
DISSERTATION

COMPARING SETS OF DATA SETS ON THE GRASSMANN AND FLAG MANIFOLDS

WITH APPLICATIONS TO DATA ANALYSIS IN HIGH AND LOW DIMENSIONS

Submitted by

Xiaofeng Ma

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2020

Doctoral Committee:

Advisor: Michael Kirby

Co-Advisor: Chris Peterson

Edwin Chong

Louis Scharf

Clayton Shonkwiler

Copyright by Xiaofeng Ma 2020

All Rights Reserved

ABSTRACT

COMPARING SETS OF DATA SETS ON THE GRASSMANN AND FLAG MANIFOLDS

WITH APPLICATIONS TO DATA ANALYSIS IN HIGH AND LOW DIMENSIONS

This dissertation develops numerical algorithms for comparing sets of data sets utilizing shape

and orientation of data clouds. Two key components for "comparing" are the distance measure

between data sets and correspondingly the geodesic path in between. Both components will play

a core role which connects two parts of this dissertation, namely data analysis on the Grassmann

manifold and flag manifold.

For the first part, we build on the well known geometric framework for analyzing and optimiz-

ing over data on the Grassmann manifold. To be specific, we extend the classical self-organizing

mappings to the Grassamann manifold to visualize sets of high dimensional data sets in 2D space.

We also propose an optimization problem on the Grassmannian to recover missing data.

In the second part, we extend the geometric framework to the flag manifold to encode the

variability of nested subspaces. There we propose a numerical algorithm for computing a geodesic

path and distance between nested subspaces. We also prove theorems to show how to reduce the

dimension of the algorithm for practical computations. The approach is shown to have advantages

for analyzing data when the number of data points is larger than the number of features.

ii

ACKNOWLEDGEMENTS

I have encountered many supporters for the past few years of my mathematical adventure. I am

very certain that without the help and encouragement of these people, by no means I could have

proceeded or persisted in this journey. Thank you for all the help!

I don’t know if I can express my deep gratitude to my advisors Michael Kirby and Chris Pe-

terson enough, for their inspiration, patience, and careful guidance. I look up to them and they

mean too much for me. I want to thank Henry Adams and Louis Scharf for the inspiring conver-

sations that we have and for the fruitful and rewarding collaborations that guide me through my

expedition. I want to thank my best friend Mmanu Chaturvedi for the meaningful conversations

about philosophy and life. I want to thank my parents Huimin Fu and Youwen Ma for their love

and support, and I want to thank my girlfriend Siqin Huang, we met at the lowest point of my life,

since when her continuous encouragement has motivated me until today.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

Chapter 1 Introduction . 1

1.1 From comparing sets of data points to comparing sets of data sets 1

1.2 Overview . 2

Chapter 2 The Grassmann Manifold . 4

2.1 Linear Subspace Models . 4

2.2 The Grassmannian: A quotient manifold of O(n) 5

2.2.1 Tangent space of O(n) . 6

2.2.2 Gr(k, n) as a quotient manifold of O(n) 7

2.3 The Grassmannian: A quotient manifold of the Stiefel 11

2.4 Geodesic formula: Exponential and Logarithmic map 13

2.4.1 Exponential map . 13

2.4.2 Logarithmic map . 13

2.4.3 Principal angles and distance metric 17

2.5 A pictorial interpretation of a geodesic between two points on the Grass-

mannian . 19

2.5.1 Geodesic as a path between principal vectors 19

2.5.2 Revisit logarithmic map . 21

2.5.3 Summary . 23

Chapter 3 A geometric approach to missing data problem 24

3.1 Introduction . 24

3.2 Notation . 25

3.2.1 Data with missing entries . 25

3.2.2 Distance between sets . 25

3.2.3 The Grassmannian . 26

3.3 Everson and Sirovich’s iterative procedure (gappy POD) 26

3.4 Characterization as an optimization problem 27

3.5 Solving the optimization . 29

3.5.1 The analytical expression for distance 30

3.6 Relationship to Riemannian matrix completion 32

3.7 Connection to Gappy POD . 35

3.8 Optimization with a total variation penalty 36

3.9 Energy minimization on example data sets 38

3.9.1 Sinusoidal wave . 38

3.10 Affine Grassmannian and flag mean . 41

3.11 Conclusion . 46

iv

Chapter 4 Self-organizing Mappings on Grassmannian 47

4.1 Introduction . 47

4.2 Grassmannian SOM . 49

4.3 Numerical Results . 50

4.3.1 Synthetic data . 50

4.3.2 Indian Pines . 52

4.3.3 Gene Expression Data . 53

4.4 Conclusion . 57

Chapter 5 Extension to the Flag manifold . 59

5.1 Overview of the flag manifold . 59

5.2 The flag manifold as a matrix manifold 62

5.2.1 Quotient manifold of O(n) . 62

5.2.2 Logarithmic map . 67

5.3 Numerical Algorithm for Log map . 69

5.4 Partially and fully oriented flag manifold 71

5.5 2k Embedding . 75

5.6 Numerical Experiments . 80

5.6.1 Ellipsoid data . 80

5.6.2 MNIST image data set . 80

5.6.3 Indian Pines hyperspectral image data 82

5.7 Conclusion . 86

Chapter 6 Conclusion . 87

6.1 Contribution . 87

6.2 Future Work . 88

Bibliography . 90

v

LIST OF FIGURES

2.1 This figure illustrates the idea of the vertical space VQ and horizontal space HQ at a

point Q. T[Q]Gr(k, n) is the tangent space to Gr(k, n) at [Q]. It can be shown that

a tangent vector V ∈ T[Q]Gr(k, n) can be uniquely represented by a tangent vector

V ∈ HQ. Hence one can represent tangent vectors to a point on Gr(k, n) as matrices. . 8

2.2 This figure illustrates the two problems related to the geodesic formula 14

2.3 A pictorial understanding of a geodesic on the Grassmannian. xi and yi are the i-th
pair principal vectors between 2 subspaces. 21

3.1 (Left) A data point with no missing entries is represented as a point, and a data point

with one missing entry is represented as a line. For example, the two data points

with missing y-values are represented as vertical lines. More generally, a data point

x(i) with k(i) missing entries is represented as a coordinate-aligned k(i)-dimensional

affine subspace Ai. (Right) In blue we have drawn the optimal 2-dimensional linear

subspace V∗ minimizing the sum of squared distances to the data subspaces Ai. The

repaired data points with imputed missing values are drawn in red. 28

3.2 (Top Left) The basis obtained from 1000 iterations of KL-procedure in [20]. (Top

Right) The basis obtained from solving (3.1) by Grassmannian gradient descent. (Bot-

tom Left) The basis obtained from solving (3.10) by gradient descent. (Bottom Right)

Function value defined in (3.1) versus the number of iterations across three methods. . 39

3.3 A demonstration of using various algorithm to fix face image data set. 41

3.4 Performance comparison of different algorithms on the face image data set. 41

4.1 This matrix has the distances between the point i and center j after convergence. Note

that point i is closest to center j when i = j, reflecting the ordering mechanism of the

Grassmannian SOM. 52

4.2 This figure shows the final configuration of the points as mapped to the 2D index set

from Gr(10, 220). 54

4.3 The converged Grassmannian SOM applied to the Indian Pines classes on Gr(2, 220). . 54

4.4 The converged Grassmannian SOM applied to the Indian Pines classes on Gr(1, 220). . 55

4.5 Mapping of gene expression data on T cell receptor signaling pathway. 55

4.6 These four plots are 2D visualization of Uninfected Control and Infected subjects

from hour 30 to 48. Top left: PCA visualization. Top right: Grassmannian-SOM on

Gr(1, 56). Bottom left: Grassmannian-SOM on Gr(2, 56). Bottom right: Grassmannian-

SOM on Gr(3, 56). 56

5.1 Illustration of a flag Fl(1, 1, · · · , 1), i.e. a 1-dimensional line living in a 2-dimensional

plane living in a 3-dimensional space· · · . 60

5.2 Illustration of D2 matrix and the associated nested scaling spaces 61

5.3 Illustration of Equation (5.7). The vertical lines represent the equivalence classes [Q1]
and [Q2] respectively. Q1 is mapped to an element in [Q2] by right multiplication with

exp(H) which is then sent to Q2 by multiplying with M 69

5.4 Demonstration of the iterative alternating algorithm 70

vi

5.5 This diagram shows the relations between non-oriented flag, partially oriented flag and

fully oriented flag. 74

5.6 Two sets of ellipsoid shaped data points in R3. Each SVD basis can be viewed as a

point on Fl(1, 1, 1) . 81

5.7 Comparison of Grassmannian and flag MDS configurations 82

5.8 First 5 eigen digits of major 5/minor 1 data set . 82

5.9 First 5 eigen digits of major 5/minor 1 data set . 82

5.10 A comparison(horizontal) of the Grassmannian and Flag manifolds for representing

data sets. The subspace dimension k fixed while the ambient dimension n is varying

from 220,100 to 10. 83

5.11 Eigenvalues of MDS for Left:Fl(2, 3, 5), Right:Gr(5, 10) in descending order. 84

5.12 Configuration of points on various flag manifolds embedded in Euclidean space. 85

5.13 Configuration of points on Fl(2, 2, 2) embedded in Euclidean space for 3 classes:

Grass-Pasture’,Corn-notill,Hay-windrowed. 6 bands(3,29,42,61,65,158) are selected

so the ambient dimension n = 6. 85

vii

Chapter 1

Introduction

1.1 From comparing sets of data points to comparing sets of

data sets

In this dissertation, we focus on developing algorithms for recognizing patterns within a collec-

tion of high dimensional data sets. An emphasis is on developing geometrically inspired algorithms

on parameter manifolds that help make patterns within the collection of data sets more apparent.

In many real world applications, we use algorithms, supervised or unsupervised, for classifying,

clustering and visualizing data. Many algorithms require, for tackling such tasks, a distance mea-

sure between data points or between data sets. Examples include k-nearest neighbor, Laplacian

eigenmaps, and multi-dimensional scaling. Other algorithms require further information, such as

knowing how to determine, and move along a geodesic path between two points. Examples include

k-means, gradient descent, and self-organizing mappings. In Euclidean space Rn, the standard dis-

tance measure between points is the Euclidean distance and the standard geodesic connecting two

points is a line segment. There are applications where a different distance metric is preferred, for

example, the cosine of the angle between attributes vectors of two songs is often used in song

recommendation algorithms. Using the cosine of the angle between vectors, in some sense, can be

understood through the lens of data embedded on a unit n− sphere (where the ambient dimension

is n+1). The angle between two points, viewed as unit vectors, tells us how "close" the two points

are following a geodesic path on the sphere. To move one point to another we simply follow the

path along a great circle passing through the points as great circles are the geodesic paths on the

sphere.

One can generalize this idea of comparing vectors on a sphere. In many applications, it is not a

single vector itself that matters, but rather the subspace spanned by a collection of vectors in Rn or

else a subspace minimizing some comparison function to the collection. From this vantage point,

1

one may represent a data point/data set as a linear subspace. In this context, the natural place to

perform data analysis comparisons is on a Grassmann manifold. We let Gr(k, n), denote the Grass-

mann manifold whose points parametrizes k-dimensional linear subspaces in Rn. The utilization

of the Grassmann manifold has become widespread in computer vision and other disciplines in

pattern recognition. Some examples include video processing [24], classification, [9, 23, 48, 49],

action recognition [4], expression analysis [36, 44, 45], domain adaptation [33, 40], and regres-

sion [25, 43].

On the Grassmannian, two data sets, represented as two points, can be compared by com-

puting the distance between the points. A geodesic path between two points on a Grassmannian

corresponds to a minimal alignment of two linear subspaces. Both the distance and the geodesic

path between points have analytical expressions thanks to the underlying geometric structure of

Grassmann manifolds.

A natural generalization of the Grassmann manifold is the flag manifold. A flag manifold

parametrizes sequences of nested subspaces satisfying a common length and dimension constraint.

As such, flag manifolds can be understood as a generalization of Grassmann manifolds. In this

dissertation, we attempt to provide effective and efficient numerical algorithms to compute the

distance and geodesic path between two flags. We also prove a key theoretical result that allows

one to reduce the dimension of the algorithm which increases the range of practical applicability.

The flag manifold approach being proposed here generalizes ideas related to the Grassmann

manifold and can be viewed as a tool for the analysis of relationships between tall matrices while

also being useful for determining relationships between classes of wide matrices. Note in each case

here the data matrix columns are samples of data. We argue that the distances measured between

large sets of small feature spaces captures more fidelity than algorithms on Euclidean space.

1.2 Overview

In Chapter 2, we provide some background for the well studied Grassmann manifold. Towards

the purpose of comparing data sets, we introduce the necessary geometric ingredients on the Grass-

2

mannian including basic definitions, quotient structure, tangent space, geodesic path and geodesic

distance. We present an explicit derivation to show the connection between geodesic paths on the

Grassmannian and principal vectors between two linear subspaces. From there we can obtain a

pictorial explanation of the geodesic path to better understand the algebraic formula

In Chapter 3, inspired by the classical Proper Orthogonal Decomposition (POD) algorithm,

we pose an optimization problem on the Grassmannian to solve the missing data problem from a

geometric prospective. We show that solving a particular optimization problem, using a steepest

descent algorithm with penalty term, can effectively avoid some local minima where the POD

algorithm gets stuck. This is illustrated by applying both algorithms to traveling sinusoidal wave

data.

In Chapter 4, we extend the classical self-organizing mappings to the Grassmann manifold

using the formula introduced in Chapter 2. We demonstrate the Grassmannian SOM by visualizing

high dimensional hyper-spectral image data and gene expression data on a 2D grid. We obtain

strong clustering results while Euclidean distance versions fail to obtain clear separation.

In Chapter 5, we derive some of the geometric features like tangent space, exponential and

logarithmic map on the flag manifold which can be viewed as a generalization or refined version

of such formulas on the Grassmannian . More importantly, we propose a numerical algorithm for

computing the log map between two flags. Here we also prove theorems to run the computation in

lower dimensional space. The algorithm is implemented on the Indian Pines data set to compare

with Grassmannian distance.

In Chapter 6, we review our contributions and talk about some open problems where the tech-

niques discussed in this thesis can be applied.

3

Chapter 2

The Grassmann Manifold

2.1 Linear Subspace Models

High-dimensional data has been well-studied in a wide range of domains such as pattern recog-

nition, image analysis, data visualization, etc. Sometimes high-dimensional data is referred to by

the term "big data". Unfortunately, this term has the potential to be ambiguous. Big data can be

used to describe biological data sets consisting of gene expressions where the number of attributes

(genes) is large but the number of observations is small. It can also be applied to datasets such

as MNIST database which consists of 60,000 training images and 10,000 test images and each

image is a handwritten digit represented by a 28 × 28 matrix. In this case the ambient dimension

is relatively small while the number of samples is large. Datasets can be "big" in different aspects.

For clarification, in this dissertation, we will focus on the setting of high-dimensional ambient

space such as Euclidean space. It is convenient to view a data point as a vector living in the n-

dimensional Euclidean space Rn where n is the number of measured attributes. For example, we

can represent a facial image by stacking the columns of an image and the resulting vector can

be viewed as a data point in Rn where n is the number of pixels in this image. The advantage

of putting an image in Euclidean space is that one may utilize various optimization algorithms,

mathematical and statistical analysis tools developed in this setting.

In many applications, it is not a single vector or a set of vectors in a neighborhood in Rn that

matters, but rather the subspace spanned by this set of vectors. For example, let V = [v1, v2, . . . , vk]

be a collection of images of the same subject under different illumination conditions [7, 10–12],

all vi’s are distinct vectors in Rn with the same identity. But how is this identity to be represented

while including the illumination space? This is the case where the range of V counts instead

of V itself. Unless otherwise specified, we denote the subspace spanned by V as boldface V.

This pattern set framework allows us to encode the identity while capturing the variation in our

4

model. It has been observed that by utilizing the linear subspace model, i.e. considering a set of

data points as a pattern, one can improve the robustness of pattern recognition algorithms. Take

illumination subspaces as an example, the resolution of images can be reduced without affecting

the classification rate. The manifold whose points parameterize all k-dimensional subspaces in Rn

is the Grassmann manifold Gr(k, n). Its use allows us to build a theoretical bridge to this abstract

mathematical object where the geometry agrees with the structure of data.

2.2 The Grassmannian: A quotient manifold of O(n)

In this section, we introduce the geometry of the Grassmann manifold as well as its geodesic

formula.

Definition 2.2.1. (Grassmann manifolds). Let V be an n-dimensional real vector space, for any

0 ≤ k ≤ n we define the Grassmannian, Gr(k, n), as the set of all k-dimensional subspaces of V.

In this dissertation, we denote by O(k) the orthogonal group of k-by-k matrices, SO(k) denotes

the special orthogonal group of k-by-k matrices with determinant 1 and GL(k) denotes the linear

group of k-by-k invertible matrices.

It is convenient to view the Grassmannian Gr(k, n) as the quotient manifold O(n)/O(k) ×

O(n − k). Let Q ∈ O(n) be an n-by-n orthogonal matrix, the equivalence class [Q] is the set of

all orthogonal matrices whose first k columns span the same subspace as the one spanned by the

first k columns of Q. A point on the Grassmann manifold is the equivalence class,

[Q] =











Q







Qk 0

0 Qn−k






: Qk ∈ O(k), Qn−k ∈ O(n− k)











. (2.1)

One advantage of this approach is we may utilize the orthogonal group geodesic and the quotient

geometry of the Grassmann manifold. This quotient space representation also reveals that the

dimension of Gr(k, n) is
n(n− 1)

2
− [

k(k − 1)

2
+

(n− k)(n− k − 1)

2
] = k(n − k), which can

also be verified when we look at the tangent space at [Q].

