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ABSTRACT

STATISTICAL MODELING AND INFERENCE FOR COMPLEX-STRUCTURED COUNT

DATA WITH APPLICATIONS IN GENOMICS AND SOCIAL SCIENCE

This dissertation describes models, estimation methods, and testing procedures for count data

that build upon classic generalized linear models, including Gaussian, Poisson, and negative bi-

nomial regression. The methodological extensions proposed in this dissertation are motivated by

complex structures for count data arising in three important classes of scientific problems, from

both genomics and sociological contexts. Complexities include large scale, temporal dependence,

zero-inflation and other mixture features, and group structure.

The first class of problems involves count data that are collected from longitudinal RNA se-

quencing (RNA-seq) experiments, where the data consist of tens of thousands of short time series

of counts, with replicate time series under treatment and under control. In order to determine if

the time course differs between treatment and control, we consider two questions: 1) whether the

treatment affects the geometric attributes of the temporal profiles and 2) whether any treatment

effect varies over time. To answer the first question, we determine whether there has been a funda-

mental change in shape by modeling the transformed count data for genes at each time point using

a Gaussian distribution, with the mean temporal profile generated by spline models, and introduce

a measurement that quantifies the average minimum squared distance between the locations of

peaks (or valleys) of each gene’s temporal profile across experimental conditions. We then de-

velop a testing framework based on a permutation procedure. Via simulation studies, we show that

the proposed test achieves good power while controlling the false discovery rate. We also apply

the test to data collected from a light physiology experiment on maize.

To answer the second question, we model the time series of counts for each gene by a Gaussian-

Negative Binomial model and introduce a new testing procedure that enjoys the optimality property
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of maximum average power. The test allows not only identification of traditional differentially ex-

pressed genes but also testing of a variety of composite hypotheses of biological interest. We

establish the identifiability of the proposed model, implement the proposed method via efficient

algorithms, and expose its good performance via simulation studies. The procedure reveals in-

teresting biological insights when applied to data from an experiment that examines the effect of

varying light environments on the fundamental physiology of a marine diatom.

The second class of problems involves analyzing group-structured sRNA data that consist of

independent replicates of counts for each sRNA across experimental conditions. Most existing

methods—for both normalization and differential expression—are designed for non-group struc-

tured data. These methods may fail to provide correct normalization factors or fail to control FDR.

They may lack power and may not be able to make inference on group effects. To address these

challenges simultaneously, we introduce an inferential procedure using a group-based negative bi-

nomial model and a bootstrap testing method. This procedure not only provides a group-based

normalization factor, but also enables group-based differential expression analysis. Our method

shows good performance in both simulation studies and analysis of experimental data on round-

worm.

The last class of problems is motivated by the study of sensitive behaviors. These problems in-

volve mixture-distributed count data that are collected by a quantitative randomized response tech-

nique (QRRT) which guarantees respondent anonymity. We propose a Poisson regression method

based on maximum likelihood estimation computed via the EM algorithm. This method allows as-

sessment of the importance of potential drivers of different quantities of non-compliant behavior.

The method is illustrated with a case study examining potential drivers of non-compliance with

hunting regulations in Sierra Leone.
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Chapter 1

Introduction

1.1 Overview

This dissertation describes models, estimation methods, and testing procedures for count data

that build upon classic generalized linear models, including Gaussian, Poisson, and negative bi-

nomial regression. The methodological extensions proposed in this dissertation are motivated by

complex structures for count data arising in three important classes of scientific problems, from

both genomics and sociological contexts. Complexities include large scale, temporal dependence,

zero-inflation and other mixture features, and group structure.

The first class of problems involves count data arising from RNA sequencing (RNA-seq) exper-

iments [4,5]. Recently, such experiments have been extended to longitudinal studies. Longitudinal

RNA-seq experiments can generate large-scale time-course count data, consisting of short time se-

ries of counts for each gene, with replicate time series under treatment and under control. The

resulting data set consists of tens of thousands of these short time series. It is of scientific interest

to study the dynamic patterns of gene expression: to describe the temporal profile for each gene

and determine if the time course differs between treatment and control (“differential expression,”

or DE). Most existing tests are designed to distinguish among conditions based on overall differen-

tial patterns across time, though in practice, a variety of complex hypotheses are of more scientific

interest. For example, it may be of interest to decide if any treatment effect varies over time (“non-

parallel differential expression,” or NPDE) or not (“parallel differential expression,” or PDE). As

another example, it may be of interest to study if the treatment affects the geometric attributes of

the temporal profiles, such as the locations of peaks or valleys. Chapter 2 and 3 of this dissertation

describe methods for this first class of problems.

In Chapter 2, we consider a novel class of hypotheses that involves geometric attributes of the

temporal profiles for each gene. In this setting, we are not interested in overall location shifts or
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rescaling of temporal profiles, but in fundamental changes in shape such as moving a peak or valley

(for example, sin(x) and a sin(x) + b differ only by location shifts and scaling, while cos(x) has a

fundamental change in shape).

To determine whether there has been a fundamental change in shape, we model the transformed

count data for genes at each time point using a Gaussian distribution, with the mean temporal pro-

file generated by spline models, and introduce a measurement that quantifies the average minimum

squared distance between the locations of peaks (or valleys) of each gene’s temporal profile across

experimental conditions. We develop a testing framework based on the proposed model via a per-

mutation procedure [6]. This test achieves good power while controlling the false discovery rate

(FDR), which is demonstrated by simulation studies and by applying the test to data collected from

a light physiology experiment on maize.

Chapter 3 also addresses the first class of problems. We consider hypotheses that identify the

NPDE and PDE genes in Chapter 3, as NPDE genes may be of more scientific interest than PDE

genes. For example, Sun et al. [7] showed that NPDE genes may provide more information on

how the cell responds differently to different treatments. Conditional on a latent Gaussian mixture

with evolving means, we model the data (time series of counts for each gene) by negative binomial

distributions, introduce a general testing framework based on the proposed model and show that

the proposed test enjoys the optimality property of maximum average power. The test allows

not only identification of traditional differentially-expressed genes but also testing of a variety of

composite hypotheses of biological interest. We establish the identifiability of the proposed model,

implement the proposed method via efficient algorithms, and demonstrate its good performance

via simulation studies. The procedure reveals interesting biological insights when applied to data

from an experiment that examines the effect of varying light environments on the fundamental

physiology of a marine diatom.

The second class of problems arises from the analysis of small RNA (sRNA) data sets. The

data consist of independent replicates of counts for each sRNA, with replicates under treatment

conditions and under control conditions. In a given experiment, there are tens of thousands of sR-
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NAs, and these sRNAs belong to a small number of distinct classes. Similar to RNA-seq analysis,

the major goal of sRNA analysis is to detect DE genes across treatments. Because of the multiple

classes of sRNAs, both group effect and gene-specific effect may be of scientific interest. For ex-

ample, Hackenberg et al. [8] found that distinct classes of sRNAs respond differently to drought:

the miRNA and rasiRNA groups were down-regulated, while the tsRNAs were up-regulated under

drought conditions. Most existing DE analysis methods are designed without considering poten-

tial group structure. These methods may lack power, fail to control FDR or not be able to make

inference on group effects.

Further complication for the group-structured data is normalization. Existing normalization

methods that matches the overall empirical distributions across sample [9] or equates the overall

expression levels of genes between samples [10] may fail to provide correct normalization factors

for group structured data. In addition, they assume that the majority of genes are not differentially

expressed, which is not always true in the sRNA studies due to the group effects.

In Chapter 4, we develop a group-based negative binomial model for sRNA data analysis to

address the above challenges. We introduce a testing framework based on the proposed model via

bootstrap. We implement the proposed test by developing an efficient algorithm using a weighted

generalized linear model. This procedure not only provides a group-based normalization factor, but

also conducts group-based differential analysis. To examine the performance of our new method,

we perform comprehensive simulation studies. To demonstrate advantages of the new analytical

approach for the analysis of sRNA data, we applied it to an experiment to explore the roles of

different classes of sRNAs in the roundworm (C. elegans).

Finally, the third class of problems also involves count data and uses inferential procedures

developed from generalized linear models, but the scientific motivation comes from the study

of sensitive behaviors using randomized response techniques (RRT). These techniques provide

anonymity to interviewees who answer sensitive questions. A variation on this approach, the quan-

titative randomized response technique (QRRT), allows researchers to estimate the frequency or

quantity of sensitive behaviors. Researchers are particularly interested in identifying potential
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drivers of non-compliant behavior using regression methods. The result data consist of indepen-

dent, nonnegative counts that are collected using QRRT.

Most existing regression-based methods are developed for multi-category randomized response

data, and regression methodology has not been developed for count data from QRRT. To ana-

lyze the nonnegative count data produced by QRRT, we develop in Chapter 5 a Poisson regres-

sion methodology for QRRT data, based on maximum likelihood estimation computed via the

expectation-maximization (EM) algorithm. The method is illustrated with a case study examining

potential drivers of non-compliance with hunting regulations in Sierra Leone.

1.2 Outline

The four topics mentioned above have been addressed in four separate chapters of this disser-

tation, each of which is a co-authored paper. As of this writing, two of these papers have been

published in refereed journals.

Each chapter is independent and can be read by itself. This dissertation is organized as follows.

• Chapter 2 is based on the paper: Cao, M., Zhou, W., Liu, P., & Brutnell, T. Differential

analysis on dynamical patterns of time course gene expression data.

• Chapter 3: The material in this chapter has appeared as [84]: Cao, M., Zhou, W., Breidt, F. J.,

& Peers, G. (2019). Large scale maximum average power multiple inference on time-course

count data with application to RNA-seq analysis. Biometrics. doi.org/10.1111/biom.13144.

• Chapter 4 is based on the paper: Cao, M., Zhou, W., Breidt, F. J., & Montgomery, T. Group

structured model with application to small RNA analysis: normalization and differential

expression analysis.

• Chapter 5: The material in this chapter has appeared as [142]: Cao, M., Breidt, F. J.,

Solomon, J. N., Conteh, A., & Gavin, M. C. (2018). Understanding the drivers of sen-

sitive behavior using Poisson regression from quantitative randomized response technique

data. PLOS ONE, 13(9), e0204433.
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The final chapter briefly summarizes the contributions and discusses possible future works.

5



Chapter 2

Differential Analysis on Dynamical Patterns of Time

Course Gene Expression Data

2.1 Introduction

2.1.1 Background and Related Work

Time course RNA-sequencing (RNA-seq) experiments are different from traditional RNA-seq

experiments. The gene expression levels are correlated or admit some continuously varying struc-

ture over time. This temporal structure provides a more complete picture of general mechanisms

yet brings some challenges for modeling and analysis [11]. For instance, the time course sampling

is often sparse and irregular due to experimental constraints and true hypotheses of interest are

usually composite.

As an example, consider a time course RNA-seq experiment to study the physiology of maize

leaves. The objective of this study is to assess the effects of light on different locations on a leaf,

particularly, the experiments consider the base, ligule from 3 to 4 cm, ligule from 8 to 9 cm, and the

tip position on a leaf (see Figure 2.3). In this experiment, 13 time points at each leaf location are

sampled for two different experimental light conditions, constant light and constant dark. At each

time point, three biologically independent leaves are randomly picked from genetically identical

plants. In total, expression levels of 63, 293 genes were collected from each of the four different

leaf sections. The study attempts to identify genes that react to light differently across different

leaf sections.

The primary goals of a RNA-seq analysis are 1) identifying differentially expressed (DE) genes;

2) identifying and characterizing changes in the gene expression over time [11, 12]. Efron et

al. [13], Eckel et al. [14], and Aryee et al. [11] introduced the univariate empirical Bayes framework

for detecting DE genes. As an extension of the univariate model, Tai et al. [15] constructed a

6



multivariate empirical method, which is applicable to data with both single and multiple conditions.

Alternative approaches to account for the temporal structure and to identify DE genes are based on

clustering methods [16–18]. However, Xu et al. [19] pointed out that clustering-based methods are

easily influenced by the choice of transformations or filtering processes and some existing methods

are not able to draw statistical inference.

Lately, researchers are more interested in whether the expression levels of the same gene share

similar temporal patterns across different conditions. Genes with changing temporal structure

are more interesting than genes with only scaling change. Statistically, it demands more detailed

characterization of the changes of expression levels in a gene over time. To address this problem,

spline-based methods have been previously proposed [20–22]. Storey et al. [12] extended spline-

based method and proposed a method specifically designed for time course experiments. This

approach focuses on identifying genes with inconsistent changes on the expression levels over time.

A hidden Markov model was developed [23], that focuses on modeling the time dependency. This

approach, however, requires the Markov property, which is always hard to be justified in practice.

Using a negative binomial mixed-effect model, Sun et al. [7] identified genes with nonparallel and

parallel expression profiles which change over time across treatments. They also discussed the

importance of identifying the local pattern changes in the mean expression level other than the

overall temporal consistency.

The aforementioned methods for analyzing the pattern changes in the temporal expression

levels do not address how to capture the differences of the local geometry within the temporal

pattern between different conditions, such as shift of peaks or valleys. In fact, they mostly focus

on those consistently up-regulated or down-regulated expression profile changes over time across

conditions.

2.1.2 Simulated Data

To motivate the new analytical approach, we consider a small simulation to display the com-

parison of performance of the functional analysis of variance (FANOVA) [24] and our method.
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Consider a two-sample local curvature comparison, i.e. comparing the local convexity and con-

cavity of temporal dynamics between two profiles. For each time point t, we generate data

Yijr(t) for replicate r in group j under condition i as following. Given continuous functions

µij(t), Yijr(t) = µij(t) + ǫijr(t), where i = 1, 2, j = 1, 2, 3, r = 1, 2, 3 and t = t1, . . . , tTi
.

Specifically, we set µ1j(t) = f1(t) for each j, where f1(t) = −3 cos {(x− η1)/3× 2π} , and let

µ2j(t) = f1(t)I(j = 1)+f2(t)I(j = 2)+f3(t)I(j = 3), where f2(t) = −8 cos {(x− η1)/3× 2π} ;

and f3(t) = −3 cos {(x− η1)/3× 2π} I(x ≤ 9/2 + η1) + (4.47x− 16.72)I(x > 9/2 + η1). Here,

I(·) is the indicator function. Set, ǫijr(t)
iid∼ t12 and η1

iid∼ N(0, 0.5). In total, 2, 000 genes are

generated, where 60% of genes are from group j = 1; 20% of genes are from group j = 2. The

remaining genes are from group j = 3. Therefore, in total, 80% genes share the same locations of

peaks and valleys and are considered as the non differentially expressed genes. See Fig 2.1 for an

illustration of the mean patterns.
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Figure 2.1: Mean Functions: f1(t): dash-dotted in black, f2(t): solid line in blue, f3(t): dot line in red.

We employed the method to estimate and detect the temporal differences in terms of the loca-

tions of peaks and valleys across sections. Fig 2.2 shows the p-value histograms of both FANOVA

and our approach. In the convexity and concavity comparisons, we observe that the histogram of

p-values of the null genes for FANOVA, shown in Fig 2.2d, does not display the expected uniform
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Figure 2.2: Comparison of p-values. The top row shows the p-value histogram for all data, while the second
row shows the p-value histograms for data under the null hypothesis with 1000 permutation.

distribution. This suggests that FANOVA fails to control the false discovery rate (FDR). Compared

with FANOVA, the p-values, under null hypothesis of our method for both convexity (valley) and

concavity (peak) comparisons are uniformly distributed. It implies that our method controls the

FDR (see Fig 2.2e, 2.2f).

The primary goal of this chapter is to define a metric to quantify the local geometry of temporal

gene expression profile and propose a reliable test procedure to identify DE genes with differential

local geometries between conditions while controlling the FDR. Permutation is employed to facil-

itate the proposed method while the justification on the proposed metric is detailed in Section 2.2.

We model the data using an additive model where limited assumptions are imposed to the mean

temporal profile other than regular smoothness conditions. A comprehensive simulation study is
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performed in Section 2.3 to examine our method. As an example, we apply the method to ana-

lyze time-course diurnal expression data collected from a light physiology experiment on maize.

Some biologically interesting genes are discovered and an enrichment analysis is conducted. More

technical results and further simulation studies are provided in Appendix A.

2.2 Methodology

Denote Ygir(t) the reads per kilobase of transcript, per million mapped reads (RPKM) of gene

g from the ith condition of the rth replicate at time point t, where g = 1, . . . , G, i = 1, 2,

r = 1, . . . , ni and t = t1, . . . , tTi
with integers Ti > 0. We assume that the observed data are

realizations from the class of twice-differentiable functions f(t). That is, the expected expression

level satisfies E{Ygir(t)} = fgi(t) and

Ygir(t) = fgi(t) + ǫgir, (2.1)

where ǫgir are i.i.d. random errors with zero means. For the mean functions fg1(t) and fg2(t) in

the first and second groups, let

Ag1+ = {t : f ′
g1(t) = 0 and f ′′

g1(t) > 0},

Ag1− = {t : f ′
g1(t) = 0 and f ′′

g1(t) < 0},

Ag2+ = {t : f ′
g2(t) = 0 and f ′′

g2(t) > 0}

and

Ag2− = {t : f ′
g2(t) = 0 and f ′′

g2(t) < 0}

be the level-sets of the peak and valley locations of fg1(t) and fg2(t) respectively.

We are interested in testing whether or not fg1(t) and fg2(t) have the same locations of peaks

or valleys. The null hypothesis can be written as

10



Hg
0 : Ag1+ = Ag2+ and Ag1− = Ag2−. (2.2)

We propose a metric to measure the deviation from Hg
0 in (2.2) by

T (1,2)
g· =

1

k1g + k2g

[
k1g∑

i=1

min
j

∣∣∣θ(1)g,i − θ
(2)
g,j

∣∣∣
2

+

k2g∑

j=1

min
i

∣∣∣θ(2)g,j − θ
(1)
g,i

∣∣∣
2
]
, (2.3)

where θ
(1)
g,i ∈ Ag1·, θ

(2)
g,i ∈ Ag2·, k1g = |Ag1·| and k2g = |Ag2·| are the numbers of changing points

for condition 1 and 2 respectively, · is either + or −, and then, Hg
0 is rejected if and only if T (1,2)

g·

is large. Metric T
(1,2)
g· measures the average square distance of either peak locations or valley

locations between groups 1 and 2. So, fg1(t) and fg2(t) have the same concavity and convexity if

and only if Tg+ and Tg− are both 0. Also, if k1g 6= k2g, fg1(t) does not have the same geometry as

fg2(t), T
(1,2)
g· in (2.3) is expected to be large, which will lead to a natural rejection of Hg

0 .

2.2.1 A Preliminary Step

To estimate Tg· in (2.3), the locations and types of critical points are desired. Many methods of

multiple change-point estimation have been developed for that purpose. For example, Fryzlewicz

et al. [25] introduced the binary segmentation method and provided an approximate solution to

estimate change-points. Although binary segmentation is computationally efficient, it leads to

a poor estimation of the number and locations; see [26]. Other likelihood based optimization

methods are highly demanding in computations. To overcome these drawbacks, we develop a

method to locate the critical points. For our model (2.1), change-points are presented when f ′(t)

equals to zero; so finding the change-points is equivalent to finding points where the sign of fgi
′(t)

changes. We sample f ′
gi(t) on equally-spaced grid on [0, T ] such that θτ = τh, τ = 0, 1, . . . , n,

and h = T/n and define

uτ = I

[∣∣∣I
{
f ′
gi(θτ+1) > 0

}
− I
{
f ′
gi(θτ ) > 0)

} ∣∣∣ > η
]
, (2.4)

11



where η > 0 is small. Here, uτ indicates where the sign of f ′
gi(t) changes and any θτ that makes

uτ equal to 1 corresponds to a critical point. The total number of change-points is measured by
∑n

τ=1 uτ .

2.2.2 Testing Statistics

To perform the test, we compute the plug-in estimate

T̂ (1,2)
g· =

1

k̂g1 + k̂g2




k̂1g∑

i=1

min
j

∣∣∣θ̂(1)g,i − θ̂
(2)
g,j

∣∣∣
2

+

k̂2g∑

j=1

min
i

∣∣∣θ̂(2)g,j − θ̂
(1)
g,i

∣∣∣
2


 , (2.5)

for g = 1, . . . , G, Âg1· = {θ̂(1)g,i , i = 1, . . . , k̂1g} and Âg2· = {θ̂(2)g,j , j = 1, . . . , k̂2g} where θ̂
(1)
g,i

and θ̂
(2)
g,j estimate the critical points of the mean for conditions 1 and 2. Also, k̂1g = |Âg1·| and

k̂2g = |Âg2·| are the estimated numbers of critical points for gene g under condition 1 and 2,

respectively. Thus, the null hypothesis (2.2) is rejected if and only if T̂ (1,2)
g· is large.

2.2.3 Controlling FDR

Benjamini and Hochberg [27] introduced the False Discovery Rate (FDR), which is a popular

metric to perform large scale multiple testing such as the traditional DE analysis in genomics.

FDR is the expected proportion of false positives among all rejections. A method to control FDR

based on comparing p-values with a shrinking threshold is introduced in [27]. Later, among a

vast amount of variants to [27], an efficient approach to estimate FDR via adjusted p-values is

developed in [28].

For a fixed cut-off value of our test statistics Tg·, denoted by d, the true FDR and its estimator

are FDR(d) = FP(d)/TP(d), and F̂DR = F̂P(d)/TP(d), where FP(d), F̂P(d) are the true and

estimated number of false positives and TP(d) is the total number of hypotheses that are rejected at

the cut-off value d. In order to estimate the distribution of Tg· in (2.5) under the nulls, a permutation

procedure is employed. As the gene under alternatives does not share the same distribution with

the genes under the null, the empirical distribution of statistics for all genes may fail to estimate

12



the true null distribution accurately [6]. To overcome these problems a new permutation method is

introduced to control FDR [6].

For any ǫ > 0, we define any gene g satisfying Tg· > ǫ to be significant and set TP = |{g : Tg· >

ǫ}|. Let the set of non-significant genes selected by some other statistic Fg (e.g. FANOVA statistics,

two-sample t test statistics, and our statistics in (2.5) or the L2 distance) as D(ǫ) = {g : Fg ≤ ǫ′},

and ǫ′ is chosen so that |D(ǫ)c| = TP. That is ǫ′ is determined by the level ǫ and statistics Fg’s. Then

the observed expression levels are permuted B times. For each permuted dataset b, we compute

the null statistic T
(b)
g· and estimate FP via

F̂P =
1

B

B∑

b=1

|{g ∈ D(ǫ) : T (b)
g· > ǫ}|

and FDR via

F̂DR(ǫ) =
F̂P(ǫ)

TP(ǫ)
. (2.6)

A similar procedure is proposed by [6] to improve the accuracy for estimating the null dis-

tribution of test statistics. Then, ǫ such that F̂DR(ǫ) ≤ α is chosen, where α is a pre-selected

nominal FDR level, and genes such that T̂ (1,2)
g· > ǫ are identified as DE. The proposed method is

summarized in the following algorithm.

2.3 Monte Carlo Evidence

In this section, we evaluate the proposed method with different FDR estimation methods using

two sets of simulation studies.

2.3.1 Simulation Settings

We generate time-course data from (2.1). Specifically, the datasets contain G = 2, 500 genes

from 2 treatments, with n = 6, 9 or 15 replicates and T = 10 or 15 time points. For each setting,

80% of the genes are randomly chosen with common true mean functions fg1(t) = fg2(t) = f1(t).

The other 20% of the genes are generated with different true mean functions in each condition,
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Data: Gene expression data {Ygi(t)}G,I
g=1,i=1 and Nominal FDR level α

Result: DE gene list.
1 for g = 1, . . . , G do

2 Fit smooth spline model and record the estimated first and second derivative.
3 Find the number and location of critical points using (2.4).
4 Define the critical point type and calculate (2.5).
5 end

6 Find null set genes D(ǫ) who are detected by test statistics Fg.
7 for b = 1, . . . , B do

8 Permute treatment condition label on null set genes D(ǫ) and store the permuted test

statistics {T (b)
i· }i∈D(ǫ).

9 Compute F̂DR(ǫ) in (2.6).
10 end

11 Choose ǫ to control F̂DR(ǫ) ≤ α and identify DE genes wherever Tg· > ǫ.

i.e. fg1(t) = f1(t) and fg2(t) = f2(t). We apply different procedures to estimate FDR, and for

comparison, the empirical FDRs and powers (averaged over 100 replicates) are reported for each

procedure at nominal levels 0.05, 0.075, 0.1 and 0.15.

Simulation A: Valley only

In (2.1), f1(t) = (t − 2 − η1)
2 and f2(t) = (t − 3.5 − η1)

2, where η1 ∼ N(0, σ2
1), and

σ1 = 0.5. We consider two different measurement error settings: (1) ǫgir(t) = 1/σ× τgir(t) where

τgir(t) ∼ t12, σ = 0.5 and (2) ǫgir(t) ∼ N(0, 0.7).

Simulation B: Both peaks and valleys with trigonometric functions

In (2.1), f1(t) = −3 cos {(x− η1)/3× 2π}, and f2(t) = −3 cos {(x− η1)/3× 2π} I(x ≤

9/2+ η1)+ (4.47x− 16.72)I(x > 9/2+ η1), where η1 ∼ N(0, 0.162) and ǫgir(t) ∼ N(0, σ2) with

σ2 = 0.5 or 1.

2.3.2 Simulation Results

For comparison, these procedures to estimate F̂P in section 2.2.3 are considered: 1) null genes

are not pre-selected and the standard permutation procedure are applied 2) null genes are selected
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by Fg, where Fg is the FANOVA statistic, and 3) null genes are selected by Tg, where Tg is our

metric in (2.5). Simulation results are shown in Tables 2.1–2.3 and A.1–A.3 as Standard, FANOVA

based, and Tg based, respectively.

For each gene, we estimate the mean function, fgi(t) and calculate the test statistics by the

method in Section 2.2.2. The empirical FDRs and the empirical power are shown, at nominal FDR

level, in Tables 2.1 and A.1 for simulation A. The simulation results for setting B are shown in

Tables 2.2, 2.3, A.2 and A.3.

Since the mean function under setting A only contains a valley, we report the simulation results

for valley location only. When T increases from 10 to 15, the average empirical powers for all

three methods increase. As the number of replicates n increases from 6 to 15, the average empirical

powers increase as well. Applying our Tg to select null genes tends to have more false positives

compared with the FANOVA-based method and standard method. The standard method is too

conservative and not obtain enough power. Among these three methods, the estimated FDR using

FANOVA-based method is very close to the nominal values and achieves the optimal power. We

report similar tables for setting B, with both peak and valley results. With σ = 0.5, from Tables 2.2

and 2.3, we observe the empirical powers of testing valley locations are much lower than empirical

powers for testing differences in peak locations. This is because the difference between f1(t) and

f2(t) in setting B is the peak location. Similar results are shown in Table A.2 and A.3. With

the increasing error σ, the estimated FDRs do not change, while the average empirical powers

decrease because of the larger variation. Simulation results for setting A and B indicate that the

best permutation approach to estimate FDR is using Fg as the FANOVA statistics. So, we use the

FANOVA based approach for further application to diurnal differential expression analysis.

2.4 An Application to Diurnal Differential Expression Analysis

on Maize Study

Many tissues have circadian clocks that generate transcriptional rhythms. These are important

for the daily timing and physiological processes [29]. Furbank and Taylor [30] show that most
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Table 2.1: Simulation A: Average FDR and power for different methods to estimate F̂P along with out test
in Section 2.2.3 for simulation setting (A) with σ = 0.5. Results for different sample sizes n, observation
time points T , and nominal levels α are reported based on 100 replications.

T 10 15

n Methods α 0.050 0.075 0.100 0.150 0.050 0.075 0.100 0.150

6

FANOVA based
FDR 0.049 0.071 0.094 0.148 0.050 0.073 0.099 0.137

Power 0.964 0.968 0.970 0.973 0.972 0.975 0.976 0.978

Tg based
FDR 0.055 0.081 0.111 0.175 0.064 0.083 0.117 0.162

Power 0.966 0.969 0.971 0.975 0.974 0.975 0.977 0.980

Standard
FDR 0.014 0.011 0.010 0.010 0.064 0.083 0.117 0.162

Power 0.561 0.715 0.771 0.826 0.596 0.739 0.787 0.835

9

FANOVA based
FDR 0.045 0.070 0.097 0.141 0.046 0.068 0.084 0.144

Power 0.971 0.974 0.976 0.978 0.979 0.980 0.981 0.983

Tg based
FDR 0.052 0.084 0.097 0.166 0.055 0.084 0.107 0.144

Power 0.972 0.975 0.976 0.979 0.980 0.981 0.982 0.983

Standard
FDR 0.007 0.007 0.006 0.006 0.008 0.008 0.007 0.007

Power 0.758 0.807 0.855 0.879 0.763 0.811 0.859 0.883

15

FANOVA based
FDR 0.045 0.067 0.088 0.133 0.045 0.064 0.094 0.150

Power 0.979 0.981 0.982 0.984 0.982 0.984 0.985 0.987

Tg based
FDR 0.051 0.070 0.095 0.156 0.049 0.065 0.095 0.164

Power 0.980 0.981 0.982 0.984 0.983 0.984 0.985 0.987

Standard
FDR 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006

Power 0.862 0.886 0.906 0.929 0.860 0.886 0.905 0.929

plants use the C3 pathway of photosynthesis, also known as the photosynthetic carbon reduction

cycle, to convert light energy into chemical energy. The C4 pathway is a complex adaptation of the

C3 pathway that overcomes the limitation of photorespiration that is found in a diverse collection

of species. In 2005, Storey et. al. [12] address the temporal approach to study DE genes. In this

section, in order to study the transcriptional rhythms generated by circadian clocks, we analyze the

local geometric changes of the mean expression level change using the method in Section 2.2. This

is equivalent to identifying the DE genes with different temporal patterns across conditions. We

perform analysis on the general genes and C4 genes separately. We further determine whether there
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Table 2.2: Simulation B: (Peak) Average FDR and power for different methods to estimate F̂P along with
out test in Section 2.2.3 for simulation setting (B) with σ = 0.5. Results for different sample sizes n,
observation time points T , and nominal levels α are reported based on 100 replications.

