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ABSTRACT

BEHAVIORAL COMPLEXITY ANALYSIS OF NETWORKED SYSTEMS TO IDENTIFY

MALWARE ATTACKS

Internet of Things (IoT) environments are often composed of a diverse set of devices that span

a broad range of functionality, making them a challenge to secure. This diversity of function

leads to a commensurate diversity in network traffic, some devices have simple network footprints

and some devices have complex network footprints. This network-complexity in a device’s traffic

provides a differentiator that can be used by the network to distinguish which devices are most

effectively managed autonomously and which devices are not.

This study proposes an informed autonomous learning method by quantifying the complexity

of a device based on historic traffic and applies this complexity metric to build a probabilistic model

of the device’s normal behavior using a Gaussian Mixture Model (GMM). This method results in

an anomaly detection classifier with inlier probability thresholds customized to the complexity of

each device without requiring labeled data.

The model efficacy is then evaluated using seven common types of real malware traffic and

across four device datasets of network traffic: one residential-based, two from labs, and one con-

sisting of commercial automation devices. The results of analysis of over 100 devices and 800

experiments show that the model leads to highly accurate representations of the devices, and a

strong correlation between the measured complexity of a device and the accuracy to which its

network behavior can be modeled.
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Chapter 1

Introduction

The Internet of Things (IoT) term was first coined by Kevin Ashton in 1999 when describing

RFID use in supply chain management [1]. This definition has ballooned to become a catch-all

phrase for any device that connects to or interacts with the Internet. Examples of these devices

include medical sensors that monitor health metrics, home automation devices, traffic monitoring,

and scientific research sensors. In the future these devices will be designed to last for a few weeks

and be disposed of, like a sensor on food packaging. Others will be embedded into infrastructure

that will be around for decades, such as sensors embedded into roads. Some devices will need

to run on batteries for years, with limited processing and storage capabilities, and will spend the

majority of the time in sleep mode. Others will have powerful processors, a constant power source,

and a high bandwidth connection to the network. This diversity in function, capability, and life-

span is at the core of what makes securing these devices so challenging.

We can take advantage of this diversity of function by developing a measure of complexity for

devices based on their network traffic to classify single-purpose from general-purpose devices and

use this classification to guide autonomous network enforcement decisions.

1.1 Background

The exigency of solving the security issues presented by IoT devices is underscored by both

the scale and the scope of the problem. Some predictions place the number of deployed devices at

50 billion devices by the end of 2020 [2]. For perspective, in 2016 the Mirai botnet attacked the

Dyn network with only 600,000 compromised devices with a sustained bandwidth of up to 1.1 Tbs,

taking down hundreds of websites [3]. This was, at the time, widely considered to be the largest

distributed denial of services (DDoS) attack ever.

In response, governments, industry, and standards organizations mobilized to improve the in-

trinsic security of devices. IoT specifications were released such as Open Connectivity Foundation
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(OCF), [4] which requires encryption, authentication, and authorization by default. Several se-

curity baselines were authored by governmental and industry-based bodies that give guidance and

recommendations to improve the state of IoT security. Some of these baselines include the National

Institute for Standards and Technology’s (NIST) Foundational Cybersecurity Activities for IoT De-

vice Manufacturers [5], the Consumer Technology Association’s (CTA) The C2 Consensus on IoT

Device Security Baseline Capabilities [6], and the European Union Agency for Cyber-security’s

(ENISA) Baseline Security Requirements for IoT [7] documents.

Standards and guidance can only go so far in fixing this problem. Regulation is typically slow,

and too disjointed to address the millions of devices that are currently in use and vulnerable. In

addition, old exploits such as Ripple20 [8] have been around for years undiscovered in the supply-

chain of long-forgotten libraries. These exploits continue to provide a path for evolving malware

such as Mirai malware to invade and infect devices [9].

It is clear that no amount of standardization, guidance, or regulation will fully solve this prob-

lem. There will always be devices that are exposed, unpatched, and vulnerable. The networks

that host these devices represent what may be the last line of defense to block malicious traffic.

However, the current network typologies and security mechanisms are inadequate in handling the

number of new devices, as well as the dynamic nature and complexity of these devices.

For example, the established methods of identifying and learning IoT devices are problematic.

Some examples in the literature use a supervised approach with labeled data to identify devices

with high accuracy, but these methods provide little flexibility in their ability to scale and identify

unknown and previously unseen devices. Others use autonomous methods that can be applied

broadly to network traffic, but they tend to overgeneralize, resulting in less accuracy when detecting

anomalies. We are missing a model that is both accurate and flexible, accounting for the behavior of

each individual device while allowing for the varied capabilities, attack surfaces, and risk profiles

across all devices on a network.

As we look toward building effective network security methods, we must realize that it is no

longer sufficient to simply apply a binary and deterministic model of trust to network traffic en-
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forcement decisions. Instead, our methods must allow for more nuanced approaches to controlling

flows of data within the network. The networks of the future should be capable of constructing

predictive models of devices, and authorized to autonomously enforce them.

1.2 Purpose of the Study

Networks are made of an extremely diverse set of devices, we need a solution that recognizes

this diversity. Measuring a device’s network complexity provides the differentiator required by the

network to make informed decisions on a per-device basis. This work will formulate several meth-

ods to calculate the complexity of a device’s network traffic, and will demonstrate that complexity

is a measure of the certainty to which we can model a device. The relationship of complexity and

the certainty with which a device can be modeled leads to a natural method by which to identify

devices that are best protected by an autonomous network enforcement model.

To design a network that can dynamically learn from the devices, this research builds an in-

formed autonomous learning method that does not rely on labeled data, bridging the gap between

the inflexibility of supervised methods and the over-generality of traditional anomaly detection

methods. The model presented in this research takes advantage of the predictability of an IoT de-

vice’s network footprint by developing a formalized measurement of complexity for each device.

This study then uses this device-complexity metric to construct an anomaly-based behavioral

model specifically tuned to each device. This tuned model adapts the probability threshold of inlier

behavior in proportion to the measured complexity of each device, improving the overall accuracy

of the predictive model.

To demonstrate the model efficacy, this research analyzes the confidence of each device’s tuned

behavior against seven common types of malware traffic from infected devices. To illustrate that

the model can be effectively applied to a broad spectrum of devices, four different IoT datasets

were analyzed: one residential dataset, two lab datasets, and a dataset based on commercial IoT

devices.

Research Contributions
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• Formalized measure of device complexity: I create and formalize a general measure of a

device’s network traffic complexity. The measure is agnostic of the device type, capability,

and independent of how much the device is used.

• Complexity tuned anomaly detection: I construct anomaly detection classifiers that em-

ploy the complexity measure to customize the model to each device.

• Accurate anomaly detection model: The complexity-based anomaly detection model was

evaluated on a diverse set of real-device and real-attack traffic. It is shown to be accurate,

particularly in low complexity devices that are vulnerable to attacks.

1.3 Research Questions and Objectives

Some of the questions answered in this study are:

1. How should complexity be measured in devices?

2. How does the measured complexity of devices vary based on the use of each device?

3. How accurate is the calculated complexity behavior at distinguishing between normal and

abnormal traffic?

4. How can complexity be used to create accurate anomaly detection models?

1.4 Definition of Terms

Gaussian Mixture Model (GMM): Probabilistic model that fits all data points to a finite number

of normal distributions. It is useful in multi-modal data [10].

Density-based Spatial Clustering Applications with Noise (DBSCAN): A clustering algorithm

that can find high-density clusters of data of arbitrary size [11].

Network flow or netflow: A tuple of data that represents a connection state in the network,

shown in Table 3.1.
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Software-Defined Networking (SDN): Networking architecture that decouples the control and

data planes, allowing the network to be programmatically controlled.

1.5 Assumptions

It is assumed that the device is not compromised a-priori, meaning that the traffic learned by

the model, the training data, is initially not malicious in nature, and thus all explicitly considered

normal.

1.6 Organization

This thesis is organized as follows:

• Chapter 2 - Related Works: I review the recent and relevant research in the area of network-

based security as it applies specifically in the context of IoT, including a review of supervised

and unsupervised techniques to establish identity and behavior on the network, as well as the

use of anomaly detection on IoT devices.

• Chapter 3 - Methodology: I discuss how the data were collected and formatted, as well as

what techniques were applied to analyze the data. I discuss the methodology applied to

calculate the complexity of each device and how devices can be modeled using the Gaussian

Mixture Model (GMM).

• Chapter 4 - Results: I review and discuss the complexity measurements and performance

results of the GMM across the four datasets.

• Chapter 5 - Discussion: I compare and discuss how results differ from dataset to dataset,

and how they compare across datasets. I discuss how the results inform the utility of the

complexity metric in increasing accuracy of predictive models based on anomaly detection.

• Chapter 6 - Conclusion And Future Research: I conclude with the importance and contribu-

tions of the research to IoT security and propose future directions for further research.
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Chapter 2

Related Works

This chapter provides background and related work on network-based IoT security, and focuses

on methods of establishing identity, behavior, and classification of devices on the network. This

chapter begins with an overview of deterministic methods of establishing identity and behavior,

then moves on to probabilistic and learning-based methods, covering both supervised and unsuper-

vised learning. It concludes with previous research on complexity, including how it is calculated

and its effects on probabilistic models.

2.1 IoT and Security

As presented in the previous chapter the number of IoT devices is growing at an exponential

rate. If history is any indication, insecure and vulnerable devices will grow at least at this same

exponential rate. To address this growing problem, there is an increasing corpus of research and

work proposing the network as an active participant in securing devices. There are two approaches

in the literature that show how this can be done: (1) explicitly informing the network about the

identity of the device and the policy defining its behavior, (2) training the network to identify

devices by analyzing the device’s network traffic to develop a dynamic policy based on learned

device behavior. These are summarized below:

1. Deterministic: This method defines a set of rules and policies that are enforced within the

network. These rules can be static or dynamic based on roles, attributes, and capabilities.

The major drawbacks of this approach are that the rules and policies are either too coarse in

their implementation and do not adapt to the complexities of modern networks, or they suffer

from compounding policy inflation that quickly becomes overly complex and impracticable

to implement.
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2. Training the Network:. This approach applies machine learning to enable the network to

learn about the devices. This can be split into two techniques.

Supervised Learning: This method learns from labeled data to classify the device iden-

tity or type. This classification is then passed to policy engines to make enforcement deci-

sions on the traffic. Supervised learning has a major shortcoming, in that it requires large

sets of labeled data with which to train classifiers. These datasets may not be available, espe-

cially in the case of new or rare devices. Supervised learning cannot classify these unknown

devices and traffic, making it inflexible and difficult to adequately scale.

Unsupervised Learning: This method does not require labeled data and learns from

unstructured data. Unsupervised learning can learn patterns in the data such as grouping

similarities or by classifying inliers and outliers.

2.2 Deterministic Research

Access control policies have been around for decades, and are implemented in firewalls that

block or allow traffic based on generalized rules using IP address source and destination, ports, and

protocols. These rules do not truly identify what is on either side of the connection, nor do they

adapt to changes on the network.

Recent network security efforts employ a cryptographic identity in the form of a Public Key

Infrastructure (PKI) certificate tied to each device and validated by the network. This method is

the basis for the WiFi Alliance’s Easy Connect specification, also known as Device Provisioning

Protocol (DPP) [12]. When a device is onboarded, the network establishes trust and identity with

the device based on the asymmetric key pair embedded in the device. This PKI certificate estab-

lishes an identity that may include the make and model of the device but does not establish any

policy for that device.

To fill this gap and provide a policy associated with a device, work done by the Internet En-

gineering Task Force (IETF) introduces a specification called Manufacturer Usage Description
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(MUD) [13], using MUD the device presents the network with a URL pointing to a network policy

that describes what level of communication the device requires for its normal function.

2.3 Supervised Learning Research

Several works derive device identity based on network traffic using a supervised learning ap-

proach. Miettinen et al. [14] have developed a method, called IoT Sentinel, that uses machine

learning to designate a device type on the network, referred to by the authors as a device fin-

gerprint. Using the random forest algorithm and 23 network features they were able to identify

device types on the network based only on the device’s traffic. The 23 features are based on lay-

ers two, three, and four of the Open Systems Interconnection (OSI) networking stack. Expecting

that the body of the packet will be encrypted, all the features the authors employed are based on

unencrypted parts of the traffic like IP header information.

The identification was made in the initial setup phase of the device on the network. As the

device was initially joined and onboarded onto the network, the authors identified it based on up

to 12 of the first packets captured. Once the device was identified, the authors query Common

Vulnerabilities and Exposures (CVE) to determine if the device has any vulnerabilities. If the

device is found to be vulnerable, they use a customized SDN controller and switch, to segregate

the device into three zones: (1) strict - no Internet access, allowed to communicate only with other

untrusted devices, (2) restricted - able to talk to a limited setup of vendor addresses and other

untrusted devices, and (3) trusted - unrestricted Internet access and the ability to communicate

with other devices on the network.

The authors reported that using the random forest algorithm allowed them to identify the 27

device types in the study with an accuracy of 81.5%. They noted that for 17 of the devices they

were able to identify the device with a 95% accuracy. The other ten devices they achieved only a

50% accuracy. These ten devices were composed of largely different devices from the same man-

ufacturer. The authors explain that their classifier is good at discriminating between devices that

have different hardware or firmware, but does not accurately fingerprint the devices made by the
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same manufacturer and have the same firmware. They make the assumption that two very similar

devices are likely to have the same vulnerabilities and therefore the low accuracy in identification

is inconsequential.

While IoT Sentinel presents some useful solutions, it has weaknesses that need to be addressed

in future research. First and foremost is that they use a supervised learning algorithm that must be

individually trained on each device type, and must be re-trained if the device firmware changes.

This re-training makes the approach difficult to scale to a large set of heterogeneous devices and

requires an extensive online database of trained classifiers. This approach is therefore reliant on

the accuracy of, not just one but, two separate public databases: the CVE database, and a database

of trained classifiers. Second, by only analyzing the device during setup, they are missing the

majority of the device behavior on the network. If the device is compromised after being installed,

this solution is unlikely to recognize it. Third, the authors’ classifier was unable to distinguish

between very similar devices with high accuracy, which could result in inaccurate identification of

important devices such as those used to monitor health.

Bezawada et al. [15] build on the the IoT Sentinel method by using a machine learning approach

to broadly identify the device and place it in a predefined category, i.e a light bulb. According to

the authors, even devices from different manufacturers can be placed into general categories. For

example, light bulbs from different manufacturers can be correctly identified and placed into a

lighting category. Their results show that they can do this with an accuracy between 91-99%

across the device categories.

