Project THEMIS
Technical Report No. 2

MEASUREMENT OF TURBULENCE IN
THREE-DIMENSIONAL MEAN FLOW

’ W
S. P. S. Arya ?)‘}\(

and

J. E. Cermak

Prepared Under
Office of Naval Research
Contract No. N00014-68-A-0493-0001
Project No. NR 062-414/6-6-68(Code 438)
U. S. Department of Defense

Washington, D. C.

"This document has been approved for public release
and sale; its distribution is unlimited."

Fluid Dynamics and Diffusion Laboratory
College of Engineering
Colorado State University
Fort Collins, Colorado

April 1969 CER68-69SPSA-JEC30



ABSTRACT

A hot-wire anemometcer for mcasuring turbulence in three-dimen-
sional mean flow is presented. Lffect of three-dimensionality of mean
flow on a yawed wire's sensitivity to longitudinal, vertical and lateral
fluctuations is brought out. A four-wire probe is shown to be suitable
for measuring all the mean flow and turbulent quantities of interest.

Errors due to the cross flow component on turbulence measurements
in two dimensional flows using conventional hot-wire techniques are
estimated. iMeasurements of shear are shown to be very sensitive to
even small amounts of cross flow that might be present in many labora-

tory and field flows of interest.
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MEASUREMENT OF TURBULENCE 1IN
THREE-DIMENSIONAL MEAN FLOW

1. Introduction

Conventional hot-wire techniques assume the mean flow to be
one-dimensional, the direction of mean velocity vector at any point
being taken to be coincident with that of the general flow. Although,
most of the turbulent flows encountcrecd in the laboratory, e.g., those
of boundary layers, mixing layers, wakes and jets, are never one-
dimensional, the sccondary flow components are usually so small that
no appreciable errors due to them are introduced. On the other hand,
if the stream lines deviate significantly from the general flow direc-
tion, e.g., in the regions of abrupt changes of surface conditions,
these errors may no longer be negligible.

There are other fluid flows of interest in which mean flow is
clearly two- or three-dimensional in nature, e.g., flow around large
obstacles, diverging or converging flows, etc. To our knowledge, no
turbulence measurements have been reported, in which the three-
dimensional nature of the mean flow has been considered. A quantita-
tive evaluation of the errors due to secondary flow components on
measurements using conventional hot-wire techniques is also lacking.
It is the purpose of this report to determine these errors, as well
as, to describe a technique of measuring turbulence in three-

dimensional flows.

2. Derivation of Hot-Wire Response Equations

Although, the dynamic response equation for a hot-wire placed
in any general manner with respect to the coordinate axes can be de-

rived, for simplicity of algebra we will consider only two most



convenient orientations viz., (a) when the wire is in X,z plane and
is yawed by an angle 6 to the x-axis, and (b) when the wire is in
X,y plane and is yawed by an angle ¢ to the x-axis.

Let U, V and W be the mean flow components and u' , v' ,
and w' the fluctuations in X, y and z directions, respectively. As
in conventional hot-wire technique, we assume that fluctuations are
small in comparison to the mean velocity, so that second and higher
order terms in u'/U , v'/U and w'/U can be neglected.

For a given hot-wire anemometer and operating conditions, heat
transfer and hence, the voltage output across the wire will depend on

the total velocity vector U and the angle o between the velocity

tot

vector and the axis of the wire. That is,

E = f(Utot s @) . (1)

It is convenient to combine the two variables Utot and a , into

what is called the "effective cooling velocity" Ueff , so that one

can write

R (. (2)

and in the differential form

oE
eff

eff (3)

£ [

)dU

There has been much discussion in the past as to what should be
the effective cooling velocity. The so-called cosine-law is based on
the assumption that only that component of the velocity vector which

is normal to the wire affects the heat transfer from the wire. This



would have been true in case of a very long wire. It is now generally
recognized that for a finite length wire (say, 1/d < 1000), the com-
ponent of the velocity parallel to the wire is also, to some extent,
significant in heat transfer. Recent works by Webster (1962), Delleur
(1966) and Champagne et al., (1967), all point out the merits of

using the following expression for Ueff , which was suggested by

Hinze (1959):

