freeing. This will generate false positives whenever the

non-sensitive data is freed. In order to avoid these false positives, we request input from

the programmer.

We defined the __Memory_Wiping_Check function containing the assertion logic

(understood by CBMC) to validate the non-secure memory deallocation. Calls to this

__Memory_Wiping_Check are embedded in the instrumented program before every

"free()" of any sensitive variable. Adding a function call to __Memory_Wiping_Check just

before all the calls to the "free()" statement informs CBMC to check whether the variable

under consideration is pointing to one of the addresses that are being tracked. If that is

the case, CBMC checks whether the memory is wiped by the assertions defined in the

respective function.

3.2.1 Assumptions

• Suppose the data pointed by the input variable X is copied wholly or partially in

another memory. In that case, the variable pointing at the memory will be considered

as a deep copy. Therefore, it will be tracked as well. Deciding if the partial data

should be counted as sensitive data is tangential to our research because it requires

a deep analysis of the data itself. For example, a user’s home address is sensitive

data, but when looking at it partially, such as the State by itself could be considered

as non-sensitive information. However, adding the street name to it could make it

sensitive. Therefore, we consider any partial data as sensitive data that is copied

from memory pointed by a sensitive variable.

For example

1 vo id Dummy()

2 {

3 char *X = (char *) mal loc (100 * s i z e o f (char)) ;

4 char *Y = (char *) mal loc (100 * s i z e o f (char)) ;

5 char *Z = (char *) mal loc (100 * s i z e o f (char)) ;

21

6 memcpy(Y, X, 1 * s i z e o f (char)) ;

7 memcpy(Z , X, 100 * s i z e o f (char)) ;

8 }

In the above example, X holds the sensitive information, and X is being partially

copied to Y (line 6) and completely deep copied to Z (line 7). However, variables Y

and Z will both be considered as a deep copy of X.

• Suppose a variable is suspected of holding sensitive data. In that case, it will be

checked for non-secure memory deallocation at every free statement, independent

of how many times we allocate and free the memory. As mentioned above, deep

analysis is required to state/decide if data could be sensitive or not. So if a variable

tends to hold sensitive data at some instance, then it is practical to consider that any

data ever held by the variable could be sensitive.

Example

1 vo id func t i on1 ()

2 {

3 char *X = (char *) mal loc (100 * s i z e o f (char)) ;

4 X = nonSensi t iveData () ; / / r e tu rns non s e n s i t i v e data

5 f r ee (X) ;

6 X = (char *) mal loc (100 * s i z e o f (char)) ;

7 X = sens i t i veDa ta () ; / / r e tu rns s e n s i t i v e data

8 zero (X) ; / / zero out the memory

9 f r ee (X) ;

10 }

In the above example, variable X will be checked for non-secure memory deallo-

cation two times because we cannot state whether data stored in the variable is

sensitive or not. Therefore, we check for non-secure memory deallocation just be-

fore line 5 and line 9. As of line 5, X was not zeroed out before "free()" even though

it contained the non-sensitive data, an alert (false positive) will be generated.

22

• We treat deep copy relations as non-commutative, i.e., if the deep copy Y is created

from variable X, then Y is a deep copy of X, but X is not considered as a deep copy

of Y. We treat the user-provided variable name as the root of the chain, and the

copies created out of it as its respective copies. Therefore, the variables that are

used/deep copied to create the input variable are not monitored/tracked.

Example

1 vo id Foo (i n t a l iasX)

2 {

3 char *X = (char *) mal loc (100 * s i z e o f (char)) ;

4 X = sens i t i veDa ta () ; / / r e tu rns s e n s i t i v e data

5 char *Y = (char *) mal loc (100 * s i z e o f (char)) ;

6 memcpy(Y, X, 100 * s i z e o f (char)) ;

7 char *Z = (char *) mal loc (100 * s i z e o f (char)) ; ;

8 memcpy(Z , Y, 100 * s i z e o f (char)) ;

9 f r ee (X) ;

10 f r ee (Y) ;

11 f r ee (Z) ;

12 }

In the above example, if the input variable to the SecMD-Checker is Y, then Z will be

considered a deep copy of Y thus will be tracked. However, our tool will not track X

because it was not created/copied from Y.

3.2.2 Limitations

SecMD-Checker is a prototype focused on detecting secure memory deallocation. It

does not support the following properties/features.

• Higher order functions and pointers to functions

• Double pointers

• Array of pointers

23

• Structure

• Class

• Polymorphism

3.3 Instrumentation Algorithm

Algorithm 1: CWE-244 Instrumentation Algorithm(input_c_file, variable_name)
input : input_c_file, var_name

output: program_file

1 Begin

2 program_file← CodeFormat(input_c_file);

// Convert to certain brace syntax

3 AllCopiesSet← FindCopies(program_file,var_name) ; // Find

all the deep and shallow copies of input var_name

4 program_file← Add declaration and initialization __address_holder,

__count, __AddAddress and __Memory_Wiping_Check;

/* Extract all function (prototypes, body) pairs and add

to ProgramFunctions */

5 Program_Functions← ExtractFunctions(program_file)

24

5

6 for (func_prototype, func_body) in Program_Functions do

7 func_name←GetFunctionName(func_prototype);

8 for line in func_body do

/* Variables from “AllCopiesSet”, is being assigned

something or initialized. For instance

var_name= f(), var_name= malloc() */

9 if IsAssignmentStatement(line) then

10 var_to,var_from← GetCopyVars(line);
11 if AddProperSuffix(var_to,func_name) ∈ AllCopiesSet

then

12 program_file← Insert __AddAddress(var_to) after line;

/* Variables from “AllCopiesSet”, is passed as an

argument to a function call. For instance

f(..,var_name, ..) */

13 if IsFunctionCall(AllCopiesSet, line) then

14 Var_Names←

var_name

∣

∣

∣

∣

∣

∣

var_name is a function argument on “line” and
AddProperSuffix(var_name,func_name)
∈ AllCopiesSet

;

15 if IsIfStatement(line) then

16 for var_name ∈ Var_Names do program_file← Insert
__AddAddress(var_name) in beginning of if and else block;

17 else

18 for var_name ∈ Var_Names do program_file← Insert
__AddAddress(var_name) after line;

19 if IsFreeStatement(line) then

20 freedvar← GetFreedVar(line);
// The variable being freed

21 if AddProperSuffix(freedvar, func_name) ∈ AllCopiesSet
then

22 program_file← add
__Memory_Wiping_Check(freedvar) function call before
line;

25

Algorithm 1 describes instrumentation steps for tracking and monitoring variables for

secure memory deallocation. The algorithm has four phases as follows:-

1. Algorithm takes a compilable C program file and variable name as an input.

2. Formats the code in a suitable format for regex processing routines (line 2). Note:

Code Formatting is described in detail in section 3.3.1.2.

3. Algorithm does a flow insensitive static analysis on a program to extract the relevant

information required to generate a graph based on deep and shallow copy relation

between the variables. It utilizes the generated graph for determining the variables

that may contain sensitive information based on input variable X, i.e., shallow and

deep copy variables of input variable X.

4. Instruments the program by embedding the necessary assertion and monitoring

logic into the code. This instrumentation allows CBMC to track all the addresses

that were assigned to the determined variables during CBMC analysis and check if

any of the tracked addresses are wiped by utilizing the wiping assertion before every

"free()".

Phase 3 starts at line 3; Call to function FindCopies finds all the shallow and deep

copy variables and stores the variable list in a AllCopiesSet variable. Every variable

name present in the AllCopiesSet has the following format: (Variable_Name + "_-

_" + Scope). If we have a global variable, then the algorithm adds "Global" as a suffix

(Scope), and if it is local, then the algorithm adds "function_name" as a suffix (Scope).

Using function names as suffixes resolves the same name clashes in different functions.

We will be using the word "suffix" for representing appended scope throughout the algo-

rithm. Inner functioning of FindCopies for extracting shallow and deep copies of the input

variable name is described in section 3.3.1.1.

Phase 4 starts at line 4; Adds variable and function definitions in the program file.

These definitions are as follows:

26

• __address_holder: It is a global array of the data type (void *) that stores the

addresses of detected sensitive variables. During the program run, __address_-

holder holds the addresses assigned to an identified variable that is currently

stored in AllCopiesSet. It is essential to know the address of the variable that

contains sensitive information because during freeing of heap memory, it can help

distinguish several memory addresses. Moreover, the assigned memory needs to

be tracked as memory can be pointed by many pointer references and thus can be

freed by any of them. So when any memory is freed, SecMD-Checker checks if the

variable holds the same address as the __address_holder. If true, then it utilizes

the assertion to verify if the memory is securely deallocated.

