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ABSTRACT 
 
 
 

RESILIENCE OF HEALTHCARE AND EDUCATION NETWORKS AND THEIR 

INTERACTIONS FOLLOWING MAJOR EARTHQUAKES  

 
 
 

  Healthcare and education systems have been identified by various national and 

international organizations as the main pillars of communities’ stability. Ensuring the continuation 

of vital community services such as healthcare and education is critical for minimizing social 

losses after extreme events. A shortage of healthcare services could have catastrophic short-term 

and long-term effects on a community including an increase in morbidity and mortality, as well as 

population outmigration. Moreover, a shortage or lack of facilities for K-12 education, including 

elementary, middle, and high schools could impact a wide range of the community’s population 

and could lead to impact population outmigration. Despite their importance to communities, there 

are a lack of comprehensive models that can be used to quantify recovery of functionalities of 

healthcare systems and schools following natural disasters. In addition to capturing the recovery 

of functionality, understanding the correlation between these main social services institutions is 

critical to determining the welfare of communities following natural disasters. Although hospitals 

and schools are key indicators of the stability of community social services, no studies to date have 

been conducted to determine the level of interdependence between hospitals and schools and their 

collective influence on their recoveries following extreme events.  

In this study, comprehensive frameworks are devised for estimating the losses, 

functionality, and recovery of healthcare and educational services following earthquakes. Success 



iii 
 

trees and semi-Markov stochastic models coupled with dynamic optimization are used to develop 

socio-technical models that describe functionalities and restorations of the facilities providing 

these services, by integrating the physical infrastructure, the supplies, and the people who operate 

and use these facilities. New frameworks are proposed to simulate processes such as patient 

demand on hospitals, hospitals’ interaction, student enrollment, and school administration as well 

as different decisions and mitigation strategies applied by hospitals and schools while considering 

the disturbance imposed by earthquake events on these processes.  

The complex interaction between healthcare and education networks is captured using a 

new agent-based model which has been developed in the context of the communities’ physical, 

social, and economic sectors that affect overall recovery. This model is employed to simulate the 

functional processes within each facility while optimizing their recovery trajectories after 

earthquake occurrence. The results highlight significant interdependencies between hospitals and 

schools, including direct and indirect relationships, suggesting the need for collective coupling of 

their recovery to achieve full functionality of either of the two systems following natural disasters. 

Recognizing this high level of interdependence, a social services stability index is then established 

which can be used by policymakers and community leaders to quantify the impact of healthcare 

and educational services on community resilience and social services stability.  
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Chapter 1.  INTRODUCTION  
 
 
 

1.1 Statement of the Problem 

The nature of earthquakes, being relatively short in duration with high consequences, has 

always attracted vast research attention towards reducing the disruptions that frequently occur in 

their aftermath. The focus has primarily been on achieving certain performance objectives such as 

life safety and collapse prevention. Some studies and guidelines have focused on maintaining a 

certain level of infrastructure functionality after an earthquake (Federal Emergency Management 

Agency, 2007, 2010). Ensuring the continuation of vital community services, such as healthcare 

and K-12 education, is critical for enhancing communities’ socio-economic stability after extreme 

events (Butler & Diaz, 2016). However, a large number of hospitals and schools (the main 

providers for healthcare and education) are vulnerable to earthquakes (American Society of Civil 

Engineers, 2017; Applied Technology Council, 2017). For instance, Olive View Hospital and West 

Anchorage High School were severely damaged during the 1971 Sylmar earthquake and the 1964 

Alaska earthquake, respectively, as shown in Figure 1-1. Ensuring the continuation of healthcare 

services and reducing overcrowding in emergency departments is critical for minimizing social 

and economic losses after extreme events. Similarly, recovering the educational services following 

earthquakes is key for ensuring the stability of communities. 
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Figure 1-1: (a) Olive View Hospital damaged during the 1971 Sylmar earthquake (Çelebi et al., 

2003) and (b) West Anchorage High School damage during the 1964 Alaska earthquake (Federal 
Emergency Management Agency, 2010). 

 

The catastrophic impacts resulting from the shortage of healthcare and educational services 

(Hinojosa et al., 2019; Jacques et al., 2014; Mulyasari et al., 2013; Singer et al., 2011; The Institute 

for Public Policy & Economic Development, 2013) has inspired the establishment of guidelines 

and studies to provide extensive retrofitting and mitigation strategies to enhance the safety of 

existing and new hospital and school buildings (Federal Emergency Management Agency, 2002; 

Fujieda et al., 2008; Nakano, 2004; Office of Statewide Health Planning and Development, 2021) 

Other studies pertaining to healthcare systems have established the basis for assessing the 

functionality of hospitals following earthquake events (Gian Paolo Cimellaro et al., 2010b; Kirsch 

et al., 2010; Kuo et al., 2008), modeled the hospital’s surge capacity (Sheikhbardsiri et al., 2017), 

and developed real-time electronic hospital bed tracking/monitoring systems (Denver Health, 

2005). However, the guidelines and studies stopped short quantifying the functionality of the 

various components, accounting for the mutual interaction between the hospital and the supporting 

lifelines, simulating patient distribution, and modeling the interaction between hospitals as a 

network. Moreover, previous studies in the area of the education system have focused on 

measuring the performance of schools during normal operating conditions (Mayer et al., 2000; 

National Research Council, 2012) or during and after earthquakes (Augenti et al., 2004; 
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Beaglehole et al., 2018; Oyguc & Guley, 2017). However, these studies did not introduce models 

that could be used to predict school functionality after extreme natural disasters. Models that 

include quantitative representations of different components of a typical school, specify service 

components of functionality, and account for the mutual interaction between schools and their 

supporting lifelines are required for full functionality assessment.  

Many national and international organizations are currently listing healthcare and 

education systems as essential institutions for community stability and well-being (National 

Academy of Engineering, 2008; NIST, 2016a, 2016b; UNICEF, 2017; United Nations, 2015).  

However, to date, studies on their interaction, their collective effect on their respective recovery, 

and the stability of the social services of communities are lacking. Quantifying the interaction, 

especially between these social institutions, is critical for community resilience analysis 

(Cimellaro, 2016; Mahmoud & Chulahwat, 2018; NIST, 2016a). Their collective role in societies 

is essential for building robust communities (Butler & Diaz, 2016), informing public policies 

(NIST, 2016b), and influencing social indices (Flanagan et al., 2018; Stern & Epner, 2019). 

1.2 Objectives of Dissertation 

The main objectives of this study are to 1) devise frameworks for estimating functionality 

and recovery of healthcare and education systems; 2) utilize the developed frameworks to 

investigate the resilience of both systems independently; and 3) evaluate their collective impacts 

on the community social services stability. These main objectives are illustrated in Figure 1-2. 
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Figure 1-2: Research objectives of the dissertation. 

 

To achieve the outlined objectives, a new framework for the spatial and temporal 

assessment of the functionality of healthcare services provided by a cluster of hospital facilities 

following an earthquake is first introduced. Specifically, new models describing the 

interdependency between hospitals and the community built-environment, the interactions among 

hospitals, and patient-hospital connections are devised and discussed in detail. Both the quantity 

and quality of the healthcare services functionality provided by each hospital are quantified while 

considering the main physical, social, and economic parameters affecting each of these 

functionalities. Three main matrices are utilized to measure the hospital functionalities including 

hospital staffed beds, patient waiting time, and patient treatment time. The functionality 

interdependence between each hospital and its supporting infrastructure is modeled using a success 
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tree. A new sub-framework is introduced to estimate the daily patient demand on each hospital 

after the earthquake while taking into consideration the probability of patients being transferred 

between hospitals based on hospital functionality and/or patient selection and condition. A second 

sub-framework is developed to simulate the interaction between hospitals while considering the 

probability of staff, supplies, and repair resources transfer.  

Similar to the healthcare services functionality, a new framework is presented to estimate 

the spatial and temporal functionality of public K-12 schools after earthquakes, which enroll 

approximately 90% of K-12 students in the U.S. Both the quantity and quality functionality of the 

educational services are estimated while considering the role played by parents, teachers, and 

administrative personnel, in maintaining the functionality of schools. The framework accounts for 

interdependence between schools and their supporting lifelines. The quantity and quality of 

educational services are quantified in terms of the schools’ enrollment capacity at each grade and 

the class capacity combined with the student academic and social outcomes, respectively. Post-

earthquake decisions made by the schools and school districts including student enrollment, 

transportation, and staff and supplies transfer, among others are modeled. 

The recovery of each healthcare and education facility is modeled using a semi-Markov 

process. The framework estimates the near-optimal recovery trajectories of the hospitals and 

schools based on dynamic optimization to achieve pre-defined objective resilience functions while 

accounting for the limitations in repair resources, specialties of repair crews, and possible repair 

sequences. The estimated repair recovery trajectories of the healthcare and education facilities are 

coupled with the recovery of the community built environment including buildings and the main 

utilities (water, power, transportation, telecommunication, wastewater, drinking water, and fuel 
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systems) to form the recovery of the hospitals and schools working spaces while considering the 

different mitigation strategies such as the availability of backup systems and backup space.  

To reach full recovery of healthcare and educational services, hospitals and schools need 

also to restore the full functionality of their staff and assemble their essential supplies that might 

be impacted during the earthquake. Mathematical functions are developed in this study to estimate 

the recovery of the staff and supplies based on different communities' physical, social, and 

economic parameters after the earthquake. Decision frameworks are introduced to mimic hospitals' 

and schools’ administrations' decisions that can enhance patient satisfaction at hospitals and 

student outcomes at schools.   

The interaction between healthcare and education systems as well as their impact on 

resilience and social services stability of communities after natural disasters, is quantified using 

an agent-based model. The model utilizes the healthcare and education functionality frameworks 

and is structured using a socio-technical approach that is based on guidelines and case studies for 

real communities after disasters. The results are then used to construct a social services stability 

index, which can be used to quantify the impact of healthcare and educational services on 

community resilience and social stability. 

To test the capabilities of the frameworks, Centerville (a mid-size virtual community) 

(Ellingwood et al., 2016) is used and is subjected to different earthquake scenarios. The results, 

from the virtual community analysis, are used to highlight the capability of the frameworks that 

were developed to predict the behavior of these complex interactions among these infrastructure 

systems. The testbed is also used to quantify the sensitivity of the estimated resilience of the 

healthcare and educational services to the frameworks’ main parameters in an uncertainty 

propagation analysis. The impacts of different recovery decisions and mitigation strategies on 
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healthcare and education systems’ functionality are assessed. Finally, the levels of 

interdependency between each hospital and school facility as well as the whole healthcare and 

education systems are calculated. 

 The following tasks are conducted to achieve the above objectives: 

Task 1: Conduct a comprehensive literature review  
 
Task 2: Introduce a new framework to estimate healthcare system functionality 

Task 3:  Present a framework to quantify education system functionality  

Task 4:  Devise a framework to estimate the recovery and resilience of hospitals and schools 

Task 5: Build an agent-based model for healthcare and education systems 

Task 6: Apply the developed frameworks to Centerville as a community testbed 

Task 7: Assess the interdependencies and interactions between healthcare and education systems. 

1.3 Overview of Dissertation  

This dissertation includes seven chapters. Chapter 1 introduces the problem as well as the 

objectives of this study. Chapter 2 reviews the background and literature surveying the current 

knowledge on modeling healthcare and education systems after natural disasters with a focus on 

earthquake hazards. The chapter starts with an overview of the impact of historical earthquakes on 

healthcare and education systems. The role played by healthcare and education systems after 

natural disasters in community resilience and social stability is discussed.  

In Chapter 3, details of the newly developed functionality framework of the healthcare services 

are presented. The functionality of hospitals, as main healthcare providers, is described as the 

combination of the quantity of the healthcare services, measured by the number of available staffed 

beds in each bed category, and the quality of the offered healthcare services, measured as a 
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combination between the patient waiting and treatment times. A new patient-driven model, that is 

used to distribute patients to the hospitals in the community, is introduced. The details of the 

hospitals’ interaction model are discussed in this chapter, which is utilized to simulate patients, 

staff, and supplies transfer between hospitals. The inputs for these models are also described, 

which include the healthcare system components data, community demographics data, and the 

functionality of infrastructure and medical and non-medical suppliers. 

Chapter 4 introduces a new framework to quantify educational services functionality, 

where the quantity and quality functionality of the K-12 public schools are measured using a 

combination of the schools’ enrollment capacity as well as the teacher, classroom, and school 

quality indices. To mimic the role played by different agents in the process such as student 

enrollment and transfer, transportation, staff appointment, and school interaction a new framework 

for the school administration is developed. The inputs for these frameworks, as well as how the 

possible decisions made by school administration impact the educational services, are discussed. 

In Chapter 5, the interdependent recovery framework is presented, which utilizes a semi-Markov 

chain stochastic model, coupled with dynamic optimization, to achieve near-optimal recovery 

trajectories for hospitals and schools. In the chapter, the developed agent-based model for 

healthcare and education systems is also discussed. Descriptions of the different agents and their 

interactions as well as the decision-making heuristics, are all provided.  

In Chapter 6, the first detailed descriptions of the healthcare and education systems 

components in Centerville, as well as the characteristics of the main physical, social, and economic 

features of the community, are provided. Second, the main results obtained from subjecting 

Centerville to different earthquake scenarios are presented, which include a) functionality, 

recovery, and resilience analysis of healthcare and education systems, b) sensitivity and 
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uncertainty quantification of the introduced models and frameworks, c) interdependency 

assessment between healthcare and education systems, d) impacts of healthcare and education 

resilience on the community’s social services stability, and e) effects of different mitigation 

strategies on the resilience and the community’s social service stability.  

Chapter 7 summarizes the main findings of the research. The contribution of this study to 

the fields of natural hazard and community resilience is emphasized. Finally, a set of 

recommendations is provided, and future work is outlined for enhancing the resilience of 

healthcare and education systems.  
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Chapter 2.  BACKGROUND AND LITERATURE REVIEW 
 
 
 

2.1 Overview 

Maintaining social services stability following natural disasters is critical for sustainable 

cities and communities. Availability of healthcare and education facilities, in particular, is key to 

bring normalcy back to communities and reduce the potential for population outmigration, which 

commonly occurs as an outcome of a shortage of public services (Hinojosa et al., 2019). Therefore, 

it is not surprising that various national and international organizations have recognized the 

importance of healthcare and education systems to communities’ stability. For example, the United 

Nations listed quality education and good health as two of its 17 sustainable development goals 

for the year 2030 (United Nations, 2015). Similarly, requirements for substantial advancements in 

these two systems are part of UNICEF's New Strategic Plan (UNICEF, 2017) for the year 2018 to 

2021. This international recognition of the importance of good healthcare and education systems 

has also been noted in the United States (U.S.) by various leading scientific organizations, 

including the National Academy of Engineering (2008) and the National Institute of Standards and 

Technology (2016). More specifically, the National Institute for Standards and Technology has 

listed hospitals and schools among the essential institutions for providing social services stability 

within a community (NIST, 2016a). Despite the recent advances in acknowledging the role played 

by these facilities, to date, comprehensive studies on functionality and recovery of these facilities 

following extreme hazard events are either limited or non-existent. 

Because of their significant potential role in enhancing health and long-term economic 

mobility in a community, disturbances to healthcare and education networks can seriously impact 

its welfare (Butler & Diaz, 2016). Policymakers have recognized that achieving good health is tied 
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to eliminating poverty and providing proper education (Butler & Diaz, 2016; UCSF Center on 

Social Disparities in Health et al., 2015). The health of individuals can be an essential factor in 

their success at school and in the workplace (Butler & Diaz, 2016; UCSF Center on Social 

Disparities in Health et al., 2015). Recognizing this interaction, many schools have partnered with 

hospitals to address mental health issues and other health concerns for students (National 

Academies of Sciences, Engineering, 2019b). Recent efforts in the U.S. have been geared towards 

aligning health and education metrics through the Healthy Schools campaign at the state level or 

through a partnership between the Healthy Schools Project partnered with Trust for America’s 

Health and others. Emphases have been placed on incorporating health metrics into education 

accountability systems and on integrating education metrics into the healthcare system (National 

Academies of Sciences, Engineering, 2019b). Although major initiatives have been made to link 

hospitals and schools in communities, to date no studies have been conducted to assess the impact 

of major disasters on their interaction and their dependency on each other during recovery.  

2.2 Impacts of historical earthquake events on hospitals and schools 

Hospitals and schools both are vulnerable to extreme natural disasters as shown in Figure 

2-1 (Applied Technology Council, 2017; Giri et al., 2018; NIST, 2013). For instance, the 1989 

Loma Prieta earthquake damaged two hospitals (Pointer et al., 1992) and resulted in severe damage 

to three schools (EERI, 1990); the 1995 Kobe earthquake collapsed four hospitals (Ukai, 1997); 

and damaged approximately 4,500 schools (Nakano, 2004), and the 2008 Sichuan earthquake 

caused the collapse of many hospitals and schools (Miyamoto et al., 2008). Earthquake damages 

also resulted in total casualties of 35,000, 3,757, and 10,000 injuries from the Loma Prieta, PDD 

Kobe, and Sichuan earthquakes, respectively (Ukai, 1997). These casualties created a surge in 

medical demands for the affected healthcare facilities (Pointer et al., 1992), which significantly 
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impacted the available medical services in terms of accessibility and effectiveness. Damage to 

school buildings can result in death and injuries to staff and students (Miyamoto et al., 2008), an 

increase in post-traumatic stress for schoolchildren (Uemoto et al., 2012), and a halt in educational 

services due to school closure (Hinojosa et al., 2019). 

 

Figure 2-1: Impacts of historical seismic events on (a) hospitals and (b) schools. 

 

2.3 Healthcare system models 

Ensuring the continuation of healthcare services and reducing overcrowding in emergency 

departments is critical for minimizing social and economic losses after extreme events. Different 

parameters play various roles in the level of functionality or recovery restoration of healthcare 

facilities that can be achieved following a major event. While availabilities of the main hospital's 

components such as staff, space, and supplies are essential for maintaining hospital facilities’ 

functionality, other parameters including hospital demand and the impact of other facilities on the 

healthcare system can affect this functionality. Furthermore, parameters including, but not limited 

to, the type of damaged components, extent of damage, and available funding resources (e.g., 

insured losses or federal sources) can affect the recovery of these facilities. This section discusses 

previous research studies conducted to investigate and/or model hospitals and their functionality 

components, patient distribution, and the mutual impact between healthcare facilities. 
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2.3.1 Healthcare system functionality  

Healthcare quality is not only measured by a physical metric (e.g., number of available 

beds) but also by the level of consumer satisfaction. Hospital functionality can be defined by 

combining the quantity (QV) and quality (QS) of the services (Cimellaro et al., 2011; Hassan & 

Mahmoud, 2019, 2020a). The quantity portion of the offered services is usually estimated based 

on hospital capacity or the number of staffed beds available for patients based on daily rates 

(Denver Health, 2005). Noteworthy, healthcare service not only depends on the hospital itself but 

also on the surrounding lifelines. For example, a reduction in transportation network capacity will 

lead to delays in ambulances' response or even an entire halt to their service. According to Jacques 

et al. (2014), for these beds to be available for service, representing the quantity portion of the 

service, three main components are required: 1) trained personnel such as physicians, nurses, and 

supporting staff; 2) qualified space; and 3) sufficient supplies. The quality portion of the offered 

service, on the other hand, is difficult to describe. Previous studies identified several dimensions 

to represent the quality of the healthcare service (Kalaja et al., 2016; Maxwell J. R., 1984). One 

way to do so is by defining the service as a function of losses to different hospital departments 

while considering the possibility of service redistribution among the departments (Jacques et al., 

2014). The patient waiting time could also be used to represent the quality part of the functionality 

(Hassan & Mahmoud, 2019; McCarthy et al., 2010). Previous studies (Cimellaro et al., 2010b; 

Kirsch et al., 2010; Kuo et al., 2008) have been significant in establishing the basis for assessing 

the functionality of hospitals following an earthquake as well as building a real-time electronic 

hospital bed tracking/monitoring system that can serve as a demonstration management tool to 

assist in a quantifying the ability of a system or a cluster to care for a surge of patients (Denver 
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Health, 2005). Other studies highlighted the impact of transportation network damage on 

healthcare systems after earthquakes (Dong & Frangopol, 2017; Lupoi et al., 2013).  

Research studies on modeling the functionality of healthcare systems and their components 

after seismic events have yet to include a comprehensive analytical model that accounts for the 

impact of different hospital components on its functionality, the dynamic change in patient 

distribution in the aftermath of an extreme hazard event, the mutual interaction among healthcare 

system facilities, and the interdependency between the hospitals and their supporting lifelines. For 

instance, McDaniels et al. (2008) developed a conceptual framework that can be used to understand 

the main factors influencing the resilience of healthcare systems in terms of two dimensions: 

robustness and rapidity after a seismic event. To understand the impact of different decisions on 

the estimation of these two dimensions of system resilience, flow diagrams were used, and the 

results of several data-gathering were utilized. Miniati and Iasio (2012) introduced a methodology 

that can be used to assess the seismic risk health structures, which include, in addition to the 

building structure parameters, a combination of the theory of complex systems analysis with the 

use of the Leontief model (Haimes & Jiang, 2001) and a rapid seismic vulnerability assessment 

with field data collected using the World Health Organization evaluation forms. Lupoi et al. (2013) 

investigated the seismic resilience of a regional Healthcare system including the road network 

connecting the hospitals in the investigated region. The author developed and implemented a 

dynamic model to simulate patient demand and hospital performance. Mulyasari et al. (2013) 

utilized a survey to assess the earthquake preparedness of hospitals in eight Japanese cities. The 

survey focused on structural, nonstructural, functional, and human resources as the main 

functionality parameters. Jacques et al. (2014) utilized a holistic and multidisciplinary approach to 

investigate the performance of a hospital system in which data collected using a standardized 
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survey was used to build a fault tree that can assess the functionality of hospitals based on three 

main contributing factors: staff, structure, and stuff. Perrone et al. (2015) presented a methodology 

to visually screen RC hospital buildings exposed to seismic events and assign a safety index for 

these hospital buildings. The introduced methodology was applied to two Italian hospitals located 

in different seismic zones as well as two hospitals damaged by the 2009 L'Aquila Earthquake and 

the 2012 Emilia Earthquake. Malavisi et al. (2015) introduced a simplified framework to measure 

the ability of the emergency departments to provide medical service after emergency incidents as 

a function of patient waiting time. The authors utilized Umberto I Mauriziano hospital, Turrin as 

a case study. The presented framework was used to develop a metamodel that provides the waiting 

times of patients as a function of the seismic input and the number of available emergency rooms. 

Cimellaro and Pique (2016) presented a discrete event simulation model for measuring the 

resilience of emergency departments during a seismic event using the patient waiting time as a 

performance parameter. The authors then developed a metamodel for different emergency codes 

considering the seismic input and the available resources. Hassan and Mahmoud (2018, 2019) 

recently developed a framework to investigate the performance of the healthcare facilities after 

seismic events (the details of these studies will be presented in Chapter 3 of this dissertation). Both 

the initial drop of functionality and different recovery stages were modeled. A success tree analysis 

was utilized to model the quantity portion of functionality considering different hospital 

components including personal, space, and supplies as well as the supporting infrastructure for the 

healthcare facilities. This quantity portion of functionality (staffed beds) was then combined with 

the quality functionality as a function of the total patient waiting time including the travel time to 

the hospital to form a total functionality index. Shang et al. (2020) proposed an evaluation 

framework based on the state tree method that can be used to measure the impact of different 
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components on both the functionality and the seismic resilience of emergency departments from 

an engineering perspective. Ceferino et al. (2020) introduced a methodology to investigate 

emergency department response after seismic events that is a function of the loss of hospital 

functions and multi-severity injuries as a result of earthquake damage.  

While the studies, mentioned above, focused on the healthcare system after seismic events, 

other studies considered different natural hazards including wildfire (Hassan & Mahmoud, 2021b; 

Schulze et al., 2020), climate events (Chand & Loosemore, 2012, 2016; Chow et al., 2012; 

Loosemore et al., 2010, 2013, 2014; Loosemore, Carthey, et al., 2011; Loosemore, Chow, et al., 

2011; Loosemore & Chand, 2016), and other disasters (Arboleda, 2006; Arboleda et al., 2009; G. 

P. Cimellaro et al., 2013; Fischbacher-Smith & Fischbacher-Smith, 2013; Guinet & Faccincani, 

2016; Hassan & Mahmoud, 2020b; Kanno et al., 2011; Takim et al., 2016; Vugrin et al., 2015; 

Wears et al., 2007) Furthermore, many studies were conducted to model healthcare system 

components during normal working conditions. For instance,  Hiete et al. (2011) investigated the 

impact of power outages on the healthcare sector. Maglogiannis and Zafiropoulos (2006) 

introduced an approach to investigate the risk in healthcare information systems using  central risk 

analysis and management methodology to study the assets, threats, and vulnerabilities of the 

distributed information system. Lamothe and Dufour (2007) introduced an investigation of the 

empirical data gathered in a Canadian teaching hospital to highlight the interdependencies that 

drive some of its configurations at the healthcare unit level. Geroy and Pesigan (2011) presented 

a qualitative report on the implementation of activities aimed at reducing disaster risks through 

safer health facilities in the Western Pacific region. Heng and Loosemore (2011) investigated the 

healthcare delivery system using a case study approach and a social network perspective to explore 

the brokerage role of facility managers in achieving effectiveness in the healthcare delivery 
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system. Zhong et al. (2014) provided a validated framework to comprehensively measure hospital 

disaster resilience using a Modified-Delphi. Kisekka et al. (2015) investigated the antecedents of 

healthcare workers' perceptions of organizational resilience to offer solutions for effective 

management of extreme events in hospitals. Righi and Saurin (Righi & Saurin, 2015) introduced 

a framework for the operationalization of the “attribute view” of complexity while using an 

emergency department of a University hospital as an illustration. Sujan (2015) introduced a study 

that can improve patient safety, which depended on reporting and organizational learning to 

explore current perceptions of healthcare staff. Kadri et al. (2016) defined, characterized, and 

proposed a generic procedure to evaluate the resilience of an emergency based on the definition of 

a strain situation, transition states, and corrective actions. Wachs et al. (2016) 

investigated resilience skills by the emergency department with a focus on case studies in two 

emergency departments: one in Brazil and the other in the U.S. (Achour & Price, 2010) introduced 

a review of the resilience strategies of healthcare facilities including research papers, governmental 

and non-governmental reports, code and guidance documents, and databases. 