T 10 15

n Methods α 0.050 0.075 0.100 0.150 0.050 0.075 0.100 0.150

6

FANOVA based
FDR 0.050 0.069 0.083 0.136 0.043 0.078 0.078 0.145

Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Tg based
FDR 0.058 0.083 0.105 0.180 0.043 0.078 0.078 0.145

Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Standard
FDR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Power 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000

9

FANOVA based
FDR 0.048 0.068 0.084 0.154 0.047 0.047 0.047 0.120

Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Tg based
FDR 0.057 0.084 0.120 0.176 0.047 0.047 0.047 0.120

Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Standard
FDR 0.000 0.000 0.014 0.028 0.000 0.000 0.000 0.001

Power 0.000 0.000 0.999 1.000 0.000 0.000 0.000 1.000

15

FANOVA based
FDR 0.046 0.046 0.074 0.139 0.026 0.026 0.026 0.120

Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Tg based
FDR 0.046 0.074 0.074 0.139 0.026 0.026 0.026 0.120

Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Standard
FDR 0.011 0.017 0.021 0.046 0.000 0.000 0.001 0.004

Power 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000
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Table 2.3: Simulation B: (Valley) Average FDR and power for different methods to estimate F̂P along with
out test in Section 2.2.3 for simulation setting (B) with σ = 0.5. Results for different sample sizes n,
observation time points T , and nominal levels α are reported based on 100 replications.

T 10 15

n Methods α 0.050 0.075 0.100 0.150 0.050 0.075 0.100 0.150

6

FANOVA based
FDR 0.020 0.041 0.057 0.109 0.000 0.001 0.010 0.090

Power 0.495 0.532 0.554 0.598 0.404 0.491 0.566 0.666

Tg based
FDR 0.041 0.057 0.080 0.155 0.032 0.050 0.090 0.147

Power 0.532 0.554 0.576 0.626 0.614 0.637 0.666 0.696

Standard
FDR 0.000 0.002 0.006 0.020 0.000 0.000 0.001 0.010

Power 0.305 0.386 0.436 0.495 0.348 0.432 0.491 0.566

9

FANOVA based
FDR 0.027 0.048 0.048 0.078 0.000 0.021 0.060 0.141

Power 0.598 0.626 0.626 0.653 0.546 0.666 0.709 0.750

Tg based
FDR 0.048 0.078 0.078 0.155 0.044 0.077 0.095 0.141

Power 0.626 0.653 0.653 0.695 0.696 0.719 0.730 0.750

Standard
FDR 0.000 0.002 0.010 0.027 0.000 0.000 0.002 0.021

Power 0.434 0.496 0.555 0.598 0.474 0.546 0.587 0.666

15

FANOVA based
FDR 0.034 0.053 0.074 0.122 0.025 0.059 0.085 0.123

Power 0.691 0.711 0.725 0.750 0.745 0.771 0.785 0.800

Tg based
FDR 0.046 0.074 0.099 0.137 0.048 0.071 0.085 0.145

Power 0.705 0.725 0.740 0.758 0.765 0.778 0.785 0.808

Standard
FDR 0.001 0.004 0.010 0.043 0.000 0.001 0.006 0.025

Power 0.570 0.620 0.646 0.702 0.612 0.664 0.707 0.745
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are any significant differences in number of DE genes between the general genes and C4-specific

genes via an enrichment analysis.

2.4.1 Real Data Description

As discussed in Section 2.1, the objective of the maize study is to assess effects of light on four

different leaf sections: the base, ligule from 3 to 4 cm, ligule from 8 to 9 cm, and the tip position

on a leaf. In this experiment, measurements at 13 points are obtained under two different light

conditions, constant light and constant dark. At each time point, three biological replicate leaves

are randomly picked from genetically identical plants under each light condition. In total, 63, 293

genes’ expression levels are collected from each of the four different leaf sections (see Fig 2.3).

We focus on the data collected from the constant dark and constant light conditions, the protocol

of which can be generalized to data collected from the general diurnal experiment. We identify

DE genes by comparing the differences of convexity and concavity of the mean functions between

different sections. The genes in the base section are very noisy and not informative for local pattern

analysis, so we focus our analysis on data from sections 2, 3 and 4.

Filtering

In general, there are three classifications for genes: 1) the temporal profiles of the gene expres-

sion in all sections have constant or linear patterns, 2) one or two sections have nonlinear temporal

profiles of the gene expression and 3) the temporal profiles of the gene expression in all sections

have nonlinear patterns. Much work has been devoted to test differences for the first type of data,

such as comparing the estimated slope directly. Methods for comparing a non-linear pattern to a

linear pattern have also been developed in [29]. The third type of genes is our primary interest.

That is, genes with nonlinear patterns for all sections are selected for analysis. We first apply

the goodness of fit method in [29] to filter genes with constant or linear only patterns by testing the

null hypothesis, H0 : µ(t) = β0+β1t, versus the alternative that the mean function has a nonlinear

pattern. Upon filtering, 10, 330 genes remain for further analysis under the constant dark condition

and 9, 063 genes under the constant light condition.
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(a) Experiment time points under constant dark (b) Experiment time points under constant light

(c) Treatment section, namely the base, 1cm, 4cm, and
tip position on the leaf

Figure 2.3: Experiment Description: (a) and (b) within 24 hours experiment time, the number of genes will
be measured every 2 hours, so we have 13 time points in total. (c) Under each experimental condition (light
or dark), four sections in one leaf have been measured.

2.4.2 Summary Analysis

To identify DE genes with different local geometry across sections we consider the null hy-

pothesis for gene g as

Hg
0 : Agl+ = Agm+ and Agl− = Agm− ∀ l 6= m.

By extending the two-sample test statistics T (1,2)
g· in (2.5) to more than two samples, we consider

the average paired “distance” T g· =
∑

l

∑
m 6=l T

(l,m)
g· /C, where C is the number of distinct com-

binations of sections. The null hypothesis Hg,ǫ
0 is rejected whenever T g· is large. Applying the

proposed method, we identify 1, 658 DE genes out of 10, 330 genes under constant dark experi-

ment and 1, 020 genes out of 9, 063 genes under constant light experiment at an 0.05 nominal FDR

level. During the 24 hours experiment time, the local geometries of temporal profiles of these DE
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genes change across sections. Also, under light condition, out of 112 C4 genes (55 without iso-

form), we find 15 (7 without isoform) of them to be differentially expressed. On the other hand,

for dark data, within these 73 genes (39 without isoform) C4 genes, we find 22 genes (13 without

isoform) to be DE.

Table 2.4: C4/PS genes under Light: significant DE C4/PS genes under light. * means DE genes in both
light and dark condition

gene ID Method both DE Annotation

GRMZM2G359038 V uncharacterized LOC100272602
GRMZM2G040933 P * plastidic general dicarboxylate transporter
GRMZM2G086258 P * plastidic general dicarboxylate transporter
GRMZM2G153920 P sorbitol transporter
GRMZM2G374812 P hexose carrier protein HEX6
GRMZM2G113033 P ribulose bisphosphate carboxylase small subunit 2
GRMZM2G463280 V Phosphoribulokinase

Tables A.5 and A.6 display the top 10 significant DE genes, ordered by the the average “dis-

tance” T g·, under both the constant light and the constant dark conditions. As our method compares

either valley or peak locations, 20 genes are listed (10 for each). The method column includes the

type of critical point that is used, indicated as V for valley and P for peak. Fig A.2 displays the

heatmap of the top 10 significant DE genes under both the constant light and the constant dark con-

ditions. For example, from the heatmap of Gene GRMZM2G074672_T01 in Fig A.2a, we observe

that not only the scale but the shape of the temporal profile are different between sections.

Tables 2.4 and A.7 present the results for DE C4 genes under constant light and constant dark

conditions. We find that genes GRMZM2G086258 and GRMZM2G040933 are DE under both

conditions. Fig A.1 includes the log scale RPKM data plot with the smoothed mean curve of gene

GRMZM2G086258. From this figure, we see that the mean in section 2 has a different pattern

compared with section 3 and 4 under both the constant light and the constant dark conditions. As

the time increases under the constant light condition, the log scale gene expression level decreases

in both sections 3 and 4. At the opposite extreme, the gene expression level increases in section 2
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(see Fig A.1a). Similarly, the gene expression level decreases in section 2 as shown in the red curve

in Fig A.1b, the exact opposite of both the blue and the green curves. However, the local geometry

in section 3 is similar to that in section 4 for this gene under both light conditions. Heatmaps of

gene GRMZM2G040933 in Fig A.2a and A.2b indicate the mean patterns of sections 2, 3 and 4

are different for both the constant light and the constant dark conditions.

2.4.3 Enrichment Analysis

Gene set enrichment analysis is a powerful and revealing follow-up step for RNA-seq analysis.

By carefully inspecting predefined gene sets, we can verify statistical discoveries and more im-

portantly, identify critical pathways that are responsive to treatment variations. For this analysis,

the goal is to determine if the C4 gene is more likely to have different local patterns in different

sections than non C4 genes. We conduct the Fisher’s exact test to perform the enrichment analysis.

The null hypothesis is that the proportion of the C4 gene to be DE is less than or equal to the

proportion of other genes

H0 : PC4 ≤ Pall vs Ha : PC4 > Pall. (2.7)

We found that the proportion of being DE is highly enriched for the C4 gene under constant dark

condition (p-value = 0.01), while there is no significant enrichment under the constant light con-

dition (p-value = 0.508).

2.5 Discussion

Given the small sample size and large number of potentially composite hypotheses depend-

ing on the biological questions of interest, analysis on the differential geometric pattern of the

time-course RNA-seq data is challenging. In this chapter, we focus on testing whether or not the

treatment affects the geometric attributes of the temporal profile of the gene expressions. This

approach helps us identify interesting genes and pathways. Further biology study needs to be

conducted for verification of the identified DE genes.
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In order to assess detailed differences of the local curvature over time between different condi-

tions, we propose a metric to quantify the changes of the geometric attributes of the temporal profile

and a multiple inference procedure to identify DE genes. In particular, we model the transformed

count data for genes at each time point using a spline model and develop a testing framework based

on a permutation procedure. We demonstrate that the proposed test achieves satisfactory power and

has its FDR controlled via simulation studies. We apply the proposed method to the data collected

from a light physiology experiment on maize. Though the proposed method focuses on the context

of comparing the RPKM data, our framework is also applicable to other types of gene expression

data. Also, the framework shown in this chapter gives a general approach to build local geometric

tests in multiple hypothesis testing problems.
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Chapter 3

Large Scale Maximum Average Power Multiple

Inference on Time-Course Count Data with

Application to RNA-Seq Analysis

3.1 Introduction

Studying transcriptomes through the sequencing of RNA (RNA-seq) has revolutionized biol-

ogy and medical science. RNA-seq experiments have been employed to detect allele-specific ex-

pression and novel biomarkers, to assist medical prognosis, and to explore how global expression

profiles alter in different biological environments. RNA-seq is affordable and allows for more sam-

ples; in particular, longitudinal studies are feasible, and can reveal dynamical biological patterns

for thousands of genes simultaneously.

As with traditional RNA-seq analysis [3, 31, 32], the major goal of time-course RNA-seq is to

detect differentially expressed (DE) genes across treatments. Genes differentially expressed over

time are of particular interest. An early and popular analysis for time-course RNA-seq data is to

model logarithmic fold change (LFC) as a function of time points as categorical factors [3,32]. This

approach does not account for possible smoothness in the mean dynamics and may fail to identify

DE genes with complex temporal profiles [7]. An extension of the original model for time-course

data in microarray experiments is the negative binomial employed by maSigPro-GLM, which

accounts for temporal structure by a polynomial in time [33]. Similarly, splineTC uses cubic

splines to model time-course transcriptome data and applies empirical Bayes moderated F-statistics

for DE analysis [34]. [23] account for temporal structure with a hidden Markov model. [35] intro-

duces an MCMC sampling procedure to identify temporally DE genes. The one-sample problem

for time-course RNA-seq data, which focuses on identifying genes or gene sets with significant

temporal dynamics, has also been studied [36, 37]. Based on a family of flexible parametric func-
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tions, ImpulseDE2 performs both one-sample and two-sample analyses on time-course RNA-

seq data [38]. Using a negative binomial mixed-effect model (NBMM), [7] analyze time-course

read counts of genes at the exon level and identify DE genes using the Kullback-Leibler distance

ratio. They also discuss the importance of testing a variety of composite hypotheses other than

the overall temporal pattern; namely, the nonparallel differentially expressed (NPDE) and parallel

differentially expressed (PDE) genes, which are modeled through time by treatment interactions.

Other methods for analyzing time-course RNA-seq data include [39–41]; see [42] for a review.

The aforementioned methods for analyzing time-course RNA-seq data may suffer from low

power in practice. Though some approaches—such as the local regression model employed by [31]

to estimate the dispersion parameters—adopt the idea of borrowing information across genes from

the traditional RNA-seq analysis, the improvement on power is not completely theoretically jus-

tified and is unsatisfactory in practice. To illustrate, we considered the fission yeast data set used

by [3] to show the performance of DESeq2 in analyzing time-course RNA-seq data. Besides

DESeq2, we also fitted the expression of each gene to a negative binomial model and identified

DE genes using the resulting likelihood ratio statistics and the standard [27] procedure. We refer

to this procedure as LRT. With the nominal false discovery rate (FDR) controlled at 0.05, our pro-

posed method identified 128 temporally DE genes out of 7, 039 genes while DESeq2 identified

85 DE genes and the LRT only identified 27 DE genes. See Appendix B for further discussion of

this example. In addition to the lack of theoretical guarantees on the power to detect DE genes

using time-course RNA-seq data, the FDR control of existing methods is not well studied. Sim-

ulation and empirical studies like [43], [44], [45], and [46] show that both DESeq and edgeR

are conservative in some cases while liberal in others for traditional RNA-seq analysis, and simi-

lar observations are reported for analyzing time-course RNA-seq data [7, 47]. Our comprehensive

simulations support the same conclusions.

Furthermore, most existing methods, such as maSigPro-GLM, splineTC, DEseq2, and

edgeR, are mainly designed for overall differential patterns across time among conditions. But

other differential expression profiles, such as PDE and NPDE genes [7], can provide a more subtle
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and accurate characterization of underlying biological processes. Section 4.4 describes analysis of

time-course RNA-seq data collected from a novel light physiology experiment [2] on the marine

diatom Phaeodactylum tricornutum (P.t.). The experiment investigates the gene transcriptional

response of P.t. during the process of photoacclimation in order to better understand how photo-

synthetics are regulated during the shifts of light conditions from low to high levels. Using our

proposal, we detected more DE genes than existing methods and identified different types of DE

profiles, as displayed in Figure 3.1. Specifically, gene Phatr3_J49108 primarily exhibits a relative

overall mean shift on the expression between the high and low light levels, gene Phatr3_EG01131

displays altered temporal patterns between these two light levels while the overall mean levels

remain unchanged, and gene Phatr3_J34003 possesses a more complex DE profile.
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(a) PDE with no time-by-treatment
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(b) NPDE with only time-by-
treatment
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(c) NPDE with both treatment and
time-by-treatment

Figure 3.1: Three types of DE profiles (labeled in the caption of each plot) across time identified by the
proposed method in Section 3.3 using the RNA-seq data for P.t. from a time-course experiment on the effect
of light intensity on the algae physiology and molecular mechanism. Two light conditions are examined in
this experiment, low and high light levels. Red and black curves represent the group with low and high light
levels, respectively. The y-axis are raw expression levels.

To address the above challenges systematically, motivated by [48–50], we develop an optimal

test in Section 3.2 for time-course RNA-seq data analysis: the test achieves maximum power aver-

aged across all genes for which null hypotheses are false, while controlling the FDR. Use of the test

relies on a model, which we develop in Section 3.3. Read counts for a gene at each time point have

negative binomial distributions, with the mean temporal profile generated by a latent mixture Gaus-

sian process. By modeling different types of DE profiles with mixture components, we are able to
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draw inference on a variety of composite hypotheses other than the simple overall DE hypothesis.

In addition, the model naturally adapts to non-equally spaced time points across conditions. We

carefully establish the identifiability of the proposed mixture model Appendix B and implement

the proposed test by developing an efficient algorithm to estimate the model parameters, using the

gradient expectation-maximization (EM) algorithm and quasi-Monte Carlo integration Appendix

B. We perform comprehensive simulation studies in Section 3.5 and Appendix B to demonstrate

the advantages of our method in comparison to existing methods. In Section 4.4, we analyze

the Phaeodactylum light data using our method. Some biologically interesting genes and critical

pathways, which are potentially related to photosynthesis regulation, are discovered. Discussion

follows in Section 6.

3.2 A Maximum Average Power Test

Let Yg denote the vector (combined across all experimental conditions, time points, and repli-

cates) of read counts for gene g (g = 1, . . . , G) from an RNA-seq experiment. Assume that Yg

follows a distribution parameterized by generic ηg and τ g, where ηg models the potential differen-

tial expression across conditions. Specifically, considering ∆0 and ∆1 as the null and alternative

sets for ηg, we identify DE genes by testing, for each g,

Hg
0 : ηg ∈ ∆0 vs. Hg

1 : ηg ∈ ∆1. (3.1)

Sets ∆0,∆1 can be defined flexibly to reflect a variety of biological questions of interest. With-

out loss of generality, suppose that the first G0 null hypotheses are true while others are false:

with respect to a common dominating measure ν(·), the densities f(·|ηg, τ g) are null for g =

1, 2, . . . , G0 and alternative for g = G0 + 1, G0 + 2, . . . , G. Employing these densities and

Neyman-Pearson arguments, [49] developed an optimal discovery procedure (ODP) to identify

DE genes, in which null hypothesis Hg
0 is rejected if and only if S(Yg) ≤ λ where S(Y) =

{∑G0

g=1 f(Y|ηg, τ g)}{
∑G

g=G0+1 f(Y|ηg, τ g)}−1. Let the expected false and true positives be

27



EFP(Γ) =
∑G0

g=1

∫
Γ
f(Y|ηg, τ g) dν(Y) and ETP(Γ) =

∑G
g=G0+1

∫
Γ
f(Y|ηg, τ g) dν(Y), where

Γ = {Yg : S(Yg) ≤ λ} is the significance region with respect to λ. [49] shows that the ODP

achieves maximum ETP among all procedures controlling the EFP. However, ODP implementa-

tion relies on estimates of G0 and identification of the nulls in advance, which may be challenging

for time-course RNA-seq data. Further, ODP needs G2 likelihood evaluations, which is computa-

tionally demanding.

To circumvent these challenges with ODP, we adopt the idea of borrowing information across

genes, which is commonly used in traditional DE analysis to improve power [48,51]. Specifically,

consider (ηg, τ g)’s to be independent random vectors with finite second moments from a common

probability distribution µ0 if Hg
0 is true and µ1 otherwise. Assume that G0 → ∞, G − G0 → ∞

with G0/G → p0 < 1. Then

EFP(Γ)/G0
p→
∫ ∫

Γ

f(Y|η, τ ) dν(Y) dµ0(η, τ ) := P (Y ∈ Γ|∆0) , (3.2)

ETP(Γ)/(G−G0)
p→
∫ ∫

Γ

f(Y|η, τ ) dν(Y) dµ1(η, τ ) := P (Y ∈ Γ|∆1) . (3.3)

[48] refer to (3.2) as the average type I error and (3.3) as the average power.

Analogous to the ODP, we propose a test statistic δ∗MAP(Y) = p0
∫
f(Y|η, τ ) dµ0(η, τ ){(1 −

p0)
∫
f(Y|η, τ ) dµ1(η, τ )}−1 for (3.1) and Hg

0 is rejected if and only if δ∗MAP(Yg) ≤ λ for some

0 ≤ λ < ∞. Statistic δ∗MAP(Y) mimics S(Y) in the ODP and maximizes the average power while

controlling the average type I error, and is also equivalent to the maximum average power testing

statistic introduced by [48] and [50].

Furthermore, assume that (ηg, τ g) are independent and identically distributed from a common

mixture π(η, τ ) = p0π0(η, τ ) + (1− p0)π1(η, τ ). Let Θ = ∆0 ∪∆1 and Ω denote the parameter

spaces for η and τ , respectively. Assume that π0(η, τ ) has support ∆0 × Ω and π1(η, τ ) has

support ∆1 × Ω, and ∆0 is zero-measure under π1(η, τ ) and ∆1 is zero-measure under π0(η, τ ).

Then, a statistic equivalent to δ∗MAP(Y) yet providing a natural way to estimate FDR is
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δMAP(Y) =

{∫

∆0×Ω

f(Y|η, τ )dµ(η, τ )
}{∫

Θ×Ω

f(Y|η, τ )dµ(η, τ )
}−1

. (3.4)

Theorem 3 in [48] states that among all tests controlling the FDR, a Neyman-Pearson test maxi-

mizes the average power. Hence, the tests based on δ∗MAP(Y) and (3.4) also maximize the average

power while controlling the FDR.

Given π(η, τ ) above, δMAP(Y) = P (Y,∆0)P
−1(Y) = P (∆0|Y) is the posterior proba-

bility of ∆0 given Y. The (posterior) expected number of false positives for a given rejection

region Γ is
∑

g δMAP(Yg)I(Yg ∈ Γ) =
∑

g P(∆0|Yg)I(Yg ∈ Γ). As is standard [48, 49],

we estimate the FDR by the ratio of expected false positives and expected positives, which is

F̂DRΓ =
∑

g δMAP(Yg)I(Yg ∈ Γ)/{∑g I(Yg ∈ Γ)}. Therefore, rejection region

Γ(α) = {Yg : δMAP(Yg) ≤ λα} is chosen with F̂DRΓ ≤ α for a nominal level α and it defines the

maximum average power test for (3.1).

3.3 Methodology

3.3.1 Data Model

Let Ygij(t) denote the number of reads mapped to gene g from the jth replicate in treatment

group i at time point t, where g = 1, . . . , G , i = 1, 2, j = 1, . . . , ni, and t = t1, . . . , tTi
with inte-

gers Ti > 0. A widely applicable model for traditional RNA-seq analysis is the negative binomial

(NB), which provides extra flexibility to model count data with large variations yet includes the

popular Poisson model as a special case [50, 52]. We therefore model Ygij(t)|λgij(t) as indepen-

dent NB (λgij(t), φg) across genes g, treatments i, replicates j and time points t, where φg is the

dispersion parameter and

λgij(t) = E{Ygij(t)|λgij(t)} = Sij exp
{
ηg1i +B′(t)ηg2i +B′(t)τ g

}
(3.5)

with some q-dimensional orthogonal basis functions B′(t) = (b1(t), . . . , bq(t)), ηg1i = ηg1I{i=2},

ηg2i = ηg2I{i=2} with ηg2, τ g ∈ R
q. In (3.5), B′(t)τ g models the mean temporal pattern for time-
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course expressions and Sij are normalization factors (treated as known constants in practice) that

adjust for varying sequencing depths and other technical effects across replicates.

Here, ηg1 is the relative mean shift of gene expression between treatments and ηg2 characterizes

potential interactions between the temporal patterns and treatments. If ηg2 is not zero, the relative

differences between λg1j(t) and λg2j(t) display NPDE patterns as introduced in [7]. PDE may

hold when ηg2 = 0, for which the relative differences between λg1j(t) and λg2j(t) do not vary over

time [7].

Like the negative binomial model for time series of counts in [53], model (3.5) has a smooth

mean temporal pattern λgij(t), conditional on a latent, zero-mean Gaussian process G(t). By Mer-

cer’s Theorem [54], G(t) admits a series representation that converges almost surely. In practice, a

finite expansion
∑K

k=1 Zkbk(t) approximates G(t) well for even relatively small K, where bk(t)’s

are the eigenfunctions corresponding to the covariance structure of G(t) and eigenvalues Zk’s are

independent normal random variables, which motivates model (3.5). This link to general Gaussian

processes reflects the flexibility of the proposed model. Since ηg1,ηg2 and τ g mimic the eigenval-

ues Zk, they are similarly modeled using normal distributions in Section 3.3.2 below.

3.3.2 Latent Model and Hypotheses

Under model (3.5), testing (3.1) reduces to testing Hg
0 : ηg1,ηg2 ∈ ∆0 versus Hg

1 : ηg1,ηg2 ∈

∆1. To employ the proposed maximum average power test defined by Γ(α) in Section 3.2, the

derivation of δMAP(Y) in (3.4) assumes information on π(η, τ ), where η = (η1,η2) for our model.

Motivated from the discussion in Section 3.3, we consider (ηg1,ηg2, τ g) as independent normal

random vectors. Given the large number of tests to be performed, we balance the computational

burden and model flexibility by specifying

(ηg1,ηg2, τ g) ∼ π(η, τ ) =
K∑

k=1

pkN
(
µ(k),Λ(k)

)
(3.6)

where µ(k) = (µ
(k)
1 , 0, . . . , 0)′ and Λ(k) = diag(σ2,(k)

1 ,M(k),Ψ) with diagonal matrices M(k) and

Ψ. Together, (3.5) and (3.6) are the proposed K-component latent Gaussian-Negative Binomial
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model. By varying the number of components K, proportions pk, and parameters of the compo-

nents, the proposed model possesses ample flexibility.

The number of components K needs to be specified for estimation and inference with (3.5)

and (3.6). While some practical guidance is discussed in literature [50, 55, 56], we motivate the

choice of K from the important classification of DE genes into PDE and NPDE, as in [7]. PDE and

NPDE genes have been observed in real time-course RNA-seq studies, such as the light physiology

experiment discussed in Sections 3.1 and 4.4. To model these two types of differential expression,

we consider K = 4 components: (i) genes without DE, ηg1 = 0 and ηg2 = 0, that is σ
2,(1)
1 = 0

and the diagonals of M(1) are zeros so that (ηg1,ηg2) have degenerate marginal distributions with

point mass at zeros; similarly, (ii) NPDE genes with only time-by-treatment interaction, ηg1 = 0

and ηg2 ∼ N (0,M); (iii) PDE genes, ηg1 ∼ N (µ1, σ
2
1) and ηg2 = 0; and (iv) NPDE genes with

both treatment and time-by-treatment effects, ηg1 ∼ N (µ1, σ
2
1) and ηg2 ∼ N (0,M). In view of

δMAP(Y) in (3.4), the null set ∆0 in (3.1) can then be specified to correspond to components of the

mixture. For example,

∆Mean
0 = {ηg1 = 0}, ∆NPDE

0 = {ηg2 = 0}, and ∆DE
0 = ∆Mean

0 ∩∆NPDE
0 (3.7)

correspond to the first and second components, the first and third components, and only the first

component in above model, respectively. The alternatives to these nulls correspond to biologically

interesting hypotheses: any mean shift (with or without NPDE) is the alternative to ∆Mean
0 , any

NPDE is the alternative to ∆NPDE
0 , and any DE is the alternative to ∆DE

0 .

Estimates of the unknown parameters µ1, σ
2
1 , the diagonal entries of Ψ and M, and the pro-

portions pk are needed to conduct the test. In the Appendix B, we detail a quasi-Monte Carlo

integration-assisted gradient EM algorithm for estimation. Specify ∆0 as in (3.7) and let β =

(η1,η2, τ ). To perform the test, we compute the plug-in estimate

δ̂MAP(Y) =

∫

Rq

∫

∆0

f(Y|x′β, φ̂)dπ̂(β){
∫

Rq

∫

Ω

f(Y|x′β, φ̂)dπ̂(β)}−1,
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where f(·|x′β, φ̂) is the negative binomial density with estimated dispersion φ̂ and matrix

x(2q+1)×(T1+T2) = [{0T1×1 B′
1(t) 0T1×q}′ {1T2×1 B2(t) B2(t)}′] for which

Bi(t) = (B1(t), . . . , Bq(t))
tTi
t=t1 ,

and

dπ̂(β) =
4∑

k=1

p̂kϕ(β|µ̂(k), Λ̂(k))dβ

with multivariate normal density ϕ. Then, as in Section 3.2, λ̂α is chosen so that F̂DRΓ ≤ α with

δMAP(Yg) replaced by δ̂MAP(Yg) for each g, and using Γ̂(α) = {Yg : δ̂MAP(Yg) ≤ λ̂α}, we can

identify DE genes for the hypothesis defined by ∆0 and related biological questions.

