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ABSTRACT 

INTEGRATION OF GRAPHICAL, PHYSICS-BASED, AND MACHINE LEARNING 

METHODS FOR ASSESSMENT OF IMPACT AND RECOVERY OF THE BUILT 

ENVIRONMENT FROM WIND HAZARDS 

 

The interaction between a natural hazard and a community has the potential to result in 

a natural disaster with substantial socio-economic losses. In order to minimize disaster impacts, 

researchers have been improving building codes and exploring further concepts of community 

resilience. Community resilience refers to a community’s ability to absorb a hazard (minimize 

impacts) and “bounce back” afterwards (quick recovery time). Therefore, the two main 

components in modeling resilience are: the initial impact and subsequent recovery time. With 

respect to a community’s building stock, this entails the building damage state sustained and 

how long it takes to repair and reoccupy that building. In modeling these concepts, probabilistic 

and physics-based methods have been the traditional approach. With advancements in artificial 

intelligence and machine learning, as well as data availability, it may be possible to model 

impact and recovery differently.  

Most current methods are highly constrained by their topic area, for example a damage 

state focuses on structural loading and resistance, while social vulnerability independently focus 

on certain social demographics. These models currently perform independently and are then 

aggregated together, but with the complex connectivity available through machine learning, 

structural and social characteristics may be combined simultaneously in one network model. 

The popularity of machine learning predictive modeling across multiple different applications has 

risen due to the benefit of modeling complex networks and perhaps identifying critical variables 
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that were previously unknown, or the mechanism behind how these variables interacted within 

the predictive problem being modeled. 

The research presented herein outlines a method of using artificial neural networks to 

model building damage and recovery times. The incorporation of graph theory to analyze the 

resulting models also provides insight into the “black box” of artificial intelligence and the 

interaction of socio-technical parameters within the concept of community resilience. The 

subsequent neural network models are then verified through hindcasting the 2011 Joplin 

tornado for individual building damage and the time it took to repair and reoccupy each building. 

The results of this research show viability for using these methods to model damage, but more 

research work may be needed to model recovery at the same level of accuracy as damage. It is 

therefore recommended that artificial neural networks be primarily used for problems where the 

variables are well known but their interactions are not as easily understood or modeled. The 

graphical analysis also reveals an importance of social parameters across all points in the 

resilience process, while the structural components remain mostly important in determining the 

initial impact. Final importance factors are determined for each of the variables evaluated 

herein. It is suggested moving forward, that modeling approaches consider integrating how a 

community interacts with its infrastructure, since the human components are what make a 

natural hazard a disaster, and tracing artificial neural network connections may provide a 

starting point for such integration into current traditional modeling approaches. 
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CHAPTER 1  INTRODUCTION 

1.1 STATEMENT OF PROBLEM 

Natural hazards are an inevitability that affect communities across the world. Instead of 

trying to forcibly work against nature, community resilience proposes that communities and 

individuals be able to avoid disasters then minimize loss and recover quickly, as well as learn 

from the events so that they may recover stronger and therefore more able to absorb future 

events. Building resilient communities includes evaluating our engineering materials, mitigation 

strategies, preparedness, and socio-economic structures. Part of this would involve being able 

to model community wide impact and recovery from hypothetical and oncoming events. In doing 

so, the community can improve its mitigation and preparedness strategies. Once models are 

established, changes in engineered infrastructure could also be evaluated for how they would 

minimize damage and impact, further improving recovery time.  

Within these models, social, economical, and engineering components must interact 

across a community’s infrastructure networks. For example, monetary resources may be a 

variable in dictating how and when an individual may be able to rebuild a structure. A 

community’s monetary resources may also dictate the recovery of public utilities. Additionally, 

the rebuilding of a school may be critical to a population moving back to a location following an 

event. The research presented herein will evaluate the use of machine learning applications for 

potentially modeling the impact and recovery of a community’s building stock, specifically from 

wind hazards. Additionally, this research will attempt to track patterns through a machine 

learning structure to assist in further identifying the socio-technical (social demographics and 

engineered infrastructure) contributions to both impact (damage) and recovery (rebuilding).  
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1.2 OBJECTIVES AND SCOPE OF RESEARCH 

With advances in the area of Artificial Intelligence (AI) and Machine Learning (ML), an 

interesting opportunity in modeling the complex socio-technical interactions, with respect to a 

community’s resilience, has become available. While current and past research well highlight 

the potential contributions of social parameters to the resulting building damage, it has proven 

difficult to model cohesively, which is where the application of ML may be able to assist. This 

research serves to evaluate the applicability, limitations, and areas for improvement of ML 

modeling applications in this context. Additionally, by combining the use of Artificial Neural 

Networks (ANNs) with graph theory, tracing artificial neural pathways may provide additional 

insight into the social and engineering interactions in such respects. Such ANNs will also be 

verified within this work through hindcasting the May 2011 Joplin, MO Tornado event.  

In order to accomplish this objective, the following tasks and subtasks will be 

accomplished: 

▪ Task 1: Conduct a Comprehensive Literature Review 

o Evaluate disaster literature for gaps in methodological approaches to 

modeling resilience. 

o Evaluate existing physics-based approaches to modeling building 

damage and recovery times. 

o Assess current applications of machine learning for predictive modeling, 

specifically Artificial Neural Networks (ANNs), across related and 

unrelated disciplines. 

o Identify previous studies in which graph theory was used to evaluate 

neural pathways. 

▪ Task 2: Data Collection and Data Set Builds 
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o Determine which data are applicable for modeling resilience and which of 

those data are accessible. 

o Create a key to communicate visual/subjective variables to an ANN.  

o Gather data for model building that is also relative to data availability from 

an existing event or one that may occur in the future. 

▪ Task 3: Build an ANN for Wind Hazard Impacts in terms of Damage State 

o Assemble a list of potential ANN training algorithmic theories for this task 

and Task 4.. 

o Determine various ANN model structures in which different input variables 

are incorporated. 

o Evaluate the performance of each training and model option. 

o Determine the most relevant (lowest percent error from the build process) 

ANN training algorithm and model to use for the subsequent tasks. 

▪ Task 4: Build an ANN for Building Recovery/Rebuilding from Wind Hazards 

o Determine various ANN model structures in which different input variables 

are incorporated. 

o Evaluate the performance of each training and model option. 

o Determine the most relevant (lowest percent error from the build process) 

ANN training algorithm and model to use for the subsequent tasks. 

▪ Task 5: Conduct Graphical Analysis of Damage ANNs 

o Chose two ANN types: (1) most relevant and (2) a poorer performing 

build option. 

o Build multiple ANNs of each type for modeling and evaluation. 

o Combine these multiple ANNs together to form one conglomerated 

network. 
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o Trace the shortest path from network inputs to outputs (damage state) for 

each individual ANN and the combination network. 

o Determine centrality of each ANN neuron within the individual ANNs and 

the combination network. 

▪ Task 6: Conduct Graphical Analysis of Recovery ANNs 

o Chose two ANN types: (1) most relevant and (2) a poorer performing 

build option. 

o Build multiple ANNs of each type for modeling and evaluation. 

o Combine these multiple ANNs together to form one conglomerated 

network. 

o Trace the shortest path from network inputs to outputs (recovery time) for 

each individual ANN and the combination network. 

o Determine centrality of each ANN neuron within the individual ANNs and 

the combination network. 

▪ Task 7: Simulate the 2011 Joplin Tornado 

o Gather existing data on the resulting building damage states and time to 

rebuild and reoccupy those buildings following the 2011 Joplin, MO EF5 

Tornado. This will be used for comparison against the ANN modeling 

outputs. 

o Use the final multiple ANNs to model individual building damage state 

given the tornado path, wind speed, community demographics, and 

building stock characteristics. 

o Compare these results to that of physics-based methods in determining 

building damage state. 

o Compare both ANN and physics-based results to actual data for 

validation 
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o Use the final multiple ANNs to model individual building rebuild and re-

occupancy times given the tornado path, wind speed, community 

demographics, and building stock characteristics. 

o Compare recovery results to actual for evaluation.  

▪ Task 8: Discuss Implications of Results, Conclusions, and Future Work 

o Outline which socio-technical variables may be considered critical for 

evaluating building damage states and recovery time, and therefore are 

recommended to be recorded for building future ANNs with this objective. 

o Conclude applicability of using ANNs in modeling community resilience.  

o Discuss further research needed and how individual building data could 

be used on the community scale. 