This approach of fingerprinting devices also uses a supervised approach to fingerprinting and

categorization and requires labeled data that may not be available. Additionally, the authors make

the assumption that they will be able to detect a distinct command and response structure in the

data from any particular device which is not always possible. As this research used a relatively

low sample size of devices, it is unclear if this approach could categorize more complex devices,

for example, devices with encryption that may interfere with the ability to detect the command and

response structure.
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2.4 Unsupervised Learning Research

Moving beyond the limitations present in supervised learning, authors Marchal et al. developed

a technique to generically identify devices based on the periodicity of their network communication

[16]. The authors employed signal processing techniques to analyze devices’ background periodic

traffic with the goal of placing the devices into virtual device identity groups. Using discrete Fast

Fourier Transform, the authors then generate 33 features that they then use to train a k-nearest

neighbors (kNN) model. The authors then use the model to place devices into one of 23 virtual

groups based on the clusters found by the kNN.

This method generated a unique derived identity for nearly 70% of the devices, which is only

slightly better than a derived identity per device. For example, the largest derived identity group

contains only five devices, all of which are from D-Link. Applied to a wider set of devices across

a wider set of manufacturers, this work would produce a very large number of derived identities.

This large quantity of derived identity groups would not do much to simplify network and security

policies.

Ortiz et al. developed a probabilistic method of measuring the distribution of traffic for an IoT

device [17]. To build their model they employed a stacked autoencoder to autonomously learn

network traffic features from IoT devices. The authors report that the model identified previously

seen devices with a 99% accuracy and recognizing unknown devices to the extent that an IoT/Non-

IoT grouping could be inferred for each device.

Ortiz et al. then used an LSTM (Long Term Short Term Memory) neural network to learn

from the inherent sequencing of TCP flows [17]. The LSTM autoencoder layer learns a compact

feature representation of the data by taking an initial input and forcing the output to be smaller

than the input. A second pass decoder takes this compressed output and uses it as input to derive

the original feature vector. The model is trained to minimize the differences between the encoder

and the decoder. The goal of the LSTM autoencoder is to capture latent feature representation in

the data. By chaining autoencoders, the authors claim that the final derived feature set maximizes

the differences across sequence representations.
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Next, the authors used the derived classes from the LSTM phase to arrive at a normal distri-

bution over the encoded data and derive a probabilistic model for each device. This probabilistic

distribution forms the root of their definition of device behavior. By comparing distributions from

various devices they were able to cluster devices based on similarity.

The cluster method used in this work does not generate a true identity and cannot accurately

identify what an unseen devices is, only that the device is new and has not been seen previously by

the model. The authors do not have devices in their test set that are similar in nature, and they do

not address whether they can distinguish between two similar devices from the same manufacturer,

such as an Amazon Echo and an Amazon Echo Show. The authors report a large number of similar

devices in their dataset, but they do not include any of these in the results.

Ren et al. developed a network-informed approach based on destination IP to enumerate and

analyze IoT behavior [18]. The authors set up two labs, one in the US and one in the UK. The

labs consisted of a total of 81 devices with 26 devices being common between the two labs. The

authors then proceeded to analyze the traffic for each lab looking at the behavior of an IoT device

during boot and when it was actively controlled and/or interacted with.

Next, the authors analyzed the destination IPs and categorized these destinations into three

categories: first party destinations, support destinations, and third party destinations. First party

destinations are those where the device contacted an IP that belonged to the device’s manufacturer

or company associated with the device. Support party destinations are those where the IP belonged

to a cloud or content delivery network (CDN). All other connections the authors considered to be

third party destinations where the owner of the IP had no clear and direct connection to the device.

Some of these third party destinations include service sites such as netflix.com and advertising

networks such as doubleclick.net.

The authors analyzed the entropy of encrypted device traffic and based just on the IP headers

they report that they can infer types of devices such as appliances and cameras as well as activities

associated with devices such as video, voice, or movement. If true this has privacy implications

insomuch as determining what devices and occupants are doing even the traffic is encrypted. This
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method does not use machine learning directly, but provides an example in the literature where

unsupervised learning informs the network by learning patterns and aspects of the network traffic

from devices.

2.4.1 Anomaly Detection

One major class of unsupervised learning algorithms is anomaly detection. This is a very active

area of research, particularly within the context of IoT.

Alrashdi et al. present AD-IoT, an anomaly detection method based on the random forest

algorithm [19]. The authors develop an algorithm called, "extra trees" to identify the 12 most

important features in a dataset with normal/abnormal labels from the University of New South

Wales titled UNSW-NB-15. The authors provide results of binary classification (normal vs. attack)

on the dataset with high (>98%) F1 scores for an average of normal and attacks.

AD-IoT has some drawbacks in that it only uses a single dataset of generated synthetic attack

traffic developed by a third party, none of which is IoT specific. Additionally, the authors report an

F1 score of 0.87 on correctly classifying the attack traffic that makes up only 3% of the total traffic,

and an F1 score of 0.99 on the normal traffic that was 97% of the total traffic. The final result of an

average F1 score of 98% could be misleading as it is heavily weighted toward the analysis of the

normal traffic.

Authors Hasan et al. examine several machine learning techniques for detecting anomalies

in IoT data including logistic regression, support vector machines, decision trees, random forest,

and neural networks [20]. This work used a synthetically generated dataset consisting of 347,935

normal examples and 10,017 anomalous examples, each with 13 features. The authors, like those

in the previous work, found that the random forest method was the best overall in terms of F1 score

with F1=0.99 for both training and testing.

While this work presents very good results (F1=>98%) for all the machine learning techniques

used, they were all based on a completely synthetic dataset based on emulated IoT devices.
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2.5 Complexity and Predictability

The correlation between complexity and predictability is an intuitive and foundational principle

of probability theory that has published roots dating back as far as 350 B.C.E with Aristotle’s

Posterior Analytics where he posited on drawing conclusions from uncertainty [21]. The challenge

is to determine a statistically significant way of measuring the complexity of a system to inform

meaningful confidence in a predictive model of that system.

Formalized measurement of complexity as applied in a computer science context is probably

most often associated with the works of Andrey Nikolaevich Kolmogorov, who defined the com-

plexity of an object as the shortest computer program to produce the object as an output [22]. This

simple notion arises again in the work of Jorma Rissanen whose work on the minimum description

length principle that establishes that the best model for a set of data is one that leads to the best

compression of the data [23].

Ceccatto and Huberman [24] establish a quantitative method for measuring the complexity of

hierarchical systems by evaluating nodes and bifurcation factors of tree structures. The authors

show that complexity saturates as the structure of the tree’s lower level grows and that any large

tree structure’s complexity grows linearly with the number branching levels.

In the paper Predictability, Complexity, and Learning authors Bialek et al. establish a formal

result that predictive information provides a general measure of complexity [25].

In this work, I propose that the relationship between predictive information and complexity

is commutative, i.e. not only does predictive information lead to a measure of complexity, but

that complexity provides a general measure of predictive information. In machine learning, this

relationship leads to the logical notion that the less complex the model the more accurately it can

be modeled.

2.6 Network Measurement

Some notion of network complexity based on a sources request has existed in previous works.

Authors Allman et al. present a metric for determining if a particular IP source is a scanner or
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not based on heuristic they call service fanout [26]. This service fanout is a measure of successful

connections to attempted but unsuccessful connections. The authors classify a remote host as a

scanner if it has at least four attempted but not successful connections and the that these unsuc-

cessful attempts outweigh successful attempts by a ratio of two-to-one.

While this work focuses on network scanning and not specifically connections sourced from

IoT devices, it does present a step toward defining the complexity of network traffic based on

connections.

2.7 Previous Publications of Related Works

Two previous works on complexity and IoT have been published that relate to this dissertation.

In the paper ComplexIoT: Behavior Based Flow Control For IoT Networks, Haefner and Ray

describe several measures of complexity of IoT devices and how these measures can be used by a

network for autonomous enforcement of network traffic [27].

The paper, Trust and Verify: A Complexity-Based IoT Behavioral Enforcement Method au-

thors Haefner and Ray expand upon this work by using a tuned search of single class SVM models

to search for a model that minimizes false positives [28].

2.8 Summary

The deterministic methods provide the network with a cryptographic secure process for deter-

mining what a device is. The MUD-based policy, if secured by the certificate presented by the

device, provides an approach to giving the network both an identity and the connection require-

ments for the device in a deterministic and cryptographically verifiable manner. There are several

drawbacks to this strategy. First, this will require compliance across every device manufacturer.

This increases costs and the complexity to install and issue and manage keys for all devices. Sec-

ond, a public key infrastructure at the scale of billions of devices is magnitudes of order larger

than any currently deployed today. Third, even with good identity and policy, there is always the
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possibility of a vulnerable device being compromised. This could compromise the private key and

consequentially the trust between the network and the device.

Supervised learning has had huge success in recent years in many fields. As established by

several works above, it can provide a highly accurate identity of a device without the requirement

of a PKI certificate. This identity could be matched to a known policy for this device and give

the network both a way to determine what device, and also connection requirements for that de-

vice. This approach’s biggest deficiency is that it requires a large amount of labeled traffic for

each device, something that is not readily available. Additionally, a device’s traffic can change

with updates, requiring that the model be completely retrained on the new labeled traffic. Last, a

supervised method cannot classify devices for which it has no labeled training data. This makes it

difficult to scale beyond the most common and popular devices.

Unsupervised learning does not require labeled data and instead learns patterns from the data

itself. Novelty and anomaly detection techniques can learn what is statistically normal traffic from

past examples and determine if new traffic is normal or anomalous. This approach can provide

some broad categorization of devices based on similarities and can learn the behavior of the net-

work traffic of a device. The drawbacks to unsupervised techniques, especially in the context of

IoT analysis, are that they are often applied generically across the devices without any input as to

what the underlying device is. This can lead to devices that are highly dissimilar being analyzed

without taking into account their differences in function and capability.

The informed-unsupervised method presented in my research attempts to overcome some of the

downsides of supervised and generic unsupervised techniques by informing the anomaly detection

of the underlying device properties in terms of complexity. It does this without labeled traffic or

requiring any knowledge of what the devices are. Additionally, all device-data comes from real, not

generated devices and attack data comes from captures of several different types of real malware.

Take, for example, a refrigerator that is also an Android tablet. The methodologies in the related

works above would struggle to characterize such a device, as a supervised model might not have a

matching training set of data, and a generic unsupervised approach might treat this highly complex
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device the same as it would a simple appliance. The method presented in this study does not try to

recognize this device as either a refrigerator or a tablet, and it does not try to guess at the service

or characterize the device’s application layer data. My model does not rely on learning specific

human interactions with the refrigerator, nor determining if those interactions are anomalous. My

model only relies on how complex the refrigerator appears on the network and how much it stays

within the learned boundary of behavior.
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Chapter 3

Methodology

3.1 Introduction

This research is a study of the network traffic from devices running on four separate networks.

It compares results across these four datasets, all of which contain devices of different types, cat-

egories and capabilities. This chapter discusses how the study was designed, how data were col-

lected, how devices were analyzed for complexity and behavior, and then evaluated against a set

of attack data.

3.2 Research Design

This research uses data from IP-based networks consisting of mixed IoT and general-purpose

devices. All analysis is done on a per-device basis using the source address of the device as an

identity for the device. Devices that had fewer than 100 flows were not analyzed as this was

deemed too few flows to properly represent a device. Definition 3.2.1 establishes a consistent

ontology for defining flows with respect to this research.

Definition 3.2.1. Network Flow: A sequence of packets where each has the same tuple comprised

of: a source address, a destination address, a source port, a destination port, and the protocol. TCP

based flows were ended at the end of the TCP session. For UDP based flows, the flow timeout was

established when no data were sent or received for 15 seconds.

This research uses flow data features to measure the complexity of each device on a network

based on its past traffic. Figure 3.1 shows the spectrum of device complexity. Devices such as

sensors, light bulbs, were expected to have low complexity in terms of their network traffic. Con-

versely, devices such as laptops and smartphones were expected to be high complexity devices.

Ontological Definitions 3.2.2, and 3.2.3 for single-purpose and general-purpose devices are used

throughout this study.
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Table 3.1: Data Features

Feature Abbreviation Description

IPV4_SRC_ADDR sIP IPv4 Source Address

IPV4_DST_ADDR dIP IPv4 Destination Address

IN_PKTS iFP Incoming flow packets

IN_BYTES iFB Incoming flow bytes

OUT_PKTS oFP Outgoing flow packets

OUT_BYTES oFB Outgoing flow bytes

L4_SRC_PORT sP IPv4 Source Port

L4-DST_PORT dP IPv4 Destination Port

PROTOCOL p IP Protocol Identifier

Figure 3.1: Device Complexity Spectrum

Definition 3.2.2. General Purpose Device A device that is capable of running multiple user-

space applications. Some examples are smart-phones, tablets, laptops, some streaming devices,

and smart TVs. These devices are expected to have higher network complexity measurements.

Definition 3.2.3. IoT - Single Purpose Device A device that generally runs a single application.

They often are capable of running only one or two threads. These devices are expected to have

lower network complexity measurements.

3.3 Datasets and Collection

This work examines data collected from the following four environments of IoT devices, and

one attack dataset of malware traffic:

• Home Network: This dataset was developed as part of this research and contains devices

from a residential network that are in regular use in an unstructured manner as part of daily

use.
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• Lab Network: This dataset was developed as part of this research and contains devices that

are set up for the purposes of testing. There is very little active use of the devices in this

dataset except that which was done in experiments by graduate students.

• University of New South Wales Lab [29]: This dataset is available online and contains

several mixed-use devices. It is provided in the form of network capture files.

• SCADA Network [30]: This dataset is a series of captures from the Methane Emissions Test

and Evaluation Center (METEC). It is provided in the form of network capture files.

• Attack Dataset [31]: This dataset is comprised of data captured from infected devices. It

is provided in the form of network capture files, with labels describing the attack/malware

type.

For the home and lab datasets, flows were collected directly from the routers using a netflow

collector. For the UNSW and SCADA datasets, network captures were parsed and turned into

flows using a tool called JOY [32], which can convert a capture file to network flows.

Figure 3.2: Data Collection Architecture Home and Lab
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3.3.1 Home Dataset

Data were collected from a residential network with approximately 25 devices over the course

of 37 days. These devices range from general computing devices like laptops and smartphones,

to middle-complexity devices, such as IoT hubs with several IoT devices using Zigbee or Zwave,

and to single-purpose devices, such as light bulbs and temperature sensors. Data were collected

by a central MicroTik router, shown in Figure 3.2, that sends Netflow/IPX data to nprobe, a flow

capture software, running on a Raspberry Pi. Flows were stored in a MariaDB relational database.

