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ABSTRACT 

 

 

 

CHARACTERIZATION OF CO-BENEFITS OF GREEN STORMWATER INFRASTRUCTURE ACROSS 

ECOHYDROLOGIC REGIONS IN THE UNITED STATES 

 

 

 

Green stormwater infrastructure (GSI) systems such as rain gardens, permeable pavement and 

bioswales are commonly used in municipalities to reduce urban flooding and water pollution. In 

conjunction with these direct benefits, GSI systems provide additional social and ecological “co-

benefits”. Our goal was to investigate the co-benefits of commonly used GSI systems in five cities in the 

United States, including Baltimore, Denver, New York City, Philadelphia, and Portland. Specifically, 

carbon storage, carbon sequestration, air pollution removal, UV reduction, and cooling effects of the 

trees used in GSI in the study cities were quantified. The i-Tree Eco urban forestry model was used to 

predict various co-benefits for individual tree species and total SGI tree inventories across the five study 

cities based on observed tree characteristic data. Aspects of SGI design, environmental factors, and 

model inputs were evaluated to find what influences the assessment of SGI co-benefits. 

SGI design types and utilization levels of those designs played a big role in determining the 

number of trees used in SGI projects, however there is more nuance to the evaluation of co-benefits of 

different cities’ SGI trees than just the tree population. Climate was a large influence on co-benefits’ 

estimation, with similar co-benefit responses for cities with similar climates, like the eastern seaboard. 

The inputs that influence co-benefit predictions the most were evaluated using global sensitivity 

analysis. We also found that the inputs that represent the tree growth and environmental factors 

heavily influenced the computation of co-benefits in i-Tree Eco. Our research supports current literature 

in developing SGI programs that provide the most amount of co-benefits for specific climates. This study 

aims to reveal more about the mechanisms and prevailing equations within i-Tree Eco by providing 

modelled datasets and assessment approaches to estimate the co-benefits of GSI at unit and city levels. 
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INTRODUCTION 

 

 

 

Urbanization has led to a myriad of regional environmental challenges like increased stormwater 

runoff, water quality pollution, urban heat, and air pollution (Duh et al., 2008; Shortle et al., 2020; Tam 

et al., 2015; Tasdighi et al., 2017). Cities also contribute to the global climate change with increased 

energy consumption and greenhouse gas emissions (Corfee-Morlot, 2011; Grimm et al., 2008). Climate 

change compounds the adverse environmental impacts of urbanization and population on the 

vulnerability of city’s existing infrastructure to extreme events (Neumann et al., 2015). Cities 

increasingly rely on adaptation strategies to improve social, ecological, and technological resiliency to 

changes in climate, land use, population, and economy (Daigger et al., 2020; Rosenzweig et al., 2011).  

To alleviate their flooding problems, cities continue to invest in stormwater infrastructure which 

uses storage capacity to capture excessive water runoff during intense storms by integrating conveyance 

and infiltration to provide flood control for cities (Porse, 2013). Two primary types of stormwater 

infrastructure technologies are used to manage urban stormwater, namely grey infrastructure and 

green infrastructure. Grey infrastructure systems are constructed units that provide storage for 

stormwater, such examples include wastewater treatment plants, pipelines, and reservoirs. The Clean 

Water Act defines Green Stormwater Infrastructure (GSI) to be a wide range of technologies that 

manage water by using permeable surfaces and landscaping to “store, infiltrate, or evaporate 

stormwater and reduce flows to sewer systems”(UESPA, 2020). GSI use vegetated surfaces in 

bioretention areas to capture water. GSI has shown to be as effective as grey systems in reducing peak 

flows and more cost effective than grey systems (USEPA, 2013a; Vineyard et al., 2015). In many cases, 

GSI have been found to provide improved additional ecological and social co-benefits that are not 

achieved by traditional grey infrastructure (Jim et al., 2015; Young et al., 2011). Green infrastructure 
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systems increase groundwater infiltration and change the urban hydrologic cycle. These systems can 

reduce flows into sewer collection systems, and subsequently diminish sewer overflows. 