2.3.2 Patient demand  

In addition to capacity, patient demand is a critical parameter for hospital functionality 

assessment. Hospital demand after a hazard, in terms of the number of patients, is affected by the 

treatment of the usual day-to-day as well as hazard-related injuries. The demand on hospitals 

during usual operation is commonly estimated using forecasting approaches based on statistical 

data while considering the types of diseases or injuries (Barros et al., 2010; Farmer & Emami, 

1990; Jones et al., 2002; Schweigler et al., 2009) or by defining a service area for each hospital 

(Jia, 2016). Other approaches estimate the hospital choice as a function of patient-to-hospital 

distance and hospital staffed beds such as the gravity model presented by Jia et al. (2019), which 
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was developed based on 2,376,743 inpatient discharge records for Florida in 2011; however, this 

type of model is not dynamic and ignores many parameters related to patients, patient-to-hospital 

connection, and hospital that can be impacted after seismic events. Other studies have introduced 

general frameworks to investigate the patient demand and distribution after disasters other than 

earthquakes. For example, Toader et al. (2019) introduced a multi-agent model to model patient 

distribution after mass incidents. Postma et al. (2011) analyzed the patient distribution data 

collected after the 2009 Turkish Airlines crash near Amsterdam. Hall et al. (2018) introduced a 

study to identify the main factors influencing patient distribution after the mass casualty incidents. 

Doi et al. (2017) introduced a simulation model called the patient access area model, which 

simulates patients’ access time to healthcare service institutions using a geographic information 

system. Wellay et al. (2018) introduced a community-based cross-sectional study in Northern 

Ethiopia to investigate the demand for health care services and associated factors among patients. 

Extending these models or devising new ones to consider patient location, infrastructure 

functionality, such as telecommunication and the transportation network, is therefore critical for a 

proper estimate of demand on hospitals following extreme events.  

In the case of earthquakes, a proper estimation of demand requires an assessment of 

fatalities and injuries in the first place. There are few models available in the literature that can be 

used for such an assessment. For instance, in HAZUS-MH 2.1 (2015) a quantitative model that 

relates damage to the built environment to the number of casualties, for various building types, is 

presented. Coburn and Spence (2002) introduced a semi-empirical casualty model that is based on 

seismic intensity and casualty rates of historical earthquake events for specific building types. Ohta 

et al. (1983) developed an empirical relationship to estimate earthquake casualties based on the 
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total number of damaged buildings. Porter et al. (2007) presented an empirical earthquake casualty 

model for all countries as a function of earthquake intensity rather than the building type.  

Hospitals located in high-risk areas commonly have a surge capacity. This capacity is 

available in emergency cases such as seismic events to overcome the sudden increase in the 

number of patients. Hospitals can extend their normal operation capacities by applying different 

strategies such as increasing patient rooms' capacity and utilizing rooms that are not typically used 

for treating patients. Different models exist to estimate the hospitals’ surge capacity. For example, 

the Agency for Healthcare Research and Quality (AHRQ) (2010) developed a model to estimate 

the total number of casualties and the required resources to treat injuries at different units in a 

hospital after specific biological, chemical, nuclear, or radiological scenarios. Other studies 

provided qualitative and conceptual frameworks to determine the hospitals’ surge capacity (Hick 

et al., 2008; Kaji et al., 2006; Shabanikiya et al., 2016). However, as noted by Watson et al. (2013), 

previously published research on surge capacity varied in its conceptualization, terms, definitions, 

and applications, which restrained the development of standardized models, measurements, or 

metrics.   

2.3.3 Hospitals’ interaction  

The interaction between healthcare facilities is essential, especially during and after large-

scale natural disasters as it allows for redistribution of services, repair resources, medical staff, and 

patients as needed (McDaniels et al., 2008). However, to achieve this level of interaction pre-

arranged agreements between healthcare facilities have to exist (Paterson et al., 2014), which is 

more likely for facilities under the same administrative umbrella. The travel distance between the 

healthcare facilities and the availability of transportation and telecommunication networks can also 

affect this interaction.  
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Hospital’s ability to provide services during and after a sudden increase in patient numbers 

has been a major concern (Cimellaro et al., 2019). As such, the hospital preparedness programs 

were introduced to enhance health care systems' capabilities in performing core functions common 

to all emergency responses. This is realized through exercising different scenarios to identify 

critical components for patient care and estimate hospitals’ preparedness (Agency for Healthcare 

Research and Quality (2010). Demand on hospitals can change when patients are transferred to 

other hospitals. The decision to transfer patients could be because the hospital transferring the 

patient has reached its capacity (Nuti & Vanzi, 1998), the patient waiting time has become larger 

than what would be considered acceptable, or the hospital is not properly equipped to treat the 

patient injury (Kulshrestha & Singh, 2016). To date, no comprehensive model exists to estimate 

the probability of transferring patients between hospitals after earthquake occurrence. 

Modeling the healthcare facility interaction, especially after seismic events, is a dynamic 

and complicated process, where many parameters can disturb the transfer process and impact the 

decision-making related to the transfer tasks (Ceferino et al., 2020). Therefore, comprehensive 

models that consider not only the healthcare facilities but also other community buildings, services, 

and individuals are critical to simulate the interaction between these facilities accurately. Hassan 

and Mahmoud (2020) recently introduced an analytical framework that dynamically estimates the 

functionality and recovery of healthcare facilities while considering the mutual effects between 

these facilities (the details of these frameworks will be presented in Chapter 3 of this dissertation). 

This framework permits hospitals to transfer patients, staff, supplies, and repair resources based 

on various socio-technical factors related to hospitals, staff, patients, etc.       
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2.4 School functionality estimation 

K-12 Schools can be categorized into public and private schools. Public schools can be 

further categorized into charter and magnet schools. Moreover, each one of the previously 

mentioned categories can be sorted into different sub-categories based on school license and type 

of state approvals. Schools at higher categories, usually serve a larger number of students and are 

approved by the state department of education. Although schools are essential for any modern 

community (Transfer, 2008), a large number of schools in the U.S are vulnerable to earthquakes 

(Rodgers, 2011). Within the U.S. there are 49 million students attending public schools and around 

6 million attending private schools. Therefore, schools play a crucial role in the community 

recovery process. Safer schools can increase community resilience and reduce the potential for 

population out-mitigation as well. Unlike hospitals, schools typically are designed for risk category 

III as per ASCE/SEI 7-16 (2016)  with seismic importance factors of only 1.25, which increases 

the damage probability of schools (Hancilar et al., 2014). To reduce the vulnerability of schools to 

earthquakes, various national plans, including extensive retrofitting strategies for existing schools, 

have been introduced (Applied Technology Council, 2017; Federal Emergency Management 

Agency, 2002). In addition, school emergency plans have been established to help reduce social 

losses.  

2.4.1 Education system functionality  

K-12 Education facilities play a crucial role in societal stability before and after disasters 

especially for school children and their families (Reber, 1986; Ungar et al., 2019). To measure the 

functionality of the educational services, two main indices are widely used: service availability 

(UNESCO, 2019) and quality of the education providers (Mayer et al., 2000). A school's short-

term functionality depends on the offered quantity of educational service. However, in the long-
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term, the quality of the offered service must be added to the quantity portion of functionality to 

arrive at total education functionality. In the event of an earthquake, the quantity portion of school 

functionality can be measured, for example, by the number of students that have a position in the 

school. On other hand, the quality portion of functionality may be represented in relation to the 

student-to-teacher ratio. Similar to hospitals, schools do not only depend on the performance of 

their physical facilities but also on staff, supplies, and supporting lifelines. Therefore, evaluation 

of school functionality should account for damage to the other supportive components of the 

educational service. Previous studies (Mayer et al., 2000; National Research Council, 2012) have 

investigated different tools that can be used to measure the performance of schools during normal 

operating conditions. Other studies have investigated school performance during and after 

earthquakes (Augenti et al., 2004; Beaglehole et al., 2018; Oyguc & Guley, 2017). However, these 

studies did not introduce models that could be used to predict functionality after extreme natural 

hazard events, such as earthquakes. Models that include analytical representations of different 

components of a typical school, specifying a service component of functionality, and accounting 

for the mutual interaction between schools and their supporting lifelines are required for full 

functionality assessment. 

 Elementary and secondary (K-12) schools generally can be classified as either public or 

private schools. State regulations govern school operations, depending on the school type; these 

include the presence of qualified staff, proper space, and sufficient supplies and services. However, 

following extreme natural hazard events, many districts allow schools to run without supporting 

infrastructure for a limited time, provided that these schools are safe for students and staff 

(Balingit, 2017; Rundquist, 2012). Different options for delivering education also exist; one of 

these options is homeschooling, which allows parents to teach their children from home.  
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2.4.2 Student enrollment 

In normal operation conditions of public schools, students are enrolled based on their 

address and using the school zones (Joint Economic Committee – Republicans, 2019). These 

school zones are established based on the number of schools’ seats at each grade, the number of 

students in each zone, and school busses transportation availability. However, parents are also 

allowed to select a different school for their school children (school of choice). In the U.S., school 

districts and school administrations control the process of student enrollment and transfer.  

Following natural disasters such as earthquakes, some students might transfer to other 

schools because of school damage. In this situation, schools might increase class capacity or reduce 

the transportation service, or in some cases totally suspend it, due to damage to roads, shortage in 

staff, or damage to buses. Student enrollment after seismic events is influenced by many 

parameters. However, to date, no models exist to simulate the students’ enrollment process and all 

the decision-made during this process. 

Schools can also be used as temporary shelters, or as centers for community disaster relief 

(Singh, 2019) and recovery coordination (Applied Technology Council, 2017; Fujieda et al., 

2008). Using schools as shelters is, however, a function of the disaster occurrence time, space 

availability, and school building safety. For instance, educational services are impacted by 

earthquakes differently during the academic year than when school is not normally in session.  

2.4.3 School administration 

Public schools are centrally managed systems, where the administration and school district 

play an essential role in school management and guidance (Patterson, 1966; Salgong et al., 2016). 

The school administration's responsibilities include for example managing the various daily school 
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activities, and providing instructional leadership to the schools they managed (Döş & Savaş, 2015). 

School administration includes principals, superintendents, and other administrators (Gates et al., 

2003). They are responsible for many of the critical decisions after disasters to maintain the 

school’s functionality. These decisions include defining school restoration objectives, school 

reopening times following disasters, student admission and transfer, staff appointment and 

transfer, and supplies alternatives and transfer.  

School reopening after an earthquake occurrence is one of the main decisions made by the 

school administration and school district (U.S. Department of Education, 2007); however, this 

decision also involves different agents such as building and fire departments, the office of public 

safety, and the community. Generally, schools can be partially reopened using backup space and 

backup systems or stay closed until buildings are fully functional (Bounds, 2014; U.S. Department 

of Education, 2007). Other learning approaches can also be provided by schools after disasters 

such as homeschooling and virtual learning (Gates et al., 2003). The school administration is also 

responsible for appointing staff to replace staff that are impacted during or after the earthquake, 

subject to the availability of funds available for these appointments (Gates et al., 2003), and can 

also transfer staff temporarily to solve the staff shortage problem. The school administration is 

also responsible for managing the supplies and repair resources and transferring them between the 

schools to bridge the gap in any supply shortage and to achieve their recovery objectives (Digital 

Promise, 2014). Therefore, it is essential for the recovery model to include the school 

administration to simulate the effect of their different roles on the recovery process (Hassan et al., 

2020). 
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2.5 Recovery assessment models 

Different parameters play important roles in determining the level of functionality 

restoration or recovery that can be achieved at healthcare and education facilities following 

extreme natural hazard events. These include type of damaged components, extent of damage, and 

available funding resources (e.g., insured losses or state and federal sources). Restoration efforts 

usually do not result in the functionality returning to its original level before the disturbance. The 

characteristic behavior of functionality is manifested through some sort of oscillation, which can 

be described using the equation of motion for a lifeline as noted by Cimellaro et al. (2010a) or 

even for an entire community as recently noted by Mahmoud and Chulahwat (2018). The recovery 

process of infrastructure or its components is usually represented by plotting functionality over 

time. As shown in Figure 2-2 (a), the change in functionality due to the earthquake is categorized 

into four different stages, which can be defined as: 

 Pre-disaster stage, which is the original level of functionality before the hazard. 

 Immediate functionality reduction, which takes place at the time of hazard occurrence. 

Therefore, it is time-independent in the case of earthquake hazards. It can be expressed as 

a function of direct losses, the efficiency of the backup systems, and interdependency as 

shown in Figure 2-2 (b). 

 Assessment and planning stage, which takes more time compared to the immediate 

functionality drop stage. Therefore, it is considered time-dependent. It can be expressed as 

a function of direct losses and damage level that controls the assessment and planning 

process as shown in Figure 2-2 (b). 
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 Recovery stage, which is time-dependent and is mainly a function of direct losses, available 

resources, and interdependency as shown in Figure 2-2 (b). The duration of the recovery 

stage has a substantial impact on indirect losses. 

    

Figure 2-2: Restoration of functionality (a) different stages and (b) main sub-functions. 

 

Various studies have investigated the use of different approaches for estimating multiple 

recovery stages for different lifelines. For example, the statistical curve-fitting model, used in 

ATC-25-1 (1992) to establish a restoration curve for the water supply system, utilized data 

available in ATC-13 (1985), expert opinion, and regression analysis. A statistical curve fitting 

model was also used by Zorn and Shamseldin (2015) to quantify recovery of different 

infrastructure and compare their restoration and in HAZUS-MH 2.1 (2015) to estimate recovery 

of different building classes subjected to natural hazards. Other studies utilized different functions 

to estimate recovery based on single or multiple parameters (Cimellaro, 2016). The deterministic 

resource constraint model Isumi et. al. (1985) is another method to estimate restoration after hazard 

occurrence in a simplified way. In this approach, equations and rules are utilized to account for 

limitations in available repair resources as a function of time. However, proper estimations of 
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repair crews and their specific tasks are needed to minimize uncertainties. This model was 

introduced in Isumi et. al. (1985) and used in Ballantyne and Taylor (1991) to estimate losses to 

the Seattle water system after earthquakes. Network models are also used to estimate the 

restoration process of series of lifelines where each lifeline is represented using a node connected 

to another node or lifeline with links. Optimization tools are commonly used with network models 

to find the optimal repair sequences. Markov chain stochastic models have also been used to 

estimate restoration curves for lifelines (Burton et al., 2016; Kozin & Zhou, 1990; Lin & Wang, 

2017) and have been modified to account for the interaction between lifelines (Zhang R. H., 1992). 

A Markov chain stochastic model simulates the functionality of each lifeline by a discrete state in 

which repair resources can be optimally allocated to each lifeline (Hassan et al., 2020; Hassan & 

Mahmoud, 2020a) as shown in Figure 2-3. 

 

Figure 2-3: (a) Regular recovery process of the infrastructure or lifeline after hazard occurrence, 
and (b) discrete state of functionality. 

 

A Markov chain is a stochastic process involving discrete states. When using the Markov 

process in restoration analysis, each system at any stage of the restoration process is considered to 

be random with discrete states (Possan & Andrade, 2014). The main assumption in this approach 

is that the present state may only be a function of the preceding state and independent of other 
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previous states. The conditional probability that a system transitions to another state, given that it 

is in one state, is called a transition probability and can be defined as a function of the available 

restoration resources that could be allocated for that system at various stages of the restoration 

process. In the case of the restoration processes of various systems, the effect of interactions on 

the transition probability for any system can be added based on Zhang (1992) as a function of the 

present states of other systems. The restoration process could also be represented using a semi-

Markov model (Yu, 2010), which is equivalent to a Markov renewal process in many aspects, 

except that a state is defined for every given time. Therefore, the semi-Markov process is an actual 

stochastic process that evolves over time. Assuming a system with m possible states and n 

restoration time steps, the probability of that system being at state Qj at time tn can be calculated 

based on Equation (2.1) according to Ang and Tang (1984).  

𝑃 , 𝑡 𝑃 𝑄 𝑄 𝑄 𝑄                   (2.1) 

The transition probability normally is written in a matrix form with dimension (m x m). 

Assuming that the restoration process is non-reversible (either staying at the present state or 

shifting by one step) and the system states are mutually exclusive and collectively exhaustive, then 

all values in the matrix must lie between 0 and 1 and the summation of each row must equal 1. 

The transition probability matrix can be expressed as shown in Equation (2.2) according to Kozin 

and Zhou (1990).   

𝑃 , ⎣⎢⎢
⎢⎡1 𝑝 , 𝑝 ,0 1 𝑝 , ⋯ 0                   00                   0⋮ ⋱ ⋮0             00             0 ⋯ 1 𝑝 , 𝑝 ,0      1 ⎦⎥⎥

⎥⎤            (2.2) 

Assuming that the probability of that system being at an initial state is Q0, which can be 

expressed as shown in Equation (2.3), then the probability law of capacity restoration state of that 
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system at time ti, Qi, can be calculated based on Equation (2.4) based on Kozin and Zhou (1990). 

On other hand, the economic return vector is shown in Equation (2.5), which represents the 

economic return for the system at different states. It can be expressed in a simple form as a function 

of the current system state based on Zhang (1992) as shown in Equation (2.5).  

𝑄 𝑝 0 , 𝑝 0 , 𝑝 0 , … 𝑝 0                 (2.3) 

𝑄 𝑄 𝑃 𝑃 𝑃 … 𝑃                   (2.4) 

𝑅 𝑟 1 , 𝑟 2 , 𝑟 3 , … 𝑟 𝑚 ∗ 𝑄                 (2.5) 

2.6 Resilience quantification models 

Once the functionality is determined, the resilience of a system can be estimated. There are 

many definitions of resilience that span different fields and disciplines, starting from the early 

definition of ecological resilience by Holling (1973) to the recent definition of infrastructure 

resilience in Presidential Policy Directive-21 (PPD-21) (2013). Other definitions are also provided 

by different organizations and studies. For example, in the PPD-21 (2013), resilience is defined as 

the ability to prepare for and adapt to changing conditions and withstand and recover rapidly from 

disruptions. The European Commission (EC), on the other hand, noted the importance of 

considering resilience at multiple scales while bearing in mind sustainable developments. 

Resilience is defined by the EC as the ability of an individual, a household, a community, a 

country, or a region to withstand, cope, adapt, and quickly recover from stresses and shocks such 

as violence, conflict, drought, and other natural disasters (European Commission, 2014). Bruneau 

et al. (2003) noted that resilience can be measured as a combination of technical, organizational, 

social, and economic aspects. Bruneau et al. also presented four main dimensions that can be used 

to build a resilience framework: rabidity, robustness, redundancy, and resourcefulness. Various 

efforts (Hiwasaki et al., 2014; United Nations Development Programme, 2014) have been carried 
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out worldwide with a focus on improving the built environment and/or enhancing human capacity 

to ensure rapid recovery as per the resilience definitions.  

From a quantitive perspective, various studies have been conducted to develop 

mathematical models for estimating resilience (Bruneau et al., 2003; Mahmoud & Chulahwat, 

2018). Recent efforts have focused on developing integrative tools for resilience quantification 

(Center for Risk-Based Community Resilience Planning, 2020; The European Commission’s 

science and knowledge service, 2020). These tools integrate physical, social, and economic fabrics 

of communities to determine the cumulative functional loss for the built environment (Bruneau et 

al., 2003), economic (Rose & Krausmann, 2013), and social parameters (Olsson et al., 2015). For 

example, the conceptual framework introduced by Bruneau et. al. (2003) was refined and applied 

to various infrastructure by Chang and Shinozuka (2004), and Cimellaro et. al. (2010a). Other 

frameworks utilized the concept of graph theory to quantify resilience. For example, Berche et. al. 

(2009) used a directed graph to quantify the resilience of transportation networks. Resilience has 

been also quantified using a Fuzzy inference system by Heaslip et. al. (2010). Recent resilience 

frameworks include the use of dynamic models to estimate community resilience (Mahmoud & 

Chulahwat, 2018). Moreover, Didier et. al. (2018) presented a compositional demand/supply 

resilience framework to quantify the resilience of civil infrastructure systems. To quantify 

resilience, however, terms such as losses, functionality, recovery, interdependence, and resources 

should be evaluated (Cimellaro, 2016). Resilience based on Cimellaro et. al. (2010a) is defined as 

the area underneath the functionality recovery curve. A wide spectrum of single and/or 

compounded indices can be used to measure community resilience including, for instance, 

employment rate, household income, education attainment, and hospital capacity, among others 

(Edgemon et al., 2019). 
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Because of the importance of healthcare and education networks for modern community 

resilience, the level of uncertainty associated with those networks must be properly quantified. 

Therefore, a comprehensive definition of functionality as well as an accurate estimation of other 

terms that are used to estimate the functionality, are pivotal for proper quantification of resilience.  

2.7 Sensitivity and uncertainty analysis 

Similar to most forecasting models, estimations of the resilience of healthcare and 

education systems are sensitive to the implemented functionality and recovery frameworks as well 

as the input data for each framework. Proper assessment of functionality requires proper 

quantification of losses and accurate estimation of infrastructure damage.  

Different methods can be used to quantify analytical models’ accuracy e.g., sensitivity and 

uncertainty analysis. Sensitivity analysis is used to gain insights into the behavior of analytical 

models including their structure and their response to changes in the model inputs (Ferdous et al., 

2007). Probabilistic distributions of each component are used to estimate failure frequency in the 

sensitivity analysis. In addition, sensitivity analysis is commonly utilized to determine the factors 

that drive the analysis and the decision process. It can be also utilized to define the weakest link in 

infrastructure systems, investigate better design alternatives, and evaluate the effect of the adopted 

solution on system safety (Contini et al., 2000). Different methods and applications of sensitivity 

analysis have been introduced in previous studies, for instance: He (2014) classified sensitivity 

analysis methods into factor screening, global sensitivity analysis, distributional sensitivity 

analysis, and regional sensitivity analysis. Borgonovo and Plischke (2016) introduced a review of 

recent advances in sensitivity analysis, which is categorized as local sensitivity analysis methods 

or global sensitivity methods. Cacuci (2003) discussed the use of both local and global sensitivity 

analysis for linear and non-linear systems. Ionescu-bujor and Cacuci (2004) presented a review of 
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recent deterministic sensitivity analysis methods and Cacuci and Ionescu-bujor (2004) reviewed 

recent statistical sensitivity analysis methods. 

Uncertainty analysis is an essential component of any mathematical or analytical model 

that deals with uncertain data input and/or is used to forecast future incidents. Uncertainties can 

result from a lack of knowledge and information of the presented model parameters or the intrinsic 

variability of these parameters. In addition, uncertainties associated with mathematical or 

analytical models in the field of risk assessment can be classified into aleatory uncertainty and 

epistemic uncertainty (Wen et al., 2003). Aleatory uncertainty represents the statistical uncertainty 

and epistemic uncertainty results from lack of knowledge (Drouin et al., 2009). Different methods 

and applications of uncertainty analysis have been introduced in previous studies. Hack and Caten 

(2012) introduced a review of uncertainty analysis methods and applications that have been 

published between 2004 and 2010. They focused on uncertainty tools presented by the 

International Organization for Standardization (ISO) including GUM and Monte Carlo Simulation. 

Different techniques can be used to estimate uncertainties (Zio & Pedroni, 2013) including for 

example 1) imprecise (or interval) analysis, which uses the interval arithmetic method to evaluate 

the ranges of all the model parameters; 2) probability bound analysis, which employs both interval 

arithmetic method for parameters with complex aleatory uncertainties and traditional probabilistic 

analysis for other parameters; 3) evidence theory analysis, which utilizes probability intervals to 

description epistemic-based uncertainty; and 4) possibility theory analysis, which applies a family 

of probability distributions with particular characteristics that allow for the experts’ opinion to be 

accounted for. Monte Carlo Simulation is a widely used tool to estimate modeling uncertainty. It 

is flexible, simple to implement, and can consider variables’ correlation; however, it requires the 

identification of probabilistic distribution for all variables, which might necessitate some 
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assumptions for parameters’ distribution, mean, and variance (Zio & Pedroni, 2013). Despite the 

importance of uncertainty quantifications, only handful of studies have been conducted to evaluate 

uncertainties in resilience models.  

2.8 Interdependence modeling  

2.8.1 Overview 

Interdependence between different lifelines in modern urban communities hinders the 

ability to recover fast compared with the communities that have independent lifelines (Cimellaro, 

2016). The interdependence can be in different forms: Physical, Geographical, societal, etc. 

Backup systems and redundancy can delay, or in some cases prevent, the failure of the dependent 

lifelines due to the failure of main service providers. Different tools have been used previously to 

estimate the resilience of different lifelines: empirical models, network-based models, system 

dynamics-based models, among others (Hasan & Foliente, 2015). Paton and Johnston (2006) 

introduced values for the interdependence between 16 different lifelines, which were based on 

expert opinion. On other hand, the Input-Output Inoperability Method is one of the common 

methods that have been used to estimate interdependence between various infrastructure (Haimes 

& Jiang, 2001). It estimates functionality for every lifeline separately before accounting for 

interdependence. This method has been modified by Cimellaro (2016) to account for the 

shortcomings of the original method such as redundancy, temporal evaluation of the systems, and 

non-significance input and output. The interdependences between the hospitals and the k-12 

schools have never been addressed before. Therefore, in this study, the interdependence between 

the hospitals and the schools as well as with other lifelines will be investigated. 

A higher degree of interdependency between elements of the built environment can 

increase community vulnerability and complicate recovery after any disruption (Cimellaro, 2016). 
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The National Institute for Standards and Technology, in their Community Resilience Planning 

Guide volume II and chapter 10 (NIST, 2016a) highlighted the importance of the 

interdependencies within and among the so-called social institutions. In this special publication, 

healthcare and education institutions are classified among the main social institutions and their 

interdependency can be used to identify the characterizations of the social community. 

Interdependencies can be classified into functional, physical, budgetary, social, and economic 

(Ouyang, 2014). Different approaches have been utilized to model infrastructure interdependency, 

including empirical, agent-based, system dynamics, economic theories, and network analysis 

(Ouyang, 2014). Identifying the degree of interdependency between the built environment is 

challenging as it requires comprehensive models to simulate all possible processes and decisions 

made within each of these infrastructures and their impact on each other. There is a shortage of 

analytical models that can be used to simulate large social systems, let alone the interdependency 

between these systems. Previous studies were either empirical (Cimellaro, 2016), statistical (Gan 

& Gong, 2007), or described as a theory with no quantification (Wright, 2001). The 

interdependency between healthcare and educational services can be direct or indirect (Pederson 

et al., 2006). Direct interdependency can only capture the simple relationship between the 

investigated services. On the other hand, the indirect interdependency pertains to quantifying the 

more complicated relationship between a) the investigated service providers, b) each provider and 

their supporting infrastructure that form the community, and c) the sub-components within each 

provider. Capturing such complex interaction requires more detailed models that can mimic the 

disruptive events within not only each facility but also the impact of each facility on the other. 