The proposed K-component latent Gaussian-Negative Binomial model in (3.5) and (3.6) is

a finite mixture model for which identifiability must be established in order to draw meaningful

statistical conclusions [57–59]. In Appendix B, we show that our proposed model admits finite

identifiability [58] provided the number of basis functions q satisfies 2q + 1 ≤ T1 + T2.

3.4 Proof of Identifiablility

The proposed K-component latent Gaussian-Negative Binomial model is a finite mixture model,

for which identifiability must be established in order to draw meaningful statistical conclusions.

In his pioneering work, [57] formally defined identifiability for finite mixtures. Focusing on some

specific families of distributions, [58] provided a sufficient and necessary condition on the identifi-

ability of generated finite mixtures. [60] showed the identifiability of finite mixtures from binomial,

Poisson, and Gaussian distributions under some conditions. Identifiability of finite mixtures of re-

gression models has been explored in [61] and [55]. Modifying the results from [57], [62] showed

the identifiability of finite mixtures of Log-gamma and reverse Log-gamma distributions. [59] ex-

tended the finite identifiability of [57] to strong identifiability, which involves higher-order deriva-

tives of the densities. A more general type of k-strong identifiability was proposed by [63], which

unifies other types of identifiability. Strong identifiability [59, 63] is only applicable to classes
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of mixtures parameterized by parameters of single type, such as location or scale. Therefore, to

explore the identifiability of our proposed model, we focus on finite identifiability.

3.4.1 Main Results

Let L denote a m×m lower triangular matrix and consider a family of distributions

F = {F (Y;θ) : Y ∈ R
T ,θ = (µ,Λ),µ ∈ Θ ⊆ R

m,Λ = LL′ ∈ Ω ⊂ S++
m }, (3.8)

F (Y;θ) =

∫

Rm

f(Y|x′β, φ)ϕ(β|µ,Λ)dβ =
T∏

t=1

∫

Rm

f(yt|x′
tβ, φ)ϕ(β|µ,Λ)dβ,

where f(yt|x′
tβ, φ) is the negative binomial density with x′

t the tth row of T × m design matrix

x′ and dispersion parameter φ, ϕ(·|µ,Λ) is the multivariate normal density, and S++
m is the family

of m × m symmetric positive definite matrices. At most m(m + 1)/2 entries of L are nonzero.

Hence, F is indexed by points in a Borel subset of Rm × R
m(m+1)/2.

Definition 3.4.1. The set of all finite mixtures generated from F is H = {H(Y,Θ) : H(Y,Θ) =
∑K

k=1 pkF (Y;θk),θk 6= θℓ if k 6= ℓ, where k, ℓ = 1, 2, . . . , K, pk > 0,
∑K

k=1 pk = 1}, where

K = 1, 2, . . ..

With m = 2q + 1, T = T1 + T2, and x′ and (µ(k),Λ(k))’s specified in Section 3.2 in the main

chapter, the proposed model is indeed a finite mixture generated by F with K = 4.

Definition 3.4.2. [58]. Consider

H(Y, {θk}k) =
K∑

k=1

pkF (Y;θk)

and

H ′(Y, {θ′
ℓ}ℓ) =

L∑

ℓ=1

p′ℓF (Y;θ′
ℓ).

If H(Y, {θk}k) = H ′(Y, {θ′
ℓ}ℓ) implies K = L, and for each k there is an ℓ such that pk = p′ℓ and

θk = θ′
ℓ, then F generates identifiable finite mixtures or admits finite identifiability.
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Theorem 3.4.3. Consider a full column rank x′. All finite mixtures generated by the family F

in (3.8) are identifiable in the sense of Definition 3.4.2 provided the existence of an index set

S ⊆ {1, . . . , T}, such that for all k = 1, . . . , K, pairs

({∑

s∈S
x′
s

}
Λk

{∑

s∈S
x′
s

}′

,

{∑

s∈S
x′
s

}
µk

)

are distinct, where x′
s is the rows of x′ for s = 1, . . . , T .

The full column rank condition on x′ is commonly used for exploring identifiability of mixture

models, for example; it is sufficient for identifiability of a class of Poisson regression mixtures

[64]. For our model, this condition guides us to choose the number of basis functions q so that

2q + 1 ≤ T1 + T2. For the distinct pairs condition, consider the “location mixtures” scenario

in which Λk’s are the same and µk’s are different.The finite mixtures generated by F are then

identifiable if for all k = 1, . . . , K, there exists an index set S such that
∑

s∈S x
′
sµk are different,

which is equivalent to
∑

s∈S xs lying outside a finite number of hyperplanes for such an S.

To complete the identifiability of our proposed model, we define mapping g : Θ∗ × Ω∗ →

Θ × Ω such that g(ν,Σ) = (g1(ν,Σ), g2(ν,Σ)) = (µ,Λ), where Θ∗ ⊂ R
m′

with m′ ≤ m and

Ω∗ ⊂ S++
m . Then, we make the following assumption.

Condition 3.4.4. It holds g(ν1,Σ1) 6= g(ν2,Σ2) whenever (ν1,Σ1) 6= (ν2,Σ2) in Θ∗ × Ω∗.

Condition 3.4.4 and its variants have been used to study identifiability in transformed parameter

space and widely discussed in the literature [65].

Theorem 3.4.5. Consider a family of density functions {G(Y;ν,Σ) : ν ∈ Θ∗,Σ ∈ Ω∗} where

G(Y;ν,Σ) = F (Y;g(ν,Σ)). Assume that all finite mixtures generated by the family F =

{F (Y;θ) : θ = (µ,Λ),µ ∈ Θ,Λ ∈ Ω} are identifiable. Then, all finite mixture generated by the

family {G(Y;ν,Σ) : ν ∈ Θ∗,Σ ∈ Ω∗} are identifiable under Condition 3.4.4.

For our proposed model with parameters µ1, σ
2
1,Ψ,M, (µk,Λk) in Theorem 3.4.3 coincides

with (µ(k),Λ(k)) in Section 3.3 in the main chapter for k = 1, 2, 3, 4. That is, µ1 = µ2 =
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0(2q+1)×1, µ3 = µ4 =
[
µ1,01×(2q)

]′
, where µ1 6= 0;

Λ1 =




0 01×q 01×q

0q×1 0q×q 0q×q

0q×1 0q×q Ψ




, Λ2 =




0 01×q 01×q

0q×1 M 0q×q

0q×1 0q×q Ψ




and

Λ3 =




σ2
1 01×q 01×q

0q×1 0q×q 0q×q

0q×1 0q×q Ψ




, Λ4 =




σ2
1 01×q 01×q

0q×1 M 0q×q

0q×1 0q×q Ψ




,

where σ2
1 > 0, Ψ and M are diagonal matrices with positive diagonals. It is easy to see that

the transformation between (µ1, σ
2
1,Ψ,M) and (µk,Λk)’s satisfies Condition 3.4.4. In addition,

for x′ given in Section 3.2 in the main chapter, the full column rank condition is satisfied and it

is easy to see that there exists S such that all entries in
∑

s∈S x
′
s are not zero, which guarantees

distinct
{∑

s∈S x
′
s

}
Λk

{∑
s∈S x

′
s

}′
for all k = 1, . . . , K = 4. Therefore, Theorems 3.4.3 and

3.4.5 establish the identifiability of our proposed model.

3.4.2 Proof of Theorem 3.4.3

Assume that F is not identifiable. Then, there exists M ≥ 1 and nonzero αj ∈ R for j =

1, . . . ,M such that

M∑

j=1

αjF (Y;θj) =
M∑

j=1

αj

∫

Rm

T∏

t=1

f(yt|x′
tβ, φ)ϕ(β|µj,Λj)dβ = 0, (3.9)

where F (Y,θj) ∈ F for each j. For S ⊆ {1, . . . , T} and u ∈ Z
+ ∪ {0}, integrating

∏
s∈S y

u
s on

both sides of (3.9) and using Fubini’s Theorem leads to
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0 =

∫

R

· · ·
∫

R

(∏

s∈S
yus

)
M∑

j=1

αj

∫

Rm

T∏

t=1

f(yt|x′
tβ, φ)ϕ(β|µj,Λj)dβdy1 · · · dys∈S · · · dyT

=
M∑

j=1

αj

∫

Rp

∏

s∈S

{∫

R

yus f(ys|x′
sβ, φ)dys

}{∏

t/∈S

∫

R

f(yt|x′
tβ, φ)dyi

}
ϕ(β|µj,Λj)dβ

=
M∑

j=1

αj

∫

Rm

∏

s∈S
E (yus |x′

sβ, φ)ϕ(β|µj,Λj)dβ.

By Lemma 3.4.6 and induction, for each u ∈ Z
+ ∪ {0},

0 =
M∑

j=1

αj

∫

Rm

∏

s∈S
exp (ux′

sβ)ϕ(β|µj,Λj)dβ

=
M∑

j=1

αj

∫

Rm

exp

(
u
∑

s∈S
x′
sβ

)
ϕ(β|µj,Λj)dβ (3.10)

=
M∑

j=1

αj exp

{
u2

2

(∑

s∈S
x′
s

)
Λj

(∑

s∈S
x′
s

)′

+ u

(∑

s∈S
x′
s

)
µj

}

with αj 6= 0 for some j. Given distinct pairs (
{∑

s∈S x
′
s

}
Λj

{∑
s∈S x

′
s

}′
,
{∑

s∈S x
′
s

}
µj) :=

(s2j ,mj) for j = 1, . . . ,M , (3.10) shows that the family of normal distributions {N (mj, s
2
j)}Mj=1 is

linearly dependent and therefore not identifiable by the main theorem of [58]. However, as shown

by [57], the class of all finite mixtures of univariate normal distributions is identifiable. There-

fore, we reach a contradiction. Hence, F must be linearly independent and generates identifiable

mixtures.

3.4.3 Proof of Theorem 3.4.5

Proof. Consider different pairs (ν1,Σ1), . . . , (νk,Σk) ∈ Θ∗ × Ω∗ for k ≥ 2. Assume that there

exists αi ∈ R such that
k∑

i=1

αiG(Y;νi,Σi) = 0. (3.11)

Let (µi,Λi) := g(νi,Σi) for each i ≤ k. By Condition 4.3, (µ1,Λ1), . . . , (µk,Λk) are all distinct.

Equation (3.11) therefore yields
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k∑

i=1

αiF (Y;µi,Λi) = 0. (3.12)

It is known that all finite mixtures generated by the family {F (Y;θ) : θ = (µ,Λ)} are identi-

fiable if and only if the elements in this family are linearly independent [58]. Equation (3.12)

implies that αi = 0 for each i. Therefore, (3.11) implies that all finite mixtures generated from

{G(Y;ν,Σ) : ν ∈ Θ∗,Σ ∈ Ω∗} are identifiable.

3.4.4 A Technical Lemma

Lemma 3.4.6. The nth-order moment of the negative binomial distribution is an nth-degree poly-

nomial in its first-order moment.

Proof. Consider parametrization of the negative binomial distribution by probability of success p

and predefined number of failures r. The corresponding moment generating function is M(t) =

pr{u(t)}−r, where u(t) = 1− (1− p)et. Then,

M (1)(t) :=
∂M(t)

∂t
= pr(−r)u−r−1∂u

∂t
,

and

M (2)(t) :=
∂M (1)(t)

∂t
= M (1)(t) + pr(−r)(−r − 1)u−r−2

(
∂u

∂t

)2

.

By induction, assume that for all i = 2, . . . , n,

M (i)(t) = Pi

(
M (1)(t), . . . ,M (i−1)(t)

)
+ pr(−1)i

Γ(r + i)

Γ(r)
u−r−i

(
∂u

∂t

)i

,

where Pi

(
M (1)(t), . . . ,M (i−1)(t)

)
is a linear combination of M (1)(t), . . . ,M (i−1)(t). It yields

M (n+1)(t) = Pn

(
M (2)(t), . . . ,M (n)(t)

)
+ n

{
M (n)(t)− Pn

(
M (1)(t), . . . ,M (n−1)(t)

)}

+ pr(−1)n+1Γ(r + n+ 1)

Γ(r)
u−r−n−1

(
∂u

∂t

)n+1

.
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Therefore, for any n > 1, we have

M (n)(t) := Pn

(
M (1)(t), . . . ,M (n−1)(t)

)
+ pr(−1)n

Γ(r + n)

Γ(r)
u−r−n

(
∂u

∂t

)n

.

On the other hand, the first-order moment of negative binomial random variable Y is E(Y ) =

M (1)(0) = r(1− p)p−1. Since u(0) = p, ∂u/∂t|t=0 = −(1− p), we have

E(Y n) = M (n)(0) = Pn

(
M (1)(0), . . . ,M (n−1)(0)

)
+

Γ(r + n)

Γ(r)
(−1)n

{
E(Y )

r

}n

,

where Pn

(
M (1)(0), . . . ,M (n−1)(0)

)
is a polynomial in E(Y ) of degree n− 1.

3.5 Monte Carlo Evidence

In this section, we examine the performance of the proposed method and other existing ap-

proaches, including DESeq2, edgeR [66], ImpulseDE2, maSigPro-GLM, and splineTC,

using two extensive sets of simulation studies. We generate time-course count data according to

(3.5), (3.6) and a variety of ∆0’s.

3.5.1 Simulation Setting

For Settings A and B, detailed below, we simulate 100 independent datasets of time-course

count data, with each dataset containing G = 1, 000 genes, two treatment groups, T = 6 or

T = 10 time points, and r = 3 or r = 6 replicates. Three types of basis functions with q = 2 or

q = 3 are considered for estimating (3.5): the basis functions for the traditional Gaussian kernel

(see [54] and the Appendix) denoted GA2 and GA3; the orthogonal Fourier basis functions, denoted

FO2 and FO3; and the orthogonal polynomial bases, denoted PL2 and PL3. Also, we set Sij ≡ 1.

Setting A: In (3.5), q = 2 and the true basis functions are PL2. Parameters ηg1,ηg2 and τ g are

drawn from (3.6), where µ1 = 2 or 4, σ2
1 = 1 or 2, Ψ = diag{1, 1} and M = diag{3, 2}.

Setting B: In (3.5), q = 3 and the true basis functions are PL3. Parameters ηg1,ηg2 and τ g are

drawn from (3.6), where µ1 = 2 or 4, σ2
1 = 1 or 2, Ψ = diag{1, 1, 1} and M = diag{3, 2, 1}.
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For each simulated dataset, we fit (3.5) with each of the six basis types and conduct the test

accordingly. We also conduct the true test, using the true basis functions (e.g., PL2 in setting A)

and known parameters, and the oracle test, using the true basis functions but unknown parameters.

ImpulseDE2 and splineTC use their own mean models; we use the true basis functions for

all other competing methods. Dispersion parameters are estimated, by borrowing information

across genes if applicable, for competing methods except maSigPro-GLM, for which the true

dispersion parameters are used, and splineTC, for which no dispersion is assumed. For our

proposed method, the moment estimator for dispersion is developed and detailed in the Appendix.

Extra simulation results for our method with different dispersion estimators yield similar results;

see the Appendix B (Figure S.7 in Section C.3 and related discussion). Empirical FDRs and powers

averaged over 100 replications at nominal levels 0.01, 0.025, 0.05 0.075 and 0.1 are reported for

each method.

For each setting, 50% of genes are drawn from the null component of (3.6), 20% from NPDE

with only time-by-treatment, 20% from PDE with no time-by-treatment; and 10% from NPDE with

both treatment and time-by-treatment. In Appendix B, additional results for different proportions

of DE genes are reported and show similar patterns (Figure S.7).

3.5.2 Results

We consider the three null hypotheses in (3.7): any temporal DE is the alternative to ∆DE
0 , rel-

ative mean shift is the alternative to ∆Mean
0 , and NPDE is the alternative to ∆NPDE

0 . For testing ∆DE
0

we compare the performance of our proposal to all five competitors. By specifying correspond-

ing contrasts or likelihood ratio statistics, edgeR and DESeq2 can test the other two composite

hypotheses and are compared with our method as well.

Figures 3.2–3.3 display results for the proposed method using the GA3 basis, true test, oracle

test, and the five competing methods. Each point on the figures displays the empirical FDR and

power of the corresponding method at a given nominal FDR level, which is marked as a vertical

gray dashed line. The closer the point is to the corresponding vertical dashed line, the more the
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empirical and nominal FDR levels coincide. Results for the proposed method with other basis

functions are qualitatively similar; see Figures S.1–S.6 in the Appendix.

Most points on these plots are to the left of corresponding vertical dashed lines, which sug-

gests that most methods have their empirical FDRs controlled. Compared to our proposed method,

all other competitors are less powerful, particularly for small number of replicates r and lower µ.

The true test with known parameters and the oracle test without information on parameters per-

form the best overall, and are almost indistinguishable for most cases, reflecting the reliability of

the estimation procedure described in the Appendix. Though number and type of the basis func-

tions are all misspecified, our proposal still provides satisfactory results, reflecting the expected

flexibility and robustness of the method (Figures S.1-S.6 in the Appendix). In addition, as the

number of replicates r increases, the deviations between the proposed method with misspecified

bases and the true test quickly diminish. For Setting A with PL2 as the bases, all methods have the

nominal FDRs controlled, as shown in Figure 3.2. For Setting B with PL3, Figure 3.3 shows that

maSigPro-GLM may not provide a satisfactory control on the FDR for all levels as it essentially

models the mean dynamics by a less flexible quadratic regression. It is interesting to observe that

in both figures, compared to edgeR and ImpulseDE2, DESeq2 and splineTC have smaller

empirical FDRs but comparable powers. Similar patterns also display in Tables 3.1 and 3.2.

Results for testing against ∆Mean
0 and ∆NPDE

0 under Setting A are reported in Tables 3.1 and 3.2,

respectively. Those for Setting B are deferred to the Tables S.1–S.4 in the Appendix. Empirical

FDRs are close to the nominal level for most tests for both hypotheses. The empirical powers

for testing against ∆Mean
0 increase as µ1 increases from 2 to 4 for all methods, while they are not

substantially improved by increasing T and r. On the other hand, similar to testing the interactions

in functional ANOVA [7, 67], testing for NPDE is more challenging and the power is expected

to be lower. However, as displayed in Table 3.2, as well as in Tables S.3–S.4 in the Appendix,

the powers for testing NPDE genes of the proposed method increase in T and r for all bases

and are unsurprisingly not influenced by mean parameter µ1. Furthermore, the performance of

the proposal is not affected much by the choice of the bases. In addition, our proposed method
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outperforms edgeR and DESeq2 in power, particularly for testing NPDE genes. These numerical

results confirm the theoretical guidance in Section 3.2 on the optimality of the proposed method,

as well as its flexibility on testing a variety of composite and biologically interesting hypotheses.

3.6 Analysis of the Phaeodactylum Light Experiment

We apply our method to P.t. transcriptomics data from the light experiment introduced in

Section 3.1. Most algae and cyanobacteria, including P.t., undergo some major changes in cell

biochemistry via a process termed photoacclimation. Growth in high light environments leads to

low photosynthetic pigment per cell, accumulation of fats and carbohydrates, and an upregulated

oxidative stress response. Growth in low light environments leads to high pigmentation of cells in

order to capture more light and major increase in structural lipids associated with the chloroplast

[68].

Peers et al. [2] investigated the gene transcriptional response during photoacclimation, to better

understand regulation of photosynthetic and catabolic metabolisms during the shift of a day-night

cycle. Cultures of the diatom P.t. were submitted to a single step change in light from excess light

fluxes to low light fluxes that nearly limit the growth rate. Samples for transcriptomics were taken

over a 24-hour period. After mapping to the genome, 12, 319 candidate genes were to be analyzed

from the two groups with three replicates within each. Data for both groups were collected at 0,

60, 240, and 360 minutes as well as 12 and 24 hours, while data for the low light group were also

collected at 20, 40, 90, and 120 minutes.

We first filtered and normalized the data following standard procedures, described in detail in

Appendix B. After filtering, 10, 597 genes remain for further analysis.

For DE analysis, the nominal FDR level is set at 0.05 and we use polynomial basis functions

with q = 2 for B(t). Results for all basis functions discussed in Section 3.5 yield similar results; for

example, the majority of DE genes (∼ 91%) for the hypotheses of interest are identified by all six

basis functions. We identify 3, 869 overall temporally differential expressed genes, within which

3, 771 genes have relative mean shift between two groups (reject ∆Mean
0 ) and 98 are NPDE (reject
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∆NPDE
0 ). Figure S.8 displays the top 10 selected genes identified with both relative mean shift and

NPDE. The top 10 genes selected with only relative mean shifts are displayed in Figure S.8 in

Appendix B .

As a large proportion of predicted gene models for P.t. still encode genes of unknown func-

tion [69], functions of the top 10 differentially regulated genes in Figure S.8 are not completely

documented. However, gene Phatr3_J47271 is an experimentally-verified critical component of the

photosynthetic pigment biosynthesis pathway and our finding on its differential regulation supports

the large dynamical change in pigmentation observed during photoacclimation [68]. In addition,

genes Phatr3_J50183, Phatr3_J49693, and Phatr3_EG01882 are all highly related to photoacclima-

tion. From Figure S.8, their temporal differential expression patterns are much more sophisticated

than simple mean shift targeted by the traditional RNA-seq analysis. The new tests have revealed

potentially critical pathways for better understanding photoacclimation in general. Follow-up anal-

ysis via gene set enrichment for three critical photoacclimation-related pathways is discussed in

Appendix B.

3.7 Discussion

We have proposed an inferential procedure for time-course RNA-seq data that maximizes av-

erage power and controls FDR. Novel features of our approach include smooth and flexible mod-

eling of the mean dynamic (3.5) within genes, conditional on a latent zero-mean Gaussian pro-

cess; and flexible mixture modeling (3.6) of coefficients across genes. Taken together, the within-

gene/across-gene model (our K-component latent Gaussian-Negative Binomial model) allows fea-

sible estimation of unknown model parameters, natural borrowing of information across genes for

both the mean and variance instead of the dispersion only, and straightforward, one-step testing of

general composite null hypotheses of great biological interest. By contrast, existing pipelines such

as edgeR and DESeq2 have to rely on a two-step procedure for testing some composite hypothe-

ses. Additional simulations in the Appendix B (see Table S.5) show the superior performance of

our proposal over existing methods for testing these more general composite null hypotheses.
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Our proposed methodology is easy to implement. However, as suggested by a numerical

study reported in the Appendix B, it incurs some computational cost on parameter estimation

via gradient-EM and quasi-Monte Carlo integration, which can be partly offset by parallel com-

putations in practice. In addition, when the true alternatives are not at all smooth, such as an

abrupt change in mean for a single time point, our method may have compromising powers, which

can also be partly resolved by using different basis functions as mentioned in Section D.4 in the

Appendix B.

Our test is numerically indistinguishable from the oracle and true tests when the number of

replicates r is relatively large, while the difference is more obvious for small r. One reason for this

is the estimation of gene-wise dispersion φ. We employ a moment estimate for φ inducing extra

variations for our test. It has been long recognized that the unstable estimation of the dispersion in

the small RNA-seq experiments may result in poor control of FDR while a good estimate of this

parameter is challenging in practice [31, 46, 52]. Existing pipelines usually address this challenge

by borrowing information across genes via an empirical Bayes approach. In the Appendix B, ad-

ditional simulations (see Figure S.7) are reported for our test combined with different estimates

on the dispersion, including the empirical dispersion estimator in Section B.1.2 (ED), the common

dispersion estimator (CD), and the local regression approach used in DESeq2. While the empir-

ical powers of our test with the three estimates of dispersion are similar with minor differences,

the FDR control of ED is slightly inflated when r = 3 and the DE proportion is small. When

r increases, the performances among different approaches are comparable. This relatively robust

performance with respect to different approaches can be possibly explained as follows. Compared

to the traditional RNA-seq trials with only r replicates, dispersion estimation for time-course ex-

periments may leverage more from rT samples collected at T time points. Also, edgeR is less

conservative than DESeq2 in general, which is due to the robust empirical Bayes method em-

ployed in edgeR to estimate the prior degree of freedom for the weighted likelihood as it reduces

the informativeness of prior distribution for outlier genes [70,71]. In contrast, using a data-adaptive

control on the shrinkage, DESeq2 controls the FDR better than edgeR for small r. Employing the
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edgeR approach to estimate gene-wise dispersion may improve our method for large r in practice

and is left to future study.

Though the proposed method focuses on two-sample problems, it is readily generalized to

M ≥ 3 treatments by extending the specification of λgij(t) in (3.5) and the mixture distribution on

its coefficients in (3.6). A further extension is to allow the temporal dynamics to vary continuously

with respect to some explanatory variable Z , such as age or blood pressure. Extending the mean

specification (3.5) to this continuous case is straightforward, but the resulting continuous mixture

distributions on model coefficients lead to more involved questions of identifiability and estimation.

We leave these as topics for future investigation.
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Figure 3.2: Empirical FDRs and powers for testing the overall temporal DE genes by the proposed method
using GA3 basis (∆), compared to those of the oracle test (◦), the true test (⋄), maSigPro-GLM(�), edgeR
(•), splineTC (∇), ImpulseDE2 (⊠) and DESeq2 (×) for Setting A. Each point on figures displays the
empirical FDR and power of the corresponding method at a given nominal FDR level, which is marked as a
vertical gray dashed line. All plots are for T = 10. Results are based on 100 replications.
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Figure 3.3: Empirical FDRs and powers for testing the overall temporal DE genes by the proposed method
using GA3 basis (∆), compared to those of the oracle test (◦), the true test (⋄), maSigPro-GLM(�), edgeR
(•), splineTC (∇), ImpulseDE2 (⊠) and DESeq2 (×) for Setting B. Each point on figures displays the
empirical FDR and power of the corresponding method at a given nominal FDR level, which is marked as a
vertical gray dashed line. All plots are for T = 10. Results are based on 100 replications.
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Table 3.1: Comparison of empirical FDRs and powers for testing DE genes with relative mean shift by the
proposed method with different bases, edgeR, and DESeq2 for Setting A. In simulations, µ1, T, r and σ2

1

are displayed in the table. The nominal FDR level is 0.05. The simulation is based on 100 replications.

(T , r, σ2
1) (6, 3, 1) (6, 3, 2) (6, 6, 1) (6, 6, 2) (10, 3, 1) (10, 3, 2) (10, 6, 1) (10, 6, 2)

µ1 = 2

FDR 0.053 0.061 0.055 0.052 0.052 0.055 0.036 0.044
GA2 Power 0.917 0.800 0.937 0.893 0.933 0.853 0.967 0.890

FDR 0.057 0.066 0.061 0.056 0.056 0.059 0.035 0.045
GA3 Power 0.917 0.790 0.933 0.893 0.930 0.853 0.967 0.880

FDR 0.053 0.075 0.072 0.073 0.053 0.078 0.047 0.045
FO2 Power 0.920 0.800 0.933 0.890 0.933 0.860 0.963 0.887

FDR 0.058 0.072 0.068 0.060 0.057 0.070 0.044 0.045
FO3 Power 0.920 0.793 0.937 0.893 0.930 0.853 0.960 0.880

FDR 0.057 0.051 0.051 0.046 0.057 0.050 0.045 0.045
PL3 Power 0.920 0.790 0.930 0.893 0.930 0.857 0.967 0.880

FDR 0.052 0.049 0.048 0.045 0.052 0.047 0.056 0.045
Oracle Power 0.920 0.797 0.933 0.890 0.933 0.853 0.967 0.887

FDR 0.043 0.044 0.044 0.045 0.045 0.045 0.046 0.047
True Power 0.913 0.803 0.933 0.890 0.930 0.853 0.967 0.887

FDR 0.072 0.072 0.049 0.049 0.051 0.052 0.045 0.044
edgeR Power 0.796 0.741 0.882 0.820 0.862 0.801 0.919 0.864

FDR 0.021 0.022 0.032 0.031 0.031 0.030 0.036 0.036
DESeq2 Power 0.799 0.730 0.881 0.814 0.861 0.792 0.919 0.861

µ1 = 4

FDR 0.067 0.069 0.017 0.051 0.038 0.052 0.006 0.050
GA2 Power 1.000 0.997 1.000 1.000 1.000 0.990 1.000 0.997

FDR 0.084 0.081 0.054 0.058 0.058 0.062 0.012 0.047
GA3 Power 1.000 0.997 1.000 1.000 1.000 0.990 1.000 0.997

FDR 0.060 0.067 0.027 0.055 0.041 0.061 0.043 0.060
FO2 Power 1.000 0.997 1.000 1.000 1.000 0.987 1.000 0.993

FDR 0.083 0.079 0.046 0.055 0.053 0.060 0.012 0.057
FO3 Power 1.000 0.997 1.000 1.000 1.000 0.987 1.000 0.997

FDR 0.072 0.068 0.051 0.053 0.058 0.060 0.012 0.048
PL3 Power 1.000 0.997 1.000 1.000 1.000 0.990 1.000 0.993

FDR 0.064 0.061 0.019 0.051 0.038 0.048 0.012 0.048
Oracle Power 1.000 0.997 1.000 1.000 1.000 0.990 1.000 0.997

FDR 0.021 0.045 0.008 0.049 0.011 0.047 0.005 0.044
True Power 1.000 0.997 1.000 1.000 1.000 0.987 1.000 0.997

FDR 0.068 0.068 0.049 0.049 0.051 0.051 0.045 0.045
edgeR Power 0.997 0.977 0.999 0.989 0.999 0.985 1.000 0.992

FDR 0.022 0.022 0.032 0.032 0.031 0.031 0.036 0.036
DESeq2 Power 0.996 0.975 0.999 0.988 0.999 0.985 1.000 0.992
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Table 3.2: Comparison of empirical FDRs and powers for testing NPDE genes by the proposed method
with different bases, edgeR, and DESeq2 for Setting A. In simulations, µ1, T, r and σ2

1 are displayed in
the table. The nominal FDR level is 0.05. The simulation is based on 100 replications.