2 -2 22 2 2 - 2 2 2
Ueff Utot (sin“a + a“ cos® a) Un + a Ut 4

in which, 'a' 1is an empirical constant with a value between 0.1 and
0.3, and Un and Ut are the normal and parallel components of the
velocity vector. Precise measurements of heat transfer from hot-wires
by Champagne et al., (1967) show that a is essentially‘independent

of the material of the wire and the yaw angle, but it depends on length

to diameter ratio. An experimental plot of a vs 1/d has been

given by these authors. In what follows, we will assume Ueff to be
given by Eq. (4) in which a 1is known.
A Wire in x, z - plane
For wire configuration of Fig. 1 (a), we have
r ; 2
Ug = [(U+u') sin6 + (W+w') cose] + (Vev")2 (5)
2
Ui = [(U+u') cosf - (W+w') sine] . (6)

Substituting in Eq. (4) then, we obtain
. X 2
Uéff = [tU+U') sin0 + (W+w') coseJ + (Vav1)2

+ a2 [(U+u') cos6 - (W+w') sineJ2 (7)



which, after simplification and neglecting second order terms can be

written as

2
Ueff

= (sine + COSG)Z + p2 + 8.2 (COSG - sin6)2
2 q P q
U

1
+ 2 %r-[sinze + q sin6cosé + a?(cos26 - q sind cose)J

' 1
+2-p+ 2 [q cos26 + sinbcosd + a?(q sinze-sinecoseﬂ

U U
(8)

’ : Vv
in which p = 5 (9)

and q = L , (10)

U

For the sake of brevity, we let

F = (sin6 + q cos6)2 + p? + a2(cos® - q sind)? (11)

G = sin%6 + q sin6 cosé + a%(cos?6 - q sinb cos6) (12)
and

H = q cos?6 + sin6 cos6 + a?(q sin?6 - siné cosb) . (13)

Equation (8) can then be written as

1/2
u' v' w'

Ueff_Ul:F+2U_G+2Tp+2TJ_H] (14)

which, after differentiation gives
-1/2
_ 1/2 u' G v' p w' H
dUeff = UF 1+ 2 T 2 T F Y 2 T
G du' p dv' H dw!'
F U 'F U 'F T * (15)



We can write Eq. (3) as

LU -1
dE = (EEJ ( eff) du

30| | oU (16)

eff

After expanding Eq. (14) in powers of u'/U etc., neglecting second
and higher order terms and differentiating with respect to U , one

obtains

= = F . (17)

Substituting from Eqs. (15) and (17) into Eq. (16), we get

- [ean g phe e f Y s
%-dv' + %-dw' (18)
or,
dE = %%- (1 - %%- %-- %}-g-- %%-%-+ higher order terms‘
(%—du' + %-dv' + %-dw' . (19)

After neglecting terms like wu'du' etc., and other higher

order terms, one obtains

3E |G " H
E = g (?-du' ¢ Bav+ aw) . (20)

Replacing differentials by fluctuations themselves in Eq. (20)
as is done in conventional hot-wire anemometry, we arrive at the
following response equation of the hot-wire in the form it can be

used for actual measurements.

e' =S u'+S_  v'+S w (21)
Ug Ve Ys



in which sensitivities S s S and S are given after
Ug Vo Yo

substituting from Eqs. (11)-(13).

S _ oFE {sine(sine + q cosb) + a? cos6(cos6 - q sine)J (22)
Wy AU (siné + q cos6)2 + p2 + aZ(cos6 - q sind)?

s, =3¢ [ 4 J (23)
8 (sind + q co0s0)2 + p? + a2(cosb - q sind)?

s = 2E { cos6(sinb + q cosf) - a? sin6(cosh - qsine)J (24)
Wy 2 (siné + q cos8)2 + p? + a2%(cos6 - q sing)?