Modeling this interaction with that level of detail can be achieved using agent-based models as 
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shown by Hassan and Mahmoud (2021) (the details of this study will be presented in Chapter 5 of 

this dissertation). 

2.8.2 Agent-based modeling  

Agent‐based models are common for actions and interactions of agents describing 

individuals or entities, and they have been applied in many fields, including epidemiology, 

business, and social science (Conte & Paolucci, 2014). An agent comprises a set of autonomous 

decision-making entities that can be individuals, groups, or systems (Gilbert, 2008). These entities 

have a set of characteristics and rules that allow them to interact, learn, and adapt. Modeling 

agents’ behaviors and interactions can be conducted using self-contained algorithms or logical 

operations formalized by equations (Bonabeau, 2002). Agent-based modeling is a robust method 

utilized to investigate systems’ behavior, study the relationships among their dynamic components, 

and present a natural description of complicated systems (Hassan & Mahmoud, 2021a). 

Furthermore, it provides a flexible modeling tool for different levels of system complexity in which 

features such as aggregation of agents, agent sub-components, and different levels of descriptions 

for agents can be made (Bonabeau, 2002). However, these models have several limitations, 

including the uncertainty associated with their expected results (Kieu et al., 2020). 

2.9 Social services stability models 

Social stability is one of the prerequisites and main components for the communities to 

continue and thrive. Many institutions and research studies investigated and quantified community 

social stability (Agency for Toxic Substances and Disease Registry, 2018; Birner & Ege, 1999; 

Federal Emergency Management Agency, 2020; German & Latkin, 2012; Râsvan, 2009). For 

example, the Agency for Toxic Substances and Disease Registry (2018) introduced an index to 

measure the U.S. census tracts’ social vulnerability that resulted from external stresses including 
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natural disasters that accounts for 15 different social factors including socioeconomic status, 

housing type, and transportation. The stability of communities’ social services is an essential 

component to achieve many of the common long and short terms community resilience goals and 

objectives (NIST, 2016a). Hospitals and schools are classified among the main social institutions 

in the community, which provide two of the main social services (healthcare and education). Due 

to the fact that natural disasters such as earthquakes can have devastating impacts on communities’ 

social stability and many institutions that contribute to the stability of their services, different 

studies have considered the community preparedness for earthquakes that can efficiently reduce 

the social consequences of these disasters (Ejeta et al., 2015; McIvor, 2010; Miller et al., 2013). 

For instance, Bakic and Ajdukovic (2019) found a significant change in the level of psychosocial 

outcomes of the community individuals after disasters. Varda et al. (2009) concluded that disasters 

can change the stability of the social networks and impact the recovery process. However, a recent 

review study by Burger et al. (2019) highlighted the weaknesses and the current gaps in research 

related to the computational studies in the area of communities’ social stability after disasters.  

Major social changes and social instability can take place in communities after major 

disasters such as earthquakes. However, the role played by hospitals and schools in communities’ 

social stability can be significant in bringing normalcy back to these impacted communities. 

Therefore, many national and international organizations recognized the services provided by 

hospitals and schools as an essential component for any stable community (National Academy of 

Engineering, 2008; NIST, 2016b, 2016a; NSF, 2020; UNICEF, 2017; United Nations, 2015). In 

addition, many research studies investigated the relationship between the healthcare and education 

systems and the community's social stability. For example, German and Latkin (2012) found a 

strong correlation between social stability and health outcomes. While other case studies 
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concluded that education playing the main role in communities’ social stability. Butler and Diaz 

(2016) described hospitals and schools as the hub for community health and stability. Therefore, 

additional investigation into the role played by social institutions such as hospitals and schools 

especially after major earthquake disasters to enhance the community's social stability is needed 

(Hassan & Mahmoud, 2021a).   

2.10 Summary 

This chapter briefly reviewed the available literature on the modeling of healthcare and 

education systems after seismic events. It also provided a discussion on the commonly used indices 

to quantify their functionality, recovery, and resilience as well as their interdependency and impact 

on communities’ social services stability.  A summary of conclusions reached from this review 

includes the following: 

 Historical seismic events impacted healthcare and educational services. Earthquakes 

caused severe and complete damage to many hospitals and school buildings, resulted in 

many casualties, disturbed supporting infrastructure, increased demand on hospitals and 

class size in schools, affect community resilience and social services stability. 

  Different healthcare system frameworks were introduced to model different components 

of the healthcare facilities; however, many of these models did not consider both quantity 

and quality of the service, interdependency between hospitals and their supporting 

infrastructure, change in patient demand after the seismic events, and the interaction among 

the healthcare facilities within the healthcare system.   

 Many of the existing education system models were either theoretical or only model the 

school building components. No comprehensive models exist to simulate the dynamic 
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variation in quantity and quality of the educational services while considering the main 

parameters influencing this service.  

 Many frameworks were presented to estimate recovery and resilience after seismic events. 

Quantification of sensitivity and uncertainty of the introduced frameworks to model 

healthcare and education system are essential components to evaluate the main controlling 

parameters of these services and the uncertainty propagation in the estimated recovery and 

resilience. 

 Various interdependency models exist in the literature to investigate and determine the 

level of interdependency between different communities' infrastructure including agent-

based modeling; however, no analytical models exist to quantify the interdependency 

between the healthcare and education systems.  

 Social services stability of communities was impacted after earthquake disasters; therefore, 

many indices and studies were introduced to measure and investigate such impact. 

Hospitals and schools were found in many studies to highly impact communities' social 

stability. However, there is a lack of studies investigating and/or quantifying the individual 

and collective impact of schools and hospitals on social services stability.   
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Chapter 3.  FUNCTIONALITY OF HEALTHCARE SYSTEMS 
 
 
 

3.1 General 

Modeling the functionality of main social institutions such as the healthcare facilities after 

the occurrence of extreme events is now at the forefront of research. Hospitals are used in this 

study as the main facility providing healthcare services. Estimating post-disaster functionality of 

either single or multiple hospitals requires proper flow and interaction of information of the 

physical, economic, and social components of the involved sectors. Understanding this 

functionality is essential, particularly for these critical infrastructure, which is vital for a 

community’s well-being. Healthcare functionality can not only be measured in terms of the 

availability of service but also the level of consumer satisfaction. This functionality is directly 

impacted by the disturbance resulting from the earthquake event on healthcare facilities and the 

built environment and the people they depend on. After earthquake events, hospitals might need 

to manage the different consequences such as shortage of medical and non-medical staff, damage 

to hospitals, deficiency of the supporting infrastructure of the hospitals, lack of medical supplies, 

which can be coupled with the increase in the number of patients resulting from the earthquake 

casualties or/and patients transferred from other hospitals. These consequences can significantly 

reduce the healthcare system's functionality, requiring decisions to be made to ensure the 

continuation of healthcare services. In this chapter, a framework of the healthcare services 

functionality is introduced that dynamically models the behavior of the healthcare system after 

earthquake events.   
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3.2 Understanding the healthcare service 

The major components that impact the healthcare systems’ functionality, which could also 

be affected by an earthquake, are shown in Figure 3-1. Healthcare system components can be 

categorized under the following domains: regulators, providers, payers, suppliers, and consumers 

(Finnell & Dixon, 2016). Regulators are either governmental or private agencies that control the 

service, providers are the facilities providing the service, payers are either the insurance company 

or the patients themselves, suppliers are the resource providers such as pharmaceutical companies, 

and consumers are the patients that impose a demand on the healthcare system. Noteworthy that 

these components comprise many other subcomponents that are interdependent and any shortage 

of these subcomponents can consequentially affect the healthcare service functionality. 

 

Figure 3-1: Components of healthcare service. 

Healthcare system regulators are those agencies that prepare and apply rules that control 

providers, payers, and suppliers of the healthcare system (Longest, 2009). The main function of 

regulators in the healthcare system is to guarantee a certain quality of the offered services. There 

are various types of regulations that are applied by a wide range of agencies in the healthcare 
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system including federal, state, and local level agencies as well as private organizations (Institute 

of Medicine, 2009). Payers can be classified into governmental agencies, private insurance 

companies, and patients (Institute of Medicine, 2009). Unlike during normal operations, during 

and after emergencies payers have less control over the consumers’ selection. Suppliers refer to 

manufactures of medical equipment and supplies such as oxygen, surgical, and Rx supplies (U.S. 

Food and Drug Administration, 2019). In addition to medical supplies, other supplies are essential 

including food and fuel (Vugrin et al., 2015). After natural hazards, not only the functionality of 

healthcare system components drop but also supplies can experience a significant disruption in 

their production, making the situation even worse. Even though alternative supplies can exist, 

arranging and transporting shipments and storing them upon arrival can be challenging (Mulyasari 

et al., 2013). Moreover, earthquakes usually cause damage to the transportation network, which 

can hinder the shipping of supplies and in some cases halt shipping entirely. Transferring these 

supplies between hospitals after a natural disaster is expected to enhance the resilience of the 

healthcare system (Redlener & Reilly, 2012). 

Healthcare service providers range from large facilities such as hospitals to smaller ones 

such as walk-in clinics. However, treatment of critical cases and serious injuries are usually 

handled at well-prepared hospitals (Mulyasari et al., 2013). Hospital size is commonly measured 

by the total number of active staffed beds, which, for proper operation, require trained staff, 

working space, and adequate supplies (Jacques et al., 2014). In addition to their medical teams, 

hospitals have supporting staff working in the accounting and administrative departments. 

Hospital working space not only depends on physical structural and non-structural components or 

medical equipment but also on other utilities such as electric power and drinking water. Hospital 

supplies include both medical and non-medical supplies that are usually stored in rooms and 
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storage facilities attached to hospitals. Damage to the rooms and storage facilities can also affect 

supplies availability. Recipients of healthcare service after an earthquake can be classified into 

different severity levels, based on their needed medical care (HAZUS-MH 2.1, 2015). Medical 

care depends on the nature of the injury or disease, which might require a specific medical team 

or in some cases multiple teams (Finnell & Dixon, 2016). To estimate the patient demand on 

hospitals, a dynamic model that can capture the disruption to community facilities and effectively 

model the connection between patients and hospitals is needed. In addition to the previously 

mentioned components, the connection between consumers and providers and the interaction 

between the healthcare facilities are essential for any comprehensive framework. 

3.3 Component functionality of hospitals 

Healthcare service is measured by a physical metric (e.g., number of available beds) and 

the level of consumer satisfaction. Hospital functionality can be defined by combining the quantity 

(QV) and quality (QS) services (Cimellaro et al., 2011; Hassan & Mahmoud, 2019). The quantity 

of the offered services is usually estimated based on hospital capacity or the number of staffed 

beds available for patients based on daily rates (Denver Health, 2005). Noteworthy, healthcare 

service not only depends on the hospital itself but also on the surrounding lifelines on which the 

hospital depends. For example, a reduction in transportation network capacity will lead to delays 

in ambulances’ response or even an entire halt to their service. According to Jacques et al. (2014), 

for these beds to be available for use, representing the quantity portion of the service, three main 

components are required: 1) trained personnel such as physicians, nurses, and supporting staff; 2) 

qualified space, and 3) sufficient supplies. The quality portion of the offered service, on the other 

hand, is difficult to describe. Previous studies identified several dimensions to represent the quality 

of the healthcare service (Kalaja et al., 2016; Maxwell J. R., 1984). One way to do so is by defining 
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the service as a function of losses to different hospital departments while considering service 

redistribution among the departments (Jacques et al., 2014). The patient waiting time could also 

be used to represent the quality part of the functionality (Hassan & Mahmoud, 2019; McCarthy et 

al., 2010). Previous studies highlighted the impact of transportation network damage on the 

waiting time and healthcare services after earthquakes (Dong & Frangopol, 2017; Lupoi et al., 

2013).  

The probability of total functionality of the healthcare system, P(QH), can be expressed as 

a combination of the probability of quantity, P(QV), and the conditional probability of quality, 

P(QS|QV), of the offered service as shown in Equation (3.1). The total functionality can be 

accurately calculated by considering the correlation between quantity, QV, and quality, QS, 

functionality (i.e. the first-moment of the total functionality) or simplified (i.e. using weighted 

geometric means) by combining the two functionalities as shown in Equation (3.2) (Cimellaro et 

al., 2011); where αV and αS are weighting factors for quantity and quality functionality, 

respectively. These weighting factors depend on the investigated community (Cimellaro, 2016; 

Hassan & Mahmoud, 2019) and are expected to change after the earthquake and during the 

recovery process. Immediately after the occurrence of a natural hazard, the quantity of the service 

and safety of the patients are more paramount than the quality. As time progresses, more emphasis 

can be placed on quality (Nuti & Vanzi, 1998). The presented healthcare functionality framework 

has different sub-models: a) healthcare capacity quantification model; b) healthcare quantity 

estimation; c) patient-driven model; and d) healthcare interaction model.  

𝑃 𝑄 𝑡 𝑃 𝑄 𝑡 . 𝑃 𝑄 𝑡 |𝑄 𝑡               (3.1) 

𝐸 𝑄 𝑡 ∬ 𝑄 𝑡 𝑄 𝑡 𝑓 𝑄 𝑡 𝑑𝑄 𝑑𝑄 ≅ 𝑄 𝑡 𝑄 𝑡            (3.2) 
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To provide a full description of the healthcare system’s functionality, QH, the quantity of the 

service, QV, is combined with the accessibility, SA, and effectiveness, SE, of this service as an 

indication of the service quality, QS, as follows: 

𝑄 𝑡 𝑄 𝑡 𝑆 𝑡 𝑆 𝑡                 (3.3) 

where, αA and αE are weighting factors for accessibility and effectiveness of the service, 

respectively. 

3.3.1 Quantity functionality 

The hospital's overall functionality comprises a quantity portion and a quality portion. The 

quantity aspect of the functionality can be assessed using the success tree shown in Figure 3-2, 

which comprises a series of basic events, R, connected with logical AND/OR gates to form either 

intermediate or top events. The availability condition of each sub-component (basic event) at time 

t is calculated to estimate the probability of staffed bed availability, PB, which is used to determine 

the total available number of staffed beds at each healthcare facility. These staffed beds are defined 

as the licensed beds that are immediately available to be occupied by a patient. The mean value of 

PB represents the quantity functionality, QV, of this healthcare, which is calculated as:  
𝐸 𝑄 𝑡 ∑ 𝑃 ∑ 𝑃          (3.4) 

Where, Nem and Nin are the number of emergency and inpatient beds in the investigated 

facility, respectively; αem and αin are weighting factors for emergency and inpatient beds, 

respectively, and B is the total number of the staffed beds.  

The proposed success tree analysis provides a functionality framework for the entire 

healthcare facility while accounting for interdependency with other major lifelines. Three main 

components are required to keep the hospital operational including trained staff, appropriate space, 
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and adequate supplies (Barbisch & Koenig, 2006). These components not only depend on the 

hospital building itself but are also highly related to the functionality of the surrounding 

community’s physical, economic, and social sectors.  

  

Figure 3-2: Success tree for determining the availability of staffed beds in a hospital. 

To connect the basic events in the success tree analysis to the top and intermediate events, 

AND/OR gates are used. The probabilities for different gates are calculated using Equation (3.5).  

𝑃 1 ∏ 1 𝑃 , 𝑎𝑛𝑑  𝑃 ∏ 𝑃                      (3.5) 

Where, POR and PAND denote “AND” and “OR” gate operations, respectively, Pi refers to 

the basic event (i) probability, and n is the total number of considered basic events.  

For the trained staff (R1 to R4), the initial functionality drop is a consequence of the direct 

social losses of the hospital, LDS. However, the three main factors that determine the availability 

of staff after the earthquake, which are the availability of the original hospital staff and their ability 
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to work long shifts as well as the possibility of utilizing support from other hospitals. The 

availability of the original staff is not only a function of the hospital causalities but also of the 

extent to which the hospital staff are among those who decided to relocate following the earthquake 

due to lack of housing and essential services. This is accounted for in the framework by specifying 

the recovery associated with events R1 to R3 to be dependent upon the availability of alternative 

staff, R4, housings, Fh, and utilities, Fu, functionality levels. The staff support from other hospitals 

is based on the percentage of staff, ST, shortage in the subject hospital, the willingness of the other 

hospitals to send the support, Ms, and ability of the original staff to work additional hours, STadd. 

Staff shortage is assumed to occur in cases when staff availability, ST, is less than space, SP, and 

supplies availability, SU.  The staff availability at any time t is calculated as follow: 

𝑆𝑇 𝑓 𝑆𝑇 , 𝐹 , 𝐹 , 𝐿 , 𝑅4 , 𝑀 , 𝑆𝑇         (3.6) 

For the horizontal and vertical accessibility of the hospital (R5 to R7), the initial 

functionality drop is a result of the expected non-structural damage of the hospital’s corridors, 

elevators, and stairs. However, the accessibility can be recovered if enough repair resources are 

allocated for the rehabilitation of the corridors, elevators, and stairs. The allocation of repair 

resources is based on the building recovery process. The supportive infrastructure functionality 

(R8, R10, R12, R13, R15, R17, and R19) is expected to drop directly after the earthquake and 

enhance over time if the required repair resources are provided. The initial reduction in 

infrastructure functionality is assumed to be based on data available in ATC-13 (1985) and 

HAZUS-MH 2.1 Technical Manual (2015).  

Because of the importance of the hospital as a critical facility, efficient backup systems are 

utilized to maintain the hospital functionality (R9, R11, R16, R18, and R20). These backup systems 

can, however, only support hospital functionality for a limited time. This is because water and 
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drinking water backup systems are assumed to stop within days if the water treatment plant does 

not provide the service, or if these backup systems are not refilled. Similarly, the power backup 

system can only support the hospital for a limited time, depending on the availability of fuel supply. 

The operability of these backup systems, Ri, is a function of the earthquake damage level, EQd, 

hospital consumption, C, and refill and maintenance availability, R&M, (Office of Inspector 

General, 2015) such that: 

𝑅 𝑓 𝑅 , 𝐸𝑄 , , 𝐶 , 𝑅&𝑀           (3.7) 

The ambulance service functionality (R14) is expected to reduce after the earthquake based 

on the direct loss ratio. This includes drivers' injuries or death, structural components loss ratio, 

LS,DE/RS, non-structural components losses ratio, LNS,DE/RNS, and losses of the telecommunication 

network. Where, LS,DE and LNS,DE are the direct economic losses for structural and non-structural 

components, respectively, while RS and RNS refer to the replacement cost of structural and non-

structural components, respectively. The structural components loss ratio term is used to represent 

the shortage of the ambulance’s storage, while the non-structural components loss ratio term is 

utilized to refer to the shortage of the ambulance vehicle itself. Recovery of an ambulance service 

depends on the availability of supportive staff and repair resources.  

The functionality of the working space (R21, R22, and R23) also reduces after the 

earthquake as a function of the structural loss ratio, LS,DE/RS, nonstructural loss ratio, LNS,DE/RNS, 

and content loss ratio, LC,DE/RC. Where, LC,DE and RC are the direct economic losses and 

replacement cost of the contents, respectively. The recovery processes of these components are 

also a function of the allocated repair resources for the hospital building. It is important to note 

that backup spaces, to treat more patients, are assumed not to exist during the short-term 

functionality of the hospital. The possibility of obtaining backup spaces during the long-term 
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recovery is higher since such an arrangement usually takes more time to be effective. Therefore, 

backup space availability is simplified as a function of the time after the earthquake and the 

assigned resources to prepare the backup space. 

Supplies availability (R24 to R29), is assumed not to immediately drop after the earthquake 

except if storage rooms are extensively damaged, which is dependent on structural and non-

structural components damage fragilities of the hospital. Hospital medical supplies are assumed to 

decrease as time passes following the earthquake and are a function of the number of patients being 

treated. Availability of the medical supplies can, however, be increased and maintained if an 

additional and a sufficient number of supplies is delivered to the hospital after the earthquake. 

Nevertheless, ensuring supply delivery requires enough funding, a proper transportation system, 

and productive suppliers. Therefore, the availability of supplies is modeled as a function of the 

number of patients treated at the hospital, Nt, which is indicative of not only supplies availability 

but also the functionality of the transportation system, and the functionality of the infrastructure 

or businesses producing the supplies. The availability of these supplies, 𝑆𝑈 , is a function of 

earthquake damage to the supplies’ storage rooms, EQd, hospital consumption, C, and utility 

availability, FU, while considering the possibility of supplies transfer from other hospitals, SUadd, 

as follows: 

𝑆𝑈 𝑓 𝑆𝑈 , 𝐸𝑄 , , 𝐶 , 𝐹 , 𝑆𝑈 ,         (3.8) 

3.3.2 Quality functionality 

The quality component of the hospital functionality represents patient’s satisfaction with 

the offered healthcare service. Maxwell (1984) listed six different dimensions of healthcare quality 

service: relevance, accessibility, effectiveness, fairness, acceptability and efficiency, and 

economy. During the functionality drop after the earthquake, Accessibility of the medical services, 
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SA, and effectiveness of the offered service, SE, are the main dimension controlling healthcare 

quality. Therefore, in this study, both metrics are combined to represent the quality functionality 

of the healthcare facilities as shown in Equation (3.3). 

Patient waiting time after the earthquake occurrence, 𝑊 , which is defined as the time a 

patient waits before being seen by medical staff, is utilized to estimate accessibility to medical 

services. To estimate patient waiting time Equation (3.9) can be used.  

𝑊 𝑊 𝑇 𝑎 𝐵 𝐵 /𝐵 𝑎 𝑁 𝑁 /𝑁       (3.9) 

Where, W0, is the basic waiting time; Ttvl is the patient travel time; ae, is the effect of staffed 

beds reduction; at is the effect of an increase in the total patients' number; Nt is the total number of 

patients treated at the hospital at the time, t; and N0 is the total number of patients treated at the 

hospital before the earthquake occurrence time. Basic waiting time refers to the patient waiting 

time in the emergency department before receiving the healthcare service, which is a function of 

the patient’s case criticality (Barros et al., 2010). Patient travel time to the hospital varies after the 

earthquake because of losses to the ambulances service or damage to the transportation network. 

The ratio between the current number of staffed beds to the original number before the earthquake, 

as well as the ratio between the current patient number to the original number, are used to estimate 

the delay time in the hospital's emergency department.  

To measure the accessibility of the medical services, SA, Equation (3.10) can be used.  

𝑆 𝑊 𝑊 / 𝑊 𝑊 0.0        (3.10)  

Where, Wt
a, and Wt

b are the patient waiting time after and before the disaster, respectively; 

and 𝑊  is the maximum allowable waiting time.  
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 Patient treatment time, Tt, is utilized to estimate the effectiveness of the offered service.  

This effectiveness is commonly used to evaluate the achieved patient outcomes accomplished by 

following the best-practice care guidelines. Immediately after earthquakes and as a consequence 

of higher demand on healthcare facilities, the medical staff may be tempted to reduce treatment 

time (Arboleda et al., 2007). Reduction of patient’s treatment time can significantly decrease 

patient outcomes, increase fatality rates, and diminish the healthcare system quality. The treatment 

time can be calculated as per Equation (3.11) 

 𝑇 𝑓 , 𝑃𝐶𝐶            (3.11) 

Where, R1t is the available physician at any time t; Nn
t is the hospital demand; and PCC is 

the patient case criticality. 

Healthcare effectiveness, SE, can be measured using Equation (3.12) 

𝑆 𝑇 𝑇 / 𝑇 𝑇 0.0        (3.12) 

Where, Tt
a is the patient treatment time after the earthquake, Tt

b, is the patient treatment time 

before the earthquake; and Tt
min, is the minimum allowable treatment time.  

3.4 Patient-driven model 

The demand on hospitals is estimated using a newly developed patient-driven model. The 

model accounts for different factors affecting the selection of a healthcare facility. For each patient 

i (earthquake-related or regular patient), the probability Pin of a patient going to a healthcare 

facility n can be calculated using the probability tree analysis shown in Figure 3-3, which considers 

various socio-technical factors related to patient constraints, healthcare facility constraints, and 

connection between patient and healthcare facility. Payer or insurance type can dictate the 

facilities at which regular patients, with less severity, can be treated (Finnell & Dixon, 2016). 
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However, for patients with higher injury severities, quick access to facilities for rapid treatment is 

important and as such, the insurance or payer will not dictate the selection of the facility (Institute 

of Medicine, 2015). The reputation of the healthcare facility will also affect patient selection. 

Social media, previous experience of the patient, and brand name can dramatically change the 

patient’s choice (Corbin et al., 2001). The connection between patient and healthcare facility is 

critical especially in the case of earthquake hazard, in which transportation network functionality 

can be affected and the patient’s travel time to the healthcare facility can be significantly increased 

(Lupoi et al., 2013). The healthcare facilities also can affect patient distribution. Waiting time of 

patients before seen by a provider, the ability of the healthcare facility to treat injuries or disease 

and finding a way to transfer patients to another healthcare facility can change patient destination 

from one facility to another. The demand on healthcare facilities is rather dynamic and changes 

over time after the earthquake due to changes in the basic events. 

 

Figure 3-3: Patient-driven model probability. 

The previously mentioned probability, pi,n, can be calculated for all healthcare facilities in 

the investigated community, N, to form the patient selection probability vector Pp shown in 

Equation (3.13). The selected hospital is the one with the highest probability as shown by Equation 
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(3.14). A binary system is utilized to determine the most probable facility, 𝜆i,n, for each patient. 

Assuming that the community has a total number of patients, Mt, then the expected number of 

patients, Nn, at facility, n, can be estimated as the total number of patients who will select this 

hospital as shown in Equation (3.15). The expected demand for healthcare facilities might change 

further due to the patient transfer process, which will be discussed in the next section. 

