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ABSTRACT 

 

TARGETED COMPUTATIONAL ANALYSIS OF THE C3HEB/FEJ MOUSE MODEL FOR DRUG 

EFFICACY TESTING 

 

 Efforts to develop effective and safe drugs for the treatment of tuberculosis (TB) require 

preclinical evaluation in animal models. Alongside efficacy testing of novel therapies, effects on 

pulmonary pathology and disease progression are monitored by using histopathology images 

from these infected animals. To compare the severity of disease across treatment cohorts, 

pathologists have historically assigned a semi-quantitative histopathology score that may be 

subjective in terms of their training, experience, and personal bias. Manual histopathology, 

therefore, has limitations regarding reproducibility between studies and pathologists, potentially 

masking successful treatments. This report describes a pathologist-assistive software tool that 

reduces these user limitations while providing a rapid, quantitative scoring system for digital 

histopathology image analysis. The software, called ‘Lesion Image Recognition and Analysis’ 

(LIRA), employs convolutional neural networks to classify seven different pathology features, 

including three different lesion types from pulmonary tissues of the C3HeB/FeJ tuberculosis 

mouse model. LIRA was developed to improve the efficiency of histopathology analysis for mouse 

tuberculosis infection models. The model approach also has broader applications to other 

diseases and tissues. This also includes animals that are undergoing anti-mycobacterial 

treatment and host immune system modulation. A complimentary software package called 

‘Mycobacterial Image Analysis’ (MIA) had also been developed that characterizes the varying 

bacilli characteristics such as density, aggregate/planktonic bacilli size, fluorescent intensity, and 

total counts. This further groups the bacilli characteristic data depending on the seven different 

classifications that are selected by the user. Using this approach allows for an even more targeted 
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analysis approach that can determine how therapy and microenvironments influence the Mtb 

response.  
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CHAPTER 1: LITERATURE REVIEW 

 

1.1 – Background 

  Tuberculosis is the leading cause of death by an infectious organism, with an estimated 

1.3 million deaths in 2017 alone [1]. The World Health Organization (WHO) estimates that 23% 

of the world’s population has latent TB, and 10 million new cases of tuberculosis occurred in 2017 

[1]. The burden of new TB infections and TB-related deaths disproportionally affect individuals in 

low-income countries, reflecting the strong connection between this devastating disease and 

conditions associated with poverty (i.e., poor health care, inadequate nutrition, overcrowded living 

conditions) [2]. The current UN Sustainable Development Goals (SDGs) includes a 90% reduction 

in the absolute number of TB deaths and an 80% reduction in new cases by 2030 compared with 

2015 levels.  Progression towards this goal has been made with a 2% annual decrease of 

incidence but falls short of the 4-5% that is needed per year to reach the 2030 milestone [1], [3], 

[4]. To attain the TB SDGs, significant progress needs to be made in multiple areas including: 1) 

the development of new, more effective drug therapies that can shorten treatment duration, 2) 

improved establishment of more predictive animal models that can guide new regimen 

development, 3) more robust and predictive diagnostics and biomarkers that can help guide 

clinical trials and individualized patient therapy, and 4) more protective vaccines.  

  First-line therapy for uncomplicated TB is lengthy, consisting of two months of isoniazid 

(INH), rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA) and an additional 4 to 7 

months of INH and RIF [5]. The first-line regimen is effective, with a success rate exceeding 95% 

[6].  However, poor treatment compliance, resistance to key first-line drugs, and associated co-

morbidities - such as diabetes, human immunodeficiency virus (HIV) infection, alcoholism, 

smoking, cancer, etc – can have a dramatic impact on treatment success and/or lead to 

development and expansion of drug resistance [7], [8]. An additional issue is the increased 

incidence of resistance to first-line TB therapies.  Specifically, resistance to isoniazid and 
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rifampicin is occurring in about 4.1% of the newly infected individuals and in 19% of patients who 

have been previously treated for the disease [9]. Second-line therapy for MDR-TB patients 

involves longer treatment durations appreciably and is associated with increased risk of 

treatment-associated adverse events (i.e., side effects), and significantly higher treatment cost.  

Current second-line therapies may include combinations of newer FDA-approved drugs such as 

bedaquiline (BDQ), nitroimidazoles, including pretomanid and delamanid, or older drugs including 

oxazolidinones such as linezolid, fluoroquinolones, ethionamide, or injectable aminoglycosides 

such as kanamycin, amikacin, or capreomycin.  

Further complicating the challenge of successful treatment of drug-resistant TB is the 

recent emergence of extensively drug-resistant TB (XDR TB) - which is resistant to INH, RIF, any 

fluoroquinolone and at least one injectable second-line drug  and totally drug-resistant TB - which 

shows an even wider array of drug resistance phenotypes. The rise of antibiotic resistance 

underscores the urgent need for the development of new and more effective TB drug regimens, 

which has been the strategic goal for all current TB drug development efforts. Progress towards 

this goal has been made with the approval of three new FDA approved drugs for the treatment of 

TB [10]. These include bedaquiline (brand name Sirturo), a diarylquinoline antibiotic that blocks 

the ability of Mtb to make adenosine 5’-triphosphate and two nitroimidazoles, pretomanid and 

delamanid, both prodrugs, which are thought to exert bactericidal effect by inhibiting bacterial cell 

wall mycolic acid biosynthesis, among other possible targets [11]. All three drugs were approved 

for the treatment of MDR/XDR TB [5], [12]. These recent successes reflect the concerted efforts 

of key stakeholders and funders to entice pharmaceutical companies and their research partners 

back to TB infectious disease research and development. However, the current scheme for TB 

drug development continues to be hampered by a lack of essential tools to predict treatment 

outcomes or identify more effective drug candidates and combinatory drug regimens.   

The causative agent of TB is the bacillus bacterium Mycobacterium tuberculosis (Mtb). 

Typically associated with various disease states of the lungs, Mtb may also spread to other parts 
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of the body, leading to a host of TB-related disease complications, which is the subject of a recent 

review [13] and will not be discussed in detail here. The pathogenesis of pulmonary TB disease 

has been studied for decades, and the key steps and processes are now well described (see 

section 1.2, below; [14], [15]). One distinct feature of human TB patients with active pulmonary 

disease is the appearance of a variety of different pulmonary lesion types (TB-associated 

pathology), whose appearance can have a dramatic impact on treatment effectiveness, disease 

outcome, and the development and expansion of drug-resistance. Georges Canetti first reported 

on the different pathologic states in human TB patients that ultimately succumbed to disease [16]. 

From these early studies to more recent work using modern tools and methodologies, it is now 

abundantly clear, although the exact details are often disputed, that the presence of diverse lung 

pathology has a profound effect on bacterial phenotype [17]–[19]. The key microenvironmental 

differences cited include varying levels of oxygen, or pH, shifts in nutrient availability and carbon 

sources, impact or lack host immune system responses, and altered bacterial location (i.e., 

intracellular versus extracellular in necrotic caseum). From a drug discovery perspective, 

increased knowledge regarding these varying environmental factors has proven valuable in 

evaluating potential TB therapeutics under similar in vitro/ex vivo conditions.  However, 

conventional in vitro assays such as minimum inhibitory concentration (MIC) assay and minimum 

bactericidal concentration (MBC) assay, which is most commonly used in drug discovery of new 

chemical entities [20], fail to recapitulate the pathological and environmental complexity found 

within an infected host or model host in vivo. Additionally, even when new therapeutics are 

discovered, drug efficacy and drug-partitioning are often seen to vary due to lesion-specific 

environmental heterogeneity found in humans and more advanced TB animal efficacy models 

presenting with complex-TB-associated lung pathologies [21]. For example, BDQ distributes 

slowly, and to a lesser extent, into caseum of fibrotic, necrotic granulomas found in TB-infected 

C3HeB/FeJ mice compared to non-encapsulated lymphocyte dominated cellular lesions observed 

in TB-infected BALB/c mice  [22]. Pyrazinamide, in contrast, readily distributes into both necrotic 
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and non-necrotic lesions in mice, but its activity against bacilli is markedly reduced, as a result of 

near-neutral pH of the caseum microenvironment [22], [23].  

Animal models are a fundamental part of both vaccine development, testing novel drug 

therapies, and basic disease research. Common animal models employed in TB research include 

non-human primates, Guinea pigs, mice, and rabbits [24]. Although no one model recapitulates 

all aspects of the human TB disease spectrum [18], all such models aim to recapitulate certain 

aspects of the disease in humans. The most advanced animal models seek to replicate, as much 

as possible, the human disease state includes the pathophysiological lesion conditions described 

in humans with active or latent TB lung disease.  

Although animal models may better represent human situation relative to common in vitro 

models, not all animal models present with the entire range of pathology features and disease 

states observed in human TB patients. The inability to recapitulate these important aspects can 

potentially limit the predictive nature of some animal models and, thus, limit the extrapolation of 

data from in vivo animal models to the human situation. Therefore, the choice of the animal model 

employed during the drug discovery process is key, as is understanding potential limitations of 

the output from the use of these models. Additionally, conducting such experiments and analysis 

of the resultant data can be time-consuming and require highly specialized training and tools. As 

an example, a single histopathological image analysis conducted by our laboratory of 132 

samples, or about 660 individual lung lobes, took nearly four weeks to reduce to a quantifiable 

data set by a dedicated technician (not shown).  Such extensive endeavors lead to user fatigue 

and is subject to variability in data analysis and interpretation when extended over multiple days, 

laboratories, or individual researchers. Therefore, one approach to accelerate and improve TB 

drug development is to employ more predictive animal models that better mimic human disease, 

and concomitantly, to develop and employ faster, more robust methods to analyze and correlate 

resultant data produced in preclinical animal efficacy trials.  
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  Image analysis and artificial intelligence (AI) have seen tremendous research growth 

during the last several years. The capabilities of AI in digital medical image analysis hold the 

potential to not only improve the speed by which large, complex datasets can be analyzed, but 

lead to improved accuracy and can facilitate wholly new analyses that were not possible using 

conventional methods. For example, AI was found to match or outperform qualified health care 

professionals in visually diagnosing human breast cancer and certain skin disease states based 

upon digital pathology images [25], [26]. AI strengths include a reduced level of bias, increased 

reproducibility, faster analysis time, and the ability to collect quantifiable data. Conversely, the 

limiting factor of AI in biological research is the small representative data sets employed for initial 

AI training, and an inability to correctly classify uncommon events that were not present in the 

original training set [27], [28]. A proficient and accurate pathology classification pipeline will not 

rely entirely on either traditional methodology or AI alone, but integrate the two approaches to 

reduce the limitations of either approach while retaining their strengths.  

 

1.2- Human Tuberculosis Disease And Diagnosis 

TB infection begins after a susceptible individual inhales aerosolized droplets (5-10 

microns) of Mtb which travel to the alveolar space within the lung. If the host immune system fails 

to eradicate the pathogen, the disease progresses into primary tuberculosis. During this phase, 

distribution of nearly 40% of pulmonary bacilli in either alveolar macrophages or interstitial 

macrophages occurs, with the majority of replication occurring in alveolar macrophages [29], [30]. 

Upon becoming infected, macrophages produce chemokines and cytokines to attract other 

phagocytic cells such as additional alveolar macrophages, monocytes, and neutrophils. If disease 

progression continues, cells will form a caseating granuloma due to lack of oxygen and blood flow 

into the expanding lesion, which is composed of central caseous necrosis surrounded by 

epithelioid macrophages and lymphocytes [31]. If the host is still unable to control the infection, 

enlargement of the tubercle is proceeded by the dissemination of Mtb into the lymph nodes. The 
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expansion of the pulmonary tubercle and the involvement of the lymph node followed by healing 

is called a Gohn’s complex [32]. The Gohn’s complex includes calcified granulomas in the 

pulmonary tissue and hilar lymph nodes [14]. The bacilli continue to proliferate uninterrupted until 

an effective T-cell mediated immune response develops, which typically happens 2 to 6 weeks 

post-infection.  

The period after the initial infection, in which the host is in a state of a persistent immune 

response to stimulation by the bacilli without overt signs of disease, is called a latent TB infection 

(LTBI). Individuals with LTBI are not infectious and are sputum negative [33]. About five to ten 

percent of LTBI individuals with no underlying medical conditions will experience a reactivation of 

the disease in their lifetime [34]. While a small population of reactivation cases has been observed 

where it took decades, recent studies support the idea that median reactivation time is anywhere 

from a few months to two years [35]. 

 The poles of TB are latenet and active TB, however a dynamic process occurs between 

the latent and active stages of the diseases.  Post-primary tuberculosis, which is the period that 

occurs after a latent infection, is normally restricted to the upper lobes of the lungs with no lymph 

node or other organ involvement. 90% of individuals with reactivated tuberculosis will recover 

without therapeutic intervention [14], [15]. In individuals that proceed to active TB, the disease 

may develop a heterogeneity of different lesion types of varying degrees of pathological severity. 

Post-primary TB pulmonary lesions are more representative of caseous pneumonia in comparison 

to the host tubercle response initially seen in primary tuberculosis. The lipid pneumonia stage 

lesions initially form with the accumulation of foamy macrophages in the alveoli with little edema 

and no leukocytes or fibrin present [15], [36].  A distinguishing feature is the obstruction of bronchi 

by infected cells and debris that shows up as a tree-in-bud structure in radiological imaging [37], 

[38]. Mtb organisms are found extensively in the alveolar macrophages [39], and resolution of the 

disease, or healing, happens in 95% of individuals [14], [40]. Lesions that fail to heal will undergo 

necrosis by fibrin losing its fibrillary structure resulting in the consolidation of the entire alveoli 
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structure and restricting cellular flow. These lesions are termed caseous pneumonia and are 

homogenous in their presentation [41]. Regions of caseous pneumonia will eventually soften, 

followed by fragmentation and expulsion of the fragmented lung via coughing. These areas of 

dislodged tissue form a cavity that is followed by massive amounts of bleeding [42]. Eventually, a 

thin wall of fibrosis and necrotic material forms at the cavity site. Resolution of untreated disease 

at the cavitation phase is infrequent, unlike what is seen previously in the lipid and caseous 

pneumonia phase.  During and after the formation of the cavity, bacilli are present in small 

numbers, and it is only after the maturation of the cavity that the numbers of bacteria substantially 

increase.      

 TB diagnosis based on sputum culturing of bacteria and microscopy was originally 

developed by Robert Koch over 130 years ago and is still the existing method of diagnosing TB. 

Sputum culturing is considered the gold standard for the diagnosis of active TB disease but is 

dependent on the skill of the technician. Sputum culture exhibits a high specificity (98%), but has 

poor sensitivity (45-80%), and takes on average 2 to 8 weeks to provide definitive diagnostic 

results [43]. In response to these limitations, imaging techniques such as plain chest radiography 

and  serial positron emission tomography (PET) combined with computed tomography (CT) 

imaging is used in more affluent areas where cost is not as much of a limitation. On radiographs, 

patients with primary TB Ghon complex, adenopathy, and pleural effusion are visible. In patients 

with reactivated TB, focal patchy opacities, cavitation, fibrosis, nodal calcification, and flecks of 

caseous material can be visualized [43]. In patients with severe immune deficiencies, such as 

patients with HIV, this method of diagnosis is not reliable due to the retardation of lesion 

development [44]. PET/CT imaging provides a more holistic approach by including anatomic 

information of the disease. Active TB readily uptakes 2-[18F]fluoro-2-deoxyglucose (18F-FDG) 

PET/CT (F-FDG PET/CT), which is used to detect active granulomas, and monitor the dynamics 

of activity and the extent of the lesions. Because this technique is not TB specific, it is prone to 

false positives. Besides, PET/CT image analysis does not identify closed ‘cold’ lesions, which can 
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contain viable bacteria. Visualization of lesion dynamics with F-FDG PET/CT has shown that 

treatment affects different lesion types disproportionately [45]. Overall, lung involvement stays 

relatively stable, but individual lesions experience dramatic variations in size and FDG avidity 

during and after effective therapy [46]. F-FDG PET/CT, therefore, represents a studied as an 

alternative approach to assessing treatment efficacy [45].  

 In summary, TB is a dynamic disease that presents with multiple different lesion types. 

Disease progression is rarely static, and heterogeneity in pathology is common, often manifesting 

as multiple different lesion types within a given infected individual. Each lesion presents a unique 

microenvironment in which Mtb must survive and often propagates. Newer methodologies seek 

to understand better how and when these disease manifestations occur and their dynamics with 

treatment over time.  

 

1.3- Animal Models Of Tuberculosis 

Robert Koch initially observed that there was a spectrum of tuberculosis disease that can 

occur both in humans and in experimentally infected animals [47]. Such historical observations 

led to the wider practice of using various experimentally infected animals to study TB disease, 

pathogenesis, and the advent of antimicrobial therapy, drug efficacy, and therapeutic safety. 

While no animal model can perfectly replicate a human TB infection, researchers have capitalized 

on key models that can recapitulate specific aspects of human TB disease. Frequently employed 

animal models for TB research have included non-human primates, marmosets, rabbits, Guinea 

pigs, and mice [18], [24], [48].  These models have been employed to explore specific aspects of 

TB infection and disease progression, including immunity to disease, vaccine efficacy trials, 

bacterial pathogenesis, and drug efficacy. There are many challenges in working with animal 

models.  These include the need for specialized ABLS-3 facilities and approval of key oversight 

committees and agencies (e.g., Institutional Animal Care and Use Committee, Office of 

Laboratory Animal Welfare, etc.). Additionally, because of the complex interactions between the 
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host and pathogen, care should be taken to optimize the experiment to gather relevant, clear, and 

translatable data and to treat the animals as humanely as possible. While many animals respond 

to TB infection similarly to humans from physiological, pathological, and therapeutic perspectives, 

there are also significant species‐by‐species differences. Overall, TB animal models have proven 

invaluable in aiding our understanding of TB biology, pathogenesis and immunology [24], [48]. 

Additionally, animal models, especially the laboratory mouse, have proven essential for the 

advancement of TB therapeutic approaches and the development of new drug regimens.  In the 

following sections, I will briefly describe the most commonly used animal models in TB research 

with an emphasis on the C3HeB/FeJ murine animal model, which is the focus of this dissertation.  

 

1.3.1 - Non-Human Primate 

The non-human primate model (NHP) for TB develops a spectrum of pulmonary lesion 

pathology that appears to be the closest disease representation of human disease. Cynomolgus 

macaques (CM) with a low infectious dose develop a heterogeneity of lesions comparable to 

human disease. In particular, the model can develop both active and latent TB, which is of 

particular importance since there is no other suitable in vivo model of LTBI [49]. Each granuloma 

develops from a single bacterium [50] and can be detected 2 to 4 weeks post-infection in both 

pulmonary and lymph node tissue [51], [52]. Initially, the animals develop a smaller and denser 

cellular granuloma that is typical of human tuberculosis. Additionally, they may develop caseating 

granulomas that will eventually see a reduction of epithelioid macrophages, giant cells, and 

lymphocytes, followed by subsequent mineralization [18]. As seen in humans, PET-CT scan 

analysis revealed that these lesions are dynamic during infection. While CM appears to most 

closely model human disease with their development and heterogeneity of lesion types, it is also 

a weakness of the model. NHP models are expensive to purchase, house, and due to the diversity 

of disease presentations, large numbers of animals are needed to obtain relevant statistical 

information, especially for endpoint necropsy studies. The need for large numbers can be 



10 

 

somewhat mitigated by PET-CT technologies, which enables the tracking of lesions of the same 

animal across multiple time points, thus reducing the number of animals needed per study.  

 

1.3.2 - Marmoset 

Marmosets are a commonly used NHP which recapitulates many common aspects of 

human TB disease. After a low-dose aerosol infection, the disease progresses proportionally to 

the virulence of the strain of Mtb used. Common pathological features develop 6 to 8 weeks post-

infection and are composed of cellular, caseating necrotic lesions and Mtb strain-dependent 

cavitation [53]. A pathological difference between marmosets and CM is that marmosets fail to 

develop the calcified lesions seen in human disease. They do offer an advantage over CMs owing 

to their small size, reducing the cost of housing, and the capability of increasing the number of 

animals that can be used in a single study. Another benefit is that marmosets often develop as 

identical twins, which are ideal controls in intervention studies. There is also a wide availability of 

immunological reagents that can be used in contrast to other animal models such as rabbits or 

Guinea pigs.  

 

1.3.3 - Rabbit  

The New Zealand white rabbit TB animal model develops an Mtb strain-dependent 

heterogeneity of pathology presentations reminiscent of the diversity of the human disease. 

Developed pathology includes cellular, caseating, and cavitating lesions, but rabbits do not 

develop the calcified lesion normally associated with healing in human TB patients. Rabbits 

infected with H37Rv generally clear the infection, while animals infected with Erdman develop a 

chronic infection with 53% of the infected animals developing caseous necrotic granulomas [31]. 

When infected with a highly virulent strain of Mtb, such as the clinical Bejing HN878, animals will 

develop granulomas reminiscent of human disease and eventual cavity formation [54]. Mtb 

located in cavitary lesions are associated with phenotypic antibiotic resistance [55]. Resistance in 
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cavitary disease can be somewhat mitigated by treatment with anti-vascular endothelial growth 

factors, which have shown to reduce hypoxia and increase granuloma vasculature with a 

corresponding increase in treatment efficacy [38]. Rabbits are considered excellent models for 

modeling drug penetration, distribution, and cellular accumulation in TB granulomas. Rabbits are 

not more widely used for other aspects of TB biology, vaccine studies, or drug discovery owing to 

the lack of immunological reagents, increase biocontainment requirements due to Mtb shedding 

in their urine, and their overall larger size relative to mice.  

 

1.3.4 - Guinea Pigs 

Guinea pigs are highly susceptible to Mtb infection, and similar to humans exhibit 

pulmonary caseous necrosis, lymphadenopathy, and calcification of resolving lung lesions but 

only infrequently develop lesion cavitation [56]. They are considered the gold standard for vaccine 

efficacy because of the presence of CD1b molecules that responds to glycolipid antigens, also 

present in humans but not in mice [57]. Also, Guinea pigs can be used to replicate latent/dormant 

infection commonly seen in humans or serve as a secondary animal model to measure the 

sterilizing activity of anti-tuberculosis regimens developed using other animal models [58]. Guinea 

pig use is limited due to a requirement to provide daily vitamin C supplements, a limited repertoire 

of immunological reagents, and a higher overall cost relative to that of mice. 

  

1.3.5 - Mouse 

Mice have many practical advantages in comparison to other models such as less space 

requirements, ease of handling, low costs, a wide selection of immunological tools, and diverse 

availability of inbred, outbred, and transgenic strains [59]. C57BL/6 and BALB/c mice have similar 

immune responses as humans after exposure to Mtb but lack the development of lesion 

heterogeneity. They will develop a cellular lesion containing primarily epithelioid macrophages, 

large numbers of lymphocytes, and small amounts of neutrophils. It is uncommon for lesions to 
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develop necrosis, calcification, or cavitation which is considered a limitation in using traditional 

mouse models for TB research. Bacilli reside primarily intracellularly, which is in contrast to other 

animal models and humans that exhibit necrosis where a significant proportion of bacilli reside 

extracellularly.  

While traditional mouse strains do not develop necrosis, several other mouse strains 

present with caseous necrotic pulmonary lesions upon infection with Mtb. These include the 

following mouse strains: CBA/J, I/StSnEgYCit, IL-13tg, and C3HeB/FeJ. The CBA/J mouse strain 

is susceptible to an Mtb infection and has no known immunodeficiency [60]. At approximately 4 

to 6 weeks post aerosol TB infection with Mtb Erdman 50-100 colony forming units (CFU) mice 

will develop caseous necrotic granulomas that may contain fibrosis and bronchiolar intraluminal 

exudate [61]. Only mice that exhibit an outward sign of sickness tend to have necrotic lesions. 

Mortality is relatively low, with most mice surviving 32 to 40 weeks after a high-dose aerosol 

infection.  

Mice from the I/StSnEgYCit (I/St) strain are highly susceptible to an Mtb infection caused 

by the recessive allele Tbc-1s and exhibit disease progression similar to human disease including 

both chronic and reactivated tuberculosis[62], [63]. Lung lesions occur roughly 2 weeks post 

intravenous infection with an infectious dose of 5x105 CFU. It begins with an influx of T 

lymphocytes and neutrophils, and after 3 to 5 weeks post-infection, the formation of necrotic 

granulomas occur rapidly with hypoxic regions [64]. Similar to other murine animal models, there 

are higher levels of bacterial burdens in the lungs relative to the other organs. Mortality in this 

strain is very high, which occurs 3 to 4 weeks after a high-dose infection, but mice generally 

survive 20 to 25 weeks after a low-dose infection.  

The IL-13 -transgenic mouse model overexpresses IL-13 by a transgene containing a 

genomic fragment containing the IL-13 gene and the human CD2 locus control region [65], [66]. 

About 3 weeks post aerosol infection with a low dose of 100CFU Mtb H37Rv small granulomatous 

lesions form, similar to what has been previously observed in BALB/c and C57BL/6 TB-infected 
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mice. At 6 weeks post-infection, organized central necrotic granulomas develop, which by 10 

weeks have matured with a fibrotic capsule with measured levels of hypoxia. At about 14 weeks 

post-infection, mice presenting with these necrotic granulomas begin to be moribund, and by 20 

weeks, most mice have succumbed to the disease [65], [67].  

 

1.3.6 - C3HeB/FeJ Mouse Model 

In contrast to traditional mouse models, the C3HeB/FeJ mouse strain develops a 

heterogeneity of pulmonary lesion types upon an Mtb infection that contains pathology analogous 

to human disease, including caseous necrotic granulomas. The model is often referred to as the 

“Kramnik mouse model” for the pioneering work that Dr. Igor Kramnik did in describing and 

adapting the model to Mtb [68]. C3HeB/FeJ mice are highly susceptible to Mtb infection but have 

no overt immunodeficiencies. Previous work has identified the intracellular pathogen resistance 

1 (IPR1) isoform of the interferon-inducible-75 (Ifi75) gene responsible for this increase in 

susceptibility [69]. Macrophages from IPR1-negative mice will undergo necrosis instead of 

apoptosis even with the major pathways of macrophage responsiveness still intact (such as nitric 

oxide production and gamma interferon upregulation)[70].   
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Figure 1.1. The experiment that demonstrates the survival curve and the window of mortality 
(between arrows) of TB infected C3HeB/FeJ mice (n=85) by aerosol infection.   

 

After a low-dose aerosol infection (of approximately 55 CFU Mtb Erdman per mouse), an 

increase in bacillary load and disease progression is observed. By day 40, the bacterial pulmonary 

burden will be around 108 CFU [71], which is substantially higher than 106 CFU observed in 

BALB/c mice [72].  A significant mortality event, ranging from 10-40%, occurs between 28 to 45 

days post-infection (Figure 1.1). The surviving mice will typically stay alive at least an additional 

14 weeks with minimal mortality. Mortality can be predicted based upon the pre-infection weight 

and the development of severe cachexia, hunched posture, and unkempt appearance at about 4 

weeks post-infection. It has also been observed that more virulent strains of Mtb, in general, have 

higher rates of mortality (<80%), while less virulent strains could have no mortality (0%). These 

early mortality rates are influenced by the culturing method for the infective strain used, the 

original bacterial source, route of infection, and the M. tuberculosis strain itself.  
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Figure 1.2. Heterogeneity of lesions that develop in the C3HeB/FeJ mice infected with M. 
tuberculosis Erdman. Type I lesions (A) are highly organized and composed of a caseous necrotic 
center, a band of neutrophils, and encapsulated in a fibrotic rim. Outside the fibrotic rim, the lesion 
is composed of epithelioid and activated macrophages, fibroblasts, and few lymphocytes. Type II 
lesions (B) are composed primarily by neutrophils but lack the fibrosis observed in Type I lesions. 
Type III (C) lesions are composed predominately of epithelioid and activated macrophages with 
a large number of lymphocytes throughout the lesion. (D) A Type I Lesion with bacteria stained 
using SYBR Gold (green) and background tissue stained with DAPI (blue) [73], [74].   
 

After 8 weeks of a low-dose aerosol (LDA) infection with the Mtb Erdman strain, 

C3HeB/FeJ mice may develop three distinct lesion types, now identified as Type I, Type II, and 

Type III. Each lesion type develops independently of each other, and multiple lesion types can 

develop within a single animal. Type I lesions (Figure 1.2A) are fibrous encapsulated caseous 

necrotic lesions that closely resemble the human TB hallmark granuloma. Visible development 
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begins 4 to 5 weeks post-LDA infection with the central accumulation of foamy macrophages and 

neutrophils with margins composed of epithelioid macrophages and lymphocytes. By 7 to 10 

weeks post-infection, the granuloma becomes highly organized in appearance. The environment 

within the core is hypoxic, filled with necrotic debris, and has a neutral pH [74], [75]. The inner 

ring surrounding the core is composed of a dense ring of neutrophils followed by foamy 

macrophages, all encapsulated within a fibrotic collagen rim. Outside the fibrotic rim, the lesion 

tissue is composed of fibroblasts, epithelioid and activated macrophages, and lymphocytes. As 

observed previously, C3HeB/FeJ mice aerosol infected with mouse passaged Mtb H37R or Mtb 

HN878, large Type I lesions may develop cavities in 47% of untreated mice 8 to 14 weeks post-

infection, but the rate of incidence is influenced by infectious dose, and Mtb strain used [76]. 

Bacteria exist both intracellularly in foamy macrophages and extracellularly in the necrotic core 

(Figure 1.2D).  

Type II lesions (Figure 1.2B) are consisting of a fulminant granulocytic pneumonia 

composed predominately of neutrophils, few lymphocytes, and unlike Type I lesions do not 

present with fibrosis. Histopathology analysis of early mortality (4 to 6 weeks) mice showed a 

considerable amount of lung consolidation composed almost entirely by Type II lesions. These 

lesions are rapidly forming and closely resemble polymorphonuclear alveolitis, sometimes seen 

in humans [41]. Visual inspection of Type II lesions shows a considerable number of bacteria that 

appear to be extracellular.  

Type III lesions (Figure 1.2C) are indistinguishable from lesions seen in traditional murine 

models, including BALB/c or C57BL/6. These lesions are composed primarily of epithelioid and 

foamy macrophages with dispersed lymphocyte clusters. These immune controlled lesions are 

commonly associated with low mortality and few bacterial numbers. However, there are some 

exceptional conditions where it had been previously observed with a mouse passaged H37Rv 

strain that developed a considerable amount of lung consolidation composed of predominately 

Type III lesions with a corresponding high mortality rate (Unpublished Data).  
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 For my thesis, I have opted to use the C3HeB/FeJ mouse model for a variety of reasons. 

The first is because it is a murine model we can house a larger number of animals per cohort than 

we could with other animal models such as Guinea pigs or NHPs. The larger numbers will allow 

us to have data that is more representative of the population. The second is that we have a large 

database of historical data, which includes pathology tissue blocks, images, bacterial burden data, 

and time points. The third is that the animal model develops complex pathology that mimics many 

aspects of human disease, especially the Type I granuloma. Machine learning requires large 

amounts of data, which is why the first two reasons were of such importance. Creating a predictive 

model would not have been feasible otherwise, especially with such complex data classifications. 

This complexity also allowed us to demonstrate that machine learning is a viable tool to perform 

targeted histopathology analysis, which currently is not available in the TB field. Lastly, the 

C3HeB/FeJ mouse model is becoming more widely used, especially in drug efficacy and 

determining Mtb virulence, which is why we wanted to develop tools to help research laboratories 

in their analysis.   

 

1.4- Scoring Histology On Microscopy Slides 

In clinical diagnosing and monitoring disease, a nominal classification may be sufficient in 

determining patient treatment options or disease progression. For example, cutaneous basal cell 

carcinoma does not require additional information because it is the clinical diagnosis. In other 

cases, having a simple classification may not provide enough information to determine the specific 

treatment option or disease prognosis. For example, breast carcinoma histology samples are 

assigned a histology grade based on cell morphology. The grade will determine the 

aggressiveness of cancer present and the corresponding treatment options [77]. For research 

purposes, histological scores are given as a way to perform quantifiable analysis across 

individuals, cohorts, and across independent studies.  



18 

 

A robust scoring system should have three defining characteristics, as suggested by 

Crissman and colleagues: (1) definable, (2) reproducible, and (3) produce meaningful results [78]. 

When performing analysis using a predetermined scoring system, several steps need to be taken 

to generate a useful score [79]. The first is to mask the samples of any identifiers to reduce any 

preformed biases that may result in the examination of the tissues. Failure to properly mask the 

samples may inadvertently create an observational bias that may distort the severity of disease 

or the effects of treatment [80]. The second is to perform a thorough examination of the samples 

and record all the information that may seem pertinent to the study. Important information may 

include severity, frequency, and type of lesions that may provide value in a larger scope than the 

specific study in which the data was collected [81]. The third is following the lesion parameters by 

defining the type of lesions that can be studied in the study. Defined parameters should 

encompass what applies to the specific use of the animal models, organ/tissue, and disease 

under the conditions of the experiment.  The fourth is having clear scoring definitions and avoiding 

collection methods that collect ordinal data such as scoring language that includes terminology 

such as “mild” or “severe” [81], [82]. A more appropriate reporting methodology is the quantitative 

reporting of percent involvement, which enhances the reproducibility and sensitivity of an 

experiment. The fifth and last step is the reduction of diagnostic drift, which is the variation of 

values consistently during analysis [77]. Bias can happen if there are large numbers of samples, 

examination occurs over an extended period, category definitions are poorly defined, or multiple 

pathologists are examining the same cohort of samples. It is common practice in research to have 

one pathologist score all the microscopy slides in a practical timeframe to increase the 

consistency of results and limit the amount of variability that occurs between classifiers [77], [78].  

When designed correctly, scoring systems should be reproducible and provide data that 

is impactful for the experiment. There are two commonly used approaches in the validation of a 

scoring system. The first is the repeatability of the observer in scoring consistently amongst a 

single experiment. A recent study by Begley and Ellis has demonstrated that when using current 
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standard methodology, it is difficult to achieve reproducibility. They repeated the experiments of 

53 published high impact oncology studies to determine if they were reproducible, with only a 

shocking 11% (6/53) success rate [83]. While there has been an unspoken acknowledgment of 

issues with irreproducible data, the scientific community, for the most part, has taken the validity 

of published work as fact. With the rise of drug development costs, late-stage clinical trial failures, 

and lack of new therapeutics as discussed previously, this lack of reproducibility has begun 

receiving more attention [84], [85].  

The second approach is to validate the relationship between the relevant parameters of 

disease severity and the corresponding scores. The relationship is, at times, calculated using a 

statistical correlation approach (e.g., Spearmans correlation for nonparametric data) to measure 

the strength and direction of the association between the two variables. The approach would 

provide a value between -1 and 1, and as the value approaches zero the lower the correlation. If 

the scoring system has a value close to 1, it is considered positively correlated, while a negative 

value indicates a negative correlation depending on the definition [86]. The context associated 

with the different aspects of the disease severity is important as individual factors may not 

contribute equally. An example is presented by using the C3HeB/FeJ mouse model development 

of the three lesion types. In this case, two mice display with 20% lung involvement, but one mouse 

presents with predominately Type II lesions associated with high mortality, whereas the other 

mouse has predominately Type III associated with low mortality, a score of 20% lung involvement 

would not be sufficient to classify these animals. Instead, each lesion type context needs to be 

taken into consideration with more weight for the Type II lesion classification and a less weighted 

value for the Type III lesions in the analysis.  

 

1.4.1 - Histology Scoring Of Tuberculosis-Infected Tissues On Microscopic Slides 

Histological scoring in tuberculosis research primarily focuses on pulmonary pathology 

and is highly dependent on the animal model in question. Different scoring methodologies are 
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being used in the field for the multiple TB animal models. In NHPs, the pathology focus is on 

pulmonary lesion characteristics such as the lesion architecture appearance, type, distribution 

patterns, and cellular composition. Based on the listed criteria, a score of 0-3 is applied for each 

characteristic, and an overall score is calculated [87]. In the rabbit model, the focus is primarily 

on pulmonary lesion characteristics but also includes the general condition of the animal. 

Parameters include the animal’s weight, lesion type, lesion location (which lung lobe), pleural 

involvement, number of lesions, and granuloma presence on the mediastinal lymph node, 

kidneys, and appendix. Disease severity is calculated by the summation of individual pathology 

scores, with a maximum score of 50 that can be attained for the most severe cases [88]. In 

classical mouse models, such as BALB/c, each histological parameter of peribronchiolitis, 

perivasculitis, alveolitis, and granuloma formation is scored. The score ranges from 0-5, with 5 

being the most severe form for that particular parameter. The lesion frequency and general lung 

involvement determine overall disease severity. A maximum score of 20 is what can be achieved 

using this system [89]. In the scoring of pathology of the C3HeB/FeJ mouse model in our 

laboratory by board-certified pathologist collaborators, each lesion type (I, II, III) is scored from 0-

4. A score of 0 is defined as 0% lung involvement, a score of 1 is defined as 0-10% lung 

involvement, a score of 2 is defined as 10-25% involvement, a score of 3 means 25-50% 

involvement, and a score of 4 means greater than 50% involvement. Each lesion is also weighted 

differently with the Type I lesion score multiplied by 3, Type II lesion score multiplied by 4, and 

Type III multiplied by 2. Therefore, an animal can have a maximum score of 36, but most severe 

cases receive a score of around 20.  

As demonstrated above, within the tuberculosis field, there is no standardized method to 

score histopathology in determining the efficacy of treatments or disease severity. It is subject to 

what has been previously done in the specific animal models, laboratories, and individual's 

preferences. This makes comparisons across different studies or laboratories difficult unless the 

same pathologist reviews the studies, following the same scoring criteria, with a short time period 
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between analyses.  A more reproducible and informative methodology would be to provide exact 

measurements for each parameter that is of interest to the disease. An example using the TB 

C3HeB/FeJ mouse model would be to report the percent involvement for each specific lesion 

type. This will move the data from being nominal or ordinal to a ratio data type that can be used 

for statistical measurements and data analysis. The unbiased quantitive data decreases the user 

variability and increases the reproducibility of the results regardless of the time or individual 

performing the analysis. With the widespread availability of digital image analysis and machine 

learning scoring automation of analysis, not only the variability but the amount of time required by 

a human user has been significantly reduced.  

 

1.5 - Image Analysis 

1.5.1 - Introduction 

Computer vision (CV) is an interdisciplinary field that aims to mimic human vision through 

the detection and/or classification of objects from visual media such as images, videos, or 

sensors. It has allowed digital optical analysis to be automated, to be faster, and more reliable 

than human operators [90]. Human visual analysis, while highly complex, is plagued with 

‘perceived’ rather than ‘factual’ information when making decisions. This is because we have 

evolved to make quick decisions based upon visual stimuli that may be lacking key information or 

the ability to process large amounts of stimuli. After light hits an object, it takes about a tenth of a 

second for our brains to process this information, but during that tenth of a second, we are missing 

information that is still being provided and haven’t yet been processed [91]. Our brains will fill in 

these blind spots with information from its surroundings and contextual clues, which is 

indistinguishable from the real information [92]. This approach is called ‘top-down’ visual 

processing, which is more computationally efficient than ‘bottom-up’ visual processing [93]. Our 

visual processing method impacts areas of intra and inter-observer variability, and the perception 

of dimension, color, and size [94], [95]. We can identify our visual shortcomings in the form of 
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optical illusions. While these neural shortcuts may have provided a competitive advantage for 

avoiding predators to our ancestors, in today’s context, it delivers many unperceived 

disadvantages when performing manual visual tasks that require precision and reproducibility. In 

contrast, the biggest advantage humans currently have over computer vision is the flexibility, or 

the ease of transitioning between crystallized and fluid intelligence, when encountering deviating 

or previously unseen scenarios [96]. With a simplistic example, this means that if you had created 

a CV algorithm to classify images of cats and dogs and you gave it an image of a bird, it would 

try to classify it as either a dog or cat. Humans do not have this limitation because even if we had 

never seen a bird before, we would recognize it as neither a cat nor a dog and give it its own 

classification. With current technology limitations, there is still a need in research and clinical 

settings to not remove the human element in their analysis but complement the strengths of each 

approach by implementing a hybrid solution [97], [98].  

 

1.5.2 - Techniques In Computer Vision And Image Processing  

CV works by implementing an optical sensor (e.g., camera) and an algorithm to extract 

information about an image object. Most CV solutions utilize similar steps as listed: (1) digital 

image formation or capture using the optical sensor, (2) image preprocessing to improve or 

enhance desired qualities or features, (3) image segmentation in which objects of possible interest 

are separated from background noise, (4) quantification of object features, and (5) image 

interpretation [99] (Figure 1.3).  
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Figure 1.3. The steps used in image analysis: (1) digital image formation, (2) image 
preprocessing, (3) image segmentation, (4) image quantification, and (5) image interpretation 
 

Image preprocessing aims to either correct the image quality or enhance for features that 

are of interest. Most images are subject to changes in illumination, atmospheric conditions, 

viewing angle, and/or instrument errors [100], [101]. In biomedical research, most digital image 

quality limitations are not the result of poor external conditions around the sensor, but of the 

sample itself. This is because the optical sensor (microscope, MRI, CT/PET, etc.) is in very 

controlled environments that have little deviation in angles, lighting, and exposure. Specifically, in 

microscopy, sample complexity and deviations in the preparation and staining of microscopic 

sections have the greatest influence on the degree of image pre-processing that may be required 

[102]. Common techniques used, include but are not limited to image blurring, sharpening, 
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normalization (color, size), distortion, erosion and dilation, morphological processing, and 

outlining [103] (Figure 1.4).  

 
Figure 1.4. A comparison of the commonly used image analysis techniques: (A) Original image, 
(B) normalization, (C) erosion, (D) edge detection, (E) blurring, and (F) threshold segmentation. 
Image (A) taken from the NIAID website under the creative common license [104]   
 

Image segmentation is the method of partitioning an image into separate, distinct objects. 

Each pixel within an image is assigned a label, and pixels that receive the same label are 

determined to be part of the same object. This is a common approach to focus on areas of 

significance, determine the location within the image as well as boundaries, and to reduce the 

amount of processing that may need to be performed for additional tasks. Image segmentation 

can be roughly divided into two different types; sematic and instance segmentation. Sematic 

segmentation assigns each pixel as either background or object. Instance segmentation assigns 

each pixel as a particular class; however, each class can also be considered a separate instance.  
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Figure 1.5. An example of cluster-based image segmentation for pedestrian detection. (A) An 
image is uploaded, clusters of pixels with similar characteristics are identified, and (B) objects of 
interest (green and red) are separated from the background (blue). Images were taken from the 
Penn-Fudan Database for Pedestrian Detection and Segmentation [105].    
 

A common segmentation technique is “threshold segmentation” (Figure 1.4F), which partitions 

each area of an image-based upon pixel values. Calculations for this technique are simple, fast, 

and perform well with high contrast (e.g., fluorescence imaging). The method performs poorly if 

there is not a substantial amount of contrast or if there is an overlap in pixel values. Another 

approach is “edge detection segmentation,” which looks for discontinuous local features within an 

image. Also, in this case, this technique suffers if there is not a substantial amount of contrast 

between adjacent discontinuous pixels and if there is a high degree of complexity. The last 

approach for segmentation is clustering-based image segmentation. Clustering techniques divide 

pixel populations into a specified number of groups or ‘clusters.’ Pixels within a particular cluster 

have increased similarity of characteristics than those of other clusters. This approach is simple 

to implement but is computationally expensive to use, which limits it to only small datasets. A 

common example of image segmentation is detecting pedestrians. The algorithm determines 

which objects are of interest (the pedestrians) and subtracts the background (Figure 1.5). By 

implementing a segmentation approach, you can determine where the pedestrian is in the image.  
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Quantification of image objects measures specific characteristics of the segmented 

objects. This can include but is not limited to the number of objects, region of interest (ROI) 

intensities, ROI hues, ROI saturation, areas, shapes, and locations. While this information on its 

own is valuable, it may also be used in providing a classification (interpretation). For example, 

when providing grades for breast carcinoma, the information required includes each cell’s shape, 

color, and the number of carcinoma cells relative to healthy cells. The interpretation step can 

either be automated to give a recommendation based upon the parameters or left up to a 

specialist who is trained to look for specific features from the quantification step. This approach 

is commonly used in microbiology settings to distinguish between the differently labeled cells 

using multiplex fluorescent imaging.  

 

1.5.3 - Machine Learning 

Arguably one of the biggest advances in CV is the implementation of machine learning 

(ML) to perform trivial and highly complicated CV tasks. ML can be defined as the implementation 

of computer algorithms and statistical models to perform specified tasks without having to 

program in explicit instructions. ML can be broken down into two main categories, ‘supervised’ 

and ‘unsupervised’ learning. Supervised learning uses a ground truth that ‘learns’ by using 

examples of the desired output. An example would be developing a classification algorithm that 

distinguishes between dogs and cats. Common supervised learning algorithms include methods 

such as logistic regression, naïve Bayes, support vector machines, and neural networks. 

Unsupervised learning does not have labeled outputs, so it is up to the algorithm to determine the 

output structure present within a given dataset. This approach is popular in data exploration when 

the researcher is in the process of discovering new information on data. Common unsupervised 

algorithms include k-means clustering, principal component analysis, autoencoders, and neural 

networks. Because of the flexibility of approaches developed for neural networks, they are utilized 
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in both supervised and unsupervised learning but are considered very computationally expensive 

[106], [107].  

Supervised ML models are developed using representative data called ‘training sets’ to 

discover patterns through inference. Below is an illustrative example of the difference between 

traditional CV and ML in solving an image analysis problem. If a researcher wanted to enumerate 

fluorescently labeled bacteria within an image using traditional CV, they would calculate the hue, 

saturation, and lightness of representative pixel values of the bacteria versus the background. A 

range of values for each metric listed above will be collected, and objects of interest (bacteria) 

will be masked out. Masking is the process in which portions of the image are hidden, leaving 

only the specified pixels of interest. Segmentation will follow and further masking based upon cell 

size to eliminate objects that are considered false positives. The last step would be to implement 

a shape-specific contour algorithm, followed by enumerating the objects that are present. 

Traditional CV requires the user to program explicit instructions on how to detect the object in 

question, which can get complicated and can be non-specific depending on the circumstance. 

The benefit is that supervised ML only requires a small amount of training data and in some 

instances, can be fast to implement. A researcher can create a training set of representative 

images of bacteria and train an ML algorithm. There would be no need to perform preprocessing, 

determine pixel value ranges, or object sizes as the ML algorithm could infer these patterns on its 

own. The main advantage is that there is no prior information needed to train the algorithm, which 

is important when one is unsure about what the critical parameters are. The disadvantage is that 

depending on the complexity of the problem, the ML algorithm may require thousands if not 

millions of training set image data points to achieve a level of accuracy that would be acceptable. 

In the biological sciences field, acquiring a thousand separate images of multiple classifications 

may not be realistic, especially for digital histological data. This is why both approaches are still 

relevant in creating algorithms to analyze digital images.    
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 In CV, there are a number of algorithms used in ML, which include convolutional neural 

networks (CNN), deep belief networks and deep Boltzmann machines, and stacked 

autoencoders. For the purpose of this thesis, we will focus on CNNs and their applications in 

object classification. The conception for CNN was inspired by the visual mechanisms and neural 

processing that takes place in biological organisms [108]. Just like a human brain works by the 

firing of highly connected neurons in response to a stimulus to create an output, CNNs follow a 

similar framework. An input value is passed to a neuron, which is either turned off or on. This 

continues for multiple connected neurons until an output is generated.  Early implementations of 

neural connectivity, hierarchical organized transformations of images, and later additions of error 

gradient proved very successful [109]–[111]. This field is highly evolving, and over the last couple 

of years, more efficient algorithms and alternative CNN approaches have become available. In 

comparison to other image classification algorithms, little pre-processing is needed.  

 

Figure 1.6. A visual representation of the architecture of a common CNN. This includes multiple 
convolutional and pooling layers before being processed by a fully connected layer. Adapted from 
Kaymak et al. [112].   
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 At its core, a CNN is comprised of three main types of neural layers: (1) convolutional 

layers, (2) pooling layers, and (3) fully connected layers (Figure 1.6). Convolutional layers utilize 

various kernels to convolute an entire image and its intermediate feature maps into multiple 

feature maps. The purpose of a kernel is to take data as an input and transform it into a 

predetermined form. From a biology perspective, this step mimics human vision, where specific 

identifying features of an image such as color, shapes, and size are identified in the image. 

Pooling layers reduce the spatial dimensionality of the input image for the next convolutional layer. 

The reduction in size leads to a loss of information but is actually beneficial due to a decrease in 

computational cost and prevents overfitting of the network. Average pooling and max pooling are 

the two most common pooling algorithms used in this step [113]. The last step takes the feature 

maps that were created in the convolutional and pooling steps and passes the flattened image 

through a fully connected neural network. From a practical standpoint, this is when the learning 

takes place in distinguishing between the different images. Within a fully connected layer, there 

are multiple neurons, and each neuron is connected to the activation of the previous layer. Each 

neuron activation is computed by matrix multiplication and the bias offset. Eventually, the fully 

connected layers will convert the two dimension feature map into a one dimension feature vector. 

The derived vector will then be fed forward into the specified number of classification categories 

to produce the final classification result [114].  

 

1.5.4 - Human Bias In Research 

Historically, pathologists have been using a manual histopathology scoring system to 

analyze pathology images which are considered to be semi-quantitative at best. Manual scoring 

produces qualitative or semi-quantitative scores that are rich in detail about the disease but even 

with experienced pathologists can be subjective to user bias and interpretation [115]. Bias, or 

systemic error, could alter the results or diminish the validity of a study [80], [116]. As mentioned 

previously, with the rising cost of drug development and the difficulty for the science community 
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to generate reproducible work, this has increasingly become a larger concern. There are many 

potential sources of bias that may unintentionally arise when scoring pathology and these are 

often referred to as visual traps.  

 

Figure 1.7. Examples of known visual biases, or optical illusions that can impact the ability of 
human researchers to make judgments and the corresponding pathology equivalent. Both (A) and 
(B) demonstrate how contextual clues influence our perception of size. This is also seen in 
pathology of a cell whose membrane is shown stained and unstained (C). The checkerboard 
illusion (D) demonstrates our inability to discern color gradients properly. Both checkers labeled 
A and B are of the exact same color. The pathology equivalent is shown where two images (E & 
F) have the same amount of staining (Brown) present. Adapted from Aeffner et al. [117].   
 

Several potential visual trap scenarios have been described, such as the Ebbinghaus 

illusion of size, which demonstrates that our perception of size is influenced by the context in 

which it is presented [118], [119]. In Figure 1.7A, B, the inner circles are of the same size but 

contextually appear different due to the surrounding outer circles. Illusions of size is influenced 

by preconceived concepts and memory of the observer. This can be conceptualized in 

histopathology analysis of a perceived size difference for instance, by the addition of a labeled 

membrane to a nucleus (Figure 1.7C) [117]. The Checker Shadow Illusion (Figure 1.7D) is a visual 
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trap that demonstrates the faulty perception of brightness, contrast, and surrounding 

variation[120], [121]. Throughout our lives, we have visualized countless instances of objects that 

appear darker in shadows than in light. We have seen so many that our brains automatically 

assume that it is the same as we have previously experienced and make these compensations, 

whether they are real or not. Combined with our perception of ignoring soft edges of shadows and 

visualizing the sharp edges of the squares makes this illusion possible. Lastly, the distinction 

between hues and gradients of colors can also vary tremendously between individuals. It is 

estimated that the average human can distinguish between 30,000 to 10 million colors [122] that 

can be impacted by several factors such as the environment, age, health, and lifestyle choices. 

Color is perceived by not only the light refracted by a specific color but also by the light nearby, 

which is called color induction [123], [124]. For example, a dark yellow surrounded by red will 

appear as a greenish tint. In contrast, a 12-bit camera can distinguish 68 billion different shades 

of color, and a 14-bit camera can store up to 4 trillion shades [125]. Digital systems are far more 

superior to the human visual system in capturing hue and color gradient differences. A pathology 

example that illustrates the checker shadow illusion and color induction is demonstrated in Figure 

1.7E, F. This example shows that two different levels of cytoplasmic staining in the context of 

adjacent membrane staining clearly influence the assigned scores. Using digital analysis, it is 

determined that both images would actually receive equivalent scores.  

In addition to visual traps, human objectivity is also hampered by cognitive biases. This 

includes confirmation bias, which is defined as unknowingly interpreting new information as 

confirmation of previously held beliefs [126], [127]. An example would be the belief that left-

handed people are more creative than right-handed people. The next time you run into a left-

handed artist, regardless of reality, it will only confirm that bias. This is evident when an 

investigator will inadvertently seek and interpret data that support their given hypothesis. 

Confirmation bias is often reduced by blinding the data and implementing the scientific method 

when acquiring data. Another cognitive bias is diagnostic drift, which is the variation of score 
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values in a consistent manner throughout a study. Even experienced pathologists and clinicians 

are subject to diagnostic drift, especially during long studies with multiple time points [128], [129]. 

While this section is not an exhaustive review of potential human bias in research, it helps 

underscore the need for integration of an unbiased automated digital analysis in the pathology 

scoring system.  

 

1.5.5 - Computer Vision (CV) In Clinical And Biomedical Research 

Computer-aided analysis and diagnosis combine the flexibility and training of a human 

specialist with the reproducibility and accuracy of a machine. ML became feasible for biological 

laboratories with the development of graphical processing units (GPUs) in the early 2000s. GPUs 

are composed of hundreds of simple cores that perform thousands of concurrent hardware 

threads. Central processing units (CPU), in comparison, have a couple of complex cores with 

single-thread performance optimization. What this means is that GPUs can perform thousands of 

simple tasks simultaneously while a CPU can perform a few complex tasks at a time.   The viability 

of CNN became apparent in 2012 when training with the ImageNet dataset had an error rate 10.8 

percentage points lower than the next runner up which used more standard methodology [114]. 

Since 2019 it has been referenced over 40,000 times and is considered one of the most influence 

events in computer vision.     

In the early 2000s, the threshold for entry in ML implementation was reduced thanks to 

advances in GPU in both cost and performance. In 2008, the utility of computational pathology 

had been clearly demonstrated by Thomas Fuchs with predictive analytical modeling of renal cell 

carcinoma in patients [130]. In 2012, the introduction of CNN in ML showed a significant 

improvement over the previous methodology for image analysis [131]. And in 2014, the 

development of generative adversarial nets have lowered the amount of training data required 

which has been a limitation for biological research [132]. 
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AI has expanded into applications of biomedical diagnostic systems from previously other 

human domains such as facial recognition and self-driving cars. This includes oncology, 

pathology, radiology, and infectious diseases, which have seen rapid advancements in their 

respective fields [133]. Digital image analysis has allowed the high throughput of data at a 

relatively low cost while increasing the efficiency of the analyzing specialists. The TB field has 

seen a relatively slow expansion of ML compared to fields such as oncology; nonetheless, the TB 

field has begun utilizing these new methodologies to improve their analysis [134]–[136].  

 

1.6 – Rationale 

 The objective of this dissertation was to develop computational analysis tools that take a 

targeted approach on acquiring data on specific host disease states and bacilli populations. These 

are metrics that are potentially important in evaluating the efficacy of novel and existing therapies 

for TB. Current targeted approaches can be time-consuming and require multiple steps, which 

introduce additional steps where errors can occur. They are also subject to multiple forms of user 

bias and rely on specialized knowledge to be able to accomplish accurately. These problems are 

further compounded when analyzing complex pathology, such as what is developed by the TB 

C3HeB/FeJ mouse model. To accurately analyze this murine model, the classifier needs to look 

at what pathology structures are formed and what the cellular makeup is for each lesion. With 

recent advancements in ML and CV, we were able to develop specialized analysis tools, which 

are called Lesion Image Recognition Analysis (LIRA) and Mycobacterial Image Analysis (MIA).  

Each tool required algorithm development, analysis verification using existing methodologies, and 

determining the limitations of employing these tools in future analysis. We propose that analysis 

done with these tools will result in faster analysis, an increased agreement among human 

classifiers, and more insightful data in determining the efficacy of drug therapies.  
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Specific Aim 1: To develop software utilizing deep convolutional neural networks that will assist 

in the identification and quantification of pulmonary lesions using digital microscopic images from 

the lungs of M. tuberculosis-infected C3HeB/FeJ mice. Hypothesis: Pathologists that are aided 

by a computational tool, such as LIRA, in their analysis will show a reduction in the amount of 

time needed to perform the analysis and more agreement between different pathologists than 

pathologists who use standard methodology.   

 

Specific Aim 2: Compare pathologist results using LIRA or those made by a certified pathologist 

using actual tissue slides from a previous drug-efficacy trial. Analysis will include a review of the 

original study conclusions. Hypothesis: Histology, from a drug efficacy trial, when analyzed with 

the assistance of LIRA, will generate scores that are in agreement with a board-certified 

pathologist. In addition, using a more targeted analysis approach will expand upon the initial 

conclusions that were made.  

 

Specific Aim 3: To generate software for the enumeration of fluorescently stained bacteria in 

pulmonary tissues of C3HeB/FeJ mice infected with M. tuberculosis. Hypothesis: Analysis of 

Mycobacterium tuberculosis located in infected C3HeB/FeJ mice tissue using MIA will identify 

differences in bacterial enumeration metrics (density, % involvement, size) among treatment 

cohorts and lesion types.  

 

The development of computational tools to provide quantifiable data for analysis is an 

important tool for drug development. For histopathology analysis, these computational tools will 

allow the reduction in variability found between pathologist scoring while reducing the analysis 

time and scoring errors seen previously. It also allows researchers to collect metrics that 

previously were not available, which may lead to new discoveries. The metrics that are being 

generated using the novel software for histopathology include the percent lung involvement for 
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each lesion type, as well as metrics on bacterial density, shapes, and fluorescent intensities for 

bacterial populations found within each lesion microenvironment. In conjunction with fluorescent 

labeling for specific cells, this will allow researchers to quantify the effects of therapies on both 

the host and bacteria in targeted microenvironments within the host. This targeted data analysis 

approach will help expand our knowledge used in the development of new therapies and speed 

up the time required for new drug development.  
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CHAPTER 2: DEVELOP LESION IDENTIFICATION AND AREA CALCULATION SOFTWARE 

(LIRA) FOR THE C3HEB/FEJ MOUSE MODEL1 

 

2.1- Introduction 

Tuberculosis (TB) is a communicable disease that continues to affect modern society with 

a quarter of the world believed to have active or latent TB, primarily in low and middle-income 

countries [4], [137]. TB is transmitted by aerosol inhalation of the bacterium Mycobacterium 

tuberculosis (Mtb) from an infected individual. During the course of infection, a wide variety of 

pulmonary disease lesion presentations may concurrently present within the same host [16], 

[138], [139] . This pulmonary pathology includes, but is not limited to, inflammatory lesions, 

interstitial pneumonia, necrotic caseating granulomas encapsulated within a fibrotic rim, non-

cavitary necrotic lesions, non-necrotic cellular lesions, and cavitary lesions [14], [41]. The 

heterogeneity of lesions within a single individual represent a myriad of microenvironments for 

Mtb that range from hypoxic regions, where bacteria are extracellular in caseum, to vascularized 

and more aerated regions, where Mtb is intracellular within various macrophage populations 

[140],[141]. Because of the complex environments that develop in the lung throughout infection, 

Mtb has developed adaptive strategies to alter its metabolism and replicative state to increase 

survival [22], [73], [142], [143]. The adaptation of Mtb to its environment results in bacterial 

populations exhibiting multiple distinct phenotypes [19], [140]. A critical component in 

understanding disease outcome and, importantly, treatment success is our understanding of 

 
1 Authors: Bryce C. Asay, Blake Blue Edwards, Jenna Andrews, Brendan K. Podell, Juan F. Muñoz Gutiérrez, 

Chad B. Frank, Forgivemore Magunda, Michael Lyons, Asa Ben-Hur and Anne J. Lenaerts. Bryce C. Asay 

conceptualized the project/software, created the training set, contributed to the coding, pipeline 

development, design of the validation testing, and performed the validation analysis. Paper under review 

in Scientific Reports.  
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these varying lesion microenvironments and bacterial phenotypes  [144]–[146]. Two important 

clinical implications emerge from the lesion heterogeneity observed in the lungs of TB patients in 

terms of the effectiveness of drug treatment in the various lesion types and lesion compartments. 

Lesion characteristics differentially affect (1) drug penetration and distribution of TB drugs inside 

the lung lesions where the bacteria are located [147], and (2) the relative drug susceptibility of the 

bacilli contained within these lesions due to metabolic adaptation that could induce phenotypic 

drug tolerance and bacterial persistence [140], [148]. These combined factors result in marked 

inter- and intra-lesional variability of drug-mediated killing. We have reported previously on the 

C3HeB/FeJ mouse model, which after Mtb aerosol infection, develops a heterogeneity of 

pulmonary lesion types more reflective of the lung pathology seen in TB patients, and which has 

proven useful to further our understanding of disease progression as well as studying treatment 

responses for emerging therapies [22], [71], [74], [149], [150]. 

Murine models are employed in TB research due to their small size and low cost, and in 

addition, their physiology and genetics are well understood. Standard laboratory mouse strains 

such as C57BL/6 and BALB/c have been used most widely for TB research. However, these 

mouse strains show limitations by solely developing a single lesion type after Mtb infection, and 

they lack the lesion heterogeneity seen in TB patients. The C3HeB/FeJ TB infection model 

presents with a heterogeneity of lesion types more reflective of human disease [71], [74]. This 

mouse model was first described for tuberculosis by Igor Kramnik et al. (and is therefore also 

more commonly referred to as “the Kramnik mouse model”) [68].  These mice developed a de 

novo recessive allele, identified in a region at the 54.0-cM location of chromosome 1, termed the 

‘super susceptibility to tuberculosis -1’ locus (sst1) [69]. The susceptible sst1 allele was reported 

to control the formation of caseous necrosis of pulmonary lesions. In C3HeB/FeJ mice after an 

Mtb infection with a low inoculum, the bacterial load increases to high bacterial numbers in lungs, 

and mice develop a chronic disease state with a dramatic progression of the lung pathology over 

time. After 8 weeks post-infection, three pulmonary lesion types can be identified which we 
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classified earlier [71], [74], as: (i) a highly organized encapsulated caseous necrotic granuloma 

defined as a Type I lesion, (ii) a neutrophil dominated lesion with cellular necrosis defined as a 

Type II lesion, and (iii) cellular lesions with distinct clusters of lymphocytes defined as a Type III 

lesion type. Both the Type I and II lesion types contain high bacterial numbers (approximately 106-

7 per lesion), whereas the smaller Type III lesions only show few bacteria (approximately 102-3 per 

lesion).  All three lesions types can be present at the same time within a single mouse, and even 

in a single lung lobe [74]. Occasionally cavities have been observed, although this has been an 

infrequent event in the C3HeB/FeJ mouse model infected with Mtb H37Rv or Erdman [38], [71].  

The efficacy of tuberculosis vaccines [151], [152] or drugs [20], [153] is primarily measured 

by determining the reduction in bacterial load in target organs. The quantification of lung 

involvement in disease has proven to be informative as a secondary readout. A thorough 

pathology assessment can be informative to assess the effect of the therapeutic intervention on 

the disease itself, by studying improvement or worsening of inflammation or measures of tissue 

repair, such as fibrosis, as well as revealing potential immunotoxicity. Serial PET/CT scans of M. 

tuberculosis-infected animals, and TB patients have been used to monitor disease progression 

and response to treatment [53], [154], [155], allowing precise quantitation of the extent of disease 

and inflammatory response of the host. Parallel studies of CM and humans have shown 

comparable rates of radiological response to linezolid [156], and based on these initial studies, 

radiographic surrogate markers are being actively explored for use in human clinical trials of new 

agents and TB regimens [45], [157], [158]. For mouse models used in preclinical testing for TB, 

the treatment effect on pulmonary pathology is generally examined on microscopic images using 

a histological grading system by a veterinary pathologist specialized in TB [159]. The pathologist 

then assesses both macroscopic recognition of larger pathologic structures such as lesion types, 

as well as microscopic identification of predominant immune cell types. Because of the complex 

nature of the classification process, quantification of the lesions and their lung involvement for 

research purposes is not only a specialized task but highly time-consuming and variable upon the 
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individual performing the analysis. The person-to-person variability and subject nature of the 

method can lead to differing results, and this will, in addition, make inter-experiment comparisons 

of the histopathology results difficult. The time-consuming manual analysis can lead to increased 

user fatigue and reduced focus, which in itself can lead to the introduction of more inaccuracies.  

  

 

 

While histopathology analysis of TB lung lesions is complex, recent advances in machine 

learning can provide for certain aspects of such analyses to be automated. Areas such as digital 

image analysis in cancer research [25], [26], [160], magnetic resonance imaging / computed 
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tomography [161],[162], and clinical and anatomical pathology [163],[164] have seen an increase 

of analysis tools being developed using machine learning approaches. Many of the algorithms 

currently employed in the medical digital imaging field include CNNs [165]–[168], and support 

vector machines (SVM) [169],[170]. CNNs are neural networks designed specifically for images 

and address the issue of achieving classification invariance for object recognition using local 

feature extractors or filters. These feature extractors or filters are applied at increasing levels of 

granularity, thereby allowing the system to recognize features at increasing levels of abstraction 

similarly to how the brain processes visual stimuli [171], [172]. CNNs also have a demonstrated 

history of success in image classification, and a plethora of open-source tools and packages are 

widely  available for use [27].  

Figure 2.2. Graphical representation of the workflow required to analyze images. 1) Original 
image is uploaded , 2) CNN1 detects Type I lesions and is verified by a user, 3) Window location 
is cropped based upon classification, 4) Image broken up in 80 x 145 windows to generate our 
predictions, 5) Classification predictions generated using 1 of two CNNs, 6) User is allowed to 
edit the results one last time. 
 

In this work, we propose a TB lesion machine learning classifier that follows established 

classification criteria developed in our laboratory, which distinguishes three different lesion types 

that develop in the C3HeB/FeJ mouse TB infection model [71], [74]. This digital image analysis 
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software package was developed as a modular neural network [173]–[176], consisting of three 

CNNs, each optimized for a specific sub-task, together with two human intervention checkpoints 

to limit the probability of misclassification (Figure 2.1, 2.2). This digital image analysis pipeline is 

named ‘Lesion Image Recognition and Analysis’, or LIRA. From its inception, LIRA was designed 

to work in conjunction with pathologists with the goal to improve the analysis of pulmonary 

pathology to be more efficient, accurate, and reproducible regardless of the individual analyzing 

the digital image slides.  

 

2.2 - Materials And Methods 

2.2.1 - Sample Collection From Archived Animal Studies 

The digital images from pulmonary samples used for the development of the image 

analysis software package were derived from archived C3HeB/FeJ mouse studies conducted for 

the development of the mouse model [71], [74], for drug efficacy trials using existing and novel 

drugs for tuberculosis [22], [149], and studies focusing on virulence of various Mtb strains 

(unpublished results). Lung samples were collected from 14 previous independent mouse studies, 

conducted over several years (from 2012-2018), and samples were obtained from two different 

research laboratories at CSU. Mtb strains used for the mouse infection studies included M. 

tuberculosis Erdman (TMC 107, purchased from ATCC), HN878 (Clinical Isolate W210, CSU, 

Fort Collins, CO, available at BEI resources), or H37Rv (Trudeau Institute, Saranac Lake, New 

York). Bacteria for mouse infections were initially grown as a pellicle and further propagated in 

Proskauer-Beck (PB) medium containing 0.05% Tween 80 (Sigma Chemical Co., St. Louis, MO), 

never extending past mid-log phase [177]. Female C3HeB/FeJ mice, 6-8 weeks of age (Jackson 

Laboratories, Bar Harbor, ME) were housed in a bio-safety level III animal facility and exposed to 

an Mtb aerosol infection using a Glas-Col inhalation exposure system [178].  Mice were 

euthanized by CO2 inhalation, between 4 to 10 weeks post aerosol exposure. Whole lungs were 

fixed by inflation with 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) in 
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phosphate-buffered saline solution (PBS) via cardiac perfusion before subsequently being 

transferred to a 70% ethanol solution 48 hours later.  

 

 

 

2.2.2 - Processing Of Samples To Generate The Digital Image Dataset 

 Fixed lung samples were further processed at either Premier Laboratory (Boulder, CO), 

the Experimental Pathology Facility at CSU (Fort Collins, CO), or at the Microbiology, 

Immunology, and Pathology (MIP) Department. Pulmonary tissue samples were placed in a single 

cassette per mouse, then paraffin-embedded and sectioned. Tissue sections (5µm) with the 

largest surface area were used for further histopathology analysis and mounted on glass slides. 

Paraffin sections processed for Haemotoxylin and Eosin (H&E) staining underwent a Xylene bath 

for 10 min before undergoing gradient hydration. Samples were stained using a Leica ST5020 

instrument with an initial staining step using Hematoxylin 560 (Leica Selectech, Buffalo Grove, IL) 

for 5 min and rinsed in tap water. Next, the slides were washed using a Define wash step (Leica 

Selectech, Buffalo Grove, IL) for 10 sec before being placed in a Blue Buffer Solution (Leica 

Selectech, Buffalo Grove, IL) for 1 min. The slides were then rinsed with Eosin for 1 min before 

being transferred to 96 Eosin Y 515 (Leica Selectech, Buffalo Grove, IL) for 3 min. The final step 

included a washing step with 96% EtOH for 6 min before being mounted using a LEICA CV5030 

Mounting instrument (Leica Selectech, Buffalo Grove, IL), thereby using the Coverseal-X Xylene 

Mounting Media (Cancer Diagnostic Inc., Durham, NC). Slides were generated and stained at 

three facilities using similar, however not the exact same, protocols over a time span of several 

years (2012-2018). Digital image scans from microscopic slides containing C3HeB/FeJ lungs 

were generated from one of three microscopes. Image scans from Premier Laboratories 

(Longmont, CO) were generated on an Aperio Scanscope XT microscope (Nikon, Melville, NY) 

at 20x magnification. At the Experimental Pathology Core (CSU), the images were acquired using 
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an Olympus VS120 microscope (Olympus, Center Valley, PA) using the Olympus VS-ASW 

software (v.2.9; Olympus, Center Valley, PA) at 20x magnification. Images acquired within the 

MIP Department were generated on a Nikon Eclipse Ti microscope  (Nikon, Melville, NY) at 20x 

magnification, using the Nikon NIS Elements AR software (v. 4.51.00; Nikon, Melville, NY). In 

total, for the training and subsequent validation of LIRA, lung sections from 176 mice were 

scanned digitally to generate 176 digital image scans (containing all five lung lobes for every 

mouse per microscopic slide and per digital image scan). Because of the heavy computational 

load that occurs from the large size of pathology scans, digital image files were generated 

separately for every individual lung lobe (resulting in five digital image files per mouse).  

 

2.2.3 - Lesion And Histopathology Classification Scheme 

The histopathology classifications used for the creation of the training, test, and validation 

sets included the original classifications of pulmonary lesion types in the C3HeB/FeJ mouse 

model, as previously described by Lenaerts et al. [71], [74]. Briefly, C3HeB/FeJ mice present with 

three distinct pulmonary lesion types after an Mtb aerosol infection. Type I lesions show well 

organized, caseous, necrotic lesions with a layer of foamy macrophages around a core composed 

of neutrophilic debris, which is surrounded by a collagen rim with interstitial macrophages 

admixed within the rim. Type I lesions contain high bacterial numbers, which are either 

extracellularly located in the lesion core, or intracellular in foamy macrophages. The Type II 

lesions are less organized with a massive recruitment of neutrophils, resulting in large areas of 

alveolar wall necrosis throughout the lung parenchyma. Type II lesions also contain high bacterial 

numbers, both intra- and extracellularly. Type III lesions develop as a result of the accumulation 

of lymphocytes, epithelioid, and foamy macrophages as well as small pockets of neutrophils. The 

latter is similar to the main lesion type described for other immunocompetent mouse strains, such 

as the BALB/c and C57BL/6 [72], [179], [180].  
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In addition to the lesion classifications, other histopathology categories were added for the 

machine learning approach to ensure the inclusion of healthy tissue, non-Mtb specific lung 

pathology, artifacts, and an empty slide feature. In total, seven classification categories were 

identified, which were as follows: Type I Rim, Type I Core, Type II, Type III, Healthy, 

Miscellaneous (Misc.), and Empty slide. Each classification is characterized by certain 

macroscopic pathology features, as well as microscopic features based on multiple different cell 

types. Each of the seven classifications is described in detail below and are presented in Figure 

1. 

The Type I (caseous necrotic) pulmonary lesion type is characterized by two distinct 

pathology features, which include a collagen rim and a caseous necrotic core. For this reason, 

the Type I lesion was categorized into two distinct classifications for the analysis, defined here as 

the ‘Type I Rim’ and ‘Type I Core’ categories. The Type I Core is composed of central necrosis 

surrounded by a dense neutrophilic debris layer, and a foamy macrophage layer which lies within 

the collagen rim. The Type I Rim composition includes the collagen rim and the outside layer 

composed of fibroblasts, epithelioid, and activated macrophages, and clusters of lymphocytic 

cells. The ‘Type II’ pulmonary lesion consists primarily of large numbers of neutrophils at times 

visible as a honeycomb-like structure of lung parenchyma. Along the periphery of the Type II 

lesion, the presence of aggregates of extracellular DNA, pockets of lymphocytes, and 

compressed tissue can be present. These pathology features are mostly found in close proximity 

and, therefore, also classified as Type II. The ‘Type III’ pulmonary lesions are cellular 

inflammatory lesions composed primarily of epithelioid, foamy and activated macrophages, large 

numbers of lymphocytes, and small pockets of neutrophils. The ‘Healthy’ classification is here 

reserved for tissue features, such as healthy lung parenchyma, bronchiole epithelium, blood 

vessels, compressed tissue, and any other pulmonary tissues that are present in healthy 

individuals. The ‘miscellaneous’ classification encompasses a broad array of tissue pathology 

features that are not found in healthy tissue, that are not part of the specified TB lesions, and are 
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not associated with healthy pulmonary tissue. The miscellaneous classification includes pleural 

pneumonia, adipose tissue, non-TB specific inflammation, as well as staining and processing 

artifacts. Lastly, the ‘empty slide’ classification was included as a separate category, although this 

classification was ultimately not included in the final performance and accuracy analysis of the 

results.  

 

2.2.4 - The LIRA Pipeline  

LIRA was developed as a modular neural network. This implementation of multiple neural 

networks working together follows the natural logic employed by trained researchers to classify 

lesions by intuitively first investigating on a more general, macroscopic level (for Type I lesion 

recognition), followed by a more detailed analysis on a microscopic level to identify other 

pathological features on a cellular level. In preliminary work, we used a single CNN to identify all 

seven classifications. However, due to similarities between multiple lesion types at a microscopic 

scale (such as the necrosis encountered in a Type I Core and a Type II lesion), multiple neural 

networks operating at different visual scales (macro and micro) were used to limit misclassification 

of lesion types. The final approach, illustrated in Figure 2.2, employs a modular architecture [173]–

[176] with three CNNs and two human intervention checkpoints. After a digital image is uploaded, 

in a first step, the macro-classifier (CNN1) identifies the Type I physiological structure with its 

characteristic caseous necrotic center and collagen rim. Human feedback is required after this 

initial step to reduce the false positive rate of Type II lesions misclassified as Type I lesions (see 

also in result section 1). The macro-classifier CNN1 will then identify the individual image areas 

either positively or negatively for the Type I pathology features. Based upon the macro-classifier 

CNN1 prediction, the digital image areas are partitioned into two separate data sets, classified as 

‘Type I’ or ‘not Type I’ lesion. Subsequently,  both the positively or negatively identified image 

areas are further analyzed at a microscopic level based on cell types, by either the CNN2 or the 

CNN3 micro-classifiers. Both CNN2 and CNN3 require that the digital image sections are tiled 
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into individual image patches that are 80x145 pixels in size. In case a Type I lesion is detected 

after CNN1, then CNN2 analyzes these image patches further and classifies each image patch 

as either Type I Rim, Type I Core, Healthy Tissue, Miscellaneous, or Empty. The remaining image 

patches (not identified by CNN1) are in parallel further classified with CNN3 as either Type II, 

Type III, Healthy, Miscellaneous, or Empty.   

The output of the implementation of the three CNNs uses raw image patch counts (RIPC) 

per classification category, which are the sum of the tiled image patches for each classification. 

RPIC are classified, classification locations recorded, and subsequently visualized as colored 

overlays on the digital image. Every classification category is represented by a different color for 

easy visualization, qualitative analysis and result verification (See Figure 2.1). The classifications 

with unique colors for the seven pathology classifications are then overlaid and smoothed with a 

node labeling algorithm [181], with each image patch classification being considered an individual 

node, onto the original H&E stained scanned digital image. The digital image of the lung lobe with 

colored overlay is then inspected and verified by the user at a second human intervention 

checkpoint, and at this point, the user can make changes before the final classification 

calculations are performed (Figure 2.2). Ultimately, the final output of LIRA using the two human 

intervention checkpoints includes the enumeration of the various lesion types and the calculation 

of area of lung involvement per classification category (presented as % lung involvement).  

 

2.2.5 - Neural Network Training 

All CNNs in the LIRA pipeline were trained using the Keras 2.0 machine learning 

framework in Python 3.5, on an NVIDIA Titan X GPU. Using a built-in human-in-the-loop 

classification tool for LIRA, trained research technicians assisted in creating the training set for 

CNN1 by collecting 791,000 individual image patches with a patch size of 128x128 pixels. The 

purpose of these patches was solely to identify the Type I lesion structure at a macroscopic level. 

Additionally, 1.2 and 1.3 million image patches with a patch size of 80x145 pixels were collected 
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in a similar manner for further classification at a microscopic level for both the Type I (CNN2) and 

Non-Type I lesion classification (CNN3), respectively. 

Each CNN model was subsequently trained on the provided training set of image patches, 

with the following parameters as implemented in Keras 2.0. Values for training and validation 

were initially chosen using a Bayesian Optimization Algorithm, and values were further adjusted 

by hand. The composition of each of the neural networks is presented in Table 2.1.  

 

Table 2.1. Tables explaining the specific details on the creation of our model. The top table is the 
makeup of the Type I detector (CNN1), and the bottom table contains the information for the other 
two CNN (CNN2&3).   

 

2.2.6 Validation Of Software  
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After training the CNNs, a validation step was included using a separate digital image set. 

Validation of the entire LIRA pipeline was performed by comparing results to a classical manual 

pathology readout. First, the performance of the LIRA software was assessed to recognize the 

various lesion types, i.e., calculation of the percent error per lesion type by LIRA when compared 

to the analysis by the experienced TB researcher (as baseline). Second, the percent agreement 

between four board-certified veterinary pathologists (American College of Veterinary 

Pathologists) was calculated by comparing the results after classifying image patches with and 

without LIRA assistance. Lastly, the histopathology readout was measured more robustly by 

calculating a reliability coefficient developed to measure the agreement among observers, using 

the Krippendorff’s alpha coefficient [182]. The coefficient was calculated and based on data 

generated by four board-certified veterinary pathologists with and without the use of LIRA, as well 

as four research technicians with the use of LIRA.  

To assess the agreement in the analysis by the pathologists with and without the use of 

LIRA, seven randomly selected scanned images of single lung lobes were selected for the 

software validation step. In a first step, the pathologists hand labeled each 80x145 pixel image 

patch using one out of seven classifications (same as described for LIRA). Data on every 80x145 

pixel-sized image patch classification was collected as RIPC. The hand-labeled result by the 

pathologists and technicians generated a seven-color classification overlay for every digital 

image. The result also included the calculated RIPC for each of the seven classification categories 

for every digital image of a single lung lobe. In a second step, seven days later, the pathologists 

and research technicians were presented with the same seven digital images of lung lobes to 

review, this time with the assistance of LIRA predictions for both the macroscopic (CNN1) and 

microscopic classifications (CNN2, CNN3). Both the pathologists and technicians were requested 

to review the LIRA predictions, and to intervene and potentially modify the Type I lesion detection 

at the first intervention step (CNN1 LIRA prediction) and/or the individual image patch 

classifications at the second intervention step (CNN2, CNN3 LIRA prediction) if needed.  
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The analysis of the validation results included the calculation of the percent agreement in 

prediction results between the four pathologists[183]. Using percent agreement does not take into 

account that classifications may have been selected by chance; it is, however, still a commonly 

used metric and useful as a first measurement in the context of this work [184], [185]. The formula 

is PA=NxANyA+ND×100 where PA is percent agreement, NA is the number of agreed upon 

ratings divided by the total sum of cases, and ND is the total cases of disagreements.  

 As mentioned before, the classical histopathology readout is only semi-quantitative and in 

some cases subjective, which makes comparisons of the LIRA prediction results to a gold 

standard unreliable.  To study the variance in readouts between the different pathologists after 

manually reviewing the digital images, we opted for an inter-annotator comparison approach to 

calculate the agreement among the pathologists with and without LIRA. The Krippendorff’s alpha 

coefficient calculation using nominal data and any number of observers was implemented here 

as an analysis tool to quantify the agreement between the prediction results of multiple observers 

with or without assistance with LIRA. The formula is provided below, where nuc = the number of 

values c assigned to unit u. nuc  m observers, nuk by analogy nu. =cnuc = the number of values 

assigned to unit u, n.c =u|nu.2nuc = the number of pairable values c occurring in the reliability data 

(omitting all units with lone or no values: nu.1) n.. =u|nu.2nu. = the total number of all pairable 

values in the reliability data (omitting all units with lone or no values: nu.1); n.. mN. 

 

The Krippendorff’s alpha approach takes into account chance classifications, can be used with 

nominal data, using more than two raters, with multiple categories, plus the approach can be used 

with large datasets [186]. Each image patch was considered as a separate observation, and the 

classifications from all four pathologists were used for calculations. The Krippendorff’s alpha 
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approach provides a coefficient between 0 and 1, with α < 0.667 being rejected, α ≥ 0.667 being 

the lowest acceptable limit, and α≥ 0.800 being considered to have good agreement [187].    

 

2.2.7 - Evaluation Metrics For Performance And Accuracy Of The Neural Networks  

For CNN1 the sensitivity was calculated by 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ∗ 100 and specificity 

was calculated using  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) ∗ 100. These numbers were acquired by counting 

the number of true positives, true negatives, false positives, and false negatives within 70 digital 

images of lung lobes that had been classified by the CNN1 detector. This approach did not 

stipulate that the entire lesion was detected, but any area of the lesion be correctly or incorrectly 

identified.  

In order to determine the accuracy of CNN2 and CNN3, a standard or ground truth 

classification was established on 12 digital images by a researcher with substantial experience 

analyzing C3HeB/FeJ mouse pathology (author Bryce C. Asay). The researcher manually labeled 

each image patch using one of the seven different classifications described earlier. The 

researcher was also the main individual training LIRA, and therefore this analysis was mainly 

aimed to investigate whether LIRA performed adequately and met expectations. The 12 digital 

images containing a lung lobe consisted of three images primarily composed of Healthy Tissue, 

three images primarily composed of Type I lesions, three images composed of Type II images, 

and three images composed primarily of Type III lesions. Total image patch counts for only the 

classification of interest were then used to calculate the percent error for each individual 

classification for LIRA compared to the manual labeling result by the researcher.  

 

2.2.8 - Computer Code Availability 

 At publication, the computer code will be made open source to the research community 

(Github), and we will include a statement in the Methods section, under the heading "Code 
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availability", indicating where and how the code can be accessed without any restrictions. This 

will be made publicly available through the Lenaerts lab Github repository.  
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2.3 - RESULTS 

2.3.1 - Ability Of CNN1 To Identify Caseous Necrotic (Type I) Lesions 

  After training CNN1 with the digital image training set, a validation step was introduced to 

evaluate the sensitivity, specificity, and false-positive rate of classifying Type I lesion cores. After 

an image is uploaded, the Type I object detector (CNN1) is used to macroscopically detect the 

caseous necrotic center of Type I lesions (Figure 2.1, 2.2). LIRAs CNN1, the Type I object 

detector, showed to be consistent in identifying and delineating Type I lesion structures, with a 

sensitivity of 86.36%. CNN1, however, shows a high false-positive rate by misclassifying other 

lesion types for a Type I with the specificity of 55.11%. Most misclassifications occurred when 

large areas of cellular necrosis were visible in the center of Type II lesions, which on a single 

image patch shows a similar cellular composition as the Type I cores. The high recall rate is likely 

the result of the training set for the creation of CNN1, having an insufficient number of images 

needed for training. To decrease the false positive rate for CNN1, continued training with a larger 

training set might be an area of improvement for future iterations. Despite the high recall rate, we 

opted to retain CNN1 as it facilitated the rapid identification of Type I lesions for the user, and it 

provided an accurate demarcation of its margins from surrounding lesions or tissue. For instance, 

the validation results showed that the inclusion of CNN1 decreased the inconsistencies seen after 
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hand labeling among multiple pathologists in identifying and demarcation of the Type I Rim. 

Overall, the addition of CNN1 proved to be a substantial time saver as more time is allocated to 

accurately identify the margins of the Type I lesions than in the removal of potential 

misclassifications.  

 

2.3.2 - The Accuracy For LIRA In Comparison To An Experienced TB Researcher  

Table 2.2. LIRAs accuracy measured by percent error, which measures the precision of each of 
the predicted classifications. 
  

 

After the initial positive or negative classification by the macroscopic object detector 

CNN1, the areas designated as Type I were further classified by CNN2, and the remaining image 

patches were classified in parallel by CNN3 (Figure 2.1, 2.2). To determine the accuracy of the 

overall pipeline (Figure 2.2), a ground truth was established on 12 digital images by a researcher 

with substantial experience analyzing C3HeB/FeJ mouse pathology. These 12 images consisted 

of lung lobes composed of three Type I dominated tissues, three Type II dominated tissues, three 

Type III dominated tissues, and three predominately Healthy tissues. Total image patch counts 

for only the classification of interest were used to calculate the percent error per individual 

classification. The results for LIRA without human intervention were then compared to the manual 

labeling results by the researcher. As seen in Table 2.2, the overall percent error for all seven 
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classifications was 12.11% across all 12 digital images. Healthy Tissue and Type III had the 

lowest percent error, while Type II had the highest percent error at 38.37%.  

 The high percent error observed for the Type II lesions for LIRA compared to the 

experienced researcher was the result of poor demarcation by LIRA of the surrounding lesion 

tissue, which is often composed of compressed tissue and in some cases, aggregates of 

extracellular DNA (potentially NETs). Compressed tissue is the result of lesions pressing into 

healthy lung parenchyma, which changes the morphological structure. The aggregates of 

extracellular DNA are considered part of a Type II lesion, whereas compressed tissue, as defined 

here, is considered “Healthy Tissue”. Another area contributing to the decrease in accuracy by 

LIRA was from processing artifacts to generate the microscope slides. This included areas of high 

red blood cell number, which were incorrectly classified by LIRA as Type III. Also, minor 

differences in the staining procedure of the microscope slide affected the intensity and colors of 

the tissue and its images, which resulted in slight differences in classification by LIRA. Lastly, 

sectioning artifacts such as microtome occasional knife chatter, lines, or fragment holes were also 

prone to result in misclassification by LIRA.  
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2.3.3 - Improved Agreement Of Histopathology Classifications Among Pathologists Using LIRA 

  

Figure 2.3. Line graph representation of each cohort: LIRA, Pathologist, Pathologist+LIRA. Left 
Y-axis is the Raw Image Counts generated during classifications, Right Y-axis is each of the 
classifications, and the bottom X-axis is the image number. Each colored line represents an 
individual pathologist or LIRA. As visualized, there is a smaller range of raw image patch counts 
when the pathologists are assisted by LIRA (Pathologist+LIRA) than when the pathologists are 
unassisted (Pathologists). Many of the values that the Pathologists+LIRA gave are only 
marginally different than the classifications that LIRA proposed.  
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To evaluate the performance of LIRA in terms of reproducibility and concordance between 

users, a second validation step was included using a previously unseen digital image set. Seven 

randomly-selected scanned images of single lung lobes were used for this validation step. The 

goal for this validation step was to compare the pathology classification results from the classical  

 

Figure 2.4. Image 3, which consists of Type I Core (Red), Type I Rim (Blue), Type II lesions 
(Green), Type III (Yellow), and Healthy Tissue (Pink). The top row consists of pathologists hand 
labeling the tissue, the middle row consists of pathologists with the assistance of LIRA, and the 
bottom row is the labeling by the research associates with the assistance of LIRA.  Black arrows 
are pointing out the bronchial airways, and the white arrow is pointing out areas of artifact 
generation.  
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pathology analysis approach of four pathologists or four research technicians, to the prediction 

results of LIRA with pathologist assistance (Figure 2.3). The comparison focused on three criteria: 

1) the accuracy of both approaches in identifying the correct pathology classification; 2) the 

accuracy of demarcation of lesion margins that affect the area of lung involvement, and 3) the  

 

Figure  2.5. Color overlay results of 4 images from our validation set with (a) Image 3, (b) Image 
5, (c) Image 6, and (d) Image 7. The far-left images are  the best-labeled Pathologist image, the 
middle images are the poorly labeled Pathologist images, and the far-right are the poorly labeled 
Pathologist image but with LIRA assistance. When a pathologist who labels poorly has assistance 
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from LIRA, the final result is in more in accordance with the best-labeled pathologist example. 
This allows studies to be comparable across multiple pathologists, limiting the amount of error 
that might have been introduced.  
 

variability between users. For this purpose, the pathologists were first given seven images to 

classify each image patch by hand.  After one week, the pathologists used the same seven digital 

images in a random order to classify each image patch now with the assistance of LIRA. Using 

the classical pathology approach, the results of the four pathologists showed a consensus on the 

specific lesion classification in general, but not always on the extent of the percent lung 

involvement (Figure 2.4). The disease classification categories with the most variability in results 

were Type I Rim and Type II lesion types, which subsequently also impacted the Healthy tissue 

classification indirectly. The variation in results within these categories was mostly the result of 

inaccurate demarcation of lesion margins after manual labeling by the pathologists. Specific 

examples detailing the high variability for each of these classifications are presented in Figure 2.5 

and Supplemental Figures 2.3 & 2.4.  

As LIRA makes classification predictions per image patch at a microscopic level, it became 

clear in the validation step that both CNN2 and CNN3 can identify certain areas of a single lesion 

as one classification whereas another area of the same lesion could be identified as a different 

classification. An example of this can be observed in Figure 2.4 (Image 3), which consists of one 

Type I and multiple Type III lesions. In this example, for the pathologist-only readout, an observed 

disagreement was seen for the demarcation of the Type I Rim and the start of the Type III lesion 

that is adjacent to it.  Only one of the four pathologists (pathologist 2) had accurately identified 

neutrophil-rich regions of the Type III lesion (in green), which is an unusual event for a Type III 

lesion. For the pathologist-assisted LIRA results (Figure 2.4), three out of four pathologists 

decided to reduce the lung area for the Type I lesion after being prompted by LIRA. In addition, 

all four pathologists recognized regions of neutrophil infiltration only after the assistance of LIRA 

(in green). Another disagreement between pathologists was observed regarding the classification 
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of bronchial airways and artifacts. For the pathologist-only readout, two out of four pathologists 

classified the bronchial airways as Healthy tissue, and the two remaining pathologists classified 

these regions as Empty slide. The same was observed for a tissue processing artifact visible on 

the image scan (a fragment hole artifact), which was classified by two pathologists as Healthy 

tissue and by the other two as Empty slide. With the assistance of LIRA, the results for all four 

pathologists were now in agreement, and both the bronchial airways and the artifact were 

classified correctly as empty slide. The change in the classification that occurred at the 

pathologists’ checkpoints after CNN2 and CNN3 showed to have a significant impact on the 

output data in terms of reducing the variability and increasing reproducibility of the results.    

 

Table 2.3. For each image, the percent agreement and Krippendorfs alpha were calculated to 
determine the agreement between pathologists' classifications without (Path) and with LIRA 
(Path+LIRA). 

 

 

Reproducibility of histopathology analysis regardless of the pathologist analyzing the data 

or the variation that can occur over time is important when comparing data across preclinical 

studies or laboratories. To measure whether the agreement between pathologists increased with 

the assistance of LIRA, multi-rater percent agreement, and the Nominal Krippendorff’s alpha 

approach were used. Each image patch was considered a separate observation for the analysis, 
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and the percent agreement was calculated per image. The multi-rater average percent agreement 

without LIRA for the four pathologists across all images was 87%. Images showing the lowest 

agreement consisted of primarily Type I (Images 1&3) and the Misc. classification (Image 7) 

(Table 2.3 and Figure 2.5D). With the assistance of LIRA, the percent agreement for the four 

pathologists increased across all images, and there was a 53% decrease in disagreement overall 

to achieve an overall agreement of 94%. The most prominent increase in percent agreement was 

observed for the images containing Type I lesions and the Misc. classification.   

Using a more refined additional metric of analysis, the Krippendorff’s statistical analysis 

approach was used for calculating the nominal alpha coefficient. Again, each image patch 

classification by the four pathologists was seen as a separate observation. Manual labeling of 

seven pathology features for seven images by the four pathologists showed an average alpha of 

0.796 (Table 2.3), which is interpreted as tentative. Four of the seven classified images were 

below the 0.80 threshold, which means the pathologists failed to achieve good agreement on the 

classification of those images. In contrast, when performing the Krippendorff’s analysis on the 

data generated by the four pathologists with the assistance of LIRA, the calculated average alpha 

was 0.91 (Table 2.3). The Krippendorff’s analysis results for all seven images were above the 

0.80 threshold, and results for all seven images were above the 0.8 threshold, which is considered 

good. These results confirmed our observations using percent error, providing further evidence 

of the benefits of LIRA assistance.  

The increase in agreement among pathologists with the assistance of LIRA was the result 

of two main beneficial factors. First, the use of the LIRA software increased the accuracy of the 

demarcation of lesion margins, which affected the percent lung involvement in various categories 

indirectly. In addition, LIRA prompted the pathologist to revisit and re-analyze specific areas in 

the lungs, often small in size, which were often overlooked using the classical histopathology 

approach. Examples are shown in Figure 3 (Pathologist 1, Pathologist 1 + LIRA) and Figure 4 

(Images 6 & 7), which show the improvement of lesion margin demarcation with LIRA assistance. 
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With the use of LIRA, the classification of the pathological features not only improved the 

agreement between pathologists, but the results tended to be closer to the predictions made by 

the most experienced TB pathologist (Pathologist 4) (Figure 2.3). An example where LIRA 

prompted the user to re-analyze their initial prediction is shown in Figure 3D. Here, a large area 

of fibrotic tissue is observed, which should have been classified as miscellaneous as it does not 

fit any other definition. With the assistance of LIRA, the pathologist changed the classification to 

miscellaneous, which was in agreement with the other three pathologists. The accuracy of 

classifying image features in the miscellaneous category is mostly dependent on the background 

and level of expertise of the user, and therefore this category will always be the most difficult to 

standardize across multiple users. The assistance of LIRA in the miscellaneous category, 

however, did minimize the misclassifications in this category and was an added benefit.  

In summary, the results of the validation tests showed a clear benefit of using LIRA 

assistance in the pathology readings by board-certified pathologists, and this by improving the 

accuracy in the demarcation of lesion margins as well as prompting the user to re-analyze certain 

areas thereby increasing conformity and reproducibility of an otherwise subjective readout. 

Additionally, compared to previous manual pathology analysis methods employed by the four 

pathologists taking about 15-30 min manual effort per lung lobe, an average decrease in manual 

analysis time of 82% was observed, now reducing the histopathology manual analysis to 3-10 

min semi-automated effort per lung lobe (with 5 minutes on average per lung lobe).  

 

2.3.4 - Trained Research Technicians + LIRA 

In a final validation assessment, we investigated whether LIRA could be easily employed 

by research technicians, and how their prediction results would compare to those made by 

specialized pathologists. For this purpose, four research technicians were first trained in the 

identification of lesion types of the C3HeB/FeJ animal model (Trained Research Technician + 

LIRA). The technicians were then asked to analyze the same seven digital images of a single 
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lung lobe, in that same manner as performed by the pathologists for the validation step. The 

results showed that for the research technicians with the assistance of LIRA, similar classification 

predictions were obtained as described earlier for the pathologists. Most notable was again the 

accurate demarcation of the lesions with LIRA assistance (Figure 2.4). The results by research 

technicians assisted by LIRA exhibited a slightly higher variability when compared to the results 

of the pathologists assisted by LIRA. One area where the research technicians using LIRA 

showed less accurate results was in the identification of the Miscellaneous Tissue category. For 

example, in Image 7, a large area of fibrotic inflammation was not identified by the research 

technicians, whereas this was correctly classified by the pathologists using LIRA (Figure 2.4, 

Misc., Image 7). Two out of four research technicians correctly identified fibrotic inflammation 

(Figure 2.4, Image 5), which was also observed by the pathologists.  

In summary, the output of the research technicians with LIRA was remarkably similar to 

that of the experienced pathologists using LIRA, except when uncommon or infrequent tissue 

types were present.  Taken together, the data of the validation study indicates that even with the 

implementation of AI, a certain level of pathology expertise is still preferred to quantify certain 

unique lesion pathology accurately.  

 

2.4 - Discussion 

 Traditional histopathological analysis generally involves an experienced board-certified 

pathologist, often using a semi-quantitative scoring system to identify and quantify unique 

disease-specific pathology features [79], [188]. Specific scoring criteria are developed which can 

distinguish between various disease states, thereby informing about disease progression or on 

effects of treatment intervention. These scoring criteria are then applied in double-blind 

histopathology analysis to reduce bias and variability. However, issues such as reproducibility 

between studies and variability in readouts by different pathologists still exist, and this continues 

to be an area of active research [116], [189]. In non-clinical TB animal studies used in drug and 
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vaccine development, studies are often long term, require multiple time points, and generally 

occur in more than one laboratory to confirm that novel treatments or interventions are 

reproducibly efficacious. To evaluate the progression of pulmonary lesions in TB animal models, 

a histological grading system was developed years ago, based on grading granulomatous lesions 

for inflammatory cell numbers and their infiltrative distribution pattern [159]. The pathologist would 

then calculate a mean total lesion score for individual tissues; as normal (score of 1), mild (score: 

1–3), moderate (score: 3–6), severe (score: 6–8) to reflect the disease state per animal. The 

variability in histopathology analysis between studies, time points, and individual pathologists, 

owing to the subjective nature of this method, was often substantial thereby making it difficult to 

interpret results. In addition, studies would be time-consuming, and results over time will be 

affected by user fatigue. In this report, we describe the development of novel software for a rapid 

automated and unbiased digital image analysis using a machine learning approach based on 

convolutional neural networks to evaluate the histopathology of mouse models for tuberculosis in 

a quantitative manner. The goal was to make the software intuitive for its user, as well as facilitate 

and accelerate histopathology analysis for the non-expert.  

 We report here on the training and validation of a model for the accurate classification of 

seven pathology features using histopathology images. The model uses human classifications to 

learn robust features from a large number of H&E stained image patches. The model is currently 

suitable for quantitative lesion identification of the C3HeB/FeJ mouse model for tuberculosis. 

Initial attempts tried to implement a single convolutional neural network to identify all seven 

histopathology classifications. However, significant misclassification was observed caused by 

similar cell compositions in more than one lesion type. Therefore, LIRA was created using three 

individual neural networks to create a single modular network to generate more accurate 

predictions based on both macroscopic- and microscopic histopathology events. Currently, the 

accuracy of the model is not sufficient to rely solely on the implementation of the LIRA software 

without any human intervention. Two human intervention checkpoints for the user are still 
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required: first, to confirm and potentially modify the Type I lesion prediction (CNN1) and second, 

to confirm the individual image patch classifications made by LIRA (CNN2, CNN3). Moreover, 

human intervention can help prevent the misclassification of infrequent pathology events and 

artifacts on which the specific CNN had not previously been trained. Of note, certain 

misclassifications by LIRA may ultimately be beneficial to the process as they can bring a 

particular pathology feature to the attention of the user, and can prompt the researcher for closer 

analysis. Future iterations will focus on improving the model by including additional datasets for 

training when more studies become available to increase LIRA’s performance under all 

circumstances.  

 There were multiple advantages to using assistive software in identifying and quantifying 

disease states with digital image analysis. First, we observed a significant reduction in analysis 

time and user-fatigue, whereby an 82% decrease in time was achieved for quantitative analysis 

in comparison to the standard histopathology scoring methodology. Second, with the assistance 

of the software, the variability of the predicted classifications among different pathologists was 

greatly reduced. Of importance, with the assistance of LIRA, a more accurate pathology 

comparison will be possible across multiple animal studies, different longitudinally time points, 

and studies performed at multiple laboratories. Where LIRA outperforms the individual pathologist 

is the consistent and accurate demarcation of lesion margins, as well as the detection of small 

regions on a microscopic level, which both substantially affects the quantitative analysis of the 

lesion area involvement. Pathologists and LIRA, in most instances, both correctly classify the 

lesion type, but the variability in the results from classical pathologist readouts is derived from the 

imprecise or inconsistent demarcation of lesion margins. Where pathologist expertise and 

intervention is still needed and preferred is for the identification of infrequent pathology events or 

unusual artifacts.  As also described for other applications in medical image analysis, diagnostic 

confidence never reaches 100%, and combining machine learning and physician or pathologist 

experience will enhance system performance [190].  
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 During the development of the LIRA software, it became apparent that the quality of tissue 

sample preparation can impact the accuracy of the results of the software. LIRA is affected by 

features such as the presence of high red blood cell numbers and processing artifacts, which led 

to the software incorrectly classifying these regions as pulmonary lesions instead of healthy 

tissue. Deviation from the sample preparation protocol presented in our methods section, 

including using frozen sections or changes in section thickness, will also result in a decrease in 

accuracy. When sample preparation varies, it is recommended that a new model be trained on 

image patches generated with these new protocols. In addition, the current iteration of LIRA is 

designed to identify lesion types for C3HeB/FeJ pulmonary tissue collected between 6 to 10 

weeks post-infection. We have tested LIRA on more commonly used BALB/c or C57BL/6 

pulmonary tissues infected with Mtb, and results showed these models are suitable for LIRA use.  

A future direction to improve the current LIRA pipeline are to generate a new classification 

for the surrounding Type II tissue and to increase the sensitivity of CNN1. LIRA predictions for 

Type II lesions could be significantly improved by creating a separate class for the surrounding 

tissue, primarily composed of aggregates of extracellular DNA and compressed tissue. And an 

increase of the Type I detector (CNN1) sensitivity might allow omission of the first human 

intervention checkpoint. The current false-positive rate for the Type I Core is the result of the 

limited sample numbers that were available at the time of training CNN1. With an increase in the 

data available for training and the utilization of generative adversarial networks (GANs) [132] and 

pre-trained neural networks [191] represent possible future solutions.  

A potential adaptation of LIRA’s architecture for use in TB preclinical models could be an 

enhancement beyond just classification and quantification of infection in tissues. Researchers can 

combine lesion classification features with additional quantifiable measurements. Of particular 

interest in TB drug and vaccine development is to include the mycobacterial quantification metrics 

of each individual lesion. The goal would be to integrate precise measurements on bacterial 

numbers after fluorescent staining [74], [192], as well as bacterial aggregation sizes, level of 
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fluorescence, and the average number of bacteria as a metric of area. With the availability of 

matrix-assisted laser desorption ionization (MALDI) imaging to assess drug levels across 

pulmonary lesions [18], [193], one can envision the development of a model that would integrate 

data sets from digital lesion pathology with bacterial metrics as well as drug exposure. 

 In conclusion, LIRA does not replace the histopathology analysis by pathologists but 

instead intends to improve the accuracy, speed, and reproducibility of the analysis. While there 

are certain limitations with the current model, these can easily be corrected and adjusted. The 

ability to more quickly and more accurately assess the effect of treatment interventions on 

histopathology of target organs will improve the evaluation of the efficacy of novel antibiotics and 

vaccines. Our demonstrated approach is not limited to TB and can be modified to include 

additional diseases and animal models, by creating new training sets and modifying the original 

architecture of LIRA to meet the needs of the researcher.   
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CHAPTER 3: IMPLEMENTATION OF LIRA TO ASSESS TREATMENT RESPONSES USING 

THE C3HEB/FEJ MOUSE EFFICACY MODEL. 

 

3.1 - Introduction 

Not everyone who becomes infected with Mtb will develop active tuberculosis. In 90% of 

cases, the infected individual will exhibit latent disease, which is when a person is infected with 

Mtb but does not have overt signs of an active TB infection. They are not infectious, and the only 

sign of infection is a positive reaction to the tuberculin skin test or TB blood test. The risk of 

developing active disease is higher for individuals with an impaired immune system, especially 

those with a co-HIV infection or diabetes.  Even though symptoms are benign in latent TB, 

treatment is essential to reduce the risk that the infection will progress to active TB disease. 

Depending on the state of the disease (active or latent), age of the patient, overall health, if 

antibiotic resistance is confirmed, and location of the infection within the host, the duration and 

specific drug regimen will vary. For latent disease, the treatment consists of Isoniazid (INH) and 

Rifapentine (RPT) for 3 months [194]. For active disease, there are treatment regimen guidelines 

for drug-susceptible TB, drug-resistant TB, multidrug-resistant TB (MDR TB), and the uncommon 

extensively resistant tuberculosis (XDR TB) [195]. There are two different phases in treatment 

regimens in patients for drug-susceptible TB disease, using first-line therapies, called the 

intensive phase and the continuation stage. The intensive phase includes a combination of INH, 

RIF, PZA, and EMB taken 7 days/week for 8 weeks. This is followed by the continuation phase 

which consists of additional treatment of INH and RIF for 7 days/week for an additional 4-7 months 

[5]. For the purposes of the aim analysis, I will only be providing a condensed background 

synopsis on the antibiotic INH. INH is bactericidal to actively dividing extracellular and intracellular 

bacilli, and bacteriostatic to slow-growing bacilli. It is a prodrug that must be activated by the Mtb 

catalase-peroxidase enzyme KatG which later forms a covalent adduct with the NAD cofactor. 

The INH-NAD adduct acts as a binding competitive inhibitor for InhA in the FAS II fatty acid 
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biosynthesis pathway[196]. In the presence of INH, actively growing Mtb will undergo cell lysis, 

but after removal of the drug the surviving bacilli will resume rapid growth and division[197]. Drug 

resistant TB relies on second-line therapies which entail longer treatment times of 18+ months, 

increased negative side effects, and consist of a combination of thioamides, diarylquinoline, 

nitroimidazole, fluoroquinolones, and aminoglycosides. XDR TB treatment is completely 

dependent on the drugs that are still effective and currently relies heavily on the newly developed 

drugs such as BDQ or delamanid [198].  

Because treatment is at a minimum 6 months in duration, non-adherence to TB treatment 

is of major concern. In a recent study, it was reported that 33% of patients missed either one or 

two doses within a 2 week period [199]. Failure to properly adhere to treatment schedules can 

result in an increased risk of the spread of TB and may lead to the development of drug resistance.  

While resistance is considered an uncommon event, it is increasing to an annual rate of more 

than 20% [200]. This is a disturbing statistic since, according to the European Centre for Disease 

Prevention and Control (ECDC) 2015 report, MDR TB in Europe had a success rate of 46% and 

only 23.2% for XDR TB [201]. The WHO observed slightly higher rates with 56% of patients with 

MDR TB having a successful outcome [202].  Drug resistance is an increasing problem, but with 

the discovery of novel therapies, such as delamanid, pretomanid, and BDQ, we can increase the 

success rate of therapy.  

When a potential new drug candidate is identified, it goes through iterative phases of 

testing. This process is costly, with only a 13.8% probability of success that the proposed 

compound will be approved [203]. The percentage of success is important in prioritizing research 

funds and time. Having models that more accurately represent human outcomes is critical to help 

mitigate the risks involved. Compounds are initially tested in vitro, commonly with cell assays, and 

if positive results are seen, compounds are further tested in vivo using animal models. Animals 

are commonly used in TB pharmaceutical research because they offer the complexities of a host 

environment not available in vitro and help predict the efficacy, safety, and the optimal regimen 
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for human patients [204], [205]. There are many metrics measured in animal models used to 

determine the efficacy of TB drugs such as animal morbidity (weight, posture, and physical 

appearance), mortality, pathology, and bacterial burden (culturable and visual). Some aspects, 

such as monitoring the animal's weight, are quantitative with little room for user interpretation, 

while other metrics such as pathology currently rely on a mixture of qualitative and quantitative 

results to accurately describe the disease. Different types of data types collected during an 

experiment provide various benefits and limitations that need to be considered in their relation to 

proving or disproving the hypothesis.   

In our laboratory, the C3HeB/FeJ mouse model has been developed to be used as a tool 

in preclinical development of novel drugs and regimens. Throughout a drug efficacy trial one of 

the most important metrics that is measured is the severity of pulmonary lesion development. 

Untreated C3HeB/FeJ mice aerosol infected with a moderately virulent strain of Mtb consistently 

develop three independent lesions types termed Type I, Type II, and Type III (Figure 1.2) [74], 

[206], [207]. Type I lesion can be broken down into two separate classifications, the Type I Core 

and the Type I Rim. The Type I Core is everything from the caseous necrotic center to the fibrotic 

rim, and the Type I Rim is from the rim outward comprised mostly of fibroblasts, epithelioid, and 

activated macrophages, and occasional lymphocytes. Type II lesions are composed of a rapidly 

expanding caseous necrotic center comprised primarily of neutrophils but lacking the 

encapsulation of Type I lesions. Type III lesions are cellular, inflammatory lesions containing 

macrophages, lymphocytes, and small pockets of activated neutrophils. 5 weeks post aerosol 

infection lesions become distinguishable [74], and historically our laboratory has collected 

pathology within the 8 to 10 weeks window after aerosol. This is to allow for sufficient 

advancement of the pathology of Type I lesions, as well as the enrichment of mice that have Type 

I lesions. 10 weeks past the aerosol infection, the Type I lesions continue to grow in size which 

makes histology processing, especially sectioning, difficult to perform. Drug treatment in this 

mouse model and others have altered lung pathology development, generally by improving lung 
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pathology over time. This is demonstrated by previous studies that during treatment, lesion 

progression will either begin to resolve or halt lesion progression [208], [209]. However, it has 

been observed that efficacious antimicrobial drugs can also result in a substantial increase in the 

inflammatory response and lesion development. This immunopathologic event caused by 

treatment can result in a spike in morbidity and increased lung consolidation. In our experience, 

we found treatment with a new experimental drug being tested in our laboratory resulted in Type 

I lesions, which progressed to cavitary disease (personal communication, Dr. A. Lenaerts). In 

scoring pulmonary pathology, signs such as healing of lung pathology and decrease in lesion 

involvement are usually implying a drug is efficacious, but it is important to take into account that 

drug treatment could initially worsen lung pathology  

Treatment efficacy is also influenced by multiple factors, including the lesion-specific 

properties that influence drug penetration and access [210], [211]. Humans and the C3HeB/FeJ 

TB animal model both display a heterogeneity of lesion types that have varying 

microenvironments and physical lesion structures. Another similarity is that multiple different 

lesion types can exist within a single host independent of each other which can hinder attempts 

for successful treatment [22], [149]. The fibrotic rim within the C3HeB/FeJ mouse model Type I 

lesions is densely vascularized meaning the pharmacotherapy is often successful in these 

regions. In contrast, the Type I caseous center has had most of its vascular architecture destroyed 

causing a failure to properly mount an adequate immune response and little drug availability from 

the blood. This means the drug needs to diffuse across the cellular rim to the necrotic center 

without the aid of active or facilitated transport mechanisms. If an adjunct treatment strategy were 

available that would improve drug delivery into the encapsulated lesions (by, for instance, 

decreasing the integrity of the Type I in C3HeB/FeJ mice), it might shorten the length of treatment. 

Potential adjunct therapies include inhibition of the eicosanoid pathway [212], statins [213], [214], 

and vitamin D[215]. One adjunct therapy that had been explored in our laboratory was the use of 

losartan (LK) in an attempt to inhibit the formation of the fibrotic capsule in the Type I lesion [206]. 
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The hypothesis was that C3HeB/FeJ TB infected mice treated with LK will have inhibited 

progression of the collagen rim in the Type I lesion allowing for greater penetration of drugs 

resulting in reduced bacterial burdens. Adjunct therapies, such as LK, will need to be combined 

with current clinical therapies to see an increase of efficacy or a decrease in therapy duration. 

LK is an antihypertension drug that is commonly used to treat high blood pressure and 

provide protection to kidneys from damage resulting from diabetes. It works by inhibiting the 

vasoconstriction of blood vessels and increase blood flow[216]. This inhibition by LK specifically 

results in the reduction of fibrinogen, collagen I, collagen II, fibronectin, and TGF-β1[217]. There 

has been a reported secondary effect of LK in the reduction of fibrosis in multiple diseases such 

as skeletal muscle injuries [218], ovarian cancer[86], and bleomycin-induced lung fibrosis[219]. 

An earlier study in our laboratory evaluated the addition of LK to existing drug treatments in the 

TB C3HeB/FeJ animal model with the aim of using this anti-fibrolitic chemotherapy to manipulate 

the collagen rim of the Type I granuloma (study by Dr. Emily Driver, a Ph.D. student at the 

time)[206]. The goal of the previous study was primarily aimed at determining the effect of adjunct 

combination regimen on bacterial loads in the lungs and used a manual scoring system for the 

lung histopathology analysis.  

Current histopathology scoring metrics utilized a semi-quantitative methodology that is 

non-standardized and highly susceptible to user bias [78], [220]. To reduce bias and errors, 

common pathology parameters and guidelines are often used, such as standardized diagnosis 

metrics, grading, staging, and biomarker scoring. In the case of TB, no set scoring standards have 

been developed, which requires the researchers to develop their own. This makes comparing 

results across laboratories, studies, or even time points difficult. Even if the scoring systems are 

similar, they can result in varying interpretations. It also can mask results because the scoring 

parameters are not sensitive enough to distinguish differences. This is exemplified in TB scoring, 

where an ordinal score is given based upon arbitrary boundaries of the disease percent 

involvement. For instance, if a particular treatment cohort averages 12% lung involvement but 
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another cohort averages 23% lung involvement, with the current scoring system, they can both 

receive the same pathology score, even though biologically, the differences might be significant. 

With the recent advancements in ML and CV, a more targeted analysis with less human bias can 

be accomplished. This allows the reporting of quantitative assessments that are reproducible, 

less prone to human bias, and can be standardized across multiple laboratories and time points.  

 As described in Chapter 2, we demonstrated that LIRA increases the user agreement 

across multiple pathologists scoring the same microscopy slides. This analysis was performed on 

mice following their natural disease progression without any form of treatment or host 

manipulation. Next, LIRA’s performance needed to be tested on lung lesions from the C3HeB/FeJ 

mouse model that had been treated, therapies included immunotherapy and anti-mycobacterial 

drug treatments. ML classification models can be sensitive to changes in the image input, and the 

introduction of drug treatment can be a potential source of noise that may impact the proficiency 

of the model. It is important that the model is verified using standard pathology scoring 

methodology as a control, using C3HeB/FeJ histopathology images that have additional image 

noise from drug treatment, which may influence overall performance. We are hereby using a past 

C3HeB/FeJ study with a combination treatment of LK with classical TB drug treatment as an 

example of how to use the LIRA software in a TB drug treatment study. With the improved 

approach for histopathology analysis using LIRA, we hope in addition to investigate: 1) the effects 

of standard TB drugs on lungs pathology, 2) assess the potential of LK as adjunct therapy for TB, 

and 3) assess how using a targeted computational analysis can alter the interpretation of the final 

results.  

 Of most interest to my thesis was investigating how implementing a targeted data analysis 

approach can change the final interpretation of the data. By comparing historical data analysis 

interpretations using techniques that take a less targeted approach with data generated using 

LIRA, we have shown that there is a difference in the study outcomes. Masking of potentially 

efficacious drugs or major biological events not only makes drug efficacy more costly but also 
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impedes the development of other potential new therapies. With cost, reproducibility, and time 

becoming major hindrances in the development of new therapies, it is imperative that tools are 

developed that overcome these obstacles. LIRA represents a new tool for TB drug development 

that addresses many of the obstacles associated with human pathology scoring while also 

providing additional quantifiable data that was not available previously. LIRA is not only applicable 

to normal disease progression analysis as demonstrated in Aim 1 (chapter 2) but also can 

determine the severity of disease compared to a board-certified pathologist while quantifying 

additional data metrics for further analysis.  

 

3.2- Materials and Methods 

All methodologies for the animals, bacteria, chemotherapies, aerosol infection, and 

stereology were performed previously within the Lenaerts laboratory. Inclusion of this information 

for my dissertation is for convenience purposes but more detailed information can be found in 

Driver et al. [206]. The histology preparation, staining, microscopy, pathology scoring, and 

analysis were planned and executed by Bryce Asay for the purpose of this dissertation.  

 

3.2.1 Animals 

Female C3HeB/FeJ mice aged 6 to 8 weeks were purchased from Jackson Laboratories, 

Bar Harbor ME. Animals were housed in a bio-safety level III animal facility and were routinely 

monitored. Mice were specific pathogen-free which was verified by testing sentinel mice housed 

within each colony.  

 

3.2.2 Bacteria  

M. tuberculosis Erdman strain (TMCC 107) was used for aerosol infections and was 

prepared as previously described [221], [222]. In summary, Mtb bacilli were grown as a pellicle to 

generate seed lots. Working stocks were cultured by growing individual seed lots to mid-log phase 
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in PB medium containing 0.05% Tween 80 (Sigma Chemical Co., St. Louis, MO) in three 

passages. Before storage at -70֯C titers will be calculated by colony counting on 7H11 agar plates 

and divided into 1.5 ml aliquots.  

 

3.2.3 Chemotherapies 

3 weeks post aerosol infection mice were treated with one of 3 drug combinations: INH 

(25mg/kg), LK(50 mg/kg), and INH+LK (25+50 mg/kg) for 6 weeks. Due to the high acute 

mortality, the dose for LK was reduced to 20 mg/kg at week 2 of treatment for both the single and 

combination therapy.  

 

3.2.4 Aerosol Infection and Sample Collection 

C3HeB/FeJ mice were inoculated with a low-dose aerosol infection of Mtb Erdman strain 

in a Glas-Col inhalation exposure system resulting in an average of 15 bacteria in the lungs. To 

determine the infectious dose, five mice were sacrificed the next day[222]. At 3 and 6 weeks of 

treatment, mice were euthanized by carbon dioxide inhalation, the right caudal lung was collected 

for histology, and whole lungs were homogenized, and the bacterial burden was calculated by 

serial dilution on 7H11 agar plates.   

 

3.2.5 Pathology, Slide Preparation, and Imaging 

At the time of necropsy, the right caudal lobe is collected and fixed in 10% neutral buffered 

formalin in phosphate-buffered saline. Samples were embedded in paraffin wax and sectioned to 

a thickness of 5µm using a microtome before being mounted on a slide. Before further processing, 

the paraffin is dissolved using either Histoclear (Electron Microscopy Sciences, Hartfield, PA) or 

xylene and gradually rehydrated using multiple baths with a systematic decrease in alcoholic 

concentration. Each slide is then stained with Hematoxylin and Eosin and imaged using an 
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Olympus BX41 with Olympus DP70 camera controlled by Olympus DP Software (Olympus, 

Melville, NY).  

 

3.2.6 Stereology  

Lung, lesion, and collagen deposition was originally analyzed using Stereo Investigator 

8.2 (MBF Biosciences, Williston, VT) [223]. The workstation was composed of a Nikon 80i 

Research Microscope equipped with a bright field CFU objective (2x/0.01 Plan Apo, 4x/0.2 Plan 

Apo, 100x/1.4 Plan Apo), 2-z-axis computer-controlled stepping stage with linear grid encoders, 

Z-axis motorized specimen stage, color digital camera, and virtual slice Zoomify software. Lung 

and lesion areas were determined by using the area fraction fractionator module at the 40x 

objective. The data was presented as the mean ratio of lesion area to lung area from randomly 

selected image patches.  Investigators were blinded to the cohorts before analysis to reduce bias.  

 

3.2.7 Scoring Of Pathology for LIRA Comparison 

Standard pathologist methodology used lesion area approximations with its corresponding 

scores as follows:  <1% lung receives a score of 0, 1-10% receives a score of 1, 10-25% receives 

a score of 2, 25-50% receives a score of 3, and >50% receives a score of 4. To further 

characterize the severity of disease, scores would be weighted: Type I lesions being multiplied 

by three, Type II lesions being multiplied by four, and Type III lesions multiplied by two. The 

weighted scores would be summed and the mean calculated for each cohort with a minimum 

score of 0 for no visible disease involvement and a high of 28 for a mix of both Type II and Type 

III lesions. This scoring methodologies major drawback is that a lung tissue that has 100% Type 

II lung involvement would receive a score of 16 while a mixture of 50% Type II and 50%Type III 

would have a high of 28. This makes scores above 16 unreliable because Type II lesions are 

more severe than Type III.  
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Analysis with LIRA provides results that are a quantitative score that is less prone to user 

bias. Percent involvement is calculated and provides exact values that can be used in statistical 

analysis. In order to compare the two methodologies the scores generated by LIRA needed to be 

converted to the same scoring methodologies employed by the pathologist. This was 

accomplished by summing each lung lobe total image patch counts for each individual lesion, 

calculating the percent involvement for each, and translating it using the criteria outlined by the 

pathologist.  

 

3.2.8 LIRA Analysis 

Data was generated using LIRA by a graduate research assistant (GRA) highly 

experienced in C3HeB/FeJ pathology analysis and a research associate (RA) with training in the 

analysis but as much experience. The agreement of scores generated by the pathologist, GRA, 

and RA was measured using Krippendorff’s alpha as previously described in Aim 1 (See Chapter 

2 for more detailed explanation). 

 

3.3- Results  

3.3.1. Design And Past Results Of The C3HeB/FeJ Efficacy Study (Study Performed By Dr. Emily 

Driver, [206]) 

The main advantages of using a prioir study for MIAs verification is that we can reuse 

preiouvsly collected samples, and the original analysis had been done with methodologies 

commonly used in histology analysis to help reduce bias in the analysis. The original aim of the 

study performed previously was to use an anti-fibrolitic chemotherapy to manipulate the collagen 

rim of the Type I granuloma in an attempt to increase drug penetration [206]. The study consisted 

of TB infected animals either being treated with INH, LK, or INH+LK with pathology collected at 3 

and 6 weeks post-treatment. Samples were collected at both 3 and 6 weeks from the initial time 

of treatment. Samples were either fixed in PFA before H&E stained or homogenized and serially 
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diluted to determine bacterial burdens. The CFU, percent lung involvement, lesion classification, 

and percent collagen involvement were measured. It was predicted that the combination of INH 

and LK would have reduced bacterial burden and reduced disease lung involvement. The original 

conclusion from the study stated that there was no difference in the percentage of lesion 

involvement and collagen deposition between any of the cohorts at both time points [206] (Figure 

3.1). Despite this finding, the researchers noted that animals treated with INH and INH+LK 

appeared to have more Type I lesion involvement but did not have any quantifiable data to support 

their claims. Additionally, there was no other significant observation about the pathology severity 

of the LK and control cohorts except that the LK cohort had less collagen deposition. Analysis 

tools during the original study were limited in the scope and granularity that could be applied to 

the samples. Most notably, the stereology technique used randomized sections of tissue to 

extrapolate percent lesion involvement. LIRA, in comparison, achieves absolute percent 

involvement of the slide section while also providing the percent involvement of each 

classification.  It is prudent to determine if having a more targeted approach, such as LIRA, would 

altar the original final conclusions that had been made.  
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Figure 3.1.  It was determined in the original LK study that there was no substantial difference in 
lesion development between the different cohorts over 6 weeks of treatment. Tissue 
measurements were performed using stereology. Adapted from Driver dissertation [206].    
 

3.3.2 LIRA Histopathology Analysis 

There were two aims in reanalyzing the histopathology of the original drug treatment study.  

The first aim was to discern if using a targeted analysis tool, such as LIRA, can give additional 

information in drug treatment studies. The second aim was to assess whether the values that 

were derived from LIRA were in agreement with the pathology scores given by a board-certified 

pathologist. Again, this was the first time LIRA was used on a TB drug treatment study using 

C3HeB/FeJ mice. For both aims, H&E stained slides of lungs from each of the treatment cohorts 

were given to a board-certified pathologist who was blinded of any identifier information.  Using 

standardized methodology for scoring lung pathology [88], [224], each sample was given a 

pathology score based upon each lesion classification’s percent lung involvement from 0-4, with 
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0 being no disease present and 4 being the most severe for each lesion type. Single scores were 

weighted based upon the severity of the lesion type, and all the scores across all the lesion types 

were summed to provide an end score used for comparison. These scores were compared to the 

converted values produced by a graduate research assistant (GRA) with extensive experience 

analyzing pathology from the TB C3HeB/FeJ mouse model and a research associate (RA) with a 

moderate amount of experience.  

 

Figure 3.2. Using LIRA there was a substantial difference in overall disease severity between the 
INH 6wk and LK 6wk. This was in contrast to the original study that had been performed which 
had determined there was no difference between the different cohorts (Figure 3.1).  

 

For the prior studies in this section, the analysis performed using the stereology had 

determined that there was no significant difference between the different cohorts and time points. 

With the ability of LIRA to quantify percent lung involvement for each lesion type, trends for each 

cohort were observed that were not discovered previously. All groups showed similar pathology 

at 3 weeks post-treatment for all lesion classifications, but by 6 weeks, a significant difference in 
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lesion severity and type was observed between the INH and LK cohorts (Figure 3.2). The INH 

cohort showed a substantial increase in lesion severity, particularly for Type I lung involvement, 

while the LK cohort showed a substantial decrease in lesion severity with scarce amounts of Type 

I development. 
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Figure 3.3. Histology analysis performed using LIRA by quantifying the three different lesion types 
separately. Unlike previously, differences were seen between three and 6 week time points of 
treatment and between the different cohorts.   
 



81 

 

The untreated control developed moderate amounts of both Type I and III and a slight 

increase in Type III lesion involvement as expected.  The INH treatment cohort after 3 weeks of 

treatment showed a slightly increased Type I lesion involvement (score=1.6), which was 

somewhat increased compared to the untreated control group (score=1.2). This becomes even 

more pronounced after 6 weeks of treatment with INH, where lung involvement of Type I lesions 

is considerably higher (score = 3.2) in comparison to the control (score = 1.3) (Figure 3.3). There 

were fewer Type II lesions (score = 0.1) and Type III (score = 0.8) involvement at 6 weeks with 

INH treatment. The LK cohort at 6 week treatment showed almost no Type I (score=0.2) or Type 

II (score=0.0) lesion involvement and some Type III (score = 1.5). Dual treatment (LK+INH) 

showed mixed results with Type I lesions having the most lung involvement (score=1.8), followed 

by Type III (score=1.25), and Type II (score=0) lesion involvement. The dramatic increase in Type 

I pathology with the INH cohort was unexpected since previous drug efficacy trials demonstrated 

reduced lesion involvement or halted the severity of lesions.  Yet it had a reduction in culturable 

pulmonary CFU and the lowest mortality out of the other cohorts. In contrast, the LK cohort had 

the lowest level of lesion severity and a reduction in culturable CFU comparable to INH but had 

the highest mortality out of all the cohorts. The results demonstrate that by utilizing a more 

targeted approach, such as LIRA, the interpretation of the collected data provides additional 

insights not identified earlier.  

 

3.3.3 Cohort Overall Score Agreement Between LIRA And The Classical Pathology Approach 

When comparing the overall severity and classification generated during the analysis by 

the board-certified pathologist versus the RA, there was no substantial difference between the 

users. The agreement of pathology scoring was calculated using Krippendorff’s alpha with a score 

of 0.843, which can be interpreted as a good agreement between the GRA, RA, and pathologist. 

The only exception was for the INH treatment group after 3 weeks of treatment, whereby the 

‘expert’ scored a 0, and the GRA had a score of 1 for Type II lesions. Post analysis revealed it 
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stemmed from the disagreement of atypical lesions that were still in the process of formation. The 

atypical lesion was the outcome of the early collection time point of the lung tissue when the Type 

I lesions are still being formed with a partial fibrotic rim on one side and high numbers of 

neutrophils on the other side of the immature Type I lesion (Figure 3.4). The early-stage Type I 

lesions are difficult to identify, and classification is largely based on expertise and information 

given prior to the analysis. This particular example highlights the need for both AI and human 

classifiers working together to achieve optimal results. In summary, there was a good agreement 

in the summary scores given for overall lesion severity at the cohort level when measuring the 

agreement between the board-certified pathologist and trained researchers.  

 

Figure 3.4. Example of a partially formed Type I lesion. Portions of the lesion have the early 
stages of fibrosis and collagen development (blue arrow), while other portions have no fibrosis 
black arrow) and DNA pooling characteristic of Type II lesions (yellow arrow).   
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3.3.4 Individual Lesions (Type I, II, & III) Score Agreement Between LIRA And The Classical 

Pathology Approach 

For Aim 2, the objective was to determine if the specific lesion scores (e.g., Type I, II, or 

III) that were derived from LIRA were in agreement with the pathology scores given by a board-

certified pathologist. This was measured using Krippendorff's alpha, which measures the 

agreement between the individual user's score.  Type I lesion scores were mostly in agreement 

with the Krippendorff’s alpha value of 0.879 which would be considered ‘good agreement’. The 6 

week LK group had a noteworthy observation showing no Type I lesion classifications by the RA. 

The reason for this failure of recognizing the Type I lesions was the atypical structure which 

required previous experience to correctly discern these forms of abnormal events, as 

demonstrated by the pathologist and GRA (Figure 3.5). Type II lesion scores showed to have a 

‘tentative agreement’ with a Krippendorff's alpha value of 0.690. The tentative agreement resulted 

from the improved recognition of LIRA at a microscopic level of small pockets of neutrophils. The 

small clusters of neutrophils are generally not noticed by manual scoring of lesions, as this would 

be far too time-consuming and are easily overlooked.  As a result, the GRA and RA reported very 

low levels of Type II involvement, and the pathologist indicated no involvement. Type III lesion 

scores were on the limit between ‘good and tentative agreement’ with a Krippendorff’s alpha score 

of 0.796. There were no significant outliers in the scoring agreement between the pathologists 

with scores showing a consensus among the users. It is important to note that when each 

classification agreement is measured separately, all alpha scores are above the minimum 0.667 

which is the lowest conceivable limit. In summary, agreement for each lesion classification was 

all above the acceptable limit, with Type I scores demonstrating the highest agreement for severity 

and Type II having the lowest agreement.  
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3.4 Discussion And Conclusions   

In this chapter, the objective was to assess LIRA’s performance using a past drug trial in 

comparison to scores generated by a pathologist and evaluate whether we would be able to gain 

more information with reduced bias and is quantitative for our histopathology analysis. For this 

purpose, we were able to use a previous C3HeB/FeJ mouse study with animals treated with both 

LK and INH to investigate how a more target analysis using computational tools, such as LIRA, 

can enhance the end result interpretation.  

One major limitation of traditional pathology analysis is bias variation that occurs between 

researchers and laboratories, as previously discussed. To reduce the impact of these limitations, 

LIRA has been developed as a software tool to assist in digital image analysis for the TB 

C3HeB/FeJ animal model, with a specific emphasis on TB drug development purposes. In Aim 1, 

we had previously demonstrated that assistive analysis with LIRA on lung pathology images of 

infected but untreated C3HeB/FeJ mice showed a more rapid and quantitative readout compared 

to traditional methodologies, which are only semi-quantitative. One of the limitations of current 

CNN methodologies is that most models only classify what the model has been trained for. A 

simple example would be a classifier trained in classifying cats and dogs when given an image of 

a bird would try to classify the image as a cat or dog, not a bird. Therefore, it was important to 

investigate whether any changes in the experimental design of the mouse study, such as 

antimicrobial treatment or host immune response manipulation, would alter the histopathology to 

the extent that LIRA’s performance would decline.  

 To perform the experiment, LIRA’s scores were converted using the score rubric provided 

by the pathologist, which has been previously outlined. The analysis between the different users 

(Pathologist, GRA, RA) in which disease involvement for each lesion type was given a score from 

0-4 and weighted to reflect each lesion's disease severity. The overall disease severity had almost 

unanimous agreement except for one cohort, the 3 week INH. The reason for this was the result 

of the misclassification of an immature Type I lesion (Figure 3.4). These partially-formed lesions 
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take on the appearance of atypical Type II lesions with small isolated pockets of fibrosis. For 

future analysis, it has become apparent that disclosure of time points is essential to prevent any 

misclassification that could potentially occur.  

Another important observation in the study was the disagreement between scores for the 

6 week LK cohort for the individual Type I scores. Both the pathologist and GRA were able to 

identify poorly formed Type I lesions (Figure 3.5) due to the fibrotic inhibitory effects of the LK 

treatment. The RA was not able to identify these lesions, most likely due to LIRA not being trained 

on atypical Type I lesions. This highlights that LIRA is not a replacement for expertise but merely 

augments the current classification ability of the user. This limitation may be overcome by 

expanding the training dataset used in training the CNN to predict atypical Type I lesions more 

accurately or limiting the usage of LIRA to users experienced in the C3HeB/FeJ pathology.   

Figure 3.5. Visual comparison of the development of Type I lesions with treatment with either LK 
(A) or INH (B). Type I lesions from the LK cohort was not as developed as Type I lesions seen 
within the Control and INH treated mice.   
  

Individual Type III lesion scores showed little variation between the different groups, but 

the individual Type II lesion scores showed several discrepancies between the classifiers. Most 

notably, when Type II lesions were the predominant lesion type, the three classifiers were 

generally in agreement. The discrepancy occurs when predominantly Type I and Type III lesions 
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have small pockets of neutrophils that are identified by LIRA. When the pathologist is making their 

classification, they do so at a macroscopic level. In contrast, LIRA performs the majority of its 

analysis at a microscopic level identifying each individual image patch as one of seven 

classifications. By following the traditional scoring rubric used even if the pulmonary tissue has 

only 2% involvement, which would have been deemed inconsequential, it will receive a score of 

1. This highlights one of the major limitations with converting ratio data values into a form of 

ordinal data, which is that there is a substantial loss of information that was previously present in 

the prior data format. As highlighted earlier, a score of 12%, 24%, and 25% would receive the 

scores 2, 2, and 3 respectively masking potentially significant differences or similarities. 

Converting the pathologist scores would be the ideal option but is not possible since no direct 

measurements are done but are subjective to the pathologist’s interpretation of lesion 

involvement.  

 The second aim was to determine how using a targeted analysis using computational tools 

may enhance the result interpretation compared to using traditional methodology. The original 

study relied on stereological techniques that required a randomized sample selection of different 

lung areas to represent the population. Based upon this approach, it was concluded that there 

was no significant difference in the lesion involvement between the different cohorts, except for a 

possible increase in Type I involvement for the INH treated cohorts [206].  
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 Table 3.1. Mouse mortality separated by treatment cohorts. Adapted from Driver dissertation 

[206].  

 

Using LIRA, we have observed substantial differences between the different cohorts that 

warrant attention. The first is that there was substantially more total lesion involvement for the 

INH group than previously reported. This consisted primarily of an increase of Type I lesion 

involvement and received an average score of 3 out of 4, implying considerable lung 

consolidation. The second observation was that the LK cohort showed considerably less lung 

consolidation when compared to any other treatment group, consisting of Type I lesions with an 

average score of 1.4, implying a low degree of lung consolidation. It has been observed previously 

within the laboratory that lesion severity will, at times, get initially worse with successful treatment 

due to increased inflammation by dead bacteria. This study marks one of the first times that this 

effect has been quantified. Both the results from the LK and INH are counterintuitive of the 

paradigm that effective treatment results in the decrease in lung involvement.  

When comparing mortality, the LK group within the study showed significant mortality 

(50%), followed by the untreated controls and INH+LK cohort (29%), and no mortality for the INH 

group (0%) (Table 3.1). The mortality in the LK treatment group was of particular interest because 

the LK group showed a considerable reduction in bacterial burden from 8.57 ± 0.58 log10 CFU 

at 3 weeks to 6.01 ± 0.45 log10 CFU at 6 weeks. A similar reduction in bacterial load was also 

seen in the INH group, which at 3 weeks had 8.01 ± 0.38 log 10 and was reduced down to 6.29 ± 0.34 log10 at 6 weeks. However, INH treatment as expected resulted in increased survival. 
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This indicates that bacterial burden and lesion severity alone cannot be used as an indication of 

increased survivability in mice, but additional quantifiable metrics are needed.  

Future studies will be using time points that extend past the 10 week post aerosol infection 

for which LIRA had been originally trained. While we have successfully demonstrated here that 

animals treated and images collected 6 to 10 weeks post aerosol infection will achieve 

comparable scores given by a board-certified pathologist, no analysis has been done for cohorts 

analyzed past this time point. A future direction would be as soon as data becomes available to 

perform a similar experiment using treated animals at later time points (10 to 20 weeks post 

aerosol infection) to find the limit of LIRAs accuracy. If the model fails to classify the pulmonary 

lesions correctly, there can be two approaches to correct these inconsistencies. The first would 

be to create a new CNN model that specializes in animals 13 to 20 weeks post aerosol infection. 

This means that based on the time of collection of the tissue samples, they will have to go to one 

of two different models that either is trained for samples 6 to 10 weeks or 10 to 20 weeks. The 

second approach would be to have one classification algorithm that can handle any time point. 

This will require continuing the training of the original CNN classification algorithm with additional 

data that had been collected past the 13 week time point. The second approach is not 

recommended since it would require substantially more data than the first approach. Collecting 

additional data is difficult and is the limiting factor with biology-based ML.  In summary, users 

using LIRA generate scores comparable to a board-certified pathologist and provide additional 

data that aids in coming to a correct study conclusion.  

In summation, LIRA achieves comparable results to a pathologist, is quantitative, and can 

thereby provide additional insights that may influence the interpretation of the experiment 

outcome. LIRA’s major advantage is that the calculated disease severity includes the targeted 

percent involvement for each lesion type, how many Type I lesions are present, and does so in a 

timely and reproducible manner.  As data acquisition and analysis becomes more complex, the 

development of computational tools will be required to more accurately represent what is actually 
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occurring in the animal models during infection. As shown without these tools, conclusions that 

do not accurately depict the experiments results may unintentionally overlook successful 

treatments or important observations.  
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CHAPTER 4: DEVELOPMENT OF MYCOBACTERIAL IMAGE ANALYSIS (MIA) SOFTWARE 

TO QUANTIFY LESION SPECIFIC POPULATIONS OF MYCOBACTERIUM TUBERCULOSIS 

 

4.1 - Introduction 

Human TB is a dynamic disease that develops a variety of pathological and immunological 

features in the lung, thereby creating a complex niche of pulmonary microenvironments for Mtb 

to occupy. For that reason, phenotypic analysis needs to be done in the context of the TB lesion. 

Lesion microenvironments in the lung that develop as the result of infection include varying levels 

of iron (Fe) [225], vascularization [226], hypoxia [227], pH [18], [19], carbon and energy availability 

[228], and immunological pressures. Mtb is present either intra or extracellularly in the lung. Over 

the course of months and even years, TB lesions are constantly fluctuating in both size and 

metabolic activity, as demonstrated using PET/CT imaging in human patients [46], [158].  Mtb has 

multiple mechanisms to successfully adapt to the myriad of environments and stresses that it will 

encounter. For example, within macrophages, Mtb will increase its lipid metabolism through 

isocitrate (icl), siderophore production to scavenge iron, and sigma factor production[229]. Within 

the necrotic granuloma, Mtb has been shown to elevate host lipid and cholesterol production[230], 

increase rates of replication [139], and induction of the dosR and devR transcription 

regulators[231]. Understanding exactly how TB responds to its environments and the different 

heterogenic bacterial populations that compose each specific lesion type is essential in designing 

targeted therapies to increase the chances for a successful treatment.  

TB treatment is highly effective in the first weeks of treatment but is generally slowed by 

the occurrence of drug tolerance. Two types of drug tolerance have been described: the first is 

stochastic and seen as persistence after drug treatment of actively replicating bacilli (Class I), and 

the second is caused by the specific environmental locations where residing Mtb bacteria are 

non-replicating (Class II), [232]. TB drug development tries to overcome both types of drug 

tolerance to cure the infection and shorten treatment.  
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The first type of drug tolerance, or Class I, addresses the observation that multiple 

phenotypic populations can exist concurrently within a single lesion after drug treatment.  The 

surviving Mtb populations are reversibly tolerant to one or more standard therapies but not always 

to therapy combinations[232]. Previous dogma had assumed that there were only two distinct 

populations of Mtb: dormant and active [233], [234]. Active bacteria were defined as replicating 

and metabolically active. This population of bacteria are susceptible to both antimicrobial 

treatment and host immune responses. Dormancy was defined as non-replicating bacteria that 

are in a quiescent metabolic state. Bacilli in this dormant state were considered to be resistant to 

both antimicrobial therapies and host immune responses [235]. This had previously explained 

how difficult it was to achieve sterilization during treatment and why some hosts seemed to stay 

in the latent phase of the TB infection. It has been observed that the transcriptional profile of drug-

resistant Mtb is in a slow-growing, metabolically, and synthetically downregulated state [236].  

Recent studies have expanded upon this hypothesis by showing that within a single uniform 

environment, multiple phenotypic populations can exist concurrently [237], [238]. McKinney et al. 

demonstrated in vitro that the surviving bacterial population under treatment with isoniazid 

showed three distinct populations;  the first was a subpopulation that quickly resumed growing 

and remained metabolically active, the second was non-replicating but remained metabolically 

active, and the third population was both non-replicating and was in a quiescent metabolic state 

[140]. In vivo, they are represented by a biphasic reduction in the Mtb burden that continues 

before failing to reduce the burden below a certain level of detection. More importantly, Class I 

phenotypic resistance has been observed in human patients that are receiving the standard drug 

therapies[239] and within murine [71] and Guinea pig animal models [240].  

The second type of drug tolerance is reflected by a bacterial population located within 

specific lesion compartments that do not behave uniformly across the various lesion types (Class 

II) [232]. Each compartment microenvironment can present with different challenges that need to 

be addressed to design therapies that target a variety of phenotypic bacterial populations, 
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successful delivery, and environmental conditions (e.g., pH) to clear an infection. Stressful 

environmental conditions can induce phenotypic drug tolerance that can halt net Mtb replication. 

Non-replication can be the result of transcriptional responses to the environment or  an altered 

cell wall [241]. Host microenvironments are further complicated by the fact that within a human 

host, multiple different lung lesion types can exist simultaneously during infection [14]. Lesions 

are also highly dynamic and are consistently changing throughout the lifetime of the patient. 

Similar to pulmonary TB in patients, the C3HeB/FeJ animal model also develops a variety of 

different lesion types in the lungs displaying various levels of hypoxia, intra and extracellular 

bacteria, diversity of carbon and energy sources, and immunological pressures [74]. By utilizing 

the C3Heb/FeJ TB mouse model, we can better understand phenotypic antibiotic resistance that 

can arise as the result of environmental stimuli.  

Utilizing an animal model that develops a heterogeneity of lesions types allows for the 

targeted visual analysis of specified bacterial populations within specific lesion compartments.  In 

the C3HeB/FeJ mouse model, there are five main pulmonary environmental niches where Mtb 

can be visualized (also detailed in Chapter 2). The first and second environmental niches are the 

Type I lesion that can be further divided into the Type I Core and the Type I Rim. The Type I Core 

is hereby defined as the caseous necrotic center enclosed within the fibrotic rim where the 

bacteria are extracellular, in a lipid-rich environment, neutral pH [75], and are under hypoxic 

conditions due to a lack of vascularization [74]. The Type I Rim consists of the collagen rim as 

well as the consolidated region just outside the fibrotic rim. It is neovascularization, and bacilli are 

generally intracellular within the surrounding macrophages. Type II lesions are not highly 

vascularized, have large areas of cellular necrosis, karyorrhectic debris, and bacilli are 

intracellular within neutrophils. Type III lesions are the result of a host cellular immune response, 

and a limited number of bacteria are intracellular within interstitial macrophages. The last 

environment is the uninvolved lung parenchyma, where very few to no bacteria are located, here 

defined as Healthy tissue. The optimal animal model will attempt to mimic the complexity 



93 

 

observed in human TB disease since a treatment that would be effective in one particular lesion 

may not be efficacious in another lesion.  

By microscopic analysis, the heterogeneity in bacterial populations has been reported on 

by acid-fast staining of either in vitro cultures or in tissues [73], [192]. The stress of the host 

immune response can affect the bacterial transcription thereby modulating the composition of the 

mycobacterial cell wall.  Mimicking intracellular conditions in vitro, using low oxygen, nutrient 

deprivation, and acidic pH, the bacilli can lose its acid-fastness and accumulate triacylglycerol 

and wax ester [242], [243]. In macrophages, a subgroup of Mtb mycolic acids are substantially 

altered [244]. Bacilli in standard laboratory mouse strains have also been documented to lose 

their ability to retain the Ziehl Nielsen acid-fast stain over time [245]. Even though these studies 

highlight the ability of Mtb to alter their cell wall in vitro, this was also demonstrated previously in 

vivo in our laboratory. Ryan et al. visualized the cell wall heterogeneity of Mtb lesion populations 

in Guinea pigs and mice by using two separate staining techniques: Auramine-Rhodamine (AR) 

and fluorescent in situ hybridization (IF). These stains identified three separate bacterial 

subpopulations in equal proportions that either stained with AR, IF, or a combination of both stains 

and whose populations were homogenous throughout the tissue. This included tissues that were 

hypoxic and/or necrotic, which always had at least three distinct populations [73]. Both Ryan et 

al. and McKinney et al. establish that antibiotic targeting of a single Mtb population will not be 

efficacious in successful treatment and prevention of relapse.  

Aim 3 of my dissertation proposes the development of novel quantitative software that will 

enumerate bacteria at the various locations in the lungs of the C3HeB/FeJ mouse model. This 

software will measure the number of visual CFU in a specified area (density), percentage of the 

visual field composed of bacteria (% bacteria), and individual bacterial CFU area. The software 

will be referred to as the Mycobacterial Image Analysis or MIA for the remainder of this paper. 

The goal for this initial study was to test the MIA software and to use MIA for the first time on a 

drug efficacy trial by quantifying the different bacterial metrics for each lesion type found within 



94 

 

drug-treated C3HeB/FeJ mice. For this purpose, microscopic slides from an earlier mouse study 

were used to optimize and validate the MIA software. The C3HeB/FeJ mouse study was 

described in this dissertation in Aim 2 (see Chapter 3), and detailed the treatment with either 

isoniazid (INH) with or without losartan (LK). This mouse study was chosen as comprehensive 

data was already available, by having both lung CFU data from plating on 7H11 plates, pathology 

data after manual histopathology, as well as analysis by LIRA.   

For this Aim, the bacterial enumeration for every lung lesion compartment of the 

C3HeB/FeJ mice was quantified for every treatment group. The same pathology classifications 

for the diverse lung lesion compartments were used as detailed in Aim 1 (Chapter 2): Type I Core, 

Type I Rim, Type II, Type III, Healthy, and Miscellaneous. The same classifications were again 

used for the quantification with MIA, except for the addition of the Type I Core Outside. Tissue 

samples collected previously were stained using SYBR Gold, which is a DNA/RNA nucleic acid 

stain that is selective for Mtb [192]. SYBR Gold has a >1000 fold fluorescent enhancement when 

binding to both double or single-stranded DNA or RNA and has low levels of fluorescent 

background noise. This makes it ideal for image analysis by providing a stark contrast between 

the object of interest and the background noise. Using the SYBR Gold staining method, we 

optimized the MIA software to this stain and showed the utility of MIA in a preliminary study to 

accurately identify bacterial clusters and distinguish changes that occur between time points and 

treatment cohorts.  

 

4.2 – Methods 

4.2.1 Mouse Infection  

C3HeB/FeJ mice infected with Mtb Erdman strain via aerosol infection (See Chapter 3 

Methods) 

 

4.2.2 Staining and Imaging 
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Histology slide samples were stained with a diluted 1:1000 SYBR dye (Invitrogen, Eugene, 

Oregon)  that was diluted with a solution composed of phenol crystals (8g), glycerin(60mL), 

isopropanol (14mL), and distilled water (26mL). The slide was flooded with SYBR Gold solution 

on a heating block at 65֯ C for 5 min and allowed to cool for 5min at room temperature. Slides 

were washed in an acid alcohol (0.5% HCL, 70% isopropanol) bath 3 times for 3 min each followed 

by a water rinse. Samples were counterstained with Hematoxylin Quick stain and mounted using 

Prolong Gold antifade mounting medium [192]. Samples were imaged at 20x using both DAPI 

(Tissue) and FITC (SYBR+ bacteria) channels (See Chapter 2 imaging methods). The histology 

slides that had been processed for the INH+LK cohort were damaged, and no bacterial metrics 

were acquired using MIA as a result.  

 

4.2.3 MIA Algorithm Pipeline  

MIA was developed in the Python (version 3.6.7) language using Tkinter, PIL, Numpy, 

Pandas, and OpenCV libraries to perform the analysis. Along each major step of the image 

processing, representative images are created to help the user understand what objects were 

being gated and collected for each region of interest (ROI) (Figure 4.1). The ROI is the specific 

tissue section that is selected by the user.  Available microenvironment classifications to subdivide 

the populations include Type I Core, Type I Core Outside, Type I Rim, Type II, Type III, Healthy, 

and Unknown. The Type I Core is defined as the area in the center of the caseous necrotic lesion. 

The Type I Core Outside is the outer cellular edge of the core that is primarily composed of the 

foamy macrophages and neutrophils which are encapsulated within the fibrotic rim. The Type I 

Rim is the lesion tissue that starts on the outside of the collagen rim and the surrounding involved 

tissue. The Type II, Type III, Healthy, and Unknown were defined previously in Chapter 2.  
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Figure 4.1. Visual representation of each of the steps performed in MIA’s pipeline analysis. The 
image is uploaded into MIA, and the user classifies the lesion area (A), the ROI is cropped (B), 
converted to an HSV image where the H channel is isolated and a mask is generated based upon 
the desired stain color channel (C), the image is further converted to a grayscale image (D), and 
the remaining image object edges are detected and outlined in red (E).  
 

4.2.3.1 Number Of Defined Bacterial Areas per µm2 

The various steps in the MIA pipeline are discussed below. In the initial step, the user 

identifies the classification for a particular ROI (Figure 4.1A), and a separate temporary cropped 

image is created for the analysis (Figure 4.1B). The temporary cropped RGB image is converted 

to an HSV, and the color is masked for the specified staining parameters on the H channel (Figure 

4.1C). For instance, the SYBR Gold will only accept pixel values between the minimum =[50,1,1] 

and maximum =[85,255,255]. The image which only contains the specified color of interest will be 

converted to a grayscale image (Figure 4.1D). Using OpenCV’s contour function the edges of 

detected objects (e.g., bacilli) are found. (Figure 4.1E). The area of each object is calculated, and 
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objects, or aggregates, that are too small or too large are removed from the detected object list. 

The remaining objects are highlighted in red as verification that the correct objects of interest had 

been detected. The number of remaining objects in the list is the number of objects (bacilli) that 

are found within the ROI. The total number of bacilli is divided by the total converted image area 

to provide the density of defined bacterial areas per unit2.  The default unit setting is µm2. 

 

4.2.3.2 Individual Bacterial Area Analysis 

 Each identified object of interest contoured edge coordinates are stored. Based upon each 

coordinate pairs, the sum total of the number of pixels located within the coordinates is the pixel 

area. Pixels are subjective, meaning that they need to be converted to standardized units to be 

able to make meaningful comparisons. The image size and individual objects of interest size in 

pixels are converted using the below formula:  

𝐼𝑚𝑎𝑔𝑒 𝑃𝑖𝑥𝑒𝑙 𝑆𝑖𝑧𝑒 =  (𝐶𝑎𝑚𝑒𝑟𝑎 𝑃𝑖𝑥𝑒𝑙 𝑆𝑖𝑧𝑒)(𝐵𝑖𝑛𝑛𝑖𝑛𝑔 𝑆𝑖𝑧𝑒)(𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐿𝑒𝑛𝑠)(𝐿𝑒𝑛𝑠 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)(𝐶 𝑀𝑜𝑢𝑛𝑡) 

Each converted object of interest area is stored as a separate within the .csv, along with the 

identifying metadata for large data analysis.  

 

4.2.3.3 Percent of Image Composed of Bacteria 

The summed area of each object of interest is divided by the total image area to calculate 

the percentage of the image that is composed of the objects of interest.  

(% 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑖𝑛 𝐼𝑚𝑎𝑔𝑒) =  ∑(𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝐴𝑟𝑒𝑎) 𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐴𝑟𝑒𝑎  

Additional metrics not used in this paper are also calculated and provided in a separate 

.csv file, such as the fluorescent intensity of the mean objects of interest.  
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4.2.4 MIA Optimization and Validation 

Each of the three bacterial metrics (density, area, and percentage) are based on values 

incorrectly identifying the objects of interest and correctly identifying the edge coordinates. Object 

identification and edge detection were validated using Flow Cytometry Beads (Invitrogen 

CountBright beads lot# 1971889, cat_num: C36950) with a manufacturer value of 7.08 ± 0.478µm 

as the diameter. Beads were placed on a slide using a Shandon Cytospin 6 and mounted on 

microscopic slides using mm24 mounting medium. Slides were imaged at both 10x and 20x 

objectives and saved as .png files to prevent file compression and possible distortion of image 

objects. The accuracy of MIA object enumeration was calculated using values determined by 

manual observation and those processed by MIA. Pixel areas calculated by MIA were converted 

to µm, and the mean of all identified objects was used to compare to the bead values reported by 

the manufacturer. Accuracy of the analysis can vary based upon the objective of the microscope 

used to acquire the images. For example, an image taken at 100x will more accurately 

demonstrate the bead size than an image taken at 10x. The acceptable threshold of the calculated 

MIA value for the mean needed to be within the bead standard deviation of the mean provided by 

the manufacturer.  

 

4.3 - Results  

4.3.1 - Verification of the Software on Control Samples 

 
MIA was designed to measure three important bacterial metrics: 1) the number of bacteria 

per tissue area, which are defined further as “density”, 2) the individual bacterial area, and 3) the 

percentage of the image that is made up of the bacteria. All three metrics rely on two core 

algorithms that either enumerate the number of fluorescently labeled objects of interest (e.g., 

bacilli) or calculate the individual object of interest area. To validate the algorithms and the 

corresponding conversions, the fluorescent flow cytometry beads were placed on a microscopic 
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slide and scanned to create a digital image. Visual representations of each of the steps used in 

the analysis were collected for both visual and quantifiable verification. The essential steps 

included placing the beads on a slide, scanning to create a digital image, and passing the image 

through MIA’s core function for quantification. The function includes the creation of a mask to 

isolate the fluorescently labeled flow cytometry beads (Figure 4.2B) and calculates the object of 

interest edges by contouring (Figure 4.2C). MIAs object detection achieved 99.04% accuracy by 

identifying 208 out of 210 possible beads. The discrepancy was the result of two beads that had 

co-localized with another bead and appeared as one single object (Figure 4.2C, blue arrow). This 

means that it correctly identified all isolated objects, but cannot consistently discern objects that 

have co-localized together.  
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Figure 4.2. Visual representation of MIA’s ability to identify objects of interest, quantify the number 
of objects, and determine their area. Blue arrow indicates bead cluster that was identified as 1 
object but was actually three separate objects that had colocalized together.  
 

Next, we needed to evaluate MIA’s ability to correctly calculate the areas of objects of 

interest within an ROI. It was critical to have the results in a format that is easily interpreted and 

compared to images generated from other microscopes, cameras, and objectives. After the 

software has identified individual objects of interest and determined their location within the 

image, the number of pixels within each object are calculated. By knowing several variables about 
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the microscope used to generate the image (such as Pixel length, objective, binning), the pixels 

can be converted to metric units such as µm2. According to the manufacturer’s documentation, 

the flow cytometry beads have a diameter of 7.08 ± 0.478 µm and a mean bead area of 38.4845 

µm2. Measuring 200 beads using both 10x and 20x objectives, MIA calculated the mean bead 

diameter to be 6.66 ± 3.16 µm and the mean area to be 34.8563 µm2. Manufacturers will perform 

a more robust analysis than what was performed here, but the purpose here was to demonstrate 

that MIA’s calculated values were within an acceptable range to the values provided by the 

manufacturer. If accuracy is still a concern, images can  be scanned at a higher magnification, or 

a higher resolution camera can be employed.  In summary, the calculated values for both object 

of interest enumeration and object of interest area calculations were within acceptable ranges to 

be used for our analysis.  

 

4.3.2 – Verification Of The MIA Software On C3HeB/FeJ Histology Tissues 

 

MIA had demonstrated accuracy in correctly identifying flow cytometry beads within an 

image and calculating the area of each bead. We next wanted to evaluate LIRA’s ability to identify 

Mtb within a histology sample correctly. The first piece of data that was needed was to determine 

the minimum size of bacilli that could be visualized.  The average length of a bacilli is  2.71 ± 1.05 

μm in length, and the average diameter of the cell was 0.345 ± 0.029 μm [246].  This means the 

minimum visual area of an Mtb cell that is cut perpendicular would be 0.16 μm2 and is the minimum 

value used for MIA.  As demonstrated in Figure 4.3B, MIA was able to identify all possible 

individual and aggregated bacteria within an image, excluding those that are touching the edges 

of the image. In addition, the user can select specified sizes as demonstrated in Figure 4.3C. 

Correctly identifying the edges of the Mtb bacilli is the primary algorithm required of MIA, and as 
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demonstrated, it correctly identifies the coordinates for each bacillus and has the option to select 

area size as selected by the user.  

 

Figure 4.3. Visual representation of MIA’s ability to identify SYBR Gold stained bacilli within a 
histology tissue sample. Bacilli (Green) would be outlined in red if they were identified by MIA. A)  

the original image, B) all objects not touching identified by MIA, and C) bacilli selected based on 

size.  
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4.3.3 – Analysis Of Drug-Treated Bacterial Populations In Vivo  

Figure 4.5. Difference in bacterial aggregation within the INH cohort Type I Core at 3 week and 
6 week treatment. A similar effect also observed in the Control Cohort.  
 

Within the prior study performed by a previous Ph.D. student in our laboratory (Emily 

Driver), it was concluded that there was no substantial visual bacterial burden difference between 

time points and cohorts [206]. When analyzing these same slides with MIA, there were differences 

in bacterial numbers and clustering observed between the various treatment groups. For instance, 

within the INH and Control mouse groups for the core of the caseous necrotic lesions (Type I 

Core), MIA showed a significant aggregation occurring between 3 and 6 weeks (Figure 4.5).  
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Figure 4.6. Boxplots of log10 normalized individual bacilli and aggregate areas separated by lesion 
type and cohort. Red box indicates the specific cohort of interest for the analysis. 

 

For the measurement by MIA of bacterial areas for both the INH and Control cohort, the 

number of pixels was calculated for each object of interest by the enumeration algorithm, and 

each pixel was converted to µm2. Populations were log base 10 normalized and then visualized 

using boxplots. For the different treatment cohorts and lesion compartments, there were no 

substantive differences observed in the mean and interquartile range. What was of interest were 
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some of the outliers found in each cohort. For both the INH and Control groups, MIA showed that 

in the caseous necrotic lesions (Type I Lesion) a dramatic increase in large bacterial areas could 

be observed after 3 to 6 weeks treatment (Figure 4.6).  

 

 

Figure 4.7. Percentage of the image that is composed of visible bacteria. Red box indicates the 
specific cohort of interest for the analysis. NA indicates that no sample was measured for that 
particular data point.  
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 Another measurement by MIA calculates the percentage of the image composed of visible 

bacteria (Figure 4.7 Type I Core Lesion Tissue). This measurement showed an increase in the 

percent bacteria present for both Control and INH Cohort. Results were verified using a separate 

calculation by summing all green pixels within the image, which also resulted in a percentage of 

the image occupied by bacteria (results not shown). While this is a less accurate measurement, 

as it does not discriminate object size, it did achieve similar values thereby confirming the results 

obtained by MIA. 
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Figure 4.8. Bacterial densities of each lesion type calculated in terms of (defined bacterial areas) 
/ µm2. The red box indicates the specific cohort of interest for the analysis. NA indicates that no 
sample was collected for that data point.   
 

 The next measurement by MIA was obtained by calculating bacterial density. By applying 

this on the same mouse study, we saw a decrease in bacterial density from 3 to 6 weeks for the 

INH cohort, but a weak increase in the Control cohort (Figure 4.8). The INH decrease was as 
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expected whereas the slight increase in density for the Control cohort was not. After closer visual 

inspection of the Control cohort, we noticed less bacterial burden at 3 weeks, which could account 

for the slight increase in defined bacterial areas density (Figure 4.8). Because the other two 

metrics behaved as predicted, the results suggest the achieved values for the bacterial density 

for the Control cohort are real.  

 Of note, these measurements by MIA described above were performed on this one pilot 

study only, and therefore should be seen as preliminary results. The reason for the quantification 

of the various measurements by MIA was to 1) test the MIA software for the first time on a 

C3HeB/FeJ mouse efficacy study to assess flaws in the software, and 2) see if there were any 

advantages of using MIA, such as finding discernible differences among treatment groups that 

were not seen in the past after manual histopathology analysis. These results showed that 

quantification by MIA was successful and that it was able to find differences in bacterial numbers 

and aggregation in the various treatment groups.  

 

4.3.4 - Mycobacterial Islands  

One observation that was made during our analysis and verified quantitatively using MIA 

was the development of consolidated Mtb super aggregates in the center of fully developed Type 

I lesions (Figure 4.9), hereby named mycobacterial islands in this Chapter. These mycobacterial 

islands developed 6 weeks post-treatment for both the INH and Control cohorts. In contrast, the 

LK cohort did not develop any islands and had an evenly distributed Mtb burden across the Type 

I Core. The mechanism of the formation of these super aggregates is unknown and will require 

more targeted analysis to discern. Even though these islands have been seen in previous studies 

within our laboratory, future studies will have to show the mycobacterial island phenomenon is 

reproducible and not caused by technical aspects such as differential staining or artifact 

generation. 
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Figure 4.9. Each drug treatment imaged with DAPi and SYBR GOLD at 20x for both 3 week (3wk) 
and 6 week (6wk) treatment time points. For the Control and INH cohorts, there is the 
development of mycobacterial islands (white arrows). 
 

4.4- Discussion 

TB disease is highly complex due to the lack of uniformity of responses for both host 

lesions and bacterial populations as the disease progresses. A TB-infected individual can develop 

a variety of different lesions with vastly different levels of carbon and energy availability, immune 

system response, environmental stresses, and physical barriers. LIRA was developed to quantify 

the complexities of the host pathology by quantifying various pulmonary lesions that develop 

throughout a TB infection, specifically in the C3HeB/FeJ mouse animal model. Within these host 

lesion compartments, recent studies have shown that multiple different bacterial phenotypes, 

such as variations in cell wall composition, metabolism, and replication properties, are present 

within a single lesion compartment. Previous limitations in collecting quantitative data on bacterial 

populations included the proprietary image format used during scanning, the memory 

requirements to store and process the images, bacterial enumeration in tissue, and the different 

lesion compartments. MIA was developed as a means to provide quantifiable data of bacterial 
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populations in different compartments by lowering the barrier for quantitative analysis for 

researchers not familiar with coding. In the C3HeB/FeJ animal model, MIA can more accurately 

measure the density of bacilli in the necrotic core (Type I Core compartment) between a treated 

and non-treated animal.  

One of the limitations of generating this value is that it cannot distinguish single bacteria 

from aggregated bacteria. This is not a new issue [247], and this could be addressed in future 

iterations of the software. A predicted number of bacilli can be determined within an aggregate by 

the user by calculating a frequency distribution of individual planktonic bacteria areas and 

applying it to each bacterial aggregate to predict a range of bacteria that are present. Calculating 

the mean distribution is important because the mean Mtb length is 2.71 ± 1.05 μm and the mean 

diameter is 0.345 ± 0.029 μm that could have even greater variability based upon strain used, 

location within the lesion, and the specific stress it is encountering. This would only provide an 

estimate of the bacterial number. The comparison of bacterial burden between cohorts or 

compartments is more accurately represented by the bacterial percentage of the image that is 

calculated by MIA.  

The use of MIA on the drug efficacy study performed by Emily Driver [206] was used as a 

preliminary test case to determine the validity of MIA as a new tool to quantify bacterial 

populations. In these preliminary observations with MIA, either anti-mycobacterial treatment with 

INH or no modulation of the immune system (Control cohort) resulted in the formation of 

mycobacterial islands within the necrotic lesion cores (Type I Core Lesion Tissue compartment). 

No mycobacterial island formations were formed within the treated LK cohort, even though there 

were some caseous necrotic lesions present. The opposite occurred where there was either no 

change or a substantial decrease in measuring bacterial aggregation. This test case showed that 

1) the MIA software was easy to use on a C3HeB/FeJ mouse efficacy study, and 2) was able to 

discern differences among treatment groups that were not seen in the past after manual 
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histopathology analysis. The next step will be to analyze more in vivo studies to assess the effect 

of treatment response on the bacterial populations in the various locations of the lung.  

Now that MIA has been optimized and validated on both control and in vivo samples, its 

capabilities can be expanded using additional staining methods to characterize and potentially 

identify different bacterial populations. This can include using immunofluorescence with 

antibodies against specific mycobacterial targets [248], stains that bind to mycobacterial cell wall 

components such as Auramine Rhodamine [249], and in situ hybridization probes [250]. The 

applications are numerous, and for drug development, these additional metrics can broaden the 

current understanding of how various drug treatments impact specific populations of Mtb within 

various tissue/lesion compartments. With the availability of large data and image analysis 

methodologies, it is possible not just to measure subsets of populations but to analyze on a single 

cell basis.  

In summary, MIA can accurately enumerate bacteria to calculate a bacterial density in an 

area on a microscopic slide, calculate the area of each object of interest, and determine how 

much of an ROI is composed of Mtb. By combining MIA, which quantifies bacterial properties, 

with LIRA, which quantifies host pathology response, the depth of information that can be gleaned 

from each experiment is greatly enhanced from previous manual methodologies.  
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CHAPTER 5 – FINAL DISCUSSION AND FUTURE DIRECTIONS 

 

5.1 - Final Discussion 

Throughout a TB infection, the human host shows progressive pulmonary pathology 

characterized by lesion heterogeneity, which can present itself from inflammatory up to 

destructive cavitary lesion types. A single patient can concurrently develop multiple different 

lesions with diverse microenvironments such as varying levels of pH, energy and carbon 

availability, vascularization, and immune cell interactions.  The best method for research purposes 

to recapitulate the complexities of human TB disease are animal models such as Guinea Pigs, 

non-human primates, and certain mouse species.  Animal modeling is essential in the 

development of new and more effective therapies but to maximize their potential, new tools are 

needed to quantify the disease presentations and bacterial locations. Artificial intelligence and 

computer vision represent a marked improvement in current manual measurement methodologies 

in terms of reproducibility and efficiency. These techniques also give additional insights and more 

detailed data that were not previously available and are helping to expand our knowledge on 

therapy efficacy and host-pathogen interactions. The results presented in this dissertation are the 

first steps in the development of digital tools to quantify the lesion involvement and bacterial 

locations in the C3HeB/FeJ TB animal model. This includes novel software tools using new code 

for the quantification of the different pulmonary lesion tissues in C3HeB/FeJ mice using Lesion 

Image Recognition Analysis (LIRA) and the quantification of bacterial metrics based upon the 

lesion compartment in which the population is located using Mycobacterial Image Analysis (MIA).  

Aim 1 (Chapter 2) details the process for writing and developing de novo software utilizing 

deep convolutional neural networks for the  identification and quantification of pulmonary lesions 

using digital microscopic images from the lungs of M. tuberculosis infected C3HeB/FeJ mice. 

Using the Lenaerts laboratories catalog of histopathology image scans from previous C3HeB/FeJ 

mouse studies, three neural networks were successfully trained to classify and quantify 
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pulmonary lesion tissues from mice between 6 to 10 weeks post aerosol infection.  The first neural 

network identifies the structural features that are found within the caseous necrotic Type I lesion, 

the second neural network identifies subcomponents of the Type I lesion, and the third neural 

network classifies neutrophilic Type II and cellular Type III lesions. Multiple advantages were 

discovered by using the LIRA software in identifying and quantifying pathology. The first 

advantage using LIRA was a remarkable reduction in analysis time by 82% when compared to 

the manual histopathology method used previously. The time-saving aspect is significant since 

analysis in the past used to take several weeks to months, depending on the size of the study. 

Analysis that takes an excessive amount of time to complete can lead the researcher to 

experience user fatigue. User fatigue increases the amount of bias or mistakes thus causing 

unintentional skewing or incorrect reporting of the data. While unintentional, it may lead to 

mistaken results or assumptions about the data that may impact final conclusions. The second 

advantage of LIRA over manual histopathology analysis became apparent by showing greater 

reproducibility between users. For this purpose, a single study was analyzed by different 

pathologists either by manual histopathology analysis or by using LIRA. Manual histopathology 

analysis showed a percent agreement among users of 87%, but with the assistance of LIRA, this 

increased to 94%. This is an important finding as reproducibility and unbiased analysis will enable 

us to compare multiple studies, time points, and analysis done by different individuals or 

laboratories. This will increase the accuracy of the data, which otherwise might be lost when 

higher variability is present. The third advantage of LIRA is the precision on a microscopic level 

that LIRA classifies the various lesions types. With the use of LIRA, there was a more accurate 

demarcation of lesion margins, as well as the detection of small isolated regions that may not be 

identifiable at a macroscopic level used by manual analysis. Both the pathologist and LIRA were 

able to classify the various lesion types correctly, but the added precision that LIRA provides 

increases the confidence of the final generated quantitative results. The purpose of LIRA was 

never to replace a human classifier but to work in tandem with each other. LIRA’s strength is its 
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performance for repetitive analysis, but LIRA performs poorly when given new information that 

was not included in its initial training set. Humans struggle to perform repetitive tasks consistently 

but are highly skilled in fluid intelligence problems that require new information or solutions. When 

paired together both LIRA and the human classifier complement each other to provide the most 

optimal and accurate analysis.  

Aim 2 (Chapter 3) detailed the use and performance of the LIRA software on 

histopathology images from a drug-treated test case mouse study. For this purpose, we analyzed 

the results of a previously conducted drug efficacy C3HeB/FeJ trial in comparison to the standard 

manual histopathology analysis performed by a certified pathologist. LIRA had originally been 

trained using tissue samples from untreated animals 6 to 10 weeks post initial aerosol infection. 

Machine learning algorithms can be very sensitive to changes in the input data, such as if the new 

input data differs significantly from the training data set that was used to generate the model. 

Because the TB C3HeB/FeJ animal model is often used in drug efficacy trials, it was important to 

determine if drug treatment would impact LIRA’s ability to classify pathology accurately. A 

previously conducted drug study using isoniazid (INH) and losartan (LK) was chosen to perform 

the validation of the LIRA software. It was especially advantageous because the study had been 

previously analyzed using standard methodology, allowing for a reduction in analysis bias when 

comparing old and new methodologies, and the study also included both antibiotic and 

immunotherapy cohorts to allow for more robust testing. In this chapter, for the validation of LIRA 

we had three goals; 1) we compared the results from the scores generated by a pathologist using 

standard methodology, 2) we analyzed the LIRA results in terms of the outcome of the therapies 

on pulmonary pathology, and 3) we determined if using a more targeted analysis approach such 

as LIRA would change or add to the initial interpretation of these results. Using Krippendorff’s 

alpha, a statistical method that is able to measure the agreement among different classifiers, we 

measured the agreement of classification scores of non-pathologist researchers to that of a board-

certified pathologist. The alpha score can range from 0 to 1 with 0 being “perfect disagreement”, 
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1 being “perfect agreement”, 0.99 to 0.80 being “good agreement”, and 0.79 to 0.667 being 

“tentative” (lowest acceptable limit).  The Krippendorff’s alpha value for each lesion type were all 

above the lowest acceptable values for agreement, and the overall score was 0.879 which is 

considered “good agreement”. This means that the scores generated by the non-pathologists 

were in agreement with the scores generated by the pathologist. Initial histopathology analysis of 

the drug efficacy trial had come to the conclusion that there were no significant changes in 

pathology between the different treatment groups; however, with LIRA substantial changes were 

observed. The first result was the striking increase in Type I lesion involvement for the INH cohort 

and the decrease in involvement for all the lesion types in the LK cohort. These LIRA findings 

were somewhat unexpected when they are compared to earlier CFU results and mortality data 

from similar mouse studies. Specifically, both treatment cohorts had comparable levels of 

bacterial reduction, but LK had the highest mortality (50%), while the INH cohort had the lowest 

mortality (0%). Taking the study results together, the LK cohort exhibited minimal lesion 

development, a reduction in the bacterial burden comparable to INH, and yet had a incredibly 

high mortality. Even though more investigation into the results is required, this implies that a 

reduction in both pathology and bacterial burdens may not always be a reliable indicator of drug 

efficacy.  

In Aim 3 (Chapter 4), we generated software for the enumeration of fluorescently stained 

bacteria in pulmonary tissues of C3HeB/FeJ mice infected with M. tuberculosis. Tuberculosis 

disease is the result of the interaction of the host immune system and the Mtb pathogen. LIRA is 

a quantitative tool that measures the response of the host; however, another quantitative tool was 

needed to measure the bacillary response, which is why MIA was developed. MIA relies on more 

traditional computer vision techniques to be applied to specific staining procedures to quantify 

bacterial metrics. The analysis creates a mask based upon the selected fluorophore stain color 

and acquires the x,y coordinates of the objects of interest that are present in the image. The edge 

coordinates of the objects within a selected region of interest (ROI) can be used to calculate the 
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object area (µm2), the object density within the ROI (defined bacterial areas / µm2), and the 

percentage of the image that is composed of the objects of interest (bacterial % of the image). 

The software was initially verified using flow cytometry beads as a control to verify the correct 

measurement of an object area and number of objects present. The mean of the calculated 

diameter of a flow cytometry beads was 6.66µm, which was well within the standard deviation of 

the mean provided by the manufacturer of 7.08 ± 0.478µm. The performance of the MIA software 

with the control beads showed a 99.04% accuracy in identifying the desired individual objects of 

interest that were present in a given image. We next tested the MIA software on an actual efficacy 

study using histology slides collected from the C3HeB/FeJ mice. The previous analysis, like in 

Aim 2, had determined that there were no significant differences between the visualized stained 

bacterial numbers. The lung sections from the same mouse study were used as described in Aim 

2 (Chapter 3) to measure the bacterial metrics within each lesion compartment. What these 

preliminary results showed was first of all that the MIA software was easy to use and highly time-

efficient. A few interesting preliminary observations showed some apparent changes in bacterial 

aggregation and density-dependent on the treatment groups. In both the Control and INH 

treatment groups, a general trend of increased Mtb aggregation was observed for most tissue 

compartments, especially in the cores of the necrotic Type I lesion tissue. In contrast, the LK 

group had a demonstrated decrease in the aggregation of bacteria within the tissue 

compartments, with an increase in bacterial density. Lastly, for the bacterial percentage (or overall 

visual burden of bacteria within an image) the untreated Control cohort remained the same, the 

INH treatment group had a reduction in most areas of the lung except for the lesion core, and the 

LK treatment cohort saw a general increase in all tissue compartments except in the Type I 

lesions.  

These initial results are preliminary at best and more studies will have to be analyzed; 

however, this test case using the losartan study in C3HeB/FeJ mice proved that the MIA software 

was easy to use and useful in determining differences between the various treatment groups 
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which could not be distinguished using previous manual methods. For future work, one could 

hypothesize that environmental stresses such as the immune system (Control) or anti-

mycobacterial therapy (INH) may promote the formation of mycobacterial aggregates and islands 

within the caseous necrotic cores in lungs. The formation of these aggregates may then negatively 

impact either the host or chemotherapy ability to eliminate the pathogen.  Future work is required 

to show these observations are reproducible and to prove this hypothesis further.  

  

5.2 – Future Directions 

The research presented in this dissertation is only the initial step for a larger image 

analysis pipeline, the purpose of which is to increase the efficiency of data collection during an 

Mtb infection. This section will serve as a road map for my successors on future directions and 

further refinements of this pipeline.  

Chapter 2 demonstrated that the LIRA software saves significant amounts of time and 

improves considerably on reproducibility on histopathology analysis of digital images while using 

this initial version of the LIRA software. However, several refinements could be implemented to 

improve the current workflow. First, LIRA’s pipeline analysis is currently a mixture of both 

command line and the general user interface (GUI). Because the majority of users will be non-

computer scientists, a large proportion of functions within the script will need to be called using 

graphical user interface (GUI) widgets. GUI widgets are the buttons you press in a piece of 

software that perform a specific task. Second, LIRA can only currently handle image file types 

that are non-proprietary (e.g., .jpg, .png, .tif). For this purpose, we wrote a script to convert the 

digital image scan files into a format that can be recognized by LIRA and the script still needs to 

be integrated into LIRA’s current workflow. Third, several functions (e.g., iterative looping) in LIRA 

could be further optimized using a faster programming language such as C or Cython. The new 

library of optimized code will need to be created to be callable in Python, and LIRA’s code will 

need to be updated. Lastly, it would be beneficial to implement an object detector to reduce the 
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amount of processing on empty slide window patches. This can be accomplished by performing 

the following stepwise approach: by uploading the original image, followed by creating a reduced 

image size copy (e.g. 10% of the original size), then determining the coordinates of the pulmonary 

tissue compartments in the image by creating a simple object detector, and only running CNN1, 

CNN2, and CNN3 on these specific window patches that are located within these coordinates. 

This will greatly reduce the large datasets that need to be processed and accelerate overall 

analysis time.  

TB is a complex disease with heterogeneity in lesion types present in the lungs. Lesion 

classification requires the identification of both the pathology features at a macroscopic level and 

cell type composition at a microscopic level. Therefore the LIRA software was specially designed 

to classify lesions using both macroscopic and microscopic classifications to address the 

complicated pulmonary pathology. While using the LIRA software on several C3heB/FeJ mouse 

studies over the last year, a realization occurred that two additional classifications could improve 

the current model. The first additional classification would include the detection of cavity formation 

in the Type I lesions at a macroscopic level. The second additional classification relates to the 

Type II lesions which often have pockets of DNA along the margin. These pockets of DNA 

resemble neutrophil extracellular traps (NETs), which seem to be consistently mislabeled by LIRA 

as Type III lesions. Creating a new classification, called NETs, and retraining the network should 

improve the overall model accuracy. The model architecture that the current LIRA software uses 

to make predictions on C3HeB/FeJ mouse models could, in the future, also be applied to 

additional TB animal models and disease types not currently integrated. New iterations of LIRA 

could include digital pathology analysis on the Guinea Pig, the rabbit model, on NHP, zebrafish 

models, and increased optimization for the BALB/c mice. These iterations will require the creation 

of new digital image data sets to create additional classifiers specific for these models.  

Chapter 3 demonstrated that LIRA is effective in correctly classifying data generated from 

a test case drug study using C3HeB/FeJ mice from 6 to 10 weeks post aerosol infection. At the 
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time of LIRA’s creation, the only available data for the training dataset was a larger number of 

tissue samples all collected within the six to ten week timeframe. Current studies are generating 

new data that extends past that timeframe. LIRA’s current iteration has noticeably poorer 

performance on more advanced pulmonary pathology past 12 weeks post aerosol infection, and 

therefore the model training dataset (CNN2 and CNN3) would benefit from updates with the 

current 12+ week data to improve accuracy. Chapter 4 demonstrated that the MIA software could 

effectively quantify bacterial singlets and aggregates, and separate bacterial populations based 

upon their lesion compartment location. Preliminary data showed that in vivo bacteria under stress 

might form larger aggregates or mycobacterial islands in cores of caseous lesions. To further 

investigate this hypothesis, we propose to implement both MIA and LIRA to more broadly study 

the effect on bacteria in more mouse efficacy studies, thereby using a wider range of current TB 

therapies, enhancing host immunity, or control agents designed to effect bacterial replication. An 

effective study will include therapies that target the bacteria and host therapies that either 

enhance or inhibit the host immune system. Treatments should include first-line drugs such as 

rifampin, ethambutol, and pyrazinamide as well as newly approved drugs for TB such as BDQ 

and linezolid. As a positive control and to assess the effect of the host on bacterial numbers and 

aggregation, mice could be vaccinated before initial infection to elicit a stronger immune response. 

A good candidate would be an intramuscular DNA vaccine containing Hsp65 and IL-12 genes 

that provided a 40% improvement of survival in Mtb infected primates [251]. As a negative control, 

additional therapies that change the integrity of granuloma formation can be used. This could 

include Enbrel [252], [253] which is a TNFα inhibitor, or Bevacizumab [254], [255]  which 

neutralizes vascular endothelial growth factor. Bevacizumab would be preferred, in the context of 

studying environmental stresses, since previous studies have shown that adjunct therapy of 

Bevacisumab increased the efficacy of first-line therapies by restoring the vascular architecture 

and consequently reducing hypoxia [21], [254].  Based on our initial results, we suspect that we 

will not observe the formation of the mycobacterial islands in the immune impaired cohorts. In 
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contrast, the cohorts that are receiving some form of therapy (e.g., antibiotics or vaccine) will 

develop moderate amounts of mycobacterial island formation. The Lenaerts laboratory is also 

investigating an experimental proprietary compound that appears to promote cavity formation 

within caseous necrotic lesions. The use of LIRA, in combination with MIA, will greatly enhance 

these studies by quantitatively monitoring both lesion development and the corresponding 

bacterial phenotype responses from initial infection to terminal cavity formation.   

The analysis of MIA might become even more impactful with the utilization of additional 

staining approaches that target other bacterial phenotypes or host cells. The MIA software in this 

dissertation was developed using the SYBR Gold staining method developed in our laboratory. 

However, the software was designed to gate for both Auromine Rhodamine (AR) and Ziehl 

Neelsen acid-fast staining. With minimal effort, the use of additional fluorophore channels can be 

integrated into the software by creating additional min and max HSV values specific to the 

wavelength color of the objects of interest. By using a wider diversity in fluorescent probes such 

as for detection of ribonucleic acid (RNA) by FISH, antibodies for use in immunohistochemistry, 

and other dyes will further the bacterial as well as host cell phenotypes and compositions. Of 

particular interest to our laboratory would be the further evaluation of the heterogeneity of bacterial 

populations within each lung compartment. We especially are interested in determining what 

proportion of bacilli are viable, metabolically active, are actively replicating, or show an altered 

cell wall. MIA can quantify an entire visual bacterial population within each lesion compartment, 

and in combination with the plethora of probes and staining approaches available more data and 

information can be generated. Of particular interest to me would be to study the number of Mtb 

phenotypes existing within each lesion compartment, and whether there is a predisposition for 

specific phenotypes for different environments. The end goal would be to be able to determine 

the effect of treatments on various bacterial phenotypes and in the different lung compartments.  

LIRA and MIA were designed as two separate software components which are intended 

in the future to be incorporated together as a single software. There are several steps that need 
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to happen before both software programs can be integrated to work in tandem. The first step will 

be the improvement of the current staining methodology in tissue samples. Because MIA relies 

on masking, the isolation of specific pixel values, the fluorescent signal needs to be pristine 

without background or false positive signals. Autofluorescence occurs with the use of aldehyde 

fixation (formaldehyde or glutaraldehyde), staining with H&E, and in tissues in the presence of 

high numbers of red blood cells. Attempts have been to reduce autofluorescence using 

counterstains such as potassium permanganate and Sudan Black with only limited success. What 

has proven successful was the implementation of a new perfusion technique reducing red blood 

cells that are naturally autofluorescent. The second area of improvement would be the image 

capturing devices. Current available microscopes on CSU campus and their software are not well 

suited for high image resolution throughput of large tissue datasets. This equipment shortcoming 

is probably the most limiting step in utilizing a high throughput analysis pipeline. Optimally, one 

would need a digital slide scanner to capture bright-field images of the H&E stained tissue, as 

well as taking corresponding scans of multiple fluorescent channels of a single area at the same 

time. At the moment, with the current equipment available, this process would be highly time-

consuming and is the reason that LIRA and MIA are still two separate entities to perform this type 

of analysis. The future vision is to overcome these obstacles and have a seamless analysis 

process that quantifies every relevant piece of data so that no important event is missed. Such a 

system is not feasible without utilizing the strengths of both AI and human analysis and 

understanding how they can be synergized together in a biological context. This approach will 

broaden our understanding of the interplay between the host and Mtb pathogen in the context of 

drug efficacy testing. With the continued optimization of analysis with new computational tools, 

new therapies can be developed to help aid in the elimination of tuberculosis.  
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APPENDIX 

 

HETEROGENEITY OF PULMONARY LESION TYPES IN C3HEB/FEJ MICE IS MODULATED 

BY SPECIFIC CHARACTERISTICS OF THE M. TUBERCULOSIS STRAIN USED 

 

A1. Introduction 

C3HeB/FeJ mice are a TB animal model that develops caseous necrotic pulmonary 

granulomas resembling the human granuloma that develops during a TB infection. These 

granulomas form into three morphologically distinct types that have been classified as 

encapsulated granulomas with central necrosis (Type I), fulminant neutrophilic alveolitis (Type II), 

and cellular inflammatory lesions (Type III). It is not fully understood how external factors, such 

as the bacterial strain used during infection, will influence the host response of determining the 

lesion type that will be developed. In our laboratory, a culture batch of Mycobacterium tuberculosis 

Erdman unexpectedly exhibited heightened levels of virulence, which included a substantially 

increased mortality rate, high levels of bacterial cording, and substantial levels of pulmonary 

lesion involvement. This event was not isolated to our laboratory but was also observed in a 

collaborator's culture that found similar events.  Taking advantage of these hypervirulent cultures, 

we investigated how variables such as the virulence of the TB strain, method of propagation, 

infectious dose, time within storage, and the level of bacterial aggregation influence lesion 

development after an aerosol infection. 

This is especially relevant for the C3HeB/FeJ animal model because it has been reported 

among laboratories that use this animal model that they observe different results than what our 

laboratory has been reporting. It is especially perplexing since our laboratory can consistently 

achieve reproducible outcomes of desired lesion development, particularly for the development 

and selection of the Type I lesion.  By investigating the variables that can impact lesion 
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development, it is our ultimate goal to eventually standardize the model to develop consistent 

pathology regardless of the laboratory that is performing the study. 

 

A.2 – Materials And Methods 

A.2.1 - Bacterial Strains And Culture Methods 

There were two different culturing methods that were employed throughout the study. The 

first is the general culturing methodology used (See Chapter 2 for more information) for all strains 

except for the CSU hypervirulent Mtb culture. The second is the slight deviation that occurred 

from the normal standard culturing protocol. The steps are:  1) loop full of Lenaerts seed stock, 

was streaked on a 7H11/ ADC agar plate to create a bacterial lawn. 2) 22 days later, 1 loop full 

of the Mtb lawn is used to inoculate 20mL of 7H9/ADC liquid culture for 14 days. 3) 5mL of the 

7H9/ADC culture is then transferred into 45mL of PB liquid culture with 0.05% Tween 80 for 7 

days. 4) 5mL of the culture is transferred to a fresh 45mL of PB liquid culture with Tween 80 

0.05% Tween 80 for 7 days. 5) The culture is upscaled to 500mL of PB media with 0.05% Tween 

80 for 6 days. 6) An additional 0.02% Tween is added before being harvested the next day. 

 

A.2.2 - Mouse Infection 

 C3HeB/FeJ mice were aerosol infected using the strain specified in the study. More 

detailed information can be found in Chapter 2.  

 

A.2.3 - Staining And Imaging  

  Bacteria cultures were heat-fixed for 5 minutes on a hot plate and additionally with 4%PFA 

for 48 hours. After the fixation step, the bacteria were stained using the standard SYBR Gold 

protocol found within Chapter 2.  Tissue preparation, staining, and all microscopy imaging were 

performed as outlined in Chapter 2.    
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A.2.4 – LC/MS  

10mL of bacterial stock was centrifuged at 2000g to obtain a pellet. The supernatant was 

discarded and 4mL of 2:1 chloroform:methanol solution was added. The pellet was re-suspended 

and allowed to sit overnight. The suspended solution was centrifuged again at 2000g to obtain a 

pellet, and the organic layer is removed. The organic layer was treated with 100µl of 0.2 M NaOH 

in methanol for 30 minutes at 37 ֯ C֯. After the allotted time, the solution is neutralized with glacial 

acetic acid until the pH reaches about 7. 200µl of chloroform-methanol 2:1 and 100µl of H2O were 

added, and the organic phase was removed. The samples were analyzed on an Agilent 6224 

LCMS-TOF using the Sartain method in negative mode. Data was analyzed using Mass Hunter, 

XCMS, and Excel software. Relative abundance for molecular features of interest were 

normalized using global normalization. 

 

A.3 – Results 

A.3.1 – Initial Observations Of The Hypervirulent Strain 

Figure A.1. Graphs of both the standard working stock (Erdman Working Stock) and the culture 
batch that exhibited hypervirulent characteristics (Erdman Hyper Virulent).   

 

During a routine Mtb aerosol infection with the C3HeB/FeJ mouse model, a new batch of 

Mtb (hypervirulent Mtb) exhibited an unprecedented amount of mortality (75%) in comparison to 

the previous culture batch (26%) (working stock Mtb) (Figure A.1). What was more surprising was 
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that this was also observed in the more Mtb resistant BALB/c strain (100%) (data not shown). 

This increase in virulence is not explainable by differing levels of infectious doses because the 

hypervirulent Mtb had an infectious dose of 70 CFU, and the working stock Mtb had an infectious 

dose of 69 CFU. These results were verified in three independent studies confirming that between 

batches, our working stock had a substantial increase in virulence. 

 

Figure A.2. Microscopy (40x) images of the Mtb Erdman culture batches of both the Standard 
Working Stock (Top Panel Left), the Hyper Virulent Stock (Top Panel Middle), and a digitally 
enhanced Mtb aggregate (Top Panel Right). The Hyper Virulent Stock showed an increase in 
bacterial aggregation when compared to the Standard Working Stock.  In the bottom panel is the 
TLC of both the TMM and TDM for both culture batches, which showed no significant differences. 
 
 

To investigate the cause of virulence further, a batch of our working stock Mtb and our 

hypervirulent Mtb were stained using SYBR Gold and digitally imaged. The hypervirulent Mtb 

culture had a substantial increase in visual cording than the working stock (Figure A.2A). Mtb 

cording is the aggregation of bacteria in a bundle like structure via a parallel arrangement. It is 

one of many indicators used to predict the virulence of Mtb strains. The degree of cording is 

determined by the cell wall levels of trehalose-6,6′-dimycolate (TDM), trehalose-6,6′-

A) 

B) 
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monomycolate (TMM), and its modifications [256], [257]. Due to the contrasting levels of cording 

that was present between the two culture batches, the levels of TDM and TMM were measured 

by both thin layer chromatography (TLC) and liquid chromatography-mass spectrometry (LC-MS). 

It was initially predicted that because of the increased level of cording present in the hypervirulent 

Mtb culture that there would be increased levels of both TDM and TMM.  The TLC had no 

significant differences in either TMM or TDM between the two culture batches (Figure A.2B). This 

was an unexpected finding that was verified using LC-MS, but the LC-MS did identify a substantial 

increase in an unidentified molecular feature that was present (Figure A.3). 

 

 

Figure A.3. Graph of the FFA molecular features obtained by the LC/MS. An uncharacterized 
class of molecular features (red box) is present in the Highly Virulent (Bottom) culture batch but 
is greatly reduced in the standard Working Stock (Top). The 601.59 m/z is of particular interest, 
and the proposed molecular formula is listed above.  
  
 

When performing a global analysis of free fatty acids (FFA) in the negative mode, there 

was a group of uncharacterized molecular features that had elevated levels of relative abundance 

in the virulent Mtb culture (Figure A.3). The uncharacterized late series molecular features had 
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an m/z values of 657.6528, 643.6371, 629.6214, 615.6057, 601.59, 587.5743, 573.5586, 

657.6528, and 629.6214. The 615.6057 m/z and 601.59 m/z peaks stood out among these 

features because they had a fold increase of 12.1 and 9.6 respectively between the two samples. 

Because of the lack of significant difference in TDM / TMM levels, and there was such a 

substantial increase in these uncharacterized FFA, it was prudent to investigate these findings 

further. While the chemical structure of these uncharacterized molecules is unknown, it is 

suspected that they are part of the mycolic acid biosynthesis pathway. Using GC/MS, it was 

determined that there is at least one double bond present, and it is highly likely that it contains 

two. 

 

A.3.2 – Observation Of Increased Virulence In Other Mtb Strains 

Figure A.4. Mtb strains (left column) are organized by the level of virulence observed in vivo with 
the corresponding normalized relative abundance of the 601.59 m/z molecular feature (right 
column). Strains highlighted in green are the Mtb Erdman strain, blue are the Mtb H37Rv strain, 
and pink is Mtb clinical isolate.    
 
 

Building upon our previous findings, we expanded our analysis to include additional 

laboratory strains with varying degrees of tested virulence within the C3HeB/FeJ mouse model.   
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Using LC/MS to obtain the relative abundance values, the strains were rank-ordered from the 

most virulent strain to the least virulent strain (Figure A.4). A general trend emerged of the most 

virulent strains exhibiting the highest levels of relative abundance of the 601.59 m/z peak except 

for the clinical HN878 strain. Under a typical infection, the HN878 strain induces high levels of 

mortality, lesion development, and bacterial burden. However, a successive mouse experiment 

that used the specific culture batch of HN878 had exhibited low levels of lesion development, 

bacterial burden, and almost no mortality. This suggests that there is a correlation between the 

presence of the 601.59 m/z peak and the level of virulence that is detected. 

 

Figure A.5. SYBR Gold stained Mtb strains digital image (1st row), corresponding lesion H&E 
histology (2nd row), and the mortality over time (3rd row). The most virulent strain of Mtb is placed 
on the 1st column, while the least virulent strain is on the last column.   
 

We next investigated if there was a correlation between virulence and the level of Mtb 

aggregation observed at the tie of infection. 6 to 8 week female C3HeB/FeJ mice were infected 
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with either a batch of hypervirulent Mtb Erdman from the University of Texas (Shenan Strain), a 

CSU working Mtb Erdman culture, an Mtb H37Rv mouse passaged culture from John Hopkins 

University, and an Mtb H37Rv strain that was grown as a pellicle from University of Colorado. 

Data for the CSU hypervirulent culture was used from the previous infections. When comparing 

the pathology and mortality of the infected mice, a trend emerges that more aggregated bacteria 

exhibit higher levels of lesion involvement and mortality (Figure A.5). 

 

A.3.3 Loss Of Virulence In Long Term Storage 

 

Figure A.6. The same batch of Hyper Virulent Erdman Mtb with decreased levels of virulence 
over time. Mortality graphs (top row) and the infection details (bottom row) show a demonstrated 
loss of virulence over a 5 year period within a -80֯C freezer. 
 
 

After the identification of trends in both bacterial aggregation and the presence of the 

601.59 m/z molecular feature being correlated with various levels of virulence, an additional 

mouse infection was performed. Despite previous results from three different studies, using the 

exact strain, the hypervirulent Mtb culture appeared to lose its virulence (Figure A.6). No studies 
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have been published on this effect before, but it has been previously observed in our laboratory 

that Mtb cultures stored long term in cold storage (-80֯C) will lose their virulence. Taking this 

information into account, we investigated both the level of aggregation and the presence of the 

601.59 m/z peak. No visual phenotypic changes were observed in the levels of aggregation 

between the two Mtb cultures, but there was a unique decrease in the relative abundance of the 

601.59 m/z peak over time. This is further confirmation of a possible correlation between using 

the 601.59 m/z as an indicator of virulence but ultimately meant that there were no more samples 

in which to continue our testing. 

 

 

Figure A.7. The globally normalized 601.59 m/z molecular with relative abundance on the y-axis 
and the time in months over the x-axis. A decline in relative abundance is observed over a three 
year period.  
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A.3.4 – Attempt To Induce Hyper Virulence  

 

Figure A.8. Phenotypic variations in the biological replicates were observed during sample 
culturing. Phenotypes include (A) a highly clumped pellicle, (B) corded like pellicles, (C) standard 
pellicle formation, (D), and cells that were entirely planktonic with no visible aggregation. After 
furthering passaging, all phenotypes converged to the standard pellicle formation. 
 
 

Due to the loss of virulence during long term storage to continue our research, we needed 

to induce hypervirulence again in our working stock of Mtb. Several deviations from the normal 

culturing protocol had been identified that might have contributed to the increase in virulence from 

the working stock. This included the initial streaking of bacilli on a 7H11/ADC plate before being 

transferred to a liquid 7H9/ADC culture tube and a substantial increase in Tween 80 at the final 

step. It was hypothesized that Mycobacterium tuberculosis switched between different media 

types will display higher levels of mortality and Type II lesion involvement than bacteria kept in 

PB media. During culturing, we had further unexpected results that required further investigation. 

To help capture the increase in virulence, three biological replicates were kept at each stage of 

culture propagation. Instead of a single phenotype that was comparable to the other replicates, 

there was instead four different phenotypes that were observed (Figure A.8). The first was a 

B A C D
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densely clumped culture that had a thick film on the surface (originally labeled 'extra clumpy'). 

The second was the development of large filamentous rafts that had comparable macroscopic 

features similar to what is observed microscopically with cording (originally labeled 'clumpy'). The 

third was the development of individual rafts that were of moderate size and is what is expected 

during normal culture propagation (originally labeled 'normal'). The fourth was a completely 

planktonic culture that exhibited a refractive sheen similar to what is observed in an oil spill 

(originally labeled 'planktonic'). By the third passage within the PB culture flask, all three cultures 

had converted over to the third phenotype (normal).  

 

Figure A.9. Globally normalized relative abundance of the 601.59 m/z molecular feature in three 
of the different cultured phenotypes. In contrast to what was initially observed with the 
hypervirulent strain, it does not seem that the molecular features of interest are correlated with 
Mtb aggregation or cording.   

 

LC/MS analysis of three observed phenotypes indicates that there are observable differences in 

the relative abundance of the 601.59 m/z peak, but it is the opposite of what had been previously 

observed (Figure A.9). More research is needed to investigate the correlation of virulence to 

bacterial aggregation and the class of uncharacterized late series FFA. 
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A.4 Discussion 

Our laboratory can generate consistent disease presentation within the C3HeB/FeJ 

mouse model. Because the mouse strain develops lesions similar to human pathology, it is 

increasingly being used as a means to score the virulence of various Mtb strains. This may be an 

issue because, through personal communications with other laboratories, they are observing 

results that vary from what is generated in our laboratory. The aim of this project was to determine 

what variables influence the virulence of the Mtb strain used and the host response during an 

infection. Even though we consistently get reproducible results with our Mtb Erdman strain, we 

did have a cultured batch that became extremely virulent, not only the C3HeB/FeJ mouse model 

but also the more resistant BALB/C mice. This provided us an opportunity to help standardize the 

TB C3HeB/FeJ murine animal modal for use in other laboratories. 

Under initial investigation, it was observed that mycobacterial strains that exhibited higher 

levels of virulence had increased quantities of cording/aggregation and levels of the molecular 

feature 601.59 m/z. This virulence phenotype is unstable and can be modulated by varying the 

propagation methods, route of infection, and as discovered recently, even the amount of time in 

being in cold storage. With the loss of the hypervirulent Mtb culture, further work is needed to 

move forward. The first project will be to more stringently investigate how propagation methods 

impact the level of virulence within a specific strain. A proposed experiment would be to use three 

strains of Mtb (Erdman, H37Rv, HN878) and measure how culturing bacteria through mouse 

passaging, pellicle passaging, and under stress impacts the virulence within the C3HeB/FeJ mice 

model. The second would be to determine the molecular structure of the 601.59m/z molecular 

feature and determine if the correlation is causative, indirect, or coincidental. The third would be 

to investigate further the four phenotypes that were observed during our attempt to recreate the 

virulent strain of Mtb that was created previously. This includes performing an aerosol infection to 

observe how even under identical culturing methodologies, how phenotypic variations that 

emerge can influence the host response. In conclusion, knowing about how even under identical 
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culturing methods multiple different Mtb phenotypes can form, virulence decreases with time, and 

how a possible new class of FFA can be used as an indicator for virulence are just the first 

stepping stones in standardizing the TB C3HeB/FeJ murine animal model. 
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LIST OF ABBREVIATIONS 

 

TB - Tuberculosis 

LIRA – Lesion Image Recognition and Analysis 

MIA – Mycobacterial Image Analysis 

CFU - Colony Forming Units  

WHO - World Health Organization  

SDG - Sustainable Development Goals 

HIV - Human Immunodeficiency Virus 

INH - Isoniazid 

RIF- Rifampicin 

EMB - Ethambutol 

PZA – Pyrazinamide 

BDQ – Bedaquilline 

Mtb – Mycobacterium tuberculosis  

XDR TB – Extensively Drug-Resistant Tuberculosis 

MIC - Minimum Inhibitory Concentration 

MBC - Minimum Bactericidal Concentration 

AI – Artificial Intelligence  

LTBI - Latent Tuberculosis Infection 
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18F-FDG - 2-[18F]fluoro-2-deoxyglucose 

NHP - Non-Human Primate Model 

CM - Cynomolgus macaques 

I/St - I/StSnEgYCit Mouse Strain 

IPR1 - Intracellular Pathogen Resistance 1 

Ifi75 - Interferon-Inducible-75 

LDA - Low-Dose Aerosol 

CV – Computer Vision 

ROI – Region of Interest 

ML – Machine Learning 

CNN – Convolutional Neural Networks 

GPU - Graphical Processing Units 

CPU - Central Processing Units 

SST1 - Super Susceptibility To Tuberculosis -1 Locus 

PET - Positron Emission Tomography 

CT - Computed Tomography 

SVM - Support Vector Machines 

PB - Proskauer-Beck Medium 

PBS - Phosphate Buffered Saline Solution 

MIP - Microbiology,  Immunology, and Pathology 



151 

 

H&E - Haemotoxylin and Eosin 

Misc. – Miscellaneous 

CNN1 – LIRAs Type I Macro-Classifier 

RIPC - Raw Image Patch Counts 

CNN2 – LIRAs Type I Micro-Classifier 

CNN3 – LIRAs Non-Type I Micro-Classifier 

GANs - Generative Adversarial Networks  

MALDI - Matrix Assisted Laser Desorption Ionization 

RPT - Rifapentine 

MDR TB - Multidrug-Resistant TB 

ECDC - European Centre for Disease Prevention and Control 

LK – Losartan 

GRA - Graduate Research Assistant 

RA – Research Associate 

Fe – Iron 

AR - Auramine-Rhodamine 

IF - in situ Hybridization 

GUI - General User Interface 

NETs - Neutrophil Extracellular Traps 

RNA - Ribonucleic Acid 
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TDM - trehalose-6,6′-dimycolate 

TMM - trehalose-6,6′-monomycolate 

TLC - Thin Layer Chromatography 

LC-MS - Liquid Chromatography–Mass Spectrometry 

FFA - Free Fatty Acids 

 