• __count: __count is a global integer variable; it contains the count of the number

of addresses stored in a __address_holder at any given instance.

• __AddAddress: It is a function that takes a pointer as an argument, and it stores

the address pointed by the passed pointer into __address_holder.

• __Memory_Wiping_Check: It is a function that takes a pointer as an argument

and checks whether the memory pointed by the passed pointer is zeroed out or

not. If the memory is not zeroed out, then __Memory_Wiping_Check throws an

assertion error.

Next, in line 5, algorithm extracts all the user-defined functions from the program and

stores them in prototype and body pairs (where both are extracted from the function defi-

nition). Next, it iterates the functions and body extracted from the program to analyze and

embed the logic of tracking, as shown in lines 6-22. line represents statements that end

with a semicolon(;) or open curly bracket({).

Algorithm utilizes regex to identify if the line is an assignment statement (line 9),

function call (line 13), or a "free()" statement for freeing the heap memory (line 19). After

checking if a current line is an assignment statement (line 9), it extracts the variable name

27

in which data will be assigned. Further, it checks if that variable name + suffix is present

in the AllCopiesSet on line 11. If true, there is a chance that a new address could be

assigned to a pointer. Therefore, the algorithm inserts a function call to __AddAddress

after the assignment line, which adds the memory address pointed by the var_from to

the __address_holder if already not present in the __address_holder. This way _-

_AddAddress will always have all the addresses that were ever assigned to the detected

variables. Note: If assignment statement assigns a reference to the identified variable

or assignment is done using functions like "strcpy", "memcpy", "memcpy_s", "strncpy",

"strcpy_s", "strncpy_s" then a call to __address_holder before the assignment line is

added.

In line 13-18, if a function call is detected on the iterating line, then the algorithm

extracts the variable name from the function arguments that are present in the All-

CopiesSet set and stores them in var_name. Next, on line 15, the algorithm checks if

a function call is present inside an "if condition" or not. If an "If block" is detected, then

it inserts the __AddAddress function call for every variable present in var_name at the

beginning of the "if block" and "else block" (if present). Moreover, if the "if statement" is

not detected, then it embeds the data on the next line, as shown in lines 17-18. By doing

this, the algorithm maintains the addresses that could have been changed during the ex-

ecution of function calls from the third-party library or function calls with missing bodies or

definitions. Note: we don’t treat ("strcpy", "memcpy", "memcpy_s", "strncpy", "strcpy_s",

"strncpy_s") as function calls.

Next, in lines 19-22, if a "free()" statement is detected, then the algorithm extracts the

variable name and checks if the variable exists in AllCopiesSet. If true, it inserts a

function call to the __Memory_Wiping_Check function with the extracted variable name

before the line that is being analyzed. __Memory_Wiping_Check call allows checking

the memory for non-secure memory deallocation (zeroed out before freeing or not).

28

Let us try to understand the algorithm by an example. Suppose we feed program

3.1 and variable name "password" as an input to the SecMD-Checker. SecMD-Checker

performs flow-insensitive static analysis on the program to find all the shallow and deep

copy variables that tend to store sensitive values at some instance of time. After the

analysis, SecMD-Checker defines __count and __address_holder on line 4-6 and embeds

the monitoring logic. __holder_size is a defined macro whose value can be set from

the SecMD-Checker. The default value is 1000.

Program 3.1: Program without Instrumentation

1 # inc lude <wchar . h>

2 # inc lude <windows . h>

3 vo id FreeDuplicateMemory (char * copy)

4 {

5 ZeroOutMemory (copy) ;

6 f r ee (copy) ;

7 }

8 vo id CWE244_Dummy()

9 {

10 char * password = (char *) mal loc (100* s i z e o f (char)) ;

11 char * password_deep_copy = (char *) mal loc (100* s i z e o f (char)) ;

12 char * password_shallow_copy ;

13 password_shallow_copy = password_deep_copy ;

14 i f (f ge t s (password , 100 , s t d i n) == NULL)

15 {

16 p r i n t L i n e (" f ge t s () f a i l e d ") ;

17 / * Restore NUL te rm ina to r i f f ge t s f a i l s * /

18 password [0] = ’ \0 ’ ;

19 }

20 memcpy(password_deep_copy , password , 100* s i z e o f (char)) ;

21 . . .

22 FreeDuplicateMemory (password_shallow_copy) ;

29

23 f r ee (password) ;

24 }

25 . . . More

To detect non-secure memory deallocation, the tool must validate any memory allo-

cated to the identified variable X before it gets deallocated. During the analysis, as

the password variable is deep copied and shallow copied, AllCopiesSet will con-

tain four entries, i.e., password__CWE244_Dummy, password_deep_copy__CWE244_-

Dummy, password_shallow_copy__CWE244_Dummy, copy__FreeDuplicateMemory.

During the Dummy function analysis, when lines 10, 11, 13, 18, 20 are read, SecMD-

Checker detects the lines as assignment statements. As the password, password_deep_-

copy, password_shallow_copy is present in the AllCopiesSet we insert the __AddAd-

dress line after the respective line accordingly. Next, on line 14, the "if" statement is

detected, and the __AddAddress call is inserted at the beginning of the "if" block. Lastly,

lines 5 and 23 are detected as "free()" statements, and then SecMD-Checker inserts the

__Memory_Wiping_Check call just before the respective lines. At the end of the instru-

mentation, our program looks like the program 3.2. SecMD-Checker also embeds __Mem-

ory_Wiping_Check and __AddAddress function definition in the program. However,

we do not show it in the 3.2 for clarity.

Instrumented program 3.2 is fed to CBMC. During the CBMC analysis, the following

steps occur

1. Line 16, 0x20 (For example) address is assigned to the password pointer.

2. Line 17, 0x20 address will be added to the __address_holder.

3. Line 18, 0x100 (For example) address is assigned to the password pointer.

4. Line 19, 0x100 address will be added to the __address_holder.

5. Line 25, 28 nothing will be added to __address_holder because previous lines

do not change any addresses of the detected variables.

30

6. Line 33, FreeDuplicateMemory function is called, and then at line 10, memory start-

ing from 0x100 (pointed by pointer "copy") is zeroed out.

7. Line 11, 0x100 will be checked for non-secure memory deallocation. Next, in line

12, memory 0x100 will be freed.

8. At line 34, nothing will be added to the __address_holder as the address is not

changed.

9. Line 35, memory 0x20 will be checked for non-secure memory deallocation. As

memory is not zeroed out, an alert will be raised.

10. Line 36, memory 0x20 will be freed.

Program 3.2: Program after Instrumentation

1 # inc lude <wchar . h>

2 # inc lude <windows . h>

3

4 # def ine __holder_s ize 1000

5 vo id * __address_holder [__holder_s ize] ;

6 i n t __count =0;

7

8 vo id FreeDuplicateMemory (char * copy)

9 {

10 ZeroOutMemory (copy) ;

11 __Memory_Wiping_Check (copy) ;

12 f r ee (copy) ;

13 }

14 vo id CWE244_Dummy()

15 {

16 char * password = (char *) mal loc (100* s i z e o f (char)) ;

17 __AddAddress (password) ;

18 char * password_deep_copy = (char *) mal loc (100* s i z e o f (char)) ;

31

19 __AddAddress (password_deep_copy) ;

20 char * password_shallow_copy ;

21 password_shallow_copy = password_deep_copy ;

22

23 i f (f ge t s (password , 100 , s t d i n) == NULL)

24 {

25 __AddAddress (password) ;

26 p r i n t L i n e (" f ge t s () f a i l e d ") ;

27 password [0] = ’ \0 ’ ;

28 __AddAddress (password) ;

29 }

30 memcpy(password_deep_copy , password , 100* s i z e o f (char)) ;

31 . . .

32 . . .

33 FreeDuplicateMemory (password_shallow_copy) ;

34 __AddAddress (password_shallow_copy) ;

35 __Memory_Wiping_Check (password) ;

36 f r ee (password) ;

37 }

38 . . . More

3.3.1 Subroutines of the algorithm

In this section, we will be describing all the necessary procedures that are needed by

our algorithm. A few of the procedures in this section are inserted in the instrumented

program. The procedures only make updates to the newly defined variables inside them.

Therefore, they do not affect the control flow of the original program.

3.3.1.1 FindCopies Function

Procedure 2 defines a method for finding all the potential sensitive variables that are

a deep copy or shallow copy of the input variable X. FindCopies creates a graph by flow

32

insensitive static analysis of the program and uses it to find the sensitive variables. The

algorithm explanation is as follows:

• Line 1, initializes the graph G. The nodes of graph G are variable names with the suf-

fix (scope), and the edges are a deep or shallow copy relation between the variables.