5

2.2.1 Tangent space of O(n)

A p-dimensional embedded submanifold can be approximated locally as Rp. The tangent space

to a point can be visualized as a linear space tangent to the submanifold at that point. O(n) is an

n(n− 1)/2-dimensional submanifold of Rn×n, therefore the tangent space at a point on O(n) is an

n(n−1)/2 dimensional vector space centered at the point of tangency. One may derive the tangent

space to O(n) at a point Q ∈ O(n), denoted by TQO(n), as follows:

Let ǫ > 0,

Iǫ = {t ∈ R | − ǫ < t < ǫ}

and let

X(t) : Iǫ 7→ O(n)

be any smooth curve on O(n) such that X(0) = Q. Since

X(t)TX(t) = I , t ∈ Iǫ

differentiating both sides yields

Ẋ(t)TX(t) +X(t)T Ẋ(t) = 0

let t = 0 we have

Ẋ(0)TQ+QT Ẋ(0) = 0

This derivation shows that

6

TQO(n) ⊂ {∆|∆TQ+QT∆ = 0}

By counting the dimension of O(n) and ∆ it can be readily verified that

TQO(n) = {∆|∆TQ+QT∆ = 0}, (2.2)

i.e., the tangent space to O(n) at Q is the set of matrices ∆ where QT∆ is any n-by-n skew-

symmetric matrix.

2.2.2 Gr(k, n) as a quotient manifold of O(n)

The fact that Gr(k, n) is a quotient space of O(n) provides us a way to find a concrete numerical

representation for tangent vectors to this abstract mathematical manifold.

Let Q ∈ O(n) and [Q] ∈ Gr(k, n), one can think of a tangent vector V to Gr(k, n) at [Q]

as a variation of the k-dimensional subspace spanned by the first k column of Q. To obtain a

matrix representation of V , the key idea is to decompose TQO(n) into a component which does

not modify the span and a component which modifies the span. The latter represents a tangent

vector V to Gr(k, n) at [Q]. This idea is demonstrated in Figure 2.1.

Vertical and Horizontal Space

Here we define the vertical space VQ as the set of matrices which preserve the span of the first

k columns of Q, i.e., the tangent space to the equivalence class [Q] at Q.

The computation of the vertical space at a point Q ∈ O(n) is essentially the same as the

computation of the tangent space to O(n). Let V (t) = Q







Qk(t) 0

0 Qn−k(t)






be any smooth

curve living in the equivalence class [Q] with Qk(0) = Ik and Qn−k(0) = In−k, i.e. V (0) = Q.

We have V (t)TV (t) = I . Differentiating both sides and evaluating at t = 0 yields

7

Figure 2.1: This figure illustrates the idea of the vertical space VQ and horizontal space HQ at a point Q.

T[Q]Gr(k, n) is the tangent space to Gr(k, n) at [Q]. It can be shown that a tangent vector V ∈ T[Q]Gr(k, n)

can be uniquely represented by a tangent vector V ∈ HQ. Hence one can represent tangent vectors to a

point on Gr(k, n) as matrices.

8

Q̇k(0)
T + Q̇k(0) = 0

Q̇n−k(0)
T + Q̇n−k(0) = 0

With this computation, along with a dimension count, one may show that the vertical space at a

point Q is the set of matrices

VQ =











Q







C 0

0 D

















,

where C is any k-by-k skew-symmetric matrix and D is any (n− k)-by-(n− k) skew-symmetric

matrix.

The horizontal space HQ is defined as the orthogonal complement of VQ in TQO(n), which

consists of the tangent vectors that modify the span of the first k columns of Q. The orthogonality is

with respect to the Euclidean metric defined in Definition 2.2.2. In this thesis, we use the Euclidean

metric as our Riemannian metric.

Definition 2.2.2. Let U, V ∈ TQO(n), the Euclidean metric is defined as a function e : TQO(n)×

TQO(n) 7→ R:

e(U, V) = Tr(UTV)

= vec(U)Tvec(V)

The horizontal space HQ is the set of matrices which are orthogonal to the vertical space and

living in TQO(n). To compute HQ, we need to solve the following set of equations

Tr(∆TQ







C 0

0 D






) = 0

∆ = QA

9

where A ∈ Rn×n, C ∈ Rk×k and D ∈ R(n−k)×(n−k) are skew-symmetric matrices. The solution to

these equations, i.e. the horizontal space at Q, is the set of matrices

HQ =











Q







0 −BT

B 0

















.

Recall that VQO(n) is the set of matrices {∆|∆TQ + QT∆ = 0}. It can be readily verified that

TQO(n) = VQ

⊕

HQ.

Intuitively, one can think of the vectors in the vertical space as the set of velocity vectors which

preserve the equivalence class while the vectors in the horizontal space modify the equivalence

class. Hence, tangent vectors to geodesics on Gr(k, n) must be living in the horizontal space. As

depicted in Figure 2.1, if V is a tangent vector to Gr(k, n) at [Q], then there is a horizontal vector

V ∈ HQ which represents V uniquely. The horizontal space gives a matrix representation for any

tangent vector V to Gr(k, n) at [Q].

Geodesic Formula

The intuition behind geodesics on manifolds is analogous to the picture of straight lines in Rn.

Geometrically, a straight line in Rn can be thought of as a parametrized curve γ(t) : [0, 1] 7→

Rn without acceleration for all t ∈ [0, 1]. Additionally, a minimal geodesic between two points

represents the shortest curve connecting two points. The associated length function which will be

discussed more in section 2.4.3. In [19], the authors show the geodesic formula on O(n) is given

by Q(t) = Q exp(tA) where A is an n-by-n skew-symmetric matrix.

Q(t) = Q exp






t







0 −BT

B 0













has a horizontal tangent vector

10

Q̇(t) = Q(t)







0 −BT

B 0







for all t along Q(t). Therefore Q(t) is still the shortest path on the quotient space Gr(k, n), i.e. by

further restricting A to be of the form

Ã =







0 −BT

B 0






, B ∈ R(n−k)×(k)

we obtain a representative of the geodesic path on Gr(k, n)

Q(t) = Q exp(tÃ).

The (n−k)-by-(k) submatrix B specifies the velocity of the geodesic flow. This approach provides

us an easy method to compute the geodesic formula on the Grassmann manifold using n-by-k

matrices.

2.3 The Grassmannian: A quotient manifold of the Stiefel

In practical applications, we are usually interested in the span of the first k columns of Q(t),

hence the geodesic formula can be rewritten as,

Φ(t) = Q exp(tÃ)J

where J =







Ik

0n−k,k






∈ Rn×k and Φ(t) is a n-by-k orthonormal matrix for any t ∈ [0, 1].

Here we introduce the Stiefel manifold as the set of all orthonormal k-frames in Rn, denoted

by St(k, n). Each point on St(k, n) can be expressed as an n-by-k orthonormal matrix Y such that

Y TY = Ik. In this way, the Grassmann manifold Gr(k, n) can be viewed as a quotient manifold

of the Stiefel Manifold St(k, n). An equivalence class [Y] can be defined as

11

[Y] = {Y D : D ∈ O(k)}.

It is straightforward to show the tangent space to St(k, n) at Y , TY St(k, n), is,

{∆|Y T∆+∆TY = 0}

Let Y ∈ St(k, n) and [Y] ∈ Gr(k, n), by utilizing the quotient geometry of Gr(k, n), we can

compute the corresponding vertical space VY and horizontal space HY ,

VY = {Y A : A ∈ Rk×k, AT + A = 0}.

And the horizontal space is

HY = {N : N ∈ Rn×k, NTY = 0}.

A tangent vector to the Grassmann manifold at [Y] can be uniquely represented by an n-by-k

matrix N where Y TN = 0.

In [19], Edelman et al present the following theorem to compute the geodesic flow on Gr(k, n).

Theorem 1. If Φ(t) = Q exp(tÃ)J , with Φ(0) = X and Φ̇(0) = H where Ã =







0 −BT

B 0






, then

Φ(t) = XV cos(Σt)V T + U sin(Σt)V T (2.3)

where UΣV T is the compact singular value decomposition (SVD) of H . Here U is an n-by-k

orthonormal matrix, Σ is a k-by-k diagonal matrix and V is a k-by-k orthogonal matrix.

The proof of this Theorem is given in [19]. Please note that φ(t) is no more than a representative

of an equivalence class [φ(t)] because the Grassmann manifold is a quotient manifold of the Stiefel

12

Algorithm 1: Geodesic curve starting from [X] in the direction H

Input Data: Initial Position:X ∈ Rn×k, XTX = I; Initial

Velocity:H ∈ Horizontal Space; time: t ∈ R

Output Data: φ(t) ∈ St(k, n)
1 Function Geodesic(X , V , t):

2 UΣV T = thin SVD(H);

3 return XV cos(Σt)V T + U sin(Σt)V T ;

manifold. Pseudocode for tracing a geodesic curve in the direction of a given tangent vector can

be found in Algorithm 1.

2.4 Geodesic formula: Exponential and Logarithmic map

2.4.1 Exponential map

The geodesic formula introduced above solves the following problem: given initial conditions,

i.e. an initial position X and an initial velocity H , find the resulting geodesic on the Grassmann

manifold. This process can be thought of as mapping tangent vectors back onto Gr(k, n), which

is closely related to the idea of the exponential map.

Definition 2.4.1. For every H ∈ T[X]Gr(k, n) there is a unique geodesic φ(t): [0, 1] 7→ Gr(k, n)

such that φ(0) = X and φ′(0) = H . The mapping ExpX : TXGr(k, n) 7→ Gr(k, n),

ExpX(H)
.
= φ(1)

is called the exponential map of H at [X].

An illustration of the exponential map is shown in Figure 2.2(a). On Gr(k, n), the exponential

map can be computed via Algorithm 1 by letting t = 1.

2.4.2 Logarithmic map

In many applications, one might be interested in the inverse operation: Given n-by-k orthonor-

mal matrices X and Y representing equivalence classes [X] and [Y] on Gr(k, n), find an appro-

13

priate velocity matrix H such that a geodesic with velocity H , starting at [X], reaches [Y] in unit

time. The idea behind the inverse operation is illustrated in Figure 2.2(b).

(a) Given initial position and velocity, find

geodesic flow. The formula is given in

equation (2.3).

(b) Given two points on Grassmann, re-

cover the velocity which induces a geodesic

flow between points. The formula is given

in equation (2.6).

Figure 2.2: This figure illustrates the two problems related to the geodesic formula

Instead of computing H directly, we assemble H via its compact SVD H = MΘV T . By

Theorem 1, at t = 1, we have

Y D = XV cos(Θ)V T +M sin(Θ)V T

where D is any k-by-k orthogonal matrix (since we are only required to reach a point in the

equivalence class, i.e. Y D ∈ [Y]). H is in the tangent space, hence it can be readily verified that

XTH = 0 and consequently XTU = 0. Multiplying by XT on both sides of the equation yields

V cos(Θ)V T = XTY D (2.4)

M sin(Θ)V T = (I −XXT)Y D (2.5)

Then,

14

U sin(Θ)V T (V cos(Θ)V T)−1 = Utan(Θ)V T

= (I −XXT)Y D(XTY D)−1

= (I −XXT)Y (XTY)−1

Therefore, to find the velocity matrix H , it suffices to compute the compact SVD,

(I −XXT)Y (XTY)−1 = UΣV T ,

and H = UΘV T where Θ = arctan(Σ). One subtlety in Equation (2.3) is that if V is mul-

tiplied from the right on both sides of the equation, we still have a representative of the same

equivalence class as Φ(t), i.e. Φ(t)V is equivalent to Φ(t) on Gr(k, n) for all t. To summarize

the derivation above, we present the formula for computing the geodesic path between two points

X, Y ∈ Gr(k, n), which can be found in [1].

G(t) = XV cosΘt+ U sinΘt (2.6)

We observe that

[G(0)] = [X]

and

[G(1)] = [Y]

and the trajectory G(t) traces out the path of shortest distance on Gr(k, n) in terms of the geodesic

metric given by Equation (2.8). The quantities U,Σ and V are found by computing the singular

value decomposition of the projection of

M = Y (XTY)−1

onto the orthogonal complement of X , i.e.,

15

UΣV T = (I −XXT)Y (XTY)−1

where X and Y are given and the inverse of XTY exists. Further, it can be shown that

Θ = atan(Σ)

to complete the requirements of computing the geodesic between two subspaces X and Y as pre-

scribed in Equation (2.6). This formula is a key ingredient for extending the self-organizing map-

ping algorithm on vector spaces to Grassmannians.

We present the following example as an illustration of the numerical computation of the geodesic

formula between two points.

Let X =



















1 0

0 1

0 0

0 0



















and Y =



















1√
2

1√
3

0 1√
3

0 1√
3

− 1√
2

0



















be two matrices representing points [X] and [Y] on

Gr(2, 4). First, we compute the compact singular value decomposition

UΣV T = (I −XXT)Y (XTY)−1.

We find

Σ =







1.6180 0

0 0.6180






.

Compute arctangent along the diagonal we get

Θ =







1.0172 0

0 0.5536






,

hence

16

cosΘt =







cos(1.0172t) 0

0 cos(0.5536t)







and

sinΘt =







sin(1.0172t) 0

0 sin(0.5536t)






.

Now we can sample points along this geodesic.

For t = 0,

G(0) =



















−0.5257 −0.8507

0.8508 −0.5257

0 0

0 0



















,

whose column vectors span the same subspace as the column vectors of X . The same can also be

verified for Y and G(1) by computing the principal angles between Y and G(1). If t is sampled

uniformly on the interval [0, 1], one can verify that all the distances between any pair of adjacent

points are the same. i.e. the geodesic has a constant speed. One example is at t = 1
2
, the geodesic

distance between X and G(1
2
) is the same as the distance between G(1

2
) and Y . i.e. dg(X,G(1

2
)) =

dg(G(1
2
), Y).

2.4.3 Principal angles and distance metric

We provide a summary of the computation of angles between subspaces initially described

in [8]. Let X and Y be two vector subspaces of Rn such that

p = dim(X) ≥ dim(Y) = q ≥ 1,

17

then the principal angles θk ∈ [0, π
2
], 1 ≤ k ≤ q between X and Y are defined recursively by

cos(θk) = max
u∈X

max
v∈Y

uTv = uT
k vk, k = 1 . . . q (2.7)

subject to ||u|| = ||v|| = 1, uTui = 0 and vTvi = 0 for i = 1 . . . k−1. Clearly, the principal angles

satisfy 0 ≤ θ1 ≤ θ2 ≤ . . . θq ≤ π
2
. Henceforth, θ = (θ1, . . . , θq) will denote the principal angle

vector. Note that we have abused notation somewhat in using X to represent both a subspace and

an orthonormal matrix whose columns span this space. For additional details related to algorithms

for the computation of principal angles, please see [8].

Let A,B be two points on the Grassmannian Gr(k, n). Again, we are thinking of these points

as subspaces though they are represented by orthonormal matrices whose columns span the sub-

spaces. The geodesic distance between these two points is given by

dg(A,B) = ‖(θ1, . . . , θk)‖2 (2.8)

Other metrics are possible, e.g., the chordal distance

dg(A,B) = ‖(sin(θ1), . . . , sin(θk))‖2 (2.9)

We note that it is possible to show that the Grassmannian may be isometrically embedded into

the Euclidean space when the chordal metric is employed and this is not the case for the geodesic

metric [16]; see also [14].

Principal angles between subspaces are defined regardless of the dimensions of the subspaces,

which are denoted, e.g., dimA. Thus, inspired by the Riemannian geometry of the Grassmannian,

we may define, for any vector subspaces A, B of Rn the geodesic distance

dg(A,B) = ‖(θ1, . . . , θℓ)‖2,

18

for any ℓ ≤ min{dimA, dimB}. While dℓ is not, strictly speaking, a metric (for example, if

dimA ∩ B ≥ ℓ, then dℓ(A,B) = 0), it nevertheless provides an efficient and useful tool for ana-

lyzing configurations in ∪k≥ℓGr(k, n). The geometry driving these distance measures is captured

by the notion of a Schubert variety Ω̄ℓ(W) ⊆ Gr(k, n). Let W be a subspace of Rn, then we define

Ω̄ℓ(W) = {E ∈ Gr(k, n) | dim(E ∩W) ≥ ℓ}.

With this notation, dℓ(A,B) simply measures the distance between A and Ω̄ℓ(B), i.e. d(A, Ω̄ℓ(B)) =

min{dk(A,C) |C ∈ Ωℓ(B)} (it is worth noting that under this interpretation, dℓ(A,B) = dℓ(B,A)).

2.5 A pictorial interpretation of a geodesic between two points

on the Grassmannian

In this section, we present a more intuitive interpretation of the logarithmic map introduced

in Section 2.4.2. The computational formula derivation in Section 2.4.2 is merely a sequence of

algebraic computation. Here we will give a more intuitive picture and proof to show that the

geodesic path between two points on the Grassmannian, is exactly a path between the principal

vectors of corresponding linear subspaces.

2.5.1 Geodesic as a path between principal vectors

Let X and Y denote two n × k matrices which represent two k-dimensional linear subspaces

X and Y in Rn respectively. The principal angles Θ = diag{[θ1, θ2, · · · , θk]} can be computed

via SVD of XTY :

V ΣUT = XTY (2.10)

where Θ = arccosΣ. Therefore, Equation (2.10) can be written as

19

XTY = V cosΘUT (2.11)

Now if we rotate X and Y by U and V , we can obtain canonical basis

(XV)T (Y U) = cosΘ. (2.12)

Here we define Xc = XV and Yc = Y U as the canonical basis for X and Y. It is important to

note that the i-th column of Xc and Yc is the i-th pair of principal vectors corresponding to the i-th

principal angle θi.

Let xi and yi denote the i-th column of canonical basis Xc and Yc. We want to find the curve

φi(t) : [0, 1] 7→ Rn such that φi(t) moves from xi to yi in unit time. Let φi(t) = atxi + btyi be a

vector in Rn of unit length. The angle between φi(t) and xi is tθ and the angle between φi(t) and

yi is (1 − t)θ. An illustration can be found in Figure 2.3. One can compute at and bt by solving

the following set of equations:

(atxi + btyi) · xi = cos(tθi)

(atxi + btyi) · yi = cos((1− t)θi)

It can be readily verified that at = cos(tθi)−
cos θi
sin θi

sin(tθi) and bt =
1

sin θi
sin(tθi) and therefore

φi(t) = xi cos(tθi) + [yi
1

sin(θi)
− xi

cos(θi)

sin(θi)
] sin(tθi)

Hence we can also find the corresponding matrix form

Φ(t) = XV cos(tΘ) + [Y U(sinΘ)−1 −XV (tanΘ)−1] sin(tΘ) (2.13)

where V ΣUT = XTY and Θ = arccosΣ.