Table 3.1 shows the features of the data collected.

Flows were aggregated with a maximum of 30 minutes per flow. The inactive flow timeout was

set to 15 seconds. If the devices have not exchanged traffic in 15 seconds, the flow was completed

and recorded. Device identity was established based on the source IP address for each device. The

test environment is configured such that the devices always receive the same IPv4 address.

The list of devices in the home is shown in Table 3.2.

Table 3.2: List of Home Devices

Home Devices

•Amcrest Camera •Plex Server •Raspberry PI 3

•Google Home •Galaxy Note 8 •Smart Things Hub

•J. Chromebook (Asus) •Xbox One (2) •Appple Macbook Pro

•Philips Hue Hub •Chromecast •Echo Dot

•Eufy Doorbell •Motorola Android •HP Stream Laptop (2)

•Eufy light bulb •TP Link Switch •Roku Express

•B. Chromebook (HP) •Brother Printer •Roku Stick

•Fire Tablet (3)

3.3.2 Lab Dataset

The lab dataset consists of netflow data collected from approximately 24 devices in a lab lo-

cated in the computer science building on the Colorado State University campus. It consists of

over 3 million flows that were gathered over a period of months in the spring of 2019.
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The lab is managed by a thin client server running Ubuntu server 16.04. The access point is

controlled by hostapd [33], a user-space access point reference implementation, and the network

traffic is routed by the OpenFlow [34] switch, Openflow Virtual Switch (OVS) [35]. The lab

devices are listed in table 3.3. Flows are sent by OVS to a server in the lab and stored in a SQL

database. Device identity was established based on the source IP address for each device. The test

environment is configured such that the devices always receive the same IPv4 address.

Table 3.3: List of Lab Devices

Lab Devices

TP-Link Camera WinkHub (2) Google-Home-Mini (2)

Koogeek (2) Amazon Echo Show Wall Dimmer

Samsung Smart TV MacBook Air Arlo Q

Apple TV (2) Amazon Echo 2nd Gen. (2) Amazon Firestick (2)

Amazon Echo Dot (2) Ubuntu Laptop Android Phone

Lutron Light Bulb Windows Laptop

3.3.3 University of New South Wales Dataset

The dataset from the University of New South Wales [36] consists of approximately 30 devices,

shown in Table 3.4, that vary from common IoT devices to general-purpose devices, such as laptops

and iPhones. This dataset comes from a lab environment where students were encouraged to

interact with the devices. The dataset consists of 20 capture files with a total of 12 GBs. Using the

JOY [32] tool this dataset was transformed into over 2 million flows and stored in a SQL database.

3.3.4 SCADA Dataset

The SCADA dataset consists of captures from approximately 40 devices gathered over the

summer of 2019 from the Methane Emissions Test and Evaluation Center (METEC) [30]. Using

the JOY tool this dataset was converted into over 300,000 flows and stored into a SQL database.

The SCADA dataset consists of a single general-purpose device, a desktop to control computer,

and some IoT devices such as printers. This dataset is unique in that the majority of the remaining
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Table 3.4: List of UNSW Devices

UNSW Devices

Smart Things Amazon Echo Samsung SmartCam

Withings Baby Monitor Nest Protect Smoke Alarm Samsung Galaxy Tablet

TPLink Router Belkin Motion Sensor Netatmo Welcome Camera

TPLink Cloud Camera Dropcam (2) Belkin Wemo Switch

TPLink Smart Plug Netatmo Weather Station Withing Smart Scale

Triby Speaker PIX-Star Photo Frame HP Printer

PiX Star Photo Frame HP Printer Insteon Camera

IHome Withing Sleep Sensor LifX Smart Bulb

Android Phone (2) MacBook Blipcare Blood Pressure

Laptop Iphone MacBook Iphone

devices are industrial remote telemetry units (RTUs) called LabJacks [37]. All devices in this

dataset are shown in Table 3.5.

Table 3.5: List of SCADA Devices

SCADA Devices

10.1.107.255 10.1.106.255 labjack 227

labjack 226 labjack 213 labjack 212

labjack 211 labjack 210 labjack 209

labjack 208 labjack 207 labjack 206

labjack 205 labjack 204 labjack 203

labjack 202 labjack 201 labjack 189

labjack 188 labjack 187 labjack 186

labjack 185 labjack 184 labjack 183

labjack 181 labjack 178 labjack 177

labjack 176 labjack 175 labjack 174

metec gc camera metec control

printer metec test

3.3.5 DDoS Attack Dataset

This dataset is published by Stratosphere Laboratory [31] and contains 20 captures where mal-

ware was executed on Raspberry PI computers, and 3 captures for benign IoT devices traffic. This

dataset was first published in January 2020, with captures ranging from 2018 to 2019. The attack

dataset consists of seven separate traffic profiles of malicious flows. The attack datasets were orig-
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Table 3.6: Attack Dataset

Attack Name Description Unique Flows

C&C
This is traffic where a device is connecting

to a remote command and control server.
30

C&C Heartbeat
This is traffic that is meant to monitor the

status of an infected host.
3

C&C Torri
This is command and control traffic specifically

from the Torri botnet.
1

C&C FileDownload
This is traffic from an infected device downloading

a file or malicious payload
7

DDoS
This is traffic where a device is participating in a

distributed denial of service attack
1

Part of Horizontal Scan
This is traffic where a device is scanning

locally on the network.
49959

Okiru This is traffic specifically from the Okiru botnet. 99888

inally over 12GB of data. To reduce analysis by redundant data the dataset was trimmed down to

unique flows per profile listed in Table 3.6. For example, the DDoS profile had over 19 million

examples, but after trimming had only a single unique flow.

3.4 Data Analysis

The data analysis of the four device datasets can be broken into three steps per dataset:

• Device Complexity Analysis: a measurement of the variance of the traffic of devices, an

analysis of the complexity of the set of IP addresses each device contacts, a sum of unique

flows from each devices, and a noise to signal ratio (NSR) measurement.

• Device Behavior Analysis: an anomaly detection algorithm based on the a Gaussian mixture

model (GMM) to establish a normal set of flows for a device during a training period.

• Attack Analysis: a demonstration of how well the model for the device can differentiate

normal device traffic from the attack traffic.
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3.4.1 Device Complexity Classification

This research examines several ways to measure the complexity of a device on a network. The

following methods are constructed based on their network traffic, and the pros and cons of each

are noted:

• Traffic Variance: An examination of how the traffic varies from flow-to-flow using the

packets-per-second (pps) and bits-per-second (bps) on outbound connections from a device.

• IP Complexity: An analysis of the number and hierarchical structure of destination IP ad-

dresses connected to by a device, and includes both Wide Area Network (WAN) and Local

Area Network (LAN) based traffic.

• Unique Flows: The canonical set of unique flows generated from a device, taking into

account both the destination features and the aggregate of the flows.

• Noise to Signal Ratio (NSR): The grouping by density of the destination port and desti-

nation IP address tuple, where high-density points are formed into clusters, designated as

signals, and low-density points are designated as noise.

3.4.2 Device Variance

The variance metric comes from the simple notion that devices on a network present different

variances based on their behavior on the network. To calculate the variance in Equation 3.1, I

employ the unbiased variance score computed over the flow history of the device. The variance

score gives us a normalized measure of the dispersion of the data between a training subset and a

test subset. In this research, variance is only calculated on the aggregates, oFP and oFB of data

for each flow shown in Table 3.1. This is shown programmatically in Algorithm 1.

V ar(f) =

√

∑n

i=1(xi − x̄)2

n− 1
(3.1)

Where : {x1, x2, . . . , xn} = flow sample
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Input: n flows

Output: Device Variance dv

let n = 0, sum =0, sumSq =0

for x in set of flows do
n++

sum = sum + x

sumSq = sumSq + x2

end

dv = (sumSq -(sum2)/n)/(n-1)
Algorithm 1: Device Variance

3.4.3 Device IP Complexity

This metric examines how devices form outbound connections. It is not sufficient to simply

count the number of unique IP addresses that a device connects to, as it would not capture the

hierarchical structure formed when many IP addresses belong to the same IP subnet. IP based

subnets have strong correlations to the same company and/or service given how IP address space is

allocated in hierarchical blocks. To provide cloud-based services, companies will often use many

servers and often will use specific blocks of addresses for specific services.

To adequately capture this grouping of IP addresses: this research introduces two concepts

used in the analysis of IP addresses, IP spread and IP depth. IP spread is the number of unique

first-order octets that a device connects with. IP depth is the ratio of fourth-order octets to second

and third-order octets. Conceptually, these connections form tree structures where the first-order

octet is the root, the second and third octets are branches and the fourth-order octets are leaves as

described below:

Definition 3.4.1. IP Root: An IP root is a unique first-order octet, plus all common addresses that

share this octet.

Definition 3.4.2. IP Branch: A second, or third-order octet that has one or more fourth-order

octets (Leaf) under it.

25



Definition 3.4.3. IP Leaf: A unique fourth-order octet.

Definition 3.4.4. IP Spread: The sum of total unique IP addresses that have a unique first octet

interacting with a device.

Definition 3.4.5. IP Depth: The ratio of IP Leaves to IP Branches.

IP complexity shown in Equation 3.4 is calculated by taking the IP Spread in Equation 3.2

divided by the IP Depth calculated in Equation 3.3. This is shown programmatically in Algorithm

2.

Device IP Spread

IPSpread =
∑

IPtrees (3.2)

Device IP Depth

IPDepth =

∑

IPleaf
∑

IPbranch

(3.3)

Device IP Complexity

dipc =
IPSpread

IPDepth

(3.4)
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Input: Set of IP addresses for device, stored as a trees

Output: Device IP Complexity

for ipTree in ipForest do

if ipTree.FirstOctet is unique then
ipSpread++

else

if ipTree.SecondOctet is unique then
totalBranches++

end

if ipTree.ThirdOctet is unique then
totalBranches++

end

if ipTree.FourthOctet is unique then
ipLeaves++

end

end

end

ipDepth = ipLeaves/totalBranches

ipComplexity = ipSpread/ipDepth
Algorithm 2: Device IP Complexity

A large number of IP trees with few branches indicate a large IP spread. A small number of

IP trees with many branches and leaves indicate a large IP depth. IP depth/spread is used as one

measure of a device’s complexity. Devices belonging to a single ecosystem, such as Google Home,

should have a small number of broad trees, as they connect mostly to Google’s networks which are

dedicated to these types of devices. Other devices such as laptops and smartphones should have a

larger IP spread, with each IP having fewer branches and leaves.

3.4.4 Unique Flows

Unique flows ̥ is a cardinality of the set of flows from a device where flow tuple f =

(dIP, dP, oFP, oFB, p). Unique flows are shown calculated in Equation 3.5.

Unique Flow

̥ =| {fi} |i∈(1,...,n) (3.5)

n = number of analyzed flows
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3.4.5 Noise to Signal Ratio (NSR)

This measure of complexity uses the DBSCAN [11] clustering algorithm to compute the num-

ber of clusters (signals) and the non-clusters (noise), from the data points defined by the destination

IP and destination port. This algorithm is good at finding areas of high density that are separated

by areas of low density. The DBSCAN algorithm has several advantages in that it can find clusters

of arbitrary shapes and sizes, including clusters that are non-convex (unlike k-means).

The DBSCAN is initialized with two important parameters used to tune how clusters are found:

a distance parameter ǫ and the number of points that are within a specified distance, min_samples,

to form a cluster. To calculate the distance parameter I use the ip_spread found in Equation 3.2

multiplied by 128 (the midpoint of the address space of a class C network). The calculation for the

ǫ parameter can be found in Equation 3.6.

ǫ = 128 ∗ IPSpread (3.6)

For the second parameter, min_samples, I found experimentally that min_samples = 10

was a good starting value for the total number of neighborhood points necessary for a point to

be calculated as a core point. The number of clusters found by the DBSCAN algorithm and the

number of non-clusters are used to calculate the Noise to Signal Ratio (NSR) for the device using

Equation 3.7.

NSR =
n_noise

n_clusters
(3.7)

3.4.6 Behavior

The behavior of an IoT device in this research dissertation is defined by the points of data

learned to be inliers from the training set. To distinguish an inlier from an outlier, I employ a clus-

tering method called Gaussian Mixture Model (GMM) [38]. The GMM is a finite mixture model

used to find the probabilities of multivariate distributions. The traffic features of netflows from IoT

devices consist of multivariate data with high probability densities based on the connections that
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devices make. The theory is that devices make connections to common sets of endpoints and over

similar sets of destination ports, leading to high density areas over the destination port/destination

IP ordered pairs in Euclidean space. An example of this can be seen in Figure 3.3 where there are

clear sub-populations of probability density in several of the features.

Figure 3.3: Data Distribution of Roku Express

The Gaussian Mixture (GMM) takes an input of the expected number of Gaussian distributions

to use, then gives a probabilistic assignment of each point to each Gaussian. This method is useful

to quantify both certainty and uncertainty, and allows me to pick the boundary of probability where

a point is assigned as an inlier or an outlier. Equation 3.9 shows the mean. Equation 3.10 shows

the standard deviation. The Gaussian probability is shown in Equations 3.11 and 3.12. Outliers are

calculated where the probability is less than X and inliers are calculated where the probability is

greater than X . For this work, X was statically set for all devices to the Chi-Square likelihood of
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X = 5.991 given two degrees of freedom this value provides a 95% probability confidence. Prior

to analysis by the GMM all data were standardized and scaled to unit variance as calculated 3.8.

Data Standardization Standardizing the the inputs of destination IP address and destination port

is important as these two value are of very different scales. The standard score of a sample x is

calculated as:

f(x) =
x− u

s
(3.8)

where u is the mean of the training samples, and s is the standard deviation of the training samples.

Definition 3.4.6. Gaussian Behavior Model (GBM): The total Gaussian mixture for the device,

i.e. the set of all Gaussians found on the training data.

Definition 3.4.7. Inlier: Points are defined as those that are probability X to be in a particular

Gaussian.

Definition 3.4.8. Outlier: Points are defined as those that are probability less than X to be in a

particular Gaussian.

Mean

uj =
1

m

m
∑

i=1

x
(i)
j (3.9)

Standard Deviation

σ2
j =

1

m

m
∑

i=1

(x
(i)
j − uj)

2 (3.10)

Outliers

X ≤

n
∏

j=1

1
√

2πσj

exp(−
xj − σj)

2

2σ2
j

) (3.11)

Inliers

X ≥
n
∏

j=1

1
√

2πσj

exp(−
xj − σj)

2

2σ2
j

) (3.12)
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Picking N-Components for Gaussian Mixture

The number of clusters in a GMM is very important in that it affects how well the model fits

the training data. Too many clusters results in over-fitting and too few results in under-fitting.