As a check on our procedure, we see that by substituting for p=q=0
in the above, our response equation reduces to that of a conventional

yawed wire (see Arya, 1968) viz.,

e' = %%-[u‘ + cw! cote] (25)
in which
a2
c = 137 , (26)
1+a2cot?26

appears as a correction factor in the otherwise simple relation obtain-
able from the '"cosine-law'" assumption.

From consideration of Eqs. (21) through (24), we see that with
non-negligible secondary flow components, even a normal wire (8 = 900)
is sensitive to all three fluctuating components.

B. Wire in X, y plane

Following the same procedure as in (A) we can obtain the
following equations for a hot-wire placed in the x,y plane at an angle
of ¢ with x-axis (Fig. 1(b))

e' = Su u' + Sv v' o+ Sw w' | (27)
o ¢ ¢



where
s - 2E [sing(sing + p cos¢) + a? cos¢(cos¢ - p simb)J (28)
Yo 2l L(sin¢ + p cos$)2 + q2 + a?(cos¢ - p sing)?
S - QE_Pcos¢(sin¢ + p COS$) - a? sin¢(cos¢ - J) sin¢)] (29)
Vo ou (sing + p cos¢)? + q2 + a?(cos¢ - p sing)?
s, =30 [ q J . (30)
d (sing + p cos¢)? + q2 + a?(cos¢ - p sing)?

3. Effect of Cross-Flow Component on Hot-Wire Measurements in Two-
Dimensional Flows

Before we outline a method of measuring turbulence in three-
dimensional flows, it will be of interest to investigate the effect
of cross-flow component of the mean motion on turbulence measurements
in two-dimensional flows such as boundary layers, jets, etc. We con-
sider different wire arrangements which are commonly used. Let the

flow be two-dimensional in x,y plane, so that q =0 .

A. Vertical normal wire

In this case, ¢ = 90° , and the wire response equation

reduces to

)
2
o = E [.._i__u. . _;“_P_V|] , -~
1+a2p2 1+a2p?

Normally, root mean square of longitudinal fluctuations is evaluated

as
_ =7,1/2
@2 L) (32)
U

which we have suffixed by m indicating it as measured value as
against the actual value given by Eq. (31). A correction factor

defined by the ratio of measured to actual value is obtained as



——

/(;TES;/Z - [(1 + a2p2)2 - aupz(;TE)uéz)

Cu'= (:'—2') 1/2

1172
-2 azp(u'v'/UAZ)J (33)

In the first approximation of the correction, measured values can be
used for v'2 and u'v' on the right-hand side of Eq. (33). This,

then, can be further refined in successive steps.

B. Horizontal normal wire

In this case, we have 6 = 90° , and Eq. (27) reduces to

e! = 2_5' [———l—u' + —P—v'} (34)
1+p2 1+p2

A correction factor can again be obtained in the form

o S, 1 v
C, = [(1+p2)2 _ p2(vv2/u;nZ) - 2p(u'v'/ul;‘2)]

. (35)

C. X-wires
Let us now consider the effect of vertical mean velocity on

o 1/2

measurements of (v'2) , u'v' and (u"”-)l/2 using a pair of

matched x-wires (¢ = *45°). We have from Eqs. (27)-(30)

e o [{ 1+pra?(1-p) }u. .
*45 U | (1+a2) (1+p2) *+ 2p(1-a2)
] e

1+p-aZ(1-p)
(1+a2) (1+p2) + 2p(1-a?)

{ "
o o H 1-pra’ (1+p) }u.
-45 U (1+32) (1+p2) o zp(l_aZ)

{ b

1-p-a2(1+p)
(1+a?) (1+p2) - 2p(1-a?)