(T , r, σ2
1) (6, 3, 1) (6, 3, 2) (6, 6, 1) (6, 6, 2) (10, 3, 1) (10, 3, 2) (10, 6, 1) (10, 6, 2)

µ1 = 2

FDR 0.025 0.027 0.040 0.038 0.031 0.036 0.036 0.043
GA2 Power 0.083 0.067 0.183 0.213 0.147 0.147 0.323 0.370

FDR 0.024 0.025 0.029 0.029 0.027 0.030 0.035 0.031
GA3 Power 0.060 0.067 0.153 0.183 0.110 0.120 0.307 0.323

FDR 0.026 0.055 0.057 0.062 0.033 0.065 0.047 0.043
FO2 Power 0.080 0.070 0.163 0.163 0.140 0.130 0.263 0.370

FDR 0.019 0.038 0.035 0.041 0.026 0.048 0.044 0.030
FO3 Power 0.060 0.060 0.137 0.163 0.113 0.113 0.277 0.333

FDR 0.021 0.022 0.026 0.025 0.024 0.031 0.041 0.031
PL3 Power 0.067 0.060 0.147 0.157 0.113 0.100 0.307 0.327

FDR 0.025 0.028 0.036 0.037 0.031 0.034 0.050 0.042
Oracle Power 0.070 0.067 0.187 0.193 0.143 0.140 0.333 0.367

FDR 0.034 0.029 0.040 0.038 0.034 0.035 0.044 0.040
True Power 0.097 0.087 0.203 0.210 0.153 0.140 0.327 0.360

FDR 0.096 0.105 0.044 0.047 0.047 0.048 0.041 0.040
edgeR Power 0.013 0.013 0.103 0.102 0.069 0.066 0.243 0.245

FDR 0.020 0.019 0.033 0.034 0.031 0.027 0.039 0.037
DESeq2 Power 0.013 0.011 0.103 0.098 0.071 0.067 0.237 0.235

µ1 = 4

FDR 0.028 0.026 0.038 0.034 0.035 0.033 0.047 0.052
GA2 Power 0.090 0.093 0.257 0.240 0.143 0.177 0.337 0.377

FDR 0.021 0.025 0.027 0.026 0.026 0.028 0.034 0.038
GA3 Power 0.080 0.077 0.207 0.190 0.113 0.170 0.297 0.313

FDR 0.059 0.055 0.066 0.060 0.067 0.067 0.058 0.060
FO2 Power 0.107 0.093 0.213 0.190 0.133 0.133 0.287 0.310

FDR 0.043 0.040 0.041 0.039 0.047 0.050 0.046 0.047
FO3 Power 0.097 0.093 0.213 0.187 0.117 0.147 0.280 0.310

FDR 0.022 0.020 0.024 0.023 0.024 0.026 0.033 0.035
PL3 Power 0.077 0.093 0.223 0.190 0.103 0.130 0.300 0.300

FDR 0.029 0.024 0.034 0.034 0.032 0.032 0.044 0.048
Oracle Power 0.097 0.090 0.270 0.240 0.140 0.167 0.333 0.353

FDR 0.030 0.028 0.040 0.039 0.039 0.032 0.043 0.044
True Power 0.110 0.120 0.270 0.247 0.147 0.173 0.337 0.353

FDR 0.091 0.080 0.045 0.047 0.046 0.055 0.039 0.042
edgeR Power 0.016 0.014 0.110 0.109 0.076 0.076 0.249 0.249

FDR 0.032 0.045 0.032 0.034 0.029 0.034 0.036 0.039
DESeq2 Power 0.017 0.014 0.109 0.109 0.075 0.075 0.243 0.245

48



Phatr3_J45789 Phatr3_J46415 Phatr3_J47271 Phatr3_J49693 Phatr3_J50183

308704 Phatr3_draftJ1680 Phatr3_EG01882 Phatr3_J1946 Phatr3_J43123

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

100

200

300

400

0

1000

2000

3000

0

2000

4000

6000

0

1000

2000

3000

4000

0

1000

2000

3000

0

500

1000

1500

0

1000

2000

3000

0

500

1000

1500

0

250

500

750

1000

0

500

1000

1500

Time (in hours)

R
a
w

 e
x

p
re

s
s

io
n

 l
e
v

e
l

Figure 3.4: Top 10 genes identified by the proposed method with both relative mean shift and NPDE. The
red dashed curves represent data from the low light group and the black solid curves represent data from high
light group. Dots represent the real data points while the bold smooth curves display smooth estimations
using orthogonal polynomials. Captions are the gene tags from [2].
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Chapter 4

Group Structured Model with Application to Small

RNA Analysis: Normalization and Differential

Expression Analysis

4.1 Introduction

Studying transcriptomes through next generation sequencing (NGS) of RNA (RNA-seq) has

enabled researchers to better understand the underlying mechanism of biological processes. An

important task is analyzing RNA-seq data and detecting genes that are differentially expressed

(DE) between experimental conditions [3,31]. Deep sequencing (an advanced type of NGS) refers

to sequencing a genomic region multiple times, sometimes hundreds or even thousands of times.

Deep sequencing has been widely used in profiling of small noncoding RNAs [72]. Small RNAs

(sRNAs) are a large class of RNAs consisting of many groups such as microRNA (miRNA), short

interfering RNA (siRNA), piwi-interacting RNA (piRNA), and more [73–75]. Many miRNAs

have been detected in animals and plants [76] and some work has suggested that dedicated path-

ways generate each class of sRNAs [73, 77]. Thus, analyzing sRNAs allows us to identify novel

biomarkers [78].

Similar to RNA-seq analysis, one of the major goals of sRNA analysis is to detect DE genes

across different biological conditions. For the purposes of evaluating differential expression among

conditions, read counts are usually modeled at the genomic level in the traditional RNA-seq analy-

sis. However, multiple classes of sRNAs introduce a natural grouping structure of genes, which not

only generate a variety of interesting group-wise differential expression hypotheses but also intro-

duce statistical challenges in modeling. For example, Hackenberg et al. [8] show that miRNA and

other sRNAs in barley are regulated by drought. Specifically, low-expressed miRNAs and repeat-
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associated siRNAs are down-regulated, while tsRNAs are up-regulated under drought conditions.

This suggests that different classes of sRNAs respond differently to drought as a group.

Raw data that are directly observed from sequencing must be preprocessed and normalized

before analysis. The normalization removes technical artifacts or unintended variation due to the

method, while retaining the true biological signals across samples [79]. Many normalization meth-

ods have been proposed to correct biases between and within samples, such as upper quartile (UQ),

trimmed mean of M-values (TMM) and relative log expression (RLE). UQ and other quantile

(e.g. median) methods, which involve matching empirical distributions across samples, are widely

used [9]. TMM equates the overall expression levels of genes between samples by estimating the

relative RNA production levels [10]. Anders and Huber [31] proposed a relative log expression

(RLE) method based on the negative binomial distribution; RLE has been used in the well-known

packages edgeR and DESeq2. Both TMM and RLE assume that the majority of genes are not

differentially expressed, which is not always true in the sRNA analysis due to the group effects.

Dillies et al. [80] and Li et al. [81] provide a comprehensive comparison among these well known

normalization procedures using differential expression analysis on RNA-seq data. However, none

of these methods dominate others uniformly and none of these studies provide a way to perform

normalization on group-structured data. As shown in Section 4.3, if a class of sRNAs reacts to the

treatment, traditional normalization methods may fail to control the false discovery rate (FDR) or

suffer from low power in differential expression analysis.

In this paper, we focus on analyzing group-structured sRNA data. We develop a unified ap-

proach for both a novel normalization method and a powerful testing procedure for DE analysis.

Generalized linear models, such as the negative binomial, have been widely used in differential

expression analysis for RNA-Seq data [31,32,82,83]. For example, edgeR [32] and DESeq2 [83]

in the Bioconductor program can be directly applied to detecting the DE sRNAs. However, these

methods may have difficulties in analyzing group-structured sRNA data.

First, these methods can suffer from low power. Previous studies indicate that DESeq2 is more

conservative than edgeR [7,43,84]. Thus, in Section 4.3 we will only compare the performance of
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our method with edgeR. Though edgeR adopts the idea of borrowing information across genes, it

does not use a group-structured model and its power is not satisfactory compared with our method

when dealing with data containing group effects. When data has no group effect, we observe that

edgeR and our method perform similarly. Furthermore, most existing methods, such as edgeR

and DESeq2, are mainly designed for detecting gene specific overall differential patterns among

treatment conditions and cannot make inference on group effects.

Some existing methods for analyzing group-structured data, including the group knockoff filter

[85] and p-filter [86], consider the set of true and false discoveries at the group level and estimate

the group FDR. The group knockoff filter is directly modified from the Benjamini-Hochberg (BH)

procedure by estimating the expected proportion of incorrectly selected features among selected

groups [85]. This method assumes that the majority of groups are not DE, which may not be the

case for sRNA analysis. The p-filter combines the Simes test [87] and BH procedure to control

the FDR at both the individual and the group level [86]. Both of these are two-stage methods that

rely critically on a given set of correct p-values, which are then filtered for the group analysis.

By contrast, we develop a unified procedure for simultaneous normalization and DE analysis on

sRNA.

Specifically, we develop a group-based negative binomial model for sRNA data to address the

above challenges, including normalization and DE analysis. In our model, read counts of an sRNA

in each sample have negative binomial distributions, with the mean profile generated by both group

and gene-specific effects. We then develop an efficient algorithm to estimate the model parame-

ters, using a weighted generalized linear model, which provides the estimation of group-based

normalization factors. We introduce a testing framework based on the proposed model. The pro-

posed model and test allow not only identification of the traditional DE genes but also inference

on group effects. To demonstrate the advantages of our group-structured model in comparison to

other well-known methods, we perform comprehensive simulation studies. As an example, we

consider an experiment to explore the roles of piRNAs and WAGO-class 22G-RNAs in regulating

gene expression in the roundworm (C. elegans). In the experiment, we collect independent repli-
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cates of sRNAs from three treatment conditions: adult wild type (wt) animal, prg-1(n4357) and

mut-16(pk710) mutants. Using our proposal, we are able to make inference on group effects. For

example, we observe that piRNAs are down-regulated in prg-1 mutants, which agrees with the pre-

vious biology conjecture ("prg-1 is the known binding partner of piRNAs in C. elegans") [88, 89].

On the other hand, by analyzing individual gene effects, we discover a list of interesting DE sRNAs

that may be mis-annotated.

4.1.1 Outline

In Section 4.2, we present the group-structured model, show the details of the estimation and

testing procedure for performing the DE analysis. Simulation studies are shown in Section 4.3.

In Section 4.4, we analyze the C. elegans germline data using our method. We conclude with a

discussion of our findings in Section 4.5.

4.2 Methods

4.2.1 Model

Let Yjg ,ijk denote the read count from an sRNA sequencing experiment for gene jg (jg =

1, . . . , jG) within group j (j = 1, . . . , J), and under treatment condition i (i = 1, 2, . . . , T ), with

i = 1 denoting control. The subscript k (k = 1, . . . , Tp) is the combined index for p replicates

across each of the T treatments. Let Yjg denote the vector of read counts for gene jg across all Tp

treatments and replicates. Assume that Yjg follows a distribution parameterized by group effect

αj , group by treatment effect βij , gene effect θjg , and gene by treatment effect ηijg , as well as the

normalization factor Sk. A widely applicable model for sRNA-seq analysis is the negative binomial

(NB), due to the over-dispersed property of count data [90]. We assume Yjg ,ijk ∼ NB(mjg ,ijk, rjg),

where rjg is the dispersion parameter and E
[
Yjg ,ijk

]
= mjg ,ijk is further modeled as

mjg ,ijk = E[Yjg ,ijk] = Sk exp
[
αj + βij✶{i 6=1} + θjg + ηijg✶{i 6=1}

]
, (4.1)
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for any i, where ✶ is the indicator function, and

ip∑

k=(i−1)p+1

log(Sk) = 0 for all i,
jG∑

jg=1

θjg = 0, (4.2)

and
jG∑

jg=1

ηijg = 0 for all i 6= 1. (4.3)

Constraints (4.2) and (4.3) ensure identifiability of the model by making the design matrix full

rank; other constraints could be employed. By construction, var(Yjg ,ijk) = mjg ,ijk +m2
jg ,ijk

/rjg .

In (4.1), αj models the mean group intercept and βij is the relative mean shift for group j under

treatment i, θjg measures the mean expression level for gene jg and ηijg characterizes the potential

interactions between the gene jg and treatment i.

4.2.2 Hypothesis for DE Analysis

For model (4.1), we conduct the DE analysis by testing

H0,jg : βij + ηijg ∈ ∆0 versus H1,jg : βij + ηijg ∈ ∆1. (4.4)

The null space ∆0 can be defined in different ways depending on the problems of interest. For

example, if we are interested in knowing whether the mean expression levels of the sRNA in the

two treatments differ, we set ∆0 = 0; if we are interested in detecting up-regulated or down-

regulated sRNA, we set ∆0 = (−∞, 0] or ∆0 = [0,∞); if we are interested in detecting sRNAs

whose expression changes are large enough, we set ∆0 = {d : |d| ≤ v}, where v is a threshold.

Most methods for estimating GLM are based on weighted least squares, but most existing

algorithms do not allow modeling genes together with different dispersion parameters for distinct

genes, unless the estimation is computed gene by gene. However, in this case, we are not able to

do inference on the group effect and gene specific effect at the same time. Therefore, in order to
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not only allow different dispersion parameters for distinct genes but also model group treatment

effects, we have developed the following procedure.

Pre-Step: Initialization.

First, we estimate rjg for gene jg and treat r̂jg as constant. There are many dispersion pa-

rameter estimation methods available, such as methods included in edgeR and DESeq2, and

quasi-likelihood methods [91, 92]. In general, any of these methods could be applied. Then, we

calculate Ŝ0
k for k = (i − 1)p + 1, . . . , ip − 1, with i = 1, . . . , T , α̂0

j , β̂0
ij by the reduced model in

(4.5) below,

E[Yjg ,ijk] = Sk exp{αj + βij✶{i 6=1}}. (4.5)

Next, we estimate θjg and ηijg by θ̂0jg and η̂0ijg for each gene jg, where jg = 1, . . . , jG − 1 by

substituting the estimation Ŝ0
k , α̂0

j and β̂0
ij in the full model (4.1). Let θ̂0jG = −∑jG−1

jg=1 θ̂0jg and

η̂0ijG = −∑jG−1
ijg=1 η̂

0
ijg by constraints (4.2) and (4.3).

Step 1.

We update Ŝ1
k , k = (i − 1)p + 1, . . . , ip − 1, for i = 1, . . . , T , α̂1

j , β̂1
ij in the full model in

(4.1) with θjg and ηijg plugged in as θ̂0jg and η̂0ijg in previous step by using r̂jgm̂
0
jg ,ijk

/(r̂jg + m̂0
jg ,ijk

)

as weights in the weighted least square GLM, where m0
jg ,ijk

= Ŝ0
k exp{α̂0

j + β̂0
ij✶{i 6=1} + θ̂0jg +

η̂0ijg✶{i 6=1}}. Details of the weights are given in the appendix.

Step 2.

We update θ̂1jg and η̂1ijg for jg ∈ Ju where Ju is any subset of genes within group j (in practice

we choose |Ju| = 10), by maximizing the likelihood (4.6) with Sk, αj , βij replaced by Ŝ1
k , α̂1

j and

β̂1
ij ,

ℓJu∪jG =
∑

jg∈Ju∪jG

T∑

i=1

Tp∑

k=1

[
C + (yjg ,ijk + r̂jg) log(r̂jg +mjg ,ijk) + yjg ,ijk log(mjg ,ijk)

]
, (4.6)
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where C is a constant, using weighted least squares (detailed in Section C.0.1). The weight is

r̂jgm̂
0∗
jg ,ijk

/(r̂jg + m̂0∗
jg ,ijk

), where m0∗
jg ,ijk

= Ŝ1
k exp{α̂1

j + β̂1
ij✶{i 6=1} + θ̂0jg + η̂0ijg✶{i 6=1}}.

Step 3.

Steps 1 and 2 are repeated until the relative change of likelihoods is sufficiently small. In

practice, we terminate the algorithm when the relative change of the likelihoods is smaller than

10−4.

4.2.3 Testing Procedure with Bootstrap

Consider the parametrized model (4.1). To test the null hypothesis H0 : βij + ηijg = 0 in (4.4)

using model (4.1), we implement the widely used Wald test. In a given experiment, there are tens

of thousands of sRNAs and tens of thousands of parameters ηijg . We found it difficult to derive

the asymptotic variance-covariance matrix of the regression parameter estimates and we leave this

as future work. In order to estimate the asymptotic covariance matrix, we bootstrap the Wald test

statistic (β̂ij+ η̂ijg ). Our proposed procedure is to compute the bootstrap p-value corresponding

to the observed value of a test statistic and control the FDR using the BH procedure ( [27]). The

bootstrap procedure is as follows:

(a) We first compute a vector of parameter estimates Θ̂, where Θ = (Sk, αj, βij, θjg , ηijg), and

test statistic τ̂jg , where τjg = βij + ηijg .

(b) Using model (4.1) based on the parameter vector Θ̂, we generate B bootstrap samples, each

of size equal to that of the original data set. Then we use each bootstrap sample to compute

τ̂ bjg for b = 1, . . . , B with the procedure shown in Section 4.2.2.

(c) Finally, we calculate the estimated variance for τ̂i using the bootstrap samples by finding

the empirical variance of τ̂ bjg , V̂jgB = var(τ̂ bjg). The Wald test statistic is estimated by

wjg = τ̂jg/
√
V̂jgB and the approximate p-value under null hypothesis can be calculated

using standard normal distribution.
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We are also able to compare differences between any two treatment conditions by changing the

τi from βij + ηijg to βij + ηijg − (βlj + ηljg), for l 6= i.

4.3 Monte Carlo Evidence

In this section, we examine the performance of the proposed method with other primary exist-

ing methods from two aspects, normalization and differential expression analysis, using simulation

studies. We only focus on the pairwise comparison with T = 2.

4.3.1 Simulation Setting

We generate 1, 000 sRNAs with J distinct groups and the first and Jth group of gene have

nonzero gene-specific effect and non-zero gene treatment effect, which is denoted by θjg and η2jg

respectively, where

θjg = −1.2✶(jg = 1, . . . , 60) + 1.8✶(jg = 61, . . . , 100),

and

η2jg = −2✶(1, . . . , 20) + ✶(jg = 21, . . . , 80)− ✶(jg = 81, . . . , 100).

The replicate effects are set to be log(Sk) = uk −
∑

k uk/(2p), where p is the number of replicates

(detailed in later section) and uk are i.i.d unif(0.5, 1.2). The dispersion parameters are simulated

as rjg i.i.d. unif(1, 3).

The experimental data in our case study (Section 4.4) has a known group structure. In practice,

however, the sRNA classes may not be available, so that the group structure is unknown and may

even be non-existent. Hence, we generate data with both known and unknown group structure to

examine the performance of our method.
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4.3.2 Known Group Structure

In this section, we examine the performance of the proposed method with other well-known

methods when the group structure is known. The known group structure data means that the group

information is available and we do not need to reconstruct the group index. In particular, αj’s are

the group baseline and β2j’s measure the group treatment effect, where β2j equals to 0 (no group

effect) or the group treatment differences dgt and dgt ∈ {0, 0.5, 1, 2}. Because sRNAs always

belong to a small number of distinct classes in practice, we use J = 3 and 6 as examples.

Setting A:

In total, we have J = 6 different groups and p = 10 replicates. Table 4.1 shows detailed

information on the settings in each group.

Setting B:

In total, we have J = 3 different groups and p = 6 or 10 replicates. Table 4.1 shows detailed

information on the settings in each group.

Table 4.1: Setting A and B: with dgt = 0, 0.5, 1 or 2.

Setting A Setting B
j jG αj β2j jG αj β2j

1 500 3 0 800 3 0
2 100 4 0 100 4 dgt
3 100 5 0 100 7 dgt
4 100 6 0
5 100 7 0 or dgt
6 100 8 dgt

The true test with the true Sk and rjg is also conducted for comparison. The empirical FDRs

and powers averaged over 100 replications are used for comparison.
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Normalization Methods Comparison.

For comparison of known group structure data, we apply the normalization methods shown

below and two types of testing procedures for each simulated dataset. In order to derive gene ex-

pression measures for subsequent DE analysis, we first need to normalize read counts to adjust for

varying replicate sequencing and other technical effects. We compare our Group Based Normal-

ization method, in which each Sk is estimated under model (4.1) using the method in Section 4.2.2,

with three other methods from the literature:

• Upper Quartile (UQ): Gene counts are divided by the upper quartile of counts different

from 0 associated with their replicates and multiplied by the mean upper quartile across

all samples.

• Relative Log Expression (RLE): This is the default normalization method that is included in

DESeq2 package ( [31]). It computes

Ŝk = median
Yjg ,ijk{∏2p

k=1 Yjg ,ijk

}1/(2p) ,

where p is number of replicates. Each size factor is calculated as the median of the ratio of

k-th sample’s counts to those of the pseudo-reference.

• Trimmed Mean of M-values (TMM): This normalization method ( [10]) is implemented

in edgeR package. Each size factor is calculated based on a reference sample of pre-

normalized count by library size. After calculating trimmed means of the relative sizes of

transcriptomes, the relative scaling factors are adjusted to multiply to 1.

Both TMM and RLE assume that most genes are not DE genes. TMM computes the scaling

factor based on the trimmed mean between each sample with the reference. RLE takes all samples

into account. UQ assumes the similarity of read counts’ upper-quartile across samples. Besides

these three normalization techniques, other approaches focus on using the housekeeping genes

or correcting biases related to GC-content (or guanine-cytosine content) [9, 93, 94]. However, in
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practice, we do not have the housekeeping or GC-content in our sRNA experiment, so we do not

include these for comparison.

In order to compare the performance of the aforementioned normalization methods, we con-

sider the null hypothesis in (4.4). We compare the performance of our method to others using

edgeR as the testing method to identify the DE genes. Figures 4.1–4.4 display results for the

proposed comparison. Each point on the figures displays the empirical FDR (subfigures (a)–(d))

or power (subfigures (e)–(h)) of the corresponding method at a given nominal FDR level, which is

shown on the x-axis.

Overall, all methods have their empirical FDRs controlled with small dgt, dgt = 0 and 0.5.

Compared with our method, TMM, RLE and UQ are less powerful. For Setting A with β5 = 0, all

methods except RLE have the nominal level FDRs controlled, as shown in Figure 4.1 subfigures

(a)–(d). When β5 6= 0, i.e. the proportion of genes that have non zero group effect increases, only

UQ and the proposed method control the FDRs. For Setting B with J = 3, when dgt increases,

as shown in Figure 4.3, TMM, RLE and UQ fail to control the FDR at all levels. Even with

the number of replicates p increases from 6 to 10, as shown in Figure 4.4 subfigures (c)–(d), the

traditional methods fail to control FDR. In addition, as the group treatment effect dgt increases,

the proposed normalization method is more superior than existing methods in terms of power.

Differential Expression Analysis.

Results for the DE analysis focus on the hypothesis in (4.4) of the proposed test procedure

under settings A and B are displayed in Figures 4.5–4.8. In this section, we compare the follow-

ing four methods: a) the proposed testing procedure with rjg estimated using edgeR, b) edgeR

with the proposed normalization in conjunction with edgeR (which has the best performance in

Section 4.3.2), c) the proposed testing procedure with true rjg and d) the true test which is the

proposed testing procedure with true Sk and rjg .

Under Setting A, Figures 4.5 and 4.6 show that the proposed method with true rjg performs

the best: it has the FDRs controlled and it is the most powerful among all methods. The empirical

FDRs of the proposed method with estimated rjg are slightly inflated due to the small proportion
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Figure 4.1: Empirical FDRs and powers for testing the overall DE genes by edgeR method with simulation
setting A, with β5 = 0, that is the proportion of group DE is 10%, using the proposed normalization method
(�), compared to those of the TMM (+), the RLE (∆) and UQ (×). Each point on figures displays the
empirical FDR or power of the corresponding method at a given nominal FDR level.

of DE genes. When the proportion of DE genes increases (in Figure 4.6) and when the group

treatment effect increases, our proposed method with estimated rjg performs better. The empirical

powers of the proposed method with estimated rjg are very close to the empirical powers of the

proposed method with true rjg , especially with large dgt, and they are much higher than the empir-

ical powers of edgeR with our proposed normalization. When the number of groups J decreases

from 6 to 3 under Setting B, the proposed method with true rjg still performs the best, and the

FDRs of the proposed method using estimated rjg are better with increasing dgt; see Figures 4.7

and 4.8. Also, as the number of replicates p increases, the deviations between the proposed method

with estimated rjg and the proposed method with true rjg quickly vanish.

4.3.3 Unknown Group Structure

In practice, we may not have biological information on group structures. In this section, we ex-

amine the performance of the proposed method by comparing the following tests: a) the proposed
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Figure 4.2: Empirical FDRs and powers for testing the overall DE genes by edgeR method with simulation
setting A, with β5 = dgt, that is the proportion of group DE is 20%, using the proposed normalization
method (�), compared to those of the TMM (+), the RLE (∆) and UQ (×). Each point on figures displays
the empirical FDR or power of the corresponding method at a given nominal FDR level.

test with rjg estimated using edgeR, b) edgeR with the proposed normalization in conjunction

with edgeR, and c) the proposed testing procedure with true rjg .

We use Setting C, displayed below, to perform simulations.

Setting C:

We follow the general simulation setting on genes included in Section 4.3.1. In particular,

αj’s are the group baseline, where αj is a linear function of the group base differences dgb, and

dgb ∈ {0, 0.5, 1, 1.5, 2}. β2j’s measure the group treatment effects and equal to 0 or the group

treatment differences dgt, where dgt ∈ {0.2, 1}. Table 4.2 includes detailed group-wise settings.

In total, we have J = 3 different groups, and 1, 000 sRNAs are simulated.

In order to apply the proposed method, we use k-means on the control group to determine the

group structure, and use the estimated group index for further analysis. As group based difference

dgb measures the relative mean differences between different groups, the smaller the dgb is, the

harder it is to accurately recover the group index.
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Figure 4.3: Empirical FDRs and powers for testing the overall DE genes by edgeR method with simulation
setting B, with p = 6, using the proposed normalization method (�), compared to those of the TMM (+),
the RLE (∆) and UQ (×). Each point on figures displays the empirical FDR or power of the corresponding
method at a given nominal FDR level.

Table 4.2: Setting C: with dgb = 0, 0.5, 1, 1.5 or 2, dgt = 0.2 or 1.

j jG αj βj

1 800 3 0
2 100 3 + dgb dgt
3 100 3 + 4 dgb dgt

Figure 4.9 displays the empirical FDRs (subfigures in the first column) and powers (subfigures

in the second column) of the corresponding methods at a given dgb when the nominal level of

FDR is 0.1. For Setting C, with small dgt, all methods have the nominal FDRs controlled, as

shown in Figure 4.9 subfigures (a) and (e). Compared to our proposed method, edgeR is less

powerful. The proposed test with true rjg performs the best overall. The empirical powers of the

proposed test with r̂jg is almost indistinguishable from those of the proposed test with true rjg

when the number of replicates is 10. The empirical FDRs of the proposed method become less

stable with increasing dgb, but are still under control. Though unknown group structures may be

hard to recover with low dgb, our proposed method still provides satisfactory results, which shows
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Figure 4.4: Empirical FDRs and powers for testing the overall DE genes by edgeR method with simulation
setting B, with p = 10, using the proposed normalization method (�), compared to those of the TMM (+),
the RLE (∆) and UQ (×). Each point on figures displays the empirical FDR or power of the corresponding
method at a given nominal FDR level.

the flexibility and robustness of the method. In addition, as the number of replicates p increases,

the deviations between the proposed method and edgeR become more substantial.

