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ABSTRACT

PRACTICAL ASPECTS OF DESIGNING AND DEVELOPING A MULTIMODAL EMBODIED

AGENT

This thesis reviews key elements that went into the design and construction of the CSU CwC

Embodied agent, also known as the Diana System. The Diana System has been developed over

five years by a joint team of researchers at three institutions – Colorado State University, Bran-

deis University and the University of Florida. Over that time, I contributed to this overall effort

and in this thesis, I present a practical review of key elements involved in designing and con-

structing the system. Particular attention is paid to Diana’s multimodal capabilities that engage

asynchronously and concurrently to support realistic interactions with the user.

Diana can communicate in visual as well as auditory modalities. She can understand a va-

riety of hand gestures for object manipulation, deixis, etc and can gesture in return. Diana can

also hold a conversation with the user in spoken and/or written English. Gestures and speech

are often at play simultaneously, supplementing and complementing each other. Diana con-

veys her attention through several non-verbal cues like slower blinking when inattentive, keep-

ing her gaze on the subject of her attention, etc. Finally, her ability to express emotions with

facial expressions adds another crucial human element to any user interaction with the system.

Central to Diana’s capabilities is a blackboard architecture coordinating a hierarchy of mod-

ular components, each controlling a part of Diana’s perceptual, cognitive, and motor abilities.

The modular design facilitates contributions from multiple disciplines, namely VoxSim/VoxML

with Text-to-speech/Automatic Speech Recognition systems for natural language understand-

ing, deep neural networks for gesture recognition, 3D computer animation systems, etc. – all

integrated within the Unity game engine to create an embodied, intelligent agent that is Diana.

The primary contribution of this thesis is to provide a detailed explanation of Diana’s internal

working along with a thorough background of the research that supports these technologies.
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Chapter 1

Introduction

Human face-to-face communication is always multimodal. This means that such commu-

nication involves multiple sensory and multiple production modalities, where each modality

corresponds to one of the five human senses of sight, hearing, touch, smell, and taste [2]. Since

people react socially to computers [3], there has been a trend to anthropomorphize the human-

computer interface. This has been further reinforced with the advent of ubiquitous comput-

ing, where our surroundings have become smarter, and traditional computer interfaces are no

longer sufficient. In their stead, Embodied Conversational Agents (ECAs), also called Virtual

Humans, have emerged as a viable multimodal social interface that simulate human face-to-

face communication. ECAs are computer models resembling humans in their bodily look and

their communication capabilities. They are able to perceive and understand both the virtual

environment they live in and the real world in which the human resides.

Diana is an embodied conversational agent developed by the people in Computer Vision

Lab at Colorado State University in collaboration with the brilliant minds at Lab for Linguistics

and Computation at Brandeis University and Ruiz Human-Computer Interaction Lab at Univer-

sity of Florida. Funded by DARPA’s Communicating With Computers program, the project’s vast

scope meant it received invaluable contributions from a significant number of people. James

Pustejovsky and Nikhil Krishnaswamy’s work on multimodal simulations from language ex-

pressions drives Diana’s natural language understanding and reasoning via the interpretive ma-

chinery provided by VoxML [4] and VoxSim [5]. Pradyumna Narayana contributed the ResNet-

style deep convolutional neural networks [6] that allow Diana to predict gestures accurately in

real time which are core to Diana’s multimodal perception capabilities. However, the afore-

mentioned Deep Neural Network’s accuracy is also owed to the massive multimodal dataset,

EGGNOG [7]. EGGNOG was collected during human-to-human elicitation studies conducted

to better understand communicative gestures used by humans in the context of a collaborative
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task. Labeling the dataset with gesture labels was again a joint effort carried out by Jamie Ruiz,

Issac Wang, Gururaj Mulay, Dhruva Patil, and the author of this thesis. The task of labeling was

facilitated by EASEL [8] — a tool that eases the annoation of gesture video datasets by provid-

ing automatic segmentation [9] for gestures. This reduces the burden of the labeling task. A

major improvement to Diana’s usability is due to her ability to map user’s pointing gesture to a

location in her virtual environment, whose implementation is credited to Jason Yu. Diana also

benefits from having a blackboard architecture at her core which is implemented by Joe Strout

that ensures responsiveness and asynchrony in Diana’s behaviors. Heting Wang’s work [10] on

adding empathic facial expressions to Diana add another layer to Diana’s personality. The au-

thor’s contributions to the system have ranged across a variety of areas, which include writing

the networking code for inter-component communication in the system as well as to serve all

the streams captured by Microsoft Kinect in real time. Additionally, the author implemented

the state machine architecture that combines the noisy signals from each individual percep-

tual component, and translates them into a stable one that can be used by Diana. Over time,

the system has amassed significant codebase and its maintenance responsibilities have been

shared over the years by the author, Nikhil Krishnaswamy, David White, Dhruva Patil, and Matt

Dragan.

Diana has a multitude of capabilities that allow her to act intelligently. She can see the user,

and realize when the user is standing up close and is engaged as opposed to when the user is

standing far away and disengaged. Her visual senses are not limited to just depth perception,

however. She can also understand hand gestures. Her visual perception of the world transitions

seamlessly from the real to the virtual. In the virtual world, she can see objects like blocks, the

table, etc. She understands the bounds of the virtual table, and can intelligently figure out a

path for moving the blocks around.

Diana can also talk to the user and engage in a meaningful discourse. She has the ability

to recognize and understand complete sentences. The user can specify an action verbally, and

Diana will be able to carry it out. Diana also realizes when the user asks a question, and can

2



Figure 1.1: Typical steps to coordinate a staircase construction with Diana

reply appropriately based on her knowledge of the world. The discourse is not limited to turn

taking either. Much more realistically, Diana is able to respond to interruptions immediately

without needing to wait for the current action to be completed. Recognizing that emotions are

an essential human quality, Diana can recognize when the user smiles, when user displays con-

centration on the task at hand, or when the user gets frustrated. She can also express emotions

via facial expressions when appropriate.

All these capabilities together serve to provide Diana with an extremely anthropomorphic

human-machine interface.
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(a) User is disengaged (b) User engages. Diana says "Hello."

(c) User waves. Diana says "I’m ready to go." (d) User points at the blue block

Figure 1.2: Building a staircase. A detailed deconstruction of the working of agent internals for this task

is presented in the next chapter.

1.1 Building a Staircase

In this section, we will discuss Diana’s capabilities in greater detail with a walkthrough of

a common scenario of "staircase building". Although simplistic from a human viewpoint, the

scenario allows us to display the variety of Diana’s capabilities and their interplay with each

other. The scene consists of Diana, a virtual table on which six virtual blocks are placed. Each

virtual block is of a distinct color, namely red, blue, green, yellow, purple, and white. This sce-

nario involves the following steps:

1. User walks up to the system (Figure 1.2a-1.2b).

2. Diana realizes that the user is standing near to the system, and greets by saying "Hello."

(Figure 1.2b).

3. The user waves with either hand (Figure 1.2c).

4. Diana waves back, and replies "I’m ready to go." (Figure 1.2c).
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(a) Diana begins to grasp the blue block (b) User does a slide gesture

(c) Diana slides the blue block (d) User points at the purple block

Figure 1.3: Building a staircase

5. User points at the screen. A visual marker appears on the virtual table identifying the

location being pointed at (Figure 1.2d).

6. User adjusts the pointing until the visual marker lies on one of the virtual blocks, the blue

one (Figure 1.2d).

7. Holding the visual marker stationary over the blue block for a short time, Diana recognizes

that the user means to select it. Realizing that, Diana says "OK." as she begins to grasp the

blue block (Figure 1.3a).

8. The user does a slide gesture with either hand (Figure 1.3b).

9. Diana slides the blue block against the green block, and retreats back into the resting idle

pose (Figure 1.3c).

10. User points at the purple block (Figure 1.3d).

11. Diana says "OK." as she begins to grasp the purple block (Figure 1.4a).
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(a) Diana grabs the purple block (b) User does the slide gesture

(c) Diana slides the purple block (d) User says "the red one." Diana grabs the block.

Figure 1.4: Building a staircase

12. The user does a slide gesture with either hand (Figure 1.4b).

13. Diana slides the purple block against the previously slid blue block, and retreats back into

the resting idle pose (Figure 1.4c).

14. User says "the red one" (Figure 1.4d).

15. Diana understands the phrase to mean the red block, says "OK." to acknowledge her un-

derstanding, and begins to grasp the red block (Figure 1.4d).

16. User points at the green block (Figure 1.5a).

17. Diana puts the red block on top of the green block (Figure 1.5a).

18. User tries to point to the white block, but accidentally holds the visual marker over the

nearby placed yellow block (Figure 1.5b).

19. Diana says "OK." and begins to grasp the yellow block (Figure 1.5b).

6



(a) Diana puts the red block on green block (b) User says "the yellow one."

(c) User interrupts "No, the white one." (d) Diana says "OK." and grabs white block instead

Figure 1.5: Building a staircase

20. User says "No, the white block" (Figure 1.5c).

21. Diana realizes the interruption and instead of continuing the motion to grasp the yellow

block, she adjusts it to grasp the white block instead, while acknowledging her under-

standing of interruption by saying "OK" (Figure 1.5d).

22. User points at the blue block (Figure 1.5d).

23. Diana puts the white block on top of the blue block (Figure 1.6a).

24. User says "the yellow one" (Figure 1.6b).

25. Diana understands the phrase to mean the yellow block, says "OK." to acknowledge her

understanding, and begins to grasp the yellow block (Figure 1.6c).

26. User points at the red block (Figure 1.6d).

27. Diana puts the yellow block on top of the red block (Figure 1.6e).

7



(a) Diana puts the white block on blue block (b) User says "the yellow one."

(c) Diana grabs the yellow block (d) User points at the red block

(e) Diana puts the yellow block on red block (f ) User steps back. Diana says "Bye."

Figure 1.6: Building a staircase

28. User says "Bye." and retreats away from the system (Figure 1.6f).

29. Diana realizes that the user has stepped away and says "Bye" (Figure 1.6f).

1.2 Abilities

The previous section showcases many of Diana’s abilities. The following is a complete list of

all the abilities that Diana has along with a brief description.

Gaze Allows directing Diana’s gaze to any arbitrary point or a specific object (virtual or real).
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Blinking Controls Diana’s implicit need to blink that is proportional to changes in attention

level.

Grasp Allows Diana to grasp an object or point to an arbitrary location.

Attention Controls Diana’s object of attention that may change in response to user actions.

Alertness Controls Diana’s alertness level depending on her ongoing activity and whether she

is focusing on something or not.

Speech Allows Diana to synthesize speech.

Speech Recognition Allows Diana to transcribe user speech into text.

Language Understanding Allows Diana to parse and understand text into object references

and actions on them.

Emotion Controls Diana’s facial expressions.

Gesture Recognition Ability to recognize hand gestures.

Arm Motion Recognition Ability to recognize arm motions and the direction of the motion.

Affect Ability to recognize user’s emotions like smiling, frustration, etc.

Engagement Diana recognizes when the user walks up to the system as being "engaged" as

opposed to stepping back or staying away from the system as "disengaged"

Pointing Diana can understand when the user is pointing at the screen and extrapolate the

pointing gesture from real world coordinate system into the virtual world’s coordinate

system where it is displayed by a visual marker

Sliding Intent Diana can recognize when the user does a swiping motion with either hand to

mean horizontal movement.
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Servo Intent Diana can recognize when the user does a servo motion with either hand to mean

slight adjustments.

Positive Acknowledgement Intent Diana can recognize when the user does a thumbs up ges-

ture with either hand to mean confirmation of a query.

Negative Acknowledgement Intent Diana can recognize when the user does a thumbs down

gesture with either hand to mean refutation of a query.