The following chapters will outline influential research completed prior to this work, the 

methods in using ANNs, methods in applying graph theory, results of building damage and 

recovery ANNs, the 2011 Joplin data, and further discussion on the implications of such results.  

This research is intended to be a starting point within the application of AI for modeling impacts 

and recovery from natural hazards. Therefore, discussion will be given for how such methods 

could be expanded and improved upon. 
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CHAPTER 2  BACKGROUND AND LITERATURE REVIEW 

2.1 NATURAL HAZARDS 

2.1.1 NATURAL HAZARDS AS DISASTERS 

Worldwide, natural hazards lead to destruction, economic losses, mass displacements of 

populations, and in some cases, loss of life. These events can be both climatological, covering 

situations ranging from extreme temperatures to tropical cyclones, and geological, covering 

landslides to movement of tectonic plates. All of these events are highly location-dependent 

based on proximity to fault lines, coastal areas, and specific atmospheric conditions. Eastern 

Asia is an example of a location subject to tropical cyclone conditions and tectonic plate activity. 

This locale (including Japan, the Philippines, Indonesia, and China), along with India, had the 

most natural hazard events in the world (Bryant 2005). According to Bryant (2005) tornadoes, 

which primarily occur within the U.S., were the most commonly occurring event in the world in 

the 20th century, as shown in Table 2-1. However, this did not make them the costliest (Table 2-

2) or deadliest (Table 2-3). Those titles belonged to earthquakes and flooding, respectively. 

According to The Centre for Research on the Epidemiology of Disasters (2018) the average 

number of deaths for the 2000s and 2010s currently places earthquakes and “storms” (extreme 

weather such as thunderstorms, tornadoes, and tropical cyclones) as the deadliest natural 

hazards so far this century (Ritchie and Roser 2018).  
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Table 2-1 Frequency of Hazards (Bryant 2005; Centre for Research on the Epidemiology of 
Disasters 2018) 

Hazard Type # of Events in the 
20th Century 

# of Events from 
2000 to 2018 

Tornadoes (US)* 9476  
Extreme Weather  1891 
Flood 2389 3029 
Tropical Cyclone 1337  
Tsunami 986  
Earthquake 899 517 
Wind (other) 793  
Drought 782 318 
Landslide 448 351 
Wildfire 269 222 
Extreme Temperature 259 411 
Temperate Winter Storm 240  
Volcano (Volcanic 
Activity) 

168 97 

Tornadoes (non-US) 84  
Famine 77  
Storm Surge 18  

* Tornadoes in the US are for F2-F5 tornadoes 1950-1995  
 

Table 2-2 Worldwide Cost of Natural Hazards in USD at the end of relevant time frame (Bryant 
2005; Centre for Research on the Epidemiology of Disasters 2018) 

Hazard Type Total Costs in the 
20th Century 

Total Costs from 
2000 to 2018 

Earthquake $248,624,900,000 $530,581,604,000 
Flood $206,639,800,000 $514,976,464,000 
Tropical Storm $80,077,700,000  
Wind Storm $43,890,000,000  
Extreme Weather  $983,525,368,000 
Wildfire $20,212,800,000 $63,471,687,000 
Drought $16,800,000,000 $104,052,476,000 
Cold Wave $9,555,000,000  
Heat Wave $5,450,000,000  
Extreme Temperatures  $44,265,193,000 

Total $631,250,200,000 $2,240,872,792,000 
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Table 2-3 Deaths Resulting from Natural Hazards (Bryant 2005; Centre for Research on the 
Epidemiology of Disasters 2018) 

Hazard Type Associated Deaths 
in the 20th Century 

Associated Deaths 
from 2000 to 2018 

Floods 6,851,740 99,606 
Earthquakes 1,816,119 719,962 
Tropical Cyclones 1,147,877  
Volcano (Volcanic Activity) 96,770 1,543 
Landslides, avalanches, mud 
flows 

60,501 16,854 

Extra-Tropical Storms 36,681  
Heat Wave 14,732  
Drought  21,182 
Extreme Temperature  162,616 
Tsunami 10,754  
Cold Wave 6,807  
Tornado 7,917  
Extreme Weather  195,639 
Wildfires 2,503 1,397 

Total 10,052,401 1,218,799 

 

Even though most media coverage encompasses hurricane and tornado deaths, the 

biggest contributor to loss of life in the U.S. has historically been heat and drought followed by 

cold weather, as shown in Figure 2-1 (Borden and Cutter 2008). However, according to the U.S. 

Federal Emergency Management Agency (FEMA), most disaster declarations in the U.S. are 

categorized under severe weather, flooding, and fire (Figure 2-2).  

 

Figure 2-1 Deaths by natural hazard type in the U.S; after: (Borden and Cutter 2008) 
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Figure 2-2 Disaster declarations by type; data from (FEMA n.d.) 

The U.S. averaged 1,200 tornadoes yearly since 1950 (National Severe Storms 

Laboratory n.d.). However, the majority of these recorded tornadoes (90%) were considered 

“weak” tornadoes and rank as EF-0/1 (Livingston 2017) on the Enhanced Fujita Scale in Table 

2-4.  Often, the tornadoes that made the news as a disaster were EF-4/5 (or “violent tornado) 

events and are considered rare events. Some recent disastrous tornado events of EF4 or higher 

ranking include the 2013 Moore, OK, 2011 Tuscaloosa AL, and 2011 Joplin, MO tornadoes. 

Each of these individual events resulted in at least $2 billion (2015 USD) in damages (Storm 

Prediction Center 2015).  

Table 2-4 The Enhanced Fujita Scale (McDonald 2002). 

EF Scale 3-second Gust Wind Speed (knots) 

0 56-74 

1 75-96 

2 97-117 

3 118-143 

4 144-174 

5 >174 

 



 10 

The tornado that struck Joplin, MO occurred on May 22, 2011 as a 1.6 km wide (1 mile) 

wide EF-5 tornado and resulted in approximately a cost of $2 billion and the loss of 161 lives 

(Onstot 2016). This single event damaged nearly 7,500 residential structures along with 553 

non-residential buildings (Kuligowski and Jorgensen 2014). In addition to many residential 

structures, severely damaged buildings included, but were not limited to, two fire stations, the 

Joplin High School, and a major Hospital (St. John’s Regional Medical Center (SJRMC)) shown 

in Figure 2-3.  The findings following the National Institute of Standards and Technology (NIST) 

technical investigation indicated that 135 of 161 fatalities were a result of building failures 

(Kuligowski and Jorgensen 2014; NIST 2011). This event remains the single costliest and 

deadliest tornado in U.S. history since records began in 1950. As a result, the 2011 Joplin 

Tornado will be further referenced within the research discussed in the following chapters. 

 

Figure 2-3 Photograph of SJRMC damage following the 2011 Joplin Tornado, taken by 
Tiffany Kelley Photography (Kelley 2011). 

2.1.2 METEOROLOGY OF SEVERE WEATHER 

For modeling the impact of a hazard, it is best to first understand how the hazard occurs. 

The hazards to be specifically studied as part of this dissertation research are wind related. 

Windstorms occur as tornados, hurricanes, or what is termed “straight-line” winds. Straight-line 
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winds are often associated with a frontal boundary, flow off of a mountain, or a singular storm 

such as a derecho (the 2012 Ohio Valley/ Mid-Atlantic derecho caused power outages (Zubrick 

and National Weather Service 2012)). Specific fluid dynamic conditions govern how each event 

would occur. 

In general, air typically moves as a result of a pressure differential, termed “pressure 

gradient force” (Ahrens 2008). This can be thought of similar to how water flows through terrain; 

steeper slopes have a “tighter” elevation gradient and water will flow faster, whereas a tighter 

pressure gradient (closely packed isobars) will result in stronger winds. Air masses of different 

pressure will also have different temperatures, which is why hot and sunny weather is typically 

associated with a high-pressure area. A front is merely the boundary between two air masses of 

different densities. There are a handful of different types of fronts, however, the one most 

commonly associated with more extreme winds is a cold front. This is due to the fact that cold, 

dry, and stable air is moving into a region of warm, moist, and conditionally unstable air (note 

that this air instability ties to the formation of storms). The cold front will lift the warm and moist 

air causing it to condense into clouds (Ahrens 2008). The more drastic the change in 

temperature, the stronger the front will be, resulting in potentially stronger systems with extreme 

winds.  