These numerical results suggest the superiority of the proposed method for analyzing the

group-structured data when the group effect is significant, as well as its flexibility in detecting

DE genes with unknown group-structured data.

4.4 Application to C. elegans Data

In this section, we apply our method to the sRNAs data from the experiment mentioned in

Section 4.1. There are four groups of sRNAs: piRNA, miRNA, CSR-1 class 22G-RNAs and

WAGO-class 22G-RNA locus. There are T = 3 treatment conditions: wild type (wt), mut16 and

prg-1 mutants. Hypotheses defined in (4.4) are tested. Based on the results from the differential ex-

pression analysis, we identify the up and down-regulated sRNAs using the estimated gene-specific

differences β̂ij + η̂ijg for i = 1, 2.
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Figure 4.5: Empirical FDRs and powers for testing the overall DE genes under simulation setting A, with
β5 = 0 by edgeR method using the proposed normalization method (−−�−), compared to the proposed
test procedure with the proposed normalization method (—∆–), the proposed test procedure with the True
rjg (—+–), the true test with the true Sk and true rjg (—×—). Each point on figures displays the empirical
FDR or power of the corresponding method at a given nominal FDR level.

4.4.1 Analysis and Results

As suggested by many studies [95,96], we first filter out genes with all zero expression within

each treatment trial. If a gene does not display any expression, there is very limited information

from a biological point of view. For this analysis, we focus on those genes with some expression.

After filtering, 7, 146 genes remain for further analysis. We follow the estimation and testing steps

in Sections 4.2.2 and 4.2.3 to perform the DE analysis.

For DE analysis, the nominal FDR level is set at 0.05 and we compare the results using the

following seven methods: a) the proposed test with rjg estimated using edgeR, b) edgeR with

TMM, c) edgeR with RLE, d) edgeR with UQ, e) edgeR with our normalization, f) DESeq2

with RLE and g) DESeq2 with our normalization.

We focus on the analysis of two pairwise comparisons, wt-versus-mut16 and wt-versus-prg-1.

We identified 3, 928 DE sRNAs under the wt and mut16 comparison, and 5, 676 DE sRNAs under

wt and prg-1 comparison. The majority of the DE genes we identified were also identified by other
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Figure 4.6: Empirical FDRs and powers for testing the overall DE genes under simulation Setting A, with
β5 = dgt, by edgeRmethod using the proposed normalization method (−−�−), compared to the proposed
test procedure with the proposed normalization method (—∆–), the proposed test procedure with the True
rjg (—+–), the true test with the true Sk and true rjg (—×—). Each point on figures displays the empirical
FDR or power of the corresponding method at a given nominal FDR level.

methods. As we discussed in Section 4.3, non-group based normalization could not control the

FDR if the group effect is significant. DESeq2 combine RLE and edgeRwith other normalization

methods identify more DE genes may be due to the technical artifacts or unintended variation that

failed to be removed. Figure 4.10 displays the comparison of our proposal with DESeq2 using

RLE (DESeq2) and DESeq2 using our proposed normalization (DESeq2_our). More comparisons

of the proposed method with edgeR are displayed in Figure S.1.

It is known that piRNAs are expected to be down-regulated in prg-1 mutants. Our estimated

group effects of piRNA in the wt-versus-prg-1 experiment support this down-regulation. Among

the DE sRNAs we find in the wt-versus-prg-1 experiment, four piRNAs are up-regulated, as shown

in Table S.1. Those piRNAs may be misannotated. Also, miRNAs are expected to be up-regulated

in both prg-1 and mut16 mutants. Our estimated group effects of piRNA in both wt-versus-prg-

1 and wt-versus-mut16 experiments also support this up-regulation. Among the DE sRNAs we

detected, four miRNAs are down-regulated in the wt-versus-mut16 experiment and 12 in the wt-
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Figure 4.7: Empirical FDRs and powers for testing the overall DE genes under simulation Setting B, with
p = 6, by edgeR method using the proposed normalization method (− − �−), compared to the proposed
test procedure with the proposed normalization method (—∆–), the proposed test procedure with the True
rjg (—+–), the true test with the true Sk and true rjg (—×—). Each point on figures displays the empirical
FDR or power of the corresponding method at a given nominal FDR level.

versus-prg-1 experiment, which means those miRNAs may be misannotated. Further biological

studies will be conducted. As our proposal is able to estimate the group effects of different types

of the sRNAs, the results in the DE analysis are more sophisticated than simple individual com-

parisons. The new test reveals pathways for more detailed analysis in general.

4.5 Discussion

We proposed an inferential procedure for analyzing multiple treatment levels in sRNA data.

Our approach includes both group and gene specific treatment effects in the negative binomial

model. The proposed method, while maintaining control of the FDR, leads to higher power than

the traditional pairwise comparison methods whenever the group effect is significant. The proposed

method performs similarly to existing methods from the literature in the absence of group effects.

The results in this paper cover both the pairwise and multiple treatments settings.
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Figure 4.8: Empirical FDRs and powers for testing the overall DE genes under simulation setting B, with
p = 10, by edgeR method using the proposed normalization method (−−�−), compared to the proposed
test procedure with the proposed normalization method (—∆–), the proposed test procedure with the True
rjg (—+–), the true test with the true Sk and true rjg (—×—). Each point on figures displays the empirical
FDR or power of the corresponding method at a given nominal FDR level.

This approach allows not only traditional differential expression analysis, but also inference

for each sRNA group. By contrast, existing pipelines such as edgeR and DESeq2 are not able to

make inference for the group effect. To analyze the group effect, one can use the same procedure

in Section 4.2.3 by letting τi = βij or τi = βij − βlj , for i 6= l and use Bonferroni correction to

control the multiple testing error. We leave this for future investigation.

Our method incurs some computational cost due to bootstrapping of the test statistics, which

can be partly offset in practice by parallel implementation. A possible alternative to the bootstrap

would be to derive the Fisher information matrix in this setting and use it to obtain the asymp-

totic variance-covariance matrix of the parameter estimates. However, the very large number of

parameters leads to more involved questions that we leave for future study.

68



0.05

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0 1.5 2.0

Group Differences

FD
R

(a) p = 6, dgt = 0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0

Group Differences

Po
we

r

(b) p = 6, dgt = 0.2

0.05

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0 1.5 2.0

Group Differences

FD
R

(c) p = 6, dgt = 1

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0

Group Differences

Po
we

r

(d) p = 6, dgt = 1

0.05

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0 1.5 2.0

Group Differences

FD
R

(e) p = 10, dgt = 0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0

Group Differences

Po
w

er

(f) p = 10, dgt = 0.2

0.05

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0 1.5 2.0

Group Differences

FD
R

(g) p = 10, dgt = 1

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0

Group Differences

Po
we

r

(h) p = 10, dgt = 1

Figure 4.9: Empirical FDRs and powers for testing the overall DE genes by the proposed method with
estimated rjg (—∆—), with true rjg (— + —) compared with edgeR using the proposed normalization
method (−−∆−) with simulation setting C. Each point on figures displays the empirical FDR or power of
the corresponding method at different group differences dgb based on given nominal FDR level α = 0.1.

69



28

1620

19

187
459

329

2953

Our_test

DESeq2

DESeq2_our

(a) wt-vs-mut16

8

871

44

274
1750

75

3575

Our_test

DESeq2

DESeq2_our

(b) wt-vs-prg-1

Figure 4.10: differential expression analysis results comparing the proposed method with DESeq2.
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Chapter 5

Understanding the Drivers of Sensitive Behavior

Using Poisson Regression from Quantitative

Randomized Response Technique Data

5.1 Introduction

5.1.1 Background and Related Work

Sensitive behaviors are those that are non-compliant with rules or regulations or are socially

unacceptable. Sensitive behaviors are relevant to a variety of fields, including health sciences (e.g.,

abortion, illicit drug use, sexual activity), natural resource management (e.g., poaching of flora

and fauna), business (e.g., tax evasion, insider trading), and education (e.g., cheating on exams).

Although widespread, such behaviors are typically challenging to research, but understanding the

behavior is paramount to creating effective interventions for the benefit of society at large. Suc-

cessful interventions often require knowledge of who is engaged in the sensitive behavior, what

the individuals are doing, where the sensitive behaviors take place, and why the individuals are

engaged in the sensitive behaviors [97]. However, methodological constraints hamper collection

of accurate data on such behaviors because participants are unlikely to disclose sensitive behaviors

for fear of retribution or due to social undesirability.

Indirect survey methods allow researchers to gather information on sensitive behavior without

the threat of implicating respondents [97]. Indirect methods for studying sensitive behavior include

the randomized response technique (RRT; [98]), which provides anonymity to interviewees who

answer sensitive questions. The original RRT has been modified by researchers (e.g., [99–101])

and applied in many contexts to help understand sensitive behaviors. See Fox and Tracy [102] or

Chaudhuri and Mukerjee [103] for overviews of such methods and [104] for validation via a meta-
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analysis of randomized response studies. Use of RRT in surveys has been shown to increase a

respondent’s proclivity to respond to questions about the sensitive behavior, as well as to increase

the likelihood that a respondent provides accurate responses [104–107]. This method has shed

light on sensitive behaviors in the fields of health sciences, natural resource management, business,

education and political sciences [104]

The standard RRT approach uses a randomizing device, such as a coin or die, to determine the

question a respondent answers. One or more questions are innocuous while another focuses on

the sensitive behavior. The interviewer has no way of knowing which question the respondent is

answering, thereby ensuring anonymity and increasing response rates and accuracy of responses

provided. In this paper, we focus on nonnegative count data obtained via a modification of the

technique referred to as the quantitative randomized response technique (QRRT) [101], which

allows researchers to understand prevalence of a sensitive behavior in a community or society (e.g.,

[106]), as well as estimates of the frequency or quantity of the sensitive behavior (e.g., [100,101]).

A major gap with the use of RRT has been in answering questions concerning drivers of non-

compliance—the “why" question [97]. This is an essential question to investigators as it is typi-

cally critical when designing effective interventions to address non-compliance. Statistically, this

corresponds to building and testing regression models for randomized response data. Logistic

regression models for binary randomized response data are treated in [108] by recognizing the

structure as a generalized linear model with a particular link function. Regression models are also

developed in [108] for multi-category randomized response data, when the vector-valued obser-

vation comes from multiple randomized response questions. Another approach to inference with

multiple sensitive questions is to sum the randomized responses; [109] and [110] develop regres-

sion models for such sum scores, including one based on zero-inflated Poisson regression. Some

R packages [111, 112] have been developed to support this regression methodology.

However, to the best of our knowledge, regression methodology has not been developed for

count data from QRRT [101]. We develop a methodology for Poisson regression with QRRT

data, based on maximum likelihood implemented via the EM algorithm [113]. We implement
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the methodology in a freely-available R package, by adapting existing software for generalized

linear models. Further, we provide an asymptotic theory to support estimation and testing of

models. In particular, we derive the Fisher information matrix in this setting and use it to obtain the

asymptotic variance-covariance matrix of the regression parameter estimates. Simulation results

illustrate the quality of the asymptotic approximations. Using a case study of noncompliance with

natural resource regulations [114], we demonstrate our new statistical approach to examine drivers

of sensitive behavior.

5.1.2 Case Study: Non-compliance with Hunting Regulations in Sierra Leone

To demonstrate the utility of this new analytical approach, we examine the relative effects of

different hypothesized drivers of non-compliant resource use activities inside the Western Area

Peninsula Forest Reserve (WAPFR) in Sierra Leone. WAPFR comprises 175 km2 located between

the Atlantic Ocean to the west and south, the capital city of Freetown 5km to the north, and a low-

lying plain to the east. WAPFR is an important site for conservation in Sierra Leone because of the

biodiversity it protects, including numerous endemic and highly threatened species, and also due to

ecosystem services the reserve provides to 50 surrounding communities, including the main water

source for Freetown’s 1.5 million residents. Communities neighboring WAPFR are home to all 17

of the country’s ethnic groups, which rely on gardening, small-scale businesses, sand extraction,

fishing, and hunting for subsistence. Resource extraction is strictly prohibited inside WAPFR, but

illegal hunting is a major threat [114–116].

The case study reported here was part of a larger examination of non-compliance in WAPFR

(see [114–116]). We randomly selected 842 households (sampling every other household on a

street) in eight communities that had similar numbers of households (100–500 households each).

Coauthor Abu Conteh, a citizen of Sierra Leone, carried out the field research. Conteh surveyed

heads of households in Krio (the lingua franca of Sierra Leone). Survey questionnaires can be

found in Conteh, 2010 [117] (Appendices IV a & b) and are reproduced in [117] for convenient

reference. Ninety-eight percent of households answered all questions posed. Before beginning
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work in each community, Conteh obtained permission from community leaders, and all respon-

dents gave verbal consent (written consent was not used due to illiteracy rates in some of the

communities sampled) to participate in the research. We did not record any information that could

be used to identify individual respondents. Ethics approval to conduct the research was obtained

from Victoria University of Wellington (Approval No. 15521).

We used the QRRT ( [101, 118]) to estimate quantities of illegal hunting (see [114] for addi-

tional details). We recorded information on hunting activities over a nine-month period anchored

by two widely known dates (New Years Day (January 1st) and Eid Ul Adha (October 1st) to reduce

recall bias.

We designed and constructed a sealed, transparent, round bottomed container to serve as the

randomizing device for QRRT. The container had a narrow neck that could only house one ball

at a time. We placed 25 orange and 25 green balls into the container. Green balls had numbers

from a known distribution painted on them [118]. Each respondent first turned their back on the

interviewer and shook the container. If green fell into the neck of the container, the respondent read

the number off the ball. If an orange ball fell into the neck, the respondent provided a numerical

answer to the sensitive question the interviewer had posed prior to initiation of the exercise. The

interviewer had no way of knowing whether the number stated by the respondent was innocuous

(i.e. the number from a green ball) or was referring to the sensitive question (i.e. how many times

per month on average did someone from the household hunt inside the reserve with the use of

traps during the nine-month study period?). By ensuring anonymity in this way, QRRT encourages

more truthful answers to questions regarding sensitive behavior [118]. However, as we outline

below, because the researcher knows the probability of a respondent choosing a green or orange

ball, as well as the distribution of numbers written on the green balls, estimates can be made of the

quantities of sensitive behavior being conducted by different sectors of the populations.

Compliance with natural resource use regulations may be driven by a wide variety of potential

factors [119–123]. To demonstrate the new analytical approach for the analysis of QRRT data,

we compare the relative support for different hypothesized drivers of non-compliance with con-
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servation regulations in Sierra Leone using an information theoretic approach. Specifically, we

construct latent Poisson regression models that describe the effects on the amount of illegal trap-

ping in WAPFR of perceived enforcement of the regulations, perceived resource rarity, access to

alternative livelihoods, and other factors. We then fit and test these models using our new QRRT

regression methodology.

5.2 Methods

5.2.1 Probability Model

Let Ti denote the true count of the sensitive behavior, let zi > 0 denote a known offset, and

let xi = (xi1, . . . , xip)
′ denote a p-vector of known covariates for the ith individual, i = 1, . . . , n.

Assume that

Ti ∼ independent Poisson (ziλi)

ln(λi) = x′
iβ

where

P [Ti = t | λi] =
e−ziλi(ziλi)

t

t!
= πi(t | β) (5.1)

for t = 0, 1, 2, . . ., and β is a p-vector of unknown parameters.

The {Ti}ni=1 are not observed directly, but are masked through QRRT [101] as described in the

Sierra Leone example. Let m be a known positive integer and let b(r) denote a completely known

probability mass function on the integers 0, 1, . . . ,m,m + 1. Let N denote the total number of

balls and assume that Nb(0), Nb(1), . . . , Nb(m+1) are all integers. Then Nb(0) balls are marked

0, Nb(1) balls are marked 1, . . . , Nb(m) balls are marked m, and Nb(m+ 1) balls are blank. The

ith interviewee selects a random integer Bi ∼ b(r) by selecting one of the balls. If Bi ≤ m, the ball

is numbered and the interviewee’s response is the ball number, Ri = Bi. If Bi = m+1, the ball is
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blank and the interviewee’s response is the true count, Ri = Ti. Since no one but the interviewee

knows the value of Bi, only the interviewee knows whether the response is a true value Ti or a

randomized response Bi, assuming Ti ≤ m. This requires some care in the choice of m, to ensure

it is sufficiently large: any reported values larger than m are known to be true counts. The higher

the ratio of blank balls to marked balls, b(m + 1)/
∑m

r=0 b(r), the higher the expected number

of true responses and the more powerful the inference, but the lower the guarantee of anonymity.

The lower the ratio of blank to marked, the lower the expected number of true responses, but the

higher the guarantee of anonymity; see [101]. While the choice of the distribution b(r) is up to the

researcher, it would be very difficult to optimize this choice without detailed information about the

unknown distribution of true responses.

5.2.2 Poisson Regression via EM algorithm

If the {Ti}ni=1 were observed directly, inference could proceed via Poisson regression fitted by

maximum likelihood. Since only the realized values {ri}ni=1 of the random variables {Ri}ni=1 are

observed, we use the Expectation-Maximization (EM) algorithm [113] to maximize the likelihood,

by first augmenting with the unobserved values {Bi}ni=1.

If the {Bi}ni=1 values were known, we would discard all but the true data values, for which

1{Bi=m+1} = 1, resulting in the complete-data log-likelihood

n∑

i=1

1{Bi=m+1} {− ln(ri!)− ziλi + ri ln zi + ri lnλi} . (5.2)

The incomplete-data log-likelihood is the conditional expectation of (5.2) given the observed data

and the current estimate of β, denoted β(k):

n∑

i=1

P
[
Bi = m+ 1 | {Ri} = {ri},β(k)

]
{− ln(ri!)− ziλi + ri ln zi + ri lnλi}

=
n∑

i=1

ω
(k)
i

{
− ln(ri!)− zie

x′

iβ + ri ln zi + rix
′
iβ
}
, (5.3)
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where the conditional probabilities {ω(k)
i }ni=1 are computed via Bayes’ rule as

ω
(k)
i =

πi

(
ri | β(k)

)
b(m+ 1)

b(ri)1{ri<m+1} + πi

(
ri | β(k)

)
b(m+ 1)

. (5.4)

The EM algorithm then reduces to iterating the following steps across k to maximize the likelihood

and obtain the maximum likelihood estimator (MLE) β̂:

• E-step: compute weights from (5.4) under the current maximized model with parameters

β(k).

• M-step: maximize the weighted log-likelihood (5.3) for Poisson regression.

5.2.3 Asymptotic Distribution and Variance Estimation

In derivations not described here, we have verified the regularity conditions in chapter 2 of

Fahrmeir and Tutz [124], establishing that the MLE is asymptotically normally distributed as n →

∞. Thus, in large samples,

β̂ is approximately N
(
β, I−1 (β)

)
,

where β is the vector of true regression coefficients and I−1 (β) is the inverse of the Fisher in-

formation matrix. We derive the Fisher information matrix in the supplemental material, Sec-

tion D.1. The asymptotic covariance matrix I−1 (β) is then estimated by plugging in the MLE,

V̂ar
(
β̂
)
= I−1

(
β̂
)

.

5.2.4 Hypothesis Testing and Model Selection

The log-likelihood ℓ (β; {ri}ni=1) derived in the supplemental material, Section D.1, can be

used in hypothesis testing and model selection. First, let βfull be a vector of p parameters for a

full model that fits the data well. Let βreduced be a vector of q parameters for a nested (reduced)

model within the full model (that is, a model obtained by setting p − q of the parameters in βfull
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equal to zero). To test the null hypothesis that the reduced model fits the data equally as well as

the full model, we compute the likelihood ratio test statistic

W = −2ℓ
(
β̂reduced; {ri}ni=1

)
+ 2ℓ

(
β̂full; {ri}ni=1

)
, (5.5)

where β̂full and β̂reduced are the MLE’s for the full and reduced models, respectively. Standard

asymptotic theory shows that for n large, W has an approximate χ2
p−q distribution, the chi-squared

distribution with p− q degrees of freedom. We reject the reduced model in favor of the full model

if the test statistic is large (e.g., [125]).

The maximized log-likelihood can also be used to compare models that need not be nested, via

Akaike’s information criterion (AIC, [126]). For a model with p parameters β,

AIC = −2ℓ
(
β̂; {ri}ni=1

)
+ 2p.

We use AIC to rank models for comparison, with small AIC being the best. Models are competitive

with one another if their AIC values differ by less than two.

5.2.5 Numerical Implementation

Maximization of the weighted log-likelihood (5.3) for Poisson regression can be accomplished

with standard software, such as the R function glm, using case weights (5.4) obtained in the E-step.

We developed custom code for fitting of these models, and have made it available as an R package

called QRRT, freely downloadable from GitHub; see the supplemental material Section D.2 for

details.

We use multiple starting values and iterate each to convergence, assessed by checking the

value of the score vector derived in Section D.1. We then choose the set of converged parameter

estimates that yield the highest log-likelihood value. Standard errors (SE’s) for each estimated

parameter β̂j are calculated from diagonal elements of the estimated Fisher information matrix

(Section D.1). The t-statistic is calculated as tj = β̂j/SEj and the corresponding p-value is the
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probability that the absolute value of a standard normal random variable is greater than or equal to

|tj|; that is, the probability under the asymptotic distribution of obtaining a statistic this extreme or

more extreme under the null hypothesis that the true βj coefficient is zero. The code returns AIC

and the maximized log-likelihood, so that non-nested models can be compared, and nested models

can be tested.

5.3 Results

5.3.1 Monte Carlo Results

We illustrate the methodology and the quality of the asymptotic approximations via a Monte

Carlo experiment using our R package QRRT. Details on reproducing results of this simulation

experiment are given in the supplemental material, Section D.2.

We consider a setting in which n = 400 true counts are generated independently as Ti ∼

Poisson(λi) with

lnλi = β0 + β1xi1 + β2xi2 + β31{xi3=B} + β41{xi3=C} + β5xi1xi2, (5.6)

where x1i and x2i are continuous predictors and x3i is a categorical predictor with levels “A”, “B”,

and “C”, and “A” is the baseline level. We set

(β0, . . . , β5) = (1.5, 1.0,−0.5, 0.4, 0.3, 0.2).

Next, we simulate {Bi}ni=1 as independent and identically distributed from the same b(r) distribu-

tion as in Conteh [114], with m = 8 and

(b(0), b(1), . . . , b(8), b(9)) =
1

50
(6, 7, 4, 2, 2, 1, 1, 1, 1, 25). (5.7)

Observations are then Ri = Bi if Bi ≤ m = 8 and Ri = Ti if Bi = m+ 1 = 9.
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For our Monte Carlo experiment, we fixed {(x1i, x2i, x3i)}400i=1 and, over 1000 independent re-

alizations, simulated {Ti} using the model (D.2) and {Bi} and {Ri} as described. We fitted each

of the 1000 simulated data sets both with the true model (D.2), and with the larger-than-necessary

model with all two-way interactions,

β0 + β1xi1 + β2xi2 + β31{xi3=B} + β41{xi3=C} + β5xi1xi2

+ β6x1i1{xi3=B} + β7x1i1{xi3=C} + β8x2i1{xi3=B} + β9x2i1{xi3=C},

(5.8)

in which β6 = · · · = β9 = 0.

For each simulated realization and both fits, we recorded the vector of estimated coefficients

and the inverse Fisher information evaluated at the estimated parameters. We then compared the

average regression coefficient vector over the 1000 Monte Carlo replicates to the vector of true

coefficients, to assess the quality of the point estimation, and the empirical covariance matrix over

the 1000 Monte Carlo replicates to the asymptotic covariance matrix given by the inverse Fisher

information at the true values, to assess the quality of the variance approximation. Further, we

compared the average estimated inverse Fisher information to the empirical covariance matrix, to

assess the quality of the variance estimators.

Results are given in Table 5.1 and show that the asymptotic approximations are excellent. For

both the true additive model and the larger interaction model, the MLE’s are approximately un-

biased, their variances are well-approximated by diagonal elements of inverse Fisher information,

and the estimated variances obtained by plugging MLE’s into inverse Fisher information are nearly

unbiased for the true variances.
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Table 5.1: Simulation Results. True coefficients, estimated parameters, Monte Carlo standard error, inverse Fisher information matrix evaluated at
estimated parameters and inverse Fisher information matrix at the true value. All parameters are calculated based on 1000 Monte Carlo replicates
with sample size equals to 400.

True Model Interaction Model

True Monte Average Inverse Fisher Monte Average Inverse Fisher

β β̂ Carlo S.E. estimated S.E. at true value β̂ Carlo S.E. estimated S.E. at true value
β0 1.5 1.4951 0.0815 0.0791 0.0789 1.4899 0.1489 0.1464 0.1456
β1 1.0 1.0037 0.0690 0.0676 0.0675 1.0067 0.1446 0.1405 0.1400
β2 -0.5 -0.5005 0.0651 0.0646 0.0645 -0.5008 0.0750 0.0733 0.0728
β3 0.4 0.3987 0.0514 0.0508 0.0507 0.3998 0.1874 0.1818 0.1808
β4 0.3 0.3007 0.0523 0.0501 0.0500 0.3031 0.1846 0.1818 0.1808
β5 0.2 0.2003 0.0626 0.0623 0.0622 0.2006 0.0648 0.0631 0.0632
β6 0.0000 0.1800 0.1720 0.1715
β7 -0.0014 0.1776 0.1734 0.1726
β8 -0.0002 0.0523 0.0512 0.0510
β9 -0.0008 0.0539 0.0517 0.0520
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Finally, for each simulated realization we tested the null hypothesis that the true model (D.2)

suffices,

H0 : β6 = · · · = β9 = 0,

against the alternative that the larger, two-way model (D.3) is necessary. These hypotheses were

compared via a likelihood ratio test, computed as

− 2 ln(likelihood of true model) + 2 ln(likelihood of full two-way model) (5.9)

and compared to the χ2 distribution with 4 degrees of freedom, rejecting H0 for large values of the

test statistic. Since the null hypothesis is true in each simulated realization, the p-values should

theoretically follow a uniform distribution. The empirical results (not shown here) are consistent

with the uniform distribution. In particular, the empirical proportion of rejections is 0.047 at the

0.05 significance level and 0.092 at the 0.10 significance level.

5.3.2 Application to Poaching in Sierra Leone

We applied our method to responses to the question “how many times per month on average

did someone from the household hunt inside the reserve with the use of traps during the nine-

month study period?” Instrumental models of compliance [119, 121, 127] posit that compliance is

primarily driven by factors external to the individual, including the probability of being caught and

convicted. To test for the effects of perceived enforcement we asked respondents if they knew that

a protected area existed neighboring their community, if reserve personnel restricted the activities

allowed inside the protected area, if reserve personnel patrolled the reserve, if the personnel were

efficient in their enforcement duties, if conservation personnel were quick to apprehend those

engaged in non-compliant activities in the reserve, and if those caught were punished.

Non-compliance may also be influenced by other perceived costs and benefits of a particular

behavior. For example, if resources are rare, the efforts needed to obtain them may outweigh any

benefits received. To test the effect of perceived rarity, we asked respondents about the rarity of
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targeted species. Similarly, we tested for the effect of household size (the number of people living

in the household), as larger households may require more resources, which would increase the

likelihood of violating hunting regulations while searching for food.

In addition, alternative livelihoods may reduce the need for subsistence-based hunting practices

[128]. We stratified our sample based on access to alternative livelihoods.

Urban centers can both drive more illegal hunting by providing markets for bushmeat, or wage

labor in urban areas may reduce illegal hunting by offering alternative livelihoods [128–131].

Therefore, we surveyed communities with both high and low access to the main urban center

of Freetown. Similarly, we might predict less illegal hunting in locations with better ocean ac-

cess, due to the presence of alternative marine-based livelihoods [132]; and therefore we surveyed

communities with both direct and no access to the ocean. Sierra Leone’s civil war (1992–2002)

displaced millions of people. Many of the displaced settled in communities near Freetown. Com-

munities surrounding WAPFR vary widely in terms of the proportion of residents that arrived as

internally displaced people during Sierra Leone’s civil war. Many of the internally displaced do

not have access to suitable land for agriculture or other alternative livelihoods to meet basic needs,

which can lead to increases in resource extraction rates from the reserve. We surveyed commu-

nities with either no internally displaced people or substantial populations of internally displaced

people. We then included community dummy variables in our models to examine the effect of

context, including access to alternative livelihoods.