Grabbing Intent Diana can recognize when the user does a claw gesture with either hand to

mean grabbing an object.

Push Intent Diana can recognize when the user does a swiping motion towards the display to

mean pushing an object towards her.

Pull Intent Diana can recognize when the user does a swiping motion towards himself/herself

to mean pushing an object towards the user (i.e. pulling the object away from Diana).

Counting Intent Diana can recognize when the user signals a count using fingers.

Stop Intent Diana can recognize when the user raises the hand in a stop gesture to mean stop

an ongoing action immediately.

Slide Action Diana can slide a block sideways across the table, usually against another block.

Carry Action Diana can carry a block from one location to another, usually on top of another

block.

Note that in the above list, we have differentiated between gestures and intents. At the sur-

face, both seem similar. However, intents are a higher level abstractions that are composed from

one or more gestures and arm motions over time. For example, the sliding intent is composed

from the hand being in a specific posture and the arm swiping across the table sideways.

10



1.3 Motivation

The usefulness of creating a system such as Diana lies in the abilities that she possesses. As

a multimodal avatar, Diana represents a state-of-the-art integration that merges sight, speech

and a shared perception of both the user’s body and a shared world which is partially virtual.

The abilities themselves are implemented in a modular way so that each ability can be selec-

tively enabled or disabled, can be finely controlled with parameters, or even replaced with an

overriding implementation.

Gaze provides an important non-verbal cue in mediating human-human communication.

One study [11] found that avatars with informed gaze significantly outperform those with ran-

dom gaze across multiple response variables. Diana also uses her gaze for different non-verbal

cues. She can express her attention through gaze. When the user is not close to the system,

Diana will avert her gaze to peripheral locations in the virtual environment. When the user is

engaged with the system, Diana will begin to look at the user instead. When interacting with

objects, Diana follows the object of her attention with her gaze.

Diana is situated [12] [13] in her environment. This means that her understanding of mean-

ing is closely tied to the environment she resides in. If a user gives a command that is impossi-

ble to complete due to the conditions imposed by the environment, Diana will be able to reason

why the command can’t be completed and suggest alternatives to the user. For example, if block

B is on top of block A and the user asks Diana to put block C on top of block A, Diana can infer

that block A’s top is occupied and hence it cannot "afford" to have any other block on top un-

less block B is removed first. Therefore, she can suggest so to the user and the user can proceed

appropriately.

Being multimodal, Diana already surpasses current generation’s voice assistants with re-

gards to the communication possibilities. For example, saying something like "What is that?" to

Google Home, the voice assistant replies with "Sorry, what are you asking?". Simply because the

agent in this case neither has the modality to find an answer to this question, nor is the agent

11



situated in its environment. Diana, on the other hand, checks both boxes. Therefore, Diana can

be used in more challenging environments and roles than many other voice assistants.

For example, one can imagine Diana teaching a user how to disassemble and reassemble

an appliance. The transition from manipulating blocks to manipulating screws, coverings, etc.

(virtual, of course) isn’t that huge of a leap. On the plus side, though, Diana need not work on a

physical machine to teach someone, whereas the current analogous method would be to have a

video of someone operating on a physical machine. Moreover, a video is static in the sense that

if it could have a camera orientation or point-of-view that may obstruct the component being

discussed from user’s view. Diana, on the other hand, lives in a simulation and the point of

view in the virtual world can be readily adapted to match user’s needs, thereby offering a more

dynamic tutorial than a video.
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Chapter 2

Related Work

Diana has a multitude of capabilities that combine various research disciplines into a con-

crete usable system. The purpose of this chapter is to briefly discuss the literature on each of

these research domains. Starting with Section 2.1, we describe the work on dialogue systems.

Diana’s architecture is backed by a blackboard system to ensure modularity, which is discussed

in Section 2.2. The natural language understanding and reasoning component of the system

is grounded in visualization supported by VoxSim/VoxML platform as discussed in Section 2.3.

The system also employs gesture recognition using deep learning networks trained on the ges-

ture data gathered in EGGNOG dataset, both of which are described in Section 2.4. Diana is an

embodied agent, a trait that has been shown to be useful in a variety of domains as mentioned

in Section 2.5. One of the important abilities that Diana has is to understand deictic gestures

through her ability to pinpoint a location pointed at by the user. Section 2.6 briefly describes

the different pointing techniques used by various systems.

2.1 Dialogue Systems

Dialogue is a conversation between two or more participants. While the participants are

usually human, intelligent systems can be designed to serve as a stand-in for a human partici-

pant in a dialogue. Such systems are called Dialogue systems.

Traditionally, dialogue systems have been limited to typed input and output owing to the

technical limitations of the day, even though spoken language has been recognized as a more

time-efficient input modality as compared to traditional input modalities like keyboard and

mouse [14]. Although the serial nature of spoken language output can make the response gen-

erated by a dialogue system feel dragged out, it does lend a naturalness to the conversation that

typed or even displayed output simply cannot. With recent advances in speech recognition and

text-to-speech synthesis, dialogue systems are now easily equipped with the ability to listen to
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user’s commands and communicate the results back by speaking in turn. Such dialogue sys-

tems are called Spoken dialogue systems. These systems have become increasingly popular

in recent times through the use of digital assistants like Siri, Alexa, Google Assistant, etc. that

people employ to manage their daily tasks.

Speech, however, is just one of the modalities that humans use to communicate. Modalities

like gestures, facial expressions, body postures, gaze, etc. offer information that can supple-

ment speech very well. For example, a spoken sentence like "It’s there." isn’t very meaningful

unless one also points at a location. In this case, the referential nature of gestures aids spoken

language to convey a useful intent. Utilizing this interdependence of modalities is crucial to re-

ducing ambiguity in the dialogue and increasing user accessibility of the system. The dialogue

systems that utilize more than one modality for both input and output are called Multimodal

dialogue systems.

Based on the techniques used in their implementation and their intended application, dia-

logue systems are classified [15] into two types:

1. Task-oriented Systems

2. Non-task-oriented Systems

Note that this classification is not mutually exclusive and some systems have characteristics

of both types. Non-task oriented systems are simpler, so we discuss them first followed by an

overview of task-oriented systems.

2.1.1 Non-task-oriented Systems

Non-task-oriented systems assist the user in unstructured, open domain conversations.

These are also called chatbots. The three common architectures that are used to implement

chatbots are discussed in the following sections, concluding with a brief description of ELIZA

[16], a well-known chatbot system.
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Rules and patterns

The first architecture, and probably the simplest one, uses patterns and templates con-

nected by transform rules. The patterns are matched against the input. The pattern contains

zero or more placeholders which assume a value corresponding to the placeholder’s position

in the pattern. The output is created by employing the transform rule for the matched pattern

to select the correct template and the missing fields in the template are filled in by the values

assumed by the corresponding placeholders. As an example, when the transform rule

He
[

pl aceholder1

]

me → Why do you think he
[

value1

]

you?

is matched against the input "He loves you.", the system recognizes that the pattern matches the

input and pl aceholder1 holds the value loves, so the transform rule is applied while replacing

value1 with loves. The generated output is, therefore, "Why do you think he loves you?"

Information Retrieval

Information retrieval-based systems rely on a huge dataset of human-to-human dialogue

of input-output pairs. Briefly, the system reads the user input, matches it against the available

data, and generates the output. This can be done via two different strategies.

The first strategy matches the user input against all the inputs in the dataset and selects

from amongst them the input that matches the most with the user input. It then proceeds to

choose the response corresponding to matched input in the dataset. In short, the strategy is to

return the response to the most similar input.

The second strategy is very similar to the first one, except that it directly returns the in-

put that matches the most with the user input instead of choosing the corresponding response

from the dataset. Choosing the most similar input from the dataset means that it is likely to be

lexically and semantically similar to user input, and hence, a good candidate for a reasonable

response. Although a bit less intuitive than the previous strategy, this, in fact, seems to work

better in practice.
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Deep Learning

Instead of devising an enormous number of rules and patterns, deep learning models can

be utilized, provided a huge amount of training data is available. Then the model learns all the

rules automatically and in a much more comprehensive and sophisticated manner than would

be possible with hand-engineering.

While deep neural networks have been successful in a variety of domains, the sequential

and temporal nature of language is well-suited to recurrent neural networks (RNNs) [17], a gen-

eralization of feed-forward neural networks to sequential input. The input is represented by a

sequence of real valued vectors (x1,x2, . . . ,xt , . . . ,xT ). RNNs model the sequential input by main-

taining a hidden state at each step – a memory of what the network has seen so far. Given the

weight matrices Wxh , Whh , and Why , the hidden state ht and output yt at each step (or time) t

are determined as:

ht =σ(Wxhxt +Whhht−1 +bh)

yt = softmax(Why ht +by )

Here, bh and by are bias terms.

Unfortunately, RNNs suffer from the problem of vanishing and exploding gradients, and in

general, struggle to learn long range dependencies [18] [19]. To overcome these issues, Long

Short Term Memory (LSTM) [20] were designed. In LSTMs, the nodes of RNNs are replaced

by memory cells. A memory cell is constructed in a very specific way that consists of an input

node, gates and multiplicative nodes which mitigates RNNs’ limitations as mentioned above.

In a memory cell, the input node gt , the input gate it , the forget gate ft and the output gate

ot in the LSTM gt act on the current input xt along with hidden state from the previous step ht−1

and wrap the weighted sum inside a non-linearity like tanh or sigmoid function. The internal

state is a sum of the outputs of input node and the internal state at previous timestep, both gated

by input gate and forget gate respectively. Gating is accomplished by pointwise multiplication
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(multiplicative nodes) of a gate’s output with a node’s output. The input gate learns when to let

the input activation into the internal state. Similarly, the output gate ot learns when to let the

value out of the cell. Finally, the forget gate learns when to erase the effects of internal state at

the previous timestep st−1. The memory cell is described by the following equations [21]:

gt =σ(Wg x xt +Wg hht−1 +bg )

it =σ(Wi x xt +Wi hht−1 +bi )

ft =σ(W f x xt +W f hht−1 +b f )

ot =σ(Wox xt +Wohht−1 +bo)

st = gt ⊙ it +st−1 ⊙ ft

ht = tanh(st )⊙ot

Since LSTMs can tackle long-range dependencies very well, they are suitable for sequence

to sequence mapping. Seq2Seq [22] architecture utilizes two recurrent neural networks, LSTMs

specifically, to accomplish this. Given the input sequence (x1,x2, . . . ,xT ,< EOS >), one of the

LSTMs – the encoder – acts on each input vector, updating its hidden state ht at each step. The

value of hidden state at the last step is stored as the context vector c for the second LSTM –

the decoder. The decoder LSTM takes this hidden state c as an input while managing a hidden

state h′

t of its own. The last output of encoder yT is fed into the decoder as the first input

x′

1. Thereafter, each output of decoder y′

t is fed back to the memory cell for the next time

step as the input x′

t+1. In this way, the encoder-decoder architecture predicts the sequence

(yT ,y′

1, . . . ,y′′

T ,< EOS >).
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An Example: ELIZA

ELIZA [16] was an early natural language processing system created at MIT Artificial Intelli-

gence Laboratory. The user interacts with the system by typing a sentence in, and the system in

turn types the response out.

The system behavior is driven by scripts. The scripts describe keywords and their associated

transformation rules. The program can accept scripts written by the user, so the behavior is

customizable.

Given a script, the system functions by looking for a keyword in the input sentence. The

input may consist of delimiters like comma (,) and period (.), in which case it is split along these

delimiters into individual parts and the parts are scanned from left to right for a keyword. The

search stops at the first part in which a keyword is found. This is to ensure that only single

sentences are transformed.