Determining the correct number of clusters can be ambiguous and context specific. The Bayesian

Information Criterion (BIC) is well known in the literature as a general method for model selec-

tion [39]. The BIC prevents models from over-fitting by introducing a penalty term,

k ∗ log(n),

on the number of parameters found, where n is the sample size and k is the total number of

parameters. At least within the narrow context of IoT traffic as presented in this work I show that

the BIC methods tends to produce too many clusters for the given IoT data.

In this work I present an alternative to the BIC using the ’signal’ part of the NSR (based

on DBSCAN). This method of model selection has two distinct advantages over BIC. First, it is

directly related to the underlying data, in this case the distance parameter used in DBSCAN is

calculated from the architecture of the Internet and is directly related to size of subnets common

to IP networks. Second, the NSR signal method produces models with predictive accuracy equal

to those fond using BIC, but with fewer clusters/parameters as shown in Table 3.7. The NSR

method exemplifies what Box et al. formulated with the principle of parsimony in modeling as

the application of the "smallest possible number of parameters for adequate representation" of the

data [40].

Table 3.7 compares the cluster/parameter selection using the NSR signal method to the BIC

across the four device datasets. To compute the results each device’s average F1 score was cal-

culated against each malware using the GMM for each device. Next, these device-averages were

then summed and averaged to calculate an average for the entire dataset. Each dataset-average was

then calculated 10 times with the resulting total averages shown in the table.
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Overall, BIC finds an average of 2-2.5 more cluster/parameters than the NSR method. The NSR

and BIC methods have approximately equal predictive accuracy as shown by the F1 scores across

the four datasets. The largest difference is in the SCADA dataset where the BIC-based models

resulted in average of approximately 89% more false positives than the NSR signal method on the

test data. This led to BIC-based models performing slightly worse in terms of F1 scores on the

SCADA data.

Table 3.7: NSR vs. BIC Comparison

Dataset
Avg. Comp.

(NSR)

Avg. Comp.

(BIC)

Avg F1

(NSR)

Avg. F1

(BIC)

Home 9.897 22.879 0.883 0.893

CSU Lab 8.757 21.060 0.879 0.869

UNSW 7.88 18.136 0.929 0.923

SCADA 4.047 8.023 0.968 0.943

3.4.7 Model Evaluation

Every device from each dataset had its NSR complexity calculated. Using that NSR complexity

a GMM was trained to produce a specific model for each device. To evaluate each device model,

malware traffic from Dataset 5, was used to see how well the model was able to identify normal

traffic from abnormal attack traffic. Each device was modeled with up to 1000 flow examples split

into 80% for training, 20% for testing. Devices that had less than 100 flows were not analyzed for

behavior. When evaluating the model the test data are assumed to be normal data and the malware

was considered abnormal data. Evaluating the model produces four metrics on how the model is

performing. These four metrics are:

• true positives (TP): malware traffic correctly identified as malware traffic.

• true negatives (TN): test traffic correctly identified as normal traffic.

• false positives (FP): test traffic incorrectly identified as malware traffic.

• false negatives (FN): malware traffic incorrectly identified as normal traffic.
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The confusion matrix for this is shown in Table 3.8.

Table 3.8: Confusion Matrix for Device Traffic

Predicted: Normal Traffic Predicted: Maleware Traffic

Actual: Normal Traffic TN FP

Actual: Malware Traffic FN TP

From these four metrics, there are two important factors that are often used. First, precision is

the ratio of correct positive predictions to the total predicted positives (Equation 3.13), and second

recall is the ratio of correct positive predictions to the total positive examples (Equation 3.14). A

balanced method for measuring the efficacy of a prediction model is called the F1 score. The F1

score is the harmonic mean of precision and recall (Equation 3.15).

Precision

P =
TP

TP + FP
(3.13)

Recall

R =
TP

TP + FN
(3.14)

F1 Score

F1 = 2 ·
P ·R

P +R
(3.15)

3.5 Summary

This chapter presented the design overview, data collection, and data analysis of the research.

Each of the four device datasets and the malware dataset was described. Next, I presented several

definitions of complexity: traffic variance, IP complexity, unique flows, and NSR complexity and

how each was calculated. This was followed by discussion on how the number of clusters in the

DBSCAN algorithm was tuned using the IP_Spread of the device and how this cluster calculation

was used to inform the GMM of how many Gaussians to produce. This chapter continued in
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defining a behavior model for a device based on a Gaussian mixture model and how outliers and

inliers were calculated in this model. Finally, I described how the device models are evaluated

against the malware traffic using F1 scores.
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Chapter 4

Research Findings

4.1 Introduction

This chapter documents the results found in this study of IoT devices. It describes results from

the four individual datasets, including a complexity analysis for variance, IP complexity, unique

flows and the NSR method. Next, results from the NSR-based GMM analysis show the efficacy

for tuning the anomaly detection model by complexity. This section is organized by dataset and

the order is shown below:

• Home Network

• Lab Network

• University of New South Wales Lab Network

• METEC Scada Network

4.2 Home Dataset Results

The home dataset consisted of the devices found in Section 3.3.1.

Figure 4.1 shows the home devices’ variance of traffic calculated over 1000 flows. The variance

is calculated as a tuple (bits per second, packets per second) as described in Section 3.4.2. The

devices are ordered from left to right with the devices showing with the highest calculated variance

on the right.

Figure 4.2 shows the total IP complexity of each device on the home network. This graph

is based on a sampling of up to 1000 network flows per device, and shows the complexity of

destination IP addresses. The right side of the graph shows the devices that were found to be the

most complex as measured by the IP complexity metric discussed in Section 3.4.3.
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Figure 4.1: Average Device Network Variance

Figure 4.2: IP Device Complexity
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Figure 4.3 shows the device complexities based on unique flows. This figure shows devices

ranked by the number of unique tuples of network traffic described in 3.1. It represents an aggre-

gation of IP complexity and variance. Figure 4.4 shows the noise to signal (NSR) complexity for

each device on the home dataset with the highest complexity devices shown on the right. The line

drawn at 8.438 NSR shows the approximate threshold between an IoT device and those that are

more general-purpose devices, this value is the average NSR value for the home, lab, and UNSW

datasets.

Figure 4.3: Home: Flow Complexity
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Figure 4.4: Home: NSR Complexity

The following three Figures [4.5, 4.6, 4.7] show the NSR for three devices: the highest NSR,

the Roku Express (52.25), an NSR close to the dataset average, the J. Chromebook (9.35), and the

lowest NSR, the Eufy light bulb (0). IP addresses are shown in scientific notation. Signals are show

as black dots highlighted in green and noise is shown by small yellow circles. These figures show

that high complexity devices would typically have more noise than they do signals this can be seen

in Figure 4.5 of the Roku Device. Low complexity devices will have a higher ratio of clusters to

noise, this can be seen in the Figure 4.7 where there are two cluster and zero noise points.
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Figure 4.5: Home: Noise to Signal for Roku Express

Figure 4.6: Home: Noise to Signal for J. Chromebook
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Figure 4.7: Home: Noise to Signal for Eufy Light

Malware Attack Analysis

This section shows the attack analysis results for the three devices in the home dataset, that

span the range of NSR complexity scores: the Roku Express, J. Chromebook, and the Eufy light

bulb. Each device is shown against two types of malware traffic from Table 3.6: C&C, and C&C

File Download traffic. These attacks were chosen as they represent the largest variance in both

destination IP and destination port. Each figure in this section shows the standardized destination

port and standardized destination address. Normal test data is shown as black dots. The attack

data is shown in red dots. Light blue ellipsoids show estimates of the confidence of inlier behavior

learned by the GMM. These ellipsoids were generated for the figures in a generalized manner to

show details in each figure and do not perfectly align with the actual probablity threshold of each

device model. The results of all of the attacks against all of the home devices can be found in

Appendix B.

The following Figures [4.8, 4.9] show the Gaussian probability surfaces for the Roku Express

device against the C&C malware traffic and against the C&C file download traffic. This is a highly

complex device as measured by the NSR method.
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Figure 4.8: Home: C&C Attack And Gaussian Boundary Roku Express

Figure 4.9: Home: C&C File Download Malware And Gaussian Boundary Roku Express

Figures 4.10 and 4.11 show the Gaussian mixture boundaries for the J Chromebook device,

an average NSR complexity device against the C&C and the C&C Filedownload traffic. The

41



boundaries show a higher probabilistic fit of the normal traffic than the boundaries shown in Figures

4.8 and 4.9.

Figure 4.10: Home: C&C Attack And Gaussian Boundary J Chromebook

Figure 4.11: Home: C&C File Download Attack And Gaussian Boundary J Chromebook
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Figures 4.12, and 4.13 show the Gaussian boundaries for the Eufy light bulb device, a low NSR

complexity device, against the C&C and the C&C Filedownload traffic. The boundaries in these

figures are much more tightly coupled to the normal traffic than in the previous two devices.

Figure 4.12: Home: C&C Attack And Gaussian Boundary Eufy Light
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Figure 4.13: Home: C&C File Download Attack And Gaussian Boundary Eufy Light

Figure 4.14 shows the F1 score for every device in the home dataset modeled using the com-

plexity based GMM on non-standardized data. The red line drawn at a F1=0.6 marks the threshold

which generally showed that the majority devices above this line are single-purpose devices and

those below this line are general purpose-devices. Figure 4.15 shows the average F1 score using

the complexity based GMM on standardized data. Models built using standardized data generally

performed better than those using non-standardized data, however, no line is drawn on this figure

as there is no obvious correlation between the F1 score and the complexity once the data were

standardized.
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Figure 4.14: Home: NSR Vs. F1

Figure 4.15: Home: NSR Vs. F1 Normalized

4.3 Lab Dataset Results

This section shows the results from the Colorado State University Lab dataset summarized in

Section 3.3.2. Figure 4.16 shows the variance of lab devices as calculated in Section 3.4.2. Devices

are sorted by variance from left to right, and the figure was generated using at most 1000 flows per

device.
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Figure 4.16: Lab: Average Device Network Variance

Figure 4.17 shows the IP complexity as calculated in Section 3.4.3 for lab devices. Devices are

sorted by IP complexity from left to right.

Figure 4.18 shows the flow complexity of the lab devices ranked ascending from left to right.

Figure 4.19 shows the noise to signal (NSR) complexity for each device on the lab dataset

with the highest complexity devices shown on the right. The line drawn at 8.438 NSR shows the

approximate threshold between an IoT device and what is a more general-purpose devices, this

value is the average NSR value for the home, lab, and UNSW datasets.
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Figure 4.17: Lab: IP Device Complexity

Figure 4.18: Lab: Flow Complexity
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Figure 4.19: Lab: NSR Complexity

Figures [4.20, 4.21, 4.22] show the NSR for a high, average, and low device: the Note8, Apple

TV and the IviewLight light bulb respectively. The IP address is shown in scientific notation for

each figure. Signals are show as black dots highlighted in green and noise is shown by small yellow

circles. These figure show that high complexity devices would typically have more noise than they

do signals this can be seen in Figure 4.20 of the Note8 Device. Low complexity devices will have

a higher ratio of clusters to noise, this can be seen in the Figure 4.22 where there are two cluster

and zero noise points.

Figure 4.20: Lab: Noise to Signal for Note 8
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Figure 4.21: Lab: Noise to Signal for Apple TV

Figure 4.22: Lab: Noise to Signal for IviewLight 2

Malware Attack Results

These results show how the attacks listed in Table 3.6 are detected as abnormal traffic compared

normal test traffic in the lab device models. I show a high complexity device (Note8), a device of

average complexity (Apple TV), and a low complexity device (Iview Light Bulb). Each device is

shown against two types of malware traffic from Table 3.6: C&C, and C&C File Download traffic.

These attacks were chosen as they represent the largest variance in both destination IP and desti-

nation port. Each figure in this section shows the standardized destination port and standardized

destination address. Normal test data is shown as black dots. The attack data is shown in red dots.

Light blue ellipsoids show estimates of the inlier probability threshold learned by the GMM. These
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ellipsoids were generated for the figures in a generalized manner to show details in each figure and

do not perfectly align with the actual inlier probablity threshold of each device model. The results

of all of the attacks against all of the home devices can be found in Appendix C.

Figures 4.23, and 4.24 show the Gaussian mixture boundaries for the Note8, a high NSR com-

plexity device against the C&C and the C&C Filedownload traffic. The figure shows Gaussian

boundaries that do not form precise boundaries over the normal training traffic, leading to poorer

performance.

Figure 4.23: Lab: C&C Attack And Gaussian Boundary Note 8
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Figure 4.24: Lab: C&C Filedownload Attack And Gaussian Boundary Note 8

Figures 4.25, and 4.26 show the Gaussian mixture boundaries for the Apple TV, an average

NSR complexity device against the C&C and the C&C Filedownload traffic. The inlier probablity

threshold represented by the ellipses shown in these figures show smaller more precise boundaries

for this average complexity device.
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Figure 4.25: Lab: C&C Attack And Gaussian Boundary Apple TV

Figure 4.26: Lab: C&C File Download Attack And Gaussian Boundary Apple TV

Figures 4.27, and 4.28 show the Gaussian mixture boundaries for the Iview SmartBulb, an

low NSR complexity device against the C&C and the C&C Filedownload traffic. This device is
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the lowest complexity of the dataset. The Guassian boundaries shown in the figure reflect a more

precise inlier probablity threshold , due to a smaller standard deviation of the learned behavior.

This model misclassified one example of each of the attack traffic types, giving a false positive rate

of 0.05% and an F1 scores of 0.984 and 0.933 respectively.

Figure 4.27: Lab: C&C Attack And Gaussian Boundary IviewLight 2
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Figure 4.28: Lab: C&C File Download Attack And Gaussian Boundary IviewLight 2

Figure 4.29 shows the F1 score for every device in the lab dataset modeled using the complex-

ity based GMM on non-standardized data. The red line drawn at a F1=0.6 marks the threshold

where the majority devices above this line are IoT devices and those below this line are general

purpose-devices. Figure 4.30 shows the average F1 score using the complexity based GMM on

standardized data. Models built using standardized data generally performed better than those

using non-standardized data, however, no line is drawn on this figure as there is a decreased corre-

lation between the F1 score and the complexity once the data were standardized.
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Figure 4.29: Lab: NSR Vs. F1 Non-Normalized

Figure 4.30: Lab: NSR Vs. F1 Normalized

4.4 UNSW Dataset Results

This section shows the results for the University of New South Wales dataset. Figure 4.31

shows the variance of UNSW devices as calculated in Section 3.4.2. Devices are sorted by variance

from left to right and the figure was generated using at most 1000 flows.