Trees are commonly used as the primary vegetation in GSI because of their large water carrying 

capacity (Litvak et al., 2012; McCarthy et al., 2011). Trees used in GSI can enhance the performance of GI 

by providing water control benefits, removing air pollution (Mcpherson et al., 1997; Yang et al., 2005), 

cooling of surrounding areas (Livesley et al., 2016; Sanusi et al., 2017), and reducing UV exposure 

(Heisler and Grant, 2000), as well as providing many other benefits (McPherson et al., 1997). These 

studies show the benefits of specific trees species in certain cities. Few studies have focused specifically 

on all the benefits of trees associated with SGI across the triple bottom line.  

Various SGI systems are implemented as distributed systems in cities, which include tree 

trenches, rain gardens, vegetated swales, wetlands, infiltration planters, vegetated median strips, 

reforestation, and protection and enhancement of riparian buffers and floodplains (Wise et al., 2010). 

These systems have different sizes and thus different capabilities for vegetation. Small scale SGI like rain 

gardens and tree trenches will have small amounts of trees per unit. Large scale SGI like wetlands and 

swales can have more amounts of trees per unit due to their expansive detention basins.  Green systems 

and urban forests have a number of other environmental and economic benefits in addition to reducing 

the volume of sewer overflows and stormwater discharges, including improved air quality (Peng and Jim, 

2015; Wise et al., 2010); reduced urban heat island effects (Meerow and Newell, 2017; Tzoulas et al., 

2007); increased energy savings (Spatari et al., 2011; Staddon et al., 2018); community benefits(Coutts 

and Hahn, 2015; Gallet and Grant, 2010); and infrastructure construction and maintenance cost 

savings(Foster et al., 2011; Vineyard et al., 2015). All these externalities of GSI are referred as co-

benefits. 
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 Co-benefits of GSI may be evaluated using a triple bottom line framework which categorize the 

benefits in terms of economic, environmental and social benefits (Hammer and Pivo, 2016). Many cities 

have investigated ways to characterize the benefits of different GSI approaches in general guidelines 

(USEPA, 2013.; Portland, 2010; UMD, 2017). Different approaches have been suggested to quantify co-

benefits of stormwater infrastructure, including the use of the Normalized Difference Vegetation Index 

(Spahr et al., 2020) and allometric equations under different management strategies (Alves et al., 2019; 

Zhan et al., 2016). Previous studies have also investigated the co-benefits provided by specific 

technologies such as green roofs (Peng and Jim, 2015) and constructed wetlands (Stefanakis, 2019). 

These studies focus on the effects of green infrastructure vegetation on various co-benefits, however 

there are no studies that have looked at how the different designs of SGI technologies change the scale 

of co-benefits provided by a municipal scale SGI program.  

One of the most extensive models of tree benefit evaluation is the i-Tree model suite, formerly 

known as the Urban Forest Effects Model (Nowak and Crane, 2000). The i-Tree model suite is a software 

developed by the U.S. Forest Service and is widely used by urban planners to quantify the ecosystem 

services of urban trees (Nowak, 2016; Nowak et al., 2000). The model calculates different effects 

including carbon sequestration, air pollutant removal and cooling from allometric equations developed 

for a wide variety of trees (McPherson and Simpson, 1999; Nowak et al., 2006). The process-based 

model incorporates climatic and ecological conditions along with tree species and characteristics to 

represent ecohydrological processes (Nowak et al., 2008a). However, modeling uncertainties in the 

estimated effects of trees across ecohydrological regions have not been adequate characterized. 

The prediction uncertainty in i-Tree simulations is influenced by the sampling error, which is a 

function of the total number of trees within study area (Nowak et al., 2008b). Moreover, Model 

structure uncertainty in the allometric equations contribute to the uncertainty in predictions (Nowak et 
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al., 2013). To better understand the uncertainty associated with i-Tree, studies have looked at 

developing sensitivity analyses on i-Tree mechanisms using the Morris one-at-a-time method 

(Hirabayashi et al., 2011; Lin et al., 2020). However, this technique is a local method and only reveals the 

main effects of parameters but cannot quantify the importance of interactions between model 

parameters. On the other hand, global sensitivity analysis can quantify the main and interactions effects 

of model parameters (Marino et al., 2009; Saltelli, 2008).  Few studies have used global sensitivity 

analysis methods to identify the effects of uncertainty in i-Tree parameters and model structure on the 

estimated co-benefits (Hirabayashi et al., 2011; Lin et al., 2020). Studies have shown the co-benefits of 

specific SGI technologies (Gallet and Grant, 2010), some using i-Tree Eco(Jayasooriya et al., 2017; Kim et 

al., 2015). Particularly, the co-benefits (and associated uncertainties) of trees that are implemented in 

GSI in cities across ecohydrological conditions have not been studied fully.  