A transformation rule is composed from a decomposition rule and a reassembly rule. To

illustrate the formal notation used to write these rules, an example follows:

(0 YOU 1 ME) → WHY DO YOU THINK I 3 YOU?

The left hand side is the decomposition rule. 0 represents any number of words. A positive

integer n represents exactly n words. The right hand side is the reassembly rule. In a reassembly

rule, the integers represent the index of the constituent of the decomposition rule. To illustrate

the use of this transformation rule, suppose the user said "I think you hate me." Then the sys-

tem matches 0 to "I think" and 1 to the single word "hate". It then applies the transformation

rule to generate "Why do you think I hate you?" where 3 is the index of the placeholder 1 in

decomposition rule.

Keywords have a precedence so that less general words have a higher precedence than the

more general ones. In this way, the transformation rules associated with higher ranked key-

words are triggered more often, enabling the system to generate more interesting responses.

A typical conversation with ELIZA as recorded in [16] is given below. The capitalized sen-

tences are generated by ELIZA.
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Men are all alike.

IN WHAT WAY

They’re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I’m depressed much of the time

I AM SORRY TO HEAR YOU ARE DEPRESSED

It’s true. I am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY?

I need some help, that much seems certain.

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

Perhaps I could learn to get along with my mother.

TELL ME MORE ABOUT YOUR FAMILY

My mother takes care of me.

WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU

My father.

YOUR FATHER

You are like my father in some ways.

WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice that.

WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE

You don’t argue with me.

WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

My father is afraid of everybody.
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WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND

MADE YOU COME HERE

By today’s standards, ELIZA’s design is incredibly simple, yet its pattern-action architec-

ture is sophisticated enough that according to Weizenbaum, people sometimes ended up being

deeply emotionally involved with the program. For example, there’s a story that one of Weizen-

baum’s staff would request to be allowed to talk to ELIZA privately. Although Weizenbaum sug-

gested that he might need to store all the conversation data for later analysis, people were hes-

itant because of the privacy implications, and would point it out as such. It didn’t matter to

people that ELIZA was just a program, as they considered it "real" enough to have private con-

versations with it. It is, perhaps, no surprise therefore that ELIZA’s pattern-action is still used by

modern chatbots.

2.1.2 Task-oriented Systems

Task-oriented systems, unlike chatbots, are focused on helping the user accomplish a spe-

cific task. As such, they tend to have a much deeper understanding of a specific domain at

the expense of a narrower domain. Historically, task-oriented systems have also been distin-

guished from chatbots by their use of natural language processing techniques as compared to

much simpler rules/patterns architecture used in chatbots, but that distinction doesn’t hold

true anymore.

Since a task-oriented dialogue tends to be highly structured, understanding the structure

underlying such a conversation has been a primary focus for researchers. [23] argues that many

of the utterances not only convey information, but also perform an action. For example, an

utterance like "John, can you close the door?" isn’t really a question about John’s ability to close

the door. Instead, it is a directive asking John (politely) to close the door instead. Understanding
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language in terms of these acts through language – Speech Acts – allows one to take a transac-

tional view of dialogue that can be much simpler to model than trying to exhaustively model

the world of the participants [24].

Some of the assumptions about Speech Acts may not be true, however, when viewed in a

broader scope of dialogue as noted in [25]. Particularly, the effect of the listener being unable to

understand the speaker’s utterance is not considered. [25] propose that the "act" of a Speech Act

only takes place after the listener has understood it, and hence, the single-agent speech acts are

replaced by multi-agent, collaborative, grounded actions called Dialogue Acts [26]. Dialogue

acts depend on the task domain at hand.

In addition to modeling dialogue structure, the issue of knowledge representation in such

systems is very important. Frames [27] are a data structure that can represent chunks of infor-

mation. A frame consists of slots. The slots, in turn, can have semantically typed values like

City, Date, etc. Some values are simple, like Integer. More complicated value types can be rep-

resented as frames themselves. Prototype-based inheritance allows one to abstract the more

complicated frames in a hierarchy. The prototype is a template to create an object, and each

instance of a prototype has a reference to its prototype object, thereby establishing a hierarchy

chain. This hierarchy chain is resolved at runtime to link a particular slot to the correct parent

frame’s slot. The frames as proposed by [27] also allowed two types of procedures to be attached

to frames. The first type of procedure would be run whenever a slot was changed. This is anal-

ogous to setters of modern languages like C#. The second type of procedures were meant to be

called explicitly and are analogous to methods in modern object-oriented languages.

Two predominant architectures are used to implement task-oriented systems [28]. We dis-

cuss these next, followed by a description of SHRDLU – a well-known task-oriented system.

Pipeline based

In a pipeline based system, the system is divided into distinct components connected in a

serial fashion, with the output of one component serving as the input to the next component,

hence the name. The components are named as follows:
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• Natural Language Understanding This component handles many responsibilities that

are focused on the understanding of the user utterance. For example, domain and intent

classification of an utterance are performed by this component. Domain classification

categorizes the user utterance to a specific domain, while the intent classification fur-

ther categorizes an utterance within a given domain to a specific intention of the user.

For example, an utterance like "What flights are available from Denver to New York?",

the system should be able to recognize the domain as "AIR TRAVEL" and the intent as

"RESERVATION". Given these two broader classifications, the system can apply an ap-

propriate model to fill the slots (slot-filling) of the corresponding "FLIGHT" frame, say

"FROM-CITY", "TIME", etc.

CMU’s Phoenix Natural Language Understanding system [29] uses a set of grammars for

each slot such that the rules map word patterns to slot type. More recently, deep learning

techniques like Recurrent Neural Networks (RNNs) [17] [30] have also been used for slot-

filling. Similar data-driven techniques have also been employed for domain and intent

classification.

• Dialogue State Tracker This component is responsible for predicting the user’s goal given

the dialogue state Ht at time t where the state is represented as a frame. Hand-crafted

rules are one of the simpler ways to accomplish this. More sophisticated approaches

maintain a probability distribution over the various values allowed by a slot’s type instead.

• Dialogue Policy Learning Taking as input the current user goal as tracked by the Dialogue

State Tracker, this component is responsible for generating an appropriate system action.

Supervised as well as reinforcement learning can be used to optimize this component.

• Natural Language Generation Given the action generated by the Policy Learning com-

ponent, this component is responsible for converting this internal representation into a

fluent, easy to understand response in human language. Recurrent Neural Networks like

LSTMs have been utilized to perform response generation.
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End-to-end based

Since the pipeline-based systems have components that are dependent on each other, every

time a component is replaced, the other components have to be re-optimized as well to fit in

the new pipeline. Additionally, it is hard to relate user feedback to a specific component in

the pipeline. As a result, more recent advances have been made by training a neural network

directly on the corpus of annotated dialogue datasets, with the problem being formulated as

that of training a network to learn a mapping of dialogue state history to system response. An

end-to-end system like this has no dependence on additional components, and can be replaced

in its entirety if needed.

An example: SHRDLU

SHRDLU [31] was a natural language processing system developed by Terry Winograd dur-

ing his doctoral research at M.I.T. in 1968-70. One of the major intuitions guiding the design

of SHRDLU is that to understand language, one should understand the syntax and semantics

along with planning in an integrated way. It proposed that an utterance can be understood to

be triggering appropriate procedures in the listener’s cognitive system for each constituent of

the utterance, and all these procedures – whether for understanding the syntax or the semantics

or for planning – would all run concurrently sharing information amongst themselves freely.

The domain in which SHRDLU operated is called Blocks World. Blocks World is one of

the oldest application domain in artificial intelligence in which researchers addressed human-

computer interaction and planning. Briefly, it consists of a number of blocks of possibly dif-

ferent shapes, sizes, and colors placed on a table, and the goal is to turn an initial block con-

figuration into a goal configuration, by moving one block at a time. Blocks can be stacked on

top of each other. Blocks world serves as a useful surrogate for cooperative tasks where the

partners share a workspace. In case of SHRDLU, the user types the commands or queries. The

systems displays the simulated scene of the blocks world on a display, and types out responses

or requests for information.
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Knowledge is represented in SHRDLU in Micro-Planner [32] language. Elementary facts

about the world are stored as assertions. For example, "(IS X BLOCK)" represents the fact that

the object referred to by the symbolic name "X" is a "BLOCK" – the symbolic name of the con-

cept of the block. More complex concepts, for example concepts that may change the state of

the world are stored as longer Micro-Planner procedures. For example, the concept of clearing

the top of a block i.e. "CLEARTOP" could be represented as:

(GOAL (IS X? BLOCK))

(GOAL (SUPPORT X? Y?))

(GOAL (GET-RID-OF Y?))

As can be seen from the above example, a given procedure can call other procedures, or

even itself recursively. The variables are denoted by the ? suffix. The program substitutes the

variables by the objects in the world, and notes that a choice has been made when a substitu-

tion takes place. The choice is important to note, because the program can backtrack to the

point where the choice is made in case the current choice doesn’t lead to a successful proof of

goal. When backtracking to a previous point, the program makes a new choice and keeps on at-

tempting to prove the goal. The goal is proved when all the individual goals in the list are proved.

The stacking of choices is important, since it allows the program to answer "How" and "Why"

questions by examining the stack history. The fact that Micro-Planner has primitives that make

looping and backtracking implicit makes it an intuitive choice for representing concepts.

The semantic definitions of concepts are also written as procedures in a similar way. For

example, the following procedure defines a cube as an equidimensional, manipulable block:

(CUBE

((NOUN (OBJECT

(MANIPULABLE RECTANGULAR) ((IS ? BLOCK) (EQUIDIMENSIONAL ?))

)))

)
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The syntax is analyzed in terms of Systemic Grammar [33]. Systemic Grammar describes a

hierarchy of syntactic units. A syntactic unit at a given level of hierarchy is composed of syntactic

units below its level. Each syntactic unit has features describing it, as well as the functions it

may fill in syntactic units of which it is a constituent. These features form a structured system of

choices, hence the name systemic grammar. In SHRDLU, procedures written in PROGRAMMAR

language operate on an input string to classify words into syntactic units and a valid input will

only allow specific combination of features.

A sample conversation between SHRDLU and the user provided by [34] is given below. The

capitalized sentences are generated by SHRDLU.

Pick up a big red block.

OK.

Grasp the pyramid.

I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

Find a block which is taller than the one you are holding and put it into the box.

BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I

AM HOLDING.

OK.

What does the box contain?

THE BLUE PYRAMID AND THE BLUE BLOCK.

What is the pyramid supported by?

THE BOX.

How many blocks are not in the box?

FOUR OF THEM.

Is at least one of them narrower than the one which i told you to pick up?

YES, THE RED CUBE.

Is it supported?

YES, BY THE TABLE.
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Can the table pick up blocks?

NO.

Can a pyramid be supported by a block?

YES.

Can a pyramid support a pyramid?

I DON’T KNOW.

Stack up two pyramids.

I CAN’T.

Will you please stack up both of the red blocks and either a green cube or a pyramid?

OK.

Which cube is sitting on the table?

THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.

Is there a large block behind a pyramid?

YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE, AND THE

BLUE ONE.

Put a small one onto the green cube which supports a pyramid.

OK.

Put the littlest pyramid on top of it.

OK.

Does the shortest thing the tallest pyramid’s support supports support anything

green?

YES, THE GREEN PYRAMID.

What color is it?

BY "IT", I ASSUME YOU MEAN THE SHORTEST THING THE TALLEST PYRAMID’S

SUPPORT SUPPORTS.

RED

How many things are on top of green cubes?
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I’M NOT SURE WHAT YOU MEAN BY "ON TOP OF "IN THE PHRASE "ON TOP OF

GREEN CUBES " .

DO YOU MEAN:

1 - DIRECTLY ON THE SURFACE

2 - ANYWHERE ON TOP OF ?