Figure 4.32 shows the IP complexity as calculated in Section 3.4.3 for UNSW devices. Devices

are sorted by IP complexity from left to right, and was generated using at most 1000 flows for each

device.
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Figure 4.31: UNSW: Average Device Network Variance

Figure 4.32: UNSW: IP Device Complexity
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Figure 4.33 shows the unique flow complexity for each device in the UNSW dataset using at

most 1000 flows per device.

Figure 4.33: UNSW: Flow Complexity

Figure 4.34 shows the noise to signal (NSR) complexity for each device on the UNSW dataset

with the highest complexity devices shown on the right. The line drawn at 8.438 NSR shows the

approximate threshold between an IoT device and what is a more general-purpose devices, this

value is the average NSR value for the home, lab, and UNSW datasets.

Figures [4.35, 4.36, 4.37] show the NSR for a high complexity device, an average complex-

ity device, and a low complexity device. These are the Apple iPhone, TPLink Router, and the

Samsung SmartCam respectively. Figure 4.35 shows a single signal/cluster. Figure 4.36 shows 12

signals/clusters some are elongated along the same destination IP address with many varied ports.

Figure 4.37 shows four signals/clusters.
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Figure 4.34: UNSW: NSR Complexity

Figure 4.35: UNSW: Noise to Signal for iPhone
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Figure 4.36: UNSW: Noise to Signal for TPLink Router

Figure 4.37: UNSW: Noise to Signal for SmartCam
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Malware Attack Results

These results show how the attacks listed in Table 3.6 are detected as abnormal compared to the

UNSW devices models. I show the most complex device (iPhone), a device of average complexity

(TPLink), and the lowest complexity device (Samsung SmartCam). Each device is shown against

two types of malware traffic from Table 3.6: C&C, and C&C File Download traffic. These attacks

were chosen as they represent the largest variance in both destination IP and destination port.

Each figure in this section shows the standardized destination port and standardized destination

address. Normal test data is shown as black dots. The attack data is shown in red dots. Light blue

ellipsoids show estimates of the inlier probablity threshold learned by the GMM. These ellipsoids

were generated for the figures in a generalized manner to show details in each figure and do not

perfectly align with the actual inlier probablity threshold of each device model. The results of all

of the attacks against all of the home devices can be found in Appendix D.

Figures 4.38, 4.39 show the Gaussian mixture boundaries for the iPhone, an high NSR com-

plexity device against the C&C and the C&C Filedownload traffic. These figures show only a

single ellipsoid reflecting the sole inlier probablity threshold of the GMM.

Figure 4.38: UNSW: C&C Attack And Gaussian Boundary iPhone
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Figure 4.39: UNSW: C&C File Download Attack And Gaussian Boundary iPhone

Figures 4.40 and 4.41 show the Gaussian mixture boundaries for the TPLink Router, an average

NSR complexity device against the C&C and the C&C Filedownload traffic. These figures show 13

ellipses approximately lining up with the Gaussians found by the GMM. Several of these ellipsoids

show elongation along traffic with a common destination IP address and across a wide range of

destination ports.
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Figure 4.40: UNSW: C&C Attack And Gaussian Boundary TPLink Router

Figure 4.41: UNSW: C&C File Download Attack And Gaussian Boundary TPLink Router

Figures 4.42 and 4.43 show the Gaussian mixture boundaries for the Samsung Smartcam, a low

NSR complexity device against the C&C and the C&C Filedownload traffic. These figures show
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four ellipsoids reflecting the four Gaussians of the GMM model. One point is not encompassed by

an ellipsoid, despite the device model having a perfect F1 score. This shows an error in the figure

where the ellipsoid does not line up perfectly with the calculated model.

Figure 4.42: UNSW: C&C Attack And Gaussian Boundary Samsung SmartCam
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Figure 4.43: UNSW: C&C File Download Attack And Gaussian Boundary Samsung Smartcam

Figure 4.44 shows the F1 score for every device in the UNSW dataset modeled using the

complexity based GMM on non-standardized data. The red line drawn at a F1=0.6 marks the

threshold where the majority devices above this line are IoT devices and those below this line

are general purpose-devices. Figure 4.45 shows the average F1 score using the complexity based

GMM on standardized data. Models built using standardized data generally performed better than

those using non-standardized data, however, no line is drawn on this figure as there is a decrease

in the correlation between the F1 score and the complexity once the data were standardized.
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Figure 4.44: UNSW: NSR Vs. F1

Figure 4.45: UNSW: NSR vs Average F1 Normalized
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4.5 SCADA Dataset Results

This section shows the results of the METEC natural gas testing site network dataset. Figure

4.46 shows the variance of METEC devices as calculated in Section 3.4.2. Devices are sorted by

variance from left to right and the figure was generated using 1000 flows (if they were available).

Figure 4.46: SCADA: Aggregate Device Variance

Figure 4.47 shows the IP complexity as calculated in Section 3.4.3 for METEC devices. De-

vices are sorted by IP complexity from left to right. The figure was generated using maximum of

1000 flows if they were available.

Figure 4.48 shows the ranked complexity increasing from left to right of he SCADA devices as

measure by the total number of unique flows.
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Figure 4.47: SCADA: IP Device Complexity

Figure 4.48: SCADA: Flow Complexity
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Figure 4.49 shows the NSR complexity of devices with increasing complexity from left to right.

For comparison, a line is drawn at an NSR of 8.438, the average NSR value for the home, lab, and

UNSW datasets. Unlike previous results, which had a mix of general purpose devices with enough

flows to analyze, no similar observations can be made about the SCADA dataset, which consists

mostly of single-purpose industrial control devices.

Figure 4.49: SCADA: NSR Complexity

Figures 4.50, 4.51, and 4.52 show the results for the NSR complexity of three devices: the

Labjack 187 (a high NSR) device, the Metec Control (an average NSR) device, and the Metec GC

(a low NSR) device on the SCADA network. The LabJack 187 in Figure 4.50 show three sig-

nals/clusters and 23 points of noise. All traffic from this devices is directed at a single destination

IP address with a wide range of ports. Figure 4.51 has two signals/clusters and 7 points of noise.

Figure 4.52 is the lowest complexity device of the dataset. It was found to have one signal and no

points of noise. The signal shown in the figure encompasses the two points even though they are

not covered by a green circle.
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Figure 4.50: SCADA: Noise to Signal for Labjack 187

Figure 4.51: SCADA: Noise to Signal for Metec Control

Figure 4.52: SCADA: Noise to Signal for Metec GC
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Malware Attack Results

These results show how the attacks listed in Table 3.6 are detected as abnormal from the device

models in the SCADA dataset. I show the most complex device (LabJack 187), a device of average

complexity (Metec Contol), and the lowest complexity device (Metec GC). Each device is shown

against two types of malware traffic from Table 3.6: C&C, and C&C File Download traffic. These

attacks were chosen as they represent the largest variance in both destination IP and destination

port. Each figure in this section shows the standardized destination port and standardized desti-

nation address. Normal test data is shown as black dots. The attack data is shown in red dots.

Light blue ellipsoids show estimates of the inlier probablity threshold learned by the GMM. These

ellipsoids were generated for the figures in a generalized manner to show details in each figure and

do not perfectly align with the actual inlier probablity threshold of each device model. The results

of all of the attacks against all of the home devices can be found in Appendix E.

Figures 4.53 and 4.54 show the Gaussian boundaries for the Labjack_187. The Labjack_187

was the only device with the relative highest NSR to achieve a perfect F1 score against both the

C&C and C&C Filedownload traffic. These figures show two ellipsoids that approximate the

two Gaussians found by the GMM model (there was some probabilistic difference in the NSR

calculations resulting in slightly different numbers of signals). The ellipses shown in the figure

only approximate the inlier probablity threshold accounting for the perfect F1 score of this device

model despite the overlap between ellipse and attack traffic points.
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Figure 4.53: SCADA: C&C Attack And Gaussian Boundary Labjack 187

Figure 4.54: SCADA: C&C Attack And Gaussian Boundary LabJack 187

Figures 4.55 and 4.56 show the Gaussian mixture boundaries for the Metec Control, an average

NSR complexity device against the C&C and the C&C Filedownload traffic. These figures show
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two ellipses reflecting the inlier probablity threshold found by the GMM. In both device models

there was one false positive, the estimated boundaries shown in the ellipses do not accurately reflect

the boundary of the GMM.

Figure 4.55: SCADA: C&C Attack And Gaussian Boundary Metec Control
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Figure 4.56: SCADA: C&C File Download Attack And Gaussian Boundary Metec Control

Figures 4.57 and 4.58 show the Gaussian mixture boundaries for the Metec GC, a low NSR

complexity device against the C&C and the C&C Filedownload traffic. These figures show the

least NSR complex device of the SCADA dataset with a single ellipsoid. The true inlier probablity

threshold of this model must be tall and thin aligning with the single destination IP address and

small range of ports.
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Figure 4.57: SCADA: C&C Attack And Gaussian Boundary Metec GC

Figure 4.58: SCADA: C&C File Download Attack And Gaussian Boundary Samsung Metec GC
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Figure 4.59 shows the F1 score for each device averaged over every attack versus the com-

plexity of the devices as measured by the NSR method. Figure 4.60 shows the SCADA devices

averaged F1 scores for all the devices against all seven types of malware traffic.

Figure 4.59: SCADA: NSR Vs. F1 Non-Normalized

Figure 4.60: SCADA: NSR Vs. F1 Normalized

4.6 Cross Dataset Results

Table 4.1 shows the averages for variance, IP complexity, unique flows, and NSR complexity

for each dataset. Table 4.2 shows the mean, standard deviation and coefficient of variance for each
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measure of complexity. Table 4.3 shows the average NSR complexity and the F1 score for each

dataset.

Table 4.1: Listing of Complexity Measurements by Dataset

Dataset Avg. Variance Avg. IP Complexity Avg. Unique Flows Avg. NSR

Home 256744.12 23590.55 13483.57 8.548

CSU Lab 39713.87 2521.40 2029.02 9.596

UNSW 2445.90 17049.18 6497.26 7.170

SCADA 1337.09 2.271 135.57 4.65

Figure 4.61 shows the trendline and R2 value for the average F1 score for each dataset and the

average NSR complexity. The R2 of 0.968 shows a strong correlation between the NSR complexity

and the accuracy of the GMM model.

Table 4.2: Cross-Dataset Comparison of Complexity Measurements

Complexity Measure Mean Standard Deviation Coefficient of Variation

Variance 75059.75 106026 1.41

IP Complexity 10790.56 9845.89 0.91

Unique Flows 5536 5136 0.93

Noise to Signal 7.51 1.84 0.24

Table 4.3: NSR Complexity and F1 Score by Dataset

Dataset Average NSR F1 Score

Home 8.548 0.901

CSU Lab 9.596 0.879

UNSW 7.170 0.942

SCADA 4.65 0.975
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Figure 4.61: F1 Score Vs Complexity
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Chapter 5

Discussion

5.1 Introduction

This chapter discusses the results shown in Chapter 4. It is organized with an overview of

the key findings of this dissertation, then the results are discussed more specifically in sections

that addresses each of the four datasets: home, lab, UNSW, and SCADA. Within each of these

sections, I review the complexity measures pertaining to that dataset followed by a section that

reviews three devices’ behavior: one a high complexity device, an average complexity devices,

and a low complexity device. This chapter concludes with a discussion comparing the results

across the four datasets and the advantages and disadvantages of each method for measuring the

complexity.

5.2 Key Findings

The results across all four of the datasets support the hypothesis that devices can be measured

for complexity based on their network traffic, and that this measurement can be used to broadly

categorize devices into two separate groups: single-purpose devices and general-purpose devices.

Further, the results show that constructing anomaly detection models using the NSR measurement

of complexity results in accurate behavioral models, particularly for low complexity devices that

often do not have embedded security features.

The results in Table 4.1 show that other measures of complexity including variance, IP com-

plexity, and unique flows range widely in value from dataset to dataset. Similarly, Table 4.2 shows

that the coefficient of variation (CV) for each of these measures is 0.91 or greater. In contrast,

the NSR complexity measure shows much smaller ranges, and its CV of 0.24 shows that the NSR

metric has a low variance across all of the datasets. These results show that the ratio of noise and

signal used in the NSR method is more consistent across the diverse set of devices measured.
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Consistency and low variance make the NSR metric an effective standard measure of com-

plexity for devices. Figures 4.4, 4.19, and 4.34 support this observation, showing that the average

NSR complexity of the home, lab and UNSW datasets of 8.438, is an approximate threshold that

separates general-purpose devices from single-purpose devices. General-purpose devices largely

fall above this threshold and single-purpose fall below. The SCADA dataset is the exception to this

result as it is composed of nearly all single-purpose devices.

An anomaly detection model that includes NSR was found to be accurate, particularly for low

complexity devices. As shown in Table 4.1, the more simple a device is, the more accurate it can

be modeled. This conclusion is demonstrated by Figure 4.61 showing an R2 value of 0.968 for the

average NSR complexity vs the average F1 score of the four datasets.

This finding is important as it establishes the NSR metric as an effective measure of device

complexity and a valid method for constructing a device-specific anomaly detection algorithm.

Autonomous network enforcement methods can use NSR complexity to identify devices that would

benefit most from the anomaly detection model - low complexity, single purpose devices that are

most vulnerable to attack and least capable of protecting themselves on their own.
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5.3 Home Discussion

Overall, the results from the analysis of the home dataset show that low complexity devices can

be more accurately modeled than higher complexity devices. The following sections discuss how

complexity measures performed on the home dataset and how the GMM behavior model performs

on three devices, the highest complexity device (Roku Express), an average complexity device (J

Chromebook), and the lowest complexity device (Eufy Light) as measured by the NSR method.

Home Complexity

The four methods presented to measure complexity, IP_complexity, variance, unique flows, and

NSR complexity, are seen in Figures 4.1, 4.2, 4.3, and 4.4 each can be used with varied success to

sort devices from single-purpose to general-purpose.

Beginning with the variance shown in Figure 4.1, we see that with the exception of the Amcrest

Camera, the top ten most complex devices, on the right side of the figure, are all general purpose

devices. The devices filling out the left side of the figure are all single-purpose devices.

In Figure 4.2 the rightmost six devices are general-purpose devices, and the five leftmost are

single purpose. The middle consists of a mix of both single and general-purpose devices.