The naming convention of variables in the graph is discussed in the previous sec-

tions - the variable name will have a suffix as the "__function_name" or "__Global"

depending on the declared scope.

• Line 2, extracts all the variable names that are declared in the global scope.

• Lines 3-5, adds all the extracted global variables as nodes in the graph with a "__-

Global" suffix.

• Line 6, extracts all the user-defined procedures from the program in the form of func-

tion prototype and function body pairs and stores them in Program_Functions.

• Line 7, calls the function AddVerticesAndEdges which iterates the function bod-

ies that are present in Program_Functions and adds the variable present in the

function bodies and prototypes arguments in the graph as nodes with the proper

suffix. It also adds the edges based on shallow and deep copy relation between the

variables. The procedure AddVerticesAndEdges is discussed in more detail later

in this section.

• All reachable nodes from input variable X are computed using Depth First Search

(DFS) algorithm, and then all variable names present in those branches are added

to AllCopiesSet set. As the edges in the graph represent the deep copy and

shallow copy instances, all the variables present in the AllCopiesSetmust contain

sensitive information at some instance of the program run.

33

Procedure 2: FindCopies(c_file, variable_name)
input : c_file, var_name

output: AllCopiesSet

1 G← ∅; /* Directed graph G for computing AllCopiesSet */

// Extract all global variable names

2 Global_Vars← GetGlobalVariableDefinitions(program_file);

3 for global_var ∈ Global_Vars do

4 AddVertex(G, concat(global_var, “__Global”));

5 end

/* Extract all function (prototypes, body) pairs and add to

ProgramFunctions */

6 Program_Functions← ExtractFunctions(program_file)

// Add Vetices and Edges by analysing function definitions

7 AddVerticesAndEdges(G, Program_Functions);

/* All reachable nodes from vertex “var_name” in the

directed graph G */

8 AllCopiesSet← ComputeReach(G, var_name)

9 return AllCopiesSet;

Procedure 3 describes how the bodies of the functions that were extracted from the

program are iterated in the procedure 2 for creating a graph G. AddVerticesAndEdges

takes two inputs, 1) Graph and 2) (function prototype, function body) pairs. AddVer-

ticesAndEdges algorithm explanation is as follows:

• Line 1, declares a set prototype which holds all the user-defined function names

and arguments.

• Line 2, starts iterating the function (prototype, bodies) pairs that are extracted from

the input program.

• Lines 3-5, extracts the function name and arguments from the prototype and stores

them in the respective variables.

34

• Lines 6-8, adds all the arguments present in the function prototype in the graph by

adding the proper suffix where the function name is extracted from the prototype.

• Next, the algorithm starts iterating lines from the body of each function where it

checks if a line/statement is 1) a variable declaration, 2) an assignment statement,

3) a function call, and does the respective operations accordingly.

• Lines 10-14, if a line is a variable declaration statement, then the algorithm extracts

the variable name and adds the proper suffix by calling the function AddProper-

Suffix. AddProperSuffix is described later in this section. After adding the

proper suffix, it adds the recognized variable to graph G as shown in line 13.

• Lines 15-20, adds an edge between the nodes defined in graph G. Suppose variable

X appears on the right-hand side of the equation/assignment. If true, the variable

on the left-hand side must be considered for storing sensitive data because it could

have stored the sensitive data partially or entirely. Therefore, we extract the variable

from the left-hand and right-hand sides of the equation and add a directed edge

between the RHS variables to the LHS variable by adding the respective suffix as

shown in Lines 16-19. The algorithm considers memcopy, strncpy, function calls as

assignment statements; in this scenario, "from" and "to" variables are extracted from

the argument of the functions, and the edge is created as described in Lines 16-19.

• Lines 21-30, if a line contains a function call, an edge is added between the function

call arguments and the user-defined function arguments with the appropriate suffix.

35

Procedure 3: AddVerticesAndEdges(G, Program_Functions)
input: G, Program_Functions

1 prototype← ∅; /* Store all user defined functions prototypes */

// Iterate the functions to extract pointer variable names

and create link between pointer variables in a graph

2 for (func_prototype, func_body) in Program_Functions do

3 func_name←GetFunctionName(func_prototype);

4 Arguments← GetArguments(func_prototype);

5 prototype← prototype ∪ {func_prototype} ;

6 foreach Argument in Arguments do

7 AddVertex(G, concat(Argument, “__”, func_name));

8 end

9 foreach line in func_body do

10 if IsVariableDeclaration(line) then

11 var_name← GetVariableName(line);

12 var_name= AddProperSuffix(var_name, func_name);

13 AddVertex(G, var_name);

14 end

15 if IsAssignmentStatement(line) then

16 var_from, var_to← GetCopyVars(line);

17 var_from= AddProperSuffix(var_from, func_name);

18 var_to= AddProperSuffix(var_to, func_name);

19 AddEdge(G, 〈var_from,var_to〉);

20 end

21 if IsFunctionCall(line) then

22 Arguments← GetFunctionArguments(line);

23 func_call_name←GetFunctionName(line);

24 fetched_arguments = fetchPrototype(func_call_name,

prototype);

25 for arg,fetched_arg ∈ Arguments,fetched_arguments do

26 arg = AddProperSuffix(arg, func_name);

27 fetched_arg = AddProperSuffix(fetched_arg,

func_call_name);

28 AddEdge(G, 〈arg,fetched_arg〉);

29 end

30 end

31 end

32 end

36

Let us try to understand the function call processing by an example 3.1. Suppose

function CWE244_Dummy is used for analysis purposes. During analysis of function vari-

ables password, password_deep_copy, password_shallow_copy, a copy will be detected

as pointer variables. Therefore, these variables will be added as nodes to the graphs

with a proper suffix. The resultant graph will look like 3.3. Now we analyze the function

bodies for creating edges in the graph. Line 13, adds an edge from password_deep_copy

to password_shallow_copy because it is an assignment statement. Similarly, during the

analysis of line 20, the algorithm adds an edge from password to password_deep_copy.

Line 22, a function call to FreeDuplicateMemory is detected. As it is a user-defined func-

tion, the algorithm will create an edge from password_shallow_copy__CWE244_Dummy

to copy__FreeDuplicateMemory. Here, the copy will have a suffix FreeDuplicateMemory,

and the password_shallow_copy will have a CWE244_Dummy suffix. Now, the generated

graph G will look like figure 3.4.

Figure 3.3: Graph nodes generation.

At the end of this process, FindCopies returns the graph that contains the nodes as

variable names with appropriate suffix and edges as deep copy or shallow copy relation.

37

Figure 3.4: Graph edges generation.

After that, the algorithm computes all the reachable nodes from the variable "password",

which will generate a AllCopiesSet containing variable names {password, password_-

deep_copy, password_shallow_copy, and copy}. The actual parser could be used to ex-

tract this information from the code, but a more straightforward approach using regex was

followed for this research. In this algorithm elaboration, some of the code implementation

details are omitted for the sake of clarity.

Procedure 4: AddSuffix(__variable, func_name)
input : __variable, func_name

output: __variable

1 if (IsGlobalVariable(__variable)) then

2 __variable= concat(__variable, “__Global”);

3 else

4 __variable= concat(__variable, “__”, func_name);

5 end

6 return __variable;

Procedure 4 (AddProperSuffix) adds the suffix "__function_name" or "__Global".

It adds "__Global" to the passed variable based on the Scope resolution operator or de-

pending on the context, i.e., if a variable is not declared and still used, then it has to be a

38

global variable because input was a compilable program as shown in line 1-3. If the line

1 condition is false, then the procedure simply concatenates the __function_name" to the

variable name.

3.3.1.2 Function: CodeFormat

CodeFormat function changes the formatting of the code. Our instrumentation utilizes

regex to find patterns and extract required data from the input program. Code following

the same format throughout makes it easy to analyze/extract data using regex. We utilized

the library "pyastyle", which allows us to change the format of the code. We utilize this

library to add braces to unbraced one-line conditional statements such as ’if’, ’while’, ’for’,

and more as shown in 3.5. Moreover, we force the code to follow broken braces and split

each statement by newline as shown in 3.6. We also removed all the single and multi-line

comments from the input program.

Figure 3.5: (a) Before bracket formatting. (b) After bracket formatting

39

Figure 3.6: (a) Before bracket Formatting. (b) After Formatting

3.3.1.3 Functions inserted into the instrumented program

__AddAddress Function

__AddAddress update a tool defined array __address_holder in the instrumented

C program for storing memory addresses of all sensitive data variables. During the anal-

ysis of the C program, we search for three events/statements, after which we need to

call __AddAddress. 1) Allocation statements (supports malloc, calloc, realloc) 2) As-

signment operator when the input variable or identified variables are on Left Hand Side

(LHS), and 3) the function calls that utilize detected variables. After the program scan,

we embed a statement that makes a call to the function __AddAddress which takes a

pointer as an argument.