20

Figure 2.3: A pictorial understanding of a geodesic on the Grassmannian. xi and yi are the i-th pair principal

vectors between 2 subspaces.

Claim 2.5.1. The path between principal vectors defined in Equation (2.13) is exactly the geodesic

path between k-dimensional subspaces X and Y.

The proof of this claim is given in Section 2.5.2.

2.5.2 Revisit logarithmic map

To prove Claim 2.5.1, let us revisit the derivation of the geodesic formula (2.17) given in

Section 2.5.2.

Rewrite Equation (2.14) by multiplying DT on both sides, we get

V cos(Θ)(DV)T = XTY. (2.14)

Due to properties of the singular value decomposition, the decomposition in Equation (2.14) is

exactly the SV D defined in Equation (2.10) where DV = U . Equation (2.4) and (2.5) can be

rewritten as:

21

V cos(Θ)UT = XTY (2.15)

M sin(Θ)UT = (I −XXT)Y (2.16)

Then,

M sin(Θ)V T (V cos(Θ)V T)−1 = M tan(Θ)V T

= (I −XXT)Y (XTY)−1

Therefore, to find the velocity matrix H , it suffices to compute the thin SVD, (I−XXT)Y (XTY)−1 =

MΣV T , and H = MΘV T where Θ = arctan(Σ). One subtlety in Equation (2.3) is that if V is

multiplied from the right on both sides of the equation, we still have a representative of the same

equivalence class as Φ(t), i.e. Φ(t)V is equivalent to Φ(t) on Gr(k, n) for all t. With this in

mind, we provide the formula which computes the shortest path between X and Y representing

k-dimensional subspaces X and Y,

G(t) = XV cosΘt+M sinΘt (2.17)

The quantities V,Θ, and M can be found in the derivation above.

To prove Claim 2.5.1, we expand the right-hand side of Equation (2.16) and get

M sin(Θ)UT = Y −XXTY

= Y −XV cos(Θ)UT

Multiply both sides by U(sinΘ)−1 to yield:

M = Y U(sinΘ)−1 −XV (tanΘ)−1 (2.18)

22

By substituting Equation (2.18) into Equation (2.17), we observe that Equation (2.13) and (2.17)

are identical.

2.5.3 Summary

The proof given in this section leads to a pictorial understanding of the geodesic on the Grass-

mannian, i.e. the geodesic path between two k-dimensional linear subspaces is identical to the

path between the principal vectors of the subspaces. As illustrated in Figure 2.3, moving one sub-

space to another, in other words, moving from one point to another on the Grassmannian, is simply

moving the corresponding pairwise principal vectors.

23

Chapter 3

A geometric approach to missing data problem

3.1 Introduction

The major question we want to address in this chapter is that, given a data set with missing

(or corrupted) entries, assuming we know the location of missing data, is it possible to recover the

data set? For example, given a set of traveling waves with a certain percentage of data missing,

can the missing entries be imputed from the rest of the data set? Another example would be,

one may have a set of images of faces, where each picture has some corrupted pixels and one

wants to impute the missing entries. In [20], Everson and Sirovich presented a popular iterative

procedure to impute missing entries in a dataset, which is also referred to as gappy POD (proper

orthogonal decomposition) in [52]. The idea of gappy POD is to minimize error in an iterative way

in the sense that in each step, the objective function one is trying to minimize is changing. On the

contrary, we propose a single energy function that the Everson and Sirovich approach is attempting

to optimize. More importantly, one may now solve the minimization problem by various gradient-

based descent algorithms. One important consequence of posing an energy function minimization

problem is that we can include regularization terms if necessary, which could potentially help us

avoid local minima and improve performance. Indeed, we show that the fixed points of the iterative

procedure are local minima of this energy function, and also show that fixed points of the iterative

procedure exist. We also give a proof that with proper embedding, our energy function along with a

selected distance metric could potentially help us obtain an analytical solution to the minimization

problem.

We provide background material and notation in Section 3.2 and describe the Everson and

Sirovich’s iterative procedure in Section 3.3. In Section 3.4 we recharacterize this iterative pro-

cedure as an energy minimization on the Grassmann manifold, and in Section 3.5 we solve the

energy minimization problem via Grassmannian steepest gradient descent algorithm. We provide

24

examples on real data in Section 3.9, including an example on time series data where Everson and

Sirovich’s iterative procedure gets stuck in a local minimum, whereas gradient descent converges

to the global minimum. Finally, in Section 3.10, it is shown that with proper embedding, our op-

timization problem can be rewritten and solved analytically. This solution is closely related to the

flag mean representation discussed in [18].

3.2 Notation

In this section, we will first introduce some notations we will use in this Chapter.

3.2.1 Data with missing entries

Let X = {x(i) | i = 1, . . . , P} ⊆ Rn be a collection of P points in Rn. The data points

may contain missing entries, which is recorded by a collection of masks {m(i) | i = 1, . . . , P} ⊆

{0, 1}n, where

• if m
(i)
j = 1 then entry x

(i)
j is present, and

• if m
(i)
j = 0 then the j-th entry of x(i) is missing.

For convenience, if the j-th entry of x(i) is missing, then we set x
(i)
j = 0.

Our goal is to impute the missing entries of the dataset X . These missing entries will be stored

in vectors t(i), where if the j-th entry of x(i) is present then we set t
(i)
j = 0. The repair of a vector

x(i) is equal to x(i) + t(i), and hence the repair of dataset X is equal to {x(i) + t(i) | i = 1, . . . , P}.

Note that x(i) and t(i) are orthogonal.

For y, z ∈ Rn, let (y, z)m(i) =
∑

{j | m(i)
j =1} yjzj denote the inner product with respect to mask

m(i). For any vector y we have (y, x(i))m(i) = (y, x(i)) since we’ve set x
(i)
j = 0 if m

(i)
j = 0.

3.2.2 Distance between sets

Given two sets S1, S2 ⊆ Rn, let d(S1, S2) = inf{‖x1 − x2‖ | x1 ∈ S1, x2 ∈ S2} denote the

infimum Euclidean distance between them.

25

3.2.3 The Grassmannian

Let Gr(k, n) denote the set of all k-dimensional linear subspaces of Rn. The Grassmannian

Gr(k, n) is a manifold of dimension k(n − k). We will often represent a k-dimensional linear

subspace V ∈ Gr(k, n) as a matrix V ∈ Rn×k such that V TV = I , even though this choice of

matrix V is not unique. Note here we are viewing Gr(k, n) as a quotient manifold of the Stiefel

manifold St(k, n).

To implement a gradient descent algorithm on Gr(k, n), we recall two essential geometry

elements.

• The gradient of a function on the Grassmanian. Let f : Gr(k, n) → R be a real-valued

function defined on the Grassmannian, and let fV be the partial derivative of f with respect

to V ∈ Rn×k. Then the gradient of f at V is

∇f = fV − V V TfV .

• Retraction at a point V ∈ Gr(k, n). For a gradient descent algorithm defined on a manifold,

it is important to be able to move on the manifold from an initial point V in a given direction

H . Here we define the retraction RV (H) algorithmically,

RV (H) = qr(V +H, 0),

where qr(V +H, 0) is the Q-component of the QR decomposition of V +H .

3.3 Everson and Sirovich’s iterative procedure (gappy POD)

In [20], Everson and Sirovich propose an iterative algorithm for imputing the missing entries

in a dataset X ⊆ Rn. This method is based on the Karhunen–Loève or PCA procedure to model

a dataset X ⊆ Rn using a k-dimensional linear subspace, where k is fixed. First, each missing

entry in dataset X is imputed via an initial guess—for example, one may initially impute a missing

26

entry x
(i)
j to be the average of all the entries x

(i′)
j as i′ varies over all data points in which the j-th

entry is present. After these initial guesses have been made, one then applies the following iterative

procedure:

• A k-dimensional linear model is computed to best fit the current dataset.

• The missing entries of each data point are then imputed to move that data point as close as

possible to the k-dimensional linear model.

One iteratively computes a k-dimensional model on the new data points, and then moves each data

point as close as possible to that model, until a satisfactory level of convergence has been reached.

3.4 Characterization as an optimization problem

Given a dataset X ⊆ Rn with missing entries, let d(i) = n−‖m(i)‖1 be the number of missing

entries in the i-th data point x(i), and let {j | m
(i)
j = 0} = {j1, j2, . . . , jd(i)} be the set of missing

entries in this data point. Let ek be the k-th standard basis vector in Rn. Each data point x(i)

corresponds to a coordinate-aligned d(i)-dimensional affine subspace

Ai =
{

x(i) + t(i)
∣

∣

∣
t(i) ∈ span(ej1 , . . . , ejd(i))

}

,

which is the set of all possible repair vectors.

Given 1 ≤ k ≤ n fixed, our proposed optimization problem is to find a k-dimensional linear

subspace V∗ of Rn (i.e. V∗ ∈ Gr(k, n)) solving the following optimization problem:

V∗ = arg min
V∈Gr(k,n)

P
∑

i=1

d2(V, Ai). (3.1)

That is, we want to find the linear subspace V∗ which minimizes the sum of squared distances to

each coordinate-aligned affine space Ai.

Define the objective function f : Gr(k, n) → R by

27

Figure 3.1: (Left) A data point with no missing entries is represented as a point, and a data point with one

missing entry is represented as a line. For example, the two data points with missing y-values are represented

as vertical lines. More generally, a data point x(i) with k(i) missing entries is represented as a coordinate-

aligned k(i)-dimensional affine subspace Ai. (Right) In blue we have drawn the optimal 2-dimensional

linear subspace V
∗ minimizing the sum of squared distances to the data subspaces Ai. The repaired data

points with imputed missing values are drawn in red.

f(V) =
P
∑

i=1

d2(V, Ai). (3.2)

Theorem 3.4.1. If V∗ solves the optimization problem (3.1), and if each data point x(i) is repaired

to be a vector x(i) + t(i) ∈ Ai satisfying d(V∗, x(i) + t(i)) = d(V∗, Ai), then the repaired dataset

{x(i) + t(i) | i = 1, . . . , P} is a fixed point of Everson and Sirovich’s iterative procedure in [20].

Proof. Suppose V∗ ∈ Gr(k, n) solves the optimization (3.1), and suppose each data point x(i) is

repaired to be a vector x(i) + t(i) ∈ Ai satisfying d(V∗, x(i) + t(i)) = d(V∗, Ai). Note

V∗ = arg min
V∈Gr(k,n)

P
∑

i=1

d2(V, Ai) = arg min
V∈Gr(k,n)

P
∑

i=1

d2(V, x(i) + t(i)),

and hence when we compute a k-dimensional PCA hyperplane approximation for dataset {x(i) +

t(i) | i = 1, . . . , P}, this hyperplane can be chosen to be V∗ (which minimizes the mean squared

error). When we repair the dataset {x(i)+t(i) | i = 1, . . . , P} using hyperplane V∗, by definition of

28

t(i) this repaired dataset can be chosen to be unchanged. It follows that {x(i) + t(i) | i = 1, . . . , P}

is a fixed point of Everson and Sirovich’s iterative procedure.

One can use Theorem 3.4.1 to prove that fixed points of Everson and Sirovich’s iterative pro-

cedure exist.

Theorem 3.4.2. Given a dataset X ⊆ Rn with missing entries, there exists a fixed point of Everson

and Sirovich’s iterative procedure in [20].

We expect that finding a global solution to the optimization problem (3.1) is not easy in all

cases. However, Everson and Sirovich’s iterative procedure will converge to some local minimum.

Proposition 3.4.3. Let V[1],V[2],V[3], . . . be the sequence of PCA hyperplanes computed as

one solves Everson and Sirovich’s iterative procedure in [20], and let X[1], X[2], X[3], . . . be the

sequence of imputed datasets. If F [j] :=
∑P

i=1 d
2(V[j], X[j](i)), where X[j](i) is the i-th data

point in the j-th dataset, then the sequence of real numbers F [1], F [2], F [3], . . . is monotonically

non-increasing.

Proof. The monotonically non-increasing property is easy to verify since updating the dataset can

only decrease the sum of the squared distances, and since by the properties of PCA the same is

true upon updating the linear model.1

We remark that though other methods of solving (3.1) need not have this same monotonicity

property, for example, if one performs gradient descent with step sizes that are too large. However,

it is possible that other methods in some cases may be better at avoiding local minima.

3.5 Solving the optimization

In this section, we will discuss how to solve the optimization problem (3.1).

1Though the energy is monotonically converging, the imputed data points and the k-dimensional model are likely

to be converging to a fixed point, though we haven’t ruled out the case that they are instead converging to a periodic

orbit.

29

3.5.1 The analytical expression for distance

Let V ∈ Gr(k, n) denote a k-dimensional linear subspace, which can be represented as an

orthonormal matrix V ∈ Rn×k such that V TV = I . That is, the columns of V form a set of k

orthonormal vectors in Rn. Any V ∈ Gr(k, n) has several different matrix representations V . Let

Ei denote a matrix of size n× d(i) with columns ej1 , ej2 , . . . , ejd(i) . Note that

• Ai is the set of all vectors of the form x(i) + t(i), where t(i) is in the column span of Ei.

• EiE
T
i is a diagonal n× n matrix with entry (j, j) equal to one if x(i) is missing entry j, and

zero otherwise.

• Vm(i) = (I − EiE
T
i)V

• Pi = V T
m(i)Vm(i)

The distance between the linear subspace V and the affine subspace Ai can be expressed as the

following minimization :

d2(V, Ai) = min
a∈Rk,b∈Rd(i)

‖V a− x(i) − Eib‖
2 (3.3)

= min
a∈Rk,b∈Rd(i)

(V a− x(i) − Eib)
T (V a− x(i) − Eib).

One may solve this optimization by setting
∂d2(V, Ai)

∂a
and

∂d2(V, Ai)

∂b
equal to 0. Take the partial

derivative of d2(V, Ai) with respect to a and b and get

∂d2(V, Ai)

∂a
= 2a− 2V TEib− 2V Tx(i)

∂d2(V, Ai)

∂b
= −2ET

i V a+ 2b.

Set both equations equal to zero and solve for a and b,

30

a = (I − V TEiE
T
i V)†V Txi (3.4)

b = ET
i V a (3.5)

where Vm(i) = (I − EiE
T
i)V . Note I − EiE

T
i is a projection matrix that projects V onto the

orthogonal complement of Ei. The resulting Vm(i) is erasing the rows of V associated with the

missing entries of ith data point.

Note that the matrix I − V TEiE
T
i V is invertible whenever V does not contain the line 〈ej〉

for any standard basis vector ej corresponding to a missing coordinate of x(i), in which case our

computation simplifies2. Let Pi = I − V TEiE
T
i V , we can compute the differential and get,

∂d2(V, Ai) = −Tr[xT
i ∂V P−1

i V Txi + xT
i V ∂(P−1

i V Txi)]

= −Tr[xT
i ∂V P−1

i V Txi + xT
i V (∂P−1

i)V Txi + xT
i V P−1

i ∂V Txi]

= −Tr[xT
i (∂V)P−1

i V Txi] + Tr[xT
i V P−1

i (∂Pi)P
−1
i V Txi]− Tr[xT

i V P−1
i ∂V Txi].

Here ∂Pi = ∂(I−V TEiE
T
i V) = −((∂V T)EiE

T
i V +V TEiE

T
i (∂V)). Therefore, the middle term

in the differential is

Tr[xT
i V P−1

i (∂Pi)P
−1
i V Txi]

=Tr[xT
i V P−1

i (−((∂V T)EiE
T
i V + V TEiE

T
i (∂V)))P−1

i V Txi]

=− Tr[xT
i V P−1

i (∂V T)EiE
T
i V P−1

i V Txi]− Tr[xT
i V P−1

i V TEiE
T
i (∂V)P−1

i V Txi].

Since the trace of a matrix (a product of matrices) is invariant under transpose and cyclic permuta-

tion, we rearrange the differential to get

2In the case where I − V TEiE
T

i
V is invertible, we can compute the corresponding differential to obtain

∂d2(V, Ai) = ∂(xT

i
xi − xT

i
V (I − V TEiE

T

i
V)−1V T)xi)

= −∂(xT

i
V (I − V TEiE

T

i
V)−1V T)xi)

= −∂ Tr(xT

i
V (I − V TEiE

T

i
V)−1V T)xi).

31

∂d2(V, Ai) = −2Tr[(EiE
T
i V P−1

i V Txix
T
i V P−1

i)∂V T]− 2Tr[(xix
T
i V P−1

i)∂V T].

The gradient of d2(V, Ai) is

∇d2(V, Ai) = −2xix
T
i V P−1

i − 2EiE
T
i V P−1

i V Txix
T
i V P−1

i . (3.6)

Therefore, the Grassmannian gradient of the objective function (3.2) at V is:

∇f = −2(I − V V T)
P
∑

i=1

(xix
T
i V P−1

i − 2EiE
T
i V P−1

i V Txix
T
i V P−1

i) (3.7)

Algorithm 2: Grassmannian(Gr(k, n)) steepest gradient descent algorithm

Input Data: Initial position: V[0], Objective function: f(V), Gradient of f: ∇f, Step size:ǫ
Output Data: Optimal basis V∗

Result: (Local) optimum basis for solving the optimization :

V∗ = arg min
V∈Gr(k,n)

P
∑

i=1

‖[I − Vm(i)(V
T
m(i)Vm(i))

−1V T
m(i)]xi‖

2

For: j = 1, 2, . . .
Step 1: Move along negative gradient direction: V[j− 1] = V[j− 1]− ǫ∇f(V[j− 1])
Step 2: Retraction back to Gr(k, n): V[j] = qr(V[j− 1])
Step 3: Iterate

3.6 Relationship to Riemannian matrix completion

We propose a Grassmannian optimization approach to solve the missing data problem, which

we start with a geometric interpretation. We also notice that our minimization over the sum of the

distances between V and affine subspaces Ai is closely related to matrix completion, especially

Riemannian matrix completion [46] and GROUSE (Grassmannian Rank-One Update Subspace

Estimation) [6]. Here we detail the relationship to [46]. The following are notations from [46]:

• PΩ is the projection onto the entries where the data is present.

32

• X is the rank k matrix to find, with i-th column Xi.

• A is the data matrix.