(37)

|



Although, algebra is much involved, the correction factors for measure-

1/2 —— w2y 1/2

ments of (v'?) , u'v' and (u using x-wires technique

can also be obtained in a straight forward manner. These are given as

2
C2, = viZ/viZ = I:l - p2 16 p%a? }
Y " (1-p?) (1+a2)?2
- pAu?/vi®) + 2p(utvi/vi?) (38)
: 2
s it 2,2
Cu'v' = u'v'/u'v& = 1 [1 - p2 + 16 p'& J
1+p? (1-p?) (1+a?)?
2.2 ——
o [1 + Spa } (u'2/utvl)
1+p? (1-p?) (1+a?)?
2p? 2 1-22 ] —5 ——
- =P |1+ - (v'z/u'vé) (39)
1+p2 1-p%2  1-p2 | 1+a?
1 +p2 __f':e.z_(l'az)z 2
CZI =u'2/u'? = 1+p2 "1+a?
u m - 252 Lsa? 2
1+p2 " 1+a?
2
1 o2 (1-a2) 5
- p2 1+P2 1+a? (V'Z/U'Z)
2p2 [1-a2 2 n
1 o —<P—
1+p2 (1+a2
1 -2 1-a2)2
- 1+p? " 1+a? T/ 2
2p ) - (1_a2)2 (u'v /um ) (40)
1+p2 ' 1+a?

In order to have an idea of under what conditions the above

derived corrections would become important, we represent them as in
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Figs. 2, 3 and 4 as functions of the cross-flow parameter p , for
1/2 (v'2)1/2 -

particular values of (573}5733 = 0.25 , and GT;TV(U'Z)
- 0.4 , which are typical for a boundary layer.

We note that the horizontal normal wire, which is otherwise less
vulnerable to other common errors such as those due to large gradients
of mean velocity and turbulent intensities along the wire, finite wire
length, proximity of a solid boundary, etc., is more affected by the
vertical component of mean velocity than the vertical wire. It can be
seen from Fig. 2 that for value of p wup to 0.1, errors in longitudi-
nal turbulent intensity measurements are within 3% and can be neglected.
For more significantly diverging or converging two-dimensional flows,
conventional techniques can still be used, but proper corrections must
be applied.

Figures 3 and 4 indicate that the errors due to cross-flow
component are more significant in measurements of traverse velocity
fluctuations and turbulent shear stress using x-wire technique. In
particular, shear measurements can be very much in error which is about
10% for V/U = .02 , and increases proportionately with V/U . This
fact has not been recognized previously.

By quantitatively expressing the effect of cross flow on turbu-
lence measurements using conventional hot-wire techniques, we have in
fact discovered a rather simple method of measuring turbulence in

diverging or converging two-dimensional flows.

4. Measurement Technique in Three-Dimensional Mean Flow

In the case of three-dimensional mean flow, one can still extend
the method of the preceding section whereby, expressions are obtained

for corrections to be applied to the measurements made by assuming
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one-dimensional mean flow. These are going to be much more complicated,
however, and may not be convenient to use. Root-mean-square voltage
output of a wire, now, contains information about six Reynolds stresses
in varying order of their magnitude. In principle, one can operate

the wire in six different positions (yaw angles) and then determine

the unknowns from the solution of six simultaneous equations so obtained.
In practice, however, it would not be possible to determine, to any
reasonable accuracy, more than two or three of these quantities.

Another and perhaps much better method will be to use a three-
wire probe, record the fluctuating voltage signals from three wires
simultaneously on a magnetic tape and, then, analyze them digitally.
This method has been successfully used in our Laboratory for measuring
the joint statistics of velocity and temperature fluctuations from the
output of three hot wires placed in a thermally stratified boundary
layer (results not yet published).

In the design of a probe for measuring turbulence in three-
dimensional flows, it will be of interest to plot wire sensitivities
Su¢ 5 Sv¢ and Sw¢ as functions of ¢ for different values of the
cross-flow parameters p and q . This has been done in Figs. 5, 6
and 7 in which Su , etc., have been normalized by a reference sensi-
tivity (3E/8U)n, ¢given by the calibration of the wire placed normal

to the flow. We have assumed a=0 , and

oE oE i
il (Eﬁw |sing| . (41)
n
In Fig. 8 are represented the ratios Sv /S and Sw /Su « For

convenience in the graphical representation of Figs. 5 through 8,
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v = (90 - |¢]) (42)