Procedure 5 describes how __AddAddress adds the address pointed by the passed

pointer to the __address_holder. The argument function takes the pointer variable

that holds the current address of the identified variables. Line 1-4 works as a base con-

dition where if no address is present in the __address_holder then procedure adds

the address and increases the counter. Next, in lines 5-12, it checks if the memory ad-

dress pointed by the passed pointer is already present in the __address_holder then it

does make any changes. Otherwise, it adds the address to the __address_holder and

40

Procedure 5: __AddAddress(__variable)
input: __variable

1 if __count == 0 then

2 __address_holder[__count++] = __variable;

3 return;

4 end

5 present← false;

6 for x ∈ __address_holder do

7 if (__variable == x) then

8 present = true

9 end

10 end

11 if present == false then

12 __address_holder[__count++] = __variable;

13 end

increments the __count value; this way __address_holder will have all the unique

addresses that were ever assigned identified variables at any time in the code. __ad-

dress_holder list is utilized by the __Memory_Wiping_Check function for the assertion

check described in the next section.

Assertion Function: __Memory_Wiping_Check

Assertion Function contains the assertion logic for verifying secure memory dealloca-

tion. This function contains C syntax and CBMC predefined function. Hence, CBMC can

recognize it. Call to this function will check if the passed address is present in the __-

address_holder. If yes, then non-secure memory deallocation assertion logic will be

triggered, as shown in line 6-8. Here the "free()" statement works as an anchor for embed-

ding the __Memory_Wiping_Check call just before any encountered "free()" statement

in the program. A function definition is as follows:

41

Procedure 6: __Memory_Wiping_Check(__variable)
input: __variable

1 if __CPROVER_OBJECT_SIZE(__variable) == 0 then

2 return;

3 end

4 for x ∈ __address_holder do

5 if (x == __variable) then

6 foreach bit y of __variable do

7 __CPROVER_assert(y == 0, "Error Message");

8 end

9 __DelAddress(x) ;

// Delete x from __address_holder data structure as it

has now been freed.

10 end

11 end

__Memory_Wiping_Check checks that the size of the allocated memory pointed by

the passed variable is not zero, as shown in lines 1-3. After that, from lines 4-10, it checks

whether any memory addresses present in the __address_holder that are currently

being tracked match with the passed pointer pointed memory address. When the address

is matched, it checks if the memory is wiped out, as shown in lines 6-7. If all the bits are

not zeroed, it concludes that the memory was not securely deallocated. For the assertion,

we have utilized the predefined functions provided in the CBMC [66]. They are as follows:

• __CPROVER_OBJECT_SIZE(): Used to fetch the size of the allocated memory

that is pointed by the variable. CBMC makes it possible because CBMC considers

allocated memory as an array.

• __CPROVER_assert() - Checks if the mentioned Boolean condition in the passed

argument is satisfied.

More information about the function can be found at CBMC developer documentation

[68]. __Memory_Wiping_Check function is called just before every "free()" statement

42

that is present in the code. Doing so confirms that the tracked variable is wiped just

before freeing the data utilizing the assertion logic described above.

3.4 Realloc Handling

As discussed in section 3.1, using "realloc()" function may lead to CWE-244. The

"realloc()" function is utilized to extend or shrink the allocated memory block size. It may

allocate the memory to the new address because space after the end of the old memory

block may be in use [67]. This results in copying data from the old memory block to the

new one - making the old memory block with the data intact inaccessible to the program.

Therefore, using "realloc()" makes code susceptible to heap inspection.

We can handle the "realloc()" function in two ways. First, not allowing a user to real-

locate the memory because that will lead to non-secure memory deallocation. Second,

making sure that reallocation is performed only after zeroing out the memory. We did not

pursue the first option because it will restrict the user from using a "realloc()", even if they

are clearing the memory before calling the "realloc()" function. Juliet Test Suite test cases

with good implementation of CWE-244 perform memory wiping before utilizing "realloc".

Therefore, we implemented the second option. In order to enable CBMC to handle the

"realloc()" scenario, we treat it as a "free" and "assignment" statement. Consequently,

we embed a __Memory_Wiping_Check function call before any "realloc()" call because

it may deallocate an old memory block (Free Statement). Moreover, we embed a __-

AddAddress function call after the "realloc()" statement because it may allocate a new

memory block (Assignment Statement). Therefore, if memory is not cleared and the user

tries to reallocate it, the assertion will fail, indicating "Non-Secure memory Deallocation".

Note: Implementation details of "realloc()" handling are omitted from the CWE-244

instrumentation algorithm for the sake of clarity.

43

3.5 Example: Instrumenting multi-function program

In this section, we will look at a bit more complicated example than the program 3.1.

The example includes multiple function calls, shallow copy, and deep copy instances of

input variable X. We will give a rough explanation of how the program will be instrumented

by SecMD-Checker. We will also discuss how our instrumentation helps to track variables

and detect non-secure memory deallocation at a high level.

We input the program file 3.3 and a variable name "password" to the SecMD-Checker.

In the program, we create a shallow copy (line 23) and deep copy (line 33, 22) of the

variable "password". We pass these pointer variables to different functions (line 34, 13)

and make deep copies inside those functions (line 7) as well. We zero out some deep

copies (line 14) and leave a few copies (ref, password, bit_store) unwiped to cause non-

secure memory deallocation. After this instrumentation, the program 3.3 will look like the

program 3.4.

Program 3.3: Multi-function Program Example

1 # inc lude <wchar . h>

2 # inc lude <windows . h>

3

4 vo id Dummy_Function (char * arg)

5 {

6 char * key = (char *) mal loc (100* s i z e o f (char)) ;

7 s t rncpy (key , arg , 100) ;

8 char * r e f = key ;

9 f r ee (r e f) ;

10 }

11 vo id FreeDuplicateMemory (char * copy)

12 {

13 Dummy_Function (copy) ;

14 ZeroOutMemory (copy) ;

15 f r ee (copy) ;

44

16 }

17 vo id CWE244_Dummy()

18 {

19 char * password = (char *) mal loc (100* s i z e o f (char)) ;

20 char * password_deep_copy = (char *) mal loc (100* s i z e o f (char)) ;

21 char * password_shallow_copy ;

22 char * b i t _ s t o r e = (char *) mal loc (1 * s i z e o f (char)) ;

23 password_shallow_copy = password_deep_copy ;

24

25 i f (f ge t s (password , 100 , s t d i n) == NULL)

26 {

27 p r i n t L i n e (" f ge t s () f a i l e d ") ;

28 / * Restore NUL te rm ina to r i f f ge t s f a i l s * /

29 password [0] = ’ \0 ’ ;

30 }

31

32 b i t _ s t o r e [0] = password [0] ;

33 memcpy(password_deep_copy , password , 100* s i z e o f (char)) ;

34 FreeDuplicateMemory (password_shallow_copy) ;

35

36 f r ee (password) ;

37 f r ee (b i t _ s t o r e) ;

38 }

39

40 vo id main ()

41 {

42 CWE244_Dummy() ;

43 }

Let us understand the instrumentation done by our tool on program 3.3. It is as follows:

1. Code is formatted according to section 3.3.1.2.

2. Functions are iterated for finding pointer variables.

45

3. Graph G is created

4. Dummy_Function is iterated and the variables (arg__Dummy_Function, key__Dum-

my_Function, ref__Dummy_Function) are added to the graph G as vertices.

5. FreeDuplicateMemory is iterated and the variable (copy__FreeDuplicateMemory) is

added to the graph G as vertices.

6. CWE244_Dummy is iterated and the variables (password__CWE244_Dummy, pas-

sword_deep_copy__CWE244_Dummy, password_shallow_copy__CWE244_Dum-

my, bit_store__CWE244_Dummy) are added to the graph G as vertices.

7. Graph G is shown in figure 3.7 after analysing the program for vertices.

Figure 3.7: Example: Generated graph vertices.

8. Now, all functions are iterated to find the variables’ deep copy and shallow copy

relation.

9. Assignment statement is detected at lines 7, 8 during Dummy_Function iteration.

Therefore, an edge is created between (arg -> key) and (key -> ref) variables.

46

10. No shallow copy and deep copy relation are detected during FreeDuplicateMemory

iteration. However, at line 13, a function call is detected, so we create an edge

(copy__FreeDumplicateMemory -> arg__Dummy_Function). Note: ZeroOutMem-

ory function zero out the memory, and we are considering it as a library call.