Lift, instability, and moisture are necessary to form storms that will later bring strong 

winds and possibly tornados (with some other conditions). Because of these required elements, 

storms form on boundaries, such as cold fronts. Straight-line winds can come from 

thunderstorms, which include supercells, gust fronts, microbursts, squall lines, and derechos. A 

gust front (boundary between cold downdraft air and warm moist air feeding a storm) can cause 

a strong shift in winds, which may occasionally exceed 55 knots (63 mph) (Ahrens 2008). A 

microburst occurs when a storm’s downdraft hits the ground and spreads outward from the 

storm in a small area. These events can create damaging winds of up to 146 knots (168 mph) 

(Ahrens 2008). When a cluster of storms forms together, and the associated damaging winds 
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extend for hundreds of kilometers, this is what is termed a Multi-Scale Convection System 

(MCS) and could potentially form into a derecho. It is fairly common to see these storms in the 

shape of a bow on radar and therefore termed “bow echos”. These straight-line wind events can 

exceed wind speeds of 90 knots and are often associated with wide spread power outages and 

some structural damage (Ahrens 2008). 

Straight-line winds and tornadic winds differ in how they may cause damage and how 

debris is transported during the event. Straight-line winds are just as they sound, strong winds 

moving along an approximately linear vector path. Tornadic winds are more tightly wrapped 

rotating winds, similar to how water appears when flowing down a drain. Radar examples for 

these events are shown in Figure 2-4, where (a) and (b) represent the convection and wind 

velocity of a straight-line wind event, and (c) and (d) represent the same for a tornadic type 

event. Tornadoes are much smaller in size than an MCS event and typically range from 100 to 

600 meters wide and are ranked by damaging wind speeds through the Enhanced Fujita Scale, 

shown in Table 2-4 (National Weather Service n.d.). The same factors are needed to form a 

tornado as are needed for a storm/supercell: lift, instability, moisture, and additionally, shear to 

create a rotating column of air. However, the specifics to how exactly tornadoes form from a 

supercell remains unknown and is still being studied today. Because of the nature of the tightly 

rotating winds of a tornado, objects, sometimes as large as a railroad coach, can be lifted off the 

ground and subsequently dropped meters from its original location (Ahrens 2008). Essentially, 

these are violent fluid flow events that have the potential to severely impact a community.  
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Figure 2-4 Radar images, taken using RadarScope™, of (a) convection structure of a 
straight-line wind event, (b) radar estimated wind velocity (green color represents motion 
towards radar tower, and red represents motion away from tower) of a straight-line wind 

event, (c) convection structure of a tornado-warned (red box) supercell, and (d) wind speed 
with rotation signature for a tornado warned supercell. 

2.2 THE SOCIO-TECHNICAL ASPECT OF DISASTERS 

The natural hazard, itself, is only a part of what contributes to a disaster. Arguably, the 

social, economic, and engineering aspects of where the hazard occurs are at the crux of a 

(un)natural disaster. Communities with certain population demographics have been found to be 

more vulnerable than others while certain building materials have been found to withstand wind 

pressure better than others. The resulting damage from a wind storm can sometimes force 

changes to building codes based on the observed structural failures. Such changes are applied 
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with the interest of reducing disaster-type outcomes in terms of economic damage and loss of 

life due to building failures. 

2.2.1 ENGINEERING AND CONSTRUCTION PARAMETERS CONTRIBUTING TO DISASTERS 

A natural hazard generally occurs through mechanisms that require no human 

interaction (exceptions could include fires and flooding due to failures of dams). For the 

research conducted herein, the engineering-based components that could turn a hazard into a 

disaster were primarily related to wind-building interaction, where wind would interact with a 

standard low-rise building as shown in Figure 2-5 below. The windward side of a structure would 

feel a positive pressure exerted on it, while the leeward side experiences a negative pressure 

force. In other words, there is a “suction-like” force being exerted on the leeward wall. The roof 

and sidewalls have a similar negative pressure on most of the respective surface areas. If 

windborne debris cause the building envelope to be breached, the wind interaction with the 

building will change to what is shown in Figure 2-6. This results in the development of internal 

pressure that will combine with the external pressure to increase damage to a structure (Yau et 

al. 2011). 

 

Figure 2-5 Instantaneous and simplified external pressure distribution on a low-rise building 
along with the static load distribution for a bending moment in association with the applied wind 

load (top corner C); after: (Holmes and Syme 1994). 
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Figure 2-6 Internal pressure of building with a large/dominant opening and how this differs with 
location of the opening relative to wind direction.  

Breaches to the building envelope cause internal pressure changes throughout the 

structure. Windows and doors are therefore considered critical areas as they are likely to 

break/open from resulting impacts. Even though windows and doors are most vulnerable to 

windborne debris, the damage, and possible loss, of a roof, can cause walls to become unstable 

due to a loss of lateral support. In damage surveys conducted after severe wind events resulting 

from hurricanes and/or tornados, one of the main building components inspected for damage is 

the roof and its connections. The failure of a roof can include the failure of multiple roof-wall 

connections and possibly the complete loss of a roof (Stenabaugh and Kopp 2012). Failure of 

these connections occur when the uplift force, created by the wind acting on the building, 

becomes greater than the roof’s dead load or the connection’s capacity. Stenabaugh and Kopp 

(2012) concluded that as more than one roof to wall connections fails, a temporary gap can form 

creating a change in the internal pressure and could lead to the roof “taking flight” or being 

ripped away from the structure.  

In a study conducted by Christian Unanwa (2000), relative resistivity indices (RRIs) used 

in determining building damage decreased in higher story buildings, indicating that the ability of 
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a structure to resist wind damage decreased with height. This would seem logical since wind 

speed increases with height and are not impeded as much by friction in higher heights in 

straight-line (or hurricane) wind events (Unanwa and McDonald 2000). Unanwa used these 

RRIs to determine the degree of damage to a specific building by using damage bands, which 

bound the extreme degrees of damage a certain building class would sustain in a severe wind 

event. Building classes are commonly used in wind damage prediction, but can have broad 

definitions, the goal of these damage bands was to provide a more accurate damage estimation 

to a building or groups of buildings (Unanwa and McDonald 2000). The use of RRIs also 

touched on the effects other buildings have on each other. The RRI for a building was 

determined using many factors, one of which being the building’s surrounding infrastructure 

(Unanwa and McDonald 2000). The factors used in creating these damage bands illustrated the 

importance of other features, such as the surrounding environment, in addition to construction 

type and height.  

In another study, Yau (2011) evaluated the integration of similar various factors in wind 

damage to residential structures. This integrated model approach accounted for both the 

change in wind direction and speed as a storm passes as well as the effects of damage from 

buildings clustered together, similar to a residential neighborhood. As a hurricane or tornado 

moves along its track, the wind direction changes at a given location. It was theorized that the 

more wind directional shift involved, the more susceptible the structure is to wind-induced 

damage due to increasing the windward exposure areas. Areas downwind are also more 

exposed to windborne debris, similarly increasing the potential for structural damage (Yau et al. 

2011). 

The other component of Yau’s research theorized that residential structures clustered 

together affect each other. This was supported by an example run of a 65 m/s and 45o  angle 

wind field over a cluster of homes (4x4) identical in structure (Figure 2-7 illustrates this layout). 

The results showed that the homes at the corner where the winds first hit were less damaged 
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than the homes downwind in the cluster. The increased damage in the homes downwind was 

more obvious in an increased percent of window and door damage. This likely indicated that the 

debris from the first structures impacted the houses down wind. Once one home was damaged 

it created a chain like event of continuing damage downwind (Yau et al. 2011). Therefore, the 

denser the area of infrastructure, tree population, or other potential for debris, the more potential 

there would be for damage.  

 

Figure 2-7 Neighborhood layout for assessing wind damage; after: Yau et. al. (2011). 

Building type and quality has also been well established as a contributor to resulting 

level of damage. FEMA and URS have conducted investigations following extreme events and 

reported on observations and recommendations made by FEMA’s Mitigation Assessment Team 

(MAT) that highlighted the differing impacts by building characteristics (Herseth and Ashley 

2013). In addition to high infrastructure density leading to high damage, most high population 

areas also have buildings greater than 3 stories, which lowers resistivity to extreme winds. In 

correlation to building heights, most findings and recommendations made by FEMA tied to 

construction quality, year built, roof types, and construction faults and errors (Herseth and 
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Ashley 2013). The construction quality and year built are therefore considered significant factors 

in how a building will perform during a severe event. Older structures not up to recent building 

codes would typically be more vulnerable in extreme weather events. Essentially, the current 

research suggests that more populated, older locations would experience more damage for a 

set wind speed than smaller towns with new construction. When considering how these 

individual buildings inform functionality at the community level, “building clusters” assess 

building damage, and how it can be altered by age and infrastructure density, to specific 

building types (e.g. residential buildings, commercial buildings, manufacturing buildings, and so 

on) (McAllister 2018). 