2

THREE OF THEM.

Had you touched any pyramid before you put the green one on the little cube?

YES, THE GREEN ONE.

When did you pick it up?

WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND A LARGE

GREEN CUBE.

Why?

TO GET RID OF IT.

Why did you do that?

TO CLEAN OFF THE RED CUBE.

Why did you clear off that cube?

TO PUT IT ON A LARGE GREEN CUBE.

Why did you do that?

TO STACK UP THE RED CUBE , A LARGE RED BLOCK AND A LARGE GREEN CUBE.

Why did you do that?

BECAUSE YOU ASKED ME TO.

How did you do it?

BY PUTTING A LARGE RED BLOCK ON THE TABLE ; THEN LETTING GO OF IT

; THEN PUTTING A LARGE GREEN CUBE ON IT ; THEN LETTING GO OF THAT

CUBE ; THEN PUTTING THE RED CUBE ON THAT CUBE; THEN LETTING GO OF

THAT CUBE.
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How many objects did you touch while you were doing it?

FOUR OF THEM.

What did the red cube support before you started to clean it off?

THE GREEN PYRAMID.

There were five blocks to the left of the box then.

NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE GREEN CUBES AND A

LARGE RED BLOCK.

Put the blue pyramid on the block in the box.

OK.

Is there anything which is bigger than every pyramid but is not as wide as the thing

that supports it?

YES, THE BLUE BLOCK.

Does a steeple

Computer (interrupting): SORRY, I DON’T KNOW THE WORD "STEEPLE".

A "steeple" is a stack which contains two green cubes and a pyramid.

I UNDERSTAND.

Are there any steeples now?

NO.

Build one.

OK.

Call the biggest block "superblock".

OK.

Have you picked superblock up since we began?

YES.

Why did you drop it?

BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK.

I CAN’T EXPLAIN A NON-EXISTENT EVENT.
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Is there anything to the right of the red pyramid?

YES, FOUR THINGS: THE BOX , THE RED CUBE, THE BLUE PYRAMID AND THE

BLOCK NAMED SUPERBLOCK

Thank you.

YOU’RE WELCOME!

SHRDLU is related to Diana in multiple ways, the most basic of which is that both operate

in the prototypical environment of blocks world. The idea of linguistic utterances triggering

specific cognitive processes modeled as programs is not entirely carried over. However, there

is a resemblance to motion verbs being parsed into a predicate-argument set which facilitates

a procedurally generated visual simulation of an event. Both Diana and SHRDLU are situated

in their environment, meaning they are aware of their surroundings, specifically the blocks,

and take it into account while inferring meaning. For example, both will refuse an action, if a

particular block configuration is not feasible. Similarly, both will suggest alternatives in case of

an ambiguity. For Diana, VoxML [4] adds rich semantic information to the objects, including

the concept of scale and color, which allow her to differentiate objects based on these criteria,

much like SHRDLU.

That said, there are major differences too, though it may not be apparent at the surface.

Diana’s interpretive machinery is based on VoxML, which is rooted in Generative Lexicon [35].

SHRDLU’s semantic understanding is based on a grammar that decomposes meaning, while

Generative Lexicon distributes semantic load on all the constituents of an utterance. Moreover,

SHRDLU’s perception capabilities are not sensor based and entirely programmed, whereas Di-

ana can actually perceive the world in a visual as well as aural modality in addition to the text-

only interface that SHRDLU has.
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2.2 Blackboard Systems

Imagine a group of experts sitting in a room with a blackboard and mulling over a complex

problem. They are not allowed to talk to each other. Instead, each expert is given a chalk to

record their "contribution" to the solution on the blackboard. A contribution is essentially part

of the solution that reflects expert’s inference according to his area of expertise. Other experts in

the room can use these "contributions", provided it falls within their area of expertise, to arrive

at their own "contributions". Some of these contributions naturally build on each other to form

progressively higher level contributions to the solution. In this scenario, the experts might as

well not be aware of any other expert and how they came about their contribution; all they know

is the blackboard. The independent nature of experts means that if one of them is unavailable

for some reason, say illness, the group can still arrive at a solution albeit of a lower quality.

This metaphor, credited to [36] [37], describes the essence of blackboard architecture sys-

tems. First used in HEARSAY-II [38] for speech understanding, the architecture has been used

to solve a diverse range of problems like sonar interpretation [39], errand planning [40], protein

structure analysis [41], etc. in the years since.

In terms of implementation, the blackboard takes the form of a globally accessible database

consisting of entries. An entry is a set of key-value pairs and represents the "contribution" in

the metaphor described previously. Entries in the database are arranged in a linear hierarchy to

reflect the various abstraction levels to attack the problem. The set of keys belonging to an entry

constitute its vocabulary. The vocabulary of an entry depends on the problem being solved as

well as the level of the entry. It is also possible to have a uniform vocabulary i.e. all entries have

the same set of keys. For example, HEARSAY-II [38]. Entries can be linked to each other to form

a more cohesive solution. For example, a higher level entry linked to a lower level entry may

mean that that the higher level entry is justified by the information in the lower one.

The experts in the metaphor are represented by Knowledge Sources, which are simply event

handlers that can subscribe to change of an existing entry, addition of a new entry, or satis-

faction of a logical predicate involving entries. When triggered, the event handlers may add,
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modify or delete entries from the blackboard. Like any event driven system, a scheduler lies

at its core which determines what event handlers to trigger given the current blackboard state.

Event handlers may be executed concurrently. Moreover, an existing event handler may be in-

terrupted to favor another event handler if it is expected to lead to a better solution. Such a

system is said to exhibit opportunism.

2.3 Visually Grounded Reasoning

People engaging in a conversation are bound to have certain beliefs and presuppositions

even before the conversation begins. Some of these are assumed to be common knowledge,

while others are supposed to be easily inferred from the background preceding the conversa-

tion. However, not all of these propositions will be shared by the participants, owing to their

differing perspectives and knowledge. Therefore, only a part of these propositions are mutually

shared by the participants, forming their common ground [42]. As the conversation proceeds,

new propositions may be added while existing ones are destroyed, and in so doing, the com-

mon ground accumulates. For example, if Alice says to Bob "I can’t meet today, but I’m free

tomorrow.", Bob understands that his assumption that he’d be meeting Alice today doesn’t hold

true anymore. At the same time, he concludes that tomorrow might be a good day to schedule

a meeting, thereby adding a new proposition to the common ground. However, merely stating

something is not enough to contribute to the common ground. The participants must actively

work to ensure that each of them understands the content being added to the common ground.

Therefore, when Bob says, "Let’s meet tomorrow then.", Alice will be satisfied that Bob under-

stood her statement about being free tomorrow as a possible agreement to meeting tomorrow,

and will reply, "Yes, let’s do that.", and now both Bob and Alice have a new proposition added

to the common ground i.e. the mutual promise to meet tomorrow. The collective process by

which the participants ensure the arrival at this mutual understanding of the information be-

ing accumulated to the common ground is called grounding [42].
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Augmenting presuppositions of the participants is but one of the ways of grounding a con-

versation. Human cognition is believed to be situated [13] in its environment, meaning that

cognition arises due to the interaction of an agent with its environment, and is inseparably

coupled with the current context [12]. It is perhaps unsurprising, therefore, that the process of

grounding language benefits from the context provided by the percepts available to the agent.

For example, when Alice says to Bob, "Could you pass me a cup?", Bob must be able to locate a

cup in his environment by looking for it. If he cannot find one, he is essentially unable to ground

the utterance "cup" to any of the objects he can see. Therefore, Bob concludes that Alice’s di-

rections are misleading, and he asks Alice for a clarification to repair the break in grounding.

To be able to ground an utterance, one must be able to understand the meaning of its words

or phrases, and meaning is embodied [43]. That is, understanding meaning involves enacting

internal mental simulations that involve perceptual and affective faculties at one’s disposal. A

growing body of research work backs this claim. [44] [45] found that verbs referring to specific

effectors (licking, picking) activated regions of motor cortex in the brain that were also acti-

vated by the actual movement of the corresponding effector (tongue, fingers, respectively). [46]

considered the time it took for people to process fictive motion sentences i.e. sentences like

‘The road runs through the valley’, which contain a motion verb (here, run) but do not imply

actual motion, and they found that it took longer for people to process such sentences when

the previously established context suggested factors that would slow motion (for example, an

older protagonist, a difficult terrain, longer distances, etc).

Pustejovsky and Krishnaswamy [47] emphasize the role of simulation in human-computer

interaction, highlighting the use of game engines to create a rendered analogue to the "mental

simulations" mentioned previously. This is facilitated via VoxML [4], a modeling language to

create representations of objects, their attributes, and events enacted over these objects that

can be used to construct a 3D visualization from a linguistic utterance. The unit of meaning in

a language is called a lexeme which is arrived at by disregarding inflectional endings of words

[48]. For example, the words "running", "ran", "runs" all map to the same lexeme "run". The
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collection of lexemes is called the lexicon. In VoxML, each lexeme has a representation that

corresponds to the lexeme’s semantic content as a visualization [49]. VoxML forms the scaffold

used to link lexemes to these visual instantiations or the "visual object concepts" – the voxemes.

Together, the voxemes constitute the voxicon. A single lexeme may map to multiple voxemes.

For example, the lexeme plate can be visualized either as a square plate or a round plate, each

forming a distinct voxeme. Conversely, a single voxeme may be referred to by multiple lexemes.

For example, both dish and saucer can refer to the single voxeme round plate.

VoxML is rooted in Generative Lexicon Theory [35], which decomposes word meaning in

terms of Qualia relations (also called Qualia roles). The word Qualia (singular Quale) comes

from Latin meaning "of what kind of thing". Qualia roles for a word represent the way the

word is used in language that is attributed to the "world knowledge" gathered as part of human

experiences. For example, the word "sit" is considered a Quale of the word "chair" because we

know from our experience that one "sits" in a "chair". Similarly, the word "bake" is a Quale of

the word "bread" as one "bakes" the "bread". In fact, "bake" and "sit" fulfill different qualia

roles for "bread" and "chair", respectively, as suggested by the following division of qualia roles:

Formal/Atomic Conceptual superclass of the lexical item (is-a relation)

Constitutive/Subatomic Internal constitution of the entity (part-of or made-of relation)

Telic Typical purpose and function of the entity (used-for or functions-as relation)

Agentative How the object came into being i.e. its origin (created-by relation)

For example, a "book" is-a "publication" and it is made-of "text". A book is-created

when an author "writes" it. The author’s hope is that his "book" is-used for "reading" by

someone.

The telic role of a lexical item can only be achieved under specific circumstances. This situ-

ational context is encoded as the object’s habitat [50]. This along with description of what can

be done to the object – its affordances – form the linguistic "dark matter" essential to visual in-

stantiation of an object [5]. For example, a cup can afford being drunk from, being held, etc. So,

33



drinking from and holding are affordances of a cup. Habitats condition these affordances. For

example, the cup must be full in order to be drank from. Affordances, in turn, can be Gibsonian

or Telic. Gibsonian affordances are afforded by an object by virtue of its geometry. For exam-

ple, grasping, lifting, etc. Telic affordances, on the other hand, are higher level affordances that

exist by virtue of object’s purpose or function. Telic affordances may be accomplished using

Gibsonian affordances. As an example, reading is a telic affordance of a book.

A VoxML entity is one of OBJECT, PROGRAM, ATTRIBUTE, RELATION, and FUNCTION.

Each of these, along with their structure, is described next.

OBJECT Model for nouns.

LEX Lexical information of the object.

PRED Predicate lexeme denoting the object.

TYPE Object’s type according to Generative Lexicon [35].

TYPE Describes object geometry.

ROTATSYM Rotational symmetry across X, Y and Z axes.