• PΩ(A)i is the i-th column (PΩ(A)i corresponds to the i-th data point).

The following are notations regularly used in this dissertation:

• V ∈ Gr(k, n) is the dimension k linear subspace to find.

• Let vectors v1, . . . , vk be such that span(v1, . . . , vk) = V.

• Ai is the coordinate-aligned subspace corresponding to the i-th data point.

See also [17,26,32]. The paper [5] cites Everson & Sirovich in the context of low rank approx-

imation methods.

Here is a derivation, which eventually leads to the conclusion that the optimal solution (as-

suming existence) to our optimization (3.1) is also the solution to the optimization problem posed

in [46]. The whole proof can be divided into three claims.

Claim 3.6.1. We have

min
V∈Gr(k,n)

P
∑

i=1

d2(V, Ai) = min
V∈Gr(k,n)

min
C∈Rk×m

‖PΩ(V C)− PΩ(A)‖
2
F .

Proof. This can be shown by dividing the Frobenius norm on the right-hand side into the sum of

l2 norm of columns. First, we introduce some new notations:

• PΩi
(V): mask the rows of V corresponding to the missing entries of ith data point

• Ci: i
th column of C

33

min
V∈Gr(k,n)

min
C∈Rk×m

‖PΩ(V C)− PΩ(A)‖
2
F

= min
V∈Gr(k,n)

P
∑

i=1

min
C∈Rk×m

‖PΩ(V C)i − PΩ(A)i‖
2

= min
V∈Gr(k,n)

P
∑

i=1

min
Ci∈Rk×1

‖PΩi
(V Ci)− PΩ(A)i‖

2

= min
V∈Gr(k,n)

P
∑

i=1

min
Ci∈Rk×1

‖PΩi
(V)Ci − PΩ(A)i‖

2

= min
V∈Gr(k,n)

P
∑

i=1

d2(V, Ai)

The last equation can be verified by substituting (3.4) and (3.5) to (3.3).

Claim 3.6.2. We have

min
X∈Mk

‖PΩ(X)− PΩ(A)‖
2
F = min

V∈Gr(k,n), C∈Rk×m
‖PΩ(V C)− PΩ(A)‖

2
F ,

where Mk := {X | rank(X) = k}.

Proof. This is simply optimizing over a factorization of X instead of optimizing over X itself.

Claim 3.6.3. Let V ∗ and C∗ be the optimal solution to min
V∈Gr(k,n)

min
C∈Rk×m

‖PΩ(V C) − PΩ(A)‖
2
F .

Then V ∗ and C∗ is also an optimal solution to min
V∈Gr(k,n),C∈Rk×m

‖PΩ(V C)− PΩ(A)‖
2
F .

Proof. Let

f(V,C) = ‖PΩ(V C)− PΩ(A)‖
2
F

and let V ∗ and C∗ be an optimal solution to

min
V∈Gr(k,n)

min
C∈Rk×m

f(V,C).

For any V ∈ Gr(k, n) and any C ∈ Rk×m, we have

f(V,C) ≥ min
C∈Rk×m

f(V,C) ≥ min
V∈Gr(k,n)

min
C∈Rk×m

f(V,C).

34

Since

f(V ∗, C∗) = min
V∈Gr(k,n)

min
C∈Rk×m

f(V,C),

we have

f(V,C) ≥ f(V ∗, C∗).

By definition, V ∗, C∗ is also an optimal solution to

min
V∈Gr(k,n), C∈Rk×m

‖PΩ(V C)− PΩ(A)‖
2
F .

We can also translate between the optimal rank k matrix X in [46], and our optimal linear

subspace V ∈ Gr(k, n). Indeed, given X , we obtain V by taking its column span. Vice-versa,

given V, we find the i-th column of X to be the closest point on V to the coordinate-aligned affine

subspace Ai (this point is Xi =
∑k

j=1 ci,jvj).

3.7 Connection to Gappy POD

One might also associate the computation of d2(V, Ai) to the process of recovering marred

faces in [20]. In [20], Everson and Sirovich solved the following in Section 2: given an empirical

orthonormal basis V = [v1|v2| · · · |vk] ∈ Rn×k such that V TV = I , how to reassemble a signal

xi ∈ Rn which is supported only on Ωi? Everson and Sirovich proposed to find the best fit using a

least-square criterion, i.e. minimize the error

Ei = ‖PΩi
(xi −

k
∑

j=1

cijvj)‖
2

= ‖PΩi
(xi)− PΩi

(V Ci)‖
2 (3.8)

It can be verified that the solution to this minimization is obtained by solving the following system

of linear equations

35

MiCi = fi

for Ci = [ci1 , ci2 , · · · , cik]
T , where Mi = V T

m(i)Vm(i) and fi = V T
m(i)xi. Assuming Mi is invertible,

we can substitute Ci = M−1
i fi back into Equation (3.8),

E = ‖xi − PΩi
(VM−1

i fi)‖
2

= ‖xi − Vm(i)(V
T
m(i)Vm(i))

−1V T
m(i)xi‖

2

= ‖(I − Vm(i)(V
T
m(i)Vm(i))

−1V T
m(i))xi‖

2

which is exactly d2(V, Ai), i.e., the distance between subspace V and affine subspace Ai. A natural

question to ask at this moment is: what is the relationship between Gappy POD in [20] and our

proposed optimization? One may view Gappy POD as an alternating algorithm for solving the

optimization

min
V∈Gr(k,n)

P
∑

i=1

min
ai,bi

‖V ai − (xi + Eibi)‖
2. (3.9)

Recall that our approach solves the inner minimization problem analytically by fixing V , therefore

(3.9) becomes an objective function of V only. The gappy POD procedure solves the inner and

outer minimization alternatively by fixing V and ai, bi by turns. An algorithmic description of

Gappy POD procedure is presented in Algorithm 3.

3.8 Optimization with a total variation penalty

Here we introduce a column-wise total variation penalty term to our energy function. Given a

matrix U ∈ Gr(k, n), let ui,j denote the i-th row and j-th column of U . We define the column-wise

total variation ‖U‖2TV as follows,

‖U‖2TV =
k

∑

j=1

n−1
∑

i=1

(ui+1,j − ui,j)
2.

36

Algorithm 3: Gappy POD algorithm in the view of solving (3.1) in an alternating way

Input Data: Set of data points with missing entries {xi} ∈ Rn, i = 1, . . . , P.
Output Data: Optimal basis V∗

Result: Optimal basis for solving the optimization :

V∗ = arg min
V∈Gr(k,n)

P
∑

i=1

min
ai,bi

‖V ai − (xi + Eibi)‖
2

Initialization: Set k so that V ∈ Gr(k, n), x
(0)
i = x̃i where the missing entries in x̃i is

repaired by the average values of the other data points whose

corresponding entry is available. V (0) is the first k columns of SVD basis

of the column span of [x
(0)
1 |x

(0)
2 | · · · |x

(0)
P]

For: j = 0, 1, 2, . . .
Step 1: Given V [j], minimize ‖V [j]ai − (xi[j] + Eibi)‖

2 over ai and bi for each

i = 1, 2, 3, · · · , P , as the previous algebra work shows,

xi[j + 1] = xi[j] + (EiE
T
i)VM−1

i fi where Mi = V T
m(i)Vm(i) and fi = V T

m(i)xi

Step 2: Given {xi[j + 1]}Pi=1, minimize
∑P

i=1 d
2(V, xi[j + 1]) over V ∈ Gr(k, n).

V [j + 1] is the first k columns of the SVD basis of the span of

{x1[j + 1], x2[j + 1], · · · , xP [j + 1]}
Step 3: Iterate

Our goal is to include this total variation penalty to our energy function. In order for it to make

sense, we need to show that ‖U‖2TV is invariant to the change of basis, i.e., ‖U‖2TV = ‖UM‖2TV

for any k × k orthogonal matrix M . It is easy to check that ‖U‖2TV = ‖LU‖2F , where

L =

























0 0 0 · · · 0

1 −1 0

0 1 −1

. . . 0

0 0 · · · 1 −1

























∈ Rn×n.

For any k × k orthogonal matrix M , we have

‖UM‖2TV = ‖LUM‖2F = Tr[(LUM)T (LUM)] = Tr[MTUTLTLUM]

= Tr[MMTUTLTLU] = Tr[UTLTLU] = ‖LU‖2F = ‖U‖2TV .

37

Hence we can modify the energy function to be

min
V∈Gr(k,n)

P
∑

i=1

d2(V, x(i) + t(i)) + γ‖V ‖2TV , (3.10)

which remains an optimization problem on the Grassmannian since ‖V ‖2TV is orthogonally invari-

ant. Here γ ≥ 0 serves as a smoothness coefficient.

3.9 Energy minimization on example data sets

In this section we apply both the Karhunen–Loève (KL) procedure and our descent algorithm

with and without total variation term to a synthetic sinusoidal wave dataset and facial images

dataset. We observe that the KL-procedure at times gets stuck in a local minimum which our

descent algorithm, including the total variation term, is at times able to avoid.

3.9.1 Sinusoidal wave

Our first application concerns the recovery of a synthetic incomplete sinusoidal wave dataset.

Let the complete dataset be translationally invariant:

f(xm, tµ) =
1

N

N
∑

i=1

1

k
sin[k(xm − tµ)].

Here m = 1, 2, · · · ,M with M the dimension of the ambient space (size of the spatial grid),

and µ = 1, · · · , P with P be the number of points in the ensemble. Let xm = (m − 1)2π/M

and let tµ = (µ − 1)2π/P . We set M = P = 64 and N = 2 so the complete dataset is a

64×64 matrix with rank 4. All three algorithms are demonstrated on this ensemble of 64 sinusoidal

waves, uniformly masked so that 80% of the data are missing. In Figure 3.2 an example is picked

to show the difference between three algorithms. From the bottom right plot, we observe that

both KL procedure and steepest gradient descent get stuck at a local minimum while gradient

descent with total variation can find the global minimum and almost recover the incomplete dataset.

The three other plots in Figure 3.2 illustrate the basis vectors obtained from each of the three

38

algorithms; the basis functions found by descent with total variation are much smoother and closer

to the (expected) trigonometric waves. Similar scenarios can be observed more frequently with a

higher percentage (≥ 80%) of missing entries. One thing to note, which can also be observed in

Figure 3.2, is that the KL procedure generally converges to a local/global minimum faster than any

of the gradient descent algorithms.

Figure 3.2: (Top Left) The basis obtained from 1000 iterations of KL-procedure in [20]. (Top Right) The

basis obtained from solving (3.1) by Grassmannian gradient descent. (Bottom Left) The basis obtained

from solving (3.10) by gradient descent. (Bottom Right) Function value defined in (3.1) versus the number

of iterations across three methods.

Facial image recovery

To illustrate the utility of our proposed algorithms and compare them with the KL procedure,

we apply them on a facial image dataset. An ensemble of 69 images of different people were

used; in each image, the face has a still, neutral expression, with ambient lights on. Each image is

processed via a level 4 Haar wavelet transform and the resolution is reduced to 90×68. The images

39

are masked so that a fixed percentage of each face is obscured. An example of 40% missing pixels

is shown in Figure 3.4. We concatenate the columns of each gray level intensity images so that each

image is represented by a (vertical) vector of length 6120. Let X = [x(1)|x(2)| · · · |x(69)] denote

the whole facial image dataset, with each image vector x(i) ∈ R6120. The masked data matrix is

denoted by Xm = [x
(1)
m |x

(2)
m | · · · |x

(69)
m]. One example of reconstructing an obscured image, using

the KL procedure, steepest descent, and steepest descent with total variation is shown in Figure 3.4.

We introduce three measurements to quantify the performance of each algorithm.

1. Let x̃(i) denote the ith reconstructed image. The reconstruction error ‖E‖ is defined as

‖E‖ =
∑69

i=1 ‖x̃
(i) − x(i)‖2.

2. Let Vpca ∈ Gr(k, n) denote the k-dimensional PCA basis of the complete data matrix X , and

let Vrcon ∈ Gr(k, n) denote the reconstructed basis obtained from one of the algorithms. The

Grassmannian geodesic distance is dgeo(Vpca,Vrcon) = (
∑k

i=1 θ
2
i)

1/2 where θi ∈ [0, π/2] is

the ith principal angle between linear subspaces Vpca and Vrcon. The geodesic distance is 0

if two linear subspaces are identical.

3. The commonality Com(Vpca,Vrcon) between linear subspaces Vpca and Vrcon is defined

as Com(Vpca,Vrcon) =
∑k

i=1 cos
2(θi), where θi is the ith principal angle between Vpca

and Vrcon. Note that Com(Vpca,Vrcon) = k if Vpca and Vrcon are identical, and that

Com(Vpca,Vrcon) = 0 if Vpca and Vrcon are disjoint.

Figure 3.4 shows the measurements versus the rate at which the images were masked, where Vpca,

Vrcon ∈ Gr(30, 6120). It is observed that in all three metrics, the pattern shows a similar trend,

i.e., the descent algorithm to the optimization has a slight advantage over the gappy POD (KL

procedure) algorithm while the optimization with total variation penalty shows better performance

over the other two approaches. As more (higher fraction of) pixels are masked, the advantage

of using a total variation penalty becomes more clear. The results are not surprising since facial

image is largely smooth. The variation between pixels is usually subtle except for edges. Hence

the algorithm is benefiting from promoting smoothness.

40

Masked Face KL-procedure Descent only Descent with TV Original

Figure 3.3: A demonstration of using various algorithm to fix face image data set.

Figure 3.4: Performance comparison of different algorithms on the face image data set.

3.10 Affine Grassmannian and flag mean

In this section, we will introduce the affine Grassmannian and embed the coordinate aligned

affine subspace Ai using the idea introduced in [35]. We will also show that when equipping with

chordal distance, the optimal solution to our proposed minimization problem is closely related to

the flag mean discussed in [18]. We will follow the notation in [35].

Definition 3.10.1. The Grassmannian of k-dimensional affine subspaces in Rn, which is denoted

by Graff(k,n), is the set of k-dimensional affine subspaces of Rn.

Recall that we define coordinate-aligned affine subspace

41

Ai =
{

x(i) + t(i)
∣

∣

∣
t(i) ∈ span(ej1 , . . . , ejd(i))

}

.

Let Ei = [ej1 , . . . , ejd(i)] and Ei denote the column span of Ei, one can also denote Ai as Ei +

x(i) ∈ Graff(d(i), n), which can also be denoted by its orthogonal affine coordinates [Ei, x
(i)] ∈

Rn×(d(i)+1) since Ei and x(i) are orthogonal (ET
i x

(i) = 0).

The affine Grassmannian Graff(k, n) is an open submanifold of Gr(k + 1, n + 1) along with

an embedding which could be understood in the matrix setting. Let [Ei, x
(i)] be the orthogonal

affine coordinate of Ei+x(i) ∈ Graff(d(i), n), one can denote Ei+x(i) by a (n+1)-by-(d(i)+1)

orthonormal matrix

YEi+x(i) =







Ei x(i)/
√

1 + ‖x(0)‖2

0 1/
√

1 + ‖x(0)‖2






∈ St(d(i) + 1, n+ 1).

A point on the affine Grassmannian, A+b ∈ Graff(kn) can be represented as a set of n+1-by-k+1

orthonormal matrices in the equivalence class:

















A b0

0 γ






·M :







A b0

0 γ






∈ St(k + 1, n+ 1), M ∈ O(k + 1)











,

where b0 = b/
√

1 + ‖b‖2 and γ = 1/
√

1 + ‖b‖2. The affine Grassmannian thus can be viewed as

the set of equivalence classes

Graff(k, n) ≃

















A b0

0 γ






·M :







A b0

0 γ






∈ St(k + 1, n+ 1), M ∈ O(k + 1)











⊆ Gr(k + 1, n+ 1).

The advantage of embedding Graff(k, n) in Gr(k + 1, n + 1) is that one can now utilize the well

studied geometric framework of regular Grassmannian. Recall our optimization problem:

42

V∗ = arg min
V∈Gr(k,n)

P
∑

i=1

d2(V, Ai)

where V is a k-dimensional linear subspace and Ai = x(i) + Ei is a d(i)-dimensional affine sub-

space and the distance metric we are using here is simply Euclidean distance. With the embedding

introduced above, one can map V to Gr(k + 1, n+ 1)via

YV =







V 0

0 1






∈ St(k + 1, n+ 1),

and map affine subspace Ai = Ei + x(i) as

YEi+x(i) =







Ei x(i)/
√

1 + ‖x(i)‖2

0 1/
√

1 + ‖x(i)‖2






∈ St(d(i) + 1, n+ 1).

Also we denote their corresponding points (linear subspace) on the Grassmannian by YV ∈

Gr(k+1, n+1) and YEi+x(i) ∈ Gr(d(i)+1, n+1) respectively. We can rewrite our optimization

problem as

YV
∗ = arg min

YV∈Gr(k+1,n+1)

P
∑

i=1

dg(YV,YEi+x(i))2, (3.11)

where we choose dg to be the chordal distance metric:

dg(YV,YEi+x(i))2 =
l

∑

j=1

sin2(θ
(i)
j)

where {θj}
l
j=1 are the principal angles between YV and YEi+x(i) . Now we can write our optimiza-

tion problem as:

43

YV
∗ = arg min

YV∈Gr(k+1,n+1)

P
∑

i=1

dg(YV,YEi+x(i))2 (3.12)

= arg min
YV∈Gr(k+1,n+1)

P
∑

i=1

l(i)
∑

j=1

sin2(θ
(i)
j) (3.13)

= arg max
YV∈Gr(k+1,n+1)

P
∑

i=1

l(i)
∑

j=1

cos2(θ
(i)
j) (3.14)

= arg max
YV ∈St(k+1,n+1)

P
∑

i=1

Tr(Y T
V YEi+x(i)Y T

Ei+x(i)YV) (3.15)

= arg max
YV ∈St(k+1,n+1)

P
∑

i=1

Tr(YEi+x(i)Y T
Ei+x(i)YV Y

T
V) (3.16)

The last equation above is due to the cyclic property of trace. Note that

YEi+x(i)Y T
Ei+x(i) =







EiE
T
i + x(i)x(i)T/(1 + ‖x(i)‖2) x(i)/(1 + ‖x(i)‖2)

x(i)T/(1 + ‖x(i)‖2) 1/(1 + ‖x(i)‖2))






,

YV Y
T
V =







V V T 0

0 1






.

and consequently,

YEi+x(i)Y T
Ei+x(i)V V T =







[EiE
T
i + x(i)x(i)T/(1 + ‖x(i)‖2)]V V T x(i)/(1 + ‖x(i)‖2)

x(i)TV V T/(1 + ‖x(i)‖2) 1/(1 + ‖x(i)‖2))






.