2.2.2 SOCIAL PARAMETERS CONTRIBUTING TO DISASTERS 

While wind interacts with civil infrastructure, there are also people that use them and 

would therefore contribute to their maintenance and condition leading up to an extreme event. 

Demographics of an area’s population can relate the amount of resources available to invest in 

disaster mitigation and recovery following an event. For example, when evaluating economic 

damage and mortality, a large percentage of the world’s population lives near the coast, but the 

U.S. possesses a lower death toll and higher economic damage from coastal hazards due to 

being a more developed country (Nicholls and Small 2002), which would imply that higher 

income areas are more likely to afford safer housing as well as be more capable to react in a 

hazardous situation (Cutter et al. 2003; Simmons and Sutter 2005). However, in terms of 

economic damage, higher income areas are also linked to increase in damage costs by the 

increase in median home values (Hall and Ashley 2008). These relationships between 

income/resources and economic impacts are just one example of how social factors can 

contribute to apparent disastrous outcomes. 

The combination of socioeconomic status and demographics data were used at the 

University of South Carolina (Cutter et al. 2003) in order to create the Social Vulnerability Index 
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(SoVI). The SoVI relates the two main components of location vulnerability: physical 

vulnerability (i.e. hurricane, tornado, and/or earthquake prone area), and the various 

characteristics of a population that determine how people are able to cope and recover from 

natural hazards (Cutter and Emrich 2006). The SoVI was designed based on the (modified) 

Hazards of Place Model shown in Figure 2-8 (Cutter 1996). The main factors of social 

vulnerability that are widely accepted include age, race, gender, and socioeconomic status. The 

SoVI used 11 factors (listed in Table 2-5), in an additive model in order to produce a SoVI score 

for each U.S. county. These 11 factors accounted for 76.4 percent of the variance in social 

vulnerability among U.S. counties. The SoVI county scores ranged from -9.6 (lowest) to 49.51 

(highest) with a mean score of 1.54 and a standard deviation of 3.38. Corresponding to the 

demographics discussed, Manhattan Borough (New York City) was found to be the most 

vulnerable county in the U.S. Excluding Manhattan, the most vulnerable areas of the country 

appear to be in the southern half where there are more ethnic inequalities and higher population 

growth. The low vulnerability areas are less populated and generally homogeneous in nature 

(i.e. mainly white, suburban, and well-educated). These areas were found to be New England, 

eastern side of the Appalachian Mountains from Virginia to North Carolina, and the Great Lakes 

Region with Yellowstone National Park County topping the list. The results of the SoVI made it 

clear that variables such as unemployment, access to resources, homelessness, wealth, race, 

built environment, among others. play a key role in how prepared and susceptible a location is 

to a natural hazard. 
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Figure 2-8 Hazards-of-Place Model of Vulnerability; after: (Cutter 1996) 

Table 2-5 The 11 SoVI variables (Cutter et al. 2003). 

Concept Dominant Variable (Census data) Correlation 
found in 2003 
study 

Personal Wealth Per capita income +0.87 
Age Median Age -0.90 
Density of built environment No. of commercial 

establishments/mi2 
+0.98 

Single sector economic 
dependence 

% Employed in extractive industries +0.80 

Housing stock and tenancy % Housing units that are mobile 
homes 

-0.75 

Race – African American % African American +0.80 
Ethnicity – Hispanic  % Hispanic +0.89 
Ethnicity – Native American % Native American +0.75 
Race – Asian  % Asian +0.71 
Occupation % Employed in service occupations +0.76 
Infrastructure dependence % Employed in transportation, 

communication, and public utilities 
+0.77 

 

Cutter, Boruff, and Shirley (2003) did not find any statistically significant results when 

comparing the SoVI to presidential declared natural disasters; however, incorporating SoVI into 

disaster modeling has gained attention in recent years. In a study performed by Burton (2010), 

the SoVI was used with FEMA hurricane damage assessments in specific areas where the 11 

SoVI factors had an impact. Less extensive building damage (ex: Damage States 1 and 2) was 
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found to be mainly due to hurricane winds and storm surge, whereas societal aspects did not 

make a significant contribution until “extensive” damage (possibly Damage State 3) was 

reached. However, overall the meteorological impacts (storm surge) played a larger role than 

the societal factors. That being said, the social vulnerability factors that appeared to stand out 

more had to do with urban population, race, agriculture, and poverty level.  

While the SoVI related a population’s vulnerability to disasters on the county level, other 

case studies have found additional social characteristics that may tie to the ability to recover 

from a natural hazard event. A review of such studies highlighted the importance of income and 

class to recovery times (Fothergill and Peek 2004). Lower income households took longer to 

recover more so as a result of resources and how quickly those were provided to different 

demographic groups. Another study, (Morrow 1999), that focused on the “neighborhood” level, 

instead of the county level as the SoVI did, proposed that at-risk groups involve concentrated 

areas of:  

• Residents in group housing 

• Elderly (high median age)  

• Those on disability (physically or mentally disabled) 

• Renters (housing tenure) 

• Low-income households 

• Women-headed households (Single female head of household with children) 

• Ethnic minorities based on language spoken in the area 

• Recent residents 

• Larger households 

• High concentrations of children/youths, homeless, and/or tourists and transients. 

Ultimately, the conclusion of this study suggested that sustainable development 

programs, in the context of disasters, involve leadership at a more local level (Morrow 1999). In 
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other words, more “disaster-resistant communities” involve a level of “grassroots activism” (Geis 

1997). While many of these “neighborhood” demographics overlapped with those on the county 

level from the SoVI, parameters such as group housing, disability, and women-headed 

households were not represented at the county level analysis. The Center for Disease Control 

(CDC) established another Social Vulnerability Index at the census tract level, which would be 

considered closer to the size of a “neighborhood”. This index included 15 census variables as 

outlined in Table 2-6. 

Table 2-6 The 15 Social Vulnerability census variables (Flanagan et al. 2011). 

Domain Variable Additional descriptions 

Socioeconomic 
Status 

% Individuals below poverty Individuals who would be classified as 
below the federally defined poverty line 

% Civilian employed  
Per capita income  
% Persons with no high school 
diploma 

 

Household 
Composition/ 
Disability 

% Persons 65 years of age or 
older 

 

% Persons 17 years of age or 
younger 

 

% Persons more than 5 years 
old with a disability 

 

% Male or female head of 
household, no spouse present, 
with children under 18 

 

% Minority  White Alone – (African American + 
Native American + Asian + Hispanic, 
Pacific Islander + two or more races + 
other) 

% Persons 5 years of age or 
older who speak English less 
than “well”  

 

Housing/ 
Transportation 

% Multi-unit structure > 10 units 

% Mobile homes  

Crowding More people than rooms at household 
level. 

No vehicle available  

% Persons in group quarters  
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Of these various studies, certain demographics continued to be discussed and 

highlighted a indicators of vulnerable populations. These demographics, therefore, link social 

vulnerability to natural hazard on various special levels and include: 

• Income and Poverty 

• Tenure (mobile homes, renting, group quarters) 

• Age  

• Education & employment 

• Race & ethnicity 

• Single female head of household (for 2 of the 3 studies) 

• Disability (for 2 of the 3 studies) 

• Access to transportation/ Infrastructure dependence (for 2 of the 3 studies) 

These variables had some obvious ties with the engineering related contributors to 

disasters. Tenure, for example, could tie to the building size and height. Income/Poverty would 

relate the condition the structure may be in and if it is being maintained well. Also, these census 

demographics related a dependency on civil infrastructure through employment and access to 

transportation.  These demographics were evaluated through various studies at county, census 

tract, and smaller levels to provide a comprehensive overview of the variables that may 

contribute to social vulnerability at different scales. The studies outlined above provided U.S. 

Census variables to consider within this research.  