The unique flows measure for the home dataset is shown in Figure 4.3. The measure performs

well at grouping the general-purpose devices to the right, with the top eight in this category. The

ten low complexity devices on the left side of the graph are all single-purpose.

The NSR complexity results, shown in Figure 4.4, provided the clearest distinction between

groups, with general-purpose devices in the top 14 positions on the right, and 10 single-purpose

devices at the left side of the figure.

Home Behavior

The GMM behavior models discussed in this section using only the NSR complexity measure.

The highest, average and lowest devices by this measure are seen in Figures 4.5, 4.6, and 4.7.

These three figures show the clusters found that feed into the behavioral GMM model. s
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As shown in Figure 4.5 the Roku Express has an NSR value of 52, the highest of the home

dataset, with only four clusters and 208 points of noise. It has approximately a 0.5% false-positive

rate across both types of malware traffic. Visually, the figure shows large ellipses that do not

contain all of the normal traffic within their boundaries and some overlap with the malware traffic.

The number of true positive outliers detected is also poor with the model only detecting 43% of

the malware traffic in the C&C traffic and 42% of the C&C File download traffic. As a result, the

model has low F1 scores of 0.59 and 0.55 respectively, showing that the model was not accurate

for this high complexity device.

Figure 4.10 shows that the J. Chromebook device has an NSR value of 8.6 which is close to the

dataset average of 8.548 shown in Table 4.1. The DBSCAN method found a total of 15 clusters and

129 points of noise, leading the GMM to find a total of 15 ellipsoids. As compared to the model of

the Roku, the J. Chromebook shows smaller margin ellipsoids centered around the normal traffic as

seen in both Figures 4.10 and 4.11. The false-positive rate of the J. Chromebook model is relatively

high at 1%. However, the ellipsoidal boundaries are more tightly bound around the normal traffic,

leading to less overlap with the malware traffic, and consequently a true positive accuracy of 100%

for the two types of malware traffic. This in turn leads to a much higher F1 score of 0.968 for the

C&C malware and 0.875 for the C&C File Download malware.

Finally, Figures 4.12 and 4.13 show the Eufy light bulb with the lowest NSR score of 0, it

had two signals and no noise. The model generated ellipsoidal inlier confidence intervals that are

tightly coupled around the normal traffic, with a 0.0% false positivity rate and a 100% accuracy in

identifying the malware traffic. This leads to a perfect F1 score of 1.00, showing that the model

performed perfectly for the low complexity device.

The overall F1 vs. NSR results shown in Figure 4.14 shows the average of the F1 scores across

all 7 types of malware traffic for each device. The general trend is for devices of lower complexity,

identified by lower NSR values, to have higher F1 values, indicating a better predictive model.

The red line on the figure demonstrates that single purpose devices can be separated from general-

purpose devices by how accurately they can be modeled with single-purpose devices modeled
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accuracy above F1=0.6 and general-purpose devices below. Figure 4.15 shows the same relation-

ship of devices’ average F1 scores vs NSR complexity with device models that used standardized

data. This figure shows how standardization reduces the correlation between F1 and complexity,

but improves GMM and thus the F1 score across all of the devices.

5.4 Lab Discussion

Overall the results from the analysis of the lab dataset show that low complexity devices can

be more accurately modeled than higher complexity devices. The following sections discuss how

complexity measures performed on the lab dataset and how the GMM behavior model performs

on three devices, the highest complexity device (Note8), a median complexity device (Apple TV),

and the lowest complexity device (Iview Smartbulb) as measured by the NSR method.

Lab Complexity

Figure 4.16 shows the variance of devices from the lab dataset, with the highest variance at-

tributed to the Windows laptop. This figure shows a trend of general-purpose devices as high

complex devices and were grouped on the right side of the figure. There was more mixing of

single-purpose devices in the high end of complexity as measured by variance. The lowest vari-

ance device was the ovs-bridge, which was the SDN controlled switch for the network.

Figure 4.17 shows the IP complexity for the lab dataset. In this figure we see several IoT devices

with high complexity, such as the show1-amazon-27, two Lutron switches, and the Arlo Q a video

camera. It is not until we get down to the fifth most complex device with the thinclient that we

first see what I consider a general-purpose device. For the lab dataset the IP complexity measure

groups most of the general-purpose devices on the right hand side of the figure, however, there

are several IoT devices mixed in, such as the Lutron devices which are light bulbs indicating that

this measure of complexity is not forming distinct groups of single-purpose and general-purpose

devices.
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Unique flows for the lab network in Figure 4.18 also show several IoT devices with the most

complex unique flows, as it groups all of the five Amazon devices at the top. In fact, we do not see

a general-purpose device in the figure until the 10th spot with the LeEco-Phone.

The NSR complexity for devices in the lab is shown in Figure 4.19. All devices with a NSR

complexity score greater than 8.438 (the lab average NSR is 9.5) are general-purpose devices with

the exception of the Google-Home-Mini. All devices that have an NSR complexity lower than

8.438 are single-purpose devices.

Lab Behavior

Beginning with the device that has the highest NSR of 29, the Galaxy Note 8 has three clusters

and 130 noise points as shown in Figure 4.20. When fed into a GMM model as seen in Figures

4.23 and 4.24, it shows the Note 8 with a false positive rate of 8% against both attacks. The model

also shows that it misclassified 5% of the C&C malware traffic as normal traffic, and only correctly

identified 91% of the malware traffic as anomalous, resulting in an F1 score of 0.054. For the C&C

File Download traffic, the model only found 57% of the traffic, leading to an F1 score of 0.588.

The low F1 scores indicate that this high complexity devices is not accurately modeled.

The average device, the Apple TV, has an NSR of 8.2 as shown in Figure 4.21, with 5 clusters

and 38 points of noise. When analyzed with the GMM model, there are 6 Gaussians (note that

there are some probabilistic differences between computational iterations that result in slightly

different numbers of clusters). The model for the Apple TV has a false positive rate of 0.0%, and

correctly identified all of the malware traffic, resulting in F1 scores of 1.00 for each malware type.

The figure shows that the ellipsoids generated by the GMM more closely fit the normal data than

the higher complex Note 8 device. This shows how the inlier confidence interval is more precise

for lower complexity devices.

Finally, the lab device with the lowest NSR value of 0.5 from Figure 4.22 was the Iview Smart-

bulb. Its GMM model has two Gaussians and a false positive rate of 0.5% across the two attacks.

Both types of malware were 100% correctly identified in the models, leading to F1 scores of 0.984

and 0.933 showing a strong predictive accuracy.
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The lab dataset, like the home dataset, shows that higher complexity devices have models that

are less precise, with more errors that incorrectly classified normal traffic, malware traffic, or both.

When the GMM model is used to analyze devices that are less complex, the model results in more

precise boundaries of behavior. This trend is reflected in the F1 scores in Figure 4.29, which shows

the average F1 score across the seven types of malware traffic for each device. Higher F1 scores

are attributed to devices with lower NSR values. The red line on the figure demonstrates that sin-

gle purpose devices can be separated from general-purpose devices by how accurately they can be

modeled with single-purpose devices modeled accuracy above F1=0.6 and general-purpose devices

below. Figure 4.30 shows the same relationship of devices’ average F1 scores vs NSR complex-

ity with device models that are standardized. This figure shows how standardization reduces the

correlation between F1 and complexity, but improves GMM and thus the F1 score across all of the

devices.

5.5 UNSW Discussion

The results from analysis of the UNSW dataset show that low complexity devices can be more

accurately modeled than higher complexity devices. The following sections discuss how complex-

ity measures are performed on the UNSW dataset and how the GMM behavior model performs

on three devices: the highest complexity device (iPhone), an average complexity device (TPLink

Router), and the lowest complexity device (Samsung SmartCam), as measured by the NSR method.

UNSW Complexity

Figure 4.31 shows the variance of devices ordered from low variance to high variance in the

UNSW dataset. There does not appear to be as strong a correlation of general-purpose devices

having high variance as was seen in the home dataset and to a lesser extent in the lab dataset. The

Nest Dropcam showed the highest variance of traffic, however this result is not consistent with the

home and lab datasets where cameras did not have the most variance in traffic. This high could be

related to compression of the video stream or due to motion detection activation.
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The IP Complexity of the devices in the UNSW dataset in Figure 4.32 does tend to have more

general-purpose devices measured as more highly complex. The notable exceptions are the LiF

light bulb and the SmartThings hub. Overall we can see that most of the devices in this dataset

have very low IP complexity.

The unique flows in the UNSW dataset in Figure 4.33 show that the TPLink router has the

highest number of unique flows, followed by the MacBook. The fact that the router has such as

high number of flows in the UNSW data is interesting, as it must have a relatively large amount of

layer three traffic on the network as can be seen in Figure 4.36.

The NSR complexity shown in Figure 4.34 performs well in ordering single-purpose devices

to general-purpose devices. One of the exceptions is the iHome, which according to the original

paper linked to the data, is a smart switch. The iHome has 37 noise points, a relatively high number

with only two clusters. Additional information about this device may be needed to explain its high

NSR value.

UNSW Behavior

The highly complex iPhone device shown in Figures 4.38 and 4.39 has a single Gaussian and

86 points of noise, which results in a poorly performing model of the device. Against the C&C

attack the model has a false positive rate of 4% and a false negative rate of over 30%. The F1

score is very low at 0.062, which is heavily influenced by the model only identifying only 3% of

the malware traffic, this shows that this model failed for the highly complex device.

The TPLink Router shown in Figures 4.40 and 4.41 is an average complexity device and has

13 Gaussians and 95 points of noise, for a NSR value of 7.30. This is slightly higher than the

average for the UNSW dataset. The TPLink router had no false positives against either the C&C

traffic or the C&C Filedownload traffic. Against the C&C traffic, the router only identified 40%

of the malware traffic, contributing to an F1 score of 0.571. The router model fared better against

the C&C FileDownload traffic with an F1 score of 0.923. The router shows some interesting

characteristics in that its traffic seems to be between some very specific destination addresses where

many of the connections have a high number of destination ports. It is possible that devices outside
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of the dataset were configuring the router as similar patterns do not show up on other devices. This

leads to the unique pattern of destination address and port pairs as shown in the figure.

Figure 4.42 shows the Gaussian behavior of the Samsung Smart Camera, a device with low

complexity. This device had four clusters with zero noise points for an NSR of 0. The model for

this device performed perfectly against the two types of malware traffic with zero false-positive

rates, finding all of the malware traffic and missing none of the normal device traffic for an F1

score of 1.00.

The results for the UNSW dataset are similar to the results from the home and lab datasets, and

continue to support the hypothesis that devices with high complexity have less accurate models.

The iPhone device in Figures 4.38 and 4.39 shows a large behavioral boundary for the single

cluster, whereas the boundaries for the less complex devices have smaller ellipsoids around each

normal data point as shown in Figures 4.40, 4.41, 4.42, and 4.43.

The overall F1 vs NSR results depicted in Figure 4.44 shows an average of the F1 scores

across the seven types of malware traffic for each device. The general trend is for devices of lower

complexity to have higher F1 values. The red line on the figure demonstrates that single purpose

devices can be separated from general-purpose devices by how accurately they can be modeled

with single-purpose devices modeled accuracy above F1=0.6 and general-purpose devices below.

Figure 4.45 shows the same relationship of devices’ average F1 scores vs NSR complexity with

device models that are standardized. This reduces the correlation between F1 and complexity, but

improves the F1 score across all of the devices.

5.6 SCADA Discussion

The results from the SCADA dataset were very different than the results of the other datasets

examined in sections 4.2, 4.3, and 4.4. Overall the SCADA dataset has less variance, smaller IP

complexity, fewer unique flows, and lower NSR complexity. This difference is likely due to the

large number of industrial control devices and few general purpose devices. Several of the devices

had fewer than 100 flows, such as the printer and the camera.
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SCADA Complexity

Figure 4.46 shows the variance for each device on the SCADA network. The camera was the

most variant device on the SCADA network, and surprisingly the printer was the least. The results

for the camera are likely not accurate as there were only 25 flows from that device. The printer is

also likely inaccurately measured with only 36 flows.

As seen in Figure 4.47 there is a clear pattern where LabJack devices all have the same IP

complexity score. From this figure, it is clear that all the LabJacks, the metec_gc, and the printer

only communicate on the local network, while the metec_control, camera, and the metec_test all

communicate to devices off of the local area network (LAN).

Figure 4.48 shows the unique flows per device. The metec_control device has approximately

three times the number of unique flows as any other device on this network. Overall the devices

in the SCADA dataset had a smaller range of flows than any of the other datasets, with the largest

span consisting of only 60 unique flows.

The overall NSR complexity for the SCADA dataset is shown in Figure 4.34, which provides

a ranking of devices by NSR complexity. This result only shows devices that had at least 100

flows, as several of the devices shown in previous figures did not have the minimum number of

flows for NSR analysis. It was unexpected to see that the highest measured device based on NSR

complexity was the LabJack_187, and that the metec_control (SCADA controller) has an average

NSR measure, as this is the computer that controls all of the SCADA devices.

SCADA Behavior

Figures 4.53 and 4.54 show the Gaussian boundaries for the LabJack187. Due to the overall

lower number of flows, there are some probabilistic differences between the number of clusters

found in Figure 4.50 and the number of clusters in Figure 4.53, which shows two clusters and

31 points of noise. This leads to an NSR value of 15.5. Despite this relatively high NSR value,

the model for the LabJack_187 still performs well against both the C&C and C&C Filedownload

malware traffic, with perfect F1 scores for both. The LabJack_187 has the highest complexity of
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the dataset, but this is low relative to high devices of the other datasets, leading to an effective

model.

Figure 4.55 and Figure 4.56 show the Gaussian boundaries for the metec_control device. It

has two clusters and eight points of noise leading to an NSR of 4.0. This model leads to a 0.05%

false-positive rate against both attacks. The model for the metec_control correctly identified both

types of malware traffic, the C&C and C&C FileDownload, which led to an F1 scores of 0.984 and

0.933.

Figures 4.57 and 4.58 show the model for the metec_gc device. This model has only a single

cluster, leading to a single Gaussian. The Gaussian drawn does not match the model well, but as

there were no false-negatives found, the two points that fall outside the drawn Gaussian must be

within 2σ of the center normal data point. The model performs perfectly against the two types of

malware with a zero false positive rate. All malware data points identified were correct, leading to

an F1 score of 1.00 for both, again showing that low complexity devices have accurate models.

