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ABSTRACT

THE IMPACT OF REFERENT DISPLAY ON INTERACTION PROPOSALS DURING

MULTIMODAL ELICITATION STUDIES

Elicitation studies have become a popular method of participatory design. While traditionally

used for finding unimodal gesture-based inputs elicitation has been increasingly used for deriving

multimodal interaction techniques. This is concerning as there has been no work that examines how

well elicitation methods transfer from unimodal gesture use to multimodal combinations of inputs.

This work details a comparison between two elicitation studies that were similar in design apart

from the way participants were prompted for interaction proposals. Referents (e.g., commands to

be executed) were shown as either text or animations. Interaction proposals for speech, gesture,

and gesture+speech input modalities were elicited. Based on the comparison of these studies and

other existing elicitation studies the concern of referent display priming uses proposed interaction

techniques is brought to light. The results from these elicitation studies were not reproduced.

Gesture proposals were the least impacted. With high similarity in the overall proposal space.

Speech was biased to have proposals imitating the text as displayed an average of 69.36%. The

time between gesture and speech initiation in multimodal use was 166.51% longer when prompted

with text. The second contribution of this work is a consensus set of mid-air gesture inputs for

use with generic object manipulations in augmented reality environments. This consensus set was

derived from the elicitation study that used text-based referent displays which were found to be

less biasing on participant gesture production than the animated referents.
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Chapter 1

Introduction

Designing usable systems requires an in-depth knowledge of the user, their interactions, and

how they think [2]. A recent and popular technique used to gain this understanding and to guide

interaction design is to run an elicitation study [3]. Elicitation studies are a way to observe uncon-

strained user behavior. Often this is done with an emulated version of emerging technology [4, 5].

Other uses of elicitation have included conceptual [6] and existing [7] technologies.

This study design was introduced by Wobbrock et al. in 2005 [8] and later popularized by the

same team [9]. Self-described as a “guessability study”, Wobbrock et al.’s goal was to find inputs

that were discoverable to new users of a multi-touch system [8]. The premise around achieving the

goal of discoverable inputs stems from distributed cognition [10]. By observing users interact with

a system in which the gulf of execution (e.g., barriers of execution) is removed, that user’s natural

behaviors and interactions can be captured. While these interactions will vary from user to user, an

aggregation of multiple users’ interactions can be used to derive a consensus set of proposals. This

set represents the most common interactions of novice users within this system and experimental

setup.

This use of participatory design to derive a consensus set is often a major goal when using

elicitation methodologies [11, 12]. That said, observational data is a rich source of intuitions con-

cerning user behavior. Discoveries beyond a consensus set can emerge through the interpretation

of that data. These discoveries have included the impact of scale on interaction generation [13,14],

the timing information around co-occurring gesture and speech inputs [1, 15, 16], user modality

preference when multiple modality options are available [17–19], or that users prefer multimodal

interactions more as task cognitive load increases [20].

The popularity of elicitation studies is evident through the variety of domains that have used

them. Some of these domains include multi-touch surfaces [12, 21], mobile devices [22], mid-air

gestures [1, 5, 23], television browsing [18, 19], computer-aided design [7], and internet of things
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home sets ups [24]. Building on the original methodology, researchers have devised alternatives

that extend beyond surface-computing devices, such as using multi-touch and mid-air devices in

tandem [25,26] or using multi-touch devices to control physical objects through virtual representa-

tions of said entities [27]. Imposing constraints on the users’ motion has also led to new elicitation

studies primarily concerned with defining and investigating gesture sets suitable for both impaired

and non-impaired users [28, 29].

These studies constitute a massive body of still growing literature spread across many domains

of use and disciplines. More than 216 elicitation studies have been run, these include 5, 458 partici-

pants, and 3, 625 commands (referents) tested [3]. Alongside the widespread use of this methodol-

ogy comes a stream of modifications and improvements upon it. Ten years after the original paper

the “Agreement Index”, a metric of proposal consensus, was improved and became the “Agreement

Rate” [8, 30]. Other changes to the calculation of consensus include between groups metrics [30],

production agreement [31], dissimilarity of proposals metrics [31], the addition of speech pro-

posal consensus metrics [18], and statistics to help verify the prevalence of chance agreement [32].

Some studies directly emulate the work of Wobbrock et al. [3, 9], while others radically alter the

process [33]. There have been variations of the Wizard of Oz systems used [34], the presentation

of referents [3], and even attempts to deliberately prime users with a certain mindset [6, 29] or

mental frame [33].

Elicitation has seen most of its use as a way to derive inputs for a single modality of input. Often

this is some form of gesture-based input, either full body or limited to a specific region such as a

hand [3]. As new technologies continue to emerge, elicitation is starting to see a divergence from

the unimodal standard to use for multimodal input derivation. Examples of this are most commonly

for gesture and speech [1, 7, 15, 18, 19]. An area that has been unquestioned in the literature today

is, "how well does this unimodal interaction design technique transfer into multimodal space?"

Herein lies a concerning facet in this ever-evolving body of literature; there is a scarcity of work

examining the results of multimodal elicitation studies and of work examining the reproducibility

of elicitation studies [3]. This paper presents a comparison of two multimodal gesture and speech
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elicitation studies done with basic object manipulations in optical see-through augmented reality

(AR) environments [1, 15]. The difference between these studies is the display of referents.

Referents display is often not the main focus of elicitation studies yet, humans possess powerful

mimetic skills. Imitation of visible action is considered an inborn skill [35] and imitation of speech

plays a formative role in human development [36]. Referents are a means to map commands to

input proposals. We find that the choice of referent display is also the choice of how to bias referent

imitation in proposals. The examined works were conducted by the same lab with different subjects

from the same participant pool [1,15], but did not have equivalent results, thus giving evidence that

minor changes in the methodology used in elicitation studies can cause differences in the results

obtained.

This work uncovers evidence of a biasing effect inherent in elicitation methodologies, a funda-

mental concern that has been overlooked thus far. This biasing is caused by participants imitating

referents as they were displayed. This concern is grounded in a comparison of data obtained from

two studies, two prior replication/reproduction studies, and the literature surrounding human psy-

chology. The comparisons address the differences in elicited proposals across three modalities of

inputs: gesture alone, speech alone, and co-occurring gesture+speech. To continue the improve-

ment of elicitation methodology, we propose design recommendations to limit or remove imitation

bias.

A consensus set of gestures is a separate contribution of this work. That set of gestures is

derived from one of the elicitation studies run during this research. This consensus set is presented

with comparisons against the gestures produced in prior mid-air gesture elicitation studies.

1.1 Background

The following section outlines the key terms and processes used in elicitation studies using the

work done by Wobbrock et al. in 2009 as an example [9]. This background will allow for a better

understanding of the comparisons and conclusions made here.
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1.1.1 Terms

• Elicitation: prompting potential end-users of a system to generate inputs for that system

• Agreement: a measure of how many participants proposed the same interaction

• Consensus set: a set of proposed interactions that are highly agreed upon by participants

• Proposal (sign): the input suggested by a user for a given command (referent)

• Referent: the command/action which the input proposal will execute

• Wizard-of-Oz (WoZ): a study design where a system’s recognition capabilities are emulated

by an experimenter

• Think-aloud: when participants are asked to describe what lead to the formation of their

input proposal

• Binning: partitioning proposals into equivalence classes based on pre-defined metrics (i.e.

the number of fingers used, hand posture, motion)

1.1.2 Elicitation Protocol

Most elicitation studies follow the same protocol. Commonly around 25 (Median = 20 Standard

Deviation (SD) = 4) participants are recruited [3]. These participants are then asked to generate

input proposals for a list of referents to be executed. These referents are presented one at a time

and the participant produces an input proposal they think is appropriate using the input modality

requested. Elicitation studies often use Wizard of Oz (WoZ) experiment design which is a way to

remove the gulf of execution between the participant and the system by having the experimenter

trigger the recognition of inputs [9]. This allows users to feel like they are interacting with a live

system. In the 2009 study done by Wobbrock et al., 1080 gesture proposals were made by 20

participants proposing both one and two-handed gestures across 27 referents [9]. Referents are

commonly specific to one domain or application. The domain chosen in Wobbrock et al.’s work

was surface computing and as such referents included move a little, move a lot, pan [9].
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Data is most commonly collected through video recordings [3, 37] however, sometimes other

means such as skeletal tracking used [19, 31]. The video data is paired with the observational data

from interviews and information from the participants gathered by using a think-aloud protocol.

Wobbrock et al. used video paired with think-aloud data [9]. The video data is hand-annotated by

one or more raters and broken into gestures proposed [1, 9, 15, 38]. These will be very granular

gestures with notes on features including the number of fingers used, hand position, and direction

of movement [5, 15]. These gestures are binned into equivalence classes based on predefined

similarity features or insights from previous work. One such insight is that participants often don’t

recall or care much about the count of fingers used in a gesture allowing for groupings of one

and two-finger similar movement gestures together [6, 9]. Wobbrock et al. used four binning

dimensions based on the movement of the gesture [9], other dimensions could be a proposal’s

semantic features [39]. When skeletal data is collected computer vision techniques can be used

to bin gestures eliminating the need for hand annotation and potentially the human bias arising

from hand annotation [31]. The binning of proposals is an important step towards removing the

individual-level characteristics of the proposals in favor of a more generalizable consensus set.

Agreement metrics are used to quantify consensus across participants on the binned gesture

proposals by referent. Often this agreement is measured using the Agreement Rate formula, which

is a measure of pairs of participants in agreement over all possible pairs [9]. Other metrics such

as machine learning techniques [31] and metrics designed for speech [18] exist. Based on these

metrics, a set of consensus gestures is proposed for referents that achieve higher than a prede-

termined level of agreement. This level is often around 0.3 for sample sizes of 20 based on the

distributions of agreement from varying participant counts [30]. Design guidelines informed by

the proposal space and observational data are a secondary contribution of elicitation studies. The

results of Wobbrock et al.’s study was a consensus set of user-defined multi-touch gestures as well

as a taxonomy of gesture use [9].
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1.1.3 Elicitation Criticisms

Elicitation studies have received criticism in a few areas. First is the impact of legacy bias on

input proposals [40]. Legacy bias is when a gesture proposal is heavily informed by participants’

interactions with prior technology. An example is a participant saying “F5” when suggesting a

speech input for refreshing a browser page [18]. This bias could be leveraged and is not always

considered a negative quality of input proposals [23, 41]. Using legacy or near legacy interactions

can lead to a more discoverable interaction set as it can mirror users’ preconceived mental mod-

els of interactions [41, 42]. Several methods exist for reducing legacy bias, further widening the

variances found in elicitation procedures. These reduction methods include production (asking for

more than one proposal per referents), pairing (grouping participants), and priming (influencing a

participant’s mindset before eliciting proposals) [40].