2.3 COMMUNITY RESILIENCE 

2.3.1 CONCEPTUAL BACKGROUND 

These social and engineering factors interact with a natural hazard to determine an 

overall impact to a community and how long it may take to recover. Community resilience 

has been generally thought of as the ability of a community to absorb and “bounce back” 
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from a hazard or impact event. The NIST definition of community resilience, with respect to 

natural hazards, stated that resilience is “the ability to prepare for anticipated hazards, 

adapt to changing conditions, and withstand and recover rapidly from disruptions” (Koliou et 

al. 2018; National Institute of Standards and Technology (NIST) 2017). A disturbance in the 

form of a natural hazard could cause a spike in population dislocation and/or economic loss 

while also negatively affecting building functionality, employment, and school attendance, 

among others. Typically, this has been represented by the graph shown in Figure 2-9 in that 

there is a standard level for a desired resilience metric (population dislocation, building 

functionality, employment rate, and so on), then the hazard strikes and there is a sharp 

decline. A community’s resilience goal would be to recover this metric back to its standard 

level, or trend, prior to the event over a period of time. This elemental curve relates the four 

R’s of resilience: robustness, redundancy, resourcefulness, and rapidity, which are also 

defined further in Figure 2-9 (Bruneau et al. 2003).  

 

Figure 2-9 Typical resilience curve with its defined characteristics. 
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The concept of resilience as it relates to natural disasters conceptually began in the 

social science- and psychology-related fields with a focus on theory and frameworks (Cutter 

et al. 2008; Godschalk 2003; Gordon 1978; Holling 1973; Norris et al. 2008). These 

theories and frameworks/models, however, were what began to move this subject area 

forward. The SoVI provided a starting point in how community attributes relate to the 

potential for loss from a natural hazard (Cutter et al. 2003). The loss potential would then 

relate to the initial decline shown in Figure 2-9 immediately following the stressor event 

(hazard). The initial stage prior to the hazards consisted of “antecedent” conditions, or the 

locational characteristics, of the community and provides a basis for monitoring a 

community’s resilience, as was considered with the Disaster Resilience of Place (DROP) 

Model (Cutter et al. 2008). Such conditions include built, natural, economic, and social 

systems that were specific to one place over a (long) period of time, and could also be 

viewed as a network of physical and human systems (Godschalk 2003; Norris et al. 2008). 

These inter-organizational networked systems, with links, interactions, and overlap, have 

been thought of as one dimension of community capacity (Goodman et al. 1998). Visual 

representations of how vulnerability, resilience, and adaptive capacity could be related are 

shown in Figure 2-10. 

 

Figure 2-10 Conceptual relationships between vulnerability, resilience, and adaptive capacity 
within the concept of hazards, from (Cutter et al. 2008). 



 26 

The concept of increasing community resilience has focused on the societal 

demographics (or capital) while also recognizing the importance that resources and 

damaged capital contribute (Cutter et al. 2003, 2008; Miles and Chang 2011; Norris et al. 

2008). Therefore, in modeling community resilience, physical, economic, and social 

systems must interact simultaneously to influence each other.  

2.3.2 CURRENT MODELING APPROACHES 

Cutter (2003) introduced the initial SoVI and later the Disaster Resilience of Place 

(DROP) Model. Within the DROP model structure (shown in Figure 2-11), a community consists 

of established antecedent conditions, which interact with the hazard upon occurrence (Cutter et 

al. 2008). The hazard itself had characteristics as well. For example, a wind event would have a 

wind speed, areal extent, and a type of wind structure (tornadic, straight line, or possible 

hurricane). The impacts immediately following an event were improved or worsened by the 

community’s coping ability and mitigation mechanisms (antecedent conditions). Therefore the 

impact was considered the sum of the antecedent conditions and the hazard. The impact was 

then evaluated for whether or not it exceeded the absorptive capacity of a community, in which 

the absorptive capacity would be related to the antecedent conditions. If this capacity was 

exceeded then the community can chose whether or not to adjust, or adapt, it’s current 

conditions so that they may improve their resilience (Cutter et al. 2008). Figure 2-11 illustrates 

the DROP model framework. 
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Figure 2-11 Disaster Resilience of Place Model layout, after (Cutter et al. 2008). 

Other models and modeling frameworks have been introduced in recent years. Within 

these, Cimellaro (2010) outlined mathematical principles to reflect numerical assessment of 

structures similar to the DROP model and noted that resilience (R) can be computed as the area 

under the recovery curve shown in Figure 2-9 Within this structure, resourcefulness was 

considered the differential of the curve for the metric being evaluated with respect to time, 

rapidity was the ratio of loss to recovery time, robustness was considered the “capacity of 

keeping the variability of losses within a narrow band,” and redundancy was defined as possible 

options for resources contributing to loss or recovery (Cimellaro et al. 2010). Within engineering, 

economic losses would be described as repair/replacement costs dependent on a resulting 

building damage state. However, losses could also be calculated such that social characteristics 

are considered, such as social losses associated with population displacement. By this 

framework, the lower the initial impact drop in the resilience curve, or the less time it would take 

to recover, resulted in higher areas under the resilience curve, or higher R-values.  



 28 

In 2011, the ResilUS model was introduced to represent damage and recovery over time 

of a community’s capital (Miles and Chang 2011). The “capital” considered within this model 

were represented through three aspects: the built environment, economics, and social. Each of 

these were influenced by variables that not only included the hazard, but the building types, 

probabilistic availability of resources (materials and monetary), building occupant’s loans and 

debt, time to file and receive resources (loans), and even injuries to building occupant/owner 

(Miles and Chang 2011). Within the modeling software itself (MATLAB), Markov chains were 

used to model recovery over time. However, this model did not include the use of GIS software 

for explicit spatial distribution. Overall this model was probabilistic in nature based on the 

occurrence likeliness of certain conditions, such as building damage state (Miles and Chang 

2011).  

Another recently published resilience model, Dynamic Finite Element Analysis of 

Resilience (FEAR), treated a community, as an area to be meshed similar to how finite element 

analysis is executed on structural components following the general dynamic equation of 

motion: 

 𝐹(𝑡) = 𝑀(𝑡) 𝑑2𝑋𝑑𝑡2 + 𝐶(𝑡) 𝑑𝑋𝑑𝑡 + 𝐾(𝑡)𝑋            (2-1) 

where F(t) is the load or hazard, M(t) is the social vulnerabilities instead of mass, C(t) 

represents the funds available for recovery instead of damping, and what is typically the 

stiffness, K(t), is now the infrastructure robustness all of which are evaluated over time (t) 

(Mahmoud and Chulahwat 2018). Within this model the infrastructure robustness was 

considered as the effect various infrastructure systems have on others should these systems be 

disrupted. This study explored the use of finite element modeling concepts through the fictional 

city of Gotham by exposing it to a disturbance with consideration of health, housing, power, 

water, communication, and transportation lifelines. The use of the stiffness matrix allowed for 

visualization of how damage to one infrastructure system at a specific location may ripple 
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through the surrounding community and remaining systems (Mahmoud and Chulahwat 2018). 

However, the FEAR model is still in the theoretical stage of development and would require real-

world community data validate the model. 

In addition to these proposed resilience models and model frameworks currently in use, 

a new platform named IN-CORE (van de Lindt et al. 2019) is currently being developed through 

the NIST Center of Excellence for Risk-Based Community Resilience Planning (NIST COE). 

This platform will allow for the ability to identify buildings by archetypes, spatially overlap a 

community with a specified hazard, model impact and recovery over time of a community’s 

building stock, transportation systems, water network, and electrical power network (EPN), 

schools, hospitals, among others. Some of the probabilistic physics-based methods 

incorporated within this model are discussed within the following section. 

 

2.4 PHYSICS-BASED APPLICATIONS IN IN-CORE FOR MODELING COMMUNITY IMPACT AND 

RECOVERY FROM NATURAL HAZARDS 

2.4.1 MODELING BUILDING DAMAGE STATE 

The engineering contributions to disasters, discussed above, are well established and 

can be modeled through mathematical concepts. The application of such mathematical 

concepts has been performed on the building system level for single or multiple hazards, as well 

as at building stock portfolio level (Lin and Wang 2016; Mehta et al. 1981; Memari et al. 2018). 

Since community resilience begins at the building level, advancements in building performance 

could help improve overall community resilience, specifically with respect to robustness and 

redundancy. As an example, in using finite element models to determine resistance, it has been 

found that, in areas subjected to both tornadoes and expansive soils, wood frame structures 

have deficient foundation connections, roof panels, and rafter-sill connections with respect to 

the tornado pressures exerted on the structures (Maloney et al. 2018; Wang et al. 2018). 
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Building stock portfolios (to include wood frame structures) were used in recent research and 

allowed for the illustration of how a whole community performs on the physical level (Lin and 

Wang 2016; Memari et al. 2018; Wang et al. 2018). The establishment of such portfolios 

involved engineering judgment on typical construction and the ability to assign all community 

buildings to such predetermined archetypes as shown in Table 2-7. 