REFLECTSYM Reflectional symmetry across planes XY, XZ and YZ.

HABITAT Specifies object’s habitats.

INTRINSIC Habitats intrinsic to the object, regardless of action it participates in.

EXTRINSIC Habitats that must be satisfied for particular actions to take place.

AFFORD_STR Set of actions along with their requisite conditions that the object may

take part in.

GIBSONIAN Low-level affordances by virtue of object’s geometry.

TELIC High-level affordances by virtue of object’s purpose or function.

EMBODIMENT Embodiment of the object relative to an in-world agent (usually human).

SCALE Qualitative description of object’s scale compared to the agent.
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MOVABLE Whether the object is movable by the agent or not.

PROGRAM Verbs modeled as n-ary predicates that can take objects or other evaluated predi-

cates as argument.

LEX lexical information of the program

PRED Predicate lexeme denoting the program.

TYPE Program’s type according to Generative Lexicon [35].

TYPE Describes how the visualization of the action is realized.

HEAD Base form - state, process, transition, assignment, test (conditions that must

hold during a transition).

ARGS Participants of the verb.

BODY Subevents executed as part of the program execution.

ATTRIBUTE Describe adjectival modifications.

LEX Lexical information of the attribute.

PRED Predicate lexeme denoting the attribute.

TYPE Scale and transitive property of the attribute.

SCALE Scale of the set of related attributes like nominal, binary, ordinal, interval,

and ratio.

ARITY Whether the attribute requires comparison to other objects (transitive) e.g.

small or not (intransitive) e.g. red.

ARG Variable representing the object to which the attribute is applied.

RELATION Relations specifying configuration information about two or more objects.

LEX Lexical information of the relation.
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PRED Predicate lexeme denoting the relation.

TYPE Typing information associated with the relation.

CLASS Nature of the relation: configuration/force_dynamic.

VALUE Region connection calculus configuration relations.

ARGS Arguments participating in the relation represented as typed variables.

FUNCTION Predicates which take objects as argument and evaluate to geometrical regions.

LEX Lexical information of the function.

PRED Lexeme denoting the function.

TYPE Typing information associated with the function.

ARG Object being computed over.

REFERENT Any sub-parameters of ARG semantically salient to the function.

MAPPING Type of transformation the function performs over the object.

ORIENTATION Describes the space and primary axis of the function operates with.

SPACE function is performed in either world or object space.

AXIS primary axis and direction the function exploits.

ARITY Transitive or intransitive (similar to ATTRIBUTEs).

2.4 Human Activity Recognition

The goal of a human activity recognition system (HAR) is identifying actions or activities

done by a person or a group of people [51]. Most of the human activity recognition focuses

on analyzing video sequences. In particular, space-time approaches [52] focus on recognizing

activities based on space-time features or on trajectory. Optical Flow has been used in many

such approaches. Recent approaches have exploited 3D depth data and motion capture sys-

tems, partly enabled by the widely available, cheaper depth sensors like Microsoft Kinect. Such
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shape-based methods focus on analyzing human silhouette represented as limbs jointly con-

nected to each other. Recent approaches to this problem are described in more detail in [52].

2.4.1 EGGNOG

EGGNOG [7] (Elicited Giant Gallery of Naturally Occurring Gestures) is a multi-modal, con-

tinuous dataset of naturally occurring gestures. Gestures are performed by the participants in

a spontaneous manner within the context of a shared physical task. The task involves collab-

oration between a participant pair so that the participants are separated in space, each facing

a table and a TV screen on which they can view the other participant. One of the participants,

the signaler, can also view a block pattern that the other participant, the actor, cannot. The task

consists of the signaler instructing the actor as to how to recreate the block pattern through the

use of gestures and sometimes, spoken language. The signaler is not limited by a pre-taught

gesture vocabulary and is free to choose any gesture that best captures the move to recreate the

block pattern.

The tasks are captured in various modalities for both the signaler and the actor. These

modalities include RGB video, depth video, and skeleton data recorded by Microsoft Kinect

v2 [53] devices. To aid in the labeling process, the trials are segmented into motions by detect-

ing the local curvature maxima of the curves formed by high-dimensional body position data

according to the algorithm described in [9]. Each motion, then, is manually labeled by an ap-

propriate gesture label using a labeling tool called EASEL [8]. Of course, not all motions are

meaningful gestures, making this a continuous dataset.

The gesture labels follow the format of body part: description. The body part may be one of

’body’, ’head’, ’right/left arm’, ’right/left hand’. The description provides additional information

about the gesture like pose, direction, etc. For example, right hand: claw, down describes the

claw gesture made by the right hand such that the palm is facing down towards the table.

In addition to the gesture labels, the dataset also provides intent labels. Intents record the

inferred meaning of the signaler’s instructions within the context of communicating the block
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pattern to the actor and may span multiple gestures and words. For example, an instruction

that involves the signaler holding the hand completely open with fingers completely closed

such that the palm is facing to the left, followed by a sweep of the arm in the same direction

may be associated with the intent of sliding a block to the left. Many more intents like stack,

row, column, here, there, etc. are recorded in the dataset.

2.4.2 Gesture Recognition

Gestures are one of the more intuitive ways to interact with machines. Gesture recognition

refers to the whole process of tracking human gestures to their representation and conversion to

semantically meaningful commands [54]. Vision based methods for gesture recognition employ

one or more cameras and analyze video sequences to identify gestures. Although such methods

are more convenient and comfortable to use, they suffer from configuration complexity, high

computations cost, and occlusion problems. Availability of depth sensors has enabled another

approach called depth-based gesture recognition. Depth sensors make hand segmentation,

one of the essential tasks in gesture recognition, trivial. Cheng et al. [55] summarizes recent

approaches to gesture recognition problem. Deep learning techniques have been applied with

great success as well, surpassing many of the previous state of the art results. In particular,

Recurrent Neural Networks (RNNs), Long Short-term Memory (LSTMs), and 3D Convolutional

Nets have made fast and reliable gesture recognition systems possible. Readers can refer to [56]

for more details on deep learning based approaches to gesture recognition.

2.5 Embodied Agents

Embodied conversational agents (ECAs) are embodied agents living in a virtual world that

are capable of engaging in conversation with one another and with humans employing the

same verbal and nonverbal means that humans do. Creating believable ECAs is a major un-

dertaking requiring knowledge from multiple disciplines like computer animation, modeling,

psychology, etc. ECAs need to have a realistic appearance, have flexible motion modeling,
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and intelligent behavior modeling [57]. ECAs have been developed for military rehearsal ex-

ercises [58], distress evaluation [59], etc. among other uses.

The Mission Rehearsal Exercise system [58] aims to inculcate leadership skills to deal with

high-stakes situation in an effective way. The system puts the trainee in a virtual environment

where he is on his way to assist his fellow soldiers when he discovers that one of the vehicles in

his platoon has been involved in an accident with a civilian. While the TV camera crew gath-

ers, the trainee has to make decisions under stress that will impact the final outcome. To make

the situations as life-like as possible, the virtual humans possess an integrated set of abilities

such as the ability to perceive and act in the virtual world, engage in face to face dialogues,

and display realistic emotions. To ensure flexibility, a blackboard architecture (Section 2.2)

was adopted that allowed individual components to access shared intermediate results of other

components. Emotions were modeled based on appraisal theory.

SimSensei Kiosk [59] system consists of a virtual human interviewer, Ellie, who is designed

to engage in face to face conversations and can automatically assess verbal and non-verbal

indicators of anxiety, depression, etc. The developers aggregated data from human-human

interactions in the context of distress assessment, and followed it up with a Wizard of Oz ex-

periment to select an adequate set of utterances and non-verbal behavior to differentiate be-

tween distressed and normal interviewees. The perception abilities of the system consists of a

multimodal system that allows real-time synchronized capture of multiple modalities and their

fusion. The modalities included video, audio, head position, gaze, face expression, etc. For

animating Ellie, Smart Body character animation was used.

2.6 Pointing

A pointing gesture is “a communicative body movement that projects a vector from a body

part to indicate certain direction, location or object” [60]. It can also be used to trace a path or

a shape. Pointing is one of the most common communicative signals in our day to day life, and

is one of the earliest acquired communicative ability by humans [60].
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Being such an essential part of human-human communication, various techniques have

been proposed over the years for selecting objects in virtual environments. One of the most

fundamental tasks performed by users in GUIs is object selection [61]. People often interact

with large digital displays by pointing from a distance. Ray-pointing is a convenient selection

technique to this end. By using the intersection of the virtual ray with a surface, the location

being pointed at is determined [62]. It is easy to use, allows multiple people to interact with the

same display without their bodies getting in the way, and does not require a physical surface

to operate (as opposed to a mouse pointing device). However, like any ray-casting technique, it

suffers from lack of precision in selecting distant objects. This is because distant objects occupy

proportionally lesser surface of the display, thereby demanding greater precision from the user.

Moreover, the effect of hand jitter amplifies with distance, further deteriorating precision [63].

[62] recognize four variations of ray pointing techniques as follows:

Regular Laser Pointing The user holds a physical device such that the position and orientation

of the device determines the direction of ray. The device need not be an actual laser as

long as the computer system can recognize the intersection of ray with the display. It is

also called virtual pointing.

Arrow Pointing It is the same as regular laser pointing except that the pointing device position

is constrained to be aligned with the user’s eye, much like one would do when playing a

game of darts.

Image-Plane Pointing The virtual ray is determined as originating from user’s eye to another

point that can be controlled by the user, usually the tip of their thumb or a pointing device.

This technique requires tracking of user’s eye in some way.

Fixed-Origin Pointing In image-plane pointing, one of the points was fixed at the user’s eye.

By relaxing this restriction, one can fix the origin of the ray to be any point in space while

the user controls the other point. This is called Fixed-origin pointing.
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Chapter 3

System

This chapter describes the complete system in detail by going over each of its components.

We will first describe the Virtual Environment – the environment housing Diana and much of

her manipulable universe. Next, we peel the layers off the mechanisms behind Diana’s abili-

ties by describing the Perception modules that represent Diana’s perceptual faculties, Cognitive

modules that control Diana’s decision making and Behavior modules that drive Diana’s motor

abilities. All these components are centralized in an asynchronous datastore called the black-

board which allows a real time synchronization between these multiple independent modules

(see Figure 3.1), thereby making Diana the sophisticated multimodal agent that she is.

user:intent            "pickUp"
user:arms:left      "move left"
me:attention         7
me:emotion          "happy"

            Blackboard

Cognition Modules Behavior Modules

Perception Modules

Figure 3.1: Action Perception Cycle [1]
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3.1 Virtual Environment

The virtual environment is created in Unity 2018. The environment consists of a table with

blocks placed on it, essentially the blocks world (Figure 3.2a). The agent stands on the opposite

side of the table as the camera pointing direction. The only objects that can be manipulated are

the blocks on the table. These can be moved around with an appropriate command from the

interacting user (Figure 3.2b).