Another elicitation concern is the issue of chance agreement which occurs when the input

proposal space is small enough that high agreement rates could conceivably be caused by ran-

dom chance because the agreement rate formula assumes an infinite space of gesture proposals

where in actuality that space limited [32]. Tsandilas (2018) suggests that participants will actually

cluster around a subset of gestures making the actual proposal space sampled from much more

limited [32]. A way to resolve this is to calculate the Fleiss’ Kappa coefficient and the associated

chance agreement term to assess the impact of chance agreement [32].

1.1.4 Imitation

This paper raises the issue of imitation as a concern needing to be addressed in elicitation

methodologies. Imitation is a natural human trait that is deeply ingrained in everyday social and

physical processes. Imitation of visible action has been considered either an inborn skill [35] or

learned via self-observation [43] and reinforced from a young age [44]. Regardless of where it

arises from, the existence of automatic imitation is the same. Non-human representations (i.e.,

a wooden hand) stimulate lower imitation than human representations [45]; however, geometric
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objects seem unaffected by this if their action can reasonably be completed by a human [46], as is

the case for referents.

During imitation, perception and action are tightly coupled by a direct perceptual-motor map-

ping [47, 48]. That mapping connects visual information to proprioceptive information [49]. This

mapping is supported by work done on mirror-neurons in primates’ pre-motor area, which fire

the same way both when acting and viewing an action [50]. Similar neuron activation has been

observed in humans [51].

Imitation causes increased activity in the brain’s Broca’s area which is thought to be involved

in speech production [52]. Speech imitation is a skill used from a young age to facilitate lan-

guage learning [36]. Imitation of speech is debated to either cause erroneous mirror-like activa-

tion [53], or to be more difficult to execute due to the muscle groups involved and complexities

of language [54]. Under either theory, imitation of action via gesturing is likely antecedent to

speech [55].

1.1.5 Referent Display

The goal when presenting a referent is to establish the command to be completed by the input

proposal. If eliciting commands for television-based web browsing then a referent would be re-

fresh page [18]. Refresh page could be presented as text reading “refresh page”, an animation of

a web page being refreshed, or an experimenter reading the referent aloud. In the case of Morris,

2012, and Nebeling et al., it was both showing the effect of the referent (the animation) and stating

its name aloud [18, 19]. Note that both of these studies used gesture and speech as input modali-

ties. The effect of speech imitation can be seen in their results; however, it was never mentioned

that reading the referents out-loud contributed to the high overlap between spoken referents and

participant speech proposals.

Referents have been presented to participants in a variety of ways which becomes problem-

atic when the elicited proposals may be highly impacted by the choice of referent presentation.

Referent display techniques have included animations paired with spoken aloud instructions [18],
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images [56–59], animations alone [7, 15, 60–63], text alone [1], only read aloud [64], text and an-

imation [38, 65], text and read aloud [23, 29, 66], and the combination of text, reading aloud, and

animations [4]. On occasion, the exact form of display is left slightly unclear [6]. With this wide

range of prompts used and some evidence suggesting that referents can bias the proposal [3], we

believe that further study of the impacts/implications of referent display is merited.
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Chapter 2

Related Work

While this work talks about replication, it does not identify the replication of results as a main

goal. Comparisons of prior replications in elicitation are used to highlight the differences in results

and in particular the differences in results when they can be reasonably explained by the choice

of referent display. This section also covers the limited prior work on AR-HMD mid-air gesture

elicitation to further motivate the produced gesture consensus set.

2.1 Elicitation Study Replications

The singular reproduction study found in a recent review of gesture elicitation studies [3] was

the work done by Sukumar et al. (2018) [39] replicating the work of Wolf et al. (1987) [67],

and Welbourn et al. (1988) [68]. The study elicited pen and touch-based gestures on a multi-

touch surface for use in text editing applications [39]. Sukumar et al. used a modified elicitation

methodology based on the work of Wobbrock et al. in 2005 [8, 39].

Both of these studies observed participant behavior during a writing and text editing task.

The main difference between these works was the use of a multi-touch surface [39] as opposed

to pen and paper [67, 68]. That difference was further pronounced by telling participants they

were interacting with a live recognition system compared to paper alone causing a difference in

perception that could impact the participant’s production of proposals [69, 70].

The study employing multi-touch devices found some interactions to be quite similar to the

prior two studies, examples being the gestures proposed for the referents “insert”, “delete”, and

“move”. Sukumar et al. note differences in the referents “join”, “split”, and “new paragraph”

which were conceptually similar to the commands used in the previous experiment [68], but had a

different wording [39]. They go on to speculate that the differences in results are caused by those

variations in terminology, citing other work that used the same terms to produce similar results

during multi-touch elicitation [71]. The differences in terminology used are akin to differences in
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referents used. The legacy biases inherent in the participants caused by 30 years of technological

advancement may have also contributed to differences in results [40].

The sole replication study found by that same review of gesture elicitation studies [3] was

the study by Nebeling et al. (2014) replicating the work of Morris (2012) [18]. Both of these

studies elicited gesture and speech commands for a television-based web browser equipped with

a Microsoft Kinect using 25 participants each. Participants were put in pairs with a single triad

and asked to generate either a speech, gesture, or gesture+speech command for each referent. The

referents were shown as animations and read-aloud. The work of Nebeling et al. replicated the

conditions of Morris, 2012 [18] as closely as possible, omitting only a few of the original referents.

Participants’ interaction modality preferences were largely the same between the two studies,

choosing to use either speech alone 56% (Morris, 2012) and 65% (Nebeling et al.) of the time,

gesture alone 41% and 31% of the time, or multimodal gesture+speech interactions 3% and 4%

of the time [18, 19]. More varied results are found in the interaction proposals. Each study had

some overlap between proposals but differing proposal frequencies. An example of this is seen in

the proposals for the referents “go back” which had 7 participants propose “flick hand (arrow)” in

Morris’ study and 5 in Nebeling et al.’s study. Some referents had less similarity, demonstrated by

the “click link” referent which had 7 “hand-as-mouse + click/grip” proposals in Morris, 2012, and

11 in Nebeling et al.

Differences in past exposure to the Microsoft Kinect and the demographics of the participants

may have contributed to the variation in results. Most participants in the original work had some

exposure to the Microsoft Kinect whereas very few participants had that exposure in the replication.

Regardless of the causes of the differences, the examination of these two studies brings to

light the issue that proposals may not replicate well. More work is needed to examine the po-

tential causes of this failure to replicate. This paper contrasts two studies that were run in the

same controlled environment with different participants from the same participant pool, and in the

same year, allowing for removal of the concern of differences in time and some of the concern of

differences in prior device exposure impacting the elicited proposals between the two studies.
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2.2 Gesture Elicitation

Several studies have created gesture sets using gesture elicitation [11,12]. Most of these works

focus on gestures for domains outside of mid-air 3-Dimensional use. These include studies on

multi-touch devices [12, 21], mobile devices [22], internet of things home setup [24]. Commonly

these studies will impose constraints on what a user can propose such as asking for pointing ges-

tures [72, 73], paddling gestures [74], or 2-dimensional (2D) gestures [73, 75].

There has also been some work on gesture elicitation in augmented reality; however, it was

done using a VR headset and rendering hands which excluded both the rendered object’s opacity

and the user’s real world view that AR provides [5]. Recent work on mid-air gestures has been

done for smart devices/rooms [66, 76].

The work presented here is unique in that there are no constraints imposed on input proposals.

Participants are free to generate any proposal that they feel is best suited to the referent displayed.

A second major difference is that this work was conducted using an optical see-through AR-HMD.

The gestures produced within an AR-HMD may vary due to the user’s perceived state of the system

and the visual feedback of their hands.
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Chapter 3

Methods

This paper used the annotated data from the two studies performed during this course of re-

search [1, 15]. These studies observed participant’s interactions and behaviors while completing

basic tasks within a generic AR environment. The input modalities examined in these studies were

mid-air gesture, speech, and the combination of mid-air gesture+speech [1, 15]. These two ex-

periments were similar apart from the way the referent was displayed. The first study used text

referents (top of Figure 3.1), referred to as “E-Text” [1]. The second study used animated refer-

ents with no text was shown except the modality to be used (bottom of Figure 3.1), referred to as

“E-Animated” [15]. Statistics were run in R version 4.0.2.

Figure 3.1: High level study flow, Top: text referent (E-Text), Bottom: animated referent (E-Animated)

Both experiments were run on a Magic Leap One optical see-through augmented reality head-

mounted display. The system for each was developed in Unreal Engine using version 4.23.0 for E-
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Text and 4.24.01 for E-Animated. Each experiment was developed on a Windows 10 professional

computer with an Intel i9-9900k 3.6GHz processor and an Nvidia RTX 2080Ti graphics card. The

internal camera on the Magic Leap One, an external 4k camera, and a head-mounted GoPro Hero

7 camera each recorded video.

3.1 Study Design

The two experiments examined here each used a Wizard-of-Oz (WoZ) design. Participants

were videotaped from both ego-centric and exo-centric viewpoints while interacting with the sys-

tem. The participants’ inputs were only constrained by the input modality of the condition that

they were in. Within each input modality condition, participants were invited to generate any input

proposal that they felt was appropriate for the referent presented. If the modality was speech then

any utterance proposed was accepted causing the experimenter to trigger the system’s recognition

of that input, thus advancing the experiment.

In both experiments, participants first completed the informed consent and demographics ques-

tionnaires. The demographics questionnaire was used to establish the participant’s previous expo-

sure to mid-air gestures (e.g. the Microsoft Kinect) and Virtual Reality (VR) and AR environments.

This questionnaire also included standard demographic questions such as age, gender, and hand-

edness attributes.

Next, the participants viewed an instruction video that explained the experiment. These video

instructions were similar for both studies apart from referent presentations (i.e., animated with

E-Animated, text with E-Text). The videos outlined the high-level objectives of the experimental

tasks. The video informed participants that they would be asked to complete a series of object

manipulations using different modalities of input and within each modality any input they proposed

was acceptable. Participants were given a practice round where they generated a proposal for a

color change referent in each modality. During the practice block for E-Text, participants could

test the system’s on-screen hand detection which would alternate between showing a red hand with

a line through it or a white hand indicating that their hand was either in the tracking range of the
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device or not (top Figure 3.1). During the practice for either experiment, the participant could ask

questions about the experiment and what was expected of them.