𝑷𝒑 𝒕 𝑝 ,  𝑝 ,  𝑝 , ⋯ 𝑝 , 𝑝 ,          (3.13) 

𝜆 , 1.0 ⇔  𝑀𝑎𝑥 : 𝑝 , 𝑝 , 0.00.0 ⇔  𝑀𝑎𝑥 : 𝑝 , 𝑝 , 0.0               (3.14) 

𝐸 𝑁 𝑡 ∑ 𝜆 ,                     (3.15) 

Patients’ length of stay at hospitals and resources needed to treat them are assumed to vary 

based on the patient severity level (Barros et al., 2010). Similar to the earthquakes, severities of 

regular patients are categorized into four levels. Regular patients’ severity rates are a function of 

the community being investigated and can be deduced based on data in the literature (Weiss & 

Elixhauser, 2014). Earthquake-related injuries are not expected to arrive at the hospital at the same 

time (Cimellaro & Pique, 2016). In this study, variation in both the arrival rate and length of stay 

are considered for regular and earthquake-related patients.  

3.5 Healthcare facilities interaction model 

The interaction between healthcare facilities is essential, especially after the earthquake 

occurrence as it allows for redistribution of services, repair resources, medical staff, and patients 

as needed (McDaniels et al., 2008). However, to achieve this level of interaction pre-arrangement 

and agreement between healthcare facilities have to exist (Paterson et al., 2014), which is more 

likely for facilities with the same brand name. The travel distance between the healthcare facilities 
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and the availability of transportation and the telecommunication networks can also affect this 

interaction. 

The probability of patient transfer between healthcare facility i to facility j is calculated 

using the probability tree shown in Figure 3-4. The transfer process is a function of the patient and 

insurance constraints, healthcare facilities connection, and availability of the receiving facility. 

For a patient, who is in a critical condition at a facility that has less ability to treat him/her, the 

transfer decision is commonly made with no regard for the insurance type. However, for patients 

with less injury severity levels, the type of insurance is expected to control the transfer decision. 

To accomplish the transfer process, the connection between the emitting and the receiver hospitals 

should exist. This connection requires functional transportation, telecommunication, and 

agreement to transfer the patient’s medical records. The functionality of the receiver hospital can 

also control the transfer process. For hospitals with higher demand compared to their capacity, at 

the time, t, accepting new patients will increase the patients waiting time and reduce the number 

of available staffed beds, which will eventually impact the offered healthcare service. Therefore, 

waiting time at the receiver hospital in addition to the ability of the hospital to treat the transferred 

patient will affect the probability of a patient being transferred. Unlike patients with less severe 

injuries, who can be transferred using private transportation, patients with critical cases are 

transferred using either ambulances or air transportations depending on the case. It is worth noting 

that the patient transfer process is complicated and not all cases can be transferred. 
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Figure 3-4: Hospitals’ interaction probability. 

The previously mentioned probability tree is used to calculate the transfer probability 

between all hospitals within the investigated cluster at any time (t) after earthquake occurrence, 

which is allocated in the full interaction matrix, 𝑰𝒑 t ∶ 𝑝𝑚 ,𝑛 𝑁𝑥𝑁 , shown in Equation (3.16) 

where N is the total number of hospitals. 

𝑰𝒑 t 𝑝 , 𝑝 ,𝑝 , 𝑝 ⋯ 𝑝 ,𝑝 ,⋮ ⋱ ⋮𝑝 , 𝑝 , ⋯ 𝑝 , 𝑝 ,         (3.16) 
Once a hospital m reaches the predefined capacity, 𝜀m(t), or the patient cannot be treated, 

a transfer process to another hospital n, within the investigated cluster, is assumed to have started 

on the condition that the receiving hospital can accept the patient. The presented framework is 

labeling each hospital as either probable emitter, m, probable receiver, n, or idle as shown in Figure 

3-5.  
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Figure 3-5: Patient transfer process mechanism. 

To calculate the total number of patients transferred, Ndist m→n, from hospital m to hospital 

n, Equation (3.17) is used where, 𝜀m(t) is the maximum capacity of the hospital m, which varies 

with time-based on the available number of staffed beds, pm,n(t) is the interaction value between 

hospital m and hospital n, and N is the number of hospitals that can receive the transferred patient. 

After transferring patients, the demand on each hospital is updated in terms of change in the total 

number of patients. Equation (3.18) and Equation (3.19) show the updated demand on an emitter 

and a receiver hospital, respectively.   

𝑁 → 𝑡 𝑁 𝑡 𝜀 𝑡 ,  ∑ ,    ∀ 𝑛, 𝑚      (3.17) 

𝑁 , 𝑡  𝑁 𝑡 ∑ 𝑁 → 𝑡         (3.18) 

𝑁 , 𝑡  𝑁 𝑡 ∑ 𝑁 → 𝑡         (3.19) 

In the presented model, hospitals can receive additional staff from other hospitals if staff 

shortage is affecting hospital functionality (when staff availability, ST, is less than space, SP, and 

supplies, SU, availability). However, the staff transfer process requires agreement between the 

facilities and willingness of other hospitals to send support, which might need a longer 

arrangement time. During that time, different alternatives can be explored such as reducing the 

time required to treat the patients if possible (Arboleda et al., 2007), which might increase the 
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fatalities. Another possibility is by assigning additional working hours to the original staff, 

assuming the staff is willing to work extra time (Kisekka et al., 2015b). To estimate the number 

of additional staff, STadd, transferring from hospital m to hospital n, Equation (3.20) is used; where 𝑆𝑇  is the required number of staff at hospital m and IST is the staff transfer probability matrix, 

defined by 
𝑰𝑺𝑻 t ∶ 𝑝𝑆𝑇 𝑚,𝑛 𝑁𝑥𝑁   as shown in Equation (3.21). This probability is calculated based 

on the probability of an agreement (pag) between hospital m and n, the probability of hospital m 

staff accepting a transfer (ptf), and the probability that the transferred staff will match the need of 

hospital n (pma). However, this transfer will occur if and only if hospital m has more staff than 

required as shown in Equation (3.22). 

𝑆𝑇 → 𝑡 𝑆𝑇 𝑡 𝑆𝑇 𝑡 ∗ 𝑝 , 𝑡 ⇔ 𝑆𝑇 min 𝑆𝑃 , 𝑆𝑈                                                        0.0 ⇔ 𝑆𝑇 min 𝑆𝑃 , 𝑆𝑈     (3.20) 

𝑰𝑺𝑻 t ⎣⎢⎢
⎡ 𝑝 , 𝑝 ,𝑝 , 𝑝 , ⋯ 𝑝 ,𝑝 ,⋮ ⋱ ⋮𝑝 , 𝑝 , ⋯ 𝑝 , ⎦⎥⎥

⎤  𝑝 ,  𝑡       (3.21) 

𝑝 , t 𝑝 , ⋂ 𝑝 , ⋂ 𝑝 , 𝑆𝑇 min 𝑆𝑃 , 𝑆𝑈       (3.22) 

Similar to staff transfer, supplies can be transferred between healthcare facilities only if 

the supply availability is less than staff and space availability. An agreement is mainly required 

between the facilities and functional transportation network to transfer the required supplies. 

Equation (3.23) is used to estimate the number of supplies, SUadd, transferred from hospital m to 

hospital n. SUreq is the required number of supplies at hospital n and ISU is the supplies transfer 

probability matrix, shown in Equation (3.24). The entries of the matrix depend on the probability 

of having established agreement (pag), transportation functionality between hospital m and hospital 

n (ptr), and the probability of matching supplies between both hospitals (pma). However, this 
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transfer will occur if and only if the hospital m has more supplies than required. The supplies 

amount can be updated similar to the staff as mentioned earlier as shown in Equation (3.25). 

𝑆𝑈 → 𝑡 𝑆𝑈 𝑡 𝑆𝑈 𝑡 ∗ 𝐼 , 𝑡 ⇔  𝑆𝑈 min 𝑆𝑇 , 𝑆𝑃                                                          0.0 ⇔ 𝑆𝑈 min 𝑆𝑇 , 𝑆𝑃    (3.23) 

𝑰𝑺𝑼 t ⎣⎢⎢
⎡ 𝑝 , 𝑝 ,𝑝 , 𝑝 , ⋯ 𝑝 ,𝑝 ,⋮ ⋱ ⋮𝑝 , 𝑝 , ⋯ 𝑝 , ⎦⎥⎥

⎤ 𝑝 , 𝑡        (3.24) 

𝑝 , t 𝑝 , ⋂ 𝑝 , ⋂ 𝑝 , 𝑆𝑈 min 𝑆𝑇 , 𝑆𝑃      (3.25)  

3.6 Summary 

In this chapter, a new framework to estimate the functionality of the healthcare system was 

introduced. The framework combined the quantity functionality, measured by the number of 

available staffed beds, and quality functionality, measured by accessibility and effectiveness of the 

offered healthcare services to form a comprehensive healthcare system functionality index after 

earthquake disasters. Number of available staffed beds at any hospital was calculated using success 

tree that accounted for the availability of staff, space, and supplies while considering the different 

mitigation strategies that might be applied by this hospital such as alternative staff, backup 

systems, and backup spaces. Success trees were constructed for beds in emergency departments 

and inpatients and took into consideration the interdependency between each hospital and its 

supporting infrastructure. Patient waiting and treatment times were used to quantify the 

accessibility and effectiveness of the healthcare services, which were used as quality indices for 

the healthcare system. Different parameters were included in modeling these quality indices 

including, for example, patient travel time, the impact of earthquake damage on hospital’s staffed 

beds, and the effect of the increase in patient demand after the earthquake. 
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The chapter also presented a new framework used to quantify the patients’ distribution on 

healthcare facilities that accounts for various parameters related to the patient constraints, 

healthcare facility constraints, and connection between patient and healthcare facility. This 

framework can quantify the number of patients at each facility while accounting for the dynamic 

change in the community that might occur after the earthquake including population dislocation 

and distribution in the transportation network. 

A framework to model the interaction between different healthcare facilities within the 

healthcare system was also presented. This framework models the patient, staff, and supplies 

transfer probability between all the hospitals in the healthcare system. It accounted for the different 

spatial and temporal parameters to estimate the number of patients transferred from overwhelming 

or saturated hospitals to other facilities with less demand. It also considered the number of staff 

transferred between the healthcare facilities as a function of the agreement between facilities, the 

staff willingness to be transferred, and matching the need of the receiver hospital. The supplies 

transfer process was modeled as a function of the agreement between the healthcare facilities, 

supply types, and transportation availability.     
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Chapter 4.  FUNCTIONALITY OF K-12 SCHOOL SYSTEMS 
 
 
 

4.1 General 

Maintaining educational services following natural disasters, such as earthquakes, is 

critical for resilient cities and communities. The continuation of educational services following 

extreme events is key to restoring normalcy within communities and reducing the potential for 

population outmigration. Earthquake disasters can have devastating consequences on children 

because they are among those most vulnerable to natural disasters. K-12 public schools are used 

in this study as the main facility providing educational services. Modeling the functionality of the 

school requires simulating the interaction between different components that include community 

individuals as well as various community physical, economic, and social sectors. One of the 

educational service’s main objectives is to provide schoolchildren with appropriate academic and 

personal training. Therefore, educational service functionality needs to be measured in terms of 

the availability of service and student outcomes. Education system functionality can drop after an 

earthquake because of the damage sustained by the school buildings and/or the built environment 

supporting the schools. Casualties among the workforce and community individuals, in general, 

will also have a strong impact on the functionality of the education system. Schools are centrally 

managed systems. The roles played by schools’ administrations and school districts before the 

earthquake disasters are vital for reducing the impact of the event. These roles could include 

applying different mitigation strategies, such as providing schools with backup systems and 

backup spaces, deciding on student enrollment and transfer, reopening schools, staff appointment 

and transfer, and supplies transfer. In this chapter, a framework for the educational services 
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functionality is presented to dynamically model the behavior of the education system after 

earthquake events.   

4.2 Understanding the educational service 

K-12 educational services are aimed at providing schoolchildren with appropriate academic 

and social experiences and training. A complex set of factors and their interactions influence the 

functionality and success of the educational system within a community in achieving these goals, 

as shown in Figure 4-1. School functionality represents the ability of a school to provide the desired 

level of educational services. School buildings provide essential space for teachers, administrative 

staff, and community volunteers to provide educational services to students. The continued 

availability of this space requires that damage to structural and non-structural components, as well 

as building contents, be kept to an absolute minimum and those essential utilities, such as power, 

water, and sewer, be available. Since students in a typical community attend different school 

grades, the continued availability of all K-12 grades in a school is crucial to reduce the potential 

for dislocation and outmigration for students and their families (Hinojosa et al., 2019). Finally, 

most students require transportation to reach school, which is provided by either school buses or 

private transportation. A set of national and local regulations must be followed in school 

management. These regulations differ based on the school type and require the availability of 

qualified staff, proper space, and sufficient supplies and services. In the case of a school closure, 

different alternatives may be offered to students, which are determined based on the school policy 

and regulations.  
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Figure 4-1: Components of educational services. 

In normal conditions, student enrollment is based on the school zone. The selection of these 

zones depends on school capacity and the expected number of students within the zone. Some 

parents may select a different school for the students; however, school transportation is commonly 

limited to the students living in that zone. Following natural disasters such as earthquakes, some 

students might transfer to other schools because of school damage. In this situation, schools might 

increase class capacity or reduce the transportation service, or in some cases totally suspend it, due 

to damage to roads, shortage in staff, or damage to buses. Schools can also be used as temporary 

shelters, or as centers for community disaster relief (Singh, 2019) and recovery coordination 

(Applied Technology Council, 2017; Fujieda et al., 2008). Using schools as shelters is, however, 

a function of the disaster occurrence time, space availability, and school building safety. For 
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instance, educational services are impacted by earthquakes differently during the academic year 

than when school is not normally in session. 

In the following section, a model of post-disaster school functionality and recovery around 

the basic considerations introduced above is built. This model is focused on public schools, which 

enroll approximately 90% of K-12 students in the U.S.  

4.3 Component functionality of schools 

To measure the functionality of the educational services, two main indices are widely 

used: service availability (UNESCO, 2019) and quality of the education providers (Mayer et al., 

2000). In this study, these two indices are combined to form a comprehensive measure of the 

educational service. The expected value of the total functionality of the educational service, E(S), 

at any time, t, within a community can be mathematically calculated, including the correlation 

between quantity, SV, and quality, SS, of the service, or approximated using weighted geometric 

means, as shown in Equation (4.1). The weighted geometric mean: 

𝐸 𝑆 𝑡 ∬ 𝑆 𝑡 𝑆 𝑡 𝑓 𝑆 𝑑𝑆 𝑑𝑆 ≅ 𝑆 𝑆        (4.1) 

In which αV and αS are weighting factors for quantity and quality, respectively (U.S. 

Department of Education-Office of Innovation and Improvement, 2009), is a common method to 

aggregate social indicators. The short-term functionality depends on the quantity of basic 

educational services that can be provided. Over the long-term, however, the total functionality 

depends, in addition, on the quality of the service. The quantity can be measured by enrollment 

capacity and class size, which depend on the performance of schools’ physical infrastructure, 

availability of staff, supplies, and supporting lifelines. On the other hand, the quality can be 

measured by combining different indices related to teachers’ credentials and experience, classroom 
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amenities, and school context (Mayer et al., 2000). Some of these parameters can be impacted 

significantly in the aftermath of an earthquake. For instance, outmigration or dislocation of 

professional staff might affect teachers’ assignments, which could negatively impact the quantity 

and quality of the delivered education. Moreover, damage to structural and non-structural 

components and to building contents, as well as the damage to the schools’ supporting lifelines, 

might increase the class size. 

4.3.1 Quantity functionality 

Staff, space, and supplies availability are the main components of the schools’ post-hazard 

quantity measure. The school staff includes teachers, supporting staff, and administrative staff as 

well as community volunteers. Appropriate space for students entails having a safe structure, 

reliable non-structural components, and functioning contents (desks, computers, etc.). Schools also 

require various utilities (water, power, wastewater, and drinkable water), as well as infrastructure 

(transportation, telecommunication) to operate. Some schools are equipped with backup utilities. 

Books and other educational materials, food, fuel, and other supplies are also vital for operation. 

The probability of school seat availability for students can be estimated using the success tree 

shown in Figure 4-2. This success tree is comprised of various events, each of which is assumed 

to be statistically independent. It describes the functionality of not only the school building itself 

but also the surrounding community’s physical, economic, and social infrastructure. Similar to 

previous studies (Hassan & Mahmoud, 2019; Nozhati et al., 2019), the availability of each basic 

event is described by appropriate probabilistic mathematical functions. The basic events in the 

success tree analysis are connected using AND/OR gates to calculate the probability of top and 

intermediate events. Probabilities for these gates are calculated using equation (2), where POR and 
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PAND denote “AND” and “OR” gate operations, respectively, Pi refers to the basic event (i) 

probability, and n is the total number of considered basic events.  

 

Figure 4-2: Success tree for determining the availability of seats in the school. 

The probability of staff availability, P(STi(t)), for each grade, i, at a time, t, after an 

earthquake occurrence is estimated as the union of events that the school staff is available, as given 

by:  

𝑃 𝑆𝑇 𝑡 𝑃 ⋃ 𝐸 𝑃 1 𝐿 ∪ 𝑆𝑇 ∪ 𝑆𝑇 ∪ 1 𝑆𝑇 ∪ 1 𝑆𝑇     (4.2) 

Where 𝐸  is the jth event for the ith grade considered and N is the total number of events. 

This equation is utilized to calculate the staff availability, R1, R2, and R4, which are related to staff 

casualties and trauma, are expected to be impacted immediately after an event because of the direct 

social losses, LDS. Other factors also can influence staff availability during the recovery time such 
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as staff appointments (permanent and temporary), STadd, volunteer staff, STvol, staff dislocation, 

STdis and staff personal responsibilities and commitments, STdif. Volunteers from the community, 

R3, can temporarily fill the gap for the required supporting staff, R2. The availability of R3 is a 

function of the investigated community.   

School space functionality considers school accessibility, the functionality of supporting 

infrastructure, and the availability of appropriate working space. Accessibility, R5 to R6, accounts 

for the corridor, stairs, and elevator functionality after the earthquake. School accessibility might 

be influenced by damage to structural and non-structural components, which can block the 

corridors and impact the safety of stairs and elevators. School-supporting infrastructure includes 

water, R7, power, R9, transportation, R10, telecommunication, R14, wastewater, R15, and drinking 

water, R17. School physical entities commonly classified into structural, R19, non-structural, R20, 

and content, R21, are considered as physical school building components. During the earthquake, 

damage can be quantified in these components based on building fragilities, which describe the 

probability of reaching a certain damage level for a given hazard intensity. The framework also 

considers the availability of backup space, R22, such as using a different building or turning other 

rooms in the school into classrooms. 

School supplies include food for students, staff, and teachers, R23, fuel for heating, R24, 

books, and technology supplies essential to a classroom, R25, and other supplies, R26. The 

availability of these supplies depends on the availability of suppliers, transportation, and storage. 

The index of quality functionality after an earthquake is given by the expected number of available 

seats for students at grade i in each school, which is calculated using the probability of school seat 

availability, Ps. Equation (4.3) shows the expected value of the education quantitative index, SV: 
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𝐸 𝑆 t ∑ ∑ 𝑃 ,           (4.3) 

Where, Ni is the total number of seats at grade i and Ig is the number of grades. 

4.3.2 Quality functionality 

The quality of the educational services that can be provided may be impacted after major 

disasters because of a shortage of teachers, staff, space, and supplies. The framework combines 

various quality measures including teacher assignment, Ta, and experience, Te, as indicators of 

teacher quality; class size, Cs, and technology, Ct, as indicators of classroom quality; and 

leadership, Sl, and professional community, Spc, as indicators of school quality as shown in 

Equation (4.4):  

𝑆 𝑡 𝑇 𝑡 𝑇 𝑡  𝐶 𝑡 𝐶 𝑡  𝑆 𝑡 𝑆 𝑡              (4.4) 

Where, the α-terms are weighting factors to represent the importance of each quality 

measure. Combining these indicators can be used as a quality index of the educational service 

mentioned in Equation (4.1).      

Teacher quality, including teacher assignment and experience, can seriously be affected by 

staff shortages, difficulties in finding qualified staff, and a shortage of qualified community 

volunteers. Teacher assignment is evaluated as:  

𝑇 𝑡 ∑ , ,,          (4.5) 

Where, the required staff, STi,req, varies with the number of students enrolled, Ni(t), and the 

class capacity, Ri(t):   

𝑆𝑇 , 𝑡            (4.6) 
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The probability of finding alternative staff, P(STalt), is shown in Equation (4.7) as a 

function of the required staff and available staff to hire, STavl. However, it is probable that this 

replacement staff may be less qualified, P(STunq) than the permanent staff, as shown in Equation 

(4.8).  

𝑃 𝑆𝑇 , 𝑡 𝑃 𝑆𝑇 𝑆𝑇 , |𝑆𝑇         (4.7) 

𝑃 𝑆𝑇 𝑡  𝑃 𝑆𝑇 , 𝑃 𝑆𝑇 |𝑆𝑇 ,           (4.8) 

Teacher experience is calculated as the ratio between the experienced staff and the total 

staff, STi(t): 

𝑇 𝑡 ∑ ,            (4.9) 

Teacher experience is mainly impacted by the percentage of teachers who are either 

appointed, transferred, or volunteered after the earthquake and have a lack of experience. The 

expected value of inexperienced teachers is calculated from the conditional probability of a new 

teacher joining the school staff, STadd, and does not have enough teaching experience, STmis:  

𝑃 𝑆𝑇 𝑡 𝑃 𝑆𝑇 , ∩ 𝑆𝑇 𝑃 𝑆𝑇 , 𝑃 𝑆𝑇 𝑆𝑇 ,      (4.10) 

Larger class size and lack of technology can seriously impact class quality. The classroom 

size is measured as a ratio between existing, R(t), and normal, R(0), teacher-to-student ratios, 

considering maximum acceptable class capacity, Rmax as shown in Equation (4.11). The maximum 

acceptable capacity is assumed to be a function of the school regulations and community norms. 

The mean value of the classroom sizes for all grades is utilized to express the overall school quality 

as shown in Equation (4.12).   
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𝐶 , 𝑡 ,,  1.0         (4.11) 

𝐶 𝑡 𝐶 , 𝑡     ∀𝑖            (4.12) 

The ratio between the current technology availability, T(t), and the technology before 

earthquake occurrence, T(0), is used as an index for classroom technology, as shown in Equation 

(4.13). This technology will be impacted after an earthquake because of building contents damage, 

LC, and deficiencies in essential utilities, U, for classroom technology, such as power and 

telecommunication as shown in Equation (4.14).  

𝐶 𝑡 1 ∑           (4.13) 

𝑃 𝑇 𝑡 𝑃 1 𝐿 , ⋂𝑈           (4.14) 

The absence of effective leadership in the aftermath of an extreme natural event also 

impacts school quality. The leadership availability is modeled as a function of current leadership 

availability, l(t), following the earthquake as well as at time l(0) before earthquake occurrence as 

shown in Equation (4.15). In this study, school administration, STadmin, and experienced faculty, 

STlp, control the quality of leadership, as defined by Equation (4.16). The appointment of less 

qualified teachers, as well as turnover in teaching staff, can negatively impact the relationship 

between teachers and their students and eventually reduce student outcomes. 

𝑆 𝑡 1 ∑           (4.15) 

𝑃 𝑙 𝑡 𝑃 𝑆𝑇 ∪ 𝑆𝑇           (4.16) 

The availability of professional community is estimated as the ratio between the current 

professional community, pc(t), and its value before the earthquake, pc(0), as shown in equation 
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(4.17). Appointing unqualified teachers, STunq, and the teacher change events, STch, are utilized as 

an indicator of the professional community as shown in equation (4.18). 

𝑆 𝑡 1 ∑            (4.17) 

𝑃 𝑝𝑐 𝑡 𝑃 1 𝑆𝑇 ∪ 1          (4.18) 

4.4 School administration model 

The decisions that the school administration makes after disasters to maintain the school’s 

functionality can make an enormous difference in the resilience of a school system. To mimic the 

role of school managers in the decision-making process, decision support frameworks are 

introduced that model the main decision processes, including the students’ admission and transfer, 

staff appointment, and community engagement. Figure 4-3 shows the framework for students’ 

admission and transfer in which different schools and transportation options are considered. The 

framework also considers the role played by parents in terms of school selection, funding, 

transportation, and homeschooling.   
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Figure 4-3: Students’ enrollment and transfer process framework. 

Reopening damaged schools after major disasters involve the school district, school 

administrators, the building and fire departments, the office of public safety, and the community 

(U.S. Department of Education, 2007). In this study, three cases are considered. In the first, schools 

can be partially opened using backup spaces during the recovery stage to provide education for a 

limited number of students (Decision I) (Bounds, 2014). In the second, where schools are not 

provided with backup spaces, they can only reopen if they are repaired (Decision II). Finally, in 

the third, schools might stay closed until all buildings are fully functional (Decision III) (U.S. 

Department of Education, 2007). The first and second cases might reduce the total number of 

students who are in temporary classrooms, being homeschooled, or missing school, but they 

require high levels of coordination between the school administration, parents, and students to 

ensure equitable temporary student placement. School districts often work with the community to 
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find temporary classrooms for students and professional staff after disasters (U.S. Department of 

Education, 2007). 

A similar process simulates staff appointment (temporary, part-time, and permanent) and 

transfer between schools, as shown in Equations (4.19-4.21).  

𝑆𝑇 𝑡 𝑆𝑇 𝑡 𝑆𝑇 𝑡  𝑃 𝑆𝑇 𝑡  ⇔   𝑆𝑇 min 𝑆𝑃 , 𝑆𝑈  & ∑ 𝑆𝑇 ∑ 𝑆𝑇𝑆𝑇 𝑡 𝑆𝑇 𝑡  𝑃 𝑆𝑇 → 𝑡  ⇔   𝑆𝑇 min 𝑆𝑃 , 𝑆𝑈  & ∑ 𝑆𝑇 ∑ 𝑆𝑇                             0.0 ⇔   𝑆𝑇 min 𝑆𝑃 , 𝑆𝑈   (4.19) 

𝑃 𝑆𝑇 t 𝑃 𝐸 ⋂ 𝐸 ⋂ 𝐸                 (4.20) 

𝑃 𝑆𝑇 → t 𝑃 𝐸 , ⋂ 𝐸 , ⋂ 𝐸 , 𝑆𝑇 min 𝑆𝑃 , 𝑆𝑈         (4.21) 

Appointment or transfer is assumed to take place only where space and supplies are 

sufficient to accommodate additional staff and the existing staff, ST, are less than the required, 

STreq. Additionally, staff appointment is a function of having available human resources, Ehr, the 

staff matching the school needs, Ema, and the funding availability, Efu. The probability of staff 

transfer between school m and n is calculated based on the willingness of the school district to 

transfer the staff between schools, Ew, the school m staff accepting a transfer, Etf, and the 

transferred staff will match the need of school n, Ema. The approach of an individual School to 

solve the staff shortage problem is shown in Figure 4-4, which starts with using the existing staff 

within the school, for instance, by assigning more teaching loads for teachers while assigning 

volunteers to substitute the supporting staff. In case the existing staff and volunteers are not enough 

(STreq>ST), schools could request staff transfer from other schools within the school district. If the 

school district cannot provide all required staff since no staff is available to transfer (ΣSTreq>ΣST), 

schools can then appoint temporary and part-time staff to close the gap in staff shortage. Later 

those temporary and part-time staff can be replaced with permanent, more qualified, and more 
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experienced staff to increase the quality that is expected to be impacted by hiring temporary and 

part-time staff with fewer qualifications. 