(a) Agent as visible to user (b) User interacting with the system

Figure 3.2: Virtual Environment

The agent is called Diana. She is modeled using Adobe Fusion software. The model comes

with blend shapes that allow us to manipulate her facial expressions. Her motor abilities are

implemented using a combination of animations and Inverse Kinematics. We use one wave

animation and four reaching animations, all sourced from Carnegie Mellon Motion Capture

Database [64]. Additionally, four cross-reaching animations were recorded separately with Mi-

crosoft Kinect, and then cleaned with Autodesk Maya. With a total of eight reaching animations,

we use animation blending capabilities in Unity to create intermediate reaching animations

that allow Diana to reach any part of the table.
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Kinect Interface

Skeleton

Hand Pose Arm Motion Speech
Recognition Affect

Figure 3.3: Perception Modules

3.2 Perception Modules

The perception modules are responsible for providing the sensory input to the system. The

data is written to the blackboard to be used by the other components of the system. Broadly, we

have six perception modules:

• Kinect Interface

• Skeleton

• Hand Pose

• Arm Motion

• Speech Recognition

• Affect Recognition

3.2.1 Kinect Interface

The Kinect for Windows SDK 2.0 exposes the Kinect v2 programming API for C# projects on

Windows operating system. To meet performance requirements of our system and minimize

system complexity, it was imperative to enable the Unity C# scripting environment to access
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Kinect SDK Wrapper

Kinect Unity Plugin

Kinect SDK

Kinect Sensor

PyKinect2

Kinect for Python

Figure 3.4: Kinect Interface

the Kinect v2 API as directly as possible. This is accomplished via the Kinect Interface. The

Kinect Interface utilizes Kinect v2 Unity plugin [65] released by Microsoft to access Kinect v2

API directly in Unity. It further abstracts the most common operations provided by the Kinect v2

API into Kinect SDK Wrapper. The wrapper ensures proper resource management and increases

code manageability. Any Unity C# script can access this wrapper for high-level interactions, but

retains the flexibility to directly access the Kinect v2 API if needed.

The Kinect Interface consists of the following four layers, listed in order of increasing ab-

straction:

• Kinect Sensor

• Kinect for Windows SDK 2.0

• Kinect v2 Unity plugin

• Kinect SDK Wrapper
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Kinect Sensor

Kinect is a motion-sensing input device developed by Microsoft. It has been through four

different iterations over the years:

• Kinect for Xbox 360 (2010)

• Kinect for Windows (2012)

• Kinect for Xbox One (2013)

• Azure Kinect (2020)

We use Kinect for Xbox One, also called Kinect for Windows v2, is used for our setup. Hence-

forth, it is described simply as Kinect v2. Kinect v2 consists of three sensors: a color camera, an

infrared camera, and an array of microphones.

The Kinect v2 color camera captures 1080p video. Its field of view is 84.1 × 53.8 degrees.

With its wide field of vision, the sensor can detect a user up to 3 feet from the sensor compared

to six feet for the original Kinect.

The Kinect v2 infrared camera has a resolution of 512×424px, which is three times compared

to its predecessor. Its field of view is 70.6 × 60 degrees. It measures depth of the scene objects

based on the time-of-flight measurement principle. Essentially, the infrared light is cast from

the sensor. When it gets reflected by the obstacles in the environment, the time of flight is

registered for each pixel. Internally, wave modulation and phase detection is used to estimate

the distance to obstacles (indirect ToF) [66]. The working range for the depth sensor is specified

as 0.5m to 4.5m.

The Kinect uses a body tracking algorithm to identify the position and orientation of 25

individual joints (including thumbs). It can simultaneously track joints for up to six users. It

also provides detection of face attributes for each detected person. For e.g., you can know if

the user is looking at the camera or not (Engaged), expressions (happy or neutral), appearance

(if wearing glasses, the skin color or hair) and activities (eyes open or closed, mouth open or

closed).
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Kinect SDK

The Kinect v2 provides a programming interface via the Kinect for Windows SDK v2.0. The

SDK provides a multitude of functions and classes that provide access to all the sensor data.

These are described as follows:

Color Provide access to the HD resolution RGB color frame.

Depth Provide access to the depth frame.

Body Provide access to the tracked bodies and the 25 joints’ position and rotation for each

tracked body.

Infrared Provide access to the infrared image of the scene.

Face Detect user’s face’s keypoints such as eyes, mouth, etc. and facial expressions.

FaceHD Detect user’s skin color, hair, and face mesh points.

Coordinate Mapping Map the coordinates in image acquired with one sensor to an image ac-

quired with another sensor. For example, to map a joint position calculated with body

tracking to a pixel in the color image, you would use this.

Audio The Kinect uses an array of microphones that can be accessed to get directional audio.

Additionally, it can also associate a generated sound to a tracked body.

Kinect Unity Plugin

The Kinect SDK v2.0 is provided for development in Unity game engine through a Unity

Package created by Microsoft [65]. The plugin wraps all the core Kinect functionality, and face

detection APIs in this plugin. Since the majority of our virtual environment is implemented in

Unity, we use the Unity plugin as an intermediate for our Kinect Interface.
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Kinect SDK Wrapper

Although the Kinect SDK is comprehensive, it can be very verbose to work with. So, to

remedy this, we develop a wrapper around Kinect SDK API. Our wrapper is composed of three

classes:

• KinectSensor This class wraps the Color, Depth, Body, Infrared, Face, Coordinate

Mapping, and Audio APIs into a uniform interface. The primary advantage of having such

a class is that it takes care of closing access to individual sensors so as to avoid memory

leaks. Additionally, it synchronizes all frames using a 64-bit integral timestamp that repre-

sents the number of 100-nanosecond intervals that have elapsed since 12:00:00 midnight,

January 1, 0001.

• KinectSensor.MultiSourceFrameArrivedThis event is triggered when the syn-

chronized Color, Depth, Infrared, Body frames are generated.

• KinectSensor.FaceFrameArrived This event is triggered when the Face frame is

generated.

• KinectSensor.AudioBeamFrameArrived This event is triggered when the Audio

frame is generated.

• KinectEventArgs The information associated with each of the three events men-

tioned above is encapsulated in the following classes:

– MultiSourceFrameArrivedEventArgs

– FaceFrameArrivedEventArgs

– AudioBeamFrameArrivedEventArgs

• KinectException Any failure that occurs in our Kinect SDK wrapper is encapsulated

inside KinectException with the actual exception stored as a field for finer debug-

ging.
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Kinect for Python

Some of the perception modules do not live inside the Unity environment, and are separate

Python processes. In order to avoid throttling the network traffic and disk space, we use the

PyKinect2 library [67], a wrapper library that exposes Kinect for Windows v2 API in Python. The

Kinect for Python component works alongside the Kinect SDK wrapper, and provides access to

the same Kinect sensor.

3.2.2 Skeleton

The Skeleton module is responsible for extracting the user joint information provided by

Kinect Interface and writing it to the blackboard. The joint information consists of the position

and the orientation of the 25 tracked joints of the user nearest to the setup. The distance of

the user from the setup is measured as Euclidean distance of the user’s spine base joint from

the Kinect sensor. The position is represented relative to Kinect origin and each component is

specified in meters. The orientation is represented as a quaternion.

3.2.3 Hand Pose

The Hand Pose module is started as an external Python process from within Unity. The

module accepts the depth frame from Kinect using PyKinect2 [67] library. It also retrieves the

hand wrist joint coordinates in the depth frame. Then, it proceeds to crop the depth frame

around these joint positions to generate two hand depth frames. Finally, the two depth frames

are pre-processed and passed into ResNet-style deep convolutional neural network (DCNN)

[6] to produce hand gestures. A total of 34 gestures can be recognized, which includes hand

gestures like thumbs up, thumbs down, counting (1-5), pointing, etc.

3.2.4 Arm Motion

The Arm Motion module, like the Hand Pose module, is also started as an external Python

process from within Unity. The module accepts the body frame from Kinect for Python wrap-

per. The body frame consists of the joint positions of the user closest to the sensor. This data
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is passed into an LSTM recurrent neural network [20] to classify the arm motions. The arm

motions specify which of the six directions the arm moved in.

3.2.5 Speech Recognition

The speech recognition is performed using an off-the-shelf automatic speech recognition

service, namely Google Cloud Speech-to-text [68]. To access the API from within Unity, an

open-source Unity plugin named UnityGoogleStreamingSpeechToText [69] is used.

3.2.6 Affect Recognition

The Affect Recognition module is built on top of Affectiva’s [70] Affdex SDK for emotion

measurement. It can analyze spontaneous facial expressions using on-device processing power.

The emotion metrics that can be detected using this SDK include anger, contempt, disgust, fear,

joy, sadness and surprise, with reported accuracy in 90th percentile [71]. It can also detect a few

other non-emotion metrics like age, gender, ethnicity, etc. The underlying classifiers are trained

on a massive dataset with more than 6.5 million faces from 87 countries. However, the SDK is

no longer directly available to developers.

The Affect Recognition module accepts the Color frame from Kinect Interface and passes

it along to the Affdex SDK, which generates the dominant emotion. The dominant emotion

is then relayed to the blackboard, at which point it becomes visible to all the modules in the

system.

3.3 Blackboard

It is necessary to use an architecture that supports asynchronous coordination between

multiple processes running in real time. With this in mind, we opted for a layered architecture

of independent modules such that the coordination between all the modules, each providing

expertise for a very specific area, is enabled by the blackboard [72]. The blackboard is the cen-

tral data store that all modules and the virtual environment interact with. Each module can
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read and write to the blackboard independently of any other module. In turn, a module can

take a decision based on the "expertise" shared by all other modules on the blackboard.

Externally, he blackboard is essentially a key-value store. The keys are hierarchical, with

each level separated by a : (colon). For example, user:hands:left describe the left hand’s

gesture of the user. Internally, the blackboard is implemented as a mapping of keys to the sub-

scribers to that key. The modules that rely on a particular key will subscribe to the changes to

that key. When the key changes, each subscribed module is notified, and can react accordingly.

To ensure that blackboard is available to external processes, it provides a socket API to read

or write any of its keys. The socket API is available in both Python and C# languages. For exam-

ple, the Hand Pose module and the Arm Motions module, both of which run as external Python

processes, rely on the Python version of socket API to to write the detected hand gesture and

arm motion to the blackboard, respectively. Similarly, the C# modules like Attention module

use the C# version of the socket API to write the attention value to the blackboard.

3.4 Cognition Modules

Cognition modules represent the thinking processes of Diana. These work with the sensory

inputs provided by the perception modules, and transform those into an understanding of the

environment - both physical and virtual. The physical environment primarily constitutes un-

derstanding the actions performed by user, or the state of his/her participation. The virtual

environment understanding is manifested by extrapolating user’s pointing to locate an object

in the virtual environment. The different cognition modules are described below:

User Pointing The User Pointing module extrapolates the line joining the user’s shoulder and

wrist joint into the virtual environment, and the point of intersection of this line on the

virtual table is determined as the pointing location in the virtual environment.

Engagement The Engagement module determines if the user is engaged or not. The user is

said to be engaged when he/she is standing in the engagement zone.

50



Engagement User Pointing User Intents Pointed-at Object

Figure 3.5: Cognition Modules

User Intents The user intents describe what the user intends the agent to do using non-verbal

behavior. They are determined from the hand pose and the arm motions.

Pointed-at Object The pointed-at object is determined by overlapping a sphere centered at the

pointed-at location with the manipulable objects in the scene. If the same object remains

the focus of pointing for a given amount of time, then it is set as the pointed-at object.

3.4.1 State Machines

The user intents are determined using Finite State Machines. However, the transition rules

are not just based on the input, but can be augmented with time-constraints. For example, to

detect if the user did a positive acknowledgment, he/she needs to keep the hand in a thumbs up

gesture for a certain amount of time. This helps in smoothing out the noise in the user’s input.

3.4.2 User Intents

When the user does a gesture with hands and/or arm motions, they may be interpreted as

a signal to the agent to perform an action. We call these user intents. There are different user

intents that can be understood by the agent:

Positive Acknowledgment User does a thumbs up with either hand.

Never mind User raises either hand with the palm facing the agent, like a stop sign.
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Push direction User does a push gesture by swiping the arm in left, right, front or back direc-

tions with the hand palm facing the direction of the swipe.

Negative Acknowledgment User does a thumbs down with either hand.

Wave User waves with either hand.

Wait User does a count-one gesture with either hand, as if gesturing "wait a second".

Claw User does a claw gesture such that the palm is facing down.