11. Assignment statements are detected at line 23, 32, 33 during CWE244_Dummy

iteration. Therefore, edges are created between (password_deep_copy -> pass-

word_shallow_copy), (password -> bit_store) and (password -> password_deep_-

copy) variables. At line 34, function call is detected, so we create an edge from

(password_shallow_copy__CWE244_Dummy -> copy__FreeDuplicateMemory).

12. Complete graph G is shown in figure 3.8 after analysing the program for edge cre-

ation.

Figure 3.8: Example: Generated graph edges.

13. SecMD-Checker computes all reachable nodes from vertex name password__Any-

FuncName. Resultant AllCopiesSet set will be { password_deep_copy__CWE-

244_Dummy, password_shallow_copy__CWE244_Dummy, password__CWE244_-

47

Dummy, bit_store__CWE244_Dummy, copy__FreeDumplicateMemory, arg__Dum-

my_Function, key__Dummy_Function, ref__Dummy_Function }

14. Next, SecMD-Checker embeds the tracking logic for all the variables present in All-

CopiesSet.

15. Assignment statements are detected at line 6, 7, 8 during Dummy_Function itera-

tion. SecMD-Checker inserts the __AddAddress function call after the assignment

lines where "to" variables are present in AllCopiesSet. At line 9, the "free()" state-

ment is detected. Therefore, it inserts __Memory_Wiping_Check before the free

statement.

16. Function calls are detected at line 13, 14 during the FreeDuplicateMemory iteration.

SecMD-Checker inserts __AddAddress after function call lines where their argu-

ments are present in AllCopiesSet. At line 15, "free()" is detected. Therefore, it

inserts __Memory_Wiping_Check before the free statement.

17. Assignment statements are detected at line 19, 20, 22, 23, 29, 32, 33 during CWE-

244_Dummy iteration. SecMD-Checker inserts __AddAddress function call after

respective line as per the algorithm. At line 25, 34, function calls are detected where

function calls include arguments that are present in AllCopiesSet. Therefore, it

inserts the __AddAddress function call after the respective lines. At line 36, 37,

"free()" is detected. Therefore, it inserts __Memory_Wiping_Check before the

free statement.

18. Lastly, we add the global variable __address_holder, function __AddAddress

and __Memory_Wiping_Check definitions in the program.

19. Program 3.4 is the resultant of SecMD-Checker instrumentation.

Program 3.4: Output after instrumentation

48

1 # inc lude <wchar . h>

2 # inc lude <windows . h>

3

4 vo id Dummy_Function (char * arg)

5 {

6 char * key = (char *) mal loc (100* s i z e o f (char)) ;

7 __AddAddress (key) ;

8 s t rncpy (key , arg , 100) ;

9 char * r e f = key ;

10 __Memory_Wiping_Check (r e f) ;

11 f r ee (r e f) ;

12 }

13 vo id FreeDuplicateMemory (char * copy)

14 {

15 Dummy_Function (copy) ;

16 __AddAddress (copy) ;

17 ZeroOutMemory (copy) ;

18 __AddAddress (copy) ;

19 __Memory_Wiping_Check (copy) ;

20 f r ee (copy) ;

21 }

22 vo id CWE244_Dummy()

23 {

24 char * password = (char *) mal loc (100* s i z e o f (char)) ;

25 __AddAddress (password) ;

26 char * password_deep_copy = (char *) mal loc (100* s i z e o f (char)) ;

27 __AddAddress (password_deep_copy) ;

28 char * password_shallow_copy ;

29 char * b i t _ s t o r e = (char *) mal loc (1 * s i z e o f (char)) ;

30 __AddAddress (b i t _ s t o r e) ;

31 password_shallow_copy = password_deep_copy ;

32

49

33 i f (f ge t s (password , 100 , s t d i n) == NULL)

34 {

35 __AddAddress (password) ;

36 p r i n t L i n e (" f ge t s () f a i l e d ") ;

37 password [0] = ’ \0 ’ ;

38 __AddAddress (password) ;

39 }

40

41 b i t _ s t o r e [0] = password [0] ;

42 __AddAddress (b i t _ s t o r e) ;

43 memcpy(password_deep_copy , password , 100* s i z e o f (char)) ;

44 FreeDuplicateMemory (password_shallow_copy) ;

45 __AddAddress (password_shallow_copy) ;

46

47 __Memory_Wiping_Check (password) ;

48 f r ee (password) ;

49 __Memory_Wiping_Check (b i t _ s t o r e) ;

50 f r ee (b i t _ s t o r e) ;

51 }

52

53 vo id main ()

54 {

55 CWE244_Dummy() ;

56 }

57 # def ine __holder_s ize 1000

58 vo id * __address_holder [__holder_s ize] ;

59 i n t __count =0;

60

61 vo id __Memory_Wiping_Check (vo id * wiped)

62 { . . . }

63 vo id __AddAddress (vo id * change)

64 { . . . }

50

Lets understand how CBMC will detect non-secure memory deallocation in the above

program:

1. main function is analyzed first. At line 59, function call to CWE244_Dummy is de-

tected.

2. At line 24, address 0x10 (for example) is added to the __address_holder.

3. At line 26, address (for example) 0x110 is added to the __address_holder.

4. At line 29, address (for example) 0x210 is added to the __address_holder.

5. At lines 35, 38, 42 45, nothing will be added to the __address_holder because

the address (0x10, 0x110) pointed by the passed pointer is already present in the

__address_holder.

6. Line 44, control transfers to FreeDuplicateMemory function.

7. Line 15, control transfers to Dummy_Function function.

8. Line 7, address 0x310 (for example) is added to the __address_holder.

9. Line 12, memory starting from 0x310 is checked for non-secure memory dealloca-

tion. In this case, non-secure memory deallocation is detected, and an alert mes-

sage is generated.

10. Line 11, 0x310 memory is freed.

11. Control transfers back to the FreeDuplicateMemory function.

12. Line 16, 18 nothing will be added to the __address_holder.

13. Line 19, memory starting from 0x110 is checked for non-secure memory dealloca-

tion. In this case, memory is wiped at line 19, so the test is validated.

14. Line 20, memory starting from 0x110 is freed.

51

15. Control transfer back to CWE244_Dummy function.

16. Line 45, nothing will be added to __address_holder.

17. Line 47, 49 memories starting from 0x10, 0x210 are checked for non-secure mem-

ory deallocation. In this case, as the memory is not zeroed out, an alert is generated

for both cases.

18. Line 48, 50 memory (0x10, 0x210) is freed.

Note: We can utilize an option −− trace in CBMC for analyzing the code. It will generate

a failure trace for all failed assertions; In our case, failure traces of non-secure memory

deallocation. For more information refer [66].

3.6 Dynamic tracking SecMD-Checker

Our algorithm enforces CBMC to dynamically track the addresses that are allocated to

the identified variables. Absence of dynamic tracking will increase the detection of some

false positives. For example, if we do not save the addresses in the __address_holder,

then we must check non-secure memory deallocation for all the variables present in All-

CopiesSet before freeing the memory. This will remove the dynamic address tracking

aspect from our algorithm. Therefore, this automatically changes our algorithm to use

non-secure memory deallocation assertion logic to all the addresses passed to __Mem-

ory_Wiping_Check function.

Let us look at the dummy program 3.5 that shows why missing dynamic tracking ca-

pability could lead to false positives. Variable "password" is passed as input to SecMD-

Checker. SecMD-Checker does an interprocedural static analysis on the program result-

ing in a AllCopiesSet = { password__main, arg__Dummy_Func }. Therefore, line 3 is

added during instrumentation in the program because variable arg will hold the reference

of password (sensitive data) in one of the execution branches. If we are not dynamically

tracking the addresses, then during one execution branch (line 14), the "arg" (reference

52

of temporary) will be checked for non-secure memory deallocation. This leads to a false

positive because the memory pointed by "arg" (temporary reference) does not hold any

sensitive data. However, in the case of dynamic tracking __address_holder (current

algorithm), the address pointed by password will be added to the __address_holder

at line 9. Therefore, when line 3 is executed for a branch where "arg" is a reference to

a temporary variable. CBMC will not use the assertion logic for a memory pointed by

an "arg" (temporary reference) variable because its address will not be present in the

__address_holder. Therefore, having a __address_holder allows us to dynami-

cally track the addresses of sensitive variables and decrease such false positives in the

presence of may-aliases.