After the practice round, participants were shown interaction modalities in a counterbalanced

order. Within each modality, the referents were shown in random order. For example, participants

may have seen “gesture and speech” first, then after generating proposals for each referent, see

the next modality condition (gesture alone or speech alone in this example). In each trial the

participant was shown a cube rendered approximately 50 cm away from them, centered in their

viewport. The NASA Task Load Index (NASA-TLX) survey was administered after the completion

of all referents for a given input modality condition to measure that input condition’s perceived

workload [77]. The NASA-TLX is a survey used to rank participants’ perceived workload across

six subcategories conditions; mental demand, physical demand, temporal demand, performance,

effort, and frustration [77]. The scores from the subcategories are combined to give an overall

score.

Some objects are likely to prime users to form specific hand-shapes when interacting with

them. This priming is normally caused by the affordances of the object. For example, a coffee

cup will likely prime gestures to be shaped to match the handle of a coffee cup where a plate

might cause more gestures that mirror handling a plate. This work chose a cube as the object to

be interacted with. A cube represents a simple object that can help remove some of the impacts of

object affordances on proposals [64]. While this choice limited some priming for specific object

grip gestures (i.e., grabbing a handle of a cup) it did cause some proposals to have flat-handed

gestures emulating physical contact with the surface of the virtual cube. In E-Animated it allowed

for visual cues of rotations not seen in with a cylinder or sphere.

3.1.1 Differences in Methods

In E-Text, the referents were shown as text and read aloud (top of Figure 3.1) [1]. Participants

were told they were interacting with a live system, leveraging the Wizard-of-Oz design. Upon

initiation of a proposal, the experimenter would trigger the system’s recognition of that input which
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would then execute that referent’s animation. The animations ran for two seconds, then a blue

screen was shown. After another delay, the next referent was loaded. This cycle would continue

until all referents and modalities were completed.

In E-Animated, the referents were shown as animations that were triggered two seconds after

loading the cube [15]. Participants would see a blue screen, then the rendered cube and modality

information (right of Figure 3.1). After a two-second delay, the referent would execute the same

animations shown in E-Text (with exceptions to the abstract referents). In E-Text, these animations

were shown after a proposal was made, and in E-Animated, they were shown before. Upon seeing

the animations, participants had to “guess” what command a fictitious participant in another room

had used to generate that input proposal creating the belief in participants that the system was live

but disabled for them. This design choice was made to try to capture feelings of interaction with a

live system as seen in E-Text.

With either design, differences were expected based on the level of priming caused by either

the animations or the text [1, 15]. When the referents were shown as text, the proposed speech

closely follows that text. The use of text referents in elicitation is common [4,23,29,64,66]. When

prompting the user with animations, the gestures produced are more likely to be primed by the

movements of the objects. This design is also common within elicitation studies [7, 15, 60–63]. In

the few multimodal elicitation studies that have been run, the impact of these decisions has never

been stated [18, 19]. This omission has indirectly implied that common elicitation methodologies

may be equally valid when dealing with multimodal or non-gesture inputs.

3.1.2 Referents

Table 3.1: Referents used by category

Translation Rotation Abstract Scale

Move (Left / Right) Roll (C / CC) Create Enlarge

Move (Up / Down) Yaw (Left / Right) Destroy Shrink

Move (Towards / Away) from self Pitch (Up / Down) Select

Legend: C: Clockwise; CC: Counter Clockwise
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These studies used referents (i.e., commands) that are considered canonical manipulations for

3D user interfaces [78, 79]. The canonical referents used were selection, scaling, translation on

each axis, and rotation about each axis. The abstract referents of create, and destroy were also in-

cluded to increase the usability of these results in generic interactive environments. These referents

can be viewed by category of action in Table 3.1. For referents that were not select, participants

were told they could assume objects were already selected. These referents were selected to gener-

ate a set of user-derived interaction techniques that would be usable in generic AR building tasks,

an example task being the construction of a virtual house in an AR environment using virtual

Lego-like blocks.

3.1.3 Pilot Studies

Before running these experiments, one survey, two pilot studies, and one observational session

were administered to different groups of participants. The pilot survey was administered to an

entry-level computer science course for students with non-traditional backgrounds (N=35). This

survey asked participants to define the referents that were used in the two elicitation studies (Ta-

ble 3.1).

Two versions of the main elicitation experiment were run on pilot groups consisting of 6 people

each. In one, referents were displayed as text (top of Figure 3.1); in the other, the action of the

referent was shown as an animation. As an example, if the referent was move left, in the first set

up the screen read “move left” and participants were asked to propose a command to execute that

referent (similar to [9, 18]). Upon generation of that proposal, the virtual object would move. In

the second design, the virtual object would move before participants were asked to generate an

appropriate command proposal (similar to [7]).

An observational session was run where 5 participants were shown different animations for

the referents create, delete, and select. After seeing each animation those participants were asked

to state what the animation was showing (i.e., moving left, selection). Variations of animations

for create, and delete were shown using no animation and using a slow materialization where
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the object was loaded or removed over time with particle effects. Animations shown for select

included arrows pointing at an object, an object bouncing, and an object being highlighted. This

was done to help solidify the animation choices for the abstract referents delete, create, and select.

Raw counts were used when interpreting the pilot study data.

3.1.4 Participants

The pilot survey was administered to 35 incoming computer science undergraduate students.

The pilot studies were run with 6 participants each using the same recruitment methods as were

used during the final experiments. The observational session had 5 participants volunteer from the

same pool of participants recruited for the final studies.

Each study consisted of 24 volunteers (E-Text: 4 female, 20 male; E-Animated: 10 Female, 14

Male). Participants were recruited using emails and through word of mouth. Ages ranged from

18-43 years (Mean = 23.32, SD = 5.23) in E-Text and 18-46 years old (Mean = 25, SD = 6.9) in E-

Animated. Two participants in E-Text and five in E-Animated were left-handed. In E-Text, eleven

participants reported less than 30 minutes of Microsoft HoloLens 1 usage before this experiment.

In E-Animated five participants reported weekly use of VR. Only two of those participants used

VR more than 5 hours weekly (5 hours, 10 hours). The other three participants reported 1-3 hours

of VR use weekly. Several participants did not learn English as a first language but reported

fluency in it(E-Text: 8, E-Animated: 7). Across both experiments, all participants reported normal

or corrected to normal vision.

The sample size of 24 participants per study was grounded in prior work. Most elicitation

studies use a median of 20 participants with a mean of 25 and a standard deviation of 4 [3]. Ad-

ditionally, when agreement rate was suggested as a metric for elicitation study, a sample-size of

20 was referenced as appropriate [30]. Given that the conditions of input modality presentation

were counterbalanced, sample sizes of 18 and 24 were considered, 24 was chosen as the most ap-

propriate count. No participant was able to volunteer for or take part in more than one study or

survey.
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3.2 Data Preparation

After the experiment, each participant had data for the demographics survey, as well as 3 video

streams and a NASA TLX survey response for each of the 3 input modality conditions. This

totaled 9 video segments, 1 demographics questionnaire results, and 3 NASA TLX survey results

per participant. The 3 video streams captured were from the ego-centric head-mounted go-pro

camera, the magic leap 1’s ego-centric camera, and the exo-centric video camera.

The ego-centric Go-Pro camera videos were hand-annotated to produce the data that was in-

terpreted during these studies. The exo-centric camera was used as a fallback if the ego-centric

camera video was unusable for a given referent (e.g., a user’s hands were out of the frame). Par-

ticipants made gesture proposals for each referent in both the gesture alone and gesture+speech

conditions. Participants proposed utterances for each referent in the speech and gesture+speech

conditions. A set of videos for a single participant would have a total of 51 input proposals broken

down into 17 gesture-only proposals, 17 speech-only proposals, and 17 gesture+speech proposals

(e.g., a gesture proposal with a co-occurring speech proposal given for a single referent).

3.2.1 Pilot and Survey Data

Demographics characteristic information was collected and merged into a single file for each

experiment. This data included prior device use information, age, gender, eye-sight, and major

or job type information. The NASA TLX data were merged into a single file per input modality

condition within each study. At the end of this process, each study would have one demographics

information file, and three NASA TLX files, one for each input modality condition. Each NASA

TLX file has the data from all participant’s responses for its corresponding input condition. Raw

scores, averages, medians, and standard deviations were used when analyzing the NASA TLX and

demographics survey data.

The pilot survey data were reduced over all participants such that each participant would have

1 response to each referent that was either correctly or incorrectly defined. The data from the

pilot studies were identical to the raw video data collected during the full experiments. For E-
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Text the speech proposals were marked as either repeating the referent or not repeating it. The

gesture proposals and time information were not annotated from those videos. Instead, these videos

were watched by the experimenter to gain a better understanding of how much text or animation

biased participant input proposals. Experimenters went through the videos of the observational

session and noted which animations were incorrectly identified and which were correctly identified.

This resulted in a list of referent animations and counts of when they were or were not identified

correctly, and a short text field indicating what participants identified the animation as if it was

incorrect. Raw counts and averages were used when interpreting the pilot survey, pilot studies, and

observational session data.

3.2.2 Gesture Data Preparation

Gestures were annotated from the video at a granular level then binned into high-level equiv-

alence classes. At the granular level gestures were binned based on fingers used, hands used, the

shape of the hand, and motion of the gesture. These classes were then collapsed based on group-

ings of fingers used and hand poses. Some examples of these are “grasping” where all fingers

were closed, “pinching” where just the thumb and index or thumb index and middle fingers were

touching, “open” where all fingers were extended, and “index finger” where only the index fin-

ger was extended. Additionally, movements along the same axis were considered the same. For

example, translations right and left were both considered movements on the y-axis. These equiv-

alence classes are reasonable given that users care less about the count of fingers used than the

hand pose used [26]. This resulted in each participant having a binned identification (ID) number

for each gesture proposed. These were recorded per referent and modality condition such that a

participant would have 17 gesture proposals for gesture alone and 17 gesture proposals from the

gesture+speech condition. Agreement metrics were computed using these gesture IDs.

3.2.3 Speech Data Preparation

The utterances proposed by each participant were hand transcribed from the video recordings

of the speech only and the gesture+speech conditions. The speech data was then binned based
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on the syntax used. These bins included words that indicated action, direction, and object spec-

ification. Some articles of speech were discarded for this analysis such that saying “move the

object left” was considered the same as “move object left”. Separately the utterances proposed

were grouped by common words. These groups used strict criteria where “move backwards” and

“move backward” would be considered the same but “move back” would be different. This re-

sulted in a participant having 17 speech only proposals and 17 speech proposals for co-occurring

gesture+speech interactions. These proposals were matched to their corresponding referents and

input modality conditions. These binned utterances and syntax choices were used when computing

the speech consensus metrics.