Table 2-7 Community building portfolio archetypes (Memari et al. 2018). 

Archetype Building Description 

T1 Residential wood building – small rectangular plan, gable roof, 1 story. 
T2 Residential wood building – small square plan, gable roof, 2 stories. 
T3 Residential wood building – medium rectangular plan, gable roof, 1 story. 
T4 Residential wood building – medium rectangular plan, hip roof, 2 stories. 
T5 Residential wood building – large rectangular plan, gable roof, 2 stories. 
T6 Business and retail building (strip mall) 
T7 Light industrial building 
T8 Heavy industrial building 
T9 Elementary/middle school (unreinforced masonry) 

T10 High school (reinforced masonry) 
T11 Fire/police station 
T12 Hospital 
T13 Community center/church 
T14 Government building 
T15 Large big-box store 
T16 Small big-box store 
T17 Mobile home 
T18 Shopping center 
T19 Office building 

 

Each of these archetypes consisted of an assumed construction, to include the material 

used for the main-wind force-resisting system (MWFRS) and the connection types for the 

components and cladding (C&C). For example, most homes (T1 through T5) were considered 

wood structures that would have wood walls as part of their MWFRS and nailed connections at 

the roof-wall interface, whereas a hospital was considered to be reinforced concrete in which 

the roof was a concrete slab that was connected to the walls through the use of rebar (Memari 

et al. 2018). These structural components were evaluated through an assessment of whether a 

specific number of failures occurred due to the wind loading exceeding the resistance capacity 
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of the materials and types of connections. The loading and resistance capacity were described 

by a fragility defined by a lognormal distribution with a known mean and coefficient of variation, 

which were gathered from a literature review of experimental data. Monte Carlo Simulation 

(MCS) was used to establish a range of varying resistance values based on the experimental 

data that would that would subsequently be compared to loading values for various wind 

speeds. The fragilities consisted of four (4) possible damage states. The relationship between 

demand and capacity was described by the limit state function, g(X): 𝑔(𝑿) =  𝑹 − (𝑾− 𝑫)              (2-2) 

where X is the variable uncertainty that explains the limit state condition, W is the wind load, R 

is the resistance, and D represents the dead load that contributes to wind resistance. The 

fragility functions were developed to describe the probability of exceeding a specified limit state 

(in this case the building damage state) for various levels of hazard intensity (in this case the 

wind speed). Fragilities were expressed as a lognormal cumulative distribution functions such 

as: 𝐹𝑟(𝑥) = Φ [ln(𝑥)−𝜆𝜁 ]              (2-3) 

where x is the wind intensity measured as the 3-second gust, 𝛷[.] is the normal cumulative 

distribution function, 𝜆 is the capacity’s logarithmic mean, and 𝜁  is the capacity’s logarithmic 

standard deviation. Each building system component therefore has a distribution of its capacity, 

which was then compared to the wind load (which also consisted of uncertainties) acting on 

both the MWFRS and C&C. The calculation of the wind velocity pressure for straight-line winds 

at height z, qz (in N/m2), was given by ASCE 7-10 as (American Society of Civil Engineers 2010; 

van de Lindt et al. 2013):  𝑞𝑧 = 0.613𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝑉2              (2-4) 
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where Kz is the exposure factor, Kzt the topographic factor, Kd the wind directionality factor, and 

V is the wind speed in m/s. The wind pressure loads acting on the MWFRS and the C&C were 

then given by: 𝑝𝑀𝑊𝐹𝑅𝑆 = 𝑞𝐺𝐶𝑝 − 𝑞𝑖(𝐺𝐶𝑝𝑖)         (2-5) 𝑝𝐶&𝐶 = 𝑞𝑧[𝐺𝐶𝑝 − (𝐺𝐶𝑝𝑖)]         (2-6) 

where q and qi are the velocity pressures at height z, G is the gust-effect factor, Cp is the 

pressure coefficient, and GCpi is the internal pressure coefficient, which is based on open areas 

allowing wind into the structure. These calculations were performed on the individual component 

level and aggregated up to the building system by evaluating potential failure paths. Example 

resulting fragility curves from this research referencing ASCE 7-10 are shown in Figure 2-12. 

Related research has also been conducted in the interest of determining the mean and standard 

deviations for various building materials’ resistance capacity and the pressure factors in the 

above equations (Ellingwood and Tekie 1999; Federal Emergency Management Agency 

(FEMA) 2009; Lee and Rosowsky 2005; National Association of Home Builders (NAHB) 2003; 

National Institute of Standards and Technology (NIST) 2006) as well as in developing fragility 

functions for specific archetypical buildings under wind hazards (Ellingwood et al. 2004; Memari 

et al. 2018; Standohar-Alfano et al. 2017) 

 

Figure 2-12 Building damage state fragilities for (a) light industrial buildings (T7) and (b) heavy 
industrial building (T8) from Memari et. al. 2018. 
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2.4.2 MODELING BUILDING RECOVERY 

A building’s damage state would subsequently result in an economic loss and the 

lowering of overall building functionality. The functionality of a building describes the level to 

which the building can be utilized for its normal purposes. The time required to reestablish a 

building as “Fully Functional” (rebuilt and reoccupied) has been considered the “recovery time” 

in relevant modeling research. The recovery time begins with the initial damage state and is 

tracked until a “fully functional” status is reached.  

Following an extreme event, buildings have been previously considered “tagged” by the 

categories listed in Table 2-8. These “tagged” categories were then associated with an 

approximated equivalent damage states used in establishing fragilities (Almufti and Willford 

2013; Lin and Wang 2017a; Memari et al. 2018). In evaluating the recovery time of a building 

stock, each building was evaluated by Lin and Wang (2017a) for how long it would take to reach 

the “Fully Functional” state. 

Table 2-8 REDiTM (Almufti and Willford 2013) Placards following a disaster an approximate 
corresponding damage state (Memari et al. 2018) 

Functionality 
State 

ATC Placard Damage Description Damage 
State 

5 Fully Functional (FF) None 0 
4 Baseline Functionality 

(BF) 
Minor damage. Primarily 
cosmetic (siding and shingles) 
damage. 

1 

3 Re-Occupancy (RO) Minor to moderate 
nonstructural damage. 

2 

2 Restricted Use (RU) Moderate structural damage 
that is not considered life 
threating.  

3 

1 Restricted Entry (RE) Complete destruction or life 
threatening damage.  

4 

 

According to Lin and Wang (2017a), there are two phases considered in determining a 

recovery time: (1) delay time, which includes inspection and permitting, and (2) rebuilding. In 

modeling such recovery time, Lin and Wang utilized Markov Chain analysis to include the 
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uncertainties in the post-disaster functionality state and decisions owners may make that 

influence the delay time (Lin and Wang 2017a). This delay time included time to inspect the 

building, time to secure funding for repair, and time to commission architects. The delay time 

contributes to the overall wait time, which was considered highly variable since it is dependent 

on many socio-economic factors in addition to the construction market. In essence, each 

functionality state inherently included the wait time of the previous functionality state, such that 

only BF would not include a permitting time. The delay time was also considered to be longer for 

worse-off functionality/damage states.  

In application, factors considered for recovery time modeling included the building 

construction and occupancy class, income, and housing density for residential zones (Lin and 

Wang 2017b). The building’s functionality state, in application using a hypothetical community, 

Centerville (Ellingwood et al. 2016) was determined similar to MCS methods for creating 

building damage state fragilities, in which empirical data of these factors consisted of a mean 

and coefficient of variation. From this data, the mean recovery time by functionality state is 

redrawn in Figure 2-13. Following this step, delay times, construction times, and ability to obtain 

financing for repairs and rebuilding were combined. The socio-economic characteristics were 

important when considering the ability of each residential zone to obtain financing resources 

(Lin and Wang 2017b). Ultimately, this work considered recovery time to be a culmination of 

financing, construction mobilization, permitting (where applicable), and construction time based 

on the damage state of the structure. Such recovery times are also a function of social 

vulnerability and recovery policies (Sutley and Hamideh 2017). 
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Figure 2-13 Mean conditional building level restoration process from Lin and Wang (2017b). 

While the use of 19 archetype fragilities was hindcasted and verified through the 2011 

Joplin tornado (Attary et al. 2018), this recovery research has been primarily modeled within the 

hypothetical town of Centerville (Lin and Wang 2017a; b). Therefore, the research work 

discussed herein will further provide a comparison of the physics-based methods, outlined 

above, and machine learning methods, outlined in the following section, for modeling damage 

state only. 