The normative view argues that compliance is more internally driven by perceived behavioral

norms [119, 132–134]. Here we explore the effects of descriptive norms, which involve a person’s

perceptions of the prevalence of a behavior [135]. Based on descriptive norms, we would hy-

pothesize that people will be more likely to violate regulations if they believe many of their peers

are also non-compliant. To test for these normative effects we asked respondents if people from

their community hunted inside the reserve, and if they thought people from outside the community

hunted in the reserve.
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Finally, hunting requires specialized knowledge of the local ecosystem and of target species.

Ecological knowledge can accumulate over time as hunters compile more first-hand experience,

and several ethnobiological studies have found residence time to be positively correlated with

increased natural resource use [136, 137]. To the contrary, formal education has often been sig-

nificantly linked to lower levels of ecological knowledge and subsistence resource use [138–141].

Based on these prior findings, we tested for the effects of both formal education level and local

residence time in our models.

Summarizing, we then have the following set of hypothesized drivers and corresponding co-

variates:

Table 5.2: Drivers and covariates. Hypothesized drivers of non-compliant behavior and corresponding
measured covariates in the Sierra Leone dataset.

Driver Covariates

perceived enforcement knowledge of protected area, no perceived
restriction on extraction, perceived efficiency
of conservation personnel, perceived patrols,
perceived rapid detention, perceived
punishment

perceived rarity

household size

alternative livelihoods rural, seaside, displaced
descriptive norms residents hunted, outsiders hunted

residence time

formal education

Among these covariates, all of the Yes-No-Don’t Know variables were converted to Yes indica-

tors, and all agreement scales (1 = Strongly Agree, . . . , 5 = Strongly Disagree) were converted to

Agreement (Agree or Strongly Agree) indicators. The data set was then restricted to records with

non-missing values for all of the above variables, to ensure comparability across fitted models.

There are n = 662 complete records in this data set. These data are in the supplemental mate-

rial of [142] and available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161884/bin/pone.

0204433.s003.csv.
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We fitted a series of models corresponding to these hypothesized drivers. Each of the models

included an intercept. All covariates for a hypothesized driver were either simultaneously included

or excluded from a model; for example, all six covariates corresponding to perceived enforcement

were either in or out of a given model. Hence, with seven drivers there were 27 = 128 possible

additive models for consideration, with the largest model including the intercept and all seven

drivers, and the smallest (null) model including only the intercept.

We used our code to fit all of these models, plus three sets of additional models, each with

128 subset models: (1) all subsets of the seven drivers, with alternative livelihoods replaced by

(alternative livelihoods)2, meaning the three community variables plus all three of their two-way

interactions; (2) all subsets of the seven drivers, but with the six variables of perceived enforce-

ment replaced by the single variable “Efficient Conservation: perceived efficiency of conservation

personnel”; (3) all subsets of the seven drivers, but with both alternative livelihoods replaced by

(alternative livelihoods)2 and perceived enforcement replaced by Efficient Conservation. We com-

puted AIC for all of these subset models and determined minimum AIC within each model class

(see Table 5.3). Based on these computations, we restricted attention to the model class Efficient

Conservation + (alternative livelihoods)2.

Table 5.3: Minimum AIC for four different model classes. Minimum AIC over all 128 subset models
in each model class. All models are fitted to randomized responses based on the EM algorithm with 20
different random starting values to avoid convergence to local modes.

Model Class Minimum AIC
Efficient Conservation + alternative livelihoods 2728.699

Efficient Conservation + (alternative livelihoods)2 2680.613
perceived enforcement + alternative livelihoods 2729.034

perceived enforcement + (alternative livelihoods)2 2688.773
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Table 5.4: Top models with ∆AIC less than 2 for Efficient Conservation + (alternative livelihoods)2. ∆AIC, maximum likelihood estimates for
models fitted to randomized responses. All model fits are based on the EM algorithm with 20 different random starting values to avoid convergence
to local modes.

1 2 3 4 5 6 7 8 9
(Intercept) -0.469 -0.338 -0.460 -0.338 -0.589 -0.319 -0.342 -0.454 -0.451

EfficientConservation -3.261 -3.316 -3.127 -2.716 -3.213 -2.879 -3.200 -3.248 -3.264
AnimalsRare -0.218 -0.201 -0.212

HouseholdSize -0.002
HighDisplace 0.691 0.671 0.670 0.668 0.713 0.685 0.656 0.688 0.690

Rural 1.404 1.489 1.500 1.664 1.414 1.559 1.559 1.395 1.505
Seaside 1.814 1.762 1.842 1.915 1.790 1.900 1.802 1.810 1.743

Rural:HighDisplace -0.288 -0.308 -0.354 -0.493 -0.315 -0.397 -0.355 -0.275 -0.340
Seaside:HighDisplace -0.887 -0.781 -0.886 -0.909 -0.854 -0.909 -0.800 -0.877 -0.751

Seaside:Rural -2.361 -2.408 -2.382 -2.434 -2.329 -2.457 -2.424 -2.357 -2.381
OutsidersHunted -0.283 -0.366 -0.273
ResidentsHunted 0.282 0.342 0.280

Residencetime 0.007 0.008 0.006 0.007 0.007 0.007 0.008
Education.level 0.038 0.036

AIC 2680.613 2681.220 2681.764 2681.868 2681.916 2682.067 2682.500 2682.591 2682.601
∆AIC 0 0.607 1.151 1.255 1.303 1.454 1.887 1.978 1.988
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Within this model class, we computed ∆AIC as AIC minus minimum AIC, and focused on the

nine optimal models with ∆AIC < 2 (see Table 5.4). We found support for some hypotheses we

tested and not for others in this set. In addition, none of the individual hypothesized factors alone

explains the variation in frequencies of illegal hunting. The ∆AIC value of models containing

just individual factors are between 31.231 and 118.455. Instead, all optimal models contained a

combination of different factors.

Other likelihood-based criteria could be applied, such as the Bayesian Information Criterion

(BIC) [143]. AIC and BIC both allow for model selection in large model spaces, but using different

approaches: AIC efficiently selects a good approximating model in the model space, while BIC

consistently estimates the true model if a true model is in fact in the model space. We computed

BIC for all 128 models in the same model class as considered for Table 5.4. As expected, BIC

tends to prefer smaller models, but model 6 and model 1 in Table 5.4 are the first and second

model selected based on BIC.

All optimal models included a large, negative coefficient for perceived enforcement, indicat-

ing that higher levels of enforcement may serve as a critical deterrent against illegal hunting in

WAPFR (Table 5.4), as has been found in a wide variety of other protected areas. This outcome

has clear policy and management implications; however, the potential to increase enforcement may

be limited in Sierra Leone. The country faces many fiscal challenges, and conservation capacity in

WAPFR has yet to recover to levels seen prior to the civil war [116].

Three of the nine optimal models also point to the importance of normative influences on the

amount of non-compliance (Table 5.4). We found that community members were more likely to

engage in illegal hunting when they believed their neighbors in the same community were also

doing so (positive coefficients in Table 5.4). Norms have been shown to influence compliance

with conservation regulations and to shape natural resource use patterns across a broad range of

contexts from recreational fishing in New Zealand [119] to rangeland management in Mongolia

[144]. Management interventions can influence norms, but care must be taken as the introduction

of new rules and regulations can undermine long-standing norms and drive greater non-compliance
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[145]. One promising approach is community-based social marketing, which can use social norms

as the center piece of persuasive behavior-change communication campaigns [146].

We also found that, contrary to initial hypotheses, respondents were less likely to hunt illegally

if they perceived outsiders were hunting in the reserve (negative coefficients in Table 5.4). One

possible reason for this apparent contradiction is that the effects of descriptive norms are moder-

ated by group identity. Specifically, when an individual perceives a group to be more similar to

themselves, the individual may identify more closely with the group, and this may increase the in-

fluence of descriptive norms on the individual’s behavior [147]. In other words, individuals should

be more likely to participate in a behavior that is common among a group they identify with (in

this case their home community) than a behavior common in a less similar group (in this case out-

siders). This could explain why the perceived behaviors of outsiders would have less effect on the

amount of non-compliance than the behaviors of community members. However, we found that

the effect of outsiders was as strong as that of community members, but in the opposite direction:

perceptions of hunting by outsiders correlates with less hunting by respondents and perceptions of

hunting by community members correlates with more hunting. The effect of outsider’s behaviors

may instead be explained by the history of the region. During the war, combatants frequented the

forest inside the reserve, and local people may still harbor memories that associate the forest with

zones of active combat [115]. Therefore, increased activity of outsiders in the reserve may provide

local people with ample reason to avoid the area.

All nine optimal models also included community variables (Table 5.4). As described above,

we had included community as a variable in our models as a proxy for access to alternative liveli-

hoods. Some of the results support the idea that increased availability of alternative livelihoods

can reduce resource use and non-compliance with conservation regulations. For example, rural

communities, with less access to labor markets in urban centers, tended to hunt more in the reserve

(positive coefficients in Table 5.4). In addition, communities with a greater proportion of displaced

people also hunted more. However, contrary to our hypotheses, we found more hunting to occur

in seaside communities, despite their access to additional marine resources. Also, examining in-
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teraction effects among community types, further confounds the relationship between access to

alternative livelihoods and frequency of hunting. For example, we would expect rural communi-

ties with many displaced people to have high rates of hunting, however, all of our optimal models

found that these communities had lower rates of hunting (negative coefficient in Table 5.4 for

interaction between rural and displaced). Overall, we see a significant difference in hunting rates

among communities, but these differences cannot be explained by access to alternative livelihoods.

Instead, other aspects of the local context not measured here must be driving these differences in

hunting rates among communities.

Seven of the nine optimal models also contained residence time. The small coefficients (Ta-

ble 5.4) indicate the smaller effect the variable had on the outcome. In all cases the longer a house-

hold had lived in a community, the greater the likelihood they had participated in illegal hunting.

This corroborates prior findings of increases in the use of forest resources with longer residence

times, which may be linked to the accumulation of ecological knowledge over time [136]. Three

of the optimal models included perceived rarity, and supported the prediction that residents were

less likely to participate in illegal hunting when they perceived animals to be rare in the reserve.

Only two models included education, but contrary to prior studies [138–141] our results indicate

that increases in formal education are associated with greater amounts of illegal hunting. However,

some studies in Africa have found similar results using indirect questioning methods [148,149]. In

addition to the value of using an indirect questioning method such as QRRT, our finding might be

explained by the links between hunting and bushmeat markets in the nearby capital of Freetown.

Higher levels of education may assist some families in integrating with these markets, but further

research is needed to confirm this possible link between education and hunting. Finally, only one

model in the optimal set contained household size. The coefficient for the variable was small and

surprisingly indicated that larger households would be slightly less likely to hunt illegally in the

reserve. Although this finding is in contrast to theory, similar results have been recorded in Gabon

in the case of hunting for bushmeat [150].
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Although our models allow us to compare the relative importance of possible drivers of ille-

gal hunting, the models still only explained a relatively small proportion of the variance in hunt-

ing rates. This is not surprising given that our aim was to use this case to demonstrate a new

methodological approach and we did not attempt to measure all possible determinants of non-

compliance. For this case, future research might include variables or models not tested here, but

for which strong theoretical foundations exist. Possibilities for additional theories to test that have

been found to be good predictions of conservation-related behavior in past studies include the

theory of planned behavior, which posits that attitudes and perceived behavioral control, along

with social norms all influence behavioral intentions [151], Bamberg and Moser’s [152] frame-

work of pro-environmental behavior, and models of legitimacy, which include both measures of

participation in decision-making as well as perceptions of the fairness of rules and enforcement

outcomes [153, 154].

5.4 Conclusion

The methods we present here provide a methodological blueprint for examining possible drivers

of sensitive behaviors. Researchers across multiple disciplines are interested in understanding sen-

sitive behaviors, and policy makers and program managers seek more effective means to reduce the

frequency of a wide variety of sensitive behaviors. QRRT provides a means for gathering data on

the frequency of sensitive behaviors while protecting respondent anonymity. The new analytical

approach and tools we present here will allow researchers to explore drivers of a wide variety of

sensitive behaviors using QRRT data.
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Chapter 6

Conclusion and Future Work

In this dissertation, we developed new statistical models, testing frameworks and inferential

procedures based on classic generalized linear models including Gaussian, Poisson and negative

binomial regressions. These methods are designed specifically for three classes of important prob-

lems arising from genomics and sociological contexts. The good performance of these methods

has been demonstrated using extensive numerical simulations, and the methods have been applied

to the real-world data that motivated these studies.

The first class of problems involves count data arising from longitudinal RNA-seq experiments.

In particular, we considered two questions: 1) whether the treatment affects the geometric attributes

of the temporal profiles and 2) whether any treatment effect varies over time. To answer the first

question, in Chapter 2 we modeled the transformed count data for genes at each time point using

a Gaussian distribution and developed a testing framework based on a permutation procedure.

We show that it achieves good power and has its FDR controlled via simulation studies and we

applied it to the data collected from a light physiology experiment on maize. In Chapter 3, we

focused on solving question 2. We propose an inferential procedure that maximizes average power

and controls FDR. Conditional on a latent Gaussian mixture, the time-course RNA-seq data is

modeled by negative binomial distributions. This latent Gaussian-Negative Binomial model allows

feasible estimation of unknown model parameters and testing a variety of general composite null

hypotheses of great biological interest. The simulation studies in Chapter 3 show the advantages

of our proposal over existing methods.

The second class of problems involves analyzing group-structured sRNA data that consist of

independent replicates of counts for each sRNA across experimental conditions. In Chapter 4, we

introduce an inferential procedure based on a group-based negative binomial model and conduct

a testing framework via bootstrap. This procedure not only provides a group-based normalization
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factor, but also enables the group-based DE analysis. Our method shows good performance in both

simulation studies and real data analysis of experiment on roundworm.

The third class of problems concerns count data distributed as a mixture that arises due to the

randomization mechanism used in QRRT to guarantee respondent anonymity. This guaranteed

anonymity allows sociological researchers to investigate sensitive behaviors. In Chapter 5, we

propose a Poisson regression method that can be used to identify potential drivers of non-compliant

behaviors. This method is based on maximum likelihood estimation and the model parameters are

estimated via the EM algorithm. As a case study, we use this approach to compare the relative

importance of possible drivers of illegal hunting in Sierra Leone.

There are many possible extensions and future works for the topics covered by this dissertation.

These future research directions in general can be categorized into three subjects: seeking alter-

native base models, increasing current model complexity and improving performance by further

investigating model’s theoretical properties. In Chapter 2, we modeled the transformed count data

using a Gaussian distribution. Alternatively, without losing any information, one can model the

gene’s temporal profiles by Poisson or negative binomial distributions. In Chapter 3, one future

direction is to generalize from the two-sample problem to three or more treatments. This extension

would provide more sophisticated ways to identify genes’ reaction to multi-level treatments. In

Chapter 4, to reduce the high computational cost on the testing procedure due to the bootstrap,

one possible improvement is to conduct the testing procedure based on the asymptotic variance-

covariance matrix of the regression parameter estimates.
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Appendix A

Supplemental materials for Chapter 2

A.1 More Simulation Results

Table A.1: Simulation A: Average FDR and power for different methods to estimate F̂P along with out test
in Section 2.2.3 for simulation setting (A) with σ = 0.7. Results for different sample sizes n, observation
time points T , and nominal levels α are reported based on 100 replications.

T 10 15

n Methods α 0.050 0.075 0.100 0.150 0.050 0.075 0.100 0.150

6

FANOVA based
FDR 0.020 0.076 0.098 0.160 0.044 0.071 0.095 0.155

Power 0.937 0.958 0.96 0.966 0.962 0.966 0.969 0.972

Tg based
FDR 0.060 0.087 0.113 0.171 0.06 0.086 0.115 0.173

Power 0.955 0.959 0.962 0.966 0.965 0.968 0.970 0.973

Standard
FDR 0.021 0.015 0.014 0.013 0.021 0.016 0.014 0.014

Power 0.510 0.701 0.763 0.827 0.526 0.707 0.779 0.829

9

FANOVA based
FDR 0.048 0.070 0.095 0.144 0.046 0.066 0.098 0.136

Power 0.964 0.967 0.969 0.972 0.97 0.973 0.976 0.978

Tg based
FDR 0.058 0.085 0.103 0.159 0.058 0.085 0.116 0.160

Power 0.965 0.968 0.970 0.973 0.972 0.975 0.977 0.979

Standard
FDR 0.010 0.010 0.009 0.009 0.012 0.011 0.011 0.011

Power 0.765 0.812 0.843 0.889 0.761 0.809 0.832 0.880

15

FANOVA based
FDR 0.048 0.064 0.090 0.132 0.044 0.066 0.082 0.137

Power 0.973 0.975 0.977 0.979 0.979 0.981 0.982 0.984

Tg based
FDR 0.055 0.077 0.108 0.157 0.055 0.082 0.104 0.137

Power 0.974 0.976 0.977 0.980 0.979 0.982 0.983 0.984

Standard
FDR 0.006 0.006 0.006 0.007 0.008 0.008 0.008 0.008

Power 0.858 0.881 0.903 0.927 0.858 0.882 0.906 0.930
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Table A.2: Simulation B: (Peak) Average FDR and power for different methods to estimate F̂P along with
out test in Section 2.2.3 for simulation setting (B) with σ = 1. Results for different sample sizes n, obser-
vation time points T , and nominal levels α are reported based on 100 replications.

T 10 15

n Methods α 0.050 0.075 0.100 0.150 0.050 0.075 0.100 0.150

6

FANOVA based
FDR 0.048 0.076 0.099 0.156 0.053 0.079 0.105 0.141

Power 0.991 0.997 0.997 0.998 1.000 1.000 1.000 1.000

Tg based
FDR 0.079 0.107 0.132 0.198 0.053 0.079 0.105 0.163

Power 0.997 0.997 0.998 0.998 1.000 1.000 1.000 1.000

Standard
FDR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Power 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9

FANOVA based
FDR 0.050 0.075 0.097 0.147 0.047 0.072 0.089 0.141

Power 0.998 0.999 0.999 0.999 1.000 1.000 1.000 1.000

Tg based
FDR 0.071 0.097 0.123 0.177 0.047 0.072 0.112 0.141

Power 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000

Standard
FDR 0.000 0.000 0.000 0.051 0.000 0.000 0.000 0.000

Power 0.000 0.000 0.000 0.998 0.000 0.000 0.001 0.001

15

FANOVA based
FDR 0.050 0.071 0.090 0.141 0.047 0.067 0.101 0.150

Power 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Tg based
FDR 0.064 0.090 0.120 0.166 0.047 0.067 0.101 0.150

Power 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Standard
FDR 0.060 0.032 0.046 0.080 0.000 0.000 0.005 0.024

Power 0.000 0.999 0.999 1.000 0.000 0.000 1.000 1.000
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Table A.3: Simulation B: (Valley) Average FDR and power for different methods to estimate F̂P along
with out test in Section 2.2.3 for simulation setting (B) with σ = 1. Results for different sample sizes n,
observation time points T , and nominal levels α are reported based on 100 replications.

T 10 15

n Methods α 0.050 0.075 0.100 0.150 0.050 0.075 0.100 0.150

6

FANOVA based
FDR 0.000 0.000 0.000 0.133 0.015 0.031 0.050 0.086

Power 0.000 0.000 0.000 0.258 0.232 0.276 0.305 0.346

Tg based
FDR 0.000 0.000 0.000 0.153 0.045 0.071 0.097 0.148

Power 0.000 0.000 0.000 0.277 0.299 0.331 0.356 0.399

Standard
FDR 0.000 0.000 0.000 0.000 0.000 0.022 0.039 0.077

Power 0.000 0.000 0.000 0.000 0.000 0.257 0.291 0.338

9

FANOVA based
FDR 0.041 0.066 0.093 0.137 0.022 0.037 0.062 0.101

Power 0.286 0.324 0.352 0.390 0.359 0.392 0.428 0.470

Tg based
FDR 0.050 0.074 0.104 0.152 0.044 0.072 0.086 0.144

Power 0.302 0.332 0.361 0.402 0.404 0.442 0.456 0.500

Standard
FDR 0.025 0.041 0.059 0.104 0.015 0.032 0.044 0.086

Power 0.248 0.286 0.316 0.361 0.340 0.381 0.404 0.456

15

FANOVA based
FDR 0.042 0.063 0.088 0.128 0.022 0.044 0.058 0.104

Power 0.432 0.459 0.482 0.515 0.496 0.532 0.550 0.590

Tg based
FDR 0.046 0.068 0.092 0.141 0.044 0.062 0.081 0.146

Power 0.437 0.462 0.487 0.524 0.532 0.554 0.571 0.616

Standard
FDR 0.022 0.042 0.063 0.092 0.017 0.032 0.044 0.078

Power 0.394 0.432 0.457 0.487 0.481 0.514 0.532 0.568
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A.2 Real Data Analysis

A.2.1 Detail Filtering Step

First, the values are fitted for the ith observation from the null model, ŷi,null, and alternative

models ŷi,alt. The residuals of the model fits are then obtained by subtracting the fitted values from

the observed values. Let SS0
i =

∑
i(yi− ŷi,null)

2, and SS1
i =

∑
i(yi− ŷi,alt)

2 be the sum of squares

of the residuals obtained from the null model and the alternative model respectively. The statistic

for gene i was constructed as

Fi =
SS0

i − SS1
i

SS1
i

.

The null distribution of these statistics are estimated through a data bootstrap method, where resid-

uals from the alternative model are resampled and added back to the null model. This method

simulates the case where the patterns of the expression levels are linear [12]. The empirical p-

values from the bootstrap step are recorded for all genes. In our study, under both light and dark

condition, we select genes that their p-values in all sections are less than 0.1 for further study.

A.2.2 More Results

Table A.4: Summary of Real Data Analysis at 0.05 FDR level

After filtering Number of rejection Peak Valley C4/PS

Dark 10330 1658 1118 541 22 (13 without isoform)
Light 9063 1020 515 511 15 (7 without isoform)

A.3 Expectation for the Statistic Tn

Statistic Tn in (2.5) plays a critical role in the proposed procedure for detecting differential

geometric patterns in gene temporal profiles under different biological conditions. As discussed in

Section 2.2, Tn mimics the quantity
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Table A.5: Top 10 for Light: top 10 significant DE genes under light with valley different on top and peak
location difference at bottom.

gene ID Method Annotation

GRMZM2G700188 V putative cinnamyl-alcohol dehydrogenase family protein
GRMZM2G074672 V vacuolar iron transporter 1.2-like

AC231745.1_FGT003 V
GRMZM2G113415 V uncharacterized LOC100275062
GRMZM2G079348 V
GRMZM2G122943 V uncharacterized LOC100276511
GRMZM2G091743 V
GRMZM2G010460 V putative ubiquitin-conjugating enzyme E2 25
GRMZM2G099745 V RPM1-interacting protein 4 (RIN4) family protein
GRMZM2G006468 V wound responsive protein-like
GRMZM2G404973 P GATA zinc finger family protein
GRMZM2G376416 P uncharacterized LOC100501315
GRMZM2G039443 P uncharacterized LOC100275689
GRMZM2G074604 P phenylalanine ammonia lyase 3
GRMZM5G839640 P verprolin
GRMZM5G840909 P putative cytidine/deoxycytidylate deaminase family protein
GRMZM2G054115 P uncharacterized LOC100273094
GRMZM2G078143 P uncharacterized LOC100192461
GRMZM2G134072 P hypothetical protein ZEAMMB73_Zm00001d051466
GRMZM2G470438 P DNA topoisomerase 3-alpha
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Table A.6: Top 10 for Dark: top 10 significant DE genes under dark with valley different on top and peak
location difference at bottom.

gene ID Method Annotation

GRMZM2G450233 V peroxidase 5
GRMZM5G869530 V
GRMZM2G448001 V putative WD40-like beta propeller repeat family protein

GRMZM2G174990 V
Putative CRAL/TRIO domain containing,

Sec14p-like phosphatidylinositol transfer family protein
GRMZM2G483490 V
GRMZM5G864815 V thiamin pyrophosphokinase 1
GRMZM2G078033 V uncharacterized LOC100191603
GRMZM2G146267 V prolamin-box binding factor 1
GRMZM2G124365 V chorismate mutase
GRMZM5G815358 V phytoene desaturase
GRMZM2G107839 P Non-specific lipid-transfer protein
GRMZM2G103197 P uncharacterized LOC100383045
GRMZM2G332976 P short chain alcohol dehydrogenase 1
GRMZM2G130149 P Transcription factor MYB48
GRMZM2G101693 P nudix hydrolase 2
GRMZM2G080168 P uncharacterized LOC100216597
GRMZM2G131205 P cinnamoyl CoA reductase 1
GRMZM2G029048 P phenylalanine ammonia lyase9

GRMZM2G167766 P
Protein COFACTOR ASSEMBLY

OF COMPLEX C SUBUNIT B CCB3 chloroplastic
GRMZM2G034855 P putative receptor-like protein kinase

Table A.7: C4/PS gene under Dark: Top 10 significant DE C4/PS genes under dark. * means gene shows
up in both light and dark condition

gene ID Method both DE Annotation

GRMZM2G178693 P plasma membrane intrinsic protein
GRMZM2G081843 P plasma membrane intrinsic protein 1
GRMZM2G129513 P malate dehydrogenase 6
GRMZM2G047368 P plasma membrane intrinsic protein 2
GRMZM2G083841 P phosphoenolpyruvate carboxylase 1
GRMZM2G155253 P Fructose-bisphosphate aldolase
GRMZM2G083016 P metacaspase type II
GRMZM2G040933 P * plastidic general dicarboxylate transporter
GRMZM2G086258 P * plastidic general dicarboxylate transporter
GRMZM2G081192 P plasma membrane intrinsic protein 2
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(k1 + k2)
−1

[
k1∑

i=1

min
1≤j≤k2

{µ(1)
i − µ

(2)
j }2 +

k2∑

j=1

min
1≤i≤k1

{µ(2)
j − µ

(1)
i }2

]
,

which measures the discrepancy between two arrays µ(1) and µ(2) whose dimensions k1 and k2 are

not necessarily the same. Given the nonlinearity in Tn, it is necessary to establish its connections

with
∑

1≤i≤k1
min1≤j≤k2{µ(1)

i − µ
(2)
j }2 +

∑
1≤j≤k2

min1≤i≤k1{µ(2)
j − µ

(1)
i }2. By exploring the

lower and upper bounds of E(Tn) under the Gaussian sequence model, this appendix achieves

that goal and provides justifications for employing Tn to detect differential geometric patterns in

gene temporal profiles.

As an ideal model that carries most of the insight of nonparametric inference, the Gaussian

sequence model ( [155]) has received a vast attentions in literature. Hereafter, we consider the

finite version of the Gaussian sequence model

θ1,i = µ
(1)
i + ǫ1,i, (A.1)

θ2,j = µ
(2)
j + ǫ2,j, (A.2)

where ǫ1,i’s and ǫ2,j’s are i.i.d. N (0, σ2) random variables for i = 1, . . . , k1 and j = 1, . . . , k2,

k1, k2 are finite integers and not necessarily the same. For the convenience of expositions, we

let σ2 = 1. Based on (A.1) and (A.2), we consider Q1 =
∑k1

i=1 min1≤j≤k2{θ1,i − θ2,j}2 and

Q2 =
∑k2

j=1 min1≤i≤k1{θ2,j − θ1,i}2, so that T (θ1,θ2) = (k1 + k2)
−1(Q1 + Q2), where θ1 =

(θ1,1, . . . , θ1,k1)
T and θ2 = (θ2,1, . . . , θ2,k2)

T , is analogous to Tn.

Lower bound

First, we study the lower bound of E{T (θ1,θ2)}. For each fixed i ∈ [k1], denote ξj = θ1,i−θ2,j

with E(ξj) = µ
(1)
i −µ

(2)
j := νj and Var(ξj) = 2. Let Aj(t) = {|ξj| > t}, then A(t) := {minj |ξj| >

t} =
⋂

1≤j≤k2
Aj(t) and P{A(t)} ≥ 1 −∑k2

j=1 P{Aj(t)
c} by the Bonferroni’s inequality. There-

fore, by the triangle inequality, for some A > 0
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E

{
min

1≤j≤k2
|ξj|2

}
=

∫ ∞

0

P

{
min

1≤j≤k2
|ξj|2 > t

}
dt

≥
∫ A

0

P

{
min

1≤j≤k2
(|ξj − νj| − |νj|)2 > t

}
dt (A.3)

≥
∫ A

0

1−
∑

1≤j≤k2

P
{
(|ξj − νj| − |νj|)2 < t

}
dt.

In particular, we first choose A ≤ min1≤j≤k2 ν
2
j . By the basic properties of the standard normal

distribution

P
{
(|ξj − νj| − |νj|)2 < t

}

=P

{
|ξj − νj| < |νj|+

√
t
}
− P

{
|ξj − νj| < |νj| −

√
t
}

≤
√

1

π
(|νj|+

√
t)−

√
1

π
(|νj| −

√
t)e−(|νj |−

√
t)2/4

Hence, the last integral in (A.3) can be bounded from below by

∫ A

0

1−
√

1

π

k2∑

j=1

(|νj|+
√
t) +

√
1

π

k2∑

j=1

{
(|νj| −

√
t)e−(|νj |−

√
t)2/4

}
dt

≥
∫ A

0

{
1−

∑k2
j=1 |νj|√

π
− k2

√
t√

π

}
dt+

√
1

π

k2∑

j=1

∫ A

0

{
(|νj| −

√
t)e−(|νj |−

√
t)2/4

}
dt

=I1(A) + I2(A).