Program 3.5: Dynamic tacking

1 vo id Dummy_Func(char * arg)

2 {

3 __Memory_Wiping_Check (arg) ;

4 f r ee (arg) ;

5 }

6 vo id main ()

7 {

8 char * password = (char *) mal loc (100* s i z e o f (char)) ;

9 __AddAddress (password) ;

10 char * temporary = (char *) mal loc (100* s i z e o f (char)) ;

11

12 Dummy_Func(password) ;

13 __AddAddress (password) ;

14 Dummy_Func(temporary) ;

15 }

53

3.6.1 May-Alias: False Witness to a Positive

Our algorithm occasionally shows false positives occurrences in case of the presence

of may-aliases of input variable X, even with dynamic tracking. Let us discuss a scenario

in which such a false positive occurs in the program 3.6. In the program 3.6, memory

is allocated in Dummy_Func itself. Therefore, line 4 is added during instrumentation

after the assignment statement (line 3) because "arg" is a may-alias of password in one

branch where "arg" is a "password" reference. Hence, during the CBMC analysis of line

4, addresses of password and temporary (arg reference) are added to the __address_-

holder. This compels CBMC to use the non-secure memory deallocation assertion at

both the memory addresses. __Memory_Wiping_Check assertion will fail for variable

"arg" when it is a reference of password (True Positive) and when arg is a reference of

a temporary variable (which does not contain sensitive information), leading to a false

positive. In the second scenario, the call-chain witness of CBMC to the assertion violation

may be viewed as a false witness for the alarm.

Program 3.6: False Witness because of may-alias

1 vo id Dummy_Func(char * arg)

2 {

3 arg = (char *) mal loc (100* s i z e o f (char)) ;

4 __AddAddress (password) ;

5 __Memory_Wiping_Check (arg) ;

6 f r ee (arg) ;

7 }

8 vo id main ()

9 {

10 char * password ;

11 char * temporary ;

12

13 Dummy_Func(password) ;

14 __AddAddress (password) ;

54

15 Dummy_Func(temporary) ;

16 }

3.7 Bad Compiler Optimization

The compiler changes the code automatically for optimizing it for a performance gain.

However, many times, the logic written by the programmer is removed during the compiler

optimization because these changes are not essential for the compiler and will unneces-

sarily slow the program. Therefore, we should make sure that the object file consists of

all the critical parts of the code.

1 Funct ion DecryptMemory ()

2 {

3 char [] key = getKey () ;

4 DecryptData (key) ;

5 wipeKey (key) ; / / Compiler removes t h i s l i n e

6 f r ee (key) ;

7 }

8 Funct ion wipeKey (char [] key)

9 {

10 f o r (i n t i =0; i <key . leng th ; i ++)

11 Key [i] = ’ ’ ;

12 }

Suppose the above code is being compiled and follows the guideline of clearing the

sensitive information before freeing to avoid the issue discussed in the section 3.1. The

compiler might remove line 5 from the code because the optimizer might think that wiping

of information does not lead to any action/operation as the following line frees the memory

(line 6). Therefore, when dealing with sensitive information, object code should be cross

verified when operations are being performed that does not perform any operation/action

that does not change the program’s logic. For disabling the compiler from optimizing the

code, we can write our code in the block as shown in 3.7.

55

Program 3.7: Disabling compiler optimization for block of code

1 #pragma GCC push_opt ions

2 #pragma GCC opt imize ("O0")

3

4 / / Code t h a t should not be opt imized goes here

5

6 #pragma GCC pop_options

3.8 Recommended practices

3.8.1 Checking Data after Null Character

In order to secure our system, we validate the input before using it in our program.

These validations usually are done till we reach the null character in the data stream be-

cause it represents the end of the data. It is also one of the weaknesses that the attacker

can exploit to gain access to the system. Attackers always search for opportunities or

memory gaps to store their malicious code; one place for storing the malicious code is

after the null character. This allows attackers to remove the null character just before

executing the code, which leads to the execution of the malicious/unwanted code. Execu-

tion of malicious code could lead to a sensitive data leak, create a backdoor, or escalate

the user privilege. The above-described attack falls in the category of the Time-Of-Use

and Time-of-Check. Therefore, input or the allocated memory should be validated until

the end of the assigned memory length rather than validating until the null character is

encountered.

For example: If the input is read from allocated memory where the pointer is passed

to the function by the program. This function validates the pointer data before executing

it to make sure the malicious program is not executed. Now suppose a pointer is passed

to the program, which is pointing at the address 0x21 as shown in the figure 3.9. When

validated by the application till the null character, it should l validate the passed argument

56

Figure 3.9: Checking Data after Null Character.

without any issues because it considers the input is blank or has valid input. However,

if just before the execution of the input command, the attacker was able to manipulate

the memory and get rid of the null character present in the 0x21 address. Then in such a

scenario, the malicious code will be executed, and the system will be exploited. Therefore,

weaknesses like this should be absent in the system as it leaves the system vulnerable.

3.8.2 Storing Hard coded or unprotected Key

Many vendors hard-code the passwords, directories, and other confidential informa-

tion, thinking source code will not be present in the public domain, thus, making it transpar-

ent. They assume that hardcoded sensitive information cannot be extracted from binary

files. However, such information can be extracted by reverse engineering and can lead

to information leakage. It can be further exploited if the attacker can create a debugging

environment and change those values, leading to unwanted program behaviours. Many

firmware does have hard-coded sensitive information which is exploited by the attacker,

like DLink Router DIR-878, HP Printer PageWide Pro 452dw, etc. Thus, sensitive infor-

mation should not be hardcoded in the program. This is a weakness also known to the

industry as CWE-256 "Plaintext Storage of Password" [69] and CWE-259 "Hard Coded

Password" [70]. As it is included in the CWE list and OWASP Top Ten 2017 Category A2

- Broken Authentication, it showcases that this weakness is dangerous to the system.

57

3.8.3 Wiping non-volatile sensitive data on Restart

System stores sensitive information in the non-volatile memory so the system can

run smoothly/efficiently throughout. However, the information that is not required by the

system on a restart should be wiped as it can be exposed to the attacker. Generically,

this sensitive information is the data that is generated during the intermediate stage of

the firmware. Sensitive information is wiped when the system is shut down properly. If

forceful/unintended restart occurs, then there is a chance that the programmer might miss

doing these checks and wipe the data.

58

Chapter 4

Experiments

4.1 Environment

For our experiments, we have created a Linux and Windows environment for running

the CBMC; both run the latest version (5.11) of CBMC. The Linux operating system is

Ubuntu 18.04.5 LTS (Bionic Beaver) with 12 core processors @ 3.20GHz and 8GB mem-

ory. Windows operating system is Windows 10 with i7 6 core processor @ 2.60GHz and

16GB memory.

Table 4.1: Environment

Software Versions

Operating System Ubuntu 18.04.5 LTS

gcc 7.5.0

g++ 7.5.0

flex 2.6.4

bison 3.0.4

make 4.1

patch 2.7.6

4.2 Juliet Test Suite

For our experiments, we have utilized Juliet Test Suite for benchmarking SecMD-

Checker. Juliet Test Suite is a Common Weakness Enumerations (CWEs) test suite which

contains 64099 test cases in the C/C++ organized under different CWEs. It is a part of a

59

software assurance reference dataset (SARD) and was created by the NSA’s Center for

Assured Software (CAS). The purpose of the Juliet Test Suite is to act as a set of security

flaws enabling users to evaluate tools to test their methods. It includes files, scripts, and

headers needed to compile the test cases, either as one program per test case or all CWE

test cases together. These test cases contain programs for both Linux and Microsoft Win-

dows environments. Utilizing the Juliet Test Suite does limit the scope of our approach for

testing it on real examples. However, in the absence of a definitive source of code con-

taining the vulnerability, we consider Juliet Test Suite the best available repository. Juliet

Test Suite has been used for experimental validation by different research [71–74]. Table

4.2 represents a list of CWEs that are relevant to memory errors present in the Juliet Test

Suite.

Table 4.2: Relevant Common Weakness Enumerations

Relevant Common Weakness Enumerations

CWE-121: Stack Based Buffer Overflow CWE-369: Divide by Zero
CWE-122: Heap Based Buffer Overflow CWE-127: Buffer Underread
CWE-259: Hard Coded Password CWE-126: Buffer Overread
CWE-590: Free Memory Not on Heap CWE-244: Heap Inspection
CWE-482: Comparing Instead of Assigning CWE-191: Integer Underflow
CWE-319: Cleartext Tx Sensitive Info CWE-416: Use After Free
CWE-226: Sensitive Information Uncleared Before Release CWE-401: Memory Leak
CWE-256: Plaintext Storage of Password CWE-124: Buffer Underwrite
CWE-481: Assigning Instead of Comparing CWE-190: Integer Overflow
CWE-321: Hard Coded Cryptographic Key CWE-415: Double Free
CWE-476: NULL Pointer Dereference

60

4.3 Result for detecting other memory related CWEs

Figure 4.1: CBMC Test Result on Juliet Test Suite.