 

Figure 4-4: Staff shortage appointment approach. 

Schools can also transfer supplies and resources to reduce the impact of the earthquake 

consequences on the school system. Equation (4.22) shows the expected number of supplies that 

can be transferred.  

𝑆𝑈 𝑡 𝑆𝑈 𝑡 𝑆𝑈 𝑡  𝑃 𝑆𝑈 → 𝑡  ⇔   𝑆𝑈 min 𝑆𝑇 , 𝑆𝑃                                                                  0.0 ⇔   𝑆𝑈 min 𝑆𝑇 , 𝑆𝑃     (4.22) 

in which 

𝑃 𝑆𝑈 → t 𝑃 𝐸 , ⋂ 𝐸 , ⋂ 𝐸 , 𝑆𝑈 min 𝑆𝑇 , 𝑆𝑃         (4.23) 

The probability that the supplies are transferred is assumed to be a function of an 

established agreement, Eag, availability of transportation between school m and school n, Etr, and 

the supplies matching the school need, Ema. For the public schools in the same school district, Eag 

can be considered 1.0, since public schools in a community typically are administrated centrally 
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under the general supervision of an elected Board of Education, and in such cases “established 

agreements” are not relevant.   

Community citizens can support education through supporting the school staff, providing 

donations, and encouraging students and staff to keep the school system as functional as possible. 

The effect of citizen behavior on school functionality following an earthquake is modeled by a) 

calculating the number of available volunteers, R3, for each school; b) tallying donations collected 

after the earthquake, which can be added to other recovery funding sources; and c) considering the 

impact of the social vulnerability index (CVI) (Agency for Toxic Substances and Disease Registry, 

2018) on the resilience of the school system. To estimate the total number of volunteers at each 

school, the probability that a citizen responds to a request from the school depends on his/her 

gender, age, education, and income (Shi et al., 2018).  

Different indices are used to quantify the quality of the educational service such as 

educational attainment (National Academies of Sciences, Engineering, 2019a) and student 

outcomes (Patry & Ford, 2016). Student outcomes can be monitored using self-reported or test-

based measures (Caspersen et al., 2017). Student outcomes have been found to depend on chronic 

absenteeism (Bruner et al., 2011), which typically increases after major natural hazard events as a 

consequence of school closure, population dislocation, and stress and trauma. In this study, 

student’s chronic absenteeism is used as a resilience index of the educational service. 

4.5 Schools as community shelters 

Schools can also play an important role as community shelters and as community centers 

for recovery management. The expected shelter capacity of each school, Nsh, can be calculated as 

a product of the school capacity, Ns, and the probability, P(sh), that a school can serve as a shelter: 
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𝑁 t 𝑁  𝑝 t           (4.24) 

In which the probability is:  

𝑃 𝑆𝑇 𝑡 𝑃 𝐸 ⋂ 𝐸 ⋂ 𝐸 ⋂ 𝐸 |𝑁 N         (4.25) 

Where Es = event that the school structural is safe, Ea = event that the school is accessible, 

Eu = event that main supporting utilities or alternatives are available, and Em = event that the school 

space can be used as a shelter, conditioned on the enrollment capacity of the school, Na, being 

more than the number of students attending the school, Nt. 

4.6 Summary 

In this chapter, a new framework to quantify the functionality of the education system was 

presented. The framework combined the quantity functionality, measured by the school enrollment 

capacity, and quality functionality, measured by the quality of teacher, classroom, and school to 

form a comprehensive education system functionality index after earthquake disasters. The school 

enrollment capacity at any time was calculated using a success tree that accounts for the 

availability of school staff, school space, and school supplies while considering the different 

mitigation strategies that might be applied by schools and school districts such as utilizing 

volunteers, backup systems, and backup spaces. Success trees were constructed for each grade and 

take into consideration the interdependency between each school and its supporting infrastructure. 

For the quality of the educational services provided by each school, teacher assignment and 

experience were used as indicators of teacher quality; class size and technology were utilized as 

indicators of classroom quality; and leadership and professional community were employed as 

indicators of school quality. Different parameters were included in modeling these quality indices 

including, for example, student enrollment, availability of qualified and professional staff, class 

capacity, school content damage, and availability of the main utilities. 
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The chapter also introduced a framework that can be used to simulate the main decision-

made by the school administration including student enrollment and transfer, reopening schools 

after earthquake events, staff appointments, staff transfer, and supplies transfer. Student enrollment 

and transfer framework accounts for the interaction between the school administration and parents 

in terms of school selection, funding, transportation, and homeschooling. The framework 

considered different approaches in school reopening that include partially open schools, reopen 

schools only if they are repaired, and keep schools closed until all their buildings are fully 

functional. Staff appointment decisions were temporally modeled while using different hiring 

approaches including transferred, temporary, and volunteering staff. The supply transfer process 

between schools was modeled as a function of the agreement between the schools, supply types, 

and transportation availability. 

The role played by schools as a community shelter was simulated in the proposed 

framework for school functionality. The shelter capacity was calculated based on the accessibility 

and safety of the school buildings, availability of the utilities required for the shelter, and the 

decision made by the school administration to temporarily turn the school into a shelter. 
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Chapter 5.  INTERDEPENDENT RESILIENCE AND SOCIAL SERVICES STABILITY 
MODELING 

 
 
 

5.1 Overview 

The roles played by healthcare and educational systems in the community resilience and 

social services stability are substantial. Hospitals and schools are among the main social 

institutions in any community that provided essential and indispensable services. Therefore, 

ensuring quick recovery of these systems and maintaining functional hospitals and schools during 

and after earthquake events is a critical resilience goal for communities. To achieve this goal, this 

chapter builds upon previous chapters that describe the functionality of hospitals and schools, to 

determine recovery and resilience using a new framework. The recovery framework estimates the 

near-optimal repair progress for the physical components in hospitals and schools, which were 

damaged during the earthquake, using a semi-Markov chain model, coupled with the dynamic 

optimization. Once recovery is estimated, resilience is calculated as the area underneath the total 

functionality for each of these services. The sensitivity of the calculated resilience of the healthcare 

and education systems to the different functionality frameworks’ components are investigated and 

the uncertainties associated with the estimated functionality and resilience are calculated.     

Despite recent advances in quantifying the cumulative functional loss and resilience of 

healthcare and education systems, to date, studies on their interaction, their collective effect on 

their respective recovery, and the stability of the social services of communities are lacking. 

Quantifying the interaction, especially between these social institutions, is critical for community 

resilience analysis (Cimellaro, 2016; Mahmoud & Chulahwat, 2018; NIST, 2016a). Their 

compounded role in societies is essential for building robust communities (Butler & Diaz, 2016), 

informing public policies (NIST, 2016b; NSF, 2020), and influencing social indices (Flanagan et 
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al., 2018; Stern & Epner, 2019). In this chapter, an agent-based model is devised to investigate the 

interaction between healthcare and education systems as well as their impact on resilience and 

social services stability of communities after natural disasters. The model is structured using a 

socio-technical approach that is based on guidelines and case studies for real communities after 

disasters. The model is also designed to apply different decisions and mitigation strategies that 

ensure the quick possible restoration of the healthcare and educational services.   

5.2 Restoration and resilience frameworks 

5.2.1 Overview 

Immediately after the earthquake, the functionalities of healthcare and educational services 

are expected to drop. This drop can be in the quantity part of the service, which is driven by the 

failure to the structural and non-structural components as well as the contents, losses of personnel, 

malfunctions in utilities that support the healthcare services, or losses to the main supplies. In other 

cases, the drop can be manifested in the quality part of the service due to, for example, hospitals’ 

overcrowding (Lynn et al., 2006), reduced time available to treat patients (Arboleda et al., 2007), 

students’ chronic absenteeism (Bruner et al., 2011). Some of the components’ functionality can be 

immediately recovered after the earthquake using the backup systems. Most of these backup 

systems are expected to withstand the earthquake and be functional; however, in some cases, the 

backup systems can fail due to the earthquake (Jacques et al., 2014). Backup systems can only 

maintain functionality for a short time after the event before it requires supplies or maintenance 

(Redlener & Reilly, 2012). However, the availability of these backup systems is critical at the 

assessment and planning stage, which is the first stage in the recovery process after the earthquake. 

During this stage, the repair process for most of the damaged components will not have started 

yet. The length of this stage is a function of the building damage state (Almufti & Willford, 2013). 
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Following the assessment and planning stage, the repair process starts. During this stage, managing 

the limited repair resources in the community is essential to maintain acceptable functionality for 

critical infrastructure. Decision-makers can use different approaches in this stage to distribute the 

resources, which can be targeted to either enhance social stability or to gain maximum economic 

benefit/return for the community. In this study, dynamic optimization is implemented for optimal 

distribution of repair resources to obtain the highest fitness value of the healthcare functionality. 

The fitness function is defined in this study by the total number of available staffed beds. Figure 

5-1 shows a schematic the impact of backup systems and distribution of repair resources on 

different recovery stages after earthquake occurrence. 

 

Figure 5-1: Different functionality stages after earthquake hazard. 

Various parameters can dramatically affect the recovery path of an interdependent network 

such as a healthcare system. For the working space and supplies room recovery, maintaining the 

repair sequence is critical (Almufti & Willford, 2013). In this study, the repair sequence starts with 

the assessment and planning stage followed by the repair of the structural components and the non-

structural components such as stairs, elevators, partitions, and building envelope including 

claddings. Some of the repair tasks are carried out simultaneously and others are sequential. Repair 
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progress is a function of the geographical and structural properties of the investigated buildings 

(Kozin & Zhou, 1990). Commonly, hospitals are built using different structural systems and 

various materials. Therefore, repair efforts and time can be different from one system to another. 

In other cases, building reconstruction can be the only feasible option. In this study, repair crews 

are assumed to have different specialties; therefore, managing these crews is essential to achieve 

the targeted recovery progress. The distribution of these crews can be driven by various goals such 

as achieving specific social or economic targets, improving the quality of the healthcare service to 

maximize the number of staffed beds. This distribution also considers the maximum acceptable 

number of workers per hospital as a function of the total area of the investigated hospital, At, in 

units of sq. meter (Almufti & Willford, 2013). 

5.2.2 Decision-making framework 

Immediately after the disaster, communities start the restoration process to bring life back 

to normalcy. Decisions made by healthcare and education facilities as well as their staff and 

supporting infrastructure, during this stage, are simulated in this study to investigate the impact of 

these decisions on the recovery process of healthcare and education services as shown in Figure 

5-2. The utilized approach divides the time after disaster into the assessment, planning, and 

recovery stages. The assessment and planning stage is when each facility assesses the extent of 

damage and arranges the repair process. The recovery stage is where the actual repair process 

starts, and the limited repair resources are distributed to achieve the predefined functionality level. 

In this study, the predefined level is set to the same level prior to an event. Markov chain process 

coupled with dynamic optimization is utilized to allocate repair resources to damaged facilities to 

estimate the optimal recovery path so as to maximize the number of staffed beds in all hospitals 
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and the enrollment capacity for students in all grades. The details of all the components in Figure 

5-2 will be discussed in the following sections.  

 

Figure 5-2: Healthcare and education system resilience quantification approach. 

5.2.3 Assessment and planning stage  

The assessment and planning stages of recovery are associated with the time from when 

the earthquake occurs to the time when the repair process starts. This includes various sub-stages, 

namely, damage inspection, engineering mobilization, reviewing/redesigning, financing, and 

biding, contractor mobilization, and permitting and procurement. Some of these sub-stages can 

take place simultaneously; therefore, the whole process is categorized into three sequences as 

shown in Table 5-1. It is important to point out that most of the sequences are also a function of 

the damage state of the lifeline. At the assessment and planning stages, no progress in the actual 

repair is expected; therefore, ensuring an accelerated return to functionality requires shortening of 

these stages. A reference number of the required time to complete the assessment and planning 

stages can be found at Almufti and Willford (2013), where the median values for essential facilities 

have been used and are summarized in Table 5-1. 
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Table 5-1: Assessment and planning stage mean expected time based on Almufti and Willford 
(2013).  

Sequence Sub-stage Damage condition Median (days)
Phase # 1 Inspection All damage 2 

Phase # 2 

Engineering Slight damage 14 
Moderate damage 28 

Severe damage 294
Financing All damage 7 

Mobilization Slight damage 21 
Severe damage 49 

Phase # 3 Permitting Slight damage 7 
Severe damage 56 

 

5.2.4 Recovery stage 

Repair or restoration of each facility is estimated using a semi-Markov chain process, in 

which the restoration process is defined by discrete nondecreasing states. In the Markov chain 

process herein, the repair process at any time step can either improve the restoration state or not 

affect it. The current restoration state depends on the previous state but is independent of other 

previous states. The facility’s quantity functionality is subcategorized into sub-components based 

on the repair crew specialty: structural components, building envelope, permanent and moveable 

partitions, mechanical equipment, and electrical systems. The discrete Markov chain modeling the 

recovery process is shown in Equation (5.1).  

𝑄 𝑘∆𝑡 𝑄 0 ∏ 𝐴  𝑷𝒕 𝒊∆𝒕 𝒍                 (5.1) 

Where, the functionality of sub-component l, Ql, after time k∆t is assumed to be related to 

the initial functionality drop, Ql(0), due to seismic damage, the interaction between the repair 

process of each facility and other community lifelines, Al:   
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𝐴 ∏ 𝛽                          (5.2) 

The interaction term Al is calculated based on factor βj, defined in terms of the interaction 

factor, ej, and the current functionality state of the lifeline j, Qj(t).    

𝛽 𝑡 1.0 ⇔   𝑒 0.0𝑄 𝑡 /𝑒 ⇔   0.0 𝑒 1.0                     (5.3) 

𝑬 𝑒 𝑒 ⋯ 𝑒 𝑒                    (5.4) 

The transition probability matrix, Pt is represented in Equation (5.5) as:  

𝑷𝒕 𝒕 ⎣⎢⎢⎢
⎡ 𝑝 , 𝑝 ,𝑝 , 𝑝 , ⋯ 𝑝 ,  𝑝 ,𝑝 , 𝑝 ,⋮ ⋱ ⋮𝑝 , 𝑝 ,𝑝 ,  𝑝 , ⋯ 𝑝 , 𝑝 ,𝑝 , 𝑝 , ⎦⎥⎥⎥

⎤                      (5.5) 

Where, the probabilities ps,r(t) are defined in Equation (5.6) as: 

𝑝 , 𝑡 𝑃𝑟𝑜𝑏 𝑄 𝑡 𝑄 |𝑄 𝑡 𝑄   ,   ∑ 𝑝 , 𝑡 1.0 ∀𝑡           (5.6) 

The transition probabilities ps,r(t), shown in Equation (5.7), are defined as the probability 

of the functionality state transitioning to the next (higher) level:  

𝑝 , 𝑎 1 𝑒 . .                        (5.7) 

Where, a and b are parameters that refer to the geographical and structural properties of 

the investigated lifeline. The transition probabilities are also calculated as a function of the 

assigned repair crews, x, and the current restoration stage, r. 

5.2.4.1 Repair crews 

Community resources in the form of repair crews, x, are assumed based on the number of 

available crews in the investigated community. Due to the differences between the required skills 

of the repair crews for restoring healthcare and education facilities, the total number of available 
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repair crews to repair each system is assumed independently. These repair crews are distributed 

among the facilities of each system. The distribution of the repair resources can be affected by 

several factors such as funding availability, type of the required repair, access to the damaged 

lifelines, among others. In this study, the distribution of the repair crews within the damaged 

facilities of each system is conducted using dynamic optimization with an objective to maximize 

the quantitative functionality of each system. The specialization of each repair crew assigned to 

the different lifelines and the proper repair sequence to eliminate interference between various 

repair tasks is considered based on the work by Almufti and Willford (2013). The repair sequence 

starts with the structural components followed by the stairs, the elevators, and the exterior repair 

such as partitions and claddings. The latter can be performed simultaneously with the interior 

repairs such as the piping, HVAC, partitions, ceilings, mechanical equipment, and electrical 

system as shown in the Gantt chart of Figure 5-4. Since the focus of this research is on the 

functionality of the hospitals and schools, an assumption is made that all repair sequences are the 

same for all lifelines. 

 

 Figure 5-3: Gantt chart for the typical repair sequence. 

One of the main parameters in the restoration and recovery process of a community is the 

total number of available repair crews, Xm(t) at any time, t, and at specialty, m. The total number 

of available repair crews is expected to change with time after the earthquake. For instance, 
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immediately after the earthquake, the number of repair crews is expected to be limited to that of 

what is available locally. However, The number of crews is expected to increase due to the aid 

provided by the surrounding communities as noted by Porter (2016). As repair progress and the 

community starts to return to normalcy, the number of repair crews reduces as shown in Figure 

5-4. Six different specialties of repair crews are assumed where the first repair crew specifies in 

structural repair, the second in pipe and HVAC repairs, the third in interior partitions, ceiling tiles, 

exterior partition, and stairs, the fourth in mechanical equipment, the fifth in electrical systems, 

and the sixth in elevators.  

  

Figure 5-4: Change in the total number of repair crews with the time after the earthquake. 

5.2.4.2 Optimization 

The repair crews are distributed by dynamic optimization to achieve the pre-defined 

community objectives regarding each service. Suppose that the total available number of repair 

crews at each specialty, m, is Xm(t), which changes as a function of the time after the disaster. The 

decision-makers assumed in this study assign these crews, xm
n(t), at any time, t, to repair the 

damaged sub-components by crew’s specialty, m, in each school, n, to achieve the maximum 

quantity of the offered educational service for the whole community as denoted by Equation (5.8).  
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maxℱ ∑ ℱ 𝑡                                                      (5.8) 

Distribution of the repair crews is subjected to the following constraints a) limitation of 

repair resources, b) pre-defined repair sequence based on engineering judgment, and c) work 

environment constraint that limits the total number of repair crews, xn,max, in any building, n, as a 

function of the building area, At, as shown in Equation (5.9) and (5.10). 

𝑋 𝑡 ∑ 𝑥 𝑡                        (5.9) 

𝑥         𝑥 ,           ∀𝑥 ,  , 𝑥 , 2.3 10 𝐴 1.0,   2.0 𝑥 , 26.0       (5.10) 

5.2.5 Resilience model 

In this study, the PPD definition of resilience is utilized (See Section 2.6). Community 

resilience performance goals can be divided into population stability, economic stability, social 

services stability, physical services stability, and governance stability (Ellingwood et al., 2019). 

Each one of these five goals can be measured by different resilience metrics. For example, 

population stability can be measured by the number of households dislocated, percent of the 

population remaining in the community, etc. Resilience is defined graphically in this study as the 

area underneath the functionality curve (Bruneau et al., 2003), ℱ, from the hazard occurrence time, 

t0, to the full recovery time, TR, as follows: 

𝑅 ℱ 𝑑𝑡                                       (5.11) 

The introduced framework to investigate total healthcare and education system resilience 

is shown in Figure 5-2.  

5.3 Sensitivity and uncertainty framework 

Generally, sensitivity analysis can be categorized into local and global sensitivity analyses 

(Borgonovo & Plischke, 2016). Local sensitivity analysis is commonly performed for deterministic 
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models in which a model sensitivity is calculated for the input parameters around a point of interest 

or a reference point. For the probabilistic analysis of the framework developed herein, a global 

sensitivity analysis can be used to quantify the importance of the framework's different inputs as 

well as their interactions to framework output. It also provides a general assessment of the 

influence of these different inputs on the framework output as opposed to the local assessment of 

the local sensitivity analysis. A regression-based sensitivity method is applied to the framework in 

this study (Helton & Davis, 2003), which is a non-parametric method that can be used to measure 

model sensitivity from the Monte-Carlo simulation samples. Following the uncertainty analysis, 

which will be discussed later, an estimate of non-parametric sensitivity will be implemented by 

post-processing the obtained input-output data. Since this method is based on linear regression 

analysis, the input-output sample will be fitted using the response surface shown in Equation 

(5.12). Even though, due to the complexity of the introduced frameworks, the linear regression 

might not effectively capture the expected non-linearity of the sensitivity, it can give an overview 

of the importance of different parameters used in quantifying the seismic resilience of healthcare 

and education systems.     

𝑔 𝑿 𝑏 ∑ 𝑏 𝑥                     (5.12) 

The sensitivity coefficient, Sij, is defined as the rate of output change, Yj, with respect to a 

parameter, Xi, adjustment:  

𝑆                       (5.13) 

Where, the subscripts are i and j ∈ (1:N) and N is the total number of samples.  

The uncertainty associated with the parameters, xi, makes the framework output, (Y=g(x)), a 

random variable. In this study, uncertainty analysis is performed numerically through Monte-Carlo 
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simulation where a random sample of size (N) that follows the distribution of the framework 

parameter inputs, is selected, and the framework output is evaluated in correspondence with each 

realization of x. The results are then used to obtain the statistical parameters of the framework 

output. This sample is also utilized in the global sensitivity analysis to identify the key parameters 

of the framework. 

5.4 Agent-based model 

5.4.1 Overview 

The introduced model, shown in Figure 5-5, comprises of a) main agents (healthcare and 

education facilities and all their sub-components), supporting agents (community’s buildings and 

infrastructure that support the functionality of the main agents), and sub-agents (community 

individuals); b) decision-making heuristics and learning rules; c) an interaction topology including 

buildings, supportive infrastructure, and suppliers for both the healthcare and education facilities; 

and d) an environment. The entire framework is structured as a multi-layer agent-based model, 

system, main agents, and sub-agents, in which the system represents the entire networks of 

hospitals or schools. Each of these systems is defined by a group of main agents (either healthcare 

or education facilities); each is supported by supporting agents as a built environment including 

water, power, transportation, telecommunication, wastewater, natural gas, and buildings as well as 

a group of medical and non-medical suppliers. Furthermore, each of these main agents is 

dependent on sub-agents that represent all community individuals and includes different staff 

classes as operators and regulators as well as patients, students, or students’ guardians as expected 

service receptors. 
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Figure 5-5: Components of the agent-based model: a) healthcare system including its supporting 
infrastructure, b) education system comprising of schools, school district as a main 

administrative component, and the supporting infrastructure, c) the community built environment 
containing infrastructure, building, and suppliers, and d) interaction between community 
individuals (sub-agents), healthcare and education facilities (main agents), and the built 

environment (supporting agents) in the decision-making heuristics stage. 
5.4.2 Agents description and interaction topology 

The healthcare system is modeled through the interaction of various sub-components, 

including personnel, ST, space, SP, and supplies, SU, as shown in Figure 3-2. ST is categorized 

into physicians, nurses, supporting staff, and alternative staff, and are all modeled as sub-agents. 

Utilities, U, as part of the space refers to the essential services provided to the healthcare system 

from the community’s infrastructure, which includes water, power, transportation, 

telecommunication, wastewater, and drinking water, and are all framed as supporting agents. SP 

comprises structural, non-structural, and contents sub-components as well as building 

accessibility, which are all simulated as main agents. SU reflects the daily necessities and supplies 

for the medical facilities such as oxygen, surgical, RX, fuel, and food, among others, and is 

simulated as a supporting agent. The availability of these sub-components is assembled using the 

previously discussed complex healthcare network interaction model (Chapter 3) to estimate the 

functionality of the healthcare system. The probability of availability of sub-component, i, is 

integrated with the total number of sub-components, n, 𝑃 ∏ 𝑃 , to define the hospital’s 
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ability to receive and provide patients, which is expressed in terms of the available staffed beds, 

B, and is conditioned on the required service being available. To provide a full description of the 

functionality of the healthcare system, QH, the quantity of the service, QV, is combined with the 

accessibility, SA, and effectiveness, SE, of this service as an indication of the service quality, QS, as 𝑄 𝑡 𝑄 𝑡 𝑄 𝑡 ; where αV and αV are weighting factors for service quantity and quality, 

respectively. QV is calculated based on B and its type, being an emergency or inpatient bed, as 

shown in Figure 3-2.  

The education system is simulated, similar to the healthcare network model, through the 

interaction of different sub-components including staff, ST, physical components, SP, and 

supplies, SU, as shown in Figure 4-2. ST is subclassified into teachers, supporting staff, 

administrative staff, and volunteers, which are all modeled as sub-agents. Main utilities, U, as part 

of the space are provided by the schools’ supporting infrastructure and comprise water, power, 

transportation, telecommunication, wastewater, and drinking water, all of which are framed as 

supporting agents. School’s SP includes structural, non-structural, and contents as well as building 

accessibility, which are all simulated as main agents. SU includes books, fuel, and food, among 

others, which is simulated as a supporting agent. These sub-components are used to calculate the 

functionality of the education system as discussed before in Chapter 4, including schools’ 

enrollment capacity, Ni, which is an indicator of the school’s quantity functionality, SV, in each 

grade, i. The expected value of the school’s quantity functionality, E[SV], is calculated for the 

whole school as follows 𝐸 𝑆 ∑ ∑ 𝑃 , ; where Ig and Ni are the total numbers of grades 

and enrollment capacity at grade i, respectively. In addition, the quality of the educational service 

provided by schools, SS, is also measured using indicators related to teacher, classroom, and school 

quality. Teacher quality is measured by teacher assignment, Ta, and experience, Te. Classroom 
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quality is measured by class size, Cs, and technology, Ct. School quality is measured by leadership, 

Sl, and professional community, Spc. These indicators are combined with the school quantity 

functionality to formulate the school’s total functionality, SS, as 𝑆 𝑡 𝑆 𝑡 𝑆 𝑡 .   

The supporting agents are the community’s-built environment, including infrastructure and 

buildings that support the functionality of the investigated facilities, as shown in Figure 5-5 (a) 

and (b). These agents are part of the community physical component shown in Figure 5-5 (c). 