3.2.4 Gesture+Speech Data Preparation

The gesture proposals and speech proposals from the gesture+speech input condition were

annotated individually from the videos following the same practices described for the unimodal

gesture and unimodal speech conditions.

For each referent and proposal, the experimenters hand-coded the timestamps from the video

for when the gesture portion of the proposal and the speech portion of the proposal were initiated.

Instances where a hand moved and then immediately returned to the rest position before executing

an actual gesture were excluded. Similarly, for speech proposal instances where participants said

“um” or another filler word with a pause before a second utterance with contextual meaning were

excluded. The start time for the gesture portion of the interaction was subtracted from the start

time of the speech portion of the interaction. This gives a time coding where time 0 was always

gesture initiation and the time listed represents the time delay between that gesture and its cor-

responding speech proposals. These times could be negative, zero, or positive. A negative time

occurs when speech is initiated before gesture and a positive time when speech was initiated after

the gesture. This resulted in each participant having 17 time values, one for each referent during

the gesture+speech input condition. These time values were averaged for each participant before

analysis giving 24 time values for each study (one for each participant).
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3.3 Analysis Performed

This section will cover the analysis and higher level goals used in interpretation of the data

from these experiments.

3.3.1 Pilot Data

The pilot survey data was analyzed using the raw counts of the correctly and incorrectly an-

swered responses per referent across all surveyed participants. The pilot studies were analyzed by

experimenters watching the video of the sessions and by using the raw counts of times the referent

was repeated in the speech and gesture+speech conditions of E-Text. The raw counts of partic-

ipants that correctly or incorrectly identified the animation shown during the last observational

session were used to help inform animation design for the elicitation experiments.

3.3.2 Gesture Metrics

For gesture analysis, the main metric used was Agreement Rate (AR). The formula for AR is

shown in Equation 3.1. AR is a measure of how much participant agreement there is for a given

referent. Given the sample size used (24) a AR of .3 is considered high agreement, meaning if the

referent select achieved an AR of .5 then the most frequent proposal for select would be considered

highly agreed upon and thus discoverable to novice users of this system [30]. In Equation 3.1, P

is the set of all proposals for referent r, and Pi are the subsets of equivalent proposals from P [30].

AR(r) =

∑

Pi⊆P

(

|Pi|
2

)

(

|P |
2

) (3.1)

The rate of individual gesture proposals were compared across referents between the two stud-

ies. An example would be saying that the gesture with the binned ID “08” was proposed 9 time

when prompted with animations and 2 times when prompted with text. Note that within each refer-

ent and input condition a participant can only have a single gesture proposal. This analysis aimed

to outline the differences in proposal formation and frequency as dependent on referent display.
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3.3.3 Fleiss’ Kappa

To calculate the level of chance agreement (Pe) within the elicited proposals the chance agree-

ment term (Equation 3.2) is used. This term stems from the calculation of Fleiss’ Kappa [32].

In Equation 3.2 m is the total number of proposals, nik is the number of participants proposing

proposal i in bin k, ni is the total number of proposals for proposal i. The term πk reflects the

chance that a rater classifies an item into category k based on the times that category has been used

across the data. q is the space of possible proposals. The AR can be inflated by chance agreement

if the total number of distinct gestures proposed during the study is low. The use of Pe allows us

to compare the AR value with the level of chance agreement to determine if the AR is inflated

because of high levels of chance agreement.

pe =

q_
∑

k=1

π2

k, πk =
1

m

m
∑

i=1

nik

ni

(3.2)

3.3.4 Speech Analysis

Speech was analyzed using two metrics of agreement. The first is max-consensus (MC).

MC is the percent of participants proposing the most common utterance proposal [18]. If 12

participants proposed the utterance “move left” for the referent move left and 5 propose “left”, 2

propose “move”, and 1 participant proposes “sideways” the MC equals 60%. The second speech

metric is the consensus-distinct ratio (CDR). CDR is the percent of proposals for a referent that

has over a baseline of 1 participants proposing them [18]. In the above-mentioned proposal sce-

nario, the CDR is 75%. MC and CDR were averaged across referents to gauge the general level

of difference in metrics between the two studies.

These metrics capture the peak and spread of the speech proposal space [18]. If a referent

has a proposal with a high MC , that proposal is considered discoverable to novice users of this

system. Alternatively, a high CDR means that a referent has a high amount of disagreement on

the best choice of proposals for that referent between participants. These are not exclusive metrics.

It is possible to have a referent with a single highly proposed interaction (i.e., a high MC ) and a

22



number of proposals that are suggested by single participants (i.e., high CDR ). This would imply

that there is a clear most common utterance but not a clear second place or alternative choice

utterance. By comparing these metrics and the top choice utterances for the speech proposals from

the speech-alone and the gesture+speech input conditions, the differences in the elicited speech

proposals across the two choices of referent display can be assessed.

Speech was also analyzed using each of the binned syntax’s rate of use as a percentage of all

syntax use. The goal of the syntax analysis was to outline the impact of referent display on speech

proposal syntax.

3.3.5 Time Windows Analysis

The time window information as annotated from the videos of the participants interactions

during the study were first analyzed using Shapiro-Wilk tests of normality. Then, as informed

by the results of the previous test, Wilcoxon rank sum tests were used to assess the median time

between gesture and speech initiation. The goal of the Wilcoxon rank sum test was to find what

time windows could be reasonably expected, if there were differences between the median values

of these time windows as caused by referent display, and to visually compare the differences in

time windows between the two experiments.

3.3.6 NASA TLX Analysis

Means and standard deviations were computed for NASA TLX results. The differences in

NASA TLX results between input modality conditions were compared using Welch Two Sample

T-Tests. Sharpiro-Wilk tests for normality were run first to see which category of t-test would be

appropriate.

3.3.7 Consensus Set

The gesture consensus set is derived using most frequent gesture proposal for the gesture and

the gesture+speech conditions. Recommendations of use are grounded in the AR results for

referents in the gesture and the gesture+speech conditions.
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Chapter 4

Results

The goal of this work is to assess the impact of referent display on the resulting input pro-

posals during elicitation studies. This paper also provides a consensus set of gestures from E-

Text. As elicitation continues to gain popularity in assessing multimodal input design, this meta-

examination is critical to the ongoing improvement of elicitation methodology. This study repre-

sents the first comparison of elicitation studies that were done by the same team, with the same

subject pool, in the same year. This examination can provide insight into how minor changes in

design can impact results.

The results of the original studies were divided into four comparisons: gesture versus gestures

from gesture+speech, speech versus speech from gestures+speech, gesture+speech alone, and sur-

veys or additional data. This paper will examine the differences in these studies in a similar manner

comparing first the impact of showing a participant an animated referent compared to a text-based

referent on gesture, then speech, then the combination of gesture+speech, and then a comparison

of the survey results. The results section concludes with a consensus set of gestures for use with

generic object manipulations in AR.

4.1 Pilots and Observation Studies

4.1.1 Pilot Survey

The definitions for the translation, scale, and abstract referents were each correct for more than

30 of the responses of the pilot survey. The rotational referents, particularly pitch and yaw, had 2 of

35 people correctly define them. Due to these results, a visual explanation of rotation commands

was added to the video instructions using a stuffed animal to minimize biasing the subjects. In

the past, using an airplane metaphor (palm down with fingertips as the nose) biased the subjects to

perform “airplane” gestures [80].
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4.1.2 Observation Session

During the observational session using varied animations for the abstract referents, 3 partici-

pants accurately identified the animated referent create or delete where no participants identified

the unanimated referent correctly. Select was more difficult to animate. The highlighting condi-

tion had 2 participants correctly identify the animation as a selection. No participants correctly

identified selection in the other animations. Based on this, the results for the abstract referents in

E-Animated were expected to be highly biased by the animation used. Additionally, the highlight

selection and particle effects creation/deletion animations were chosen for use.

4.1.3 Pilot Studies

During the speech block of the pilot study where referents were displayed as text, participants

would commonly repeat the referent displayed. For example, if the referent was move left the

utterance was also “move left”. In the pilot study without text, for simple translations, the most

frequent utterances were “move” and the direction such as “left”. For the referents that were not

translations, the repetition varied more between the two conditions. For the rotational referents,

most participants exactly mirrored the displayed text. These participants were from the same

pool of students that the pilot survey was administered to indicating that this repetition occurred

even when the likelihood of participants being familiar with the rotation terms was low. For the

animation condition, the proposals for rotational referents were most commonly “rotate” with a

direction (i.e., left, up).

In the version of the pilot study where referents were shown as movement (bottom of Fig-

ure 3.1), people would nearly always propose a gesture that used a motion that very closely

matched the object’s animated motion. For rotations, people would twist their wrists into un-

comfortable positions to try and match the object’s motion. For the abstract referents, people’s

gestures would mirror whatever animation was shown. If the virtual object was materializing from

right to left, participants’ hand moved from right to left. None of the participants understood what

was being asked of them when the referent was create and the virtual object appeared with no
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animation. The effects of referent animations biasing gesture production can be seen in the elicited

gestures of prior work [7]. Examples include the proposed gestures for the orbit and pan referents

which have participants’ top choice gestures mirroring the visual motion of those referents.

4.2 Gesture Comparisons

4.2.1 Agreement Rate Comparisons

Table 4.1: Agreement rates per referent compared across E-Text and E-Animated with absolute differences

shown
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Gesture

E-Text 0.08 0.11 0.29 0.55 0.37 0.48 0.47 0.47 0.34 0.17 0.14 0.54 0.66 0.84 0.24 0.32 0.27

E-Animated 0.21 0.08 0.31 0.35 0.34 0.51 0.44 0.28 0.49 0.14 0.29 0.51 0.34 0.10 0.13 0.19 0.19

Difference 0.12 0.02 0.02 0.20 0.02 0.03 0.04 0.19 0.14 0.02 0.15 0.03 0.32 0.74 0.11 0.13 0.08

Gesture+speech

E-Text 0.06 0.10 0.28 0.47 0.46 0.62 0.47 0.34 0.38 0.24 0.23 0.48 0.35 0.82 0.29 0.31 0.30

E-Animated 0.13 0.08 0.28 0.56 0.30 0.74 0.69 0.38 0.40 0.27 0.34 0.32 0.59 0.10 0.20 0.26 0.33

Difference 0.07 0.02 0.00 0.08 0.17 0.12 0.22 0.04 0.02 0.03 0.10 0.16 0.24 0.72 0.09 0.05 0.03

Legend: C: clockwise, CC: counterclockwise, referents and differences with high levels of

agreement rates are highlighted, differences are absolute values

The agreement rate (AR ) metric is a measure of the consensus of participants’ proposals for

a given referent [30]. While these rates are typically not to be compared across studies due to

the potential for the number of participants to impact the calculation of AR , the equivalencies in

design between the two experiments make it reasonable to compare the AR here. The agreement

rates for the two studies can be seen in Table 4.1. For 9 out of 17 referents in the gesture condition

and 7 out of 17 referents in the gesture+speech condition, the difference in AR is below .1. As

a reference point, given the studies sample size and the correlated Fleiss’ Kappa [30, 32] (E-Text:

.057, E-Animated: .054) [1, 15], an AR of 0.1 to 0.3 is considered medium agreement, and a rate

of 0.3 to 0.5 is considered high agreement. This indicates that the differences in referent display
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between the two experiments caused a medium difference in AR . For 4 out of 11 referents in the

gesture condition and 3 out of 12 referents in the gesture+speech condition, the agreement changed

from being considered high agreement to medium agreement. This means that 30% of the referents

with high agreement for one referent display had medium agreement when the alternative display

was used.