For any A ≤ min1≤j≤k2 ν
2
j ,

I1(A) ≥ A−
∑k2

j=1 |νj|√
π

A− 2k2
3
√
π
A3/2.

Choose A0 < min1≤j≤k2 ν
2
j small such that min1≤j≤k2

∫ |νj |/
√
2

(|νj |−
√
A0)/

√
2
ue−u2/2du ≥ c1 for some

constant c1 > 0, and it yields

I(A0) ≥
4c1√
π

k2∑

j=1

|νj| − 4.
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Let A = c2(k2/
√
π)−2 min1≤j≤k2 ν

2
j ∨ A0 for sufficiently small constant c2 < 1,

E

{
min

1≤j≤k2
|ξj|2

}
≥ A− 2k2

3
√
π
A3/2 +

(4c1 − A)k2√
π

min
1≤j≤k2

|νj| − 4

≥ C1 min
1≤j≤k2

ν2
j + C2

where C1, C2 are constants depending on c1, c2 only.

Similar results can be derived for E{min1≤i≤k1 |θ2,j − θ1,i|2} for fixed j ∈ [k2]. Therefore,

E(Q1+Q2) =
∑k1

i=1 E{min1≤j≤k2 ξ
2
j,(i)}+

∑k2
j=1 E{min1≤i≤k1 ξ

2
i,(j)} ≥ C ′

1[
∑k1

i=1 min1≤j≤k2{µ(1)
i −

µ
(2)
j }2 +

∑k2
j=1 min1≤i≤k1{µ(2)

j − µ
(1)
i }2] + C ′

2 for some constants C ′
1, C

′
2 depending on k1, k2

and c1, c2 above. For sufficiently large distinctions between µ(1) and µ(2), the lower bound of

the expectation for T (θ1,θ2) is therefore primarily driven by
∑k1

i=1 min1≤j≤k2{µ(1)
i − µ

(2)
j }2 +

∑k2
j=1 min1≤i≤k1{µ(2)

j − µ
(1)
i }2. Thus, as discussed and motivated in Section 2.2, it implies that

Tn is capable to capture the distinctions between arrays µ(1) and µ(2) whenever the discrepancy is

reasonably large.

Upper bound

Employing the same notation used for deriving the lower bound of E{T (θ1,θ2)}, the random

variable ξj has mean νj , variance 2, and Cov(ξj, ξj′) = 1 for each j′ 6= j given the models (A.1)

and (A.2). Denote B(t) = {ξ1 >
√
t, ξ2 < −

√
t, . . . , ξk2 >

√
t}. Based on the directions

of inequalities and the sign of
√
t, there are

(
k2
2

)
cases in total. That is, we have Aℓ(t) where

ℓ = 1, . . . ,
(
k2
2

)
. Consider a particular ℓ,

P{Aℓ(t)} = P{(ξ1,−ξ2, . . . , ξk2) >
√
t1}

= P{(ξ1 − ν1,−ξ2 + ν2, . . . , ξk2 − νk2) >
√
t1+ (−ν1, ν2, . . . ,−νk2)}

= P

{
Z > Σ̃

−1/2
ℓ [

√
t1+ (−ν1, ν2, . . . ,−νk2)]

T
}

:= P(Z > s)
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where 1T is the k2-dimensional vectors of ones, Z is the k2-dimensional standard multivariate

normal random vector, Σ̃ℓ is the covariance matrix of ξ̃ = (ξ1,−ξ2, . . . , ξk2)
T , and s is the corre-

sponding vector of
√
t and νj’s. By the Chernoff bound,

P{Aℓ(t)} =

k2∏

j=1

P(Zj > sj)

≤ exp(−||s||2/2)

= exp

{
−1

2

[
t1T Σ̃−1

ℓ 1+ 2
√
t1Σ̃−1

ℓ ν̃ℓ + ν̃T
ℓ Σ̃

−1
ℓ ν̃ℓ

]}

where ν̃ℓ = (−ν1, ν2, . . . ,−νk2)
T . Denote aℓ = 1T Σ̃−1

ℓ 1, we have

E

{
min

1≤j≤k2
|ξj|2

}

=

∫ ∞

0

P

(
min

1≤j≤k2
|ξj|2 > t

)
dt

≤
(
k2
2

)
max

1≤ℓ≤(k22 )

∫ ∞

0

exp{−taℓ/2} exp{−
√
t1Σ̃−1

ℓ ν̃ℓ} exp{−ν̃T
ℓ Σ̃

−1
ℓ ν̃ℓ}dt

≤
(
k2
2

)
max

1≤ℓ≤(k22 )

∫ ∞

0

exp{−ta/2}dt exp{−ν̃T
ℓ Σ̃

−1
ℓ ν̃ℓ}

≤ 2k2
2 max
1≤ℓ≤(k22 )

a−1
ℓ exp{−ν̃T

ℓ Σ̃
−1
ℓ ν̃ℓ}

≤ 2k2
2 max
1≤ℓ≤(k22 )

a−1
ℓ exp

{
−λmin(Σ̃

−1
ℓ )k2 min

1≤j≤k2
|νj|2

}

≤ D1 +D2 min
1≤j≤k2

|νj|2

for some constants D1, D2 depending on k1, k2 and symmetric matrices whose diagonals equal to

2 and off-diagonals equal to ±1.

Similar results can be derived for E{min1≤i≤k1 |θ2,j − θ1,i|2} for fixed j ∈ [k2]. Therefore,

E(Q1 +Q2) =

k1∑

i=1

E{ min
1≤j≤k2

ξ2j,(i)}+
k2∑

j=1

E{ min
1≤i≤k1

ξ2i,(j)}

121



≤ D′
2

[
k1∑

i=1

min
1≤j≤k2

{µ(1)
i − µ

(2)
j }2 +

k2∑

j=1

min
1≤i≤k1

{µ(2)
j − µ

(1)
i }2

]
+D′

1

for some constants D′
1, D

′
2. The upper bound of the expectation for T (θ1,θ2) is primarily driven by

∑k1
i=1 min1≤j≤k2{µ(1)

i −µ
(2)
j }2+∑k2

j=1 min1≤i≤k1{µ(2)
j −µ

(1)
i }2. In fact, from the above exponential

upper bound, the expectation of T (θ1,θ2) is controlled from above whenever µ(1) and µ(2) share

a common entry.

122



8.0

8.5

9.0

9.5

5 10
Time

E
x

p
r

section

2

3

4

GRMZM2G086258_T01

(a) Constant light

6

7

8

5 10
Time

E
x

p
r

section

2

3

4

GRMZM2G086258_T01

(b) Constant dark

Figure A.1: log RPKM of Gene GRMZM2G086258 with smoothing curve: lighter curves with dots show
the actual log scale RPKM data, the darker solid lines show the estimated mean curve using spline model.
Color red represents section 2, color green represents section 3 and color blue represents section 4.
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Figure A.2: Heatmap of Top 10 genes: Each column is a section and time point combination, and each
row is a gene. Heatmap indicates log scale level of gene expression; red, low expression; yellow, high
expression. The categorical annotation bars (above heatmap) demonstrate the section label (red, section 2;
green, section 3; blue, section 4). The color bar on the left side the method (purple, valley locations are
different; light blue, peak locations are different).
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Figure A.3: Heatmap of Top C4 genes: Each column is a section and time point combination, and each
row is a gene. Heatmap indicates log scale level of gene expression; red, low expression; yellow, high
expression. The categorical annotation bars (above heatmap) demonstrate the section label (red, section 2;
green, section 3; blue, section 4).
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Appendix B

Supplemental materials for Chapter 3

B.1 Supplementary Materials

The R package, MAPTest, implements our proposed method and is publicly available at https:

//github.com/meca7653/MAPTest, where the illustrative numerical example is also included. Users

can specify their own estimates of the normalization factors or dispersion parameters.

B.2 Details: A Quasi-Monte Carlo Integration-Assisted Gradi-

ent Expectation-Maximization Algorithm for Estimation

In Section 3.2 in the main paper, we remark that the proposed model is estimated by a variant of

the expectation-maximization (EM) algorithm. In this section, we detail that estimation procedure,

which is a quasi-Monte Carlo-integration assisted gradient EM algorithm.

B.2.1 Estimation

As discussed in Section 3.2 in the main paper, the coefficients of the basis functions, ηg2 and τ g,

as well as ηg1, are de facto latent variables for the proposed K-component latent Gaussian-Negative

Binomial model. As displayed in Section 3.4.1, {µ1, σ
2
1,Ψ,M} can be viewed as hyper-parameters

of the proposed model. For estimation, we introduce a latent vector Zg = (Zg1, . . . , ZgK) for

gene g, where Zgk is a binary pointer assigning (ηg1,ηg2, τ g) to the kth component with k =

1, . . . , K. Though our model focuses on K = 4, the algorithm is flexible for any finite K. It

is common to assume that Zg’s are independent multinomial random vectors that consist of K

categories with probability p = (p1, . . . , pK). Hence, the complete data for the proposed model

are (Yg, ηg1,ηg2, τ g,Zg), where only Yg’s are observed and others are latent.

We estimate the non-observables and parameters, ζ = {µ1, σ
2
1, diag(Ψ), diag(M)} and p, via

an EM algorithm, which is conventionally employed to estimate models with latent variables. Here,
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diag(A) denotes the diagonal entries of matrix A. The complete log-likelihood is

L =
K∑

k=1

G∑

g=1

Zgk log {Fk(Yg; ζ)}+ Zgk log(pk) + (1− Zgk) log(1− pk),

by which the conditional expectation of latent variables can be computed. For example,

E
{
Zgk|Yg, ζ

(m),p(m)
}
=

p
(m)
k Fk(Yg; ζ

(m))
∑

ℓ p
(m)
ℓ Fℓ(Yg; ζ(m))

, (B.1)

where ζ(m) = {µ(m)
1 , σ

2,(m)
1 , diag(Ψ)(m), diag(M)(m)} and p(m) are estimates at step m, and

Fk(Yg; ζ
(m)) denotes the conditional density of Yg given parameters from component k.

We then update p̂k by

p̂k =

∑
g E
{
Zgk|Yg, ζ

(m)
}

∑
k

∑
g E {Zgk|Yg, ζ(m)} (B.2)

for each k = 1, . . . , K. This is the so-called E-step. Instead of maximizing the weighted log-

likelihood
∑

k

∑

g

Ẑgk log {p̂kFk(Yg; ζ)} (B.3)

in the traditional EM, we employ the gradient EM [156] to improve the computational efficiency.

That is, we update ζ only by moving along the gradient of (B.3) with respect to ζ for one step

whose step size shrinks along update. This is the so-called GM-step.

Repeat the E-step and GM-step until the log-likelihood function changes no more than a small

number from the previous iteration, say G/1000, which means the improvement is no better than

1/1000 log-likelihood on average for each gene. The complete algorithm is summarized in Algo-

rithm 1 below.

Initialization

Performance of the EM algorithm is known to depend highly on the initialization. We design

an initialization procedure for our proposed model as following.

126



1. First, for pre-specified basis functions B(t), we fit a negative binomial regression model for

each gene to obtain η̃g1, η̃g2 and τ̃ g.

2. Next, we cluster η̃g1’s into 2 groups using method such as K-means. Proportions (p1, p2),

means (m1,m2), and variances (s21, s
2
2) are estimated for each cluster. Without loss of gen-

erality, we assume |m1| > |m2| and initialize (µ1, σ
2
1) as (µ̃1, σ̃

2
1) = (m1, s

2
1).

3. Then, we perform a test, such as the likelihood ratio test, on Hg
0 : ηg2 = 0 to obtain the

p-values pg’s. The initialization of diag(M) is given by diagonal entries of

M̃ =
1

|∑g I(pg ≤ α)|
∑

g:pg≤α

(η̃g2 − ¯̃η2)
′(η̃g2 − ¯̃η2)

′

for cutoff α and ¯̃η2 = |∑g I(pg ≤ α)|−1
∑

g:pg≤α η̃g2. We initialize diag(Ψ) similarly.

4. Last, we initialize p̃0 = p2G
−1
∑

g I{pg > α}, p̃1 = p2G
−1
∑

g I{pg ≤ α}, p̃3 = p1G
−1
∑

g I{pg >

α} and p̃4 = p1G
−1
∑

g I{pg ≤ α}.

Dispersion parameter estimation

We employ the moments estimator for dispersion parameter φg. For gene g in treatment group

i at time point t, s2gi(t) = mgi(t) + φgm
2
gi(t), where s2gi(t) =

∑r
j=1{Ygij(t)−mgi(t)}2/(r − 1) is

the sample variance and mgi(t) = r−1
∑r

j=1 Ygij(t) is the sample mean. Here, r is the number of

replicates. Then, we estimate φg by

φ̂g =
∑

i

∑

t

s2gi(t)−mgi(t)∑
i

∑
t m

2
gi(t)

. (B.4)

B.2.2 Quasi-Monte Carlo Approximation

For our model, Fk in (B.1) and (B.3) is an integral without closed form. This brings challenges

for both the E-step and the GM-step as the evaluation of Fk is indispensable. To circumvent this

difficulty, we employ the quasi-Monte Carlo method to approximate
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Algorithm 1: Estimation and inference of the 4-component latent Gaussian-negative bino-
mial model

Input : Gene matrix: {Yg}Gg=1, nominal FDR level α,
Initial number of QMC nodes: N ,
Initial parameters: ζ̃, {p̃k}K=4

k=1 , {φ̂g}Gg=1 in Section B.2.1,
Hypothesis parameters: H0 : ∆0 vs. H1 : ∆1.

Output: A list of DE genes corresponding to the hypothesis of interest.
1 Parameter estimation: while |L(m) − L(m+1)| > max(1e−6, G/1000) do

2 E-Step: Update pk’s by (B.2).
3 GM-Step: ζ(m+1) = ζ(m) +∆(m)∂L/∂ζ|ζ=ζ(m) , where L is in (B.3), ∆(m) is the step

size chosen to be 1/2m and N (m) = N/2m.
4 end

5 Determine λα or Γ(α): for all genes do

6 (1) Calculate δ̂MAP(Yg) in (4) in the main paper with π̂(η1,η2, τ |ζ̂, {p̂k}K=4
k=1 ) for each

g = 1, . . . , G.
7 (2) For each λ > 0, compute

F̂DRΓ =

∑
g δ̂MAP(Yg)I{Yg ∈ Γ}∑

g I{Yg ∈ Γ} ,

where Γ = {Yg : δ̂MAP(Yg) ≤ λ}.

8 (3) Choose λ such that F̂DRΓ ≤ α, and denote by λ̂α.
9 end

10 Test Construction: for g = 1, 2, . . . , G do

11 if δ̂MAP(Yg) is smaller than λ̂α, i.e. Yg ∈ Γ̂(α) then

12 Reject Hg
0 ;

13 else

14 Fail to reject Hg
0 ;

15 end

16 end

F (y;µ,Λ) =

∫

Rm

f(y|x′β, φ)ϕ(β|µ,Λ)dβ

where f(y|x′β, φ) is the pdf of a negative binomial distribution and ϕ is the density of multivariate

normal. Among a large number of numerical integration methods in the literature, Monte Carlo

method is straightforward but time consuming when the dimension of parameters increases. Com-

pared to the traditional Monte Carlo method, quasi-Monte Carlo (QMC) method generates nodes

based on a low discrepancy sequence. As suggested by [157], let
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Dn ∗ (x1, . . . , xn) = sup
a∈[0,1)d

∣∣∣∣∣
1

n

n∑

i=1

I{0 ≤ xi < a} − |[0, a)|
∣∣∣∣∣ ,

then sequences (xi) in [0, 1)d with Dn ∗ (x1, . . . , xn) = O
(
log(n)d/n

)
are called low discrepancy

sequences. Examples include the van der Corput sequence and the Halton sequence [158].

Following [157], we generate a low discrepancy sequence in [0, 1)2q+1, where q is number of

basis functions. Then, convert this low discrepancy sequence by inverse cumulative distribution

function of standard normal, followed by necessary shift and projection, to generate a quasi-normal

sequence βi = (η1i,η2i, τ i) for i = 1, . . . , N with mean µ and covariance Λ. The quasi-Monte

Carlo integration is then given by

F (y;µ,Λ) ≈ F̃ (y;µ,Λ) =
1

N

N∑

i=1

f(y|x′βi, φ).

In practice, the integrand might be small at some QMC nodes, which incurs numerical insta-

bilities. Hence, instead of sampling nodes with equal weights 1/N , we further employ the idea of

“sampling with proportion to size" to avoid sampling QMC nodes with overwhelmingly small den-

sity values [159] using the history information of the updates. That is, within the EM algorithm,

let

F̃
(
y;µ(m+1),Λ(m+1)

)
=

N(m)∑

i=1

wif(y|x′β
(m+1)
i , φ),

where β
(m+1)
i are quasi-normal sequence with mean µ(m+1) and Λ(m+1) at step m and

wi =
N (m+1)f(y|x′β

(m)
i , φ)

∑N(m)

j=1 f(y|x′β
(m)
j , φ)

.

B.3 More Simulation Results

Figures S.1–S.7 and Tables S.1–S.7 display additional simulation results as discussed in the

main paper.
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B.3.1 Details on Basis Functions

The basis functions for the traditional Gaussian kernel [54], denoted by GA2 and GA3 in Section

4 in the main paper are {bk(t)}qk=1, q = 2, 3, where

bk(t) = hk exp{−(c− a)t2}Hk(
√
2ct),

for which Hk(x) is the kth order Hermite polynomial, c = (a2 + 2ab)1/2, h−2
k =

√
a/c2kk!, and

we set a = 1/4 and b = 2 in simulations.

B.3.2 Additional Results on Settings A and B

In Figures S.1–S.6, additional simulation results for testing overall temporal DE genes that is

alternative to ∆DE
0 are displayed.

• Figures S.1 and S.2 are for Settings A and B, respectively, where T = 6.

• Figures S.3 and S.4 are for µ1 = 2 and µ1 = 4, respectively; T = 10 and both Settings A

and B are included for each figure.

• Figures S.5 and S.6 are for µ1 = 2 and µ1 = 4, respectively; T = 6 and both Settings A and

B are included for each figure.

In addition, Figures S.3–S.6 also display results of our method with different basis functions for

comparison (blue dot lines in each Figure). We observe that our method is reasonably robust with

respect to the mis-specification of the basis function. Similar observations are obtained from Tables

1–2 in the main paper and Tables S.1-S.4 below. This is because that the mean dynamic λ(t) in (5)

in the main paper is smoothly modeled conditional on a latent zero-mean Gaussian process, whose

finite approximation, given the smooth covariance structure, is less sensitive to the choice and the

number of eigenfunctions in practice due to Mercer’s Theorem.

For competing methods in simulations, to perform the DE analysis on time-course RNA-seq

data, the F-statistics are used for edgeR, the likelihood ratio statistics are used for DESeq2,
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Figure S.1: Empirical FDRs and powers for testing the overall temporal DE genes by our method using
GA3 basis (∆), compared to those of the oracle and true test (◦ and ⋄), edgeR (•), maSigPro-GLM(�),
splineTC (∇), ImpulseDE2 (⊠)and DESeq2 (×) for Setting A. Each point displays the empirical FDR
and power of the corresponding method at a given nominal FDR level (the vertical gray dashed lines).
Results are for T = 6 and based on 100 replications.

magSigPro-GLM, and ImpulseDE2, and the empirical Bayes moderated F-statistics are used

for splineTC.
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Figure S.2: Empirical FDRs and powers for testing the overall temporal DE genes by our method using
GA3 basis (∆), compared to those of the oracle and true test (◦ and ⋄), edgeR (•), maSigPro-GLM(�),
splineTC (∇), ImpulseDE2 (⊠)and DESeq2 (×) for Setting B. Each point displays the empirical FDR
and power of the corresponding method at a given nominal FDR level (the vertical gray dashed lines).
Results are for T = 6 and based on 100 replications.

From the plots, the control of empirical FDRs by magSigPro-GLM is better when the under-

lying mean dynamic is close to a quadratic function (such as PL2 in Setting A) rather than a more

sophisticated form (such as PL3 in Setting B). This is because that magSigPro-GLM models the
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mean temporal dynamic using a less flexible quadratic regression and does not utilize the protocol

of borrowing information across genes. On the other hand, for small T , the difference between PL2

and PL3 is not significant based on a small number of realizations of λ(t) at T time points. This

explains the reasonable control on empirical FDRs by magSigPro-GLM for relative small T in

simulations.

In Tables S.1 and S.2, we present additional results on comparing the proposed method using

different basis functions with edgeR and DESeq2 for testing DE genes with relative mean shift

when µ1 = 2 and 4, respectively, under Setting B. Tables S.3 and S.4 report similar results for

testing NPDE genes when µ1 = 2 and 4, respectively, under Setting B as well.

Table S.1: Comparison of empirical FDRs and powers for testing DE genes with relative mean shift by the
proposed method with different bases, edgeR, and DESeq2 for Setting B. In simulations, µ1 = 2, T, r and
σ2
1 are displayed in the table. The nominal FDR level is 0.05. The simulation is based on 100 replications.

(T , r, σ2
1)

(6, 3, 1) (6, 3, 2) (6, 6, 1) (6, 6, 2) (10, 3, 1) (10, 3, 2) (10, 6, 1) (10, 6, 2)

FDR 0.073 0.060 0.053 0.051 0.054 0.055 0.050 0.049
GA2 Power 0.910 0.847 0.927 0.860 0.933 0.927 0.973 0.947

FDR 0.077 0.065 0.059 0.054 0.057 0.059 0.050 0.050
GA3 Power 0.903 0.843 0.927 0.853 0.933 0.913 0.973 0.947

FDR 0.083 0.073 0.070 0.070 0.054 0.078 0.082 0.085
FO2 Power 0.917 0.853 0.923 0.863 0.933 0.917 0.977 0.950

FDR 0.088 0.071 0.066 0.059 0.057 0.070 0.067 0.070
FO3 Power 0.910 0.853 0.930 0.853 0.933 0.917 0.973 0.947

FDR 0.054 0.049 0.047 0.044 0.054 0.048 0.046 0.044
PL2 Power 0.910 0.833 0.927 0.860 0.933 0.923 0.973 0.950

FDR 0.059 0.052 0.049 0.045 0.058 0.049 0.046 0.042
Oracle Power 0.903 0.840 0.927 0.847 0.933 0.913 0.973 0.947

FDR 0.040 0.042 0.041 0.044 0.043 0.044 0.044 0.045
True Power 0.906 0.847 0.927 0.850 0.937 0.917 0.973 0.947

FDR 0.101 0.102 0.060 0.060 0.065 0.067 0.047 0.047
edgeR Power 0.798 0.741 0.880 0.820 0.867 0.806 0.917 0.864

FDR 0.018 0.018 0.033 0.032 0.029 0.029 0.036 0.036
DESeq2 Power 0.796 0.726 0.879 0.812 0.865 0.795 0.916 0.860
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Table S.2: Comparison of empirical FDRs and powers for testing DE genes with relative mean shift by the
proposed method with different bases, edgeR, and DESeq2 for Setting B. In simulations, µ1 = 4, T, r and
σ2
1 are displayed in the table. The nominal FDR level is 0.05. The simulation is based on 100 replications.

(T , r, σ2
1)

(6, 3, 1) (6, 3, 2) (6, 6, 1) (6, 6, 2) (10, 3, 1) (10, 3, 2) (10, 6, 1) (10, 6, 2)

FDR 0.068 0.069 0.018 0.050 0.047 0.053 0.006 0.050
GA2 Power 0.997 0.987 1.000 0.993 1.000 0.993 1.000 0.993

FDR 0.083 0.080 0.053 0.056 0.064 0.062 0.010 0.048
GA3 Power 0.997 0.987 1.000 0.993 1.000 0.993 1.000 0.993

FDR 0.055 0.059 0.027 0.054 0.047 0.061 0.034 0.060
FO2 Power 0.997 0.987 1.000 0.993 1.000 0.993 1.000 0.993

FDR 0.078 0.078 0.052 0.056 0.054 0.061 0.013 0.057
FO3 Power 0.997 0.987 1.000 0.993 1.000 0.993 1.000 0.993

FDR 0.063 0.060 0.018 0.048 0.038 0.053 0.013 0.047
PL2 Power 0.997 0.987 1.000 0.993 1.000 0.993 1.000 0.993

FDR 0.071 0.066 0.052 0.050 0.059 0.059 0.015 0.050
Oracle Power 0.997 0.987 1.000 0.993 1.000 0.993 1.000 0.993

FDR 0.019 0.043 0.007 0.049 0.010 0.049 0.005 0.043
True Power 0.997 0.987 1.000 0.993 1.000 0.993 1.000 0.993

FDR 0.094 0.095 0.058 0.058 0.065 0.065 0.048 0.048
edgeR Power 0.996 0.976 0.999 0.988 0.999 0.986 0.999 0.992

FDR 0.017 0.017 0.032 0.032 0.030 0.030 0.036 0.036
DESeq2 Power 0.996 0.974 0.999 0.987 0.999 0.986 0.999 0.992
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Figure S.3: Empirical FDRs and powers for testing the overall temporal DE genes by our method using
GA3 basis (∆), compared to those of the oracle and true test (◦ and ⋄), edgeR (•), maSigPro-GLM(�),
splineTC (∇), ImpulseDE2 (⊠), and DESeq2 (×). The blue dot lines (· · · · · · ) denote results for other
bases described in Section 5 in the main paper. Each point displays the empirical FDR and power of the
corresponding method at a given nominal FDR level (the vertical gray dashed lines). Results are for T = 10,
µ1 = 2 and based on 100 replications.
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Figure S.4: Empirical FDRs and powers for testing the overall temporal DE genes by our method using
GA3 basis (∆), compared to those of the oracle and true test (◦ and ⋄), edgeR (•), maSigPro-GLM(�),
splineTC (∇), ImpulseDE2 (⊠), and DESeq2 (×). The blue dot lines (· · · · · · ) denote results for other
bases described in Section 5 in the main paper. Each point displays the empirical FDR and power of the
corresponding method at a given nominal FDR level (the vertical gray dashed lines). Results are for T = 10,
µ1 = 4 and based on 100 replications.
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Figure S.5: Empirical FDRs and powers for testing the overall temporal DE genes by our method using
GA3 basis (∆), compared to those of the oracle and true test (◦ and ⋄), edgeR (•), maSigPro-GLM(�),
splineTC (∇), ImpulseDE2 (⊠), and DESeq2 (×). The blue dot lines (· · · · · · ) denote results for other
bases described in Section 5 in the main paper. Each point displays the empirical FDR and power of the
corresponding method at a given nominal FDR level (the vertical gray dashed lines). Results are for T = 6,
µ1 = 2 and based on 100 replications.
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Figure S.6: Empirical FDRs and powers for testing the overall temporal DE genes by our method using
GA3 basis (∆), compared to those of the oracle and true test (◦ and ⋄), edgeR (•), maSigPro-GLM(�),
splineTC (∇), ImpulseDE2 (⊠), and DESeq2 (×). The blue dot lines (· · · · · · ) denote results for other
bases described in Section 5 in the main paper. Each point displays the empirical FDR and power of the
corresponding method at a given nominal FDR level (the vertical gray dashed lines). Results are for T = 6,
µ1 = 4 and based on 100 replications.
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Table S.3: Comparison of empirical FDRs and powers for testing NPDE genes by the proposed method
with different bases, edgeR, and DESeq2 for Setting B. In simulations, µ1 = 2, T, r and σ2

1 are displayed
in the table. The nominal FDR level is 0.05. The simulation is based on 100 replications.