3.5 Behavior Modules

Behavior modules alter the state of the virtual environment. The change could result in the

agent acting on the environment in some way, or it could be entirely limited to modifying the

internal state of the agent. An example of the former would be Emotion module, while the latter

case is illustrated by the Attention module when the attention level isn’t high enough.

Alternatively, the change could just modify the virtual environment without changing the

agent’s state at all. A great example of a behavior module working this way is the User Pointing

module. The user pointing module highlights the estimated location being pointed at by the

user as a circle projected on the virtual table, and in doing so, only alters the virtual environ-

ment state without prompting any reaction from the agent (Diana). Admittedly, altering virtual

environment state with a rendering like this, which has no analogue in the real world, shifts the

system away from reality. However, as we learned during user trials, it is a necessary conces-

sion to enhance users’ experience with the system because without it, users find it really hard

to ground their deictic references.

User Pointing The user pointing module is responsible for highlighting the pointed-at location

in the virtual environment. This is essential for providing user with the feedback of his

pointing gesture. The module draws a sprite in the shape of a dashed circle on the virtual

table surface, and keeps the dashed circle rotating at a constant speed as long as the user
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Speech Grasp Attention Emotion Eye Control

Figure 3.6: Behavior Modules

is adjusting the pointing by moving the arm. Once the user fixes the pointed at location

by keeping the arm still for a short time, the circle stops rotating.

Eye Control This module controls the eyes, based on inputs like alertness and attention, as well

as internal state such as the need to blink. One important finding from our experience

with the system that allowing Diana to follow the object she is acting on with her gaze

Speech Output This module detects an intent to speak the given text, and performs text-to-

speech (TTS) output. The TTS functionality is provided by RT-Voice Pro asset available in

the Unity Asset Store.

Attention This module controls Diana’s attention. For example, when the user is pointing at

the screen or when the user is in the engagement zone of the setup, Diana’s alertness level

will increase. If the alertness level is high enough, she will respond by directing her gaze

at the user.

Emotion This module controls Diana’s facial expressions and is affected by her perception of

user’s emotions and the ongoing task. For example, she will smile when greeting a user.

Similarly, she will express concentration when the user is describing a task to perform.

Grasp The grasp module is a low-level motor control module that directs the agent’s actions.

The available actions include: "reach" to reach a given location on the plane of the table

as if to grab it or indicate a prospective destination location, "move" to move the hand
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to a different 3D location, "hold" to hold the object at the reached location, "release" to

release the held object, and finally the "unreach" action to retract the hand to an idle pose.

3.6 Motor Control System

This chapter describes how Diana’s motions are controlled, which is critical to the working

of Diana’s motor control system. We’ll start with a description of Unity’s animation system.

Then, we’ll provide the concrete implementation details relevant to the system.

3.6.1 Unity Animations

Animations in Unity can be of two types: External and Internal.

External Animations

The external animations are recorded outside Unity Editor. These could be humanoid ani-

mations that are recorded in a Motion Capture studio. Alternatively, these could be animations

created in an animation software such as Autodesk 3ds Max. External animations cannot be

edited within Unity.

Internal Animations

Unity allows creating and editing of animations within the Unity Editor as well. This is

accomplished by setting key points in a timeline. A key point describes a property’s value at

a certain point in time. As far as animation is concerned, any component property whether

Unity provided or user written can be animated like this. For example, all Game Objects have

a Transform component with Position, Rotation, and Scale properties. This means you can an-

imate all three properties for any Unity game object. Similarly, if the user wrote a script (as a

Monobehavior component, any public field becomes the component’s property, and hence

is also available to the Unity animation system to be animated.

54



Animator Controller

An animator controller is a component that allows a user to describe a state machine such

that each state has an animation associated with it as well as transitions originating out of it.

The transitions are ordered, such that each transition’s conditions are evaluated only if the con-

ditions associated to the transition above it are not true. The transitions are controlled by An-

imation parameters and conditions. The animation parameters are controlled via user scripts,

as these represent conditions that must evaluate to true before the animation is executed. There

are 4 types of animation parameters:

1. Boolean: A true/false flag. Available conditions are that the parameter must be true or

false.

2. Trigger: Triggers can only be set, but are implicitly unset the first time they are evaluated.

Only available condition is that the trigger must be set.

3. Float: Floating point numbers. Available conditions are greater than or less than checks.

4. Integer: Integer numbers. Available conditions are greater than, less than, equal to and

not equal to checks.

Interruptible Transitions

Many of Diana’s motor abilities are implemented using blended animations guided by In-

verse Kinematics. However, by default, all animation transitions are uninterruptible. Therefore,

as soon as all the conditions related to animator parameters of a transition are true, the transi-

tion will take place, even if the next instant all the conditions evaluate to false. This will result in

a noticeably slow response to the user. For example, imagine the user says "stop" while Diana

is reaching out to grab a block. If not for interruptible animations, Diana would complete the

animation to reach the block, and only then accept events to stop the motion. This would result

in very unrealistic behavior since humans are quick to respond to such signals. Moreover, say

the user changed his/her mind midway while selecting one block and then suddenly choosing
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another block. This would also require Diana to react as soon as a different course of action is

requested by the user.

Thankfully, Unity allows an ongoing transition to be interrupted by allowing the developer

to define transition order. The transitions higher in this order can interrupt a transition lower

in the order.

1. Current State Current state is the state that the transition is originating from. This order

setting allows a transition from the current state to interrupt an ongoing transition.

2. Next State Next state is the state that the transition is set towards. The order setting allows

a transition in the next state to interrupt the ongoing transition.

3. Current State then Next State The transitions out of the current state are checked for

interruption first. If no interruption is found, the transitions out of the next state are

checked next.

4. Next State then Current State The transitions out of the next state are checked for in-

terruption first. If no interruption is found, the transitions out of the current state are

checked next.

Given the choice of one of the above, all transitions are evaluated in the order they are spec-

ified even when one of the transitions is ongoing. If any of the transitions evaluates to true, then

the ongoing transition is interrupted, and the new transition takes over.

Animation Blending

Not all motions can be described by a finite set of pre-recorded animations. Animation

blending allows creation of intermediate animations that can be finely controlled using ani-

mation parameters, mostly floating type. The animation blending is accomplished by using a

Blend Tree state in the Animator Controller.

Unlike the usual Animator Controller state that only has one animation associate with it, a

Blend Tree state has multiple animations attached to it. Each animation in the Blend Tree is
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also parameterized by one or more animation parameter values. When animation parameters

have a value that is not the exact same as set in the blend tree for an animation, an intermediate

animation is generated.

3.7 User Interaction Scenarios

The following sections explain some of the common use cases. Each section first describes

the sequence of events as it would be perceived by the user. It then proceeds to explain all

the intermediate steps that the system follows highlighting the communication and interplay

between different system modules. The following use cases are discussed:

1. Engagement

2. Mutual readiness for dialogue

3. User pointing

4. Grabbing a block

5. Vertically stacking a block

6. Horizontally stacking a block

7. Interruption

3.7.1 Engagement

The engagement scenario consists of the following steps:

1. User steps into the engagement zone.

2. Diana says "Hello."

Under the hood, the following happens:

1. User steps into the engagement zone.
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2. The Kinect Interface captures the sensor data from Kinect device.

3. The Skeleton Perception module extracts the joint data for the user from the sensor data,

and writes it to the blackboard.

4. The Engagement Cognition module reads the position of the spine joint from the black-

board, and verifies that it falls within the bounds set for the engagement zone.

5. The Engagement Cognition module sets the key user:isEngaged on the blackboard

to true.

6. The Attention Cognition module detects the change to user:isEngaged and sets the

alertness level to a high value on me:alertness.

7. The Eye Gaze Behavior module detects the change to me:alertness and responds by

setting the gaze to be towards the user. It also makes Diana’s eyes to be wide open.

8. The Dialogue Interaction Behavior module detects the update touser:isEngaged and

sets the me:speech:intent to "Hello."

9. The Speech Output Behavior module detects the update to me:speech:intent and

starts speech synthesis for the given text.

10. Diana says "Hello."

3.7.2 Mutual readiness for dialogue

This scenario assumes that the user is already engaged and consists of the following steps:

1. User waves.

2. Diana says "I’m ready to go."

Under the hood, the following happens:

1. User waves.
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2. The Kinect Interface captures the sensor data from Kinect device.

3. The Skeleton Perception module extracts the joint data for the user from the sensor data,

and writes it to the blackboard.

4. The Wave Intent Cognition module reads the positions of elbow and wrist joints, and ver-

ifies wave motion over time.

5. The Wave Intent Cognition module sets the key user:intent:isWave on the black-

board to true.

6. The Dialogue Interaction Behavior module detects user:intent:isWave key being

updated and sets me:speech:intent to "I’m ready to go."

7. The Speech Output Behavior module detects the update to me:speech:intent and

starts speech synthesis for the given text.

8. Diana says "I’m ready to go."

3.7.3 User pointing

This scenario assumes that the user is already engaged and ready, and consists of the fol-

lowing steps:

1. User points at the screen.

2. The pointing marker appears on the virtual table.

Under the hood, the following happens:

1. User points at the screen.

2. The Kinect Interface captures the sensor data from Kinect device.

3. The Skeleton Perception module extracts the joint data for the user from the sensor data,

and writes it to the blackboard.
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4. The User Pointing Cognition module reads the position of shoulder and wrist joints for

both arms, and determines if the user is pointing. If the user is determined to be pointing,

it sets user:isPointing to true, otherwise false.

5. If the user is pointing, the User Pointing Cognition module also uses the joint data to

approximate a 2D location on the virtual table and writes these coordinates on the black-

board as user:pointPos. If the approximated 2D location is on the virtual table sur-

face, user:pointValid is set to true, otherwise it is false.

6. If user:pointPos changes and user:pointValid is true, the Pointing Marker

component draws the pointing marker at the updated location.

7. The pointing marker appears on the virtual table.

3.7.4 Grabbing a block

This scenario assumes that user is already engaged and ready, and consists of the following

steps:

1. User points at the screen.

2. User guides the pointing marker to a virtual block.

3. User holds the pointing maker on the block for a short time.

4. Diana says "Ok" and proceeds to grab the block.

Under the hood, the following happens:

1. User points at the screen

2. All the steps listed in Section 3.7.3 are repeated in a loop until the pointing marker appears

on the virtual block.

3. Simultaneously, the Pointing Intent Cognition module checks blocks for collisions in the

vicinity of the user:pointPos location.
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4. If there is consistently some block that passes collision check and it’s the same block

for some given time period, then the Pointing Intent Cognition module sets the given

block’s name to user:lastPointedAt:name. It also sets the given block’s position to

user:lastPointedAt:position. Otherwise, it sets both to empty values.

5. Whenuser:lastPointedAt:name is set to a non-empty value, the Dialogue Interac-

tion Cognition module sets the intended action to grab the block by assigning "reach"

value to me:intent:action, the location of the block to me:intent:target, and

the name of the target to me:intent:targetName.

6. Simultaneously, the me:speech:intent key is set to "Ok."

7. The Grasp Behavior module responds to the update to me:intent:action key by

starting the reaching animation towards the location specified in me:intent:target.

8. Simultaneously, the Speech Output Behavior module reacts to the change in the value of

me:speech:intent and starts speech synthesis for the given text value.

9. Diana says "Ok" and proceeds to grab the block.

3.7.5 Vertically stacking a block

This scenario assumes that user is already engaged and ready, and consists of the following

steps:

1. User points at the screen.

2. User guides the pointing marker to a virtual block (say A) and holds.

3. Diana proceeds to grasp the block.

4. User points at the screen again.

5. User guides the pointing marker to a virtual block (say B) and holds.
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6. Diana says "OK." and proceeds to put block A on top of block B.