2.5 MACHINE LEARNING APPLICATION 

The previous sections provided an overview on natural hazards, social vulnerability, 

engineering practices, and the basis for resilience. This section (and the following section) will 

instead cover a background and current applications for the methods to be explored within this 

dissertation research. Machine learning is a data analysis modeling approach that has gained 

popularity recently due to data availability and the ability to store large data sets. Graph theory, 

which will be discussed in Section 2.6, is a means by which to analyze a complex network and 

infer meaningful observations of the network behavior. Both will be used herein for modeling 

and evaluating community build stock damage (impact) and recovery. 
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2.5.1 CONCEPTUAL OVERVIEW 

Machine learning falls within the purview of Artificial Intelligence (AI) by attempting to 

mimic how the human brain learns through data analysis and pattern recognition. In essence, 

this is accomplished through various forms of regression analysis given a historical data set. 

This historical data set would consist of multiple input variables that could be tied to a specific 

desired output or outcome. Within AI, this data set can either include data with known outputs 

and inputs to established a “supervised” network, or only include inputs and adjust as new 

outputs become available real-time, in the form of an “unsupervised” network. However, as the 

technology currently stands, any form will require data to be gathered, analyzed, and 

understood by the AI. 

One type of machine learning approach is the use of Artificial Neural Networks (ANNs), 

which consist of nodes, representative of neurons, and connections between those nodes, 

representative of synapses, that relate the data through the network. ANNs consist of layers of 

neurons: an input layer, hidden layer(s), and an output layer as illustrated in Figure 2-14. An 

ANN can have one hidden layer or multiple hidden layers (l). As in Figure 2-14, each of the 

example four input neurons connects to each of the example four hidden neurons in the 

neighboring layer. These connections can either be activated (excited) or deactivated and can 

vary in strength through a calculated weight value. Within the brain, it is not necessary that 

every single neuron connect to every other neuron, but connections within will establish paths 

taking input stimulus information to other neurons that eventually excite an action within a 

person. How this is accomplished mathematically for ANNs, through various training algorithms, 

is outlined as part of the Methods Section 3.1. In building an ANN, training establishes the 

connection patterns (weights) between neurons in order to produce a lowest possible error in 

relating the input variables to a desired outcome. 
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Figure 2-14 Typical multi-layer feed-forward neural network structure with up to l hidden layers. 

2.5.2 CURRENT APPLICATIONS 

Once an ANN is trained and constructed so that it has clear data pathways, it can then 

be used to illustrate statistical relationships for practical purposes in pattern recognition, 

prediction modeling, and forecasting. Uses of ANNs include many applications; from 

handwriting recognition to self-driving vehicles. This is also one way a computer or website 

could “know” to suggest certain parameters or other websites to a user. ANNs have been 

developed for use in various fields, from business and finance to water resources to medicine. 

The use of neural networks in medicine appeared to be the most widely used application of 

ANNs, so much so that MATLAB even has an example batch of patient data in order to 

hypothetically diagnose cancer. The prominent medical fields using these models seem to be 

clinical and diagnostic medicine. This application dates back to 1989 with the first use of ANNs 

to diagnose the risk level of chest pains (Baxt 1995). 

In a field more relevant to civil engineering, hydrologic and rainfall runoff modeling are 

other popular applications of ANNs. Most of these networks were multilayer with 

backpropagation training (Dawson and Wilby 2001). Typically ANNs designed to model 

hydrologic flow computed either the discharge or model stage from a rainfall event. The 

variance occurs in the inputs and the method of approach, which depend on the hydrologic 
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model classification. In general, ANNs for hydrologic modeling were considered parametric 

functions that relate meteorological variables to runoff using transfer functions (Dawson and 

Wilby 2001). The models were either lumped, where the catchment basin is treated as a single 

unit, or distributed with the use of a catchment system containing subsystems (Dawson and 

Wilby 2001). The inputs can be as simple as past rainfall records to more complex. More 

complex and incorporative models could account for seasonal variations, which incorporated the 

relative rainfall and discharge perturbations, and time step segments (Shamseldin 1997). The 

designer defined input data and method can have an effect on the outputs and accuracy of the 

model for certain event characteristics, which results in some models becoming more useful 

than others in specific situations (Shamseldin 1997). Even with that, the ANNs for hydrologic 

modeling seem to have produced relevant enough results in comparison with other types of 

hydrologic modeling.  

ANNs are applicable to many more problems including credit card fraud protection, 

airline seating allocation, loan approval, real estate analysis, missile guidance and detonation, 

and continuous-casting control during steel production (Widrow et al. 1994). Those applications 

are only the multilayer nonlinear problems, as are the above examples. Most applications of 

ANNs use a nonlinear system, since the priority benefit of using ANNs is to relate complicated 

data. Linear ANNs would be similar to best-fit analysis. The ANN type is dependent on the type 

of problem the designer is trying to solve and leads to a versatile application of ANNs while still 

proving an accurate modeling tool. The use of this modeling tool has also been applied to 

predicting storm surge and broadly forecasting hurricane impacts (Lee 2006; Pilkington and 

Mahmoud 2016, 2017a; b). The forecasting of hurricane impacts was conducted with multi-

hazard and locational inputs that were related to an overall economic damage output 

categorization (Pilkington and Mahmoud 2016, 2017a; b). The research work herein seeks to 

expand upon such work on a more discrete level by looking at the impact to an individual 

building by a singular hazard. 
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2.6 COMPLEX NETWORKS 

2.6.1 CONCEPTUAL OVERVIEW 

Within network theory, graphs consist of objects connected to one another through a 

structural framework. A network can range from a lattice structure, to a random graph, to a 

small-world graph, as demonstrated in Figure 2-15. A lattice structure and random graph are 

considered networks in which topological features are random, or trivial, whereas a small-world 

graph consists of non-trivial topological features. This is to say that a random graph may look at 

the probability of objects (or nodes) connecting and small-world graph considers that these 

connections are determined values with corresponding implications, and are therefore not 

random.  

 

Figure 2-15 Visual differences between a (a) lattice structure and (b) a graph (either random or 
small-world). 

Networks are essentially visual mathematical graphs to represent relationships among 

data. Small-world graphs consider each node’s potential to be reached by another through a 

series of steps (or paths) even if these nodes do not necessarily neighbor each other. These 

graphs are commonly used in modeling social networks, the architecture of the Internet, or 

infrastructure, with the connection of buildings through roadways as an example. In each of 

these networks, there is a justification for established connections between multiple nodes. For 

a simple example, there was a joke in the 1990s that one person would only be “7 degrees from 

Kevin Bacon” (an actor). This implied that if one person traced links between people they knew 
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(family or friends or professional) to another person’s connections (family, friends, or 

professional), eventually there would be a set of people (nodes) that connected any one person 

to Kevin Bacon. This example solely serves the purpose to illustrate that those connections 

were not random but specific and that, eventually, two nodes would connect. A physical 

example would be how two building connect by a series of roads. If a person is traveling from 

home to their office, there may be multiple roadway options and if construction is occurring, the 

person may be rerouted through other potential roadways but still, ultimately, be able to make it 

to work just with a longer travel time. 

The research conducted herein will focus on those small-world graphs with distinct 

connections. In order to analyze such networks/graphs, graph theory is often used. Graph 

Theory requires an established set of nodes and edges (connections), by which information 

would flow between nodes. Such analyses focus on measuring attributes such as: the degree of 

connections entering and exiting a node, the possible paths (of connections) between two 

nodes, and/or if there are certain nodes that “cluster” together through strong connections.   

An incredibly complex network that has been of significant interest to many is the brain. 

The brain has been well known to constitute a complicated structural network consisting of 

nodes, or neurons/cells, that connect through synapses (Cajal 1995; Swanson 2003). Neurons 

within a certain portion of the brain are also thought to connect to other portions of the brain 

based on spatial proximity (Bullmore and Sporns 2009). The topological structure and synapse 

lengths have been evaluated as a potential factor in many cerebral type diseases. More 

recently, studies have been conducted using graph theory to analyze differences in the brain by 

age, the presence of Alzheimer’s, and the diagnosis of schizophrenia, which were able to 

identify structural network difference between patients with the disease and those without, such 

as weakened connections between specific sections of the brain (Achard and Bullmore 2007; 

Bullmore and Sporns 2009; Fair and et. al. 2007; He et al. 2008; Micheloyannis and et. al. 2006; 

Rubinov and et. al. 2007; Sporns 2002; Supekar et al. 2008). Being able to apply graphical 
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analysis to a brain network involved being able to obtain a reasonably fine resolution of the 

brain’s structure and/or function from a Magnetic Resonance Images (MRIs) or Functional 

Magnetic Resonance Images (or (f)MRIs) and electroencephalograms (EEGs), which would 

then be used to construct a networked graph, as procedurally outlined in Figure 2-16. These 

studies then evaluated the resulting graphs using shortest path and centrality analyses.  