Since the bottom right element is a constant, to solve our optimization problem we only focus on

the top left term. Our optimization problem now becomes

44

V ∗ = arg max
V ∈St(k,n)

P
∑

i=1

Tr([EiE
T
i + x(i)x(i)T/(1 + ‖x(i)‖2)]V V T) (3.17)

= arg max
V ∈St(k,n)

Tr([
P
∑

i=1

(EiE
T
i + x(i)x(i)T/(1 + ‖x(i)‖2))]V V T). (3.18)

To simplify the notation, let A =
∑P

i=1(EiE
T
i + x(i)x(i)T/(1 + ‖x(i)‖2)), and we have

V ∗ = arg max
V ∈St(k,n)

Tr(AV V T)

= arg max
V ∈St(k,n)

Tr(V TAV)

The constraints V ∈ St(k, n) can be interpreted as V TV = I . Let Λ be a k-by-k symmetric matrix

of Lagrange multipliers for the constraints. The goal is to maximize

Tr[V TAV + Λ(V TV − I)]

By differentiation, it can be shown that

∂

∂V
Tr(V TAV) = (AT + A)V

∂

∂V
Tr(ΛV TV) = 2V Λ

Since A is symmetric, we can find that V must satisfy,

AV = V Λ, V TV = I.

One can quickly verify that the eigenvalue decomposition (EVD) of A provides a solution to our

optimization problem (3.17), i.e. let A = UΣUT be the eigen-decomposition of A, also denote the

"first" k columns of U corresponding to the k largest eigenvalues of A by Uk, then

V ∗ = Uk.

45

The embedding of affine subspaces onto the Grassmannian does give us a connection between

our geometric approach for missing data and the flag mean idea. One can view the solution to

the optimization problem (3.11) as the flag mean of all embedded affine subspaces associated with

data points(with missing entries). Practical applications utilizing this idea will be something to be

discovered for future work.

3.11 Conclusion

Given a dataset with missing (or corrupted) entries, the paper [20] gives an iterative procedure

for imputing the missing entries. We recast this iterative procedure as an optimization. One can

now solve this optimization via a wide variety of techniques, including gradient descent. It is

now also possible to add regularization terms (such as adding a preference for smooth solutions)

when performing gradient descent. We provide an example of time-series data where the iterative

procedure of [20] gets stuck in a suboptimal local minimum (though this is rare), whereas the

gradient descent algorithm we propose converges to the global minimum.

46

Chapter 4

Self-organizing Mappings on Grassmannian

In this section we will discuss a powerful nonlinear dimensionality-reducing tool known as the

Self-Organizing Mappings, or SOMs and more importantly, we will extend SOMs to the Grass-

mann manifold so that we can utilize some of the attractive features of set-to-set pattern.

4.1 Introduction

The Self-Organizing Mappings was first introduced by Kohonen in [28]. This method has

proven to be a valuable tool for visualization in low-dimensional space, see [29, 31] for more

details. To be specific, in [30] Kohonen shows some extensive applications of SOM including

bioinformatics which we will also explore in Section 4.3 under the context of biological pathway

analysis. The key idea of this approach is that the data points which are close in higher dimensional

space should be represented as neighbors in low dimensional space. The pseudocode of standard

SOM is given in Algorithm 4.

Algorithm 4: Self-organizing Mappings

Input Data: Set of data points {x(µ)} ∈ Rn, µ = 1, . . . , P.
Output Data: Updated centers {ci}, i ∈ I
Initialization: Initialize a set of center vectors {ci}, ci ∈ Rn,i ∈ I
For: j = 0, 1, 2, . . .
Step 1: Present a randomly selected data point x(µ) to the network.

Step 2: Determine the winning center ci∗
Step 3: Update all the centers using

δci = ǫh(i− i∗)(x(µ) − ci∗)

Step 4: Iterate

The critical ingredients in Self-organizing Mappings is the multiplicative term h(x) in the up-

date rule. This function serves as the ordering of the center indices based on the nearness of the

47

winning centers. Also ǫh(x) is referred to as the localization term. In this section we select

Gaussian function as our h(x), i.e.,

h(x) = exp(−x2/r2).

This function is essentially saying that all the centers are updated at a rate proportional to the

nearness of their index to the winning index. If d(i, i∗) is small then h is large, while the centers

whose index is far away from i∗(d(i, i∗) is big) get updated very slightly. As a result, this pro-

duces a self -organizing map, since the centers with neighboring indices are trained to capture

neighboring inputs and map them as neighbors. That being said, we say a map is self-organizing if

• x(µ) has winning center ci(µ), i(µ) ∈ I

• x(ν) has winning center ci(ν), i(ν) ∈ I

• the distance d(x(µ), x(ν)) is small,

then the distance between the winning indices d(i(µ), i(ν)) is also small. The Self-organizing map-

pings described above may also be considered as a tool of dimensional reduction. The reduction

takes input data points in the domain and maps them to the nearest center which is associated with

a unique spatial index living in the center index set I, i.e.,

SOM : x(µ) ∈ Rn 7−→ ci∗ ∈ Rn 7−→ i∗ ∈ I

For Euclidean SOM, the pattern x(µ) and ci are both living in Rn. The index set I for Self-

organizing mappings may also be attached with a topological structure induced by the distance

metric d(., .) defined on I. For example, the indices can be associated with points on a line, a

circle or a plane. In this thesis, we select a rectangular lattice set of points of size m× n as our I.

48

4.2 Grassmannian SOM

In this section we will develop the extension of the SOM algorithm on Euclidean space to

the Grassmann manifold, from which data points parametrize all k-dimensional subspaces of n-

dimensional vector space. As can be seen from Algorithm 4, to implement the Self-organizing

mappings on some ambient space other than Euclidean space(e.g. the Grassmann/Flag manifold),

all we need is the following two ingredients:

1. A measure of distance between two data points: d(x(i), x(j))

2. A path to move one data point towards another.

Both of these two ingredients are already discussed in Section 2.4. Given two linear subspaces(two

points in Gr(k, n)), any distance metric is a function of the principal angles. A path between two

points from Gr(k, n) is given as the logarithmic map formula in Equation (2.17). Now we are

ready to extend SOM algorithm to the Grassmann manifold.

Since the algorithm iteratively updates the initial centers we use a superscript to denote the

value of ci at the m-th iteration. Recall that the update equation for Euclidean SOM is given by:

cm+1
i = cmi + ǫh(d(i, i∗))(x− cmi)

where i∗ is the spatial index of winning center associated to pattern x, i.e.

i∗ = arg min
i

‖x− cmi ‖2.

The distance between x and cmi is the standard Euclidean distance since x,cmi ∈ Rn. Also as

mentioned above the localization term h(x) = exp(−s2/σ2) and the distance metric d which

induces the topology on I is defined as the Euclidean norm d(i, j) = ‖i− j‖2.

On the Grassmann manifold data points are no longer vectors in Rn but rather k-dimensional

subspaces of Rn . We select an initial set of centers {Ci} where i ∈ I is the spatial index and

Ci ∈ Gr(k, n). For a given subspace X ∈ Gr(k, n) we find the closest center from the set of

49

centers {Ci} by

i∗ = arg min
i

dg(X,Ci)

where the distance metric dg is given by Equation (2.8). To move the centers towards subspace X

by certain amount, we compute the geodesic between each center Ci and data point X, as described

in Section 2.4, by computing the thin SVD,

UΣV T = (I − CT
i)Ci(X

TCi)
−1

The localization term now becomes

t = ǫnhn(d(ai, ai∗)).

The nearness function is taken as

hn(s) = exp(−s2/σ2
n)

where σn = σ0(1 − n/T) and ǫn = ǫ0(1 − n/T). Therefore the centers are updated along the

geodesic between X and X Ci(t), by moving from Ci(0) to Ci(t), where localization term t is

based on the local neighborhoods of spatial indices hn and learning step ǫn.

4.3 Numerical Results

In this section we apply Grassmannian SOM on both synthetic data and biological gene ex-

pression datasets.

4.3.1 Synthetic data

To start we will present is an illustrative example to check if our algorithm can capture the

topology of straight line in high-dimensional Grassmannian on a 2-D square lattice. In this ap-

50

Algorithm 5: Generate uniformly distributed random point on Gr(k, n)(MATLAB code)

Input Data: k, n ∈ N, where k ≤ n
Output Data: Q ∈ Rn×k s.t. QTQ = I
Result:

1 Function uniformRandMat(k,n):

2 M = rand(n, n);

3 tempM = M(:,1:k);

4 Q = qr(tempM,0);

5 return Q

plication, we need uniform samples from O(n), St(k, n), and Gr(k, n), which could be achieved

by constructing an n × n matrix of independent and identically-distributed normal[0, 1] random

variables, and QR factoring it for Q. The MATLAB code which generates uniform samples on

Gr(k, n) is presented in Algorithm 5. We generate Q1, · · · , Q4 ∈ R10×2 using algorithm 5 with

k = 2, n = 10. These matrices serve as representatives of linear subspaces in Gr(2, 10).

Parametrize a "straight line" on Gr(k, n)

Our first application is illustrative in the sense that we are going to use 1-D integer index set to

capture the topology of a "straight line" on Gr(2, 10), i.e. a geodesic path between Q1 and Q2. We

generate the data by sampling ten point uniformly along the geodesic path:

Φ(t) = Q1V cos(Θt) + U sin(Θt)

where UΣV T = (I − Q1Q
T
1)Q2(Q

T
1Q2)

−1 and Θ = arctanΣ. This idea of uniformly sample

along geodesic is utilized in geodesic based Domain Adaptation under the field of computer vision,

where the information between two domains are conveyed via geodesic path, see [21,22] for more

details. The Grassmannian SOM here serves to sort the points on the geodesic connecting Q1 and

Q2. Note that in this example, the order of data points is provided in the sampling process:

Pi = Φ(ti) , ti = (i− 1)/10, i = 1, · · · , 10.

51

distance

1 2 3 4 5 6 7 8 9 10

center

1

2

3

4

5

6

7

8

9

10

p
o
in

t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 4.1: This matrix has the distances between the point i and center j after convergence. Note that

point i is closest to center j when i = j, reflecting the ordering mechanism of the Grassmannian SOM.

Ten centers on Gr(2, 10) are randomly initialized using Algorithm 5. We use the integer index set

{1, 2, · · · , 10} to capture the topology. The geodesic distance between points and the final order is

shown in Figure 4.1.

4.3.2 Indian Pines

To illustrate the utility of the proposed method for visualizing real data, we apply it to the

well-known Indian Pines hyperspectral image [34]. We have considered this data set before in

the context of the band selection problem [13] and the persistent homology for signal detection on

Grassmannians [15]. A related visualization application invokes the technique of multidimensional

scaling and sparse support vector machines [14]. The classes are shown in Figure 5.

In this application we selected the 12 classes that were large enough to give 20 subspaces

of dimension ten. Since this application is merely intended to illustrate the model we made no

attempt to optimize our parameters. However, our previous work suggests these dimensions are

reasonable [14]. Thus we are visualizing 240 labeled points in 220 dimensions by first constructing

sets of 10-dimensional subspaces in 220-dimensions using the SVD.

52

We initialized the centers for Grassmannian-SOM by selecting 900 ten dimensional subspaces

at random, corresponding to a 30 × 30 integer lattice. This was done by computing the singular

value decomposition of matrices of size 220 by 10 from the uniform distribution. In Figure 4.2,

we see the results of the Grassmannian-SOM algorithm where points in the same class have been

organized to have similarly valued indices.

In Figures 4.3 and 4.4, we see the results of the Grassmannian-SOM when the points reside on

Gr(2, 220) and Gr(1, 220), respectively. This data set is well-known as a challenging classification

problem. For example, there are classes which are inherently very similar such as corn (green),

corn-notill (red) and corn-mintill (blue). We see that these three classes are well-separated for

SOM on Gr(10, 220) while there is overlap using Gr(1, 220) and Gr(2, 220). In particular, the

corn-mintill (blue) is much less localized on the lower-dimensional Grassmannians. We observe

excellent clustering in the majority of classes with the possible exception of green pasture (x) which

shows distinct spread suggesting it has significant spectral overlap with the other classes. These

results vary the dimension of the Grassmannian and are higher resolution than those presented in

the preliminary work [27].

4.3.3 Gene Expression Data

Here we examine the application of Grassmannian SOM to two gene expression data sets. The

first is related to the immune response in mice to the Ebola virus while the second explores the

human immune response to respiratory infection.

Ebola Mice Data

In this example we examine the application of Grassmannian SOM to a gene expression data set

collected from mice responding to infection from the Ebola virus [41]. Each raw data point consists

of a set of over 12,000 genes. As a preprocessing step we identify the subset of all discriminatory

genes that classify infected versus controls; see [39,47] for details. Using these genes as the starting

point we identified some 1300 biological pathways potentially of interest in the immune response

to infection. Subsequently we applied machine learning techniques to select top pathways for

53

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 4.2: This figure shows the final configuration of the points as mapped to the 2D index set from

Gr(10, 220).

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 4.3: The converged Grassmannian SOM applied to the Indian Pines classes on Gr(2, 220).

54

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 4.4: The converged Grassmannian SOM applied to the Indian Pines classes on Gr(1, 220).

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 4.5: Mapping of gene expression data on T cell receptor signaling pathway.

55

Figure 4.6: These four plots are 2D visualization of Uninfected Control and Infected subjects from hour

30 to 48. Top left: PCA visualization. Top right: Grassmannian-SOM on Gr(1, 56). Bottom left:

Grassmannian-SOM on Gr(2, 56). Bottom right: Grassmannian-SOM on Gr(3, 56).

further study. We have selected one of these pathways, i.e., the T cell receptor signaling pathway

consisting of 48 genes, as an example to test the Grassmannian SOM algorithm on the Ebola Virus.

We pick 3 points at random from each class to construct a single point on the Grassmannian.

Hence each point on the Grassmannian lives on Gr(3, 48), i.e., it consists of 48 genes and three

biological samples. The result of training the Grassmannian SOM algorithm are shown in Figure

4.5 where the high dimensional observations are mapped to the two-dimensional index set in the

usual manner. The red points represent control samples of healthy non-human primates. The green

* points are the gene expression values at day one, while the blue + samples reflect expression at

day 2 after exposure to infection by the Ebola virus. Although we do observe some of the desired

clustering with this example, additional data appears to be required to provide a more complete

picture. Hence, we present the following example on H3N2 influenza data set.

56

H3N2 Influenza Data

The H3N2 gene expression data sets was downloaded from GEO GSE73072 which consists

of 7 studies. Two H3N2 challenge studies, i.e. Dee2 and Dee5 are selected for this experiment.

Please see [37] for more details. We used the Reactome interferon alpha beta signaling pathway

which contains 56 genes to form our data matrix, hence each data point resides on Gr(k, 56). The

solid blue circles represent uninfected control data (before inoculation) and red triangles represent

infected samples from hour 30 to 48 after inoculation. For each k, we attached 900 randomly

generated k dimensional subspaces to a 30 × 30 integer lattice, which is done in the same way as

is described in section 4.3.2. In Figure 4.6, we see the results of Grassmannian-SOM when data

points live on Gr(1, 56)(top right), Gr(2, 56)(bottom left) and Gr(3, 56)(right). We observe that

two classes are well separated for SOM on Gr(3, 56) while we start seeing overlaps on Gr(2, 56)

and even more overlaps on Gr(1, 56). As a comparison, we also included the 2D visualization

via PCA(top left) of this dataset, from which we can also find overlaps between two classes when

data is projected onto the first two principal components. This example shows strong clustering

performance when Grssmannian-SOM is applied to biological gene expression pathway data.

4.4 Conclusion

We have presented an extension of the self-organizing mapping algorithm to the geometric set-

ting of the Grassmann manifold. The approach moves centers towards data points presented to

the network by moving proportionally along the geodesic, or shortest path between two elements

of Gr(k, n). We illustrate the method by showing that the algorithm organizes the hyperspectral

image data in the index space and separates ten dimensional subspaces of 220 dimensional space.

While lower dimensional Grassmannians also capture significant structure, the 10-D subspaces

captured the most variability consistent with observations made using other algorithms. We also

observe that three dimensional subspaces resolve the H3N2 data into separable control and infected

classes while these are clearly non-separable using either a standard PCA projection or Grassman-

57

nian SOM with one-dimensional subspaces. Hence the data subspace perspective is essential to

adequately process the data using SOM.

58

Chapter 5

Extension to the Flag manifold

5.1 Overview of the flag manifold

The algorithms introduced in previous chapters are based on the Grassmann manifold. How-

ever some applications would require us to focus on a more generalized setting beyond a set of

k-dimensional linear subspaces in Rn. An interesting structure which generalizes the Grassmann

manifold and captures additional geometry in data is known as the flag manifold. Intuitively, a

flag is a sequence of nested subspaces. For example, a signal can be approximated with increasing

resolution via a sequence of nested wavelet scaling space. This sequence of nested scaling sub-

spaces is a point on the corresponding flag manifold. In addition, an ordered basis v1, v2, · · · , vk of

a data set obtained from principal component analysis also induces a sequence of nested subspaces

V1 (V2 (· · · (Vk where Vj = span(v1, · · · , vj). We first look at the definition of the flag

manifold.

Definition 5.1.1. Let p = {n1, n2, · · · , nd} be a sequence of positive integers such that
∑d

i=1 ni =

n. A flag, F, in Rn is a nested sequence of subspaces

V1 (V2 (· · · (Vd (Rn

such that dim(Vj) =
∑j

i=1 ni. We denote the set of all such flags by Fl(n1, n2, · · · , nd) and call

it the flag manifold of type p.

As a demonstrative example, a special case Fl(1, 1, · · · , 1), is the set of all flags of type

{1, 1, · · · , 1}, which is also referred to as a full flag. Figure 5.1 illustrates the first three nested

subspaces of Fl(1, 1, · · · , 1), i.e. a line lives in a plane which lives in a 3-dimensional subspace.