Stark differences in the agreement are found in the select referent which required an abstract

animation (Table 4.1). The difference in AR for the select referent between experiments was 0.74

for the gesture condition and 0.72 in the gesture+speech condition. In E-Text, most participants

tapped the cube with a single finger causing select to have the highest AR out of all of the referents.

In E-Animated, proposals became far less consistent due to varied interpretations of the referent’s

meaning. This difference is expected to be caused by participants misinterpreting the animation

for select which was the cube becoming “highlighted” by increasing its glow and hue. The only

other referent that had a high level of difference in AR between the two studies was the Roll

Counterclockwise referent in the gesture only condition. Roll counterclockwise had a difference in

AR of 0.32.

Both the referent create and destroy had low AR in either study which in turn made the dif-

ferences in AR between the two referent displays limited. There was an increase in AR of 0.12

for the referent create when transitioning from E-Text to E-Animated. This may indicate that the

animation used for create increased participants’ consensus on which gesture proposal was best

suited for it.

4.2.2 Granular Proposal Comparison

Heat-maps of the elicited gesture proposals from these two experiments were generated to pro-

vide a visual comparison of the differences in proposals across the two referent types; text versus

animation. The heat-maps for the gesture proposals from the gesture alone condition are shown

in Figures 4.1, 4.2 and, 4.3. The heat-maps for the gesture proposals from the gesture+speech

condition are provided in Appendix A Figures A.1, A.2 and, A.3. These heat-maps do not list
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any proposals that were elicited once across both experiments. This step reduced the visual clutter

shown in these heat-maps by reducing the number of rows (gesture proposals) displayed. As these

cases are removed, column totals may not sum up to 24. The heat-maps from both the gesture

alone and the gesture+speech condition are similar in proposal space and differences between the

two experiments. This section will use the heat-maps for the gesture alone condition to outline the

differences between gestures proposed using text-based referents and animated referents.

In these heat-maps the y-axis provides a short description of the gesture proposals, the x-

axis lists the referents across each of the two experiments. The individual cells in the heat-maps

represent the frequency of proposals for a given gesture with darker cells representing increased

proposal frequency. As an example, the first two columns of Figure 4.1 show the gesture proposals

and their frequency for the referent move up in E-Animated and E-Text respectively. The high level

of similarity between those columns suggests that there is little difference in the binned gesture

proposals elicited with text referents compared to those elicited using animated referents.

The gesture proposals for the translation referents (Figure 4.1) and the rotation referents (Fig-

ure 4.2) are often quite similar. The difference for most referents is a slightly increased variety

of gestures proposed as exhibited in the minor increase in the number of distinct proposals in the

columns for the referent pitch down in Figure 4.1. The scale referents also show similar proposal

frequency between the two experiments (far right on Figure 4.3).

The referent select has the largest deviation in gesture proposals between experiments (middle

pair of columns in Figure 4.3). In E-Text there is one gesture proposal elicited 22 times wherein

E-Animated the most frequent proposal slot is tied with 5 participants suggesting each. This dis-

crepancy is likely caused by misinterpretation of the animation for the select referent.

The delete referent elicited a few different proposals when comparing across experiments; how-

ever, these were minimal with the largest deviation being that 7 participants proposed the “bloom”

gesture in E-Animated where none proposed it in E-Text. The last referent displaying notable

differences is create which elicited 11 proposals for “bloom” in E-Animated and only 3 in E-Text.
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These heat-maps are evidence that the differences in gesture proposals for most simple referents

are relatively minor. Abstract referents may be more impacted by the shift from text to animated,

but the magnitude of the difference varied dependent on the relation of the animation used to the

meaning of the word used in E-Text. The differences in proposals for delete were limited indicating

that this animation is similar to the concept of the word delete. The differences in select show that

animations can result in a noticeably different proposal space (Figure 4.3).

Figure 4.1: Heat-map of common gesture proposals by referent and experiment (translation referents only)

Legend: Z-axis: vertical, Y-axis: horizontal, X-axis: forward/back, Open: open hand, Grasping:

grabbing hand position, Push: open palm push, TwoH: two handed
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Figure 4.2: Heat-map of common gesture proposals by referent and experiment (rotation referents only)

Legend: E-T: E-Text, E-A: E-Animated, Z-axis: vertical, Y-axis: horizontal, X-axis:

forward/back, Open: open hand, Grasping: grabbing hand position, Push: open palm push,

TwoH: two handed, CC: counterclockwise, C: clockwise
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Figure 4.3: Heat-map of common gesture proposals by referent and experiment (abstract and scale referents

only)

Legend: E-T: E-Text, E-A: E-Animated, Z-axis: vertical, Y-axis: horizontal, X-axis:

forward/back, Open: open hand, Grasping: grabbing hand position, Push: open palm push,

TwoH: two handed
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4.3 Speech Comparisons

4.3.1 Syntax Usage Comparisons

Table 4.2 displays the rates of each syntax type used by condition for each experiment. as

well as the differences in syntax used across E-Text and E-Animated. The difference in syntax

used during the speech-only condition between the two experiments was less than a 5% change.

In the gesture+speech condition, two of the syntax structures used had a shift of more than 10%

while the other differences were less than 4%. This implies that the type of syntax used when

generating speech proposals was largely unaffected by the referent display choice. The largest

observed difference was a shift of nearly 10% syntax use between using only an action phrase and

using only a direction phrase. In E-Text direction alone saw 11.76% use and action alone was used

28.19% of the time. In E-Animated there was nearly a 10% shift where action alone was used

38.48% of the time and direction alone was used 1.72% of the time. This is evidence that animated

referent display may be more likely to elicit an action phrase where text is more likely to elicit a

direction phrase. That said across most categories referent display showed minimal impact with

most differences being less than 5%.

Table 4.2: Frequency of syntax used across experiments by condition with absolute differences

Experiment <action> <action>

<direction>

<action>

<object>

<direction>

<action>

<object>

<direction> <other>

Speech

E-Text 24.75% 50.25% 12.75% 5.64% 6.13% 0.49%

E-Animated 28.19% 47.06% 14.22% 9.31% 1.23% 0%

Difference 3.44% 3.19% 1.47% 3.67% 4.9% 0.49%

Gesture+speech

E-Text 28.43% 43.87% 10.54% 4.41% 11.76% 0.98%

E-Animated 38.48% 39.95% 12.99% 6.86% 1.72% 0%

Difference 10.05% 3.92% 2.45% 2.45% 10.04% 0.98%

Legend: E-Text: text referent, E-Animated: animated referent, differences are absolute values
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4.3.2 Speech Proposals and Agreement Metrics Comparisons

The most common proposals in E-Text for both the gesture+speech and speech blocks were

always the referent as it was displayed (Figure 4.3). The MC for those proposals was uncommonly

high in every case, likely caused by participants imitating the referent. E-Animated had more

variance in the proposal space. In the translations, the top proposal was still the referent as it

would have been displayed in E-text indicating that text biasing may matter less for the translation

referents.

The largest difference in MC between the two studies was 66.67% in the speech-alone condi-

tion and 58.37% in the gesture+speech condition. The average difference in MC between studies

was 42.45% for speech-alone and 42.15% for gesture+speech. The smallest difference in MC was

16.67% in the speech condition and 20.83% in the gesture+speech condition. These numbers imply

that while in some cases the difference in MC between referent displays may be lower, for most

referents these differences are much larger. E-Text had an average MC of 75.26% (69.36% in

gesture+speech) where E-Animated had an average MC of 32.81% (27.21% in gesture+speech).

These differences suggest that, on average, speech proposals reported under E-Text were agreed

upon by more than two-thirds of participants while speech proposals under E-Animated reported

less than a third of participant agreement. The proposals that repeated referents in E-Text and the

differences in MC between the studies are strong evidence that text primed users’ speech proposals

are likely to report an inflated MC .

The CDR between these two studies was also varied. Often the CDR in E-Text was higher than

in E-Animated meaning that E-Text had a more narrow distribution of speech proposals compared

to E-Animated. These results match the differences that would be expected when referents shown

as text are imitated by participants. With most participants repeating the referent as shown, the

diversity in the resulting proposal space was lessened (0.66 and 0.47 average CDR ). Alternatively,

in E-Animated where no text was shown, there was a much more varied space of speech proposals

(0.42 and 0.39 average CDR ). This difference is largest with the move left and move right referents

in the gesture+speech condition which both had a CDR of 1 in E-Text and had a CDR of .2 and
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.33 respectively in E-Animated. These differences in CDR are further evidence that text based

referents can impact the speech proposals generated during elicitation when compared to animated

referents, resulting in a less varied speech proposal space.