This study investigates the co-benefits of trees used in Stormwater Green Infrastructure (SGI) 

programs across different ecohydrologic regions in the US. We utilized the i-Tree Eco model, a popular 

model implemented in the urban forestry literature, to predict the co-benefits of SGI programs in five 

U.S. cities: Baltimore, Denver, New York City, Philadelphia, and Portland. Our first goal was to analyze a 

variety of SGI designs implemented across cities and evaluate how the number of trees and their 

associated co-benefits vary with the typology of designs. Second, in order to also understand the role of 

general environmental factors, or native biome, as used in the i-Tree Eco model, the development of co-

benefits of SGI trees will be compared by the co-benefits provided by one single tree, of the same 

species, among multiple cities. Finally, we explore a variety of other attributes of the i-Tree Eco model to 

better understand what factors, or variable inputs in the model, have the most influence on the co-

benefit evaluation of trees in SGI projects. Overall, these results will impact how SGI projects are both 

designed and studied in cities.  We conclude with some recommendations on planning SGI projects to 

maximize the co-benefits provided to urban residents.   



5 

METHODOLOGY 

 

 

 

We compiled a comprehensive database of GSI locations and infrastructure types for Denver, 

Portland, New York City, Philadelphia, and Baltimore. Urban tree databases were used to obtain tree 

species and characteristics in each region. We then used the i-Tree urban forestry model to simulate the 

effects of trees on greenhouse gas (GHG) emissions, carbon sequestration, and other responses. The 

importance of i-Tree model inputs on co-benefits was evaluated using the extended Fourier Amplitude 

Sensitivity Test (eFAST) global sensitivity analysis. The analysis also revealed important tree 

characteristics that influence various tree effects estimated by the i-Tree model. The co-benefits are 

aggregated at the municipal level using the GSI database for each city. 

Urban Tree Dataset for Green Infrastructure in Each City 

The GSI location and types in Denver, Portland, New York City, Philadelphia, and Baltimore were 

obtained. The study cities represent various climatic regions and utilize different vegetation in their 

green infrastructure plans. The stormwater management manual for each city were found through the 

city’s official Water Department websites ( City of Philadelphia Water Department, 2014; City of 

Portland, 2016; Denver, 2016; State, 2010; State of Maryland, 2009a). The manuals described the types 

of infrastructure interventions that are used to divert, contain, and slow the amount of stormwater 

runoff going through the city’s stormwater infrastructure systems. Each city had different considerations 

based on geography, storm frequency, rainfall intensity, and other factors. Cities on coasts, like 

Baltimore, are required to provide treatment to runoff before draining effluent into large bodies of 

water(City of Baltimore, 2013). Arid cities such as Denver, must have its GSI adhere to detention 

regulations by draining all captured water within 72 hours (The City and County of Denver Public Works, 

2016) .  
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We reviewed each city’s design manual to find the trees used in GSI technologies (City of 

Portland, 2016; NYCDEP, 2013; Philadelphia Water Department, 2018; State of Maryland, 2009b; The 

City and County of Denver, 2017). The GSI technologies that utilized trees include rain gardens, green 

streets, extended detention basin, and bioswales. For Philadelphia and New York, the frequency of tree 

species used were represented by probabilistic tree species models for each to better predict the 

benefits of planted trees (NYCDEP, 2018a; Philadelphia Water Department, 2020). We assumed the 

distribution of tree species were uniform for all other cities.  

The total number of trees used in all GSI was determined through inspection of design manuals 

to find the unit area of SGI and then using spatial datasets to find the total number of SGI projects that 

use trees. 

Datasets of Observed Urban Tree Species in the Study Cities  

We collected databases of tree species for each city to accurately represent tree characteristics. 

Tree characteristic information included diameter at breast height (DBH), tree height, base of crown 

height, and crown width. DBH is the measured width of the tree trunk at 1.3 meters above the ground. 

Tree height is the distance from the ground to the top of the tree. The base of the crown height is the 

distance from the ground until the first major branch of the tree. Crown width is the distance from one 

end of foliage to the other end of foliage. These factors influence carbon sequestration, air quality 

improvement and other effects of tree species and were used as inputs in the modeling assessments. 

Urban Tree Database 

The Urban Tree Database (UTM) provided collected tree characteristic data including DBH, tree 

height, base of crown height and crown width and specific tree growth equations for trees in different 

urban regions (McPherson et al., 2016).  
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For each city in this study, we chose a representative city from UTM except for Portland, which 

has its own comprehensive tree database. Growth relationships for tree species that grow in more than 

one region were represented by different equations to reflect heterogeneity in climate and 

management. Table 1 describes the databases used for each city. 

Table 1: City Tree Databases for Portland, Philadelphia, Baltimore, New York City, and Denver  

 

Portland Tree Database  

The city of Portland’s Tree Inventory Project has tree characteristic data available for 25,000 

trees ((City of Portland, 2017, Portland Parks & Recreation, 2020). This dataset is more robust and 

comprehensive than the data in UTM. ).  

Botanical Information and Ecology Network (BIEN) Database  

The Botanical Information and Ecology Network (BIEN) is a comprehensive botanical database 

with 915,000 trait observations globally (Maitner et al., 2018). BIEN was accessed to find georeferenced 

observations of the tree species utilized in each city. For most of the trees in this study, more DBH data 

was available through BIEN than UTM. Improved representation of DBH, which is a critical indicator for 

tree growth (McPherson and Mori, 1998), enhanced the estimated effects of tree species using the i-

Tree model.  

City Database Representative UTM City 

Portland, Oregon City of Portland Tree Inventory N/A 

Philadelphia, Pennsylvania Urban Tree Database Charlotte, North Carolina and New 

York City, New York 

Baltimore, Maryland Urban Tree Database Charlotte, North Carolina 

New York City, New York Urban Tree Database New York City, New York 

Denver, Colorado Urban Tree Database Fort Collins, Colorado 
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Reorientation of Tree Characteristics in the Study Cities 

To create a better representation of estimation of tree characteristics, we developed models 

and equations to represent the relationships in raw tree characteristic data found in the tree databases. 

Characterization of the DBH Probability Distribution   

Observed tree characteristics vary within each region due to soils, local climate, management, 

and other factors. Probability distributions were used to represent the uncertainty in tree characteristics 

for each species in each region. The normal, lognormal, Weibull, gamma and exponential distributions 

were considered to fit to the observed DBH data using the maximum likelihood estimator method in 

MATLAB (Mathworks®). The goodness of fit of the distributions were examined using graphical 

evaluation of the observed and theoretical cumulative distributions, quantile-quantile (QQ) plots, and 

Kolmogorov-Smirnov tests.  

Modelling Crown Height, Tree Height, and Crown Width  

We used nonlinear regression analysis to model Crown Height, Tree Height, and Crown Width as 

a function of DBH for each species in the UTM dataset. Specifically, a quadratic equation was used. 

Equation 1 is the form of the log polynomial equations to describe the relationship between DBH and 

the specific tree parameter: 

ln(𝑦𝑦) = 𝑝𝑝3 + 𝑝𝑝2 ln(𝑥𝑥) + 𝑝𝑝1[ln(𝑥𝑥)]2 Eq. 1 

where 𝑦𝑦 denotes the tree parameter of interest (i.e., Tree Height, Crown height, or Crown Width), 𝑥𝑥 

represents DBH, and 𝑝𝑝1, 𝑝𝑝2, and 𝑝𝑝3 are the constant regression model parameters. Parameter 

estimation was conducted using the “fit” function in MATLAB (Mathworks®).The Portland data was 

filtered to remove high DBH and maximum tree height values because these values for trees in parks are 

not indicative of the of what is suitable for street use.  
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Urban Forestry Model and Inputs 

The i-Tree Eco tool is a modelling software developed by the U.S. Forest Service to quantify the 

ecosystem services trees can provide to the surrounding areas. These ecosystem services include 

environmental and economic benefits such as carbon sequestration, air pollutant removal, structural 

value, Ultraviolet (UV) reduction, oxygen production and other benefits. The i-Tree model has been used 

by many researchers and urban planners to quantify the benefits of trees over a range of ecohydrologic 

conditions (Lin et al., 2019) 

The i-Tree Eco model input data for each tree included DBH, Tree Height, Crown Base Height, 

Crown Width, Crown Light Exposure (CLE), Crown Health, and Crown Missing. DBH is a “constant non-

reversible feature of tree growth,”(White, 1998) and can be used to estimate the age of trees with 

modelled growth factor equations specific for each species (Lhotka and Loewenstein, 2011). Thus, DBH 

represented the age and growth of the tree. CLE is the number of sides of the tree receiving sunlight 

from above, indicating the amount of light the tree is exposed to. Crown Health is an indicator of the 

health of the tree based on inspection of dead branches; it is determined as the percent of dieback in 

the crown volume. Crown Missing represented how full the crown is based on the amount of foliage on 

the branches, it is the percentage of the crown volume not occupied by branches and leaves (Forest 

Service, 2020). 

The i-Tree model inputs included climate and air quality factors. For each study city, a 

representative NOAA weather station was chosen to obtain data on local weather and ambient air 

quality. For energy effects of trees, the distance to the closest building was needed. The spatial datasets 

for the GSI and building footprints were obtained for each city (Baltimore, 2018; Bell, 2020; Choat, 2020; 

City of New York, 2020; City of Philadelphia Planning and Research, 2020; City of Philadelphia Water 

Department, 2020; City of Portland, 2020; NYCDEP, 2018b; The City and County of Denver, 2020, 2016). 
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The distance between each tree and the nearest building and the number of trees used in SGI projects 

were recorded. The distance to the closest building was determined using the spatial analysis tool in 

ArcGIS (ESRI, 2019). The input data were used to compute carbon storage and sequestration, air 

pollution removal, UV reduction, and cooling effects of GSI trees.  

Carbon Storage and Sequestration 

During photosynthesis, trees are able to capture carbon dioxide and store the carbon as 

biomass(Nowak et al., 2013). Carbon storage and carbon sequestration calculations in i-Tree Eco came 

from allometric equations for tree growth, morality, and decomposition (Nowak et al., 2013). Carbon 

Sequestration comes from growth equations and the resulting annual change in carbon storage (Jo and 

McPherson, 1995; Nowak, 2010; Nowak et al., 2008a). 

Pollution Removal 

i-Tree Eco models weight of air pollutants removed per tree. Pollutants in i-Tree Eco’s analysis 

include carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and particulate 

matter less than 2.5 microns (PM2.5). Detailed equations were developed to model dry deposition of the 

criteria pollutants (Hirabayashi et al., 2015).  

UV Reduction 

UV radiation is emitted by the sun and can have negative health effects caused by overexposure 

(USEPA, 2006). The World Health Organization developed the UV index scale to describe the levels of UV 

radiation to protect people from overexposure (World Health Organization, 2017). i-Tree Eco calculated 

the reduction in UV radiation the tree canopy provides and reported the results as percent reduction in 

UV index (Ryeol et al., 2014). 
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Cooling 

i-Tree calculated the seasonal effects of trees on residential building energy use based on 

distance and direction of trees from residential structures, tree height and tree condition data 

(McPherson and Mori, 1998; McPherson and Simpson, 1999).  

Global Sensitivity Analysis 

A global sensitivity analysis was conducted to characterize prediction uncertainty and the 

importance of tree parameters influencing the outputs of the i-Tree model. The extended Fourier 

Amplitude Sensitivity Test (eFAST) (Saltelli, 2008) was used to characterize the uncertainty in estimated 

co-benefits from the i-Tree model. Moreover, the importance of model parameters and processes they 

represent can be evaluated by global sensitivity analysis.  

Global sensitivity analysis propagates uncertainty in model parameters to the outputs and 

reveals the importance of each parameter individually (the main effects) and in interaction with other 

parameters (total effects) (Lilburne et al., 2006). A sample of 5000 model parameters were generated 

for each tree species in each city. The i-Tree model simulations were performed for each parameter set 

and were used to estimate parameter sensitivity indices and prediction uncertainties. 

The first-order sensitivity index represents the fraction of the total output variance attributed to 

a single model parameter. The sum of first-order sensitivity indices may not add up to one, indicating 

that non-linear interactions also influence model outputs. The total-order sensitivity index for each 

parameter quantifies the fraction of the total output variance from interactions of the parameter of 

interest with other model parameters. The Simlab software was used in this study to conduct the global 

sensitivity analysis (EU Science Hub, 2008). Table 2 presents the model parameters and their probability 

distributions used in the analysis. The Crown Height, Tree Height, and Crown Width parameters were 

estimated from the fitted nonlinear regression equations (Eq. 1) for each tree species in each region. 
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Table 2: Probability Distributions Types for each Tree Parameter in each City 

 

Corroboration of the Validity of the Probabilistic Assessments 

The performance validity of the i-Tree Eco model and prediction intervals for the co-benefits was 

assessed using data from the U.S. Forest Service’s Community Tree Guides (Mcpherson et al., 2007, 

2006, 2003, 2002). These reports quantified benefits and costs of representative trees in various regions 

in America based on regression equations.  

  

City Tree parameters Distribution Types 

Portland, Oregon DBH, Tree Height, Crown 

Height, Crown Base 

Weibull, Gamma, Lognormal 

Philadelphia, Pennsylvania DBH, Tree Height, Crown 

Height, Crown Base 

Weibull, Gamma 

Baltimore, Maryland DBH, Tree Height, Crown 

Height, Crown Base 

Weibull, Gamma, Lognormal 

New York City, New York DBH, Tree Height, Crown 

Height, Crown Base 

Weibull, Gamma, Lognormal 

Denver, Colorado DBH, Tree Height, Crown 

Height, Crown Base 

Weibull, Gamma, Lognormal 
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RESULTS 

 

 

 

Our goal was to analyze a variety of SGI projects implemented in cities across the US to 

determine the variables that have the most influence on co-benefits provided by trees.  The i-Tree Eco 

tool, a popular urban forestry model, was used to predict SGI co-benefits on the individual and 

municipal level tree scale.  

Design 

Denver was dominated by larger SGI technologies such as Detention Ponds and Extended 

Detention Basins (Figure 1), these infrastructure interventions are large areas dedicated to the 

temporary impoundment of stormwater runoff. In other cities like New York City, Portland and 

Philadelphia smaller infrastructure technologies were prevalent, including Rain Gardens, Bioswales and 

Green Streets (Figure 1). These technologies were often located in the “Right of Way,”(ROW) and were 

cradled by impervious surfaces like streets and sidewalks.  Since ROW SGIs have less expansive area, 

they don’t often use as many trees as the larger detention areas. 
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Figure 1: Number of SGI Trees by Technology Type in Each Study City 

The aggregation of composite tree benefits on the municipal level showcased the total co-

benefits provided to the city by SGI. Denver and Portland had the most expansive use of trees in their 

SGI programs compared to other cities in the analysis (Figure 1). As a result, the aggregate benefits were 

higher for Denver and Portland than other cities with smaller tree inventories (Figure 2).   
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Figure 2: Median Values of Carbon Storage, Carbon Sequestration, PM2.5 Removal, Cooling, and UV 

Reduction Municipal Level Co-benefits with the Tree Inventories for the cities of Baltimore, Denver, New 

York City, Philadelphia, and Portland 

Denver had the most amount of Carbon storage and Carbon sequestration co-benefits and 

Portland has the most amount of PM2.5 and Cooling co-benefits (Figure 2). Despite the fact that Denver 

had the largest amount of trees, there are other factors, like size of trees and leaf area that also 

influence the relative amount of co-benefits provided by these projects. The types of SGI designs and 

utilization levels of those designs may play a big role in determining the number of trees used in SGI 

projects, however there is more nuance to the evaluation of co-benefits of different cities SGI trees than 

the tree populations.  
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Individual SGI Co-benefits 

 

Figure 3: Honeylocust Tree Co-benefits among Study Cities 

Honeylocust, Gleditsia triacanthos, was identified as the most common tree species across all of 

the sites and it was suitable for the SGI in all four cities: Denver, New York City, Philadelphia, and 

Portland. The Honelylocust tree grow differently based on regional growth data of Honeylocust tree 

characteristics in the study cities.  

The results from the carbon storage analysis revealed that the four cities had similar cumulative 

distribution curves (Figure 3). Carbon sequestration and PM2.5 removal co-benefits showed that Denver 

experienced lower levels of carbon sequestration and pollutants removed than other cities on the per 

tree basis (Figure 3). The model results convey that the eastern seaboard cities of New York City and 

Philadelphia had the largest amounts of PM2.5 removal associated with trees, followed by Portland.  All 
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the cities had similar amounts of electricity savings through cooling with the same relative response 

curves (Figure 3) with Philadelphia having the most amount of cooling co-benefits followed by Denver.  

The individual composite tree co-benefits show that different cities’ composite trees excel at 

different co-benefits (Appendices I and J). Denver’s co-benefits are shown to have sharper CDFs than 

other cities which indicates lesser amounts of co-benefits including PM2.5 removal, cooling and carbon 

sequestration. Particularly, NYC, Baltimore and Philadelphia have closely aligned CDFs and boxplots. 

Despite having the largest inventory of SGI trees, Denver performs the least well for some select 

co-benefits. Another trend seen is the eastern seaboard cities performing similarly among the different 

co-benefits.  

Sensitivity Analysis 

A sensitivity analysis was executed to identify the influence of each i-Tree model input on the 

co-benefits. Non-linear interactions were included in the sensitivity analysis to sum the total of first 

order sensitivity indices of to one.  

The vast majority of the co-benefits’ sensitivity indices were dominated by DBH and non-linear 

interactions (Figure 4). Other model inputs such as Crown Missing and Crown Health have some 

sensitivity importance to the co-benefits of PM2.5 removal and Carbon sequestration, respectfully. 

However, DBH and non-linear interactions consistently had the greatest sensitivity indices (Figure 4; 

Appendix G).  
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Figure 4: First Order Sensitivity Indices’ of Model Inputs DBH, CLE, Crown Health, Crown Missing and 

Non-linear Interactions of Cooling, PM2.5 removal, and Carbon sequestration for Portland, New York City, 

Baltimore, Denver, and Philadelphia 
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DISCUSSION 

 

 

 

Design 

Denver, unlike other cities, had many extended detention areas as part of its SGI program with a 

larger number of trees that could to be planted.  Further, the i-Tree model predicts more co-benefits 

when there were more trees. Denver had the largest tree inventory due to its emphasis on larger scale 

SGI, which led to large amounts of co-benefits. Therefore, the model also showed that Denver’s SGI 

provided more benefits on the municipal scale despite having some of the least amount of co-benefits 

on the individual tree.  

Since tree composition, size and growth also had an impact on the number of co-benefits 

provided, Portland performed better than Denver for some select co-benefits on the municipal scale. 

For instance, the USFS has shown that larger trees provide more shading for cooling and larger canopies 

with higher leaf-area improves air quality than smaller trees (Southern Center for Urban Forest 

Research, 2004).   

Individual SGI Co-benefits 

Trees grow at varying rates across biomes and the literature on the i-Tree model suggested it 

accounts for differences in growth and size for each species in each place.  Therefore, we analyzed 

benefits provided by one tree species that exists in SGI projects across all the cities. Our results indicated 

that the i-Tree model indeed produces different responses in cities located in different biomes.  This 

analysis shows how the model produces diverse outcomes in response to varying regional conditions. 

Other studies have also shown that co-benefits are a function of the environmental and regional 

conditions in different cities. In particular, research has indicated that air pollutant removal may be 

sensitive to environmental variables (Hirabayashi et al., 2011). In our analysis, there were clear 
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difference among cities in different climate regions.  The model predicted that in Denver, an arid city, 

trees removed less PM2.5 and had lower carbon sequestration than trees in more humid regions, like the 

eastern seaboard and Portland.  

Similarly, the i-Tree model predicted that Denver did not perform as well as the temperate cities 

when accounting for cooling benefits and energy savings.  Meanwhile, other studies have shown that 

arid cities’ vegetation can provide more cooling benefits than humid cities (Yu et al., 2018), and that 

humid cities might not actually experience the energy related benefits predicted by the i-Tree model 

(Nelson et al. 2012). Furthermore, there is growing evidence along the Front Range of Colorado, that 

trees provide significant cooling benefits in semi-arid environments (McHale et al., unpublished data).   

These contradictory results indicate that what the i-Tree model predicts in terms of co-benefits for these 

SGI projects, may not be an accurate representation of the total ecosystem services provided in each 

city. 

Sensitivity Analysis 

The final component of our study, the sensitivity analysis, showed that non-linear interactions 

play a significant role in the predictions of co-benefits by the i-Tree model.  We defined Non-linear 

interactions as the internal i-Tree model mechanisms that are separate of the tree parameter inputs, 

such as local environmental factors from meteorological and pollution data for each study city.  In fact, 

these non-linear interactions had the greatest influence on the co-benefits provided by trees in SGI. 

Thus, the growth of the tree and the internal mechanisms of i-Tree, climatic inputs and other local 

environmental factors, had the biggest influence on the evaluation of co-benefits of SGI. Similar 

sensitivity studies have showed that DBH plays a dominant role for both carbon storage and 

sequestration (Lin et al., 2020). Age and carbon storage had a non-linear relationship because DBH-

based allometric equations that calculate carbon-based benefits per tree have non-linear responses due 
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to variable tree growth along a tree’s lifespan (Jucker et al., 2017). Studies have shown that the effect 

tree age has on co-benefits’ value is species dependent and varies based on climate (Rötzer et al., 2019).  

Other i-Tree Eco sensitivity analysis work showed that meteorological inputs have large impacts 

on the evaluation of air pollutant removal co-benefits (Hirabayashi et al., 2011; Lin et al., 2020). Studies 

have shown that air pollution removal increases to meteorological inputs such as temperature and 

photosynthetically active radiation, a measure of light available for photosynthesis (McCree, 1971), in a 

convex (non-linear) manner(Lin et al., 2020). Meteorological and environmental conditions outside the 

scope of this analysis can describe the non-linear forces that affect the values of air pollutant removal 

co-benefits. 
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CONCLUSION 

 

 

 

The aggregation of trees utilized in SGI designs among the different cities showed that the 

implementation of larger scale SGI technologies led to more trees being planted in SGI. Cities like Denver 

which used larger scale SGI technologies, provided more total amount of co-benefits than other cities. 

However, Portland provided more co-benefits than Denver in some co-benefit categories with less 

amounts of SGI trees, suggesting that tree population isn’t the only factor for most amount of total co-

benefits provided by the total tree population used in each city’s SGI program. 

 Despite modelling the same tree species in four cities, within varying climate regions, there 

were differences in the evaluation of co-benefits. Climate seems to play a big role in determining the 

response for co-benefits between cities, as well as other environmental factors. There seems to be some 

regionality in the model as well with similar responses for the eastern seaboard cities.    

 Then, the sensitivity analysis consistently exhibits that the inputs that represent the tree growth 

and environmental factors heavily influence the evaluation of all co-benefits. Other work has shown that 

these factors have significant influence on the internal workings of i-Tree Eco. These findings can 

provide a promising step forward in learning more about the mechanisms and prevailing equations 

within i-Tree Eco, including factors that change with climate. 

Overall, managers and researchers of SGI can utilize the findings of this study to inform 

decisions on providing SGI with the most co-benefits. The main purpose of SGI is to provide water 

storage and water quality benefits, however the co-benefit analysis outlined in this paper can be used 

for supplementary analysis to show more positive effects from the infrastructure interventions. This 

paper utilized a popular urban forestry model, i-Tree Eco, to model co-benefits based on the number of 
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trees present in city SGI programs. These results can be used to develop more detailed benefits of the 

existing SGI as well as inform decisions.  

When developing a SGI program, some factors should be noted to predict the amount of co-

benefits. Factors include the number of technologies in the SGI program and what type of technologies 

are used, which determine how many trees there are based on the existing inventory and the size of the 

technologies. The type of climate is important as well because it indicates how the SGI trees will perform 

for some climate sensitive co-benefits. Lastly, it is crucial to note the maturity level of existing SGI trees 

as age is an important indicator of co-benefit evaluation.  

Future studies can expand on this work by looking at other cities’ that use trees in their SGI 

plans to test the theory that regionality exists in the model in areas other than the eastern seaboard. 

More analysis is needed to find the factors that result in exact correlation in co-benefit predictions 

between similar climate regions. Changes in co-benefits coming from the growth of trees over time 

were not included in this analysis, although it is an emerging field and exists in a limited capacity in i-

Tree. Adding tree growth would enhance the co-benefits provided by trees across its lifetime and not 

give just a snapshot of co-benefits. 
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