Under the hood, the following happens:

1. User points at the screen.

2. All the steps listed in Section 3.7.3 are repeated in a loop until the pointing marker appears

on the virtual block A.

3. All the steps listed in Section 3.7.4 are repeated so that Diana grasps the block A.

4. User points at the screen again.

5. All the steps listed in Section 3.7.3 are repeated in a loop until the pointing marker appears

on the virtual block B.

6. The Dialogue Interaction Cognition module computes the path to reach the location on

top of the block B i.e. the target location.

7. The Dialogue Interaction Cognition module then sets Diana’s intended action to move

the block to the target location by setting me:intent:action to move and setting

me:intent:target to the target location vector.

8. Simultaneously, the me:speech:intent key is set to "Ok."

9. The Grasp Behavior module responds to the update to me:intent:action key by

starting the moving animation towards the location specified in me:intent:target.

10. Simultaneously, the Speech Output Behavior module reacts to the change in the value of

me:speech:intent and starts speech synthesis for the given text value.

11. Diana says "OK." and proceeds to put the block A on top of block B.
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3.7.6 Horizontally stacking a block

This scenario assumes that user is already engaged and ready, and consists of the following

steps:

1. User points at the screen.

2. User guides the pointing marker to a virtual block and holds.

3. Diana proceeds to grasp the block.

4. User does a "push" gesture.

5. Diana says "OK." and proceeds to slide the block against another block.

In the above, the "push" gesture could be either "push left" or "push right".

Under the hood, the following happens:

1. User points at the screen.

2. All the steps listed in Section 3.7.3 are repeated in a loop until the pointing marker appears

on the virtual block.

3. All the steps listed in Section 3.7.4 are repeated so that Diana grasps the block.

4. User does a "push" gesture.

5. The Kinect Interface captures the sensor data from Kinect device.

6. The Hand Pose Perception module reads the Depth frames for both hands from the Kinect

Interface, generates gestures for both hands, and writes the recognized gesture labels to

user:hands:left and user:hands:right respectively.

7. The Skeleton Perception module extracts the joint data for the user from the sensor data,

and writes it to the blackboard.
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8. The Arm Motion Perception module reads the skeleton data and generates arm motion

labels in user:arms:left and user:arms:right respectively.

9. The Push Intent Cognition module combines bothuser:arms anduser:hands labels

into a user push intent and setsuser:intent:isPushLeft totrue if the user intent

is recognized to be "push left". Similarly, user:intent:isPushRight is set to true

if the user intent is recognized as "push right".

10. When eitheruser:intent:isPushLeft oruser:intent:isPushRight is set to

true, the Dialogue Interaction Cognition module identifies the block to slide against i.e.

the target block, and computes the path to reach the location beside the target block i.e.

the target location.

11. The Dialogue Interaction Cognition module then sets Diana’s intended action to move

the block to the target location by setting me:intent:action to move and setting

me:intent:target to the target location vector.

12. Simultaneously, the me:speech:intent key is set to "Ok."

13. The Grasp Behavior module responds to the update to me:intent:action key by

starting the moving animation towards the location specified in me:intent:target.

14. Simultaneously, the Speech Output Behavior module reacts to the change in the value of

me:speech:intent and starts speech synthesis for the given text value.

15. Diana says "OK." and proceeds to slide the block against another block.

3.7.7 Interruption

This scenario assumes that user is already engaged and ready, and consists of the following

steps:

1. User points at the screen.
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2. User guides the pointing marker to a red colored virtual block and holds.

3. Diana proceeds to grasp the block, but before Diana has grasped it, user says "No, the

blue one".

4. Diana seamlessly transitions into grasping the blue block.

Under the hood, the following happens:

1. User points at the screen.

2. All the steps listed in Section 3.7.3 are repeated in a loop until the pointing marker appears

on the virtual block.

3. All the steps listed in Section 3.7.4 are repeated so that Diana begins to grasp the red block.

4. Before Diana has grasped the red block, user says "No, the blue one".

5. The Speech Recognition Perception module recognizes that the user is speaking and sets

user:isSpeaking to true.

6. When the user is done speaking, the Speech Recognition Perception module sets the

speech transcription on the blackboard as user:speech.

7. The NLU Cognition module reacts to the change in user:speech and sets the intended

action to instead grasp the blue block in the middle of ongoing grasp action.

8. The Grasp Behavior module responds to the update to me:intent:action key by

starting the moving animation towards the updated location specified on the blackboard

in key me:intent:target.

9. Diana seamlessly transitions into grasping the blue block.
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3.8 Conclusion

The previous section described several interaction scenarios. While the focus was on how

each scenario propagated changes to and from the blackboard, and how those changes trig-

gered certain components in the system into action, this section points reader’s attention to

certain noteworthy aspects of these interactions.

One of the remarkable thing about these interactions is that a lot of it happens in parallel.

Where perception is concerned, Diana not only looks for gestures, but is also listening for spo-

ken user commands. Many times, the commands reinforce what the gesture indicated. Some-

times, however, gestures provide information that is hard to communicate by words alone. For

example, deixis is best conveyed by pointing at a location and optionally, saying something like

"here". The fact that Diana is able to understand both gestures and speech, and combine them

into an actionable intent in a realistic way is a distinguishing ability. On the flip side of this

scenario, Diana also uses gestures while speaking. This comes in handy when Diana is ask-

ing clarifying questions to the user. For example, when Diana says, "Do you want me to grab

the red block?", she also reinforces the meaning by reaching for the red block, which eases the

conversation by utilizing this redundancy.

Another thing to note is that Diana’s interactions run asynchronously. This means Diana can

handle interruptions easily, making the communication responsive and adaptable to changes.

For example, let’s say that Diana is reaching for a block based on a previous command by the

user and the user realizes that there is a better plan of action. The user need not wait for Diana’s

hand to reach the block, and can instead interrupt her. Due to the blackboard architecture and

modular design, Diana is able to immediately retract from the previously decided course of

action.

Finally, Diana’s world knowledge as encoded in VoxML also contributes to her natural lan-

guage understanding and reasoning about physical objects. An object’s habitat conditions its

affordances. Therefore, when a block has another block on top of it, the supporting block can-

not "afford" to have yet another block on top of it. The rich semantic information provided
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by VoxML in this way guides Diana’s reasoning about what is a valid course of action and also

when Diana suggests alternatives to the user if the user has asked an impossible course of ac-

tion. Since Diana is situated in her environment, this will create a break in situated grounding,

prompting Diana to ask clarification from the user.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

Recent years have seen a huge surge in pervasiveness of virtual assistants like Google Assis-

tant, Alexa, Siri, etc. on our phones and on smart speakers such as Google Home, Amazon Echo,

etc. While these agents are definitely smart in that they can answer a variety of queries about

the world or its people, they can only do so by listening and speaking. That is, they are limited to

a single modality of communication – speech. Speech is an efficient mode of communication,

but it can still get very cumbersome or even impossible to communicate everything by speak-

ing. An obvious example is specifying a location. In the utterance "Put the block there", it is

very hard to ground the meaning of the word "there" without using a deictic gesture (pointing).

Such virtual assistants reason in isolation from their environment, and as a result, struggle

to answer simple questions like "What am I holding?". Most likely, such a question would trigger

a default response like "Sorry, I don’t understand." In essence, these virtual assistants are not

situated [13] in their environment. Which is unfortunate since human cognition – the one that

these virtual assistants aim to mimic – is believed to be situated [12] and in fact, heavily leans

on the percepts available to it to render many tasks, including grounding of natural language,

easier.

Additionally, these virtual assistants lack an embodiment. Having a body aids the social

aspects of an agent, especially if the agent assumes the form of a human. It also opens the

agent to non-verbal modes of communication like gestures. Embodied agents have been used

for a variety of applications, including military rehearsal exercises [58], distress evaluation [59],

etc. as mentioned in Section 2.5.

With the weaknesses of a speech-only assistant in mind, Diana is built to be a multimodal,

situated and an embodied conversational agent. Diana is:

68



multimodal in that she can not only listen to the user but can also see the user and understand

a variety of hand gestures. She can respond by speaking like most other conversational

agents, but she can also gesture to supplement as well as complement natural language

utterances. Additionally, she can understand text input as well as output her responses in

textual form. She can also detect user’s facial expressions as well as respond with those of

her own for various emotions like surprise, concentration, joy, etc.

situated in that she employs various perceptual faculties to guide her reasoning. When the user

refers to an object and Diana is unable to ground the reference in her environment, this

will trigger a clarification dialogue from Diana to resolve the ambiguity. In fact, a major

aspect of Diana’s reasoning is that it is grounded in visualization (see Section 2.3). To

enable this, Diana’s reasoning engine – VoxSim – utilizes VoxML, a modeling language to

create representations of objects, their attributes, and events enacted over these objects.

embodied as Diana takes the form of a human that is augmented by a variety of animations

for various actions like grabbing, waving, idling, etc. She also blinks involuntarily and can

follow an object or the user with her gaze. Her understanding of embodiment extends

also to the user, as she notices when the user is at a distance as opposed to when the user

is close by and takes it as a sign of user engagement.

asynchronous in her interactions which allows her to handle interruptions in a natural man-

ner. For example, a command to grab an object may be interrupted by the user midway by

being asked to pick a different object. In this case, the blackboard architecture supporting

Diana’s inter-component communication ensures that Diana will seamlessly switch over

to grab the new object instead without being obligated to complete her current motions.

Creation of an embodied conversational agent such as Diana is a mighty task and involves

convergence of a variety of disciplines such as natural language understanding, 3D animation

and modeling, dialogue systems, artificial intelligence, computer vision, and machine learning.

The contribution of this thesis lies in the detailed description of the entire system in terms of

69



its architecture and the interplay between its various components. It also lays a foundation

for understanding the motivation behind some of the design choices by providing a detailed

literature review of the systems that precede it.

4.2 Future Work

The version of Diana described in this thesis operates in blocks world. While this environ-

ment is suitable for prototyping, it still leaves a lot to be desired when considering the com-

plexity of real world situations. However, VoxML is amenable to modeling more complicated

3D objects like plates, cups, etc. and hence, Diana can be made to reason about environments

having such objects.

Both Diana and the user enjoy a shared space such that Diana can observe the entities in the

physical world just as the user can see and point to objects in the virtual world. However, it can

be argued that this sharing of space is sometimes awkward, given that both worlds are separated

by a TV screen. For example, it is not always obvious to the users that they can point on the

screen to point to objects in the virtual world. Such awkward mechanisms can be alleviated

by deploying Diana in a Virtual Reality (VR) that would make these interactions much more

natural. This, however, comes at the cost of introducing wearable technologies like VR headsets

into the system setup. Nonetheless, it is an interesting approach to explore as an alternative.

Another avenue of improvement for Diana could be replacing Google’s Automatic Speech

Recognition (ASR) with a custom solution tuned to Diana’s domain. While the results are decent

in the current setup, a finely tuned local system should improve speech recognition accuracy as

well as eliminate any latency, thereby ensuring lower response times. A related improvement

could be achieved with a better text-to-speech (TTS) engine, especially one that takes prosodic

elements into account when creating speech output, thereby providing a human touch to Di-

ana’s speech capabilities.

There is also room for improvement by replacing some of the specialized hardware. For ex-

ample, some work has already gone into replacing Kinect for Windows v2 used in the described
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system with Azure Kinect [73]. Azure Kinect improves upon Kinect for Windows v2 by upgrading

the RGB camera from HD resolution to 4K UHD resolution, increasing depth camera resolution,

providing a 7-mic circular array instead of a 4-mic linear phased array, etc. while being lighter

than its predecessor. Using Azure Kinect could increase gesture recognition accuracy while also

benefiting system’s portability owing to its lighter weight.
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