Buildings, including where the staff of the investigated facilities reside, are modeled as supporting 

agents to estimate the availability of staff in each facility. They are also used to locate staff, 

patients, and students, as well as the travel time for these individuals to the investigated facilities. 

Damage and functionality of these buildings are used to estimate the casualties after the earthquake 

and the expected number of the population that needs to be dislocated. Utilities that refer to the 

supporting infrastructure for hospitals and schools are modeled as supporting agents. The 

functionality of the infrastructure denotes the availability of the service provided by them at the 

investigated facilities. The supporting agents also include the suppliers for healthcare and 

education facilities. The functionality of these suppliers is utilized to estimate the full availability 

of the investigated facilities’ supplies. The interdependency between these components is modeled 

using previous studies (Cimellaro, 2016), and their interaction with the investigated facilities is 

simulated in the functionality models for hospitals and schools as discussed previously. These 

interactions between community individuals (sub-agents), healthcare and education facilities 

(main agents), and the built environment (supporting agents) are depicted in Figure 5-5 (d). 

In addition to the main and supporting agents discussed previously, all community 

individuals are modeled as sub-agents. These sub-agents are classified based on their relation to 

the main agents, as hospitals or schools’ staff, patients, students, or/and student guardians. The 
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spatial and temporal relationships among these sub-agents as well as between them and both the 

main and supporting agents are modeled. For instance, the relationship between school staff and 

schoolchildren is modeled where any family can be directly impacted by the shortage in healthcare 

or educational services if one of the family members works at one of these service providers. The 

indirect effect is also captured if a family member is a user of these facilities. Furthermore, these 

sub-agents are modeled to be impacted by the functionality of the supporting agents, including 

utilities and buildings. For example, if staff members of hospitals or schools have no housing or 

utilities, they will not be able to work since they must relocate. These sub-agents are also 

dynamically simulated such that during the investigated time frame the relation between these sub-

agents and main and supporting agents can change. For example, staff can change their working 

facilities within the same system; patients can alter their most-probable hospitals; students can 

move to other schools. The agent type, attributes, and decision domain are summarized in Table 

5-2. 

Table 5-2: Components of the presented agent-based model. 
Type Agent type Attributes Decision making 

Sy
ste

m
s 

Healthcare Comprises hospitals and all their 
sub-components including 
buildings, infrastructure, 
suppliers, and staff.

Controls all medical services in the 
community. Aggregates all the decisions 
made by its components (agents). 

Education Incorporates school districts, 
schools, and all their sub-
components including 
infrastructure, suppliers, and 
staff. 

Controls all the educational services in the 
community. Aggregates all the decisions 
made by its components (agents). 

M
ai

n 
ag

en
ts 

Hospital Provides medical services for all 
patient categories. Depends on 
staff, utilities, space, and 
supplies. 

Makes all decisions related to the medical 
services by aggregating the decisions made 
by its sub-components. 

School Provides educational services for 
students at a specific grade. 
Depends on staff, utilities, space, 
and supplies. 

Makes all decisions related to the 
educational services by aggregating the 
decisions made by its sub-components. 
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School district Refers to the local administration 
of schools and depends on staff, 
utilities, space, and supplies. 

Regulates manages and monitors the 
educational services for all the schools that 
belong to the district. Allocates resources 
for all the schools within the district.

Su
pp

or
tin

g 
A

ge
nt

s 

Building Refers to a housing unit in the 
community and can have 
different archetypes, structural 
system, damage probability, 
number of residents, etc.

Provides shelter for community individuals. 
Can collapse during the earthquake causing 
casualties. 

Water Represents the municipal water 
network and includes different 
components such as water 
treatment plants, pumps, storage 
units, and distribution pipelines.

Responsible for operating and maintaining 
municipal water networks. Controls the 
repair and recovery process of the water 
network. Some hospitals and schools also 
operate their water tank. 

Power Exemplifies the electricity 
network and includes different 
components such as stations, 
substations, distributing circuits, 
and distribution lines.

Responsible for operating and maintaining 
municipal power networks. Controls the 
repair and recovery process of the power 
network. Some hospitals and schools also 
operate their emergency power generators.

Transportation Describes the transportation 
network and includes roads and 
railway systems. 

Responsible for operating and maintaining 
the transportation networks, including those 
used to reach hospitals and schools. 
Controls the repair and recovery process of 
the transportation network. Can provide 
detours to avoid damaged roads.

Telecommunication Refers to either cell phones, 
landlines, or other networks. 

Responsible for operating and maintaining 
telecommunication networks. Controls the 
repair and recovery process of the 
telecommunication network. Some
hospitals and schools also operate their 
internal network.

Wastewater Refers to the sewer network and 
includes collecting lines, pumps, 
and treatment plants. 

Responsible for the collection of 
wastewaters. Controls the repair and 
recovery process of the wastewater 
network. Some hospitals and schools are 
provided with a backup system to collect 
and process wastewater. 

Natural gas Refers to the fuel network and is 
used for heating and other 
purposes in hospitals and schools 
and its components include 
stations and distributing 
pipelines. 

Responsible for the delivery of natural gas. 
Controls the repair and recovery process of 
the natural gas network. Some hospitals and 
schools can store natural gas to use in 
emergency cases. 

Medical supplies Includes oxygen, surgical, and 
Rx suppliers for hospitals.

Controls the delivery of medical supplies to 
hospitals.

Non-medical 
supplies 

Comprises of Food, book, and 
technology suppliers for 
hospitals and schools.

Controls the delivery of basic supplies to 
hospitals and schools. 

Su b- Hospital staff Denotes an individual employed 
by a hospital. Subcategorized 

Can decide to work for another hospital, 
reduce the patient treatment time, transfer 
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into physicians, nurses, 
supporting staff, and alternative 
staff. 

the patients, work additional time to cover 
staff shortage, etc. 

School staff Refers to an individual employed 
by a school or school district. 
Subcategorized into teachers, 
supporting staff, volunteers, and 
administrative staff. 

Can decide to work for another school, 
control and monitor the student outcomes 
based on their experience, control the 
admission process (if they are in admin 
staff), work additional time to cover the 
staff shortage, teach different grades or 
topics if needed, etc. 

Patient Implies any person receiving 
medical treatment in the hospital. 
Subcategorized into normal and 
earthquake-related patients. 

Can decide to select the proper hospital 
(only if his/her case is not critical), accept 
or refuse the transfer, use an ambulance or 
private transportation to go to the hospital, 
pay for medical services if not insured, 
evaluate the provided services, etc.

School student Refers to schoolchild and can be 
in any grade between 
kindergarten and grade 12. 

Can decide to go to school, select the school 
during the admission stage (school of 
choice application), use school 
transportation or private transportation, etc.

Student guardian Refers to a student’s parent or, in 
some cases, another individual 
responsible for the student, and in 
this case, he/she must share the 
home with the student. 

Can decide to send their schoolchildren to 
school, select the school during the 
admission stage (school of choice 
application), choose school transportation 
or private transportation for the student, 
monitor student outcomes, be responsible 
for providing homeschooling if needed, etc.

Another individual Any community individual who 
is not mentioned above.  

Can decide to be a volunteer in healthcare 
or education facilities. Can share their home 
with individuals related to the hospitals or 
schools and impact their decisions.

 

5.4.3 Decision-making heuristics 

Decisions in the presented study can be made by main agents, sub-agents, or supporting 

agents. The sub-agents decisions directly impact the agents they are related to and the system 

formed by these agents and indirectly influence other systems as well as shown in Table 5-2. The 

decisions are made based on current functionality states, available resources, and alternatives to 

achieve a set of objectives that ensure services’ availability. To that end, a simulation model is 

developed to mimic the agent’s different functions and choices before, during, and after the event 

and to resolve problems resulting from any disturbances in the modeled agents. These judgments 
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are simulated using algorithms that are developed based on regulations, previously reported 

situations, and case studies as shown in Figure 5-6. The algorithms first locate the source of the 

functionality drop, Γ, which is defined as the least functional of all sub-components, as shown in 

Equation (5.14). Then multi-objective optimization is used to find the optimal solution or in some 

cases a combination of solutions, XΓ*, among multiple XΓ* ∈ (xΓ,1,…,xΓ,n), based on available 

resources, Ψ, to maximize the functionality, F, with minimal use of Ψ as follow: 

𝛤 𝑚𝑖𝑛 𝑆𝑇, 𝑆𝑃, 𝑈, 𝑆𝑈, 𝑆 , 𝑆  𝑜𝑟 𝑇 , 𝑇 , 𝐶 , 𝐶 , 𝑆 , 𝑆            (5.14) 

𝑚𝑎𝑥∗ 𝐹 𝑥 , , 𝑚𝑖𝑛∗  𝛹 ,  ∀𝑖 ∈ 1, … 𝑛                                  (5.15) 

  

Figure 5-6: Decision-making algorithms. 

The algorithm considers different approaches to increase the capacity and functionality of 

the healthcare system and reduce the overwhelming demand for them. These approaches have been 

applied and proven effective in enhancing the operation of healthcare systems after disasters. The 

decisions made by the sub-agents and supporting agents are embedded in these approaches. For 

the sub-agents, the algorithm accommodates the use of alternative staff, accepts staff transfer from 
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other facilities, and assigns additional working hours for existing staff, which have been noted as 

viable options in enhancing functionality (Tariverdi et al., 2018). Other approaches can also be 

implemented, such as reducing patient treatment time and discharging patients with minor 

severities. However, hospitals’ staff must cautiously apply these approaches as it can negatively 

affect the patients’ outcomes and reduce the effectiveness of the patients’ treatment. The selection 

between these approaches is subjected to resource availability. Different approaches can also be 

combined to maximize the hospital’s quantity functionality while considering other sub-

components, ST = max(U, SP, SU). Similarly, for the supporting agents, hospital backup systems 

might be used in the case of utility shortage and backup spaces for the case of space damage. 

Accelerating the restoration process and shortening the recovery time can also assist in increasing 

the availability of utilities and space, which is modeled by optimizing the distribution and transfer 

of repair resources among the investigated facilities. To overcome the shortage in supplies, 

hospitals can find alternative suppliers, transfer supplies between hospitals, and optimize the 

supplies usage. These approaches can be combined to increase the supplies to the same level as 

other sub-components SU = max(ST, U, SP).  One of the main components that impact hospital 

quality functionality, in terms of patient waiting time, is the expected number of patients, which is 

calculated using a patient-driven model and is expected to increase after major disasters. To deal 

with the increase in patient numbers, Nn, at a, n, beyond the capacity, Bn, the healthcare system 

can adopt dynamic triage criteria (Benson et al., 1996), reduce patient treatment time (Arboleda et 

al., 2007), employ early discharge for non-critical cases, and transfer patients to other facilities. 

Another approach that can be implemented to reduce the patient waiting time is to share resources 

between the healthcare facilities including ambulances as well as available staffed bed data in each 

facility (Denver Health, 2005). The dynamic triage process is used to define the prioritization of 
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patient care as a function of the injury types, severities, and resource availability, which can 

maximize patient survival and result in more efficient use of resources as it permits the triage 

process to evolve over days.  

Unlike the healthcare facilities, which are mostly independently managed, public schools, 

which represent 90% of the U.S. schools, are centrally managed by the school district and are 

governed by school boards and superintendents. The administrative role played by these sectors is 

critical for the school system to adapt and enhance its performance. The presented algorithm for 

the school administration includes the decision made to a) find alternatives for the impacted sub-

components, b) facilitate student admission and transfer, c) close and reopen schools after 

disasters, and d) monitor the quality of the service offered by each school. The role played by the 

sub-agents and supporting agents is modeled in each of these decisions. To find alternatives to 

close the gap in the school’s staff, schools coordinate with their school district to assign additional 

teaching loads to existing teachers, allocate volunteers for the community to substitute the 

supporting staff, accept staff transfer from other schools, and appoint temporary and part-time 

staff. The total number of required staff, STi,req, at grade i, is calculated as 𝑆𝑇 , , which is 

based on the number of students enrolled at this grade, Ni, and the classroom capacity, Ri. School 

administration can decide to increase the class’s capacity and, in some cases, apply the double 

sessions system in which students are divided into groups that attend at different times of the day. 

However, these decisions also have a higher impact on the students’ outcome, which is considered 

in the utilized algorithm. School administration can also provide alternatives for schools’ utilities 

by providing backup systems or, in limited cases, run schools without some utilities. The school 

districts can arrange with each school to provide backup or alternative spaces as a replacement for 

the original non-functional buildings. To provide essential supplies at each school, the school 
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districts can find alternative suppliers and arrange supplies transfer between schools. One of the 

main responsibilities of school districts is student admission and transfer and the arrangement of 

student transportation. Because of natural disasters, school transportation can be impacted; 

therefore, the school districts can arrange different transportation methods for students, including 

public and private transportations. Decisions made to reopen the damaged schools after major 

disasters require safe and functional school space and approval of different entities, including the 

school district, the building and fire departments, the office of public safety, and the community, 

etc. . The school district coordinates with each school to enhance the educational service quality 

provided by each facility by setting clear criteria to replace any less experienced and unqualified 

staff to enhance teacher and school quality, appoint more staff to increase the teacher assignment, 

and apply previously mentioned approaches to reduce the class size and increase the availability 

of technology in the classroom. 

5.4.4 Environment 

The environment component in the introduced agent-based model defines each component 

and sub-component location, including all individuals in the community. The environment is 

dynamic and changes with time to reflect disturbances and damages in all components of the 

community to allow updating of the travel time, patient distribution, schoolchildren admission, 

transfer of resources, and repair process after the disaster, etc. 

5.5 Interdependency quantification framework 

The introduced agent-based model is utilized to quantify the interdependency between 

healthcare and education on the system level and hospitals and schools on the agent level, which 

is an essential step towards understanding how social institutions interact. These interdependencies 

are fundamental for the resilience and sustainability analysis, including but not limited to 
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population dislocation, and social vulnerability analysis. To estimate the functional 

interdependency between healthcare and education systems or agents, the Leontief-based model 

(Haimes & Jiang, 2001) is utilized, as shown in Equation (5.16).  

ℱ ∑ 𝜂 ℱ 𝛨 , ∀𝑘 1,2, … , 𝑛                                   (5.16) 

Where, ℱ is the total functionality, η is the degree of interdependency, H is the inoperability 

risk of a system component, k. 

5.6 Community social services stability (SSSI) framework 

Providing appropriate healthcare and educational services is critical for the community. In 

this study, the social services stability index (SSSI) is introduced as another measure of community 

strength after disasters, and it measures the accessibility of community individuals to the main 

public services with a focus on healthcare and education as pivotal services after disasters. The 

SSSI is constructed as a composite indicator in which the wide-spread additive aggregation 

method, called the summation of weighted and normalized indicators method (OECD & JRC, 

2015), is utilized as follows: 

 𝑆𝑆𝑆𝐼 𝑡 ∑ 𝑤 𝑡 ℱℱ ,  ∀𝑡 𝑡 , … , 𝑇𝑅                               (5.17) 

Where, 𝑤  and ℱi are the weighting factor and functionality for service i, respectively, at 

time t ranged from the disaster occurrence time, t0, to the full recovery time, TR.  

Each resident's need for these services is different. For instance, the number of hospital visits for 

seniors is significantly higher than any other age group (Hsieh et al., 2019; Samaras et al., 2010), 

and residents that do not have schoolchildren are not concerned with education availability. 

Therefore, the weighting factor wi spatially simulates these varying needs for the healthcare system 

by incorporating the expected average number of hospital visits for each family. On the other hand, 
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the number of schoolchildren per family is used to predict the wi for this family’s educational 

service. wi is also temporally modeled to mimic the community changing demand overtime after 

the disaster. A higher value of wi is assigned to the healthcare system immediately after the disaster 

and until the hospitals’ demand returns to normalcy. In contrast, a minimal value of wi is given to 

the education system during the school recess. 

5.7 Summary 

In this chapter, a comprehensive framework to estimate the near-optimal recovery 

trajectories for hospitals and K-12 schools, the main providers for the healthcare and educational 

services were introduced. A semi-Markov chain model, coupled with the dynamic optimization 

was utilized to calculate the repair process for healthcare and education facilities that attains the 

pre-defined objectives of these systems of achieving the maximum quantity of the offered 

healthcare and educational services for the whole community, taking into account repair crew 

specialties and the possibility that repair crews from neighboring communities are available. The 

resilience of healthcare and educational services were then aggregated from the area underneath 

the total functionality curve for each facility.    

The chapter also introduced a new agent-based model for the healthcare and education 

systems. The model comprised two main agents (representing hospitals and schools all their sub-

components) as well as supporting agents (community’s buildings and infrastructure that support 

the functionality of the main agents) and sub-agents (representing individuals in the community). 

Each of the model agents was an autonomous decision-making entity that had a set of 

characteristics and rules that allowed them to interact, learn, and adapt. This agent-based model 

can be used to investigate interdependency between the healthcare and education facilities, the 

interdependent functionality of these facilities, and communities' social stability.  
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The interdependency between the healthcare and education facilities can be calculated 

using the Leontief-based model. These interdependencies were then can be aggregated to calculate 

the total interaction between healthcare and educational services. To measure the stability level of 

social services for the community’s residents as influenced by the availability of healthcare and 

educational services, a new notion of a so-called social services stability index (SSSI) was 

introduced. Calculations of the SSSI were considering the need for each individual in the 

community to each of the investigated services. 
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Chapter 6.  IMPACT OF SEVERE EARTHQUAKES ON HEALTHCARE AND 
EDUCATION SYSTEMS 

 
 
 

6.1 Overview 

Hospitals and schools are vital for maintaining and enhancing communities’ well-being. 

They are considered a hub for community services especially after national disasters such as 

earthquakes where physical and mental wellness are expected to be significantly affected. Even 

though functionality and recovery of hospitals and schools are complex processes by nature, 

restoring functionality and ensuring a rapid recovery to these facilities are critical for community 

resilience and stability after earthquake disasters. Due to their role in community stability and the 

fact that both facilities provide services to a wide spectrum of community individuals, the 

functionality of hospitals and schools are expected to be highly correlated. Furthermore, different 

mitigation strategies and decisions can be applied by healthcare and education facilities to enhance 

their total functionality after disasters. These strategies and decisions can enhance the availability 

of various functionality components including staff, utilities, space, and supplies to ensure the 

continuation of services provided by these facilities.    

In this chapter, models and frameworks developed in previous chapters are tested on a mid-

size virtual community. First, the characteristics of the healthcare and education facilities as well 

as their supporting lifelines are discussed. The community is then subjected to an earthquake that 

damaged hospitals and schools’ structural, non-structural, and contents, caused casualties to 

community individuals, destroyed residential buildings, and disturbed the community's main 

utilities. The initial drop in the functionality, as well as the recovery of hospitals and schools, are 

calculated. Patient distribution and student enrollment are quantified. Interaction between hospitals 

and the role played by the school district in managing the public K-12 schools are simulated. All 
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these components are then used to estimate the resilience of healthcare and educational services. 

Sensitivity and uncertainty analysis are conducted using the developed frameworks to identify the 

important parameters influencing frameworks’ outputs and to estimate the uncertainty associated 

with the estimated resilience. The agent-based model is utilized to develop an estimate for the level 

of interdependency between each healthcare and education facility as well as the interaction 

between healthcare and educational services in the investigated community. The results are then 

employed to calculate a social services stability index, which can be used to quantify the impact 

of healthcare and educational services on community resilience and social stability. Finally, the 

effect of different mitigation strategies applied by hospitals and schools on healthcare and 

education system resilience as well as the community’s social services stability is quantified. 

6.2 Investigated community characteristics 

A virtual community, shown in Figure 6-1, is built to represent a typical middle-sized 

community in the mid-America region (Ellingwood et al., 2016). Three hospitals with 70, 65, and 

20 total staffed beds with 315, 260, and 125 staff, respectively, are considered as the healthcare 

service providers (Hassan & Mahmoud, 2020a). There are eight schools distributed as four 

primary, two middle, and two high schools as the educational service providers. The total number 

of students is 925, 871, and 1155 with the corresponding number of staff of 97, 91, and 161 for 

the primary, middle, and high school, respectively (Hassan et al., 2020). 
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Figure 6-1: Healthcare and education facilities distribution in the investigated virtual community, 
which is a mid-size community in the Mid-America region with 50,000 total population served 
by three hospitals and eight schools. Hospital capacity and school enrollment are listed in the 

figure. 

6.2.1 Healthcare system data 

The total area, building type, height, and year built of the hospitals are shown in Table 6-1. 

The table also shows hospitals' rating, brand name, ambulance services, average waiting time, and 

building components values before earthquake occurrence. Hospitals’ total areas are assumed 

based on the average area required for each staffed bed (French Red Cross, 2006). Different rating 

values are assumed for each facility based on patient satisfaction. Only hospital A can provide both 

air and ground ambulance. Unlike hospitals A and B, hospital C does not offer any ambulance 

services; however, it still can use the ambulance services of hospital B or patients’ private 

transportation. The monetary values of the building components are classified into: a) structural, 

b) non-structural drift sensitive, c) non-structural acceleration sensitive, and d) content; and are 

estimated based on HAZUS MH2.1 (2015). 
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Table 6-1: Centerville hospitals’ building general properties. 

Hospital At (m2) Building 
type 

Height 
(stories) 

Built 
year Rating Brand Ambulance Waiting 

time 

Building components values (106 $) 

Structural

Non-
structural 

(drift 
sensitive) 

Non-
structural 

(accel. 
sensitive) 

Content

A 5,950 Steel braced 
frame 4 1940 5.0/5.0 I Ground + 

Air 25 min 0.46 1.39 1.85 5.56 

B 4,675 Concrete 
shear wall 3 2000 4.3/5.0 II Ground 20 min 0.32 0.95 1.26 3.79 

C 1,700 Steel light 
frame 1 1980 3.2/5.0 I NA 30 min 0.12 0.35 0.46 1.38 

 
The previously mentioned buildings' properties are then used to estimate parameters for 

structural and non-structural components damage fragilities based on HAZUS MH 2.1 (2015). The 

seismic fragilities of the hospitals in Centerville are shown in Figure 6-2 for structural components, 

non-structural drift-sensitive components, and non-structural acceleration-sensitive components. 

The lognormal median (μ) and standard deviation (σ) of the fragilities are also shown in Table 6-2, 

which are used later to calculate damage and losses for each component as a function of earthquake 

intensity. 

 

Figure 6-2: Hospital buildings damage fragility curves (HAZUS-MH 2.1, 2015). 
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Table 6-2: Hospital buildings damage fragility curves parameters (HAZUS-MH 2.1, 2015). 

Hospital 

Structural damage 
Spectral displacement (in)

Slight Moderate Extensive complete 
μ σ μ σ μ σ μ σ 

A 1.44 0.73 2.3 0.75 5.76 0.8 14.4 0.98 
B 0.72 0.81 1.8 0.84 5.4 0.93 14.4 0.92 
C 0.54 0.88 0.94 0.92 2.52 0.97 7.09 0.89 
 Non-structural drift-sensitive 

Spectral displacement (in)
A 2.16 0.8 4.32 0.9 13.5 1.02 27.0 1.06 
B 0.72 0.87 1.44 0.88 4.5 0.97 9.0 0.99 
C 0.54 0.93 1.08 0.98 3.38 1.01 6.75 0.94 
 Non-structural accel-sensitive 

Spectral acceleration (g)
A 0.2 0.65 0.4 0.68 0.8 0.68 1.6 0.68 
B 0.3 0.69 0.6 0.67 1.2 0.66 2.4 0.65 
C 0.25 0.67 0.5 0.66 1.00 0.65 2.0 0.65 

 

Hospital beds and total staff number is assumed based on the national average published by 

Gamble (Gamble, 2012). These staffed beds are classified as emergency or inpatient beds as shown 

in Table 6-3. The table also shows the number of each staff category, backup systems, and 

additional space availabilities as well as the percentage of supplies availability before the 

earthquake. It should be noted that hospital A has more backup systems, added space, and supplies 

compared with hospitals B and C.  

Table 6-3: Staff, space, and supplies availability for the Centerville hospital cluster before the 
earthquake. 

Hospital 
Beds Staff number Backup systems (%) Add. space Supplies 

Ea Ib R1 R2 R3 R4 R9 R11 R14 R16 R18 R20 R24 (bed) R25~R30% 

A 40 30 80 120 25 90 100 100 100 100 100 100 12 80 
B 35 30 70 110 15 65 100 100 100 0 100 100 5 40 
C 12 8 30 50 5 40 100 100 0 0 0 100 0 50 

a Emergency beds, b Inpatient beds 
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Table 6-4 shows the input parameters for the transition probability matrix (a and b) for the 

three investigated hospitals, the available repair crews for the healthcare system, and interaction 

values. The interaction values represent the effect of the functionality of other lifelines on the 

repair progress of the healthcare facilities, which is assumed to be similar to the interdependency 

values listed in Cimellaro (2016). 

Table 6-4: Input parameters for the recovery model. 

Hospital 

Geo and 
Structural 

data* 

Repair crews (normal/with 
aid)* Interaction values (Cimellaro, 2016) 

a b X1 X2 X3 X4 X5 X6 Power Trans. Telecom. Water W. 
Water Fuel

A 0.81 0.17 
5/8 2/5 2/3 1/3 3/4 2/2 0.6 0.6 0.3 0.6 0.6 0.3 B 0.75 0.15 

C 0.85 0.20 
* assumed data  

 

6.2.2 K-12 Educational system data 

The Centerville school system consists of three primary schools, two middle schools, and two high 

schools, as well as a school district administrative office, which is attached to the high school 

building. To accommodate the number of students from K9 to K12, another high school is added 

to Centerville. Table 6-5 summarizes the characteristics of Centerville’s schools, including grade, 

total area, building type, height, year of construction, and valuation of structural, nonstructural, 

and contents prior to the earthquake. The values in Table 6-5 are obtained from a previous study 

(Ellingwood et al., 2016), except for the added high school and building type for all schools, which 

are assumed in this study. The school area is used to calculate the maximum number of repair 

crews allowed in the school building at any time based on (Almufti & Willford, 2013) and, if the 

school is used as an emergency shelter, the capacity of that shelter according to FEMA 

requirements (Federal Emergency Management Agency, 2015). 
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Table 6-5: Centerville schools and their general building properties. 