(T , r, σ2
1)

(6, 3, 1) (6, 3, 2) (6, 6, 1) (6, 6, 2) (10, 3, 1) (10, 3, 2) (10, 6, 1) (10, 6, 2)

FDR 0.031 0.035 0.038 0.038 0.036 0.037 0.049 0.054
GA2 Power 0.067 0.083 0.217 0.260 0.110 0.107 0.407 0.403

FDR 0.046 0.031 0.030 0.031 0.026 0.027 0.038 0.038
GA3 Power 0.083 0.077 0.200 0.223 0.090 0.090 0.350 0.323

FDR 0.045 0.059 0.056 0.062 0.037 0.060 0.058 0.063
FO2 Power 0.070 0.087 0.207 0.233 0.100 0.063 0.327 0.297

FDR 0.038 0.049 0.035 0.043 0.026 0.042 0.049 0.049
FO3 Power 0.060 0.083 0.183 0.213 0.083 0.063 0.313 0.297

FDR 0.029 0.041 0.035 0.035 0.037 0.034 0.047 0.050
PL2 Power 0.067 0.080 0.207 0.257 0.107 0.103 0.403 0.373

FDR 0.023 0.034 0.028 0.028 0.026 0.027 0.035 0.035
Oracle Power 0.063 0.087 0.183 0.220 0.083 0.083 0.357 0.330

FDR 0.037 0.034 0.037 0.037 0.032 0.033 0.041 0.042
True Power 0.100 0.100 0.203 0.247 0.113 0.113 0.373 0.360

FDR 0.108 0.133 0.061 0.061 0.053 0.053 0.043 0.046
edgeR Power 0.007 0.007 0.077 0.077 0.049 0.046 0.215 0.214

FDR 0.005 0.053 0.041 0.037 0.030 0.022 0.031 0.035
DESeq2 Power 0.005 0.005 0.074 0.071 0.047 0.044 0.206 0.203
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Table S.4: Comparison of empirical FDRs and powers for testing NPDE genes by the proposed method
with different bases, edgeR, and DESeq2 for Setting B. In simulations, µ1 = 4, T, r and σ2

1 are displayed
in the table. The nominal FDR level is 0.05. The simulation is based on 100 replications.

(T , r, σ2
1)

(6, 3, 1) (6, 3, 2) (6, 6, 1) (6, 6, 2) (10, 3, 1) (10, 3, 2) (10, 6, 1) (10, 6, 2)

FDR 0.036 0.034 0.038 0.037 0.038 0.032 0.048 0.050
GA2 Power 0.077 0.073 0.287 0.260 0.177 0.090 0.377 0.400

FDR 0.024 0.022 0.028 0.029 0.026 0.022 0.037 0.037
GA3 Power 0.073 0.077 0.253 0.227 0.160 0.077 0.320 0.337

FDR 0.059 0.058 0.065 0.063 0.061 0.063 0.061 0.062
FO2 Power 0.097 0.093 0.243 0.243 0.143 0.070 0.303 0.307

FDR 0.037 0.038 0.047 0.043 0.047 0.045 0.051 0.048
FO3 Power 0.080 0.073 0.233 0.220 0.137 0.077 0.307 0.303

FDR 0.031 0.031 0.036 0.034 0.038 0.031 0.048 0.048
PL2 Power 0.087 0.073 0.277 0.247 0.167 0.107 0.357 0.397

FDR 0.024 0.023 0.027 0.027 0.022 0.022 0.036 0.035
Oracle Power 0.080 0.063 0.250 0.220 0.147 0.077 0.333 0.333

FDR 0.030 0.038 0.038 0.036 0.032 0.032 0.043 0.040
True Power 0.087 0.083 0.277 0.230 0.180 0.113 0.373 0.363

FDR 0.107 0.111 0.058 0.058 0.060 0.054 0.043 0.045
edgeR Power 0.009 0.008 0.087 0.085 0.053 0.050 0.219 0.220

FDR 0.018 0.019 0.036 0.037 0.027 0.033 0.032 0.037
DESeq2 Power 0.007 0.007 0.081 0.080 0.053 0.050 0.211 0.211
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B.3.3 Additional Results on Different DE Proportions and Dispersion Esti-

mators in Our Method

In this section, we report additional simulations to investigate the effects of the proportion of

temporally DE genes and the dispersion estimation on the performance of the proposed method.

We focus on testing the overall temporal DE genes, which is the alternative to ∆DE
0 in Section

3.2 in the main paper. We consider two settings for the proportions and compositions of different

types of DE genes based on our proposed model in (5) and (6) in the main paper. Specifically,

the proportions for the four components in our model, null genes, NPDE genes with only time-

by-treatment interaction, PDE genes, and NPDE genes with both treatment and time-by-treatment

effects are set as:

• setting (I): the proportion of null genes are 0.85, 0.75, 0.65, and 0.55; and the proportions for

DE genes in three components are (0.075, 0.04, 0.035), (0.20, 0.04, 0.01), (0.125, 0.04, 0.185),

and (0.150, 0.04, 0.26);

• setting (II): the proportion of null genes are 0.85, 0.75, 0.65, and 0.55; and the proportions

for DE genes in three components are (0.10, 0.04, 0.01), (0.20, 0.04, 0.01), (0.30, 0.04, 0.01),

and (0.40, 0.04, 0.01).

For both settings, the proportions of all DE genes are 0.15, 0.25, 0.35 and 0.45 but with different

compositions. For setting (II), the only type of DE genes with changing proportions are from the

2nd component in our model, which are the NPDE genes with only time-by-treatment interaction.

For setting (I), in addition to the 2nd component, DE genes from the 4th component in our model,

which are the NPDE genes with both treatment and time-by-treatment effects, also have changing

proportions. We consider edgeR, splineTC, ImpulseDE2, and DESeq2 for comparison.

Also, we employ three different dispersion estimates for our methods (with GA3 for model fitting

as in Section 4 in the main paper), empirical dispersion φ̂g in (B.4), common dispersion estimate

G−1
∑G

g=1 φ̂g used for all genes, and dispersion estimated by DESeq2. In simulations, we generate
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G = 1, 000 genes using basis function PL2 with σ2
1 = 1, T = 6, and µ1 = 2. All results are based

on 100 repetitions.
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●●●
●

0.01

0.03

0.05

0.07

0.15 0.25 0.35 0.45

Proportion of DE

FD
R

(e) r = 6, proportion setting (II).
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(f) r = 6, proportion setting (II).

Figure S.7: Empirical FDRs and powers for testing the overall temporal DE genes with different propor-
tion settings of DE genes. Displayed methods include edgeR (⊠), splineTC (∇), ImpulseDE2 (⋄),
DESeq2 (×), and our methods using empirical dispersion (∆), common dispersion (◦), and dispersion
estimated by DESeq2 (+).

142



Overall, the empirical FDRs for most methods are satisfactorily controlled with respect to the

nominal 0.05 level under both settings. When both the proportion of DE genes and the number

of replicates r are small, edgeR and our method with empirical dispersion estimator in (B.4)

have empirical FDRs slightly inflated. However, when the number of replicates r increases, the

empirical FDRs improve for edgeR and our method with empirical dispersion estimator. In addi-

tion, even for small number of replicates, the empirical FDRs for these two methods substantially

improve as the proportion of DE genes increases. For both settings, the empirical FDRs of the pro-

posed method with either common dispersion estimator or the dispersion estimated by DESeq2

are relatively robust against the proportion of DE genes under both settings for larger number of

replicates, say r = 6.

In terms of the empirical power, the proposed method with different dispersion estimators per-

form similarly under both settings, and all outperform other methods for different DE proportions.

The proposed method with dispersion estimated from DESeq2 is slightly conservative than the

other two, which reflects the shrinkage effect of DESeq2 on estimating dispersion. When the

number of replicates r is small, the advantage of our method is more substantial in comparison to

competing methods. For low DE proportions, all methods may encounter challenges while ours

still provides substantially better powers than others. For example, in panel (f) in Figure S.7, the

proposed method with different dispersion estimators still have empirical powers about 15% bet-

ter than those of DESeq2, splineTC, and edgeR when the DE proportion is only 0.15. For

other methods, ImpulseDE2 is usually less powerful than others, which can be explained by its

specific yet relatively stringent parametric model on the mean dynamics; splineTC performs

slightly better than edgeR and DESeq2 when the DE proportion is low and r is small.

Furthermore, Figure S.7 also suggests that the dispersion estimate of DESeq2 is the key to

its own performance. In fact, many studies show that estimation of the dispersion parameter in

the small RNA-seq experiments may affect the empirical FDR, which is one of the motivations

to borrow information across genes. In terms of borrowing information to estimate dispersion

parameters, it is known [50, 66] that the weighted likelihood approach in edgeR performs better
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than the local regression approach used in DESeq2. By inspecting simulation results of edgeR

and DESeq2 in Figures 1–2 and Tables 1–2 in the main paper as well as Figures S.1–S.6 and Tables

S.1–S.4, we observe that the empirical FDR of edgeR is closer to the nominal level than that of

DESeq2. In summary, the dispersion estimate affects DESeq2’s performance on DE analysis of

time-course RNA-seq data.

Finally, comparing to existing methods in the simulation study, DESeq2 usually has conser-

vative empirical FDRs while its empirical power is somewhat comparable to other methods from

literature. A possible explanation is that the time-course RNA-seq experiment is relatively large

compared to the traditional RNA-seq experiment. That is, the sample size (or the number of li-

braries) is usually rT rather than r for estimating the dispersion parameters. Therefore, in practice,

DESeq2 is still a reasonable method to be considered for DE analysis on time-course RNA-seq

data.

B.3.4 More Results on Testing Composite Hypotheses

The null space ∆0 in (1) in the main paper can be flexibly defined for different composite

hypotheses, which are used to model biological questions of particular interest. Besides those

specified in (7) in the main paper, we can also set, for example, ∆0 = {ηg1 ∈ (−∞, 0]} to test

whether the mean gene expressions over time in the second group is higher than that in the first. We

can also set ∆0 = {|ηg1| : |ηg1| ≤ d} with d = log 2 to detect genes with mean log fold-changes of

expressions, over time, greater than 2. The proposed framework can accommodate to arbitrary ∆0

as a subset of R2q+1 while most existing methods for analyzing time-course RNA-seq data only

allow the simple hypothesis. This is an important advantage of our method.

To demonstrate this, we consider a simulation study to detect NPDE genes with significant

mean shift, which simply corresponds to identifying genes from the fourth component of the pro-

posed model. That is, we set the null hypothesis as ∆0 = {ηg1 = 0} ∪ {ηg2 = 0}, which

is a composite null. In order to detect these genes using edgeR or DESeq2, we must employ

a two-step approach. Using edgeR or DESeq2, we first test the treatment effect and then the
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Table S.5: Comparisons of the empirical FDRs and powers for testing NPDE with significant mean shift
(model is fitted using basis function GA3) along those of DESeq2 and edgeR. The nominal FDR level is
0.05. The simulation is based on 100 replications.

Our method fitting
DESeq2 edgeR

with GA3

FDR 0.083 0.455 0.000
Power 0.280 0.080 0.040

time-by-treatment effect. Genes that are significant for both hypotheses will be considered as

the desired DE genes. In this simulation, we generate G = 1, 000 genes from model (5) in the

main paper with basis function PL2, proportions of four components are 0.75, 0.15, 0.05, and 0.05,

T = 6, r = 3, σ2
1 = 0.5, and µ1 = 8. That is, 5% of the total genes are of interest. For our

method, we use 300 Monte-Carlo nodes to evaluate likelihood functions. Results are displayed

in Table S.5. While our method controls the empirical FDR and provides reasonable power for

this challenging problem, both DESeq2 and edgeR have compromised powers and DESeq2 has

inflated empirical FDR. In fact, DESeq2 falsely treats genes with large treatment effect without

time-by-treatment effect as the target genes, which leads to many false detection.

B.3.5 Computational Complexity

In this section, we conduct small simulations to demonstrate the computational cost of the pro-

posed method with others along their performance in terms of empirical FDR and power. First,

we consider Setting A (PL2) from the simulation study in the main paper with G = 1, 000 genes

generated by model in (5) and (6), where µ1 = 2, σ2
1 = 1, r = 3, T = 6, and the proportion of four

components in (6) are 0.65, 0.125, 0.04 and 0.01 (that is, the proportion of temporal DE genes is

0.35). For implementation, the number of the quasi-Monte Carlo nodes used in numerical integra-

tion is 300. The nominal level of FDR is 0.05 and results are based on 100 replications. Results

for testing overall temporal DE genes are displayed in Table S.6. We can see that, as expected, our

method is more demanding in computation than others but it is also the most powerful.
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Table S.6: A simulation study on computational costs of different methods for analyzing time-course RNA-
seq data along their performances. (Time in seconds.)

Ours DESeq2 ImpulseDE2 splineTC edgeR maSigPro-GLM

FDR 0.032 0.011 0.014 0.022 0.055 0.054
Power 0.608 0.515 0.453 0.512 0.514 0.527

Time 790 < 10 590 < 1 1.1 7.40

The quasi-Monte Carlo integration with shrinking number of nodes from Algorithm 1 in Sec-

tion B.2 is used for the evaluation of likelihood. To further demonstrate the computational intensity,

we conduct another small simulation to study the influence of the numbers of Monte-Carlo nodes

and observed time points on the computational cost (measured in seconds). For results displayed

in Table S.7, we still consider Setting A (PL2) from the simulation study in the main paper with

G = 1, 000 genes generated by model in (5) and (6), where µ1 = 4, σ2
1 = 1, r = 3, and the

proportion of four components in (6) are 0.75, 0.2, 0.04 and 0.01 (that is, the proportion of tempo-

ral DE genes is 0.25). The number of Monte-Carlo nodes varies from 300, 500, 700 to 1000, and

T = 6, 8, 10, 12. We use a linux machine with an Intel Xeon E5-2680 v3 @2.50GHz

CPU and 8GB RAM. As we observed, though the computational demands gradually increase as

the number of nodes or T increasing, the trend is linear rather than exponential. In practice, the

evaluation of the likelihood function at Monte-Carlo nodes can be carried out using parallel com-

puting, which substantially reduce the computation cost.

Table S.7: Computational intensity of the proposed method with respect to the number of Monte-Carlo
nodes N and the number of observed time points T .

T

Time (seconds)

N 6 8 10 12

300 559.10 629.46 656.20 729.91
500 882.29 917.88 954.24 1033.96
700 1169.09 1160.34 1261.33 1434.98

1000 1535.34 1593.35 1750.32 1915.68
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B.4 Additional Results for Real Data Analysis

B.4.1 Preprocessing the P.t. Data

As suggested by [3], we first filter out genes with overall low expression or low variation across

libraries. If a gene does not display much variation across time for both groups, it possesses very

limited temporal patterns and might be analyzed using traditional RNA-seq analysis methods. For

this analysis, we focus on those genes with temporal dynamics. After filtering, 10, 597 genes

remain for further analysis. For computational stability, we map the time domain from (0, 24)

hours to (0, 1). Normalization factors Sij’s are pre-computed using the standard TMM method

[50]. In addition, to facilitate the proposed method, we assume that there is an overall mean

trend across all genes for both groups to be adjusted. For example, for the high light group it

assumes that λg1j(t) = S1j exp{B(t)γ2} exp{B(t)ηg2}, where γ2 is adjusted by fitting all data

from the high light group to the traditional negative-binomial generalized linear model and setting

γ̂2 =
∑G

g=1 η̂
NBglm
2g and S1j exp{B(t)γ̂2} will be treated as the normalization factors. Similar

pre-processing is applied to the low light group.

B.4.2 Test Results for the P.t. Data

In Figure S.8, top 10 genes identified by the proposed method with only significant relative

mean shift are displayed.

B.4.3 Gene Set Analysis for the P.t. Data

Gene set enrichment analysis is a powerful and revealing follow-up step for RNA-seq analysis

[1, 160] and it has been successfully employed to identify gene sets with longitudinally changing

patterns for time-course RNA-seq data [37]. By scrupulously inspecting predefined gene sets,

we can not only verify statistical discoveries but more importantly also identify critical pathways

responsive to the treatment variations.

For P.t., it is known that the 32-gene set for porphyrin and chlorophyll biosynthesis (PCB), the

52-gene set for oxidative phosphorylation (OP), and the 15-gene set for galactoglycerolipid biosyn-
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Figure S.8: Top 10 genes identified by the proposed method with only significant relative mean shift. The
red solid curves represent data from high light group and the blue dot curves represent data from the low
light group. Dots represent the real data points while the bold smooth curves display smooth estimations
using orthogonal polynomials. Captions are the gene tags from [2].

thesis (GB) are predicted photoacclimation relevant pathways. Based on our DE analysis results

above, the enrichment analyses are conducted using R package gsEasy with results displayed in

Table S.8. From Table S.8, PCB and OP are enriched for all alternatives under consideration while

GB is not enriched for the relative mean shift but only NPDE. The traditional heatmap visualization

for genes within GB are displayed in Figure S.9, from which we observe that the overall dynamics

indeed alter more than the simple level shift when the light environment changes. Visualizations

for PCB and OP are included in the Web Appendix.

Anatomically, the plastid of a diatom is the subcellular organelle where photosynthesis takes

place. Galactolipids are categorized as those containing galactose as the polar head groups. They

are integral components of the membranes of plastids and are not found in significant amounts in

other membranes [161]. Photoacclimation to low light leads to a large increase in plastid volume,

and is hypothesized to house increases in the light harvesting apparatus to capture more light [68].

Our finding on the enrichment of GB, particularly the NPDE, provides statistical evidence on
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Table S.8: Results of the gene set enrichment analysis for the three photoacclimation relevant gene sets.
The p-values are derived based on the results of DE analysis using our proposed method and the functional
enrichment analysis proposed by [1]. Enrichment of a gene set for certain hypothesis is significant when the
p-value is less than 0.05.

Pathway
Overall Relative mean NPDE

temporal DE shift ∆Mean
0 ∆NPDE

0

Porphyrin and Chlorophyll Biosynthesis 0.002 < 1.0e-5 0.002

Oxidative Phosphorylation < 1.0e-5 < 1.0e-5 < 1.0e-5

Galactoglycerolipid Biosynthesis 0.040 0.095 0.024

the importance of this predicted biosynthesis pathway of galactolipids [162] and reveals how the

dynamics of the whole pathway vary between different light conditions. These results show that

our proposed method does provide important insights into transcriptional changes that result in

major alterations to an organism’s biochemistry.

Visualizations of the results on the gene set enrichment analysis for gene sets PCB and OP are

displayed in Figures S.10 and S.11.

B.4.4 Results on Fission Yeast Data Analysis in Introduction

Figure S.12 provides a Venn Diagram to summarize the number of overall temporal DE genes

from the fission yeast data [3] detected by our method, DESeq2, and the LRT procedure described

in Section 1 in the main paper. As discussed in the main paper, the proposed method detects the

most temporal DE genes, or equivalently, the estimated FDR for the proposed test is the smallest

if we declared the same number of significant genes for the three methods in this small illustrative

example. Detecting the most DE genes suggests the outstanding power of a test if the FDR control

is guaranteed, however follow-up experiments and downstream analysis are needed to confirm the

detected genes and will help the evaluation of the method. For example, the gene set enrichment

analysis we conduct for the P.t. data study reported in Section 5 in the main paper and Section

B.4.3 in this Web Appendix.
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Figure S.9: Visualization of genes within the set Galactoglycerolipid Biosynthesis (GB). No color (blank)
encodes for time points that no data are collected for the high light group. GB is enriched for NPDE but not
the relative mean shift.

All genes detected by LRT are detected by either our method or DESeq2. Though our proposed

method and DESeq2 detect many common DE genes, there are some discrepancies. This can be

explained by the implicit smoothness assumption on the mean dynamics pattern in our method:

our method is more powerful when the mean pattern across time of a gene can be modeled by a

smooth function. Alternatively, we can replace the smooth basis functions in (5) in the main paper

by step functions I(t = tij) to handle this situation at the cost of more parameters to be further

modeled in (6).
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Figure S.10: Visualization of genes within the set Oxidative Phosphorylation (OP). No color (blank) en-
codes for time points that no data are collected for the high light group. OP is enriched for both the relative
mean shift and NPDE.
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Figure S.11: Visualization of genes within the set Porphyrin and Chlorophyll Biosynthesis (PCB). No color
(blank) encodes for time points that no data are collected for the high light group. PCB is enriched for both
the relative mean shift and NPDE.
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Figure S.12: Number of overall temporal DE genes identified by the proposed method, DESeq2, and LRT
method for the fission yeast data from [3].
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Appendix C

Supplemental materials for Chapter 4

C.0.1 Weighted Least Square

We rewrite each component of Yjg to a distribution in exponential family ( [163]), taking the

form

ℓ = {yjg ,ijkθjg ,ijk − b(θjg ,ijk)}/a(rjg) + c(yjg ,ijk, rjg).

In our case, given a(rjg) = 1, θjg ,ijk = log
(

mjg,ijk

rjg+mjg,ijk

)
, b(θjg ,ijk) = rjg log(rjg) − rjg log(1 −

exp(θjg ,ijk)), with rjg as known constant. We will have, by definition,

∂b(θjg ,ijk)

∂θjg ,ijk

= mjg ,ijk

and
∂2b(θjg ,ijk)

∂θ2
jg ,ijk

=
rjg exp(θjg ,ijk)

(1− exp(θjg ,ijk))
2
= Vjg ,ijk

∂ℓ

∂βjg ,ijk

=
(yjg ,ijk −mjg ,ijk)

a(rjg)

1

Vjg ,ijk

dηjg ,ijk

dmjg ,ijk

xjg ,ijk.

The maximum likelihood equation for βjg ,ijk are given by

∑

jg

∑

k

(yjg ,ijk −mjg ,ijk)

a(rjg)

1

Vjg ,ijk

dmjg ,ijk

dηjg ,ijk

xjg ,ijk = 0,

which is the same as

∑

jg

∑

k

Wjg ,ijk(yjg ,ijk −mjg ,ijk)

a(rjg)

dηjg ,ijk

dmjg ,ijk

xjg ,ijk = 0,

where
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Wjg ,ijk = V −1
jg ,ijk

(
dmjg ,ijk

dηjg ,ijk

)2

=
rjgmjg ,ijk

rjg +mjg ,ijk

,

ηjg ,ijk = xT
jg ,ijk

βjg ,ijk.

C.0.2 Real Data Analysis

In Table S.1, DE sRNAs identified by the proposed method that may be misannotated are

displayed.

Table S.1: sRNAs that may be misannotated.

Experiment Feature Class

wt-vs-prg-1

21ur-8412 piRNA
21ur-15576 piRNA
21ur-15116 piRNA
21ur-10492 piRNA

miR-78 miRNA
miR-42-5p miRNA
miR-4936 miRNA
miR-54-5p miRNA

miR-797-3p miRNA
miR-785 miRNA

miR-73-5p miRNA
miR-74-5p miRNA

miR-5549-3p miRNA
miR-85-3p miRNA

miR-2214-5p miRNA
miR-41-5p miRNA

wt-vs-mut16

miR-260 miRNA
miR-2210-3p miRNA
miR-4816-5p miRNA

miR-785 miRNA

Figure S.1 displays the comparisons of the proposed method with edgeR.
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Figure S.1: differential expression analysis results comparing the proposed method with edgeR.

156



Appendix D

Supplemental materials for Chapter 5

D.1 Log-likelihood, score vector and Fisher information ma-

trix

The log-likelihood of the observations {ri}ni=1 is given by

ℓ (β; {ri}ni=1) =
n∑

i=1

ln P [Ri = ri]

=
n∑

i=1

ln {P [Ri = ri | Bi = ri] P [Bi = ri] + P [Ri = ri | Bi = m+ 1] b(m+ 1)}

=
n∑

i=1

ln {b(ri) + πi(ri | β)b(m+ 1)} (D.1)

where πi(ri | β) is the Poisson probability mass function with mean µi = zi exp(xi
′β). Let

g(ri) = b(ri) + πi(ri | β)b(m+ 1). Then the jth component of the score vector is

∂ℓ

∂βj

=
n∑

i=1

∂

∂βj

ln{g(ri)} =
n∑

i=1

1

g(ri)
xijb(m+ 1)

(−e−µiµri+1
i

ri!
+

riµ
ri
i e

−µi

ri!

)

=
n∑

i=1

fj(ri)

for j = 1, 2, . . . , p.

The Fisher information matrix is defined as I(β) = −E (∂2ℓ/∂βj∂βk) for j, k = 1, 2, . . . , p.

Now

∂2ℓ

∂βj∂βk

=
n∑

i=1

∂

∂βk

fj(ri)

=
n∑

i=1

[
{−fj(ri)fk(ri)}+

xijxikb(m+ 1)

g(ri)ri!
×

{
e−µiµri+2

i − (ri + 1)e−µiµri+1
i + r2i µ

ri
i e

−µi − e−µiriµ
ri+1
i

}]
,
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so,

E

(
∂2ℓ

∂βj∂βk

)
=

n∑

i=1

[
xikxij

{
−b(m+ 1)µi + b(m+ 1)

m∑

r=0

π(r)b(r)

g(r)
(r − µi)

2

}]
.

Two special cases of the information matrix are of interest. If b(m+1) = 0, then no responses are

true, and the data contain no information about the model parameters: E (∂2ℓ/∂βj∂βk) = 0 for all

j and k. If b(0) = b(1) = · · · = b(m) = 0, then all responses are true, and the information matrix

is that of ordinary Poisson regression.

D.2 Code

The simulation and empirical results of this paper were obtained using our R package QRRT.

The R language and environment for statistical computing [164] is freely available and runs on

many computing platforms (UNIX, Windows, MacOS). From within R, the QRRT package is

downloadable via GitHub (install the package devtools first, if necessary) using the follow-

ing commands:

library(devtools)

install_github("meca7653/QRRT")

library(QRRT)

The following reproducible example is included with the code and accessed with help(QRRT).

The example uses one simulated realization from the true, additive model

lnλi = β0 + β1xi1 + β2xi2 + β31{xi3=B} + β41{xi3=C} + β5xi1xi2, (D.2)

as described in the simulation section. It fits those simulated data using the larger-than-necessary

interaction model

β0 + β1xi1 + β2xi2 + β31{xi3=B} + β41{xi3=C} + β5xi1xi2

+ β6x1i1{xi3=B} + β7x1i1{xi3=C} + β8x2i1{xi3=B} + β9x2i1{xi3=C},

(D.3)
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via the following specification:

fit_2way <-

QRRT(

Formula = Ri ~ (x1 + x2 + as.factor(x3)) ^ 2,

Data = Sim_Data,

Disperse = 1,

beta = NULL,

n_times = 10,

offset = NULL,

b_distribution = c(6, 7, 4, 2, 2, 1, 1, 1, 1, 25) / 50

)

Here, the Formula uses standard R syntax to specify the model with all two-way interactions;

similarly,

fit_truemodel <-

QRRT(

Formula = Ri ~ (x1 + x2) ^ 2 + as.factor(x3),

Data = Sim_Data,

Disperse = 1,

beta = NULL,

n_times = 10,

offset = NULL,

b_distribution = c(6, 7, 4, 2, 2, 1, 1, 1, 1, 25) / 50

)

would specify the true model (D.2). Other examples, including the use of an offset, accompany the

code.
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Next, Data specifies a data frame Sim_Data consisting of the three covariates {x1i}, {x2i},

{x3i} and the observed responses {ri}. Because the starting value is specified as beta = NULL,

the code selects n_times = 10 different random starts for the β coefficients, using independent

normal random variables with mean zero and standard deviation Disperse = 1. The offset

is not used in this example, but takes its default null value (a vector of zeroes on the logarithmic

scale) The b_distribution argument specifies the b(r) distribution from

(b(0), b(1), . . . , b(8), b(9)) =
1

50
(6, 7, 4, 2, 2, 1, 1, 1, 1, 25). (D.4)

The code then runs the EM algorithm to convergence from each random start, finally returning the

fitted model with highest likelihood:

Estimate Std.Error t-statistic Pr(>|t|)

(Intercept) 1.397 0.152 9.205 3.41e-20

x1 1.047 0.145 7.223 5.08e-13

x2 -0.557 0.073 -7.663 1.82e-14

as.factor(x3)B 0.644 0.183 3.528 4.18e-04

as.factor(x3)C 0.504 0.183 2.751 0.006

x1:x2 0.203 0.062 3.279 0.001

x1:as.factor(x3)B -0.164 0.173 -0.948 0.343

x1:as.factor(x3)C -0.122 0.175 -0.698 0.485

x2:as.factor(x3)B 0.058 0.051 1.126 0.260

x2:as.factor(x3)C 0.039 0.052 0.757 0.449

The Estimate column of the above output shows point estimates of the true regression coeffi-

cients

(β0, . . . , β5, β6, . . . , β9) = (1.5, 1.0,−0.5, 0.4, 0.3, 0.2, 0, 0, 0, 0),

with excellent agreement relative to the asymptotic standard errors (Std.Error). That is, the

fitted model correctly identifies the non-zero coefficients (β0, . . . , β5), with large t-statistic
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(estimate over standard error) and small p-values (Pr(>|t|)) and gives point estimates consistent

with the true values. It also correctly identifies the zero coefficients, (β6, . . . , β9), with small t-

statistics and large p-values.

To test the hypothesis that model (D.2) fits as well as model (D.3), we compute the log-

likelihood ratio via

-2 * fit_true$Maximized_Log_Likelihood

+ 2 * fit_2way$Maximized_Log_Likelihood.

The resulting test statistic is 1.82364, with corresponding p-value of 0.7681545, computed via

1 - pchisq(q = 1.82364, df = 4)

from the χ2 distribution with 4 degrees of freedom.

The Monte Carlo experiment of this paper repeats the above simulation, estimation and hy-

pothesis test 1000 times. There is no evidence to reject the null hypothesis that model (D.2) fits as

well as model (D.3).
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