Also a flag of type {k, n − k} is exactly a k-dimensional subspace in Rn or a point on the Grass-

59

mann manifold Gr(k, n). In short, Fl(k, n− k) = Gr(k, n). Here we introduce three cases where

the nested(ordered) structure of flag naturally rises in data analysis.

Figure 5.1: Illustration of a flag Fl(1, 1, · · · , 1), i.e. a 1-dimensional line living in a 2-dimensional plane

living in a 3-dimensional space· · ·

1. Multi-resolution analysis: Wavelet analysis or Multi-resolution analysis is associated with a

sequence of nested vector spaces which approximate data with increasing resolution. Each

scaling subspaces Vi is a dilation of its neighboring subspace Vi+1, i.e., if a signal f(x) ∈

Vi then a reduced resolution version f(x/2) ∈ Vj+1. Here the scaling spaces are nested,

i.e.,

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · .

In the finite dimensional setting, a nested scaling space can be understood as a flag on the

corresponding flag manifold. For example, let x = [1, 2, 3, 4]T be a signal and we use Haar

wavelet to approximate x. The Haar wavelet matrix H demonstrated in Figure 5.2 can be

viewed as a point on Fl(1, 1, 2) in the following way. The first scaling space V0 is the

span of first column in H . The approximation of x using V0 is simply the average of four

entries in x, i.e., a constant vector x̃0 = [2.5, 2.5, 2.5, 2.5]T , which can be understood as

approximating x in its lowest resolution. Now if we use the span of the first two column

of H , the second scaling space V−1 to approximate x(project x onto V−1), we end up with

x̃−1 = [1.5, 1.5, 3.5, 3.5]. Now we are approximating x in a higher resolution. Finally, if we

60

approximate x via the column span of H , which is the whole V−2 = R4, we get x back.

This can be viewed as approximating x under the finest resolution.

Figure 5.2: Illustration of D2 matrix and the associated nested scaling spaces

2. SVD basis of a real data matrix: Let X ∈ Rn×k be an n-by-k real data matrix which consists

of k-samples with n being the ambient dimension. And let UΣV T = X be the compact

SVD of X . U is an n × d orthonormal matrix consisting of d left singular vectors of Xand

more importantly, U is an ordered basis of the column span of X . The order of columns of

U is determined by the magnitude of singular values of X . Putting this under the context of

principal component analysis, the columns of U are associated to the ordered principal com-

ponents and the order is determined by the amount of variance each principal vector captures

from X . Let U = [u1|u2| · · · |ud], then the nested subspaces span(u1) (span(u1, u2) (

· · · (span(u1, u2, · · · , ud) is a flag of type p = {1, · · · , 1, n − d;n} in Rn. Later we will

introduce the distance metric between two flags, from there one may consider the distance

between two datasets by computing the distance between their SVD basis which takes the

order of basis into account.

61

3. Aligned canonical basis corresponding to principal vectors: The geodesic between two k-

dimensional subspaces can be understood as a path between corresponding principal vectors,

which provides an order on both of two bases. To be more specific, Let X, Y ∈ Rn×k be two

orthonormal real matrices, the geodesic distance between the corresponding column span

X,Y can be computed by

d(X,Y) =

√

√

√

√

k
∑

i=1

θ2i

, where θi’s are the singular values of XTY :

XTY = UΣV T ,Σ = diag(θ1, θ2, · · · , θk).

Let XU = [x1|x2| · · · |xd] and Y V = [y1|y2| · · · |yd], as already discussed in Section 2.5,

xi, yi are ith pair of principal vectors corresponding to subspaces X and Y. Also XU

and Y V are known as the canonical basis of X and Y. This order also induces a flag

span(x1) (span(x1, x2) (· · · (span(x1, x2, · · · , xd)(span(y1) (span(y1, y2) (· · · (

span(y1, y2, · · · , yd)) of type p = {1, 1, · · · , 1, n− k}.

5.2 The flag manifold as a matrix manifold

To implement any numerical algorithm on the flag manifold requires a matrix representation

for points on the flag manifold. In this section, we will follow the idea in [19] and Section 2.4,

we utilize the quotient manifold structure to represent flags and describe the tangent space.

5.2.1 Quotient manifold of O(n)

In Section 2.4, we follow the idea in [19] and describe the Grassmann manifold Gr(k, n) as

a quotient manifold: Gr(k, n) ∼= O(n)/O(k) × O(n − k). Similarly, we can also view the flag

manifold Fl(n1, n2, · · · , nd) as a quotient manifold of O(n):

Fl(n1, n2, · · · , nd) ∼= O(n)/(O(n1)×O(n2)× · · · ×O(nd))

62

where

d
∑

i=1

ni = n.

One thing to note is that the orthogonal group O(n) has two disconnected components, i.e.,

n-by-n orthogonal matrices with determinant 1 and −1. Since our main purpose here is to develop

algorithm based on geodesic and corresponding distance metric, we can constrain our computation

to the special orthogonal group SO(n), i.e. the set of n-by-n orthogonal matrices with determinant

1. Hence for computational purpose, we view the flag manifold as,

Fl(n1, n2, · · · , nd) ∼= SO(n)/S(O(n1)×O(n2)× · · · ×O(nd)).

Also, SO(n)/S(O(n1) × O(n2) × · · · × O(nd)) is referred to as the non-oriented flag manifold,

which will be discussed further with partially and fully oriented flag in Section 5.4.

Now we can utilize this quotient structure to represent flags as matrices. Let Q ∈ SO(n) be an

n-by-n orthogonal matrix with positive determinant, the equivalence class [Q] which represents a

flag on Fl(n1, n2, · · · , nd), is the set of orthogonal matrices,

[Q] =



































Q



















P1 0 · · · 0

0 P2 · · · 0

...
. . .

...

0 · · · Pd



















: Pi ∈ O(ni) , n1 + n2 + · · ·+ nd = n



































and

Det



















P1 0 · · · 0

0 P2 · · · 0

...
. . .

...

0 · · · Pd



















= 1.

Follow the derivation shown in Section 2.2.1, it is straightforward to compute the vertical and

horizontal space to a flag manifold of type p = {n1, n2, · · · , nd} as a quotient manifold of O(n).

63

Recall that the vertical space is defined to be vectors tangent to the set [Q] ∈ Fl(n1, n2, · · · , nd).

One can compute the vertical space at Q, VQ is the set of matrices of the form,

VQ = Q



















A1 0 · · · 0

0 A2 · · · 0

...
. . .

...

0 · · · Ad



















where Ai ∈ Rni×ni and Ai = −AT
i . One may compute the orthogonal complement of VQ in

TQO(n) with respect to the Euclidean metric. It follows that the horizontal space HQ is the set of

matrices of the form

HQ = Q



















0n1 ∗

0n2

. . .

−∗T 0nd



















where 0ni
is an ni-by-ni zero matrix. The notation ∗ and −∗T is to indicate the skew-symmetric

structure. Matrices of this form are orthogonal to the vertical space VQ with respect to the Eu-

clidean metric. As discussed in Section 2.2.1, horizontal space provides a representation of tangent

vectors to the quotient manifold, i.e. Fl(n1, n2, · · · , nd). Hence the tangent space to a flag mani-

fold of type p at a point [Q], T[Q]Fl(n1, n2, · · · , nd) is given by the horizontal space HQ. Thanks

to the quotient structure of the flag manifold, to obtain the geodesic formula we just need to further

constrain the velocity vector H in the orthogonal group geodesic

φ(t) = Q exp(tH)

64

to be living in the horizontal space HQ [38]. Therefore the flag geodesic formula emanating from

Q with velocity C̃ is

Q(t) = Q exp(tC̃) (5.1)

where C̃ is any skew-symmetric matrices of the form

C̃ =



















0n1 ∗

0n2

. . .

−∗T 0nd



















, 0ni
= 0ni×ni .

Since C̃ is a skew-symmetric matrix, one can compute the Youla decomposition [51] C̃ = UΣUT

where U is an n-by-n orthogonal matrix and Σ is a block-diagonal matrix has the following form,

Σ =



























































0 λ1

−λ1 0
0 · · · 0

0
0 λ2

−λ2 0
0

...
. . .

...

0 0 · · ·
0 λr

−λr 0

0

. . .

0



























































. (5.2)

where ±λji are the pure imaginary eigenvalues of C̃. This decomposition is also referred to as

the spectral decomposition of skew-symmetric matrix and numerically this can be considered as

a rearrangement of SVD of C̃. The essence of this factorization is that it provides a numerical

65

formula to compute the exponential map, which in our case it is simply the matrix exponential.

The flag geodesic

Q(t) = Q exp(tC̃)

can now be written as

Q(t) = Q exp(UtΣUT).

Expanding the right-hand side via Taylor’s expansion yields

Q(t) = QU exp(tΣ)UT (5.3)

= QUR(t)UT (5.4)

where R(t) is a block-diagonal matrix of the following form,



























































cos(tλ1) − sin(tλ1)

sin(tλ1) cos(tλ1)
0 · · · 0

0
cos(tλ2) − sin(tλ2)

sin(tλ2) cos(tλ2)
0

...
. . .

...

0 0 · · ·
cos(tλr) − sin(tλr)

sin(tλr) cos(tλr)

1

. . .

1



























































. (5.5)

Equation (5.4) also provides an intrinsic distance formula between [Q(0)] and [Q(1)]

d([Q(0)], [Q(1)]) =

√

√

√

√

n
∑

i=1

λ2
i

66

This concludes the numerical geodesic formula on the flag manifold given initial position and

velocity, with which one can implement the steepest descent algorithm on the flag manifold. And

yet we are also interested in the inverse operation: logarithmic map, i.e. given two points on a flag

manifold, find the velocity vector and the corresponding distance.

5.2.2 Logarithmic map

In this section, we utilize equation (5.1) to find a numerical approximation of the geodesic

between two points on a flag manifold. Let [Q1], [Q2] ∈ Fl(n1, n2, · · · , nd) be two points on a

flag manifold with matrix representation Q1, Q2 ∈ SO(n), our goal is to find the solution to the

following factorization

Q2 = Q1 exp(H)M (5.6)

for H and M . Here H and M are constrained to be of the form

H =



















0n1 ∗

0n2

. . .

−∗T 0nd



















and M =



















M1 0 · · · 0

0 M2 · · · 0

...
. . .

...

0 · · · Md



















.

where H is skew-symmetric, Mi ∈ O(ni), M ∈ SO(n). One may interpret equation (5.1) in the

following way. In practice, two data points [Q1], [Q2] ∈ Fl(n1, n2, · · · , nd) will be represented

as two orthogonal matrix Q1, Q2 ∈ SO(n). The geodesic velocity vector between [Q1] and [Q2]

does not necessarily send Q1 to Q2. As illustrated in Figure 5.3, one may first map Q1 to a

representative in [Q2] via the exponential map with velocity H . Then this element in [Q2] is

mapped to Q2 via right multiplication of matrix M . For Fl(k, n−k), i.e. the Grassmann manifold

Gr(k, n), one can solve for velocity matrix H analytically. See [19] for more details. For the more

general flag manifold case, we will present an algorithm to find the numerical approximation of H

and M in Section 5.3. Towards the goal of introducing the iterative algorithm, we may simplify

67

Equation (5.1) further by moving Q1 to the identity(matrix), which can be done by multiplying QT
1

on both sides of Equation (5.6). Let Q = QT
1Q2, one can rewrite (5.6) as

Q = exp(H)M. (5.7)

To facilitate the description of the algorithm, a couple of notation needs to be introduced. We

define Was the vector space of all n-by-n skew-symmetric matrices. Set p = (n1, n2, · · · , nd).

We define Wp as the set of all block-diagonal skew-symmetric matrices of type p, i.e.

Wp = {G ∈ W | G =













G1 · · · 0

...
. . .

...

0 · · · Gd













} (5.8)

where Gi ∈ Rni×ni and Gi = −GT
i . And correspondingly we can define its orthogonal comple-

ment in W , i.e.

W⊥
p = {H ∈ W | H =













0n1 ∗

. . .

−∗T 0nd













} (5.9)

where 0ni
is a ni-by-ni zero matrix.

Instead of solving Equation (5.7) for H and M directly, we propose to solve the following

system of equations:

Q = exp(H) exp(G) (5.10)

for H and G where H ∈ W⊥
p and G ∈ Wp. It is important to note that solving Equation (5.10) im-

plicitly put our computation on, as we will call it, the fully-oriented flag manifold SO(n)/(SO(n1)×

SO(n2)× · · · × SO(nd)), which will be further discussed in Section 5.4. There is a 2d−1 to 1 map

68

Figure 5.3: Illustration of Equation (5.7). The vertical lines represent the equivalence classes [Q1] and [Q2]
respectively. Q1 is mapped to an element in [Q2] by right multiplication with exp(H) which is then sent to

Q2 by multiplying with M .

from the fully-oriented flag manifold to the flag manifold(non-oriented flag manifold). To find H

and distance between two flags [Q1] and [Q2], one needs to find the optimal H with the shortest

distance arise from the output of the algorithm.

5.3 Numerical Algorithm for Log map

Recall that the equation we want to solve is

Q = exp(H) exp(G)

with constraints H ∈ W⊥
p and G ∈ Wp. Wp and W⊥

p are defined in Equation (5.8) and (5.9). The

idea of our Iterative Alternating algorithm is straightforward. First we define

ProjH : Rn×n 7→ W⊥
p

as a projection of n-by-n matrices to the set of n-by-n skew-symmetric matrices in W⊥
p , and also

ProjG : Rn×n 7→ Wp

69

Figure 5.4: Demonstration of the iterative alternating algorithm

as a projection to the set of n-by-n block-diagonal skew-symmetric matrices of type p in Wp. As

illustrated in Figure 5.4, given an initial guess G(0) ∈ Wp, one can "solve" for H numerically. Let

Ĥ = log(Q ·exp(G(0))T), since Ĥ is in general not living in W⊥
p), we project Ĥ onto W⊥

p to obtain

the updated H . This projection simply sets certain select entries in Ĥ to be zero, which is denoted

by H(1) = ProjW⊥
p
(Ĥ). Then we turn to solve for G in the same way. Let Ĝ = log(exp(H(1))TQ)

we project Ĝ onto Wp, i.e. G(1) = ProjG(Ĝ). Then iterate this process until it converges. The

pseudo-code of our Iterative Alternating algorithm is presented in Algorithm 7.

It is important to note in this section, exp and log are used to denote matrix exponential and

principal matrix logarithm. Please refer to [2, 3] for details about computing principal matrix

logarithm. Since we are doing computation on matrices from SO(n), it is straightforward to show

the eigenvalues of the special orthogonal matrix are unit complex numbers. This indicates that the

principal matrix logarithm is defined as long as −1 is not an eigenvalue of a special orthogonal

matrix, which we never observed in our computation.

Recall that the original equation we want to solve is Q = exp(H) · M , while our iterative

algorithm is working with Q = exp(H) exp(G). Since G is a block-diagonal skew-symmetric

matrix of type p, the image of the exponential map exp(G) is a block-diagonal special orthogonal

matrix, i.e. each block along the diagonal is a ni-by-ni special orthogonal matrix. Our algorithm is

working on the fully-oriented flag manifold SO(n)/(SO(n1)× SO(n2)× · · · × SO(nd)) instead

of the non-oriented flag manifold of type p, SO(n)/S(O(n1)×O(n2)× · · ·×O(nd)). As we will

70

see in the next Section, a fully-oriented flag manifold of type p = (n1, n2, · · · , nd) is a 2d−1 cover

to the corresponding flag manifold of type p.

5.4 Partially and fully oriented flag manifold

In this section, we will introduce the fully-oriented flag manifold which we encounter dur-

ing the implementation of our Iterative Alternating algorithm. To the best of our knowledge,

fully-oriented flag manifold is barely discussed in the literature under the context of data anal-

ysis. In [42], oriented flag manifold is used to describe the possible positions of a rigid body.

As previously mentioned, the fully-oriented flag manifold is defined as a quotient manifold of

SO(n). Let P ∈ SO(n) be an n-by-n special orthogonal matrix. The equivalence class [P] which

represents a point on the fully-oriented flag manifold of type p = (n1, n2, · · · , nd) is the set of

orthogonal matrices,

[P] =



































P



















P1 0 · · · 0

0 P2 · · · 0

...
. . .

...

0 · · · Pd



















: Pi ∈ SO(ni) , n1 + n2 + · · ·+ nd = n



































,

We denote the fully-oriented flag manifold as Fl+(n1, n2, · · · , nd).

Recall that when we define the equivalence class in non-oriented flag manifold, the diagonal

elements Pi’s are only required to be living in O(ni) and diag{P1, P2, · · · , Pd} as a whole should

be living in SO(n). For the fully-oriented flag, Pi’s are required to be ni-by-ni special orthogonal

matrices. That is to say, we now take the orientation of each subspace in the flag structure into

consideration. For example, the non-oriented flag Fl(1, 1, 1) is the set of a 1-dimensional line in a

2-dimensional plane in the 3-dimensional space. The corresponding fully-oriented flag Fl+(1, 1, 1)

is the set of directed 1-dimensional line in a directed 2-dimensional plane living in the R3 space.

One can verify that the fully-oriented flag Fl+(n1, n2, · · · , nd) is a 2d−1 cover to the corresponding

non-oriented flag manifold Fl(n1, n2, · · · , nd).

71

To view the partially-oriented flag manifold, we need to decorate the notation we introduced

above a bit. We will explore the fully-oriented and partially-oriented flag manifold via a matrix

example. Let Fl(2, 2, 2) = SO(6)/S(O(2) × O(2) × O(2)) be a non-oriented flag manifold.

Denote the first O(2) by a, the second O(2) by b and the third O(2) by c. The non-oriented

flag Fl(2, 2, 2) is denoted by Flabc(2, 2, 2) where subscript abc is used to emphasize that each

O(2) component can have positive or negative unit determinant but together, the whole matrix has

determinant 1, i.e., S(O(2)×O(2)×O(2)) is the subgroup of block-diagonal matrices













P1

P2

P3













, Pi ∈ O(2),
3
∏

i=1

det(ai) = 1.