The results from E-Animated show more variety in top proposals as well, particularly in the

rotational referents where ‘spin” was a common utterance. The abstract referents in E-Animated

showed the impacts of priming. For create and delete the top proposals were “appear” and “disap-

pear” which were similar to the referent but closer to the animation used. Select had a top proposal

of “change” which is much further from the referent while still close to the animation used.
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Table 4.3: Speech proposal comparisons by input condition and experiment with absolute differences and

column averages

E-Text E-Animated Difference Difference

Top proposal* MC CDR Top proposal MC CDR MC CDR

Speech

create 75% 0.33 appear 41.67% 0.18 33.33% 0.15

delete 91.67% 0.92 disappear 50% 0.57 41.67% 0.35

enlarge 66.67% 0.67 enlarge 37.5% 0.36 29.17% 0.31

move away 54.17% 0.42 move back 25% 0.38 29.17% 0.04

move down 79.17% 0.58 drop 33.33% 0.44 45.84% 0.14

move left 87.5% 0.71 move left 37.5% 0.44 50 % 0.27

move right 87.5% 0.75 move right 41.67% 0.44 45.83% 0.31

move towards 37.5% 0.38 move forward 20.83% 0.36 16.67% 0.02

move up 79.17% 0.67 move up 54.17% 0.33 25% 0.34

pitch down 79.17% 0.79 rotate 20.83% 0.46 58.34% 0.33

pitch up 79.17% 0.75 rotate away 16.67% 0.5 62.5% 0.25

roll C 70.83% 0.62 spin right 20.83% 0.5 62.5% 0.25

roll CC 70.83% 0.67 spin left 25% 0.4 50% 0.12

select 87.5% 0.79 glow 20.83% 0.54 48.83% 0.27

shrink 83.33% 0.75 shrink 45.83% 0.25 66.67% 0.25

yaw left 75% 0.79 spin left 33.33% 0.62 37.5% 0.5

yaw right 75% 0.79 spin right 29.17% 0.78 45.83% 0.01

Column

Average
75.26% 0.66 32.81% 0.42 42.45% 0.24

Gesture+speech

create 75% 0.33 appear 33.33% 0.18 41.67% 0.15

delete 91.67% 0.33 disappear 54.17% 0.33 37.47% 0.00

enlarge 66.67% 0.29 enlarge 25% 0.56 41.64% 0.27

move away 41.67% 0.44 move back 16.67% 0.64 25% 0.2

move down 58.33% 0.5 drop 29.17% 0.46 29.16% 0.04

move left 70.83% 1 move left 25% 0.2 45.83% 0.8

move right 75% 1 move right 20.83% 0.33 54.17% 0.67

move towards 37.5% 0.33 move forward 16.67% 0.43 20.83% 0.1

move up 66.67% 0.5 move up 41.67% 0.33 25% 0.17

pitch down 79.17% 0.4 spin forward 20.83% 0.6 58.34% 0.2

pitch up 75% 0.17 spin back 16.67% 0.43 58.33% 0.26

roll C 62.5% 0.33 rotate 20.83% 0.36 41.67% 0.03

roll CC 66.67% 0.29 spin left 25% 0.23 41.67% 0.06

select 79.17% 0.67 change 25% 0.36 54.17% 0.31

shrink 75% 0.5 shrink 41.67% 0.23 33.33% 0.27

yaw left 79.17% 0.6 spin 29.17% 0.36 50% 0.24

yaw right 79.17% 0.33 rotate right 20.83% 0.6 58.37% 0.27

Column

Average
69.36% 0.47 27.21% 0.39 42.15% 0.24

Legend:*: Top proposal from E-Text is the referent as displayed, C: Clockwise, CC:

Counterclockwise, MC: Max-Consensus, CDR: Consensus-Distinct Ratio, differences are

absolute values
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4.4 Gesture and Speech Initiation Times Comparison

The average times between gesture initiation and speech initiation were normally distributed

in E-Text (W (24) = 0.967, p = 0.603), but were not in E-Animated (W (24) = 0.896, p =

0.018) as supported by Shapiro-Wilk normality tests. Due to some of the data being non-normally

distributed, a Wilcoxon Rank Sum test was performed (W = 469, Z = 6.021, P < .001, r =

67.69). Which indicated a shift between the median values of the two distributions of times.

In E-Text there was a much longer wait time between when gestures were initiated and when

speech was initiated. In E-Animated, the time of speech initiation was around 60 ms faster on

average than it was in E-Text further suggesting an impact of referent display on co-occurring

gesture+speech proposal generation (Table 4.4).

Figure 4.4: Comparison of the time between gesture initiation and utterance initiation in the Ges-

ture+Speech condition
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Table 4.4: Time between gesture and utterance initiation by experiment in milliseconds

Experiment Mean Median Standard Deviation

E-Text 151.31 151.19 68.86

E-Animated 90.87 84.32 38.35

Difference 60.44 66.87 30.51

4.5 NASA Task Load Index

The NASA-TLX overall scores for each experiment and input condition are shown in Table

4.5. The NASA TLX results by condition and experiment were normally distributed based on

the results of Shapiro-Wilk tests: E-Animated gesture: W (26) = .932, p = .087, E-Animated

speech: W (26) = .971, p = .647, E-Animated gesture+speech: W (26) = 0.928, p = .07, E-

Text gesture: W (24) = .979, p = .876, E-Text speech: W (24) = 0.933, p = .113, and E-

Text gesture+speech: W (24) = 0.932, p = .105. Welch Two Sample T-Tests support that the

scores have a different mean for the gesture and gesture+speech conditions across the two studies

(t(47.926) = 2.633, p = 0.011, t(47.379) = 3.18, p = .003 respectively). This difference was not

found for the speech conditions (t(47.459) = 0.529, p = .6). These scores can be seen in Figure

4.5.

E-Animated has a lower score than E-Text for each condition (Table 4.5). The gesture+speech

condition had the largest difference in perceived workload between studies (13.2) followed by

the gesture condition with a difference of 10.6. The difference between the speech conditions

is the lowest at 2.3. The difference in perceived difficulty in both the gesture alone or the ges-

ture+speech condition provides evidence that participants found generating gesture proposals eas-

ier when shown animations compared to text. This difference in perceived difficulty may be caused

by the ease of imitating action. Speech scores were not impacted by the choice of referent dis-

play which was unexpected as participants imitated text an average of 69.36% of the time (Max:

91.67%, Min: 37.5%) in the speech condition of E-Text.
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Figure 4.5: Comparison of NASA TLX overall workload by condition and experiment with differences

Table 4.5: NASA TLX overall scores by experiment and condition with absolute differences

Gesture Speech Gesture+Speech

E-Text E-Animated Diff E-Text E-Animated Diff E-Text E-Animated Diff

Mean 39.3 28.7 10.6 33.5 31.2 2.3 43.5 30.3 13.2

SD 13.4 15.1 1.7 15.6 15.2 0.4 13.3 16.2 2.9

Legend: Diff: absolute value difference between experiments
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4.6 Consensus Set

Out of the gestures proposed in E-Text, a consensus set of the most highly agreed-upon gesture

for each referent was generated. As the AR decreases, the likelihood that these will be discov-

erable gestures also decreases. The AR for these referents is shown in Table 4.6. The gesture

proposals from E-Text were chosen for the consensus set due to the limited amount of priming text

referents displayed when compared to animated referents.

Figure 4.6: Agreement rates for gesture proposals from the gesture block and the gesture proposals from

the gesture+speech block for of E-Text (borrowed from [1])

Legend: C: Clockwise, CC: Counter Clockwise

In E-Text, the majority of referents had a clear most agreed-upon gesture proposal (Figure 4.7).

These common gestures matched in the gesture condition and the gesture+speech condition. Most

of these gestures were symmetric meaning that a “roll right” might be the same gesture as was

used for “roll left” with a difference in the direction of the circular motion used. There were

some ties where a referent had multiple gesture proposals with equal frequencies (Figure 4.8).

An example of these ties is in the create referent (Figure 4.8) which had a snap, “bloom”, and

tap all proposed with equal frequency. Some gestures were more specific to one input modality
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condition. For the gesture condition participants proposed a finger swipe gesture for delete where

in the gesture+speech condition delete was commonly a tap gesture.

A legacy biased gesture called “bloom” that was used on the HoloLens 1 AR-HMD was one of

the most proposed gestures for create. This may be because 11/24 had prior experience with the

HoloLens 1. Another legacy gesture found was the 2-finger zoom-in gesture used on multi-touch

phones which was proposed for enlarge. Enlarge also had a bi-manual expansion gesture tied for

the most common proposal.

Figure 4.7: Proposed gesture set; C: Clockwise; CC: Counter Clockwise; Bi-directional gestures indicated

with double arrows (borrowed from [1])
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Figure 4.8: Consensus gestures with ties (borrowed from [1])
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Chapter 5

Discussion

5.1 Referent Biasing Through Imitation

Prompting with text referents biased participants to imitate that text as part of or as the entirety

of their proposal, biasing the results to be in favor of the displayed referent names. This bias

artificially inflated the consensus of speech proposals. These differences caused by the referent

display for speech elicitation are more salient than what was seen in the gesture proposals. If

imitation biased speech proposals are implemented into a system that does not display the same

text as the referents that were used these elicited speech commands will be far less discoverable

than the study’s MC suggests. These differences extend beyond the individual proposals. The

syntax used in speech proposals also changed based on the type of referent display; however,

there was an association between the syntax used across the studies. Animations caused a higher

occurrence of <action> phrases compared to an increase in <direction> phrasing when using text,

suggesting that observing movement may prime more consideration of the type of movement seen

whereas text primes consideration around the direction that it should move.

The times between gesture initiation and speech initiation show some of the largest dispari-

ties in reproduction. There is a large body of work stemming from observation of the timings of

co-occurring gesture and speech in human discourse [81, 82]. Within human-computer interaction

these times have been observed for basic pointing gestures [74, 83], and interactions in AR [1,

15,16]. When prompted with text compared to animations, the time between gesturing and speak-

ing increased 166.51%. The NASA TLX results similarly convey that users perceived a higher

workload when prompted with text compared to animations in the gesture+speech condition. This

is concerning as these windows of time could be implemented into temporal fusion models, and

that within the field there is little consistency in the time windows reported [1, 15, 16, 74, 81, 83].
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Imitation of speech is considered more difficult than action imitation which helps to explain the

lower difference in the NASA TLX scores found for speech [53, 54].

Gestures were often biased such that a participant would attempt to imitate the exact motion

of the animation in their gesture proposal. For rotations, this looks like a gesture proposal that

tries to mirror the specific degrees of rotation through the movement of the participants’ wrist

(Figure 4.2). The differences in scaling gestures were more pronounced. Users prompted with

text proposed more gestures that were informed by the legacy “zoom in” and “zoom out” gestures

used on touch screen cellular phones. The animation for scaling had one corner of the rendered

cube fixed while the others moved outwards for a uniform expansion giving the visual effect of a

diagonal movement of the top corner up and towards a participant. In E-Animated, this manifested

as gesture proposals that had a similar formation as E-Text but used a diagonal movement where

E-Text was commonly only in one axis (Figure 4.3).

Previous work exhibits similar indications of interaction bias and imitation. The animations

used in prior work are often not directly specified but are rather assumed to be a logical presentation

of the referent (e.g., move left translates the object left over time). The scale gesture found by Khan

et al. [7] matches the diagonal motion found in E-Animated [15]. Imitation is also inherent in the

foot gestures that presumably mirror the movements of the animation of the avatar in Felberbaum

et al.’s work [65], or the direct manipulations for rotation and translations found my Piumsomboon

et al. [5].