 

Figure 2-16 Process for creating a network from human brain data (Bullmore and Sporns 2009).  

These recent studies provide a basis for using graphical analysis (Graph Theory) to 

understand the patterns formed in artificial neural networks, since these are primarily based on 

how the human brain learns. Similar concepts in graphical analysis (path length, clustering, 

closeness, and hubs) will be discussed further in the methods chapter of this dissertation. 

Essentially, combining these two methods (ANNs and graph theory) provides an opportunity to 

explore the variances between different network types in order to draw conclusions on how 

variables (neurons) contribute to an outcome (actions).  
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2.7 SUMMARY 

Current approaches to modeling community resilience as it pertains to natural hazards 

are typically separated by discipline. Sociologists, engineers, and economists tend to have 

individual models with consideration to a specific hazard. Additionally, modeling debris flow in a 

wind event and its effect on the building envelope in a real world scenario is incredibly complex 

as it involves changes to building fragilities as debris breaches the envelope based upon the 

fluid dynamics of the surrounding atmosphere. Combining these multidiscipline models in a 

cohesive manner is of interest within the field of natural hazards but has proven challenging to 

accomplish, which is likely why most models currently treat each discipline separately and then 

attempt to combine. The use of ANNs could assist in solving this predictive modeling problem 

by providing a means of interconnecting multiple disciplines in a single cohesive model.  

Within an ANN designed with the predictive goal of building damage or recovery time 

from extreme wind events, each input neuron can represent engineering, debris potential, and 

socio-economic factors in relation to the locational hazard severity. The use of hidden layers 

within the ANN structure allows these variables to integrate in a nonlinear manner before 

producing an output damage or recovery time. The research discussed within the following 

chapters seeks to address whether or not this modeling approach would be applicable for 

modeling building damage and recovery time for a community subjected to a wind hazard.  

While applicability of ANNs has become popular across multiple fields, it also raises 

concerns due to its inherent “black-box” nature. Most ANN modeling results are typically 

explainable but not necessarily interpretable. As was done with human brain network 

connections, graph theory could provide a way forward in interpreting ANN structures. By 

attempting to open up this “black-box”, it may be possible to further evaluate how exactly socio-

technical variables interact, with respect to a wind hazard scenario, to result in building specific 

damage states and time to rebuild following the event. The use of graph theory will therefore 
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provide not only a means of interpreting the resulting ANNs and assessing their applicability, but 

also a means forward in understand how we may be able to combine multidiscipline models in 

the future.  
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CHAPTER 3  MEANS AND METHODS 

3.1 ARTIFICIAL NEURAL NETWORKS 

Within this research, ANNs were used to create models that could predict a building’s 

damage state and recovery time from a wind-related hazard event. Building an ANN requires 

complete data sets with inputs and known corresponding results, or “targets”. The term 

“building” herein refers to the processes of multiple iterations (or epochs) of analysis through a 

data set to reach a lowest possible error. Therefore, one build consists of multiple iterations and 

results in the lowest possible error achieved during the iterative analyses. The purpose of these 

multiple iterations, and how the error is calculated, will be discussed in detail within the following 

subsections.  

An ANN’s structure consists of multiple layers, each with multiple neurons (or nodes): an 

input layer, hidden layer(s), and an output layer. The input layer has a neuron for each input 

parameter and the output layer has a neuron representative of each potential outcome (in this 

case either a damage state or recovery time). The hidden layer(s), which receive data from 

input neurons to be carried to the output neurons, can vary from a few neurons to millions, 

which would require a significant computational power. In other natural hazard impact modeling 

problems, it has previously been found that an ANN should have at least 10 hidden neurons and 

that a significantly higher number of neurons can slow down computations in building the ANN 

without significantly lowering the resulting error (Pilkington and Mahmoud 2016). 

Supervised feed-forward networks, as was used for this research, involve programmer-

controlled data provided to the ANN, where such data only flows “forward” from input to hidden 

to output layers. A graphical representation of this layout and the above-defined terminology 

was shown previously in Figure 2-14. Determining the structural layout was the first step in 

building an ANN, and within this research, a 10-hidden neuron structure was used as a starting 
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base, with 5 output neurons, and a varying number of input neurons across multiple models. In 

this structure, each input connected to each hidden neuron, which then connected to each 

output neuron.  

The building process typically consists of training, validation, and testing phases. In the 

training phase, the bulk of the data (70% of the data points) was used to initialize neuron biases 

and connection weights. In the validation phase, a smaller sample of the data (15%) was used 

to check the error between what the network produced as an output and what the target was. In 

the testing phase, the remainder of the data was used to check the network error. However, 

there were cases where a build would only consist of training and testing phases, which 

primarily occurred in using Bayesian Regulation training methods (Beale et al. 2018). In such 

cases, the testing phase was then used to check the output error as the validation phase would 

have, with the data from the validation phase moved to the training phase. 

Each connection within the network has an adjustable weight value that would dictate if 

a connection is activated, and if so, how “strong” of a connection. The hidden and output 

neurons also have bias values acting on the neurons themselves, which shift the intercept of the 

transfer function as will be shown in the following sections. Within each network build, the 

weights and biases were adjusted during each iteration. At least six iterations were conducted, 

and if the first of the six proved to produce the lowest possible error, then that is the resulting 

end network that moved on to the testing phase and was subsequently applied. If not, then the 

weights and bias adjustments continued until a lowest possible error was reached. Because of 

this strategy, having too few of iterations to check results could lead to ANNs with  high error, 

while having too many could cause the build process to continue indefinitely. Therefore, six 

iterations were used to check for the minimum error. 

Section 3.1.1 will cover the mathematical principles, process (as summarized in Figure 

3-1), and variations to be addressed within this research to build ANNs. The best performing 

builds, those with the lowest percent error for the whole data set, will then be applied in real 
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scenarios and validated through hindcasting. The data collection methods will also be 

discussed, in detail, as this is a critical part of the ANN build and hindcasting process. 

 

Figure 3-1 Overall process to build an Artificial Neural Network (MSE stands for Mean Square 
Error, and is discussed in detail in the following sections). 

3.1.1 USING MATHEMATICAL PRINCIPLES TO TEACH MACHINES 

Through the use of a data set with known outcomes (targets) associated with input 

variables, ANNs were built to establish patterns for how the inputs relate to the targets through 

adjustments to the weights and biases. The principals used in creating these patterns may vary, 

but were essentially types of regression analyses. These relationships between neurons of 

different layers consisted of a neuron value (x), connection weights (W), node biases (b), and 

transfer functions (s-curves), as shown in Figure 3-2. The relationships and algorithms 

discussed within this section began to be introduced before computing power was even 

available to accomplish such data intensive modeling and have been utilized and built upon in 
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subsequent years. However, these foundational concepts are still relevant to within recent ANN 

applications. 

 

Figure 3-2 Parameters contributing to the relationships between neurons and where those “act” 
within the network structure (m is the number of inputs, p the number of hidden neurons, and n 

the number of outputs). 

The data set (D) used to build the ANNs consisted of inputs and outputs. However, 

within this data set the scales for each input variable differ. For example, wind speed ranged 

from 0 to 175 knots, while the median year built (year of building construction) ranged from 1800 

to 2018. The transfer function served as a mean to normalize data before entering the next 

layer, such that each input had the same bounds. In keeping with this concept, there was a 

transfer function associated with the inputs before entering the hidden layer, and the hidden 

neurons before entering the output layer. The use of a transfer function, which has an s-curve 

shape, introduced the non-linear attribute of ANNs.  

When the weights on the connections between each of these inputs to a hidden neuron 

were updated, as will be described further in this section, it was typically proportional to the 

change in the input vector. If, for example, all the input vectors were positive, then all the weight 

updates feeding into the neuron would be the same sign. This would result in weights that can 

only increase or decrease together, which would be undesirable (LeCun et al. 2012). Therefore, 

the goal was to normalize each input data set such that the average would be near zero with a 

covariance of one. The most common forms of transfer functions are the log