We tested CBMC for detecting other memory-related CWEs using the predefined

CBMC properties (section 4.3.1). We ran CBMC directly on the test cases (without any

instrumentation) that are present in Juliet Test Suite. Figure 4.1 illustrates the results de-

picting how many CWEs were detected by the CBMC when bounded to 200 iterations.

The X-axis represents the CWEs that we picked from the Juliet Test Suite, and Y-axis

represents the number of CWEs detected. Detection of CWE in test cases depicts that

some of the predefined properties were violated during the CBMC analysis. CBMC could

not detect any of the CWE-244 test cases with available options as predefined properties

in CBMC do not target specific CWEs.

Detailed results of the test run are shown in 4.3. The first column represents the CWE,

the second column is the CWE name, the third column represents the number of files in

which CBMC detected a memory error, the fourth column represents the number of files

on which CBMC does not report any violation, and the last column represents the total

number of files on which test was run for the particular CWE. These results show the

potential of CBMC in detecting memory-related CWEs.

61

Table 4.3: Test Results: Detection of memory related CWEs

CWE CWE Name Detected Not Detected Total

CWE-127 Buffer Underread 1170 726 1896

CWE-401 Memory Leak 988 240 1228

CWE-121 Stack Based Buffer Overflow 3140 2766 5906

CWE-124 Buffer Underwrite 1209 687 1896

CWE-476 NULL Pointer Dereference 239 133 372

CWE-122 Heap Based Buffer Overflow 2807 849 3656

CWE-244 Heap Inspection 0 18 0

4.3.1 CBMC Properties

CBMC has predefined properties which can be accessed using various options [66].

We have utilized the following parameters to check CBMC capability on Juliet Test Suite

to check memory-related errors.

• Buffer OverFlow

– --pointer-check checks errors related to pointers like double free, invalid pointer,

dead object etc.

– --pointer-overflow-check checks error related to pointer arithmetic overflow and

underflow

– --bounds-check checks error related to array bounds

• Memory Leak

– --signed-overflow-check checks error related to signed arithmetic overflow and

underflow checks

62

– --memory-leak-check checks for memory leak in scenarios where allocated

memory is never freed, memcpy src/dst overlaps, memcpy destination regions

are writeable and memcpy source regions are readable beyond their bounds.

4.4 SecMD-Checker Test Results

We verified our proposed solution on the CWE-244 (Improper Clearing of Heap Mem-

ory Before Release) test cases present in the Juliet Test Suite. We were able to detect all

the existing 72 test cases for CWE-244 using our approach. SecMD-Checker has set the

CBMC iteration bound to 200 for the experiments. Test cases present in Juliet Test Suite

consist of functions with suffix 1) __good: Correct implementation of code where respec-

tive CWE is absent, and 2) __bad: Incorrect implementation of code where respective

CWE occurs. Our test results for the experiments are shown in Table 4.4. Our instrumen-

tation approach detected 100% True Positive and 100% True Negatives with the examples

present in the Juliet Test Suite. However, Juliet Test Suite does not demonstrate the full

potential of our tool as SecMD-Checker can handle more complex programs.

Table 4.4: Test Results: Detection of CWE-244

Positives Negatives

True 100% (True Positives) 100% (True Negatives)

False 0% (False Positives) 0% (False Negatives)

63

Chapter 5

Conclusions and Future Directions

We developed a prototype SecMD-Checker implementing our approach for detecting

non-secure memory deallocation (Heap Inspection). We showed that our approach is an

effective and practical way of detecting CWE-244. As the experimental section states, by

utilizing our approach, we were able to instrument the code and detect all the examples

present in the Juliet Test Suite CWE-244 test cases that were initially undetected by the

CBMC.

Future directions for our research would be 1) use of an actual parser for extracting

information instead of using a regex routine as it could be inefficient for general C pro-

grams, and 2) improvement of the tool algorithm by including fine-grain analysis and alias

analysis for better accuracy.

64

Bibliography

[1] Phil Koopman. A case study of toyota unintended acceleration and software safety.

Presentation. Sept, 2014.

[2] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-

dayoshi Kohno, et al. Comprehensive experimental analyses of automotive attack

surfaces. In USENIX Security Symposium, volume 4, pages 447–462. San Fran-

cisco, 2011.

[3] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, et al. Experimental security analysis of a modern automobile. In The

Ethics of Information Technologies, pages 119–134. Routledge, 2020.

[4] Trammell Hudson and Larry Rudolph. Thunderstrike: Efi firmware bootkits for ap-

ple macbooks. In Proceedings of the 8th ACM International Systems and Storage

Conference, SYSTOR ’15, New York, NY, USA, 2015. Association for Computing

Machinery.

[5] John Viega. Protecting sensitive data in memory. https://www.cgisecurity.com/lib/

protecting-sensitive-data.html.

[6] John Viega and Gary R McGraw. Building secure software: How to avoid security

problems the right way, portable documents. Pearson Education, 2001.

[7] MITRE. CWE 244 Heap Inspection. https://cwe.mitre.org/data/definitions/244.html.

[8] NVD. CVE-2019-3733. https://nvd.nist.gov/vuln/detail/CVE-2019-3733.

65

[9] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum. Un-

derstanding data lifetime via whole system simulation. In USENIX Security Sympo-

sium, pages 321–336, 2004.

[10] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding your

garbage: Reducing data lifetime through secure deallocation.

[11] Adrian Bednarek. Password managers: Under the hood of secrets management,

2020.

[12] Jun Wang, Mingyi Zhao, Qiang Zeng, Dinghao Wu, and Peng Liu. Risk assess-

ment of buffer "heartbleed" over-read vulnerabilities. In 2015 45th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, pages 555–562,

2015.

[13] Daniel Stenberg. curl: RTSP bad headers buffer over-read. https://seclists.org/

oss-sec/2018/q2/116.

[14] Ofir Arkin and Josh Anderson. EtherLeak: Ethernet frame padding information leak-

age. https://dl.packetstormsecurity.net/advisories/atstake/atstake_etherleak_report.

pdf.

[15] Kiavash Satvat and Nitesh Saxena. Crashing privacy: An autopsy of a web browser’s

leaked crash reports. arXiv preprint arXiv:1808.01718, 2018.

[16] Michal Zalewski. two browser mem disclosure bugs. https://seclists.org/

fulldisclosure/2014/Oct/66.

[17] Wade Mealing. uninitialized kernel data leak in userspace coredumps. https:

//seclists.org/oss-sec/2020/q2/88.

[18] Solaris (and others) ftpd core dump bug . https://insecure.org/sploits/ftpd.pasv.html.

66

[19] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,

Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten.

Lest we remember: Cold boot attacks on encryption keys. In 17th USENIX Security

Symposium (USENIX Security 08), San Jose, CA, July 2008. USENIX Association.

[20] Peter Gutmann. Secure deletion of data from magnetic and solid-state memory. In

Proceedings of the Sixth USENIX Security Symposium, San Jose, CA, volume 14,

pages 77–89, 1996.

[21] NIST. Platform Firmware Resiliency Guidelines. https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-193.pdf.

[22] Khaled M Mustafa, Rafa E Al-Qutaish, and Mohammad I Muhairat. Classification

of software testing tools based on the software testing methods. In 2009 Second

International Conference on Computer and Electrical Engineering, volume 1, pages

229–233. IEEE, 2009.

[23] David Maynor. Metasploit toolkit for penetration testing, exploit development, and

vulnerability research. Elsevier, 2011.

[24] Jay Beale, Haroon Meer, Charl van der Walt, and Renaud Deraison. Nessus Network

Auditing: Jay Beale Open Source Security Series. Elsevier, 2004.

[25] Brian Caswell and Jay Beale. Snort 2.1 intrusion detection. Elsevier, 2004.

[26] Michael D Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003:

ICSE Workshop on Dynamic Analysis, pages 24–27, 2003.

[27] Stephan Merz. Model checking: A tutorial overview. In Proceedings of the 4th Sum-

mer School on Modeling and Verification of Parallel Processes, MOVEP ’00, page

3–38, Berlin, Heidelberg, 2000. Springer-Verlag.

67

[28] Dawson Engler and Madanlal Musuvathi. Static analysis versus software model

checking for bug finding. In International Workshop on Verification, Model Check-

ing, and Abstract Interpretation, pages 191–210. Springer, 2004.

[29] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety prop-

erties of interfaces. In Proceedings of the 8th International SPIN Workshop on Model

Checking of Software, SPIN ’01, page 103–122, Berlin, Heidelberg, 2001. Springer-

Verlag.

[30] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Software

verification with blast. In Thomas Ball and Sriram K. Rajamani, editors, Model Check-

ing Software, pages 235–239, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[31] Daniel Kroening and Michael Tautschnig. Cbmc – c bounded model checker. In Erika

Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the Construction

and Analysis of Systems, pages 389–391, Berlin, Heidelberg, 2014. Springer Berlin

Heidelberg.