The effect of imitation is observable in speech elicitation as well. In Morris, 2012, some of

the referents received speech proposals that were the referent as it was read aloud [18]. “Open

new tab” was proposed for open new tab, and “open browser” for open browser [18]. Nebeling

et al.’s replication of Morris’ work found similar imitations such as “zoom in” for zoom in or

“go back” for go back. In those studies, the participant could choose between gestures, speech,

or gestures+speech as input modalities when generating proposals, likely making the imitation of

speechless likely to inflate the MC scores through the use of the alternative input channels. The

animations could still have primed the gesture proposals, further confounding their results [18,19].
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5.2 Implications for Elicitation Studies

The top gesture proposals were commonly different while the spread of proposals overlapped

heavily, evident in the heat-maps for the gesture condition (Figures 4.3, 4.2, 4.1). The bulk of

the higher frequency (darker) proposals occurs in both studies exhibited by comparing any pair of

columns for the same referent, as with yaw right (Figure 4.1). While these top proposals occur in

each study, the relative frequencies of their proposals are different. A designer that strictly imple-

ments the top-choice interaction for each command would be negatively affected by the biasing

caused by referent display if these gestures were proposed based on animations that are not found

in the implemented system because the users would form gestures based on the animations that

are present in the system. Most elicitation studies recommend aliasing the most common com-

mands [1, 5, 9, 15, 18]. Through aliasing, the overlapping proportions of the proposal space can be

captured, offsetting the impact of biasing.

The differences in gesture proposals caused by referent display are most salient in the distance

traveled by the gesture but not in the shape and general motion of the gesture. This is demon-

strated by the two-handed scaling gesture encountered in these studies. In E-Text the gesture was

performed along a horizontal plane in contrast to moving at an angle 45 degrees away from that

plane in E-Animated. In either case, the scale gesture used open hands that extended from a central

location away from each other. More support for this conclusion is seen in the rotation gestures

which were often a pointing or pinching gesture that traced a circle in the air. The difference caused

by animation was in the amount that a participant rotated their hand where the shape and motion

of the gesture remained consistent. This information is likely lost when pre-processing gesture

data from the granular bins to the equivalence classes used to compute AR . These limited effects

of referent display on elicited gesture proposals is beneficial as prior work that focuses solely on

gesture elicitation is minimally impacted by referent display.

The results of the few prior works that perform speech elicitation are more impacted than prior

gesture-only elicitation studies [1, 18, 19]. For translations, the top choice (highest MC ) inter-

action was the same for each study potentially due to the simplicity of the referent (i.e., move
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left). Rotations present a greater challenge to designers in that the terms used by participants were

largely ambiguous, often using the word “spin” to indicate the type of rotation. The abstract refer-

ents had the highest levels of imitation bias due to the difficulty found in animating those referents.

When animations attempt to capture an abstract action (i.e., create, select), that animation primes

the user’s understanding of the actual task. Examples of this are found with the use of particle ef-

fects in E-Animated causing the referent to be understood as the apparition of an object and the use

of a hue increase in Select being perceived as a wide range of things from “highlight”, or “glow”

to “change color.”

Speech elicitation faces two major disadvantages; showing text causes an artificial increase

in consensus metrics (Table 4.3), and showing animations causes proposals that deviate from the

intended referent (“highlight” for select). The gestures, while biased, were more similar between

studies. As elicitation continues to be used for novel inputs outside of gesture alone caution should

be had that the impacts of referent display are considered when designing those experiments.

5.3 Implications for Multimodal Elicitation

The imitation of referent display is more difficult to resolve in multimodal elicitation. When

prompted with text, speech is biased while gestures are not. When prompted with animations,

the opposite is true. As elicitation uses continue to expand, creating referent displays that allow

for unbiased input generation is critical. To simultaneously remove the bias from multiple input

modalities we recommend a goals-based elicitation method where instead of showing referents as

granular commands (i.e., select, move left, deselect), they are displayed as high-level goals (i.e.,

construct a staircase out of these objects). This approach conveys a goal to the participant without

providing a suggestion of the granular commands necessary to complete it. Under that approach

the steps the user completes could be decomposed to interactions for referents such as selecting,

translating, and deselecting objects. This approach removes the bias caused by explicit referent

imitation. Similar methods of observing goal completion as opposed to granular action/interaction

pairs are more common in information visualization studies [84, 85]. The likelihood of imitation
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decays over time [86], so studies that delay proposal generation after referent presentation may be

able to reduce the impact of imitation bias. Referent-less elicitation is another approach that could

remove imitation bias [3].

5.4 Interaction Formation and Imitation

For both referent displays, imitation occurred either via the imitation of action or text. Gestures

imitating the motion of an object are easier to produce due to the close coupling of perceptive and

proprioceptive channels [47–49]. Evidence of imitation is found in gestures that followed the

animation exactly as shown in E-Animated [15] and presumably across other studies [5, 7]. This

ease of imitation is further supported by the lower NASA TLX scores in the animation condition

(Table 4.5).

Speech imitation was seen as more difficult, supported by the disparity of perceived workload

when imitating speech compared to gesture imitation (Figure 4.5). While this imitation still occurs

(Table 4.3) [1, 18, 19], it takes longer than action imitation (Figure 4.4) [55] and was considered

more difficult (Figure 4.5) [54].

There is strong evidence of imitation in proposal generation. To limit imitation, gestures should

be elicited using text. While this would increase the perceived difficulty of generating proposals,

it would elicit fewer imitation gestures and offset the double taxation of the visuospatial sketch-

pad further lowering the task’s cognitive load. Speech should be elicited using animation or the

proposed goals-based elicitation method when possible, with care given to the abstract referents if

an animation is used. The time differences between gesture and speech initiation are lower when

producing speech out of animation (Figure 4.4). We believe this is caused by the difficulties of

imitating speech [53, 54], and the double taxation of the participant’s phonological loop. These

issues are offset through animation-based speech elicitation.

With this understanding of processing and execution through imitation, end-users cognitive

load can be lessened through intelligent use of information display. If a user is already in an

environment with a high amount of visual information, as seen in 3D visualization systems [87],
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then an auditory prompt would be best. Alternatively, in a task that requires high levels of auditory

processing, a visual prompt would be best. Discoverable interactions would include ones that can

be directly imitated. These interactions could be speech commands based on the text displayed in

menus, or action gestures based on the user’s expectations of movements in the system as informed

by affordances and prior movements seen.

5.5 Consensus Gestures

Gestures for translation referents had high agreement rates for both the gesture and the ges-

ture+speech conditions. These were often heavily influenced by real-world physics where partici-

pants would reach for the object and perform a direct-manipulation. An example of this is reaching

out and pushing on the side of the cube to move it to the left. Rotations were either indirect ges-

tures where a participant would trace a circle in the air in the direction of the intended rotation or

would grab a corner of the cube and move their hand in a circular path(Figure 4.7). The referents

for roll had a high AR likely because of the clock metaphor found in the name of the referent

(“roll clockwise / counterclockwise”).

Select had the highest AR . Select’s heightened AR was caused by the frequent use of the

legacy tap gesture (Figure 4.7). Other legacy biased gestures included the zoom-in/out gesture

from multi-touch devices (i.e., cellphones) for the scale referents and the “bloom” gesture from

the Microsoft HoloLens 1 for the create referent. The presence of this bias can be leveraged to all

more transfer knowledge from prior interaction paradigms to AR environments [6, 23, 41].

5.6 Gesture Comparisons with Prior Work

Where this study found a mixture of bi-manual expansions and legacy touchscreen zoom-in/

out gestures for the scale referents (Figure 4.8), prior elicitation studies found only bi-manual

expansion gestures [7]. Likewise this work found that most of the gestures proposed for were

one-handed where bi-manual gestures were more present in other work [7]. This is seen in the

translation gesture proposals found in the work done by Khan et al. [7] which were bi-manual
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direct manipulations and bi-manual path tracing gestures as opposed to the pushing gestures ob-

served here. These differences in results are likely derived from the participant believing they were

interacting with a system versus another human or the presentation of the referents to the users.

Khan et al. used a 2D screen where this work used a 3D environment [70].

When comparing these results to a mid-air gesture elicitation study that was also done in AR,

the translation gestures were similar while rotation and scale gestures were not [5]. The translation

gestures from the work done by Piumsomboon et al. were often open-handed pushes as observed

in E-Text [5]. For rotation referents, Piumsomboon et al. had most proposals involving a grab and

rotate with a participants wrist where this work found a corner grab and rotation with a participants

full arm. Proposed scaling gestures also differed. This study most commonly observed legacy

zooming gestures and a single bi-manual expansion gesture in response the the referent ’enlarge’

as opposed to the bi-manual gestures observed by Piumsomboon et al. [5]. Most gestures in both

studies were reversible [5]. Examples of reversible gestures are seen in the rotation and translation

gestures in the consensus set provided here (Figure 4.7). These differences could be due to the

difference in the referent display. Piumsomboon et al. showed referents as animations of the

intended action where this work showed referents as text.

5.7 Cultural Biasing

E-Text was conducted around the release of the Marvel - Avengers: Endgame film. In this film,

a snapping gesture was used for the removal (i.e., deletion) of half of the human population. This

gesture also occurred within E-Text for both the create and delete referents but was not seen in

E-Animated. The snapping gestures omission may have been due to the difficulties encountered

with animating an object being created or destroyed or the time between that study and the release

of the movie. Regardless, its inclusion in E-Text is an interesting example of a gesture that stems

from pop culture. We believe that these culturally influenced gestures represent a mechanism for

knowledge transfer from other domains into a new environment as is also the case with legacy

biased gestures. Societies growing adaptation of speech-enabled assistants (i.e., Alexa, Google)
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could be a source of other culturally influenced speech base interactions. As an example, “turn on

the lights” and “turn on [name of item]” are both common commands within households that use

these assistants. When developing a speech interface it may be beneficial to use these pre-learned

commands for actions that have a similar function.

5.8 Recognition System Implications

These elicitation studies provide time windows for gesture and speech multimodal fusion sys-

tems. The time windows were different for each type of referent display. The window’s accuracy

can be increased by taking the range of the two windows or by using the time window that used

a referent display that corresponds with the displays in the system where the recognizer is being

used.