School Grade Type At (m2) Building type Height 
(stories) Built year 

Building components values (106 $) 

Structural Non-structural 
(drift sensitive) 

Non-structural 
(accel. sensitive)Content

P1~P4 Elementary Public 9,290 Reinforced Masonry 
Bearing Walls 1 1980 1.80 4.64 3.08 9.52 

M1~M2 Middle Public 9,290 Concrete Moment 
Frame 3 1990 1.71 4.39 2.92 9.02 

H1~H2 High Public 9,290 Steel Light Frame 3 1990 1.71 4.39 2.92 9.02 

 
 

The seismic fragilities of the school buildings in Centerville are summarized in  Figure 6-3 

including seismic fragility curves for structural components, non-structural drift-sensitive 

components, and non-structural acceleration-sensitive components. The lognormal median (μ) and 

standard deviation (σ) of the fragilities are also shown in Table 6-6, which are used later to 

calculate damage and losses for each component as a function of earthquake intensity. 

 

Figure 6-3: School buildings damage fragility curves (HAZUS-MH 2.1, 2015). 
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Table 6-6: School buildings damage fragility curves parameters (HAZUS-MH 2.1, 2015). 

Hospital 

Structural damage 
Spectral displacement (in)

Slight Moderate Extensive complete 
μ σ μ σ μ σ μ σ 

P1~P4 0.72 0.96 1.25 0.99 3.37 1.05 9.45 0.94 
M1~M2 0.9 0.89 1.56 0.90 4.2 0.90 10.8 0.89 
H1~H2 0.54 0.88 0.94 0.92 2.52 0.97 7.09 0.89 

 Non-structural drift-sensitive 
Spectral displacement (in)

P1~P4 0.72 1.00 1.44 1.06 4.5 1.12 9.0 1.01 
M1~M2 0.72 0.93 1.44 0.96 4.5 0.94 9.0 0.88 
H1~H2 0.54 0.93 1.08 0.98 3.38 1.01 6.75 0.94 

 Non-structural accel-sensitive 
Spectral acceleration (g)

P1~P4 0.25 0.68 0.5 0.67 1.0 0.67 2.0 0.67 
M1~M2 0.25 0.67 0.5 0.66 1.0 0.66 2.0 0.66 
H1~H2 0.25 0.67 0.5 0.66 1.00 0.65 2.0 0.65 

 

Table 6-7 shows the total number of classrooms for each grade, the number of students per 

grade, staff, and the backup utilities and supplies availability immediately prior to the earthquake 

occurrence. The National Center for Education Statistics (NCES) (2017a), which provides an 

average total number of student enrollment per grade for public schools in the U.S., is utilized to 

calculate the number of school students in Centerville as a function of the total population. Based 

on NCES for 2017, the total number of school-age students is 7,754, which are distributed to the 

primary (pre-K to grade 5), middle (grades 6 – 8), and high (grades 9 – 12) schools as 3,702, 1,742, 

and 2,310, respectively. The elementary schools are assumed to have self-contained classrooms, 

while both middle and high schools utilize instruction by topic (math, history, etc.), which impacts 

the number of students in each class. The resulting average class sizes, per the National Center for 

Education Statistics (2017b), are 22, 26, and 24 for the elementary, middle, and high school, 

respectively. The number of staff and administration are also estimated based on U.S. national 
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averages (Glander, 2017). The experience of instructional staff is determined by years of teaching 

experience and the highest degree earned (National Center for Education Statistics, 2019).  

Table 6-7: Staff, space, and supplies availability for the Centerville school system immediately 
prior to the earthquake.  

school Grades 

# classroom 
per grade 
(National 
Center for 
Education 
Statistics, 

2017b) 

# student per 
class 

(National 
Center for 
Education 
Statistics, 

2017b) 

# staff per 
school 

(Glander, 
2017) 

Backup systems (%) Supplies 

R1 R2 R4 R8 R10 R13 R16 R18 R22~R25% 

P1~P4 P-K~5 6 22 46 21 30 100 50 100 0 100 100 
M1~M2 6~8 11 26 43 20 28 100 50 100 0 100 100 
H1~H2 9~12 12 24 97 27 37 100 50 100 0 100 100 
 

Based on the school’s capacity and the expected travel time for students, the school district 

defines each school’s zone as shown in Figure 6-4. 

 

Figure 6-4: School zones before the earthquake occurrence. 



110 
 

Parameters for the school system recovery model are shown in Table 6-8 including the 

geographical and structural parameters (a and b in Equation (5.7)), the total number of available 

repair crews for the school system, and the interaction values between schools and their supporting 

lifelines. Different specialties of repair crews are considered including structural, X1, plumbing, 

and HVAC systems, X2, interior partitions, ceiling tiles, and components of the exterior building 

envelope, X3, mechanical equipment, X4, electrical systems, X5, and elevators, X6. A building 

repair sequence starts with the repair of the structural components to guarantee the safety of the 

building, followed by corridors and stairs to ensure accessibility for the subsequent repair tasks. 

All other repair tasks can then be executed simultaneously. The total number of available repair 

crews are assumed to be changing with time since the impacted community may receive additional 

aid from the surrounding communities. It is assumed that each repair crew consists of 10 workers. 

Table 6-8: Input parameters for the recovery model. 

School 

Geo and 
Structural 

data* 
Repair crews (normal/with aid) * Interaction values (Cimellaro, 2016) 

a b X1 X2 X3 X4 X5 X6 Power Trans. Telecom. Water W. 
Water Fuel

P1 0.80 0.15 

3/5 0/1 1/1 1/1 1/2 1/1 0.3 0.3 0.0 0.6 0.0 0.3 

P2 0.83 0.13 
P3 0.89 0.17 
P4 0.82 0.14 
M1 0.88 0.18 
M2 0.84 0.17 
H1 0.81 0.15 
H2 0.85 0.16 

* assumed data 

Hospitals and schools’ relevant data are obtained to construct the agent-based model as 

summarized in Table 5-2 for the investigated community. These data include the functionality of 

different sub-components, available mitigation strategies, and resources at each facility 

(Ellingwood et al., 2016; Hassan et al., 2020; Hassan & Mahmoud, 2020a). Hospitals and school’s 
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total functionalities are modeled as discussed before in Chapters 3 and 4. Patients are distributed 

to the healthcare facilities during normal operation using decision-making heuristics as part of the 

introduced agent-based model as outlined in Figure 3-3. Interaction among the hospitals is outlined 

in Figure 3-4 and discussed in detail in Chapter 3. These frameworks are utilized to distribute 

patients and simulate the transfer of resources between healthcare facilities based on the 

community’s demographic data (Ellingwood et al., 2016). Furthermore, schools’ enrollment 

shown in Figure 4-3 and Chapter 4 is defined using data related to the school zones, number, and 

location of each school’s staff and schoolchildren in the investigated community (Ellingwood et 

al., 2016). Optimal recovery of hospitals and schools and the community’s infrastructure after an 

earthquake scenario are modeled using stochastic analysis coupled with dynamic optimization as 

discussed in Chapter 5.  

6.3 Damage and recovery of supporting infrastructure 

6.3.1 Healthcare system 

An earthquake scenario with an Mw of 7.9 and an epicentral distance of approximately 10 

km from the Southwest of Centerville is assumed. The earthquake occurrence time is selected to 

be 5:00 pm. Immediately after the earthquake, buildings, and infrastructure, including hospitals, 

are expected to suffer damage, causing several casualties and fatalities, and reducing 

infrastructures’ functionality. IN-CORE software (Ellingwood et al., 2016) is used to generate a 

spatial distribution of earthquake intensity, described by PGA (g). HAZUS MH 2.1 (2015) is 

utilized to calculate the damage state for Centerville’s buildings, transportation, power, water, and 

fuel networks as shown in Figure 6-5. The resulting mean structural damage ranges from 37% to 

54% of the total building stock, which is a narrow range since the total area of Centerville is 

relatively small. Higher damage can be observed for the road, power, water, and fuel networks at 
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the west side of Centerville compared with the east side. The earthquake hazard level (PGA) at 

each hospital is used to calculate losses for hospital components including structural, non-

structural, and content as well as the direct social losses as shown in Figure 6-5 (b). Hospital A 

shows more direct economic and social losses compared with other healthcare facilities. These 

direct losses are calculated based on the methodology outlined in HAZUS MH 2.1 (2015). 

 

Figure 6-5: Buildings, hospitals, and hospitals’ supporting infrastructure damage. 

The HAZUS MH 2.1 (2015) earthquake casualty model, which uses structural damage to 

estimate earthquake-related injuries is utilized in this study. The earthquake injuries are classified 
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into four severities; however, only severity 2 and severity 3 are considered as possible hospital 

patients based on the HAZUS model. This is because patients with severity 2 require some medical 

care and patients with severity 3 require immediate medical care. Severity 1 and 4 imply minor 

injuries and death, respectively, for which hospitalization is not required. Based on the dynamic 

triage criteria, earthquake-related patients with severity level 3 and regular patients that need 

immediate medical care have a higher priority followed by patients with severity 3 and other 

regular patients. Figure 6-6 shows the location for each severity in Centerville after the earthquake 

scenario. It can be observed that the total number of causalities is minimal and mostly fall under 

severity 1, which is in agreement with historical earthquake casualty rates in the U.S. in regions 

with code-conforming structures (Algermissen et al., 1972). This is to say that no earthquake-

related patients will require hospitalization. However, routine patients still require routine medical 

care. 

 

Figure 6-6: Location of different casualty severities. 

Service restoration for the supporting lifelines for each healthcare facility can be estimated 

using the previously calculated damage and the number of allocated repair resources for each 

lifeline. However, the allocation of these resources requires extensive socio-economic data, which 
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is out of the scope of this study. Therefore, the restoration curves from ATC-13 (1985) are utilized 

to evaluate the recovery of the hospitals’ supporting lifelines using the initial damage state whereas 

the introduced frameworks will be used to assess the recovery of the healthcare facilities. Figure 

6-7 displays the recovery of functionality after the earthquake for the supporting infrastructures of 

each hospital in Centerville. To estimate the travel time from each zone to each hospital, Ttvl, a 

simple graph consisting of nodes and links is devised and the Dijkstra's shortest path algorithm is 

utilized (Dijkstra, 1959) to calculate travel time. Each zone and hospital are represented by a single 

node while links are utilized for streets and bridges. The travel time between each node is obtained 

by multiplying the length of each link by the average driving speed on this link. 

 

Figure 6-7: Recovery for hospitals’ supporting infrastructures. 

6.3.2 Educational system 

For the educational system, the same earthquake scenario is utilized; however, the 

difference is the earthquake occurrence times. Two different earthquake occurrence times are 

considered.  In the first scenario, the earthquake is assumed to occur during the middle of the 
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school year, while in the second, the earthquake occurs during the summer break. Similar to the 

healthcare system, in both earthquake scenarios, the spatial distribution of the building damage is 

estimated from the earthquake intensity generated by IN-CORE (Ellingwood et al., 2016) and 

damage states in HAZUS MH 2.1 (2015), which is generated based on buildings characteristics 

shown in Table 6-5 including the building age and design code generation. Given the spatial 

distribution of the seismic demand in the community (Ellingwood et al., 2016), damage to 

buildings, transportation, power, telecommunication, water, wastewater, fuel, and education 

systems are calculated. Economic and social losses at the different schools are estimated from 

FEMA P-58 (2012), based on damage to the building components, expected occupancy at the time 

of the earthquake, and the building component values listed in Table 6-5. Figure 6-8 shows the 

immediate impact of the earthquake on Centerville buildings, schools, and main supporting 

infrastructure systems. Damage to infrastructure located on the west side of Centerville, which is 

closer to the epicenter and experienced higher earthquake intensities, is higher. The fact that most 

of the expected building damage is either slight or moderate reduces the population dislocation 

and the demand on the community shelters (Levine et al., 2007). 
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Figure 6-8: Buildings, schools, and schools supporting infrastructure damage. 

Damages to school buildings and supporting infrastructure are utilized to estimate the 

recovery of educational services based on historical data and restoration curves from ATC-13 

(1985). Restoration of electricity, transportation, telecommunication, water, wastewater, and fuel 

supplies at each school are shown in Figure 6-9. These curves subsequently are utilized to calculate 

the functionality and recovery of the school buildings using the methods described in the previous 

section. 
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Figure 6-9: Recovery for schools’ supporting infrastructure. 

6.4 Recovery of the healthcare system 

In this section, functionality restoration of the hospital cluster is calculated using the 

introduced frameworks. An investigation into the effect of interaction and resource optimization 

on the recovery of the different hospitals' components is carried out. Two different scenarios are 

tested to highlight the effectiveness of the presented frameworks in capturing the impact of various 

decisions on hospital cluster functionality. The first scenario considers the interaction between all 

hospitals while optimizing for the maximum number of available staffed beds at all times. Figure 

6-10 shows the change of different functionality measures for the healthcare facilities in 

Centerville with time after the induced earthquake. Quantity functionality is extremely impacted 

by the reduction in the supporting lifelines’ functionality and the damage sustained by the backup 

systems. However, it rapidly increases as driven by repairs and restorations of most of the 

supporting lifelines. Quality functionality, which depends on patient satisfaction, is shown to 

reduce after earthquake occurrence due to the change in patients’ demand. This change in demand 

is highlighted by showing the patient distribution for each zone and the change in the selection 
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over the time after the earthquake. Zones 4, 8, 10, 11, and 12 alternate between hospitals A and B. 

Hospital C is not the most selected by any zones; however, it comes as the second choice for 

residents of zones 2, 5, 8, and 12 immediately after the earthquake. Total healthcare functionality, 

on the other hand, is mainly impacted by the quantity functionality as the weight placed on the 

quality functionality reduces during the assessment and planning stage and the beginning of the 

recovery stage. 

 

Figure 6-10: Centerville Hospitals’ functionalities and patient distribution on hospitals. 
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Unlike the first scenario, the second scenario neglects the interaction between healthcare 

facilities, and instead of optimizing the distribution of the repair crews, the maximum repair 

resources are allocated for hospital C. While assigning more repair resources to hospital C 

increases the building functionality, it reduces the functionality for hospital A and B and eventually 

negatively impacts the healthcare service in Centerville as shown in Figure 6-11. The other 

decision that impacts the healthcare service is preventing the transfer of patients and resources 

between hospitals, which affects the number of patients at each facility as shown in Figure 6-11. 

By combining these two injudicious decisions, the full recovery of the healthcare service in 

Centerville can be delayed by an additional 30 days. 

 

Figure 6-11: Comparison between the optimized and non-optimized recovery scenarios. 
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6.5 Recovery of the educational system 

Functionality, recovery, and resilience of the K-12 school system in Centerville following 

the two earthquake scenarios are estimated using the methods described in Chapter 4. The 

influence of school administrators on school reopening, cooperative interactions between schools 

during the recovery period, and resource optimization are investigated, as well as the different 

roles played by schools during community recovery such as providing community shelter.    

In the first earthquake scenario when school is in session, students are directly impacted by any 

school closure. The semi-Markov chain model, coupled with the dynamic optimization, estimates 

the near-optimal repair progress of the school system that attains the pre-defined objectives of the 

education system of achieving the maximum quantity of the offered educational service for the 

whole community, considering repair crew specialties and the possibility that repair crews from 

neighboring communities are available. Figure 6-12 shows the quantity and quality functionalities 

as well as the total functionality of each Centerville school. Substantial damage to the working 

space within the school system and supporting lifelines immediately after the earthquake leads to 

the closure of all schools immediately following the earthquake. A week after the earthquake, the 

state of recovery of most of the supporting lifelines, coupled with the performance of operational 

backup utility systems and backup space in the schools, increases the supportive infrastructure 

availability and ends closure of most schools. For middle schools (M1 and M2) one classroom is 

open while for all other schools, two classrooms are open. At this stage, proper backup space is 

required if schoolchildren are to return to school. However, backup spaces can be utilized only 

when transportation and utilities reach a sufficient functionality level, which is assumed to be 50%, 

based on decision-makers judgment (Decision I) as mentioned before. It is assumed that each 

school can be provided with temporary backup spaces (Federal Emergency Management Agency, 
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2011) that can be gradually increased as needed to 25% of the school capacity in three weeks. At 

169 days after the earthquake, all classes in all the schools can reopen.  To work toward full 

recovery of educational services, each school continues its efforts towards increasing the quality 

by replacing the unqualified staff, ending the staff internal and external transfer, and ensuring the 

adequacy of the class technology, which is achieved after 94 more days. 

 

Figure 6-12: Restoration of school functionalities. 

Due to damage to school facilities, schoolchildren can be enrolled in school (depending on 

damage level), transfer to homeschooling, or miss school. Figure 6-13 (a) displays the change in 

total student enrollment in Centerville following the first earthquake occurrence scenario. 

Limitations in available student positions throughout the first month after the earthquake increase 

the number of schoolchildren who miss school. Even though permanent population dislocation is 

expected to be minimal overall, driven mainly by minor damage in buildings and the quick 

recovery of utilities, it is likely to be higher for families with children missing school for a longer 

time. If a nearby school district with schools that have suffered less damage can enroll these 

children, dislocation is less likely to occur. Figure 6-13 (b) and (c) show the percentage of student 

enrollment per census tract 30 and 100 days after the earthquake. The variation of student 

enrollment in each census tract is due to dissimilarity in damage at schools within Centerville, 
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transportation availability, and the ability of families in each census tract to provide alternatives 

for their schoolchildren, such as homeschooling and/or private transportation.   

  

Figure 6-13: a) Total student enrollment versus time, b) the percentage of student enrollment per 
census tract at day 30, and c) the percentage of student enrollment per census tract at day 100. 

 
 To highlight the influence of school district administration on closing and reopening of 

schools, two other cases are considered, in which the schools do not have backup space (Decision 

II) or the schools remain closed after the earthquake by the school district until full recovery of all 

schools has been achieved (Decision III). Figure 6-14 (a) displays the effect of backup space on 

the total number of students enrolled and the delay in reopening the schools (between 33 and 67 

days). Figure 6-14 (b) shows the impact of Decision III on student enrollment.  A significant 

increase in school closures is apparent, in which it takes the school district 153 days to open all 

schools. However, Decision III provides the required time for the school district administration to 

arrange for school reopening and student return when most school infrastructure has been restored 

to normal conditions. The average chronic absenteeism for three investigated decisions is shown 

in Figure 6-14 (c). It can be noted that Decision II and Decision III significantly increase chronic 

absenteeism, which is utilized here as a resilience index of the educational service provided by the 

Centerville community. 
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Figure 6-14: (a) the effect of Decision I and II on the student enrollment, (b) student enrollment 
based on Decision III, and (c) chronic absenteeism comparison for Decision I, II, and III. 

 

In the second earthquake scenario, in which the earthquake occurs when schools are in 

recess, the use of school buildings and backup space for community shelter does not interrupt the 

main services provided by the schools. On the other hand, shelters require emergency staff, 

including social workers, volunteers, transportation services, utilities, space (with different 

contents), fuel and food supplies (Federal Emergency Management Agency, 2015). It is assumed 

that two days after the earthquake, the community can provide shelter in undamaged school 

buildings and backup spaces. The capacity of the backup spaces is assumed to gradually increase 

from 25% to 50% of the schools’ capacities as a shelter within 18 days. Figure 6-15 shows the 

shelter capacities at each school. The shelter capacity can be increased by adding the classrooms, 

once they are repaired to the number of accommodations as shown in Figure 6-15; after 142 days 

all the schools' areas can be used as a shelter. Of course, if the school recess ends during this 

recovery period, the school utilization is likely to revert to its original intended purpose, creating 

social problems for community officials.  
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Figure 6-15: Shelter availability. 

6.6 The resilience of the healthcare and educational systems 

To investigate the resilience of the main social institutions in the tested community, the 

resilience quantification framework, which is outlined in Chapter 5 is utilized by subjecting the 

community to the earthquake scenarios mentioned in Section 6.3. The earthquake-associated 

damage to the healthcare and education facilities, as well as their supporting agents and the 

interaction topology, is modeled as shown in Chapter 5. Direct losses, including the earthquake 

casualties related to the investigated facilities’ staff and users, are calculated separately using 

HAZUS MH 2.1. Staff casualties directly impact the functionality of hospitals and schools and 

users’ casualties increase the demand on hospitals and chronic absenteeism in schools. The 

recovery of the supporting infrastructure and buildings in the investigated community (Figure 6-16 

(a)) is estimated using data from ATC-13 (1985). Recovery of the hospital and school agents, 

shown in Figure 6-16 (b) and (c), are estimated using a semi-Markov-chain stochastic analysis 

while optimal repair resources allocation is determined using dynamic optimization to maximize 

the total number of staffed beds for hospitals and the enrollment capacity of the schools. Optimal 

decisions are modeled to utilize available resources and maintain the offered services by each 

facility.  
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Figure 6-16: The functionality of a) supporting infrastructure, b) healthcare system, and c) 
education system, in addition to the change of d) patient distributions, and e) student enrollment 

status after the earthquake disaster. 

The supporting infrastructure is shown to recover 80% of its functionality in about one 

month (Figure 6-16 (a)), which indicates that the earthquake damage is slight and the impact on 

the community’s physical infrastructure is minor. Full recovery for the healthcare system is 

achieved within four months (Figure 6-16 (b)), while for the education system, more than eight 

months are needed for full recovery (Figure 6-16 (c)). Comparing the estimated functionality when 

considering and ignoring the relationship between the healthcare and education systems highlights 

the fact that delaying the restoration of one service can negatively impact the other (Figure 6-16 
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(b) and (c)). Schools’ closure reduces the healthcare system functionality until all schoolchildren 

of the hospital staff are back to schools. The hospitals’ drop-in functionality reduces the student 

outcomes by increasing the absenteeism of staff and students. Patient demand on healthcare 

facilities is a dynamic process, as shown in Figure 6-16 (d). The most probable hospital for each 

patient is shown to be sensitive to the functionality of the transportation network as well as each 

facility. Educational service for most of the students is discontinued for more than three months, 

which represents a full semester in the schools’ academic calendar (Figure 6-16 (e)). Schools’ 

enrollment is affected by the schools’ buildings’ safety. However, providing backup systems and 

backup spaces accelerates the schools’ opening time after the earthquake. Homeschooling, which 

can be used by families for the first few months after the earthquake, is a significant option for 

continuing the education of their children, but it is not available for all families in the investigated 

community either because of student’s guardian restrictions or fulfillment of different federal and 

state regulations (Coalition for Responsible Home Education, 2020).  

6.7 Sensitivity and uncertainty analysis 

6.7.1 Healthcare system 

Hospitals need their staff, utilities, and supplies to be functional so that they can offer 

healthcare services to their community; however, hospitals' need for these components after major 

earthquakes differ based on various factors, including the component damage level, patient 

demand, among others. To evaluate the importance of each component to healthcare resilience, a 

sensitivity analysis is conducted. Hospital staff, which includes physicians, nurses, supporting 

staff, and alternative staff, is one of the main components impacting hospital functionality. Figure 

6-17 (a) shows the sensitivity of the healthcare resilience to the initial drop of hospitals’ staff where 

the sensitivity coefficient is more than 11%. Hospitals can overcome the slight reduction of staff 
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shortage as shown in Figure 6-17 (a) by applying mitigation strategies such as assigning additional 

working hours to the original staff and transferring staff from other hospitals as well as using their 

alternative staff. Although accurate modeling of staff availability is challenging, selecting the 

proper model for staff availability is critical for estimating hospitals' functionality and resilience. 

The initial drop in staff availability can be a function of many parameters beyond the control of 

the hospitals including, for instance, the earthquake-related casualties among staff, building 

damage, and population outmigration. 

Hospitals’ backup systems are among the essential components that can have a 

considerable effect on reducing the immediate consequences of the event and maintaining the 

quality and quantity of the healthcare service functionality. Such systems can be utilized to run 

hospitals after earthquakes without the need for permanent utilities. Figure 6-17 (b) displays a 

significant impact of the initial drop of backup system functionality on the healthcare functionality, 

where the sensitivity coefficient is more than 11%. Therefore, understanding the damage to backup 

systems and maintain their functionality during the recovery period is essential for hospitals to 

enhance their functionality and resilience after earthquakes. The initial drop in backup systems 

functionality can result from the lack of maintenance of these systems before the earthquake and/or 

damage of these systems during the earthquake. 

Unlike staff and backup systems availabilities, healthcare resilience for the investigated 

scenario is less sensitive to the initial drop of hospital supplies availability as shown in Figure 6-17 

(c). This initial drop can result from damage to hospitals’ contents, drop of suppliers’ functionality, 

and dysfunction of the transportation network. Because of the damage to the hospitals’ storage 

rooms that are used for supplies, the initial drop of hospitals’ supplies only impacts the hospitals’ 

functionality immediately after the earthquake, but the restoration of the supplies’ functionality is 
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a function of the restoration process of these storage rooms. In addition, hospitals, in this study, 

have different efficient mitigation strategies that are used to temporarily close the gap in their 

supplies’ shortage even with the substantial damage to their supplies rooms as discussed in Chapter 

4.  Figure 6-17 (d) shows a comparison between the sensitivity coefficient resulted from the 

regression-based sensitivity analysis. The figure displays that the availability of the backup 

systems after the earthquake has more impact on healthcare resilience than the staff and supplies 

availability. 

 

Figure 6-17: Sensitivity of the healthcare resilience to a) the staff functionality, b) the backup 
systems functionality, and c) the supplies’ functionality as well as the comparison between the 

sensitivity coefficient for the three components. 

 

To quantify the uncertainty associated with the estimated functionality and resilience of 

the healthcare system, the availability of three main functionality components (staff, backup 
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systems, and supplies) are modeled by uniform distributions U (0,1). Monte-Carlo simulation with 

1000 samples is used to develop Figure 6-18. The uncertainty in functionality estimations is shown 

to increase with time after the earthquake, as shown in Figure 6-18 (a). Figure 6-18 (b) displays 

the distribution of the estimated healthcare resilience, mean value, and 97.5 and 2.5 percentiles. It 

can be noted from Figure 6-18 (b) that healthcare resilience changes by more than 15% by only 

changing the initial drop in staff, backup system, and supplies availability. Therefore, a precise 

estimation of the initial drop of these functionality components is essential to accurately calculate 

the resilience.  

 

Figure 6-18: a) Uncertainty in the total healthcare functionality and b) uncertainty in the 
healthcare resilience. 