[32] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran, Michael Tautschnig,

and Mark R. Tuttle. Model checking boot code from aws data centers. In Hana

Chockler and Georg Weissenbacher, editors, Computer Aided Verification, pages

467–486, Cham, 2018. Springer International Publishing.

[33] Minjae Byun, Yongjun Lee, and Jin-Young Choi. Analysis of software weakness de-

tection of cbmc based on cwe. In 2020 22nd International Conference on Advanced

Communication Technology (ICACT), pages 171–175, 2020.

[34] Kostyantyn Vorobyov and Padmanabhan Krishnan. Comparing model checking and

static program analysis: A case study in error detection approaches. 01 2010.

[35] NIST. Juliet Dataset. https://samate.nist.gov/SRD/testsuite.php, 2017. [Online; ac-

cessed 12-Dec-2020].

68

[36] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static detection of

common vulnerabilities in firmware. In Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’18, page 392–404, New York, NY, USA, 2018. Association for

Computing Machinery.

[37] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella, Yan

Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Karonte: Detecting inse-

cure multi-binary interactions in embedded firmware. In 2020 IEEE Symposium on

Security and Privacy (SP), pages 1544–1561, 2020.

[38] Zafeer Ahmed, Ibrahim Nadir, Haroon Mahmood, Ali Hammad Akbar, and Ghalib

Asadullah Shah. Identifying mirai-exploitable vulnerabilities in iot firmware through

static analysis. In 2020 International Conference on Cyber Warfare and Security

(ICCWS), pages 1–5, 2020.

[39] D. Wagner and R. Dean. Intrusion detection via static analysis. In Proceedings 2001

IEEE Symposium on Security and Privacy. S P 2001, pages 156–168, 2001.

[40] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. Software model checking

takes off. Commun. ACM, 53(2):58–64, February 2010.

[41] B. Schwarz, Hao Chen, D. Wagner, G. Morrison, J. West, J. Lin, and Wei Tu. Model

checking an entire linux distribution for security violations. In 21st Annual Computer

Security Applications Conference (ACSAC’05), pages 10 pp.–22, 2005.

[42] Hao Chen and David Wagner. Mops: an infrastructure for examining security prop-

erties of software. In Proceedings of the 9th ACM Conference on Computer and

Communications Security, pages 235–244, 2002.

[43] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and

Sergio Yovine. Kronos: A model-checking tool for real-time systems. In Anders P.

69

Ravn and Hans Rischel, editors, Formal Techniques in Real-Time and Fault-Tolerant

Systems, pages 298–302, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[44] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRONOS,

pages 227–242. Springer US, Boston, MA, 1995.

[45] C. Daws and S. Yovine. Two examples of verification of multirate timed automata with

kronos. In Proceedings 16th IEEE Real-Time Systems Symposium, pages 66–75,

1995.

[46] O. Maler and S. Yovine. Hardware timing verification using kronos. In Proceedings

of the Seventh Israeli Conference on Computer Systems and Software Engineering,

pages 23–29, 1996.

[47] Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. Using abstractions for the verifi-

cation of linear hybrid systems. In Proceedings of the 6th International Conference

on Computer Aided Verification, CAV ’94, page 81–94, Berlin, Heidelberg, 1994.

Springer-Verlag.

[48] Kenneth L. McMillan. Symbolic Model Checking, pages 25–60. Springer US, Boston,

MA, 1993.

[49] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D. Reese.

Model checking large software specifications. IEEE Transactions on Software Engi-

neering, 24(7):498–520, 1998.

[50] R.W. Ritchey and P. Ammann. Using model checking to analyze network vulnera-

bilities. In Proceeding 2000 IEEE Symposium on Security and Privacy. S P 2000,

pages 156–165, 2000.

[51] G.J. Holzmann. The model checker spin. IEEE Transactions on Software Engineer-

ing, 23(5):279–295, 1997.

70

[52] Jiří Barnat, Luboš Brim, Ivana Černá, Pavel Moravec, Petr Ročkai, and Pavel

Šimeček. Divine–a tool for distributed verification. In International Conference on

Computer Aided Verification, pages 278–281. Springer, 2006.

[53] Gerard J. Holzmann. Software model checking with spin. volume 65 of Advances in

Computers, pages 77–108. Elsevier, 2005.

[54] Koushik Sen and Mahesh Viswanathan. Model checking multithreaded programs

with asynchronous atomic methods. In Thomas Ball and Robert B. Jones, editors,

Computer Aided Verification, pages 300–314, Berlin, Heidelberg, 2006. Springer

Berlin Heidelberg.

[55] Kees Verstoep, Henri E Bal, Jiri Barnat, and Lubos Brim. Efficient large-scale model

checking. In 2009 IEEE International Symposium on Parallel & Distributed Process-

ing, pages 1–12. IEEE, 2009.

[56] Jiří Barnat, Luboš Brim, and Ivana Černá. Cluster-based ltl model checking of large

systems. In International Symposium on Formal Methods for Components and Ob-

jects, pages 259–279. Springer, 2005.

[57] Tal Garfinkel, Ben Pfaff, Jim Chow, and Mendel Rosenblum. Data lifetime is a sys-

tems problem. In Proceedings of the 11th workshop on ACM SIGOPS European

workshop, pages 10–es, 2004.

[58] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interprocedural

pointer alias analysis. ACM Trans. Program. Lang. Syst., 21(4):848–894, July 1999.

[59] Amer Diwan, Kathryn S McKinley, and J Eliot B Moss. Type-based alias analysis.

ACM Sigplan Notices, 33(5):106–117, 1998.

[60] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis for c

programs. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming

71

Language Design and Implementation, PLDI ’95, page 1–12, New York, NY, USA,

1995. Association for Computing Machinery.

[61] MITRE. CWE list. https://cwe.mitre.org/data/index.html.

[62] Rachid Hadjidj, Xiaochun Yang, Syrine Tlili, and Mourad Debbabi. Model-checking

for software vulnerabilities detection with multi-language support. In 2008 Sixth An-

nual Conference on Privacy, Security and Trust, pages 133–142, 2008.

[63] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c pro-

grams. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the

Construction and Analysis of Systems, pages 168–176, Berlin, Heidelberg, 2004.

Springer Berlin Heidelberg.

[64] Benjamin Schwarz, Hao Chen, David Wagner, Jeremy Lin, Wei Tu, Geoff Morrison,

and Jacob West. Model checking an entire linux distribution for security violations. In

Proceedings of the 21st Annual Computer Security Applications Conference, ACSAC

’05, page 13–22, USA, 2005. IEEE Computer Society.

[65] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak Ma-

jumdar. The blast query language for software verification. In Roberto Giacobazzi,

editor, Static Analysis, pages 2–18, Berlin, Heidelberg, 2004. Springer Berlin Heidel-

berg.

[66] D. Kroening. Cprover manual. https://www.cprover.org/cbmc/doc/manual.pdf. [On-

line; accessed 12-Dec-2020].

[67] Sandra Loosemore, Roland McGrath, Andrew Oram, and Richard M Stallman. The

GNU C library reference manual. Free software foundation Boston, 2001.

[68] Daniel Kroening. CProver Developer Documentation. http://cprover.diffblue.com/

index.html. [Online; accessed 12-Dec-2020].

72

[69] MITRE. CWE 256 Unprotected Storage of Credentials. https://cwe.mitre.org/data/

definitions/256.html.

[70] MITRE. CWE 259 Use of Hard-coded Password. https://cwe.mitre.org/data/

definitions/259.html.

[71] Andreas Wagner and Johannes Sametinger. Using the juliet test suite to compare

static security scanners. In 2014 11th International Conference on Security and

Cryptography (SECRYPT), pages 1–9, 2014.

[72] Richard Amankwah, Jinfu Chen, Alfred Adutwum Amponsah, Patrick Kwaku Kudjo,

Vivienne Ocran, and Comfort Ofoley Anang. Fast bug detection algorithm for iden-

tifying potential vulnerabilities in juliet test cases. In 2020 IEEE 8th International

Conference on Smart City and Informatization (iSCI), pages 89–94, 2020.

[73] Lakshmi Manohar Rao Velicheti, Dennis C Feiock, Manjula Peiris, Rajeev Raje, and

James H Hill. Towards modeling the behavior of static code analysis tools. In Pro-

ceedings of the 9th Annual Cyber and Information Security Research Conference,

pages 17–20, 2014.

[74] Vadim Okun, Aurelien Delaitre, Paul E Black, et al. Report on the static analysis tool

exposition (sate) iv. NIST Special Publication, 500:297, 2013.

73