In Human-computer interaction, a core focus is the improvement of the user experience. These

windows allow the development of a user-centric recognition system that prioritizes the user ex-

perience. These time windows might not be the most impactful if used with deep neural networks

or recognition systems using infrastructures that require large amounts of training data. These

windows can instead be used to build a less computationally demanding architecture that can run

using an AR-HMD’s limited processing power. When viewing recognition from a user-centric per-

spective, this lightweight architecture would improve user’s interactions with a system by running

in real-time. These time windows limit the delay that a system would have between receiving its

first input and either receiving a second input or determining that the single input was a unimodal

command. An example would be the system receiving a pointing gesture then waiting to determine

if there is a speech command that uses that pointing gesture for context or if the pointing gesture

was a unimodal selection command. Limiting the time between the first input and the response of

the system would make the user feel like their interactions are more natural and/or that the system

is more responsive, either of which would improve the user’s experience.
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Chapter 6

Guidelines

6.1 Plan for Realism in Study Context

The more similar the intended use case the elicitation study is, the less the impact of imitation

will matter. If eliciting commands for a system that has text icons on menu bars, using the same

names for the referents used would allow more transference of the proposed interactions from the

elicitation study to the system. We would also advise against using animations when eliciting

gestures and text when eliciting speech unless the intended system employs similar animations or

text.

6.2 Plan for biasing

Some authors have acknowledged the priming implicit in referents [6], or suggested using an

elicitation methodology with no referents [3]. Other work has removed the bias of referents by

asking users to self-report their tasks and means of achieving those tasks to inform interaction de-

sign [88]. We recommend a guided approach where natural interactions are observed while giving

referents as high-level goals that would require the completion of unstated sub-tasks. A goal-based

referent for translations could be sort the objects shown by color. The video of participants com-

pleting that referent would be broken into sub-movements and interaction proposals for analysis.

This removes the imitation of explicit referents and animations.

The results of elicitation studies have included valuable insights on human behavior [13,14,41,

64] and the interactions found during elicitation have been implemented with positive results [89,

90]. The key to generating findings that are usable by designers is to detail the exact methodology

used to allow for an understanding of the introduced biases. The context of the experiment should

be similar to the intended use of the interactions [3].
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6.3 Report Design Choices

It is important to outline the exact methodology used when conducting an elicitation study.

Differences in results can emerge from a slight modification to the referent display, gaps in time

between studies [39], and exposure to technologies [19]. In addition to the commonly identified

design choices such as referents used, count of participants, and previous device exposure, authors

need to describe the way referents were displayed, and how long they were shown.

Imitation of referents caused variations in the proposed interactions. When less traditional in-

puts are elicited (speech, multimodal combinations) those variations in minor aspects of the exper-

iment can lead to far divergent results. Detailed methodology reporting will help designers know

under which exact circumstances the proposed interactions will fit and where they may generalize.

This context is important to establishing reproducible work within this field [3].

6.4 Report Common Proposals

As mentioned in prior work [1, 5, 9, 15, 18], and as seen here, aliasing is a powerful tool to

capture the interactions of a diverse user base. The best way to allow future designers to alias

proposals is to report more than a single consensus set. Examples of this include reporting the

top few proposals [18, 19], reporting proposals with hand variations included [5, 15], and showing

heat-maps of the proposal space (Figures 4.3, 4.2, and 4.1) [15]. Data-sets should be made public

or be available on request with appropriate anonymization and ethics committee or internal review

board approval.

6.5 Alias Commands

Redundantly mapping interaction techniques to commands (aliasing) is a technique for captur-

ing a larger group of novice user’s first choice interactions [1, 9, 15, 18]. The differences in results

seen here are focused on the top choice and least common proposals. The middle of the proposal

distribution space overlapped. By aliasing, the top N gesture proposals found in elicitation studies

will help to counteract the impacts of imitation biased proposals. Several elicitation papers report
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taxonomies of gesture types [5, 9, 91], or variations in the gestures caused by hand pose [5, 15].

Utilizing those types of observational patterns when aliasing will further increase the adaptability

of an interactive system.

Other work has suggested implementing some interactions that seem promising while not being

fully tested [88, 92]. This could help reduce the bias by adding more variety to the implemented

interactions. The speech syntax between the two studies consistently included most of the key

action information, either the <action> or <direction> phrase. Knowing this a word spotting

system could be used with common lexically equivalent commands mapped to interactions.

6.6 Leverage Existing Knowledge

Capturing how users form interactions and how that formation relates to the context of the

system and the user’s mental model of the system is critical to developing a natural feeling input

design. A user’s understanding of the functionality of the system will likely be informed by the

affordances of the system (e.g., a button can be pressed) [93], user understanding of real-world

physics (e.g., a cube can be pushed) [94], and legacy interactions (e.g., pinch to zoom). An addi-

tional source of prior expectation may be the culturally relevant interactions at the time such as the

snap gesture, or speech-based personal assistant commands. These various pieces of interaction

formation can be utilized to help establish high levels of transfer knowledge from prior domains

lessening how much a user needs to learn to interact with a new system.
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Chapter 7

Limitations

The two studies examined in depth here each used a simple set of referents. They also both

only showed a single cube. Using more complicated referents (i.e., “extrude object face”) or using

objects with varied representations (i.e., a car) may accentuate the differences found between text

elicited proposals and animation elicited proposals. This work is limited by the used referents

simplicity and the simplicity of the cube. This work was also limited by the ways referents were

displayed as text or animations. These display choices impacted the range of elicited speech in

E-Text where participants repeated the referents. The animations caused some speech proposals to

be irrelevant to the referent tested as seen with “highlight” being proposed for the referent select.

Another limitation encountered during this work was the assumptions of animations and referent

names that were used by prior work. Efforts were made to ground these assumptions in the design

details given in those works. Even so, the assumptions made may not accurately reflect what was

used in prior work.
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Chapter 8

Conclusions and Future Work

In elicitation, very few works have attempted to replicate findings. All of the pairs of studies

examined here failed to directly reproduce previous findings [1, 15, 18, 19]. For the works done

within this lab, the study results support that the differences found in interaction proposals were

caused by the way that the referents were displayed. Elicitation design is vulnerable to biasing

through action and text imitation during input proposal generation. Most elicitation studies have

used referent displays that may have encouraged imitation of them, either through animation, or

spoken/text prompts. We propose three promising methods to reduce the impacts of imitation: time

delay between referent presentation and proposal generation, goal-based referents, or planning for

imitation and eliciting through a different channel (i.e., animation for speech).

Most of the differences observed during the comparison of referent designs were found in the

elicited speech proposals. These differences are very evident in the heightened MC scores and

the related speech proposals elicited during E-Text when compared to E-Animated. The speech

proposal’s syntax was less impacted by referent display.

The differences in gesture proposals between experiments were far less pronounced than what

was found in the speech proposals. The largest difference was in the abstract referent select, likely

caused by the difficulties of animating the concept of selection.

The overlapping proposal spaces can be safely utilized through aliasing inputs and matching

the elicitation context to use case context. The changes to elicitation methodology proposed here

contribute to the continual improvement of elicitation studies as they transition from being used

for unimodal gesture input design to more varied multimodal input design space.

The way people interact with a system is heavily informed by their mental model of how

that system works [95]. These models are based on previous experiences with interactions and the

affordances of the systems. The affordances of an object are likely to be what is gestured about [96]

and what is spoken about [97]. This work contributes to an understanding of how interactions use
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imitation during referent interpretation and input proposal formation. The time differences in co-

occurring gesture and speech interactions and the differences in user-perceived workload caused

by the way the referents are presented support this theory of input formation.

When placed in the larger scope of interaction knowledge, a clearer picture of human behavior

is painted. Knowing the modality preferences [17–19], the impacts of cognitive load on those

preferences [20], and the mechanisms of input formation based on object appearance [96, 97],

affordances [95], user mental models [94], and now imitation bias, brings us one step closer to

understanding the user. The developer must know their input device and in the case of many

natural interaction systems, the input device is the user.

Even so, more analysis of studies where the exact mechanisms of referent display are outlined

is necessary to compare to these results. Future work should directly test more of the ways that

imitation manifests, comparing across other types of referent display. Some examples of these

alternative referent designs are Referent-less design [3,88], goal-based referents [84,85], and time

delays between referent presentation and input generation. The merits of the goals-based elicitation

method and the delayed elicitation method have not been tested. More work is needed to see if

they lessen the impacts of referent biasing in elicited proposals.

Work is needed to tell how implementing interactions that were born out of imitation would

affect user performance. The proposals found might have been more heavily informed by the

affordances of a system than the imitation of aspects of that system. More studies examining

animation types and object shapes are needed to untangle the influences of affordances versus

animation.

In E-Text a common gesture proposal for create was a snapping gesture, presumably caused

by the release of the Marvel Avengers: Endgame movie at the same time. This snapping gesture

represents an interesting cultural artifact. Knowing what other culturally biased interactions are

prevalent in society could help to facilitate high levels of transfer knowledge if incorporated into

a system. Future work could examine the culturally biased interaction techniques that may arise

from the prevalence of interactions with speech-based home assistants (i.e., Amazon Alexa).
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Another interesting line of inquiry is inspired by the results of the NASA TLX surveys where

animated referents were seen as easier to generate gesture proposals for than text referents. This

information could be further examined to find if there are ways to form adaptive interfaces that

prompt users with specific formats of information to prime the input modality users choose to use

to complete that prompt. As an example consider a user with low manual-dexterity and another

user that is hearing impaired. A system might be able to prompt the user with low manual-dexterity

using text to encourage speech interactions. Conversely, the user with limited hearing may pre-

fer to interact with gestures which could be encouraged through the use of animated interaction

prompts. These uses of information display were not examined here and would need to be further

investigated by future work.
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Appendix A

Heat-maps for the Gestures from the

Gesture+Speech Condition

Figure A.1: Heatmap of common gesture proposals by referent and experiment (translation referents only)

Legend: Z-axis: vertical, Y-axis: horizontal, X-axis: forward/back, Open: open hand, Grasping:

grabbing hand position, Push: open palm push, TwoH: two handed
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Figure A.2: Heatmap of common gesture proposals by referent and experiment (rotation referents only)

Legend: E-T: E-Text, E-A: E-Animated, Z-axis: vertical, Y-axis: horizontal, X-axis:

forward/back, Open: open hand, Grasping: grabbing hand position, Push: open palm push,

TwoH: two handed, CC: counterclockwise, C: clockwise
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Figure A.3: Heatmap of common gesture proposals by referent and experiment (abstract and scale referents

only)

Legend: E-T: E-Text, E-A: E-Animated, Z-axis: vertical, Y-axis: horizontal, X-axis:

forward/back, Open: open hand, Grasping: grabbing hand position, Push: open palm push,

TwoH: two handed
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