The NSR and the F1 average for all of the SCADA devices is shown in Figure 4.59. A large

majority of the devices have perfect F1 scores of 1.0 against all of the seven attacks. Only three

devices have less than a perfect score, the metec_control, LabJack_202, and LabJack_204. Figure

4.60 shows where all the device data were standardized prior to modeling, which actually seems to

perform less well than the non-standardized models. However, I suspect its performance was equal

to the previous model, and just reflects the probabilistic nature of the model. Standardization does

not have the performance gains in the SCADA dataset, likely due to the limited IP and port space,

which makes the points closer without standardization.

5.7 Cross Dataset Discussion

It is not possible to compare devices of the same make and model across datasets, as there

was very little overlap in specific devices. The home dataset represents the most realistic dataset in

terms of the typical usage of IoT devices, as it comes from a house with devices that are consistently

interacted with.

88



The CSU lab, while containing devices that might be found in a home, did not replicate realistic

usage. The CSU lab was unoccupied for long periods of time, and devices were not used in

the same manner as they would be used in a home. For example, there were several concurrent

experiments taking place in the CSU lab, where devices were being unplugged, removed, and

rejoined to the network, much more often than a typical home environment.

The UNSW dataset may be more representative of a baseline of traffic for IoT devices. The

authors [29] claim that they took captures for 26 weeks, but they do not provide any indication

of how much they interacted with the devices during this time. The UNSW data has an average

variance that is similar to the CSU lab, and IP complexity near that of the home network.

The SCADA network is clearly different from the other three datasets, as is shown across

average variance, average IP complexity, and average NSR. These results were consistent with

what I would expect, given a protected network of industrial devices. For example, these devices do

not contact the broader Internet, and the traffic is mostly control traffic from the SCADA controller

to the end-node devices. This makes for much lower values in variance, IP complexity, and NSR

complexity.

An unexpected result that appeared in several of the datasets and across several of the complex-

ity measures was that streaming devices, such as Roku and Amazon devices, were high complex-

ity devices. These devices are small, seemingly simple Linux-based computers that are capable

of running various user applications simultaneously. The complexity scores of these devices are

similar to other general-purpose devices that run user applications, such as Android-based devices

and XBoxes. The discussion in this chapter treated these streaming devices as general-purpose

devices.

Complexity Comparison

Variance Variance uses how the aggregates (the packet and bit rates) of the traffic change over

time. The results across several datasets support the observation that devices with high variance

are often those that produce or consume media of some sort. I believe this is why we see a mix

of general-purpose and single-purpose devices with high variance. Laptops and smartphones are
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used to consume media, as are streaming devices, and these devices had high variances. Cameras

are media producing and show up as top variant devices. The Nest Protect smoke alarm showed

up as a highly variant device in both the lab and the UNSW dataset, which was likely due to the

low quantity of flows found in each dataset, 29 and 63 flows respectively.

Table 4.2 shows that the variance complexity measure has a mean of 75059, a standard devia-

tion of 106026, and a coefficient of variation (CV) of 1.41. The large variance of the averages from

each dataset indicate that this measure of complexity may not show consistent results and may be

highly dependent on how much the devices are used.

IP Complexity The IP complexity measure has both advantages and disadvantages. One ad-

vantage is that only a single feature, the destination IP address, is required to compute the IP

complexity. This method is also completely independent of state of the flow, i.e it does not need

to track the number of packets or bytes. Because it inherently tracks the hierarchical structure of

IP networks, it is more nuanced than a simple count of IP addresses, and captures the common

relationships of devices to their manufacturers and services.

Table 4.2 shows that the IP Complexity metric has an average of 10790, a standard deviation

of 9845, and a CV of 0.91. The large variance in the results indicate that like variance, the IP

complexity measure may not show consistent results as a general metric of devices complexity and

may depend on device use to a large degree.

Unique Flows The unique flows method of measuring complexity captures a mix of both IP

complexity and variance. Flows are unique not only if their destination tuples are different, but

also if the aggregation features are different. The unique flows metric has an mean of 5536, a

standard deviation of 5136 and a CV of 0.93. Similar to variance and IP complexity, unique flows

have a high variance across the dataset averages, and may not present consistent results as a general

measure of device complexity.
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Noise to Signal Ratio Noise to signal ratio, or NSR, can use any of the features from Table

3.1,but this work used only destination IP address and destination port. Using more of the available

flow features could result in higher accuracy, which is an interesting direction for future work. The

NSR method was the most consistent complexity measure across home, lab, and UNSW datasets.

Figures 4.4, 4.19, and 4.34 show that NSR was also the most consistent at ranking general-purpose

devices as high complexity and single-purpose devices as low complexity.

Table 4.3 shows the average NSR and F1 score for each dataset. These results shows that a

high NSR complexity leads to a low F1 score, and a low NSR leads to high F1 score. The CSU lab

dataset had the highest NSR complexity average of 9.596, and correspondingly the lowest average

F1 score of 0.879. The SCADA network had the lowest average NSR average of 4.65, and the

highest F1 average of 0.975.

Overall, the results of this study indicate that the NSR is a good step towards a standard mea-

sure of device complexity and when combined with the Gaussian mixture model anomaly detection

method, provides an accurate model for detecting malware traffic, especially in low complexity de-

vices. The results in Table 4.1 demonstrate this consistency with the lowest CV of 0.24 calculated

from the four averages of each dataset’s NSR complexity.

5.8 Limitations

There were several limitations in this study that should be noted. These limitations can be

grouped into two categories, dataset and analysis.

5.8.1 Dataset Limitations

Devices that had less than 100 network flows were eliminated from further analysis. This

removed some devices that might have had statistical significance to the study, and reduced the

total number of devices contributing to the results.

Additionally, two of the datasets, the CSU lab and the UNSW dataset, were test environments,

which may not have been representative of typical device usage.
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Another limitation was that there were very few devices that were the same make and model

across the datasets, making a direct and specific comparison of devices and datasets outside the

scope of this research.

Finally, the attack dataset was generated by malware running on a Raspberry Pi computer,

which may present different patterns of traffic than if it were to run on other common IoT devices.

In addition, the attack dataset comes from a third party network that is configured with different ad-

dresses for devices. This places some limitations on the results using the PartofHorizontalPortScan

attack because the IP addresses in the device data will not match the target addresses in this attack.

5.8.2 Analysis Limitations

The scope of this dissertation did not include analysis of NTP traffic. The Network Time

Protocol (NTP) is the standard on the internet for obtaining accurate time. NTP is often combined

with the widely used public service hosted at pool.ntp.org. This service combines over 4000 NTP

servers into a highly redundant and scalable virtual cluster. Pool.ntp.org uses a round-robin DNS

query, a query that returns a rotating list of servers for each response. This method produces a

relatively random selection of a time servers and introduces a large amount of entropy into the

data. This entropy raises the complexity of devices that participate in pool.ntp.org, and results in a

less accurate predictive model for the device.

5.9 Enforcement

Building an autonomous enforcement model based on the GMM complexity method would

involve analyzing flows from individual devices, and allowing flows that are calculated as normal

while blocking flows that are abnormal. There two stages of analysis. The first occurs at the

connection setup and the second is an ongoing evaluation of the traffic flow to detect aggregate

anomalies.
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Connection Stage: The connection stage examines features of the confidence model that are

known at connection time, including IP header attributes, such as IP source, IP destination, port,

and protocol. The connection stage is only run once prior flow setup.

Aggregation Stage: The aggregation stage gathers flow aggregate information that includes out-

going bytes-per-second and outgoing packets-per-second. The aggregation stage is run continu-

ously while the flow is active. The aggregation stage compares the trained model to the current

flow.

5.9.1 Proposed Enforcement Architecture

Traditional networking topologies do not offer the amount of programmability and flexibility

needed to implement the proposed enforcement architecture. Therefore the proposed architecture

is based on a software-defined networking model. Software-defined networking (SDN) decouples

the control and the data plane in routers and switches. This method opens the network to new

services, features, and a level of dynamism that was previously not possible. This work leverages

the programmability of the network to focus on low NSR complexity devices and dynamically

allow, block, rate-limit and route traffic based on whether the flow is normal or anomalous.

The centralized SDN enforcement architecture shown Figure 5.1 consists of three functional

components, a switching/routing component, a controller, and a flow confidence engine. The

switching and routing component is based on the Openflow specification led by the Open Net-

working Foundation (ONF) [34]. OpenVSwitch [35] is a software-based network switch that im-

plements OpenFlow.

RYU [41] is an SDN controller that implements OpenFlow and it installs new flows in Open-

VSwitch. New flows pushed to RYU by OpenVSwitch are analyzed by the confidence engine. The

confidence engine runs the Gaussian behavioral model, and analyzes the current flow connection

and returns a normality/anomalous score for each flow. It sends the flow score information back

to RYU, which uses the received flow score to add, remove, or modify flow rules based on the
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confidence score. RYU then pushes flow rules to the openVswitch flow tables. Device complexity

scores dictate to RYU if new flows should be allowed, rate-limited, or dropped.

The architecture in Figure 5.1 allows the network to make extremely granular flow decisions

on every flow in the network, including inbound/outbound traffic to the Internet and intra-network

device traffic. Based on the behavioral boundary there is no need to isolate an entire device, just

the flow that is anomalous.

Figure 5.1: Enforcement Architecture

5.9.2 Proposed Enforcement Policies

Even a perfect anomaly detection method cannot perfectly infer the intent behind the anomaly,

it can only determine if the new example was an anomaly or not. Before the learning model incor-

porates anomalies into the learning model some benign intent must be assigned to those anomalies.

This could be accomplished in several ways such as signatures of know attacks (non-benign), or

known publications of firmware upgrade (benign).

If the intent of the anomaly cannot be automatically deduced through the previously mentioned

methods, then complexity can assist in prioritizing the alerts that must goes to the administrator of

the network. The policy for these alerts can be guided by the complexity of the devices and the
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probability ranking of the anomalous event. For example, a low complexity device that the model

has detected a anomaly with high probability should go to the administrator for further analysis,

while a high complexity device with a low probability anomaly could be logged.
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Chapter 6

Conclusion

6.1 Thesis Summary

Chapter 1 summarized how insecure IoT systems have a history of participating in high im-

pact attacks and represent a significant problem to the Internet. The challenge in securing these

devices is two-fold: first, they are easy targets for attackers because they often have undiscovered

exploits and vulnerabilities, and second, they cannot run the necessary security software to protect

themselves due to computing, ram and power constraints.

Chapter 2 reviewed related research and proposals on using machine learning to identify, cate-

gorize, and classify IoT devices based on their network traffic and behavior. This chapter reviewed

two popular methods of machine learning, supervised and unsupervised, and their advantages and

disadvantages. Supervised methods can be used to accurately identify devices, but require large

sets of labeled traffic that is often unavailable. Also, once trained, these classifiers are often unable

to recognize new devices. Unsupervised methods are more adaptable and can learn models for

unknown devices, but suffer from overgeneralization by indiscriminately modeling all devices in

the same way.

In Chapter 3 this work proposed a method of informed autonomous learning that provides the

flexibility of unsupervised methods with contextual information based on the complexity of the

device. This chapter introduced several methods of measuring the complexity and proposed a

new one called noise to signal ratio (NSR). This chapter showed how the NSR metric could be

combined with a Gaussian mixture method to build an anomaly detection model closely tied to the

complexity of each device.

Chapter 4 showed that anomaly detection models of simple devices perform better than models

of more complex devices. These results are supported by over 800 experiments that evaluated how
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118 diverse devices across four separate datasets detected seven different types of real malware

traffic.

Finally, Chapter 5 discussed how the complexity measure using NSR correlates to the accuracy

of modeling across all of the datasets. This chapter also reviewed the results for complexity and

behavior in each dataset, and how these results compared across the four datasets. This chapter

summarizes the advantages and disadvantages of each complexity measure and showed that the

NSR method is the most consistent metric and is independent of device use.

This work makes the following contributions:

1. Complexity: I develop a formal measure of device complexity based on network flow traffic

called noise to signal ration (NSR). NSR was shown to be an effective standard of measure

for complexity, as it shows consistency and low variance when compared to other measures.

NSR can be used to categorize and rank devices on the network. I show that devices mea-

sured as low complexity are often single-purpose devices, and devices measured as high

complexity are typically general-purpose devices. This differentiation could be used by the

network to apply security models deferentially to devices of varying capabilities.

2. Behavior: I showed that the accuracy of a device’s predictive behavioral model is dependent

on the complexity of their network traffic. I constructed a Gaussian mixture model (GMM)

using NSR and analyzed device models against seven types of malware traffic sources from

actual IoT malware infections. I show that the anomaly detection model correctly identifies

anomalies and has high F1 scores averaged over 118 devices and 800 total experiments. I

show that the complexity measure based on the NSR method is strongly negatively correlated

to the accuracy of a device model’s ability to detect inliers and outliers, demonstrating that

the NSR-based anomaly detection model is particularly accurate for low complexity devices,

which are more difficult to secure due to their highly constrained nature.

An immediate and practical use of these contributions could be to guide additional network

analysis and inspection by determining where and how to dedicate security resources. Policies
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could be developed that would adjust enforcement based on the complexity of the device. For

low complexity and accurately modeled devices, algorithms that reduce false negatives might be

preferred. For high complexity devices that can run security software, whose models are less

accurate, a more liberal network security policy might be chosen. Aspects of this proposal using a

one class support vector machine (OCSVM) [42] are discussed in Appendix A.

6.2 Future Work

The complexity measures developed in this dissertation have several further applications that

can be explored. This section outlines some of those possibilities.

1. Create an ensemble anomaly model: One of the most immediate applications of this research

could explore building an ensemble method classifier by combining the GMM and isola-

tion forest algorithms [43]. The GMM and isolation forest algorithms use complimentary

methods of finding outliers. GMMs find inliers by combining data to form clusters, while

Isolation forest algorithms partition data to find outliers. For GMMs the signal part of the

NSR is used to determine the number of clusters. For isolation forest algorithms the noise

could be used to determine the amount of contamination the algorithm will expect. This

work would need to include a method to calculate an overall consensus between anomaly

scores produced by the two algorithms.

2. Build and test the reference architecture: The results of this research used models based on

actual device and malware traffic, however, to fully demonstrate the efficacy of using this

model for IoT devices, future work would need to implement the architecture proposed in

5.9.1. This future work should have a mix of common IoT devices and a few that can be

infected with malware. The goal will be to build a fully functioning network and record

errors where the model incorrectly classifies traffic.

3. Expand to the network level: This work would explore if a complexity metric similar to that

of a single device can be expanded to a complete network. If networks such as those found
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in the relationship of a subscriber to an Internet Service Provider (ISP) are considered as an

atomic entity, then the complexity measure could be used to compare the risk of one indi-

vidual subscriber network to another. This evaluation could be done in a privacy-preserving

way, as it does not require deep packet inspection.

4. NTP: The nature of NTP requests as stated in 1.5 makes it difficult to model purely on

an destination port and IP address basis, as this introduces too much entropy into the model.

Future work in this area could examine symmetry in NTP response and answers to determine

if there is invariance in the traffic data that can be modeled.

In conclusion this research proposes several methods to measure the complexity of devices on

a network, the most promising of which is called noise to signal (NSR) complexity. The NSR

complexity offers a quantifiable way to determine the probabilistic accuracy to which the device

can be modeled. The negative correlation between complexity and model accuracy shows that a

low complexity device can be more accurately modeled than a higher complexity device. This

finding can be used to improve the accuracy of anomaly detection algorithms and allows the field

to progress in the development of effective autonomous security control measures.

Although they do not offer a complete resolution of IoT security issues, this research provides

a step forward in addressing the highly complex and growing problem of insecure devices by

empowering the network to be an active part of the solution.
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Appendix A

Complexity Tuning of a One Class Support Vector

Machine(OCSVM)

A.1 Introduction

This section provides another method for using complexity to improve modeling of devices.

This section shows work done to tune the search of a One Class Support Vector Machine (OCSVM)

[42] to improve false positive rates for devices measured to be of low complexity. This is important

as established in the main body of this document, low complexity devices have a well defined

behavior footprint, and any error that leads to blocking of legitimate traffic will have a larger

impact on the device’s functionality as it will affect a larger percentage of the normal traffic than a

false positive error would on a highly complex device.

A.2 Methodology

Novelty detection is a form of outlier detection where the training set is considered untainted

by outliers i.e. only positive samples. New observations are classified and determined to fall within

the decision boundary are inliers and observations outside the decision boundary are outliers. To

derive a behavior for a device we employ the OCSVM algorithm using the Radial Basis Function

(RBF) kernel. Outlier flows detected during the training phase are recorded, and form the set of

flows we call significant flows.

Definition A.2.1. Significant Flow: A significant flow is one that is marked as an outlier by the

OCSVM during training. This set of flows plus the decision boundary forms the behavior boundary

of the device.

Definition A.2.2. Device Behavioral Boundary: Device behavioral boundary is the set of all

unique significant flows and the decision boundary found during training.
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A.2.1 Device IP Complexity

This research examines how devices form connections. Simply counting the number of unique

IP addresses that a device connects with fails to take into account the inherent service-oriented

hierarchical structure of the IPv4 address space, where companies and services are often part of

similar subnets. To account for this I propose a complexity measure based on a simple ratio of

IP spread to IP depth. IP spread is the number of unique source and destination IP addresses that

interact with the device. IP depth is the number of IP addresses that belong to the same higher

level octets.

Definition A.2.3. IP Tree, IP Branch, IP Leaf, IP Spread An IP tree is a unique first order octet

which comprises the root of the tree. An IP Branch is a second or third order octet that has one or

more fourth order octets under it. An IP leaf is a unique fourth order octet. IP Spread is the sum

of total unique IP addresses that interact with a device.

Device IP Spread (IPSpread)

IPSpread =
∑

IPtrees (A.1)

Device IP Depth (IPDepth)

IPDepth =

∑

IPleaf
∑

IPbranch

(A.2)

Device IP Complexity (dip)

dip =
IPSpread

IPDepth

(A.3)

To calculate IP spread and depth we build unordered trees of each IP address where the first or-

der octet is the root and lower octets are children. Then we can calculate how many trees, branches

and leaf nodes each IoT device contacts. A large number of IP trees with few branches indicates a

large IP spread. A small number of IP trees that have many branches and leaves indicates a large

IP depth. IP depth/spread is used as one measure of a device’s complexity. Devices belonging to

a single ecosystem such as Google Home have a small number of broad trees as they connect to
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mostly Google’s networks dedicated to these types of devices. Other devices such as laptops and

smart phones make connections to many unique destinations thus leading to a large number of thin

trees each having fewer branches and leaves. Figure 4.2 shows the total IP complexity of each

device.

A.2.2 Novelty Detection Tuning Using Device Complexity

To test the efficacy of the discovered model each device was analyzed against seven common

forms of malware listed in 3.6. This malware is part of a dataset published by Stratosphere Labo-

ratory [31] and contains 20 captures where malware was executed on IoT devices, and 3 captures

for benign IoT devices traffic.

The OCSVM using the RBF kernel is governed by the two hyper-parameters, ν (nu) and γ

(gamma). Gamma sets the radius of the RBF kernel by determining the influence of each example

of the decision boundary and ν sets the upper bound on fraction of errors during training and the

lower bound on the fraction of support vectors used. For the purposes of this work we set this using

the ‘scale’ option of Sci-kit learn which uses the following equation to determine gamma.

γ =
1

n_features ∗ x.var()
(A.4)

To establish that the complexity measurement is a statistically relevant one we take the linear

regression of the number of outliers found by the OCSVM using the default values of ν = 0.5

and gamma as calculated in equation A.4. The correlation of outliers to anomalies can be seen in

Figure A.1.

This research examines three methods to establish ν for devices; static ν set uniformly across

all devices; a dynamic ν set per device, and a ν tuned to the complexity of the device.

A.2.3 Static Hyper-Parameter ν

For the static method an average ν is found and applied uniformly across all the device models.

To find the average ν, each device was modeled using OCSVM with ν varied over the range of
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Figure A.1: Complexity Vs Anomalies

0.00001 to 0.5. The ν for each device that had the best F1 score was saved and the mean ν

value was calculated across all the devices. This average ν was then used to train the model for

each device and test for anomalies. This gives a baseline model where there is a balance between

precision and recall and where the hyper-parameter ν is set to the same value for each device.

A.2.4 Dynamic Hyper-Parameter ν

The dynamic method finds the best ν for each device and that ν is applied individually to each

model. To find the ν value for individual devices, each device was modeled using OCSVM with ν

varied over the range of 0.00001 to 0.5. The ν for each device that had the highest F1 score was

then used to train the model for that device and test for anomalies. This gives results that balance

precision and recall and a model that is tuned per device.
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A.2.5 Complexity-Tuned Dynamic ν

To tune the model based on complexity a value for ν is found that minimizes false positives for

low complex devices. To find a ν value that is tuned to the complexity of the device, each device

was modeled using OCSVM with ν varied over the range of 0.00001 to 0.5. The ν for each device

that had the highest Fβ scores where β = ÂDC , where ÂDC is the normalized value (between

0 and 1) of the aggregate device complexity as defined in section 3.4.1. This search prioritizes

minimizing false negatives on low complexity devices as seen in equation A.5.

Fβ = (1 + β2)
precision ∗ recall

(β2 ∗ precision) + recall
(A.5)

A.3 Home Results

This section shows the results for the tuned OCSVM using the seven malware traffic flows.

Figure ?? show the home dataset against the C&C malware attack plotted as false positive rate

vs. complexity score. Optimization is shown from left to right, untuned, search, and tuned-search.

Figure A.2: Home: C&C: Flows
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Figure A.3: Home: C&C Heartbeat: Flows

Figure A.4: Home: C&C FileDownload: Flows
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Figure A.5: Home: DDoS: Flows

Figure A.6: Home: Okiru: Flows
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Figure A.7: Home: Horizontal Port Scan: Flows

A.4 Lab Results

Figure A.8: Lab: C&C: Flows
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Figure A.9: Lab: C&C Heartbeat: Flows

Figure A.10: Lab: C&C FileDownload: Flows
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Figure A.11: Lab :DDoS: Flows

Figure A.12: Lab: Okiru: Flows
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Figure A.13: Lab: Horizontal Port Scan: Flows

A.5 UNSW Results

The following Figures [A.14,A.15,A.16,A.18,A.19] show how each device in the UNSW dataset

against the five does against the five types of malware traffic when using a OCSVM and tuning the

hyperparameters for lower false positive rates on devices that are of lower complexity.

Figure A.14: UNSW: C&C: Flows
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Figure A.15: UNSW: C&C Heartbeat: Flows

Figure A.16: UNSW: C&C FileDownload: Flows
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Figure A.17: UNSW: DDoS: Flows

Figure A.18: UNSW: Okiru: Flows
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Figure A.19: UNSW: Horizontal Port Scan: Flows

A.6 SCADA Results

Figure A.20: SCADA: C&C: Flows
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Figure A.21: SCADA: C&C Heartbeat: Flows

Figure A.22: SCADA: C&C FileDownload: Flows
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Figure A.23: SCADA: DDoS: Flows

Figure A.24: SCADA: Okiru: Flows
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Figure A.25: SCADA: Horizontal Port Scan: Flows
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Appendix B

Home

This Appendix shows the Gaussian Boundary for each device in the home dataset against all

seven attacks listed in 3.6.
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Figure B.1: A-Moto6: HOME
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Figure B.2: Amcrest-Camera: HOME
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Figure B.3: Android-2: HOME
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Figure B.4: B-Android: HOME
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Figure B.5: B-Chromebook: HOME
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Figure B.6: Brother-Printer: HOME
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Figure B.7: Chromecast: HOME
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Figure B.8: Deebot: HOME
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Figure B.9: EUFY-Light: HOME
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Figure B.10: Eufy-Doorbell: HOME
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Figure B.11: J-Android: HOME
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Figure B.12: J-Chromebook: HOME
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Figure B.13: J-Windows: HOME
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Figure B.14: Kid-Fire-Tablet: HOME
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Figure B.15: MacBook-Pro: HOME

136



Figure B.16: Note-8: HOME
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Figure B.17: Obi200: HOME
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Figure B.18: Office-TV: HOME
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Figure B.19: Philips-Hue: HOME
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Figure B.20: Plex-Server: HOME
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Figure B.21: Raspberry-PI: HOME
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Figure B.22: Roku-Express: HOME
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Figure B.23: Smart-Things: HOME
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Figure B.24: TPLink: HOME
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Figure B.25: XBOXONE-1: HOME
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Figure B.26: XBOXONE-2: HOME
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Appendix C

Lab Appendix

This Appendix shows the Gaussian Boundary for each device in the lab dataset against all

seven attacks listed in 3.6.
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Figure C.1: Air: LAB
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Figure C.2: Android-Phone: LAB
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Figure C.3: Apple-TV-1: LAB
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Figure C.4: Apple-TV-2: LAB
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Figure C.5: Arlo-Q: LAB
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Figure C.6: Awox-Light-Speaker: LAB
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Figure C.7: Galaxy-Note8: LAB
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Figure C.8: Google-Home-Mini-2: LAB
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Figure C.9: Google-Home-Mini: LAB
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Figure C.10: Iview-Smart-Bulb: LAB
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Figure C.11: Iview-smart-bulb-2: LAB
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Figure C.12: Koogeek-Smart-Socket: LAB
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Figure C.13: Le-Eco-Phone: LAB
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Figure C.14: Linux-Laptop: LAB
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Figure C.15: MacBook: LAB
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Figure C.16: Netatmo-Weather-Station: LAB
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Figure C.17: Omna-Camera: LAB
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Figure C.18: Smart-TV: LAB

166



Figure C.19: Wall-Dimmer-00384931: LAB
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Figure C.20: Windows-Laptop: LAB
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Figure C.21: dot1-amazon-9a8bf06e2: LAB
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Figure C.22: dot2-amazon-a586b1aeb: LAB
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Figure C.23: echo1-amazon-ca4ba21e0: LAB
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Figure C.24: echo2-amazon-2b6ac75c8: LAB
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Figure C.25: firestick-1amazon-643bc9c97: LAB
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Figure C.26: firestick-2amazon-5f1a8571f: LAB
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Figure C.27: iDevices-Socket: LAB
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Figure C.28: iviewlight2: LAB
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Figure C.29: lutron-01f11afa: LAB
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Figure C.30: lutron-027118a0: LAB
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Figure C.31: show1-amazon-274070c89: LAB
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Figure C.32: thinclient: LAB
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Appendix D

UNSW

This Appendix shows the Gaussian Boundary for each device in the UNSW dataset against all

seven attacks listed in 3.6.

181



Figure D.1: Amazon-Echo: UNSW
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Figure D.2: Android-Phone: UNSW
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Figure D.3: Belkin-Wemo-switch: UNSW
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Figure D.4: Belkin-wemo-motion-sensor: UNSW
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Figure D.5: Dropcam: UNSW
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Figure D.6: HP-Printer: UNSW
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Figure D.7: IPhone: UNSW
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Figure D.8: Insteon-Camera: UNSW
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Figure D.9: Laptop: UNSW
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Figure D.10: Light-Bulbs-LiFX-Smart-Bulb: UNSW
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Figure D.11: MacBook-Iphone: UNSW
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Figure D.12: MacBook: UNSW
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Figure D.13: NEST-Protect-smoke-alarm: UNSW
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Figure D.14: Netatmo-Welcome: UNSW
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Figure D.15: Netatmo-weather-station: UNSW
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Figure D.16: PIX-STAR-Photo-frame: UNSW
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Figure D.17: Samsung-Galaxy-Tab: UNSW
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Figure D.18: Samsung-SmartCam: UNSW
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Figure D.19: Smart-Things: UNSW
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Figure D.20: TP-Link-Day-Night-Cloud-camera: UNSW
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Figure D.21: TP-Link-Smart-plug: UNSW
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Figure D.22: TPLink-Router: UNSW
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Figure D.23: Triby-Speaker: UNSW
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Figure D.24: Withings-Aura-smart-sleep-sensor: UNSW
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Figure D.25: Withings-Smart-Baby-Monitor: UNSW
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Figure D.26: iHome: UNSW
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Appendix E

SCADA

This Appendix shows the Gaussian Boundary for each device in the SCADA dataset against

all seven attacks listed in 3.6.
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Figure E.1: labjack-183: SCADA

209



Figure E.2: labjack-184: SCADA
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Figure E.3: labjack-185: SCADA

211



Figure E.4: labjack-186: SCADA
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Figure E.5: labjack-187: SCADA
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Figure E.6: labjack-188: SCADA
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Figure E.7: labjack-201: SCADA
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Figure E.8: labjack-202: SCADA
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Figure E.9: labjack-203: SCADA
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Figure E.10: labjack-204: SCADA
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Figure E.11: labjack-205: SCADA
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Figure E.12: labjack-206: SCADA
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Figure E.13: labjack-207: SCADA
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Figure E.14: labjack-208: SCADA
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Figure E.15: labjack-209: SCADA
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Figure E.16: labjack-210: SCADA
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Figure E.17: labjack-211: SCADA
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Figure E.18: labjack-226: SCADA
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Figure E.19: metec-control: SCADA
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Figure E.20: metec-gc: SCADA
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Figure E.21: metec-test: SCADA

229