Then the corresponding fully-oriented flag can be denoted as Fla,b,c(2, 2, 2) = SO(6)/SO(2) ×

SO(2) × SO(2) where this time the comma-separated subscript a, b, c is used to emphasize that

each component along the diagonal has unit determinant, i.e., SO(2) × SO(2) × SO(2) is the

subgroup of block-diagonal matrices













Q1

Q2

Q3













, Qi ∈ SO(2).

Follow this subscript notation, Flab,c(2, 2, 2) = SO(6)/S(O(2)×O(2))×O(2) is one of the three

associated partially-oriented flag manifolds. The diagram which describes the relations between

non-oriented flag, partially oriented flag and fully-oriented flag is demonstrated in Figure 5.5.

Let A1 ∈ SO(6) be a 6-by-6 orthogonal matrix with determinant 1, also let

72

A2 = A1

































−1

1

−1

1

1

1

































, A3 = A1

































−1

1

1

1

−1

1

































A4 = A1

































1

1

−1

1

−1

1

































.

A1, A2, A3, A4 are four different points on the fully-oriented flag Fla,b,c(2, 2, 2). However, they are

living in the same equivalence class on the non-oriented flag Flabc(2, 2, 2). A1 and A2 are different

representations of the same point on partially-oriented flag manifold Flab,c(2, 2, 2). Similarly, A1

and A3 represent the same point on Flac,b(2, 2, 2), also A1 and A4 represent the same point on

Fla,bc(2, 2, 2).

As discussed in Section 5.3, our Iterative Alternating algorithm is implicitly implemented on

the fully-oriented flag manifold. Given a non-oriented flag [Q] ∈ Fl(n1, n,2, · · · , nd), there are

2d−1 different representations of [Q] on the corresponding fully-oriented flag manifold. Since our

goal is to compute distance and geodesic on the non-oriented flag, we need to pass all 2d−1 repre-

sentations, {Qi}
2d−1

i=1 ,of [Q] to the Iterative Alternating algorithm and solve Qi = exp(Hi) exp(Gi),

i = 1, · · · , 2d−1 for the optimal H which gives the shortest distance. Recall that the distance asso-

ciated with H is

d =

√

√

√

√

l
∑

k=1

λ2
k

73

Figure 5.5: This diagram shows the relations between non-oriented flag, partially oriented flag and fully

oriented flag.

where ±iλk are eigenvalues of H . Here we will modify the Iterative Alternating algorithm intro-

duced in Section 5.3 so that it covers all representations on the corresponding fully-oriented flag

to output the optimal velocity matrix H to recover the geodesic on the non-oriented flag manifold.

The pseudo-code for Iterative Alternating Algorithm is presented in Algorithm 7 and the accessory

pseudo-code that generates all representations of [Q] ∈ Fl(n1, n2, · · · , nd) is also presented in

Algorithm 8. An overview of the main algorithm is presented as follows,

1. Present two (special) orthogonal matrix representations (of data sets) X1, X2 ∈ SO(n) and

the flag structure p = {n1, · · · , nd} to the algorithm. Move X1 to the origin (identity):

Q = XT
2 X1.

2. Compute all 2d−1 elements of Q in the fully oriented manifold via Algorithm 8: {Qi}
2d−1

i=1 =

generateQi(Q,p)

3. For each element Qi ∈ {Qi}
2d−1

i=1 , solve Equation (5.10) using Algorithm 7: H
(j)
i , G

(j)
i =

iterativeSolver(Qi,p), iterate this process M times, i.e. j = 1, · · · ,M . Find the solution as-

74

sociated with the minimum distance: H∗
i = argmin

√

1
2
Tr(H

(j)T
i H

(j)
i) to obtain the shortest

geodesic (on the corresponding partially oriented flag).

4. Among all the shortest geodesics on partially oriented flags, find the shortest geodesic on

the fully oriented flag: H∗ = argmin
√

1
2
Tr(H∗T

i H∗
i)

The pseudo code for the main algorithm is presented in Algorithm 6 calling subroutine Algorithm 7

and Algorithm 8.

Algorithm 6: Main algorithm

Input Data: X1, X2 ∈ SO(n), p = (n1, n2, . . . , nd),M,maxIter,ǫ
Output Data: H∗, G∗

Define: d(H) =

√

1

2
Tr(HTH)

1 Function main(X1, X2, p):

2 Q = X1
TX2

3 d∗ = ∞

4 {Qi}
2d−1

i=1 = generateQi(Q,p)

5 for Q in {Qi}
2(d−1)

i=1 do

6 for i = 1, · · · ,M do

7 H, G = iterativeSolver(Q,p,maxIter,ǫ)
8 if d∗ > d(H) then

9 d∗, H∗, G∗ = d(H), H, G

10 end

11 end

12 return d∗,H∗,G∗

5.5 2k Embedding

For many practical applications, the trailing nd columns are not of interest, e.g. computations

on Fl(k, n− k) = Gr(k, n) are usually performed using n-by-k orthonormal matrices since only

the first k columns are of interest. Here in this section we will prove that the iterative algorithm 7

can be performed in a lower dimensional space if k =
∑d−1

i=1 ni is relatively small, more specifi-

cally, if k < n/2.

75

Algorithm 7: Iterative Alternating algorithm

Input Data: Q ∈ SO(n), p = (n1, n2, . . . , nd), maxIter, ǫ
Output Data: H(k), G(k)

1 Function iterativeSolver(Q, p),maxIter,ǫ:
2 Generate random G(0)

3 k = 0

4 while k ≤ iterMax and err < ǫ do

5 k = k + 1

6 H(k) = PH(log(Q exp(−G(k−1))))

7 G(k) = PG(log(exp(−H(k))Q))
8 err = ‖Q− exp(H) exp(G)‖F
9 end

10 return H(k),G(k)

Algorithm 8: Fully-oriented flag representations(MATLAB pseudo code)

1 Function generateQi(Q,p):

2 colHeader = [0,cumsum(p)]+1

3 m = length(colHeader)

4 n = floor(d/2)

5 i = 1

6 Qi = Q
7 for j = 1 : n do

8 C = nchoosek(colHeader, 2*j)

9 for k = 1: size(C,1) do

10 i = i + 1
11 Qi = Q
12 Qi(:, C(k,:)) = -Qi(:, C(k,:))

13 end

14 end

15 return {Qi}
2(d−1)

i=1

76

Without loss of generality, the geodesic between two flags of type p = (n1, n2, · · · , nd) can

always be identified with a geodesic between the identity matrix, I , and some Q ∈ SO(n) by

moving the initial point to I , i.e.,

Q = I exp(







A −BT

B 0






) (5.11)

where k =
∑d−1

i=1 ni, B ∈ R(n−k)×k and A is a k-by-k skew-symmetric matrix of the form

A =



















0n1 −BT
2,1 · · · −BT

d−1,1

B2,1 0n2 −BT
d−1,2

...
. . .

...

Bd−1,1 Bd−1,2 · · · 0nd−1



















. (5.12)

Q(t) = I exp(t







A −BT

B 0






), t ∈ [0, 1] traces an n-by-n representation of the geodesic flow

between [I] and [Q]. The following theorem and its corollary provides a method to perform the

iterative algorithm 7 with 2k-by-2k matrices instead of n-by-n matrices.

Theorem 2. Let [Q] ∈ Fl(n1, n2, · · · , nd). Suppose Q(t) = exp(t







A −BT

B 0






) with Q(0) = I ,

Q(1) = Q is a flag geodesic flow between [I] and [Q]. If

q(t) = exp(t







A −BT

B 0






)In,k (5.13)

and span{q(0)} ∩ span{q(1)} = {0}, then for all t ∈ [0, 1], span{q(t)} ⊂ span{[q(0), q(1)]},

where k =
∑d−1

i=1 ni and In,k denotes the first k columns of an n-by-n identity matrix.

Note that if 2k ≥ n, Theorem 2 is trivial. So here we assume 2k < n. Before proving the

theorem, we need to introduce some notation. Let q := QIn,k = q(1) be the first k columns of Q.

77

In fact, q(t) defined in Equation (5.13) can be understood as a geodesic path between In,k and q by

viewing Fl(n1, n2, · · · , nd) as a quotient manifold of the Stiefel manifold St(k, n) (refer to [50]

for more details). Further, we write the n-by-k orthonormal matrix q in block matrix form as

q =







qk

qn−k






(5.14)

where qk and qn−k denote the first k rows and the trailing n− k rows of q respectively.

Lemma 5.5.1. If q(t) is defined as in Equation (5.13), such that q(0) = In,k and q(1) = q, then

span{qn−k} = span{B}.

Proof. Let UBRB := B be the compact QR decomposition of B (UB: (n− k)-by-k, RB: k-by-k).

Define

f(t) = (I − UBU
T
B)Jq(t) (5.15)

where J =

[

0 In−k

]

is the last n−k rows of the n-by-n identity matrix. Hence left multiplica-

tion by J on q(t) simply selects the last n− k rows of q(t). By definition f(0) = 0. Differentiate

f(t) to get:

ḟ(t) = (I − UBU
T
B)J







A −BT

B 0






q(t) = 0 (5.16)

Therefore, f(t) ≡ 0 for t ∈ [0, 1]. If we evaluate f(t) at t = 1, we get:

f(1) = (I − UBU
T
B)qn−k = 0 (5.17)

By the assumption that q(0) and q(1) do not intersect, we know qn−k is of rank k hence UB is also

of rank k. The conclusion follows.

Now we present a proof to the theorem.

78

Proof. Let UR := [In,k, q] be the thin QR-decomposition of [q(0), q(1)]. Consequently, U is an

orthonormal basis for span{[q(0), q(1)]}. The n-by-k orthonormal matrix U takes the block form

U =







Ik 0

0 C






. (5.18)

Note that span{C} = span{qn−k} where qn−k is defined in Equation (5.14). Define

g(t) = (I − UUT)q(t). (5.19)

By definition, g(0) = (I − UUT)In−k = 0. If we differentiate g(t), we get:

ġ(t) =







0 0

(In−k − CCT)B 0






q(t) (5.20)

By Lemma 5.5.1, span{B} = span{qn−k} = span{C}. We conclude that ġ(t) ≡ 0, which implies

g(t) ≡ 0. Therefore q(t) is always living in the span of [q(0), q(1)].

The theorem shows that the flag geodesic flow q(t) between In,k and q never leaves the 2k-

dimensional subspace span{[In,k, q]}, which leads to the conclusion that the logarithmic map com-

putation can be performed within this 2k dimensional space without loss of information. Here we

introduce the following corollary.

Corollary 1. Suppose q(t) is defined as in Equation (5.13) such that q(0) = In,k and q(1) = q.

Let UR := [In,k, q] be the compact QR-decomposition of [q(0), q(1)], then φ(t) = UT q(t) is a

geodesic flow between φ(0) = UT q(0) and φ(1) = UT q(1) on Fl(n1, n2, · · · , nd−1, k). Moreover,

d(φ(0), φ(1)) = d(q(0), q(1)) and q(t) = UUTφ(t).

This corollary can be proved by combining the results from Theorem 2 and Corollary 2.2

in [19].

79

5.6 Numerical Experiments

5.6.1 Ellipsoid data

The purpose of this synthetic example is to show the difference between flag geodesic and

Grassmannian geodesic, as well as their corresponding geodesic distance under the context of

comparing data sets. As can be seen in Figure 5.6, each ellipsoid data cloud contains 100 data

points in R3. Let {ri} and {bi} denote the data points in the red and blue ellipsoid respectively.

Each data set can be written as a short wide data matrix [r1, r2, · · · , r100] = R ∈ R3×100 and

[b1, b2, · · · , b100] = B ∈ R3×100. We denote the SVD basis for each ellipsoid data set by UR =

[u
(1)
R , u

(2)
R , u

(3)
R] and UB = [u

(1)
B , u

(2)
B , u

(3)
B]. One can view the SVD basis as giving the major,

medium, and minor axes of the corresponding ellipsoid.

The Grassmannian geodesic distance between two bases is 0 since the columns of UR or UB

span all of R3. To compare two ellipsoids via the Grassmannian setting, one would typically

represent the data sets with their first principal components namely u
(1)
R and u

(1)
B , and then compute

the distance between these two vectors on Gr(1, 3). Hence the Grassmannian geodesic between

two ellipsoids is the path between two major axes and the distance is the angle between the major

axes. The information contained in the relationship between the other two axes is lost. Note that

this limitation comes from the Grassmannian rather than the data itself.

By representing two ellipsoids of data points by their SVD bases UR, UB such that [UR], [UB] ∈

Fl(1, 1, 1), one has finer resolution to describe the corresponding ellipsoids since Fl(1, 1, 1) has

dimension 3 (while Gr(1, 3) has dimension 2). The geodesic between two flag representations

correspondingly encodes more information than moving one major axis to another in the Grass-

mannian setting.

5.6.2 MNIST image data set

Here we utilize the well-studied MNIST data set to illustrate the use of the flag manifold for

comparing sets of SVD bases of "mixed" digits. We select hand written digits "1" and "5" from the

training set of the MNIST data set, where each digit is a 28× 28 image. All images are vectorized

80

−3
−2

−1
0

1
2

3

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5.6: Two sets of ellipsoid shaped data points in R3. Each SVD basis can be viewed as a point on

Fl(1, 1, 1)

.

and centered by subtracting the mean of all images. Then we form a set of mixed digits data sets

consisting of two classes, namely "major 1/minor 5" and "major 5/minor 1". "major 1/minor 5"

(resp. "major 5/minor 1") is formed by concatenating m "1"’s (resp. m "5"’s) and p "5"’s (resp.

p "1"’s). In general m is assumed to be larger then p. Hence each data set is represented by a

784 × (m + p) matrix. We compute the SVD basis for each 784 × (m + p) matrix and select

the first k columns of the SVD basis as a representation for each data set. Thus each data set is

represented by a 784 × k orthonormal matrix. For the following experiment m = 16, p = 9 and

k = 5. We may consider each 784 × 5 SVD basis as a data point on Fl(2, 3, 779) or Gr(5, 784).

The first 5 eigen-digits for both of the two classes in this experiment are demonstrated in Figure 5.8

and Figure 5.9. One can compute the pairwise flag and Grassmannian geodesic distance to form

the corresponding distance matrix. We then embed these data points to the Euclidean space by

multi-dimensional scaling.

In Figure 5.7, we see the configurations of MDS using Grassmannian(5.7a) and flag dis-

tance(5.7b). We observe that in 5.7a, the Grassmannian MDS configuration is showing overlapping

between two classes. This is not surprising since each data point, no matter which class, is captur-

ing the span of ”1”’s and ”5”’s. As can be seen in 5.7b, there is a clear separation between two

81

classes except for one point. Note the input matrices fed to the algorithm are identical for both

configurations. The difference is purely coming from the effect of the flag structure.

-1 -0.5 0 0.5 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Gr(5,784)

major 1/minor 5 major 5/minor 1

(a) Grassmannian MDS configuration

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
FL(2,3,779)

major 1/minor 5 major 5/minor 1

(b) Flag MDS configuration

Figure 5.7: Comparison of Grassmannian and flag MDS configurations

Figure 5.8: First 5 eigen digits of major 5/minor 1 data set

Figure 5.9: First 5 eigen digits of major 5/minor 1 data set

5.6.3 Indian Pines hyperspectral image data

To illustrate the utility of the proposed flag model in comparing real data sets, we apply it

to the Indian Pines hyperspectral image data set. The hyperspectral images in this data set are

82

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

F L(2, 3, 215)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Gr (5, 220)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

F L(2, 3, 95)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Gr (5, 100)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

F L(2, 3, 5)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Gr (5, 10)

Grass−Pasture CornNotill

Figure 5.10: A comparison(horizontal) of the Grassmannian and Flag manifolds for representing data sets.

The subspace dimension k fixed while the ambient dimension n is varying from 220,100 to 10.

145 × 145 pixels by 220 spectral bands (from 0.4µm to 2.4µm). 10366 pixels are labelled and

each is assigned to one of the 16 classes. Here we will test both the flag model and the Grassmann

model on the task of visualizing sets of data sets.

For a chosen dimension k (note that k =
∑d−1

i=1 ni for Fl(n1, n2, · · · , nd)), we assemble 30

n× k matrices Xi from each class (so p = 60 data matrices total). Each data matrix consists of k

200 × 1 data vectors which belong to one of the two classes. Then for each matrix Xi, a compact

SVD is applied to obtain an SVD/PCA basis, hence each data point (subspace) is represented by a

220×k orthonormal matrix Ui where UiΣiV
T
i = Xi. The distance between SVD bases, assumed as

representatives for points on a given flag manifold, can then be computed to obtain a p×p distance

matrix. We use this distance matrix to embed these flags as points in Euclidean space via Multi-

Dimensional Scaling (MDS). The first two coordinates of the optimal Euclidean configuration are

selected for visualization in R2. Figure 5.10 illustrates the Euclidean embedding configurations for

fixed subspace dimension k = 5 with various ambient dimensions using both the Grassmannian

83

geodesic distance and flag distance. The ambient space is selected to be the n spectral bands with

highest responses for n = 100, 10, 5. It is observed in the first two rows that both Grassmannian

and flag geodesic distance provide a good separation with relatively large ambient dimension at

n = 220 and 100. When the ambient dimension is reduced to n = 10, the third row of Figure 5.10

shows that the flag distance MDS embedding separates two classes in R2 while the Grassmannian

MDS embedding shows heavy overlapping. Figure 5.11 shows the eigenvalues corresponding to

the MDS embedding using flag distance on Fl(2, 3, 5) (left) and Gr(5, 10) (right). As we can

see, the largest eigenvalue on the left panel is dominating which also suggests that flag MDS

configurations are separable in lower dimension, which we don’t observe in the Grassmannian

MDS eigenvalues plot. Figure 5.12 shows, for fixed ambient dimension n = 220, how sets of data

sets are pulled apart by increasing the dimension in the flag structure. From top left, we observe

that the embedding of data points on Fl(1, 219) to R2 live on a circle and are not separable. As we

increase the flag structure dimension, the corresponding MDS configurations start to show more

separation and for Fl(1, 4, 215), the embedding of two classes is linearly separable.