 

6.7.2 Educational system 

Staff, utilities, and supplies are three main functionality components for the k-12 schools; 

however, the need for these components differs based on various factors, including the school 

grade, enrollment, component damage level, among others. To evaluate the importance of each 

component to the education resilience quantification, the sensitivity of the estimated education 
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resilience to each of these components is calculated. School staff, which includes teachers, 

supporting staff, volunteers, and administrative staff, is one of the main components impacting 

school functionality. Figure 6-19 (a) shows the sensitivity of the education resilience to the initial 

drop of schools’ staff. The figure displays a significant impact of staff shortage on education 

functionality, where the sensitivity coefficient is more than 17%. Schools can overcome the slight 

reduction of staff shortage as shown in Figure 6-19 (a) by applying mitigation strategies such as 

appointing and transferring staff as well as using community volunteers. Although accurate 

modeling of staff availability is challenging, selecting the proper model for staff availability is 

critical for estimating schools' functionality and resilience. The initial drop in staff availability can 

be a function of many parameters beyond the control of the schools including, for instance, the 

earthquake-related casualties among staff, building damage, and population outmigration.  

For those schools that have backup systems, such systems can be utilized to reopen schools 

after earthquakes without the need for permanent utilities, which can be critical for schools in the 

short-term recovery. Figure 6-19 (b) displays a significant impact of the initial drop of backup 

system functionality on the education functionality, where the sensitivity coefficient is more than 

11%. Therefore, understanding the damage to backup systems and maintain their functionality 

during the recovery period is essential for schools to enhance their functionality and resilience 

after earthquakes. The initial drop in backup systems functionality can result from the lack of 

maintenance of these systems before the earthquake and/or damage of these systems during the 

earthquake. 

Unlike the staff and backup systems availabilities, the education resilience for the 

investigated scenario is less sensitive to the initial drop of school supplies availability as shown in 

Figure 6-19 (c). This initial drop can result from damage to schools’ contents, drop of suppliers’ 
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functionality, and the dysfunction of the transportation network. However, the fact that schools 

were fully reopened after 169 days, as shown in Figure 6-12, allowed the schools to manage to 

recover their essential supplies before the school reopening.   

Figure 6-19 (d) shows a comparison between the sensitivity coefficient resulted from the 

regression-based sensitivity analysis. The figure displays that the staff availability after the 

earthquake has more impact on education resilience than the backup system and supplies 

availability. 

 

Figure 6-19: Sensitivity of the education resilience to a) the staff functionality, b) the backup 
systems functionality, and c) the supplies’ functionality as well as the comparison between the 

sensitivity coefficient for the three components. 

To quantify the uncertainty associated with the estimated functionality and resilience of 

the education system, the availability of three main functionality components (staff, backup 

systems, and supplies) are modeled by uniform distributions U (0,1). Monte-Carlo simulation with 
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1000 samples is used to develop Figure 6-20. The uncertainty in functionality estimations is shown 

to increase with time after the earthquake, as shown in Figure 6-20 (a). Figure 6-20 (b) displays 

the distribution of the estimated education resilience, mean value, and 97.5 and 2.5 percentiles. It 

can be noted from Figure 6-20 (b) that education resilience changes by more than 10% by only 

changing the initial drop in staff, backup system, and supplies availability. Therefore, a precise 

estimation of the initial drop of these functionality components is essential to accurately calculate 

the resilience.   

 

Figure 6-20: a) Uncertainty in the total education functionality and b) uncertainty in the 
education resilience. 

6.8 Interdependence between healthcare and educational facilities 

To quantify the total interdependence between the healthcare and education facilities, an 

agent-based model comprising two main agents (representing hospitals and schools) as well as 

supporting agents (representing their supporting infrastructure) and sub-agents (representing 

individuals in the community) is devised. The interaction among the agents, supporting agents, 

and sub-agents is described by the network in Figure 6-21 (a). Further details on agent type, 

attributes, and possible decisions can be found in Chapter 5. In this study, interdependency is 

quantified, among single facilities as well as between the healthcare and education systems, using 
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the Leontief-based model (Haimes & Jiang, 2001). The model captures the impact of total 

functionality drops at either a single facility or the whole system, which can be healthcare or 

education, on the other facilities or other systems. The uncertainty associated with the location of 

staff, patients, and schoolchildren within the community, as well as those associated with quality 

functionality of hospitals and schools’ sub-components, are also included in the analysis. Monto-

Carlo simulation and statistical distributions are used to develop a relationship, N(µ,σ), between 

the functionality of each investigated facility.  

For the relationship between single facilities (Figure 6-21 (b)), strong dependence is noted 

between hospitals as well as schools with the same grades. This is a result of redistributing patients 

and students impacted by increased waiting time and reaching class capacity, respectively. The 

impact of any single school closure on hospitals is shown to range from 9 to 12% and is influenced 

by the shortage in hospital staff where their children either changed their school, are being 

homeschooled, or missed school all together. The impact of any single hospital closure on the 

schools can be up to 10% and is associated with staff shortage and students’ chronic absenteeism. 

This impact is mainly caused by a reduction in healthcare services provided to the school staff and 

students, the long waiting time in emergency departments, and early discharge of staff and students 

before receiving the appropriate treatment during one school year (180 days). The hospitalization 

data for school staff or students are based on U.S. hospitalization statistics (Freeman et al., 2018) 

and are a function of the patient’s age. The relationship between the healthcare and education 

system is also investigated as shown in Figure 6-21 (c), which demonstrates the impact of the lack 

of functionality of the entire system on the other. The analysis shows a higher degree of 

interdependency between the two systems where a complete drop of healthcare functionality can 

reduce that of the education by 47% and increase students’ chronic absenteeism by 22.4%. On the 
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contrary, a complete drop in education functionality is expected to reduce that of healthcare by 

43%. This level of dependency is much higher than what was conceived in previous empirical 

(Cimellaro, 2016), statistical (Gan & Gong, 2007), or theoretical (Wright, 2001) studies. 

  

 

Figure 6-21: a) Components of the complex network representing the agent-based model of the 
investigated community, b) interdependency matrix between each healthcare and education 

facility, and c) interdependency between the healthcare and educational systems.  

6.9 Community social services stability index  

Here, a new notion of a so-called social services stability index (SSSI) is established, which, 

on a scale from zero to one, is meant to indicate how the stability of social services for the 

community’s residents are influenced by the availability of school and hospital services. The SSSI 

is calculated by integrating healthcare and educational services while considering the need for 

every individual in the community to each of the investigated services. The mathematical 

integration of the two services is shown in Chapter 5. The SSSI is expected to drop directly after 

the earthquake but then slowly rise during the recovery stage. 
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Figure 6-22: a) Recovery of the SSSI over time, and the spatial distribution of the SSSI after b) 
one week, c) one month, d) four months, and e) eight months. 

During the first week after the earthquake, and due to the increase in patient demand and 

reduced available staffed beds in hospitals, a significant increase in the patients’ waiting time in 

the crowded emergency departments is recorded (Figure 6-22). Despite the effectiveness of the 

dynamic triage criteria, reduction in treatment time and patient early discharge (a common practice 
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by hospitals to increase the survival rate of the patients with high severities), lowers the patient 

outcome for less severe cases. This situation is also combined with the closure of all the schools 

in the community, which results in a substantial drop (more than 96%) in the SSSI for most 

individuals of the community. Driven by the recovery of the healthcare facilities and reduction of 

the patient demand, the SSSI reaches 12% of its original value prior to the earthquake in a month 

and a half. By the end of four months, the SSSI exceeds 83%, which is driven by the full recovery 

of the healthcare functionality and opening of most of the schools. Finally, eight months after the 

disaster, the SSSI is close to its initial value, and the community returns to normalcy. Variation in 

healthcare and educational services for individuals in the community is significant during the 

recovery time and produces disparities in the accessibility of the main services. 

6.10 Impact of different mitigation strategies 

Different mitigation strategies are assumed to be applied by hospitals and schools to 

overcome the shortage of staff, space, and supplies after the earthquake. These practical mitigation 

strategies are considered based on guidelines, recommendations, and lessons learned after previous 

natural disaster events. For instance, utilizing alternative staff, transferring staff from other 

facilities, and assigning additional working hours for existing staff at hospitals and schools are 

recommended to close the staff shortage gap (Achour et al., 2016; Applied Technology Council, 

2017; Committee on the Future of Emergency Care in the United States Health System et al., 2007; 

Hassan et al., 2020; Hassan & Mahmoud, 2020a; Tariverdi et al., 2018; U.S. Department of 

Education, 2007). Providing hospitals and schools with backup systems and backup spaces are 

also recommended mitigation strategies that could provide healthcare and educational services 

without the need for permanent utilities or space (G. P. Cimellaro et al., 2013; Committee on the 

Future of Emergency Care in the United States Health System et al., 2007; Federal Emergency 



137 
 

Management Agency, 2011; Hassan et al., 2020; Hassan & Mahmoud, 2020a; Li & Zheng, 2014; 

Office of Inspector General, 2015; Redlener & Reilly, 2012; Sheikhbardsiri et al., 2017). In 

addition, using alternative supplies, optimizing the supply usage, and transferring supplies between 

different facilities can be significant in reducing supply shortage, limiting the services provided by 

these facilities (Hassan et al., 2020; Hassan & Mahmoud, 2020a; Sheikhbardsiri et al., 2017; 

Syahrir et al., 2015; Tariverdi et al., 2018).  To further reflect on the sensitivity of healthcare and 

education systems to disturbances to their relevant socio-physical parameters, four different cases 

are evaluated to observe the impact of each case on recovery trajectories and the computed SSSI 

for the community, as shown in Figure 6-23. The four cases are Basic Scenario (when all the 

mitigation strategies are applied), Scenario 1 (when no strategies are used to manage staff 

shortage), Scenario 2 (when no strategies are utilized to overcome utilities outage and space 

damage), and Scenario 3 (when no strategies are applied to close the gap in supplies). Failing to 

apply these mitigation strategies will reduce the functionality, delay the facilities opening and 

recovery time, and impact the community SSSI. Failing to manage and replace staff can diminish 

the healthcare system functionality for more than 21 days after the earthquake and delay the 

attainment of full recovery for more than 240 days. While its impacts on the education system will 

not be notable immediately after schools’ reopening, lack of proper management and staff 

replacement will impact the quality of the educational service and delays the full recovery of the 

service for more than 221 days. The backup systems and spaces are the most critical for hospitals 

and schools in the short and long terms. While backup systems are utilized to reopen facilities 

earlier, the backup spaces are essential for these facilities to continue providing services when the 

repair process of building components is underway. Failing to provide the required backup systems 

and spaces will delay the full recovery of the healthcare and education systems by 320 and 241 
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days, respectively. Failing to maintain the supply availability will significantly reduce the 

healthcare system functionality immediately after the earthquake; however, its impact will be 

minor in the long-term. While its impact on education system functionality will be insignificant, 

lack of supplies can delay schools reopening for 21 days. 

 

Figure 6-23: Impact of failing to apply different mitigation strategies on a) the total functionality 
of healthcare system, b) community’s SSSI, c) the total functionality of education system, and d) 

community’s SSSI.  

6.11 Summary 

In this chapter, Centerville virtual community was used as a testbed to highlight the 

capabilities of the introduced models and framework to calculate functionality, recovery, and 

resilience of healthcare and education systems after earthquakes while simulating their main 

processes such as patient demand, patient transfer, hospitals’ interaction, student enrollment, staff 

appointment, staff and supplies transfer, etc. Centerville community had a total population of 
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50,000 that was served by a total of three hospitals and eight schools, which were managed by one 

school district. An agent-based model was devised for the healthcare and education systems that 

represent hospitals, schools, and school districts as main agents, buildings and community 

infrastructure as supporting agents, and community individuals as sub-agents. The sensitivity 

analysis of the proposed functionality frameworks for hospitals and schools was conducted and 

the uncertainty associated with the estimated resilience of healthcare and education systems was 

propagated. The Leontief-based model was utilized to estimate the level of interdependency 

between each healthcare and education facility and to define the interaction between healthcare 

and education systems. The summation of weighted and normalized indicators was used to 

estimate the social services stability index for community individuals as a function of the 

availability of healthcare and educational services. The effect of different mitigation strategies 

applied by hospitals and schools on healthcare and education system resilience as well as the 

community’s social services stability was investigated.  

The following conclusions can be drawn from the healthcare system analysis results: 

 Ensuring the availability of qualified backup spaces and operability of backup systems 

before the earthquake showed a considerable effect on reducing the immediate 

consequences of the event and maintaining the quality and quantity of the healthcare 

service functionality. 

 Balancing between the quantity and quality of the offered healthcare service, in addition to 

other social and economic factors, can dramatically affect the patient's selection. While the 

quality portion of the functionality did not have much impact on the overall functionality 

of a given hospital, it does have an influence on patients’ selection of the hospital. 
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 Achieving a high level of interaction among hospitals in terms of pre-established 

agreements, coupled with an effective recovery plan, can improve recovery of the service, 

reduce patient waiting time, and enhance the healthcare service for the whole community. 

 Changing in the patient distribution in a healthcare provider took place directly after the 

earthquake occurrence as an outcome of the disturbance to the community. 

The following conclusions can be drawn from the education system analysis results: 

 Providing schools with reliable backup utilities and sufficient backup spaces was critical 

for keeping the schools opens after the earthquake. 

 Recovering the schools’ main supporting lifelines, especially transportation, was key for 

school reopening. 

 Providing alternative staff and using community volunteers can temporarily close the gap 

in staff shortage. However, it could also negatively impact the quality of educational 

services and student outcomes. However, staff swapping and appointing qualified staff can 

sustain the leadership and professional community. 

 Establishing appropriate policies and decision-making processes had a substantial impact 

on the school’s recovery trajectory and students’ enrollment state. 

 Using schools as shelters immediately after the earthquake was a function of the backup 

utility systems and backup spaces. However, it depended on the recovery progress of 

schools, supporting lifelines, and suppliers. 

The following conclusions can be drawn from the sensitivity and uncertainty analysis results: 

 Utilizing comprehensive models to estimate the availability of staff, utilities, and space at 

hospitals and schools was vital to accurately estimate the resilience of healthcare and 

education systems after earthquake disasters.    
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 Including the uncertainty associated with the estimation of the availability of staff, utilities, 

and space was critical in understanding the risk associated with the functionality and 

resilience quantifications.   

The following conclusions can be drawn from the interdependency analysis results: 

 Modeling interdependency between social institutions required comprehensive models that 

can capture the interaction between these institutions at different levels, ranging from 

systems interaction all the way to individual levels relationships.  

 Considering the interdependency between hospitals and schools was critical for the 

community resilience analysis. This interdependency can be found between healthcare and 

education systems, among hospitals and schools, and within community individuals. 

The following conclusions can be drawn from the social services stability analysis results: 

 Restoring the functionality of healthcare and educational services immediately after the 

earthquake occurrence had a great impact on the community's social stability. Hospitals 

and schools can utilize their backup systems and backup spaces to ensure the continuity of 

their services. 

 Ignoring the interdependency between the healthcare and education system in calculating 

in social service stability index, especially during the recovery period, can mislead the 

estimation of the community stability.      

The following conclusions can be drawn from the mitigation strategies analysis results: 

 Failing to manage and replace staff can diminish the healthcare and education system 

functionality for weeks after the earthquake and delay the attainment of full recovery for 

months. 
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 Failing to provide the required backup systems and spaces can delay the full recovery of 

the healthcare and education systems by months. 

 Failing to maintain the supply availability can only impact the healthcare and education 

systems functionality immediately after the earthquake; however, its impact can be minor 

in the long-term on both systems.  
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Chapter 7.  SUMMARY AND RECOMMENDATIONS FOR FUTURE WORKS 
 
 
 

7.1 Summary and conclusion 

The primary objectives of this study were to develop comprehensive models and 

frameworks to model functionality, recovery, and resilience of healthcare and education systems. 

It also introduced a generalized approach that can be used to investigate the interdependency 

between these complex networks and their impact on community resilience and social services 

stability after earthquake events. Comprehensive frameworks used to quantify the seismic 

resilience of healthcare and education systems were coupled with a new agent-based model 

comprising of system’s agents, main agents, and sub-agents. A strong relationship between the 

two networks was observed. The study showed that interdependencies between schools and 

healthcare facilities could go beyond employees and direct users of these networks and encompass 

other individuals with minor needs for these networks because of their social relationships with 

others who directly interface with these networks. It also showed that the facility size and 

interaction topology, being healthcare or education, can play a critical role in the level of 

interdependency among different facilities.  

From the results, it can be observed that earthquakes can be devastating for mid-size 

communities despite the minor damage to the community’s-built environment, including physical 

infrastructure. In addition, the community’s social services stability was founded to be sensitive 

even to minor disturbances. Therefore, more attention should be given to quantifying the resilience 

of schools and healthcare facilities in communities. Providing alternatives for healthcare and 

educational services providers was critical for the community’s social stability. These alternatives 

included patients and resources transfer between hospitals, homeschooling for school students, and 
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backup systems and backup spaces hospitals and schools, which showed a major impact on the 

quantity functionality of the investigated services. The study showed that the change in a 

community’s social services stability is dynamic and sensitive to disturbances in the community. 

While the models and frameworks developed in this study can provide substantial insight 

into the functionality components of the healthcare and education systems, how they interact, and 

what is their impact on communities, there were different limitations that should be reflected upon 

when using the proposed approach. First, although the focus of the study was on healthcare and 

education systems and their interaction in the aftermath of extreme events, the resilience of other 

socio-economic sectors, such as food suppliers and retailers, was also important for maintaining 

an adequate level of social services for communities. Furthermore, other resilience goals 

(governance stability or population stability, etc.), measured by different metrics, might be more 

relevant for some communities and can be integrated with the recovery of healthcare and education 

systems for a more complete assessment of resilience and or the SSSI. Although it was not included 

in this study, it was acknowledged that some communities might choose to return to a higher level 

of functionality by incorporating the concept of building back better so that they are more resilient 

against future events. Finally, other methods can be used to quantify the parameters in the 

presented models, and detailed validation of the calculated parameters to the different models is 

needed. The presented frameworks and modeling approach can also be applied to evaluate the 

impact of other hazards on the healthcare and education systems.   

7.2 Contributions 

Healthcare system functionality: a new framework was introduced to estimate the quantity and 

quality of the healthcare services provided by hospitals while accounting for the interdependency 

between hospitals and their supporting infrastructure. Quantity functionality was measured by the 
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number of available staffed beds and quantity was estimated as a combination of accessibility and 

effectiveness of the offered healthcare services.  

Patient distribution: a new patient distribution model so-called Patient driven model was 

proposed in this study. The model accounted for various socio-technical factors related to patient 

constraints, healthcare facility constraints, and connections between patients and healthcare 

facilities. It was a dynamic model in which the most probable hospital for each patient can change 

over time after the earthquake due to changes in the basic events. 

Hospitals’ interaction: a new framework was presented to model the interaction between 

healthcare facilities. The framework accounted for the probability of transfer of patients, staff, 

supplies after the earthquake hazards, which was an approach hospitals can use to reduce their 

demand and enhance their functionality. While the agreement between healthcare facilities was an 

essential component for hospitals’ interaction in the presented framework, other different socio-

technical factors related to hospitals, patients, staff, and supplies were included in the framework 

that can control and change the hospitals’ interaction after earthquake events. 

K-12 School system functionality: a new framework was proposed to estimate the quantity and 

quality of the educational services provided by K-12 public schools while accounting for the 

interdependency between schools and their supporting infrastructure. Quantity functionality was 

measured by the school’s enrollment capacity and quantity was estimated as a combination of 

parameters that measure teacher quality, classroom quality, and school quality. 

School administration model: a framework was proposed in this study to mimic the role played 

by school administrations and school districts in managing the schools' administrative process 

including school closure and reopening decisions, student enrollment, staff appointment, staff and 

supplies transfer, and recovery goals. Different socio-technical factors were included in this 
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framework while optimization was used in these decisions to ensure enhancing the schools' 

functionality using the minimal resources.  

Recovery model: a generalized recovery model was introduced to estimate the recovery 

trajectories of healthcare and education facilities that were damaged during the earthquake. The 

semi-Markov chain model, coupled with the dynamic optimization, was utilized to estimate the 

near-optimal repair progress of the school system that ensured the maximum quantity of the 

offered educational service for the whole community, considering repair crew specialties, the 

possibility that repair crews from neighboring communities are available, and the delay in the 

repair pross that might result from interruption to the other community infrastructure.  

Interdependency between healthcare and education systems: an agent-based model was 

introduced in this study to simulate the healthcare and education systems that include a 

comprehensive model for their main agent (hospitals, schools, and school districts), supporting 

agents (buildings, utility providers, suppliers, etc.), and sub-agents (all community individuals). 

This agent-based model was then used with the Leontief-based model to calculate the interaction 

between each of the healthcare and education facilities as well as the interdependency between the 

healthcare and education systems.   

Community social services stability: a newly developed social services stability index (SSSI) 

was proposed in this study as a measure of community strength after disasters, and it measured the 

accessibility of community individuals to the main public services with a focus on healthcare and 

education as pivotal services after disasters.  

Impact of mitigation strategies on the resilience of hospitals and schools: in this study different 

mitigation strategies were applied during the analysis and their impact on healthcare and education 

system functionality and resilience as well as the community social stability were investigated. 
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These strategies were used to overcome the shortage of staff, space, and supplies after the 

earthquake.   

7.3 Recommendations  

The presented study was developed to enable policymakers and community leaders to 

quantify the impact of healthcare and educational services on community resilience and social 

services stability. The following recommendations can be drawn from the introduced study’s main 

findings: 

Healthcare systems: The existence of alternative staff, offering regular training for the staff to 

increase their preparedness for disasters, and establishing mutual-aid agreements with other 

hospitals are key to hospital operation following natural hazard events. Hospitals that maintain the 

availability of utility backup systems, as well as backup spaces, can significantly reduce the impact 

of the earthquake events on their functionality. In addition, securing different providers for the 

main services that hospitals require and relying on multiple suppliers is pivotal to their 

functionality. Shortage of hospital supplies after earthquakes can lead to catastrophic 

consequences. Therefore, receiving the required supplies on time is vital for maintaining an 

acceptable level of functionality. Organizing the healthcare service between the hospitals and other 

healthcare facilities especially after earthquakes is the fundamental component to ensure that most 

of the patients will receive the appropriate service and reduce the mortality rates. Distributing 

repair resources among healthcare facilities and other infrastructure requires careful investigation 

to ensure the balance between the social and economic stability of the communities. Sustaining 

patient satisfaction and monitoring patient outcomes is the key to maintain resilient and socially 

stable communities. 
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Education system: Utilizing volunteer staff, appointing qualified teachers, and transfer staff 

between schools are key to school operation following natural hazard events. Schools need the 

essential utilities and appropriate space to provide the essential educational services to their 

students. In some cases, using backup systems and spaces can allow schools to overcome the 

disturbance that occurred to these components because of the earthquake. Managing school 

supplies after the earthquake and ensuring the availability of their main suppliers by, for example, 

transfer supplies between schools and find alternative supplies are important to school 

functionality. The role played by school administration and school districts, especially after 

earthquake events, is critical in managing student enrollment, staff and supplies transfer, managing 

the repair process of the damaged schools, and find alternatives for the damaged and impacted 

functionality components. Therefore, these administrations need to be well trained and well 

prepared for disasters. Distributing repair resources among schools requires careful investigation 

to ensure equality in educational services distribution. Monitoring and enhancing student 

outcomes, especially after disastrous events, is the key to maintain resilient and socially stable 

communities. 

Community resilience: The premise of the concept of community resilience hinges on the 

community’s ability to adapt to and recover from disruption to its infrastructure, social, or 

economic sectors. Recovery of critical facilities, such as hospitals and schools is particularly 

important since they are vital for the short-term and long-term functioning of the community. 

Therefore, ensuring the continuation of the healthcare and educational services after the earthquake 

events can be considered as one of the main resilience goals for communities. To achieve this goal, 

communities can allocate enough repair resources for the impacted hospitals and schools, provide 

them with volunteers to close the gap in staff shortage, and support them with the supplies needed. 
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Social services stability: maintaining social services stability for communities can substantially 

enhance their resilience and reduce their population outmigration. Ensuring the quick recovery of 

the main social institutions such as hospitals and schools is the key to increasing the individuals' 

social stability after earthquake events. Even though the needs of everyone for the services 

provided by these institutions are different, most of the community individuals can out-migrate 

because of the lack of these services. Therefore, understanding the interdependency between the 

healthcare and educational services and how they both influencing the communities after natural 

disasters are essential components to enhance communities’ social services stability.    

7.4 Future work 

This study presented new and comprehensive frameworks to investigate the functionality, 

recovery, and resilience of healthcare and education systems while considering the change of 

community built-environment, patient demand, hospitals’ interaction, student enrollment, staff, 

space, and supplies at each facility after the major earthquake events.  The study highlighted the 

interdependency between hospitals and schools and their roles in community resilience and social 

services stability.  Although this study provided some insights on the performance of healthcare 

and education systems subjected to earthquake hazards; however, future research directions can 

include the followings: 

7.4.1 Advancing the presented healthcare system model 

Even though hospitals are the only healthcare facilities that can treat the major injuries 

resulting from major earthquake events, other healthcare providers should be incorporated in the 

healthcare system model to account for the role played by these providers in reducing the demand 

on hospitals. Including the patient flow that can be achieved by modeling the hospital specific 

components can enhance the presented healthcare system framework by including the patient 



150 
 

internal waiting time to the quality functionality equation. Data collected from case studies and 

real communities can be used to verify the hospital system sub-models and calibrate the model 

outputs. Different mitigation strategies that might be applied by hospitals can also be investigated 

and included in the presented framework that might enhance the estimation of the healthcare 

system's functionality and resilience.  

7.4.2 Advancing the presented school model 

Even though about 90% of U.S. students are enrolled in public schools, considering non-

public schools such as private schools, which commonly utilize non-centralized education systems 

can provide a full picture of the functionality of the education system in some communities. Data 

collected from case studies and real communities can be used to verify the school system sub-

models and calibrate the model outputs. The scalability of the introduced framework can also be 

investigated in which different community sizes, diverse school types, and various school districts 

can be tested. Different mitigation strategies that might be applied by schools such as virtual and 

hybrid education can also be investigated and included in the presented framework to enhance the 

estimation of the education system's functionality and resilience.  

7.4.3 Considerations for different hazards 

The presented frameworks and models are developed to investigate communities subjected to 

earthquake hazards. However, modifications to the model’s components can be conducted to 

consider communities subjected to different single or multiple hazards (wildfire, flood, wind, and 

flooding). The presented frameworks and models are structured to be flexible, their components 

can be removed, adjusted, or calculated using different approaches to account for the components’ 

damage and recovery during different hazard types. However, some challenges might be 

associated with this process and more investigation on model applicability will be needed.
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