has been chosen for the abscissa; ¢ vrepresents the angle which the
normal to the wire will make with the x-axis. We note that for vy =
+45° (¢ = i450), the wire is almost equally sensitive to both wu' and
v' irrespective of the magnitude of cross flow. Similarly, a wire in
X,z-plane yawed at 6 = 45° will be equally sensitive to u' and w' .
After considering several probe combinations, we have chosen a four-
wire probe which has two wires arranged in V-form in X,y-plane and the
two wires in V-form in Xx,z-plane as shown in Fig. 9. This choice was

also dictated by the fact that it is most suitable for determining

cross-flow parameters p and q as shown in the following section.

5. Measurement of Mean Flow Components

In the previous sections we have assumed that the mean-flow
parameters p and q are known from other set of measurements for
each point in the flow field where turbulence measurements are intended.
It will be most desirable, of course, if the same probe can be used
for measurement of turbulent, as well as mean-flow quantities. This
is what can be acconplished by our four-wire probe as shown in the
following.

Let us consider the response of a yawed wire to mean flow. We

have, after integrating Eq. (3) and making linearization assumption,

SE
E = ( ) U (41)
aueff eff
or, I - -1
oE | eff
& (au Ueff) | 50 ) (42)
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For a yawed wire in x-y plane and considering mean flow only, we have

1/2
Vets ~ [(U sing + V cos¢)? + a%(U cos¢ - V sing)? + wz] (43)
and
WU ee , |
Ueff ‘—§ﬁ~) = U siné + V sin¢ cos¢ + a*(U cos¢ - V sin¢ cos¢) .(44)

Substituting from Eqs. (43) and (44) in Eq. (42), one obtains

. 2 2 _ N 2
E =uU %%_[(51n¢ + p cos$)“ + a“(cos¢ - p sing)- + q } (45)
¢ sing + p sin¢ cos¢ + a?(cos¢ - p sing cos¢)
Similarly for a yaw angle of -¢, one obtains
E_=U EE.[ (sing - p cos¢)? + a?(cos¢ + p sing)? + qz] (46)
¢ sing - p sin¢ cos¢ + a2(cos¢ + p sin¢ cos¢)

Similar equations can be derived for yawed wires in x,z-plane. We

can consider now the effect of mean flow on our four-wire probe.

Let E1 and E2 be the d.c. voltages across two wires (¢

+45%) in X,y-plane. Then,

_ yl3E) [ Q)2 + a2(1-p)2 +ﬁ}
E. = Ul— (47)
1= U )1[ (V2+p) + a? (YZ-p)
2] [Q-p? + a? (1ep)? + qz]
E, = Ul (48)
. (3“)2 { (VZ-p) + a2 (VZ+p)
It is easy to show from Eqs. (47) and (48) that
U -, [1PP02 a? gy .
5 = ( V2 ) (1+a2 ( 1 2) 1+a2 1+a? (49)
2/Z-11 \1-a2\91Y2l | 2 Q.

(2V/2-1)  (2V/2-1) (1+a2)
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: 3E 9E —_—_ :
; - g% - 9=y . , 11
in which U1 El/lau)l and U2 Ez/(au)2 Similarly, we wi

have for other two wires in X,z plane

EZ
U,-U "'l'qz(/5 2
o - ( /2 ) l+a2)( 3” 4) 1+a2 1+a2 . (50}
2/2-1/{1-a2/\Y3*Y4 1-q7— | - p?
2/2-1 (2v/2-1) (1+a2?)

Mean flow parameters p and q can be determined using Eqs.

and (50) by writing them in the form

=C ( 2 31:32 (51)
Pl2/2-1 1772 )
V2 Uz-U,
o |
q( 2/2-1] | Us*Uy

in which Cp and Cq are corrective factors, which may be assumed

to be equal to unity in the first approximation, and then can be

evaluated for obtaining second or higher order approximation of p

and q . Main component U of the mean flow can then be determined

from any one of the Eqs. (47), (48), etc.
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