In Figure 5.13, we select 6 bands (bands: 3,29,42,61,65,158) and use 20 pixels within the same

class to form a data matrix of size 6 × 30. Each class consists of 20 such short and wide matrices

and each matrix is represented by its 6-by-6 SVD basis and assumed to be representatives for

points on Fl(2, 2, 2). The pairwise distance is computed to obtain MDS configurations on R2. It is

observed that the MDS embeddings of 3 classes are separable in low dimensional space with only

6 bands.

0 10 20 30 40 50 60
−5

0

5

10

15

20

FL(2, 3, 5)

index

e
ig

e
n

v
a

lu
e

	

0 10 20 30 40 50 60

0

5

10

15

20

Gr (5, 10)

index

e
ig

e
n

v
a

lu
e

Figure 5.11: Eigenvalues of MDS for Left:Fl(2, 3, 5), Right:Gr(5, 10) in descending order.

84

−0.5 0 0.5 1
−0.5

0

0.5

1

F L(1, 219)

−0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

F L(1, 1, 218)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

F L(1, 3, 216)

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

F L(1, 4, 215)

Grass−Pasture CornNotill

Figure 5.12: Configuration of points on various flag manifolds embedded in Euclidean space.

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

F L(2, 2, 2)

Grass−Pasture

CornNotill

Hay−windrowed

Figure 5.13: Configuration of points on Fl(2, 2, 2) embedded in Euclidean space for 3 classes: Grass-

Pasture’,Corn-notill,Hay-windrowed. 6 bands(3,29,42,61,65,158) are selected so the ambient dimension

n = 6.

85

5.7 Conclusion

In this chapter, we proposed a geometric framework for computing distance between nested

subspaces, i.e. points on a flag manifold. This approach exploits the geometric feature of the flag

manifold to help data analyst gain insight into how the data resides in the ambient space.

We have presented an overview of the theoretical foundation for computing distance between

two flags. The numerical algorithm for computing the distance as well as set of points along the

shortest path between flags follows the theory naturally. The "2k-embedding" trick along with the

proof to it are introduced for practical utilization of the algorithm on real world data set. These

tools allow one to analyze data sets using the intrinsic flag distance where the Grassmannian setting

may fail.

The flag geodesic algorithm is demonstrated on the MNIST data sets where the classes in the

experiment are mixed. The mixture causes confusion in the Grassmannian setting while the flag

setting is still able to separate two mixed classes. This approach is also applied on the Indian Pines

hyper-spectral image data sets. In this experiment, we focus on the transition from tall matrices to

wide matrices. We observe that when the ambient dimension is close to the feature dimension, the

flag geodesic distance is able to separate the data for visualization in 2-dimensional space while

the Grassmannian fails to do so.

86

Chapter 6

Conclusion

6.1 Contribution

The focus of this dissertation is on developing numerical algorithms for comparing sets of data

sets on the Grassmannian and flag manifold. To be specific, we made the following contribution.

• We rewrite the classical gappy Proper Orthogonal Decomposition algorithm as an optimiza-

tion problem on the Grassmann manifold and solved it via steepest gradient descent. Having

an objective function allows us to introduce penalty term which helps the algorithm to avoid

local minimum. The algorithm is applied to the synthetic travelling sinusoidal wave data and

facial image data.

• We show that by utilizing the affine Grassmannian framework, one can solve for the analyt-

ical solution to the gappy data imputation problem.

• We extend the self-organizing mappings to the settings of the Grassmann manifold by uti-

lizing the geometric framework of the Grassmannians. We demonstrate this approach on the

Indian Pines hyper-spectral data and influenza gene expression data for visualization of high

dimensional data on 2-dimensional plane. We observe clear separation using the Grassman-

nian framework while the Euclidean space separation is known to be a difficult task.

• We introduce an iterative alternating algorithm to compute the logarithmic map on the flag

manifold. The algorithm allows one to compute the distance as well as the set of points along

the shortest path between two points on a flag manifold.

• We prove theoretical results to reduce the computational cost of the iterative algorithm.

• We propose the idea of analyzing sets of data sets using the geometric framework of the flag

manifold. We demonstrate the algorithm on the "mixed" MNIST data set and Indian Pine

87

hyper-spectral data set and observe that the flag framework separates data in 2-dimensional

space while the Grassmannian fails to, especially when the ambient dimension is close to the

feature dimension.

6.2 Future Work

There are several directions that this work can potentially be advanced in the future. In Chap-

ter 3, we would like to further explore the geometric feature of the affine Grassmannian manifold.

Although the affine Grassmannian setting leads to an analytical solution to the gappy data imputa-

tion problem, we yet find any real-world problem that exploits the affine Grassmannian framework.

Can we build a better geometric understanding of affine Grassmannian under the context of miss-

ing data imputation problem? Can we find real-world problems that is better solved using the affine

Grassmannian framework?

With respect to Chapter 4, the Grassmannian SOM algorithm requires every data points, i.e.,

linear subspaces to be of the same dimension. One might want to generalize the algorithm so that

the data points are allowed to be of different dimensions. Subspaces of different dimensions are

not living on a Grassmann manifold, but there are tools like Schubert varieties on can use to define

shortest path and distance between subspaces of different dimensions.

For the iterative algorithm introduced in Chapter 5, we want to expand its application to the

area of domain adaptation. The Grassmannian geodesic has been perceived as a geometric tool

for conveying information between two domains. As a generalization and a refined version of the

Grassmannians, can we utilize the flag geodesic to tackle the domain adaptation problem?

In Chapter 5, we have demonstrated the theoretical foundations as well as the numerical al-

gorithm of the flag manifold. There are several interesting observations that could potentially be

proved.

• In Figure 5.11, we observe that number of positive eigenvalues associated with the Grass-

mannian MDS and flag MDS are identical. Can we prove this observation theoretically?

88

• We observe that the smallest angle between [Q1], [Q2] ∈ Gr(k, n) are identical to the small-

est angle between [Q1], [Q2] ∈ Fl(n1, n2, · · · , nd) where
∑d

i=1 ni = k, i.e., the smallest

singular value of the Grassmannian velocity matrix is equal to that of the flag velocity ma-

trix between Q1 and Q2. Can we prove this result?

The theory and applications developed in this dissertation expand the toolbox for pattern recogni-

tion and data analysis on the Grassmannian and flag manifold. We also look forward to optimizing

the algorithms introduced in this dissertation for more efficient implementation on real-world ap-

plications.

The code for implementing the experiments and algorithms in this dissertation will be made

publicly available for transparency and reproducibility.

89

Bibliography

[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian geometry of Grass-

mann manifolds with a view on algorithmic computation. Acta Applicandae Mathematicae,

80(2):199–220, 2004.

[2] Awad H Al-Mohy and Nicholas J Higham. Improved inverse scaling and squaring algorithms

for the matrix logarithm. SIAM Journal on Scientific Computing, 34(4):C153–C169, 2012.

[3] Awad H Al-Mohy, Nicholas J Higham, and Samuel D Relton. Computing the fréchet deriva-

tive of the matrix logarithm and estimating the condition number. SIAM Journal on Scientific

Computing, 35(4):C394–C410, 2013.

[4] Sherif Azary and Andreas Savakis. Grassmannian sparse representations and motion depth

surfaces for 3d action recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pages 492–499, 2013.

[5] C Bach, D Ceglia, L Song, and F Duddeck. Randomized low-rank approximation methods for

projection-based model order reduction of large nonlinear dynamical problems. International

Journal for Numerical Methods in Engineering, 2018.

[6] Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification and tracking of

subspaces from highly incomplete information. In 2010 48th Annual allerton conference on

communication, control, and computing (Allerton), pages 704–711. IEEE, 2010.

[7] J.R. Beveridge, Bruce Draper, Jen-Mei Chang, Michael Kirby, Holger Kley, and Chris Pe-

terson. Principal angles separate subject illumination spaces in YDB and CMU-PIE. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 29, 2008.

[8] Ȧke Björck and Gene H Golub. Numerical methods for computing angles between linear

subspaces. Mathematics of computation, 27(123):579–594, 1973.

90

[9] Jen-Mei Chang. Classification on the Grassmannians: theory and applications. Colorado

State University, 2008.

[10] Jen-Mei Chang, J.R. Beveridge, Bruce Draper, Michael Kirby, Holger Kley, and Chris Pe-

terson. Illumination face spaces are idiosyncratic. In IPCV’06, volume 2, pages 390–396.

CSREA Press, June 2006.

[11] Jen-Mei Chang, Michael Kirby, Holger Kley, Chris Peterson, J. Ross Beveridge, and Bruce

Draper. Examples of set-to-set pattern classification. In Mathematics in Signal Processing

Conference Digest, pages 102–105, Royal Agricultural College, Cirencester, U.K., December

2006. The Insititute for Mathematics and its Applications.

[12] Jen-Mei Chang, Michael Kirby, and Chris Peterson. Set-to-set face recognition under varia-

tions in pose and illumination. In 2007 Biometrics Symposium, Baltimore, MD, September

2007.

[13] Sofya Chepushtanova, Christopher Gittins, and Michael Kirby. Band selection in hyper-

spectral imagery using sparse support vector machines. In Algorithms and Technologies for

Multispectral, Hyperspectral, and Ultraspectral Imagery XX, volume 9088, page 90881F.

International Society for Optics and Photonics, 2014.

[14] Sofya Chepushtanova and Michael Kirby. Sparse Grassmannian embeddings for hyperspec-

tral data representation and classification. IEEE Geoscience and Remote Sensing Letters,

14(3):434–438, 2017.

[15] Sofya Chepushtanova, Michael Kirby, Chris Peterson, and Lori Ziegelmeier. An application

of persistent homology on Grassmann manifolds for the detection of signals in hyperspectral

imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Sympo-

sium (IGARSS), Milan, Italy, 2015, 2015.

[16] John H Conway, Ronald H Hardin, and Neil JA Sloane. Packing lines, planes, etc.: Packings

in grassmannian spaces. Experimental mathematics, 5(2):139–159, 1996.

91

[17] Jing Dong, Zhichao Xue, Jian Guan, Zi-Fa Han, and Wenwu Wang. Low rank matrix com-

pletion using truncated nuclear norm and sparse regularizer. Signal Processing: Image Com-

munication, 68:76–87, 2018.

[18] Bruce Draper, Michael Kirby, Justin Marks, Tim Marrinan, and Chris Peterson. A flag rep-

resentation for finite collections of subspaces of mixed dimensions. Linear Algebra and its

Applications, 451:15–32, 2014.

[19] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with or-

thogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353,

1998.

[20] Richard Everson and Lawrence Sirovich. Karhunen–loeve procedure for gappy data. JOSA

A, 12(8):1657–1664, 1995.

[21] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsu-

pervised domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2066–2073. IEEE, 2012.

[22] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recog-

nition: An unsupervised approach. In 2011 international conference on computer vision,

pages 999–1006. IEEE, 2011.

[23] Mehrtash T Harandi, Conrad Sanderson, Sareh Shirazi, and Brian C Lovell. Graph embed-

ding discriminant analysis on grassmannian manifolds for improved image set matching. In

CVPR 2011, pages 2705–2712. IEEE, 2011.

[24] Jun He, Laura Balzano, and Arthur Szlam. Incremental gradient on the grassmannian for

online foreground and background separation in subsampled video. In 2012 IEEE Conference

on Computer Vision and Pattern Recognition, pages 1568–1575. IEEE, 2012.

92

[25] Yi Hong, Roland Kwitt, Nikhil Singh, Brad Davis, Nuno Vasconcelos, and Marc Niethammer.

Geodesic regression on the grassmannian. In European Conference on Computer Vision,

pages 632–646. Springer, 2014.

[26] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using

alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory

of computing, pages 665–674. ACM, 2013.

[27] M. Kirby and C. Peterson. Visualizing data sets on the grassmannian using self-organizing

mappings. In 2017 12th International Workshop on Self-Organizing Maps and Learning

Vector Quantization, Clustering and Data Visualization (WSOM), pages 1–6, June 2017.

[28] Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological

cybernetics, 43(1):59–69, 1982.

[29] Teuvo Kohonen. The self-organizing map. Neurocomputing, 21(1):1–6, 1998.

[30] Teuvo Kohonen. Essentials of the self-organizing map. Neural Networks, 37:52–65, 2013.

[31] Teuvo Kohonen, Erkki Oja, Olli Simula, Ari Visa, and Jari Kangas. Engineering applications

of the self-organizing map. Proceedings of the IEEE, 84(10):1358–1384, 1996.

[32] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 8:30–37, 2009.

[33] Sriram Kumar and Andreas Savakis. Robust domain adaptation on the l1-grassmannian man-

ifold. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pages 103–110, 2016.

[34] D Landgrebe. Aviris nw indiana’s indian pines 1992 data set, 1992.

[35] Lek-Heng Lim, Ken Sze-Wai Wong, and Ke Ye. Numerical algorithms on the affine grass-

mannian. arXiv preprint arXiv:1607.01833, 2016.

93

[36] Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan, and Xilin Chen. Partial least

squares regression on grassmannian manifold for emotion recognition. In Proceedings of

the 15th ACM on International conference on multimodal interaction, pages 525–530. ACM,

2013.

[37] Tzu-Yu Liu, Thomas Burke, Lawrence P Park, Christopher W Woods, Aimee K Zaas, Geof-

frey S Ginsburg, and Alfred O Hero. An individualized predictor of health and disease using

paired reference and target samples. BMC bioinformatics, 17(1):47, 2016.

[38] Yasunori Nishimori, Shotaro Akaho, and Mark D Plumbley. Riemannian optimization

method on the flag manifold for independent subspace analysis. In International Confer-

ence on Independent Component Analysis and Signal Separation, pages 295–302. Springer,

2006.

[39] Stephen O’Hara, Kun Wang, Richard A Slayden, Alan R Schenkel, Greg Huber, Corey S

O’Hern, Mark D Shattuck, and Michael Kirby. Iterative feature removal yields highly dis-

criminative pathways. BMC genomics, 14(1):832, 2013.

[40] Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Visual domain

adaptation: A survey of recent advances. IEEE signal processing magazine, 32(3):53–69,

2015.

[41] Kathleen H Rubins, Lisa E Hensley, Victoria Wahl-Jensen, Kathleen M Daddario DiCaprio,

Howard A Young, Douglas S Reed, Peter B Jahrling, Patrick O Brown, David A Relman,

and Thomas W Geisbert. The temporal program of peripheral blood gene expression in the

response of nonhuman primates to ebola hemorrhagic fever. Genome biology, 8(8):R174,

2007.

[42] Jon M Selig. Geometric fundamentals of robotics. Springer Science & Business Media, 2004.

94

[43] David A Shaw and Rama Chellappa. Regression on manifolds using data-dependent regular-

ization with applications in computer vision. Statistical Analysis and Data Mining: The ASA

Data Science Journal, 6(6):519–528, 2013.

[44] Sima Taheri, Pavan Turaga, and Rama Chellappa. Towards view-invariant expression analysis

using analytic shape manifolds. In Face and Gesture 2011, pages 306–313. IEEE, 2011.

[45] Pavan Turaga and Rama Chellappa. Locally time-invariant models of human activities using

trajectories on the grassmannian. In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2435–2441. IEEE, 2009.

[46] Bart Vandereycken. Low-rank matrix completion by riemannian optimization. SIAM Journal

on Optimization, 23(2):1214–1236, 2013.

[47] Kun Wang, Stanley Langevin, Corey S O’Hern, Mark D Shattuck, Serenity Ogle, Adriana

Forero, Juliet Morrison, Richard Slayden, Michael G Katze, and Michael Kirby. Anomaly

detection in host signaling pathways for the early prognosis of acute infection. PloS one,

11(8):e0160919, 2016.

[48] Tiesheng Wang and Pengfei Shi. Kernel grassmannian distances and discriminant analysis

for face recognition from image sets. Pattern Recognition Letters, 30(13):1161–1165, 2009.

[49] Xinchao Wang, Wei Bian, and Dacheng Tao. Grassmannian regularized structured multi-view

embedding for image classification. IEEE Transactions on Image Processing, 22(7):2646–

2660, 2013.

[50] Ke Ye, Ken Sze-Wai Wong, and Lek-Heng Lim. Optimization on flag manifolds. arXiv

e-prints, page arXiv:1907.00949, Jul 2019.

[51] DC Youla. A normal form for a matrix under the unitary congruence group. Canadian

Journal of Mathematics, 13:694–704, 1961.

95

[52] Ralf Zimmermann, Benjamin Peherstorfer, and Karen Willcox. Geometric subspace updates

with applications to online adaptive nonlinear model reduction. SIAM Journal on Matrix

Analysis and Applications, 39(1):234–261, 2018.

96

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	From comparing sets of data points to comparing sets of data sets
	Overview

	The Grassmann Manifold
	Linear Subspace Models
	The Grassmannian: A quotient manifold of O(n)
	Tangent space of O(n)
	Gr(k,n) as a quotient manifold of O(n)

	The Grassmannian: A quotient manifold of the Stiefel
	Geodesic formula: Exponential and Logarithmic map
	Exponential map
	Logarithmic map
	Principal angles and distance metric

	A pictorial interpretation of a geodesic between two points on the Grassmannian
	Geodesic as a path between principal vectors
	Revisit logarithmic map
	Summary

	A geometric approach to missing data problem
	Introduction
	Notation
	Data with missing entries
	Distance between sets
	The Grassmannian

	Everson and Sirovich's iterative procedure (gappy POD)
	Characterization as an optimization problem
	Solving the optimization
	The analytical expression for distance

	Relationship to Riemannian matrix completion
	Connection to Gappy POD
	Optimization with a total variation penalty
	Energy minimization on example data sets
	Sinusoidal wave

	Affine Grassmannian and flag mean
	Conclusion

	Self-organizing Mappings on Grassmannian
	Introduction
	Grassmannian SOM
	Numerical Results
	Synthetic data
	Indian Pines
	Gene Expression Data

	Conclusion

	Extension to the Flag manifold
	Overview of the flag manifold
	The flag manifold as a matrix manifold
	Quotient manifold of O(n)
	Logarithmic map

	Numerical Algorithm for Log map
	Partially and fully oriented flag manifold
	2k Embedding
	Numerical Experiments
	Ellipsoid data
	MNIST image data set
	Indian Pines hyperspectral image data

	Conclusion

	Conclusion
	Contribution
	Future Work

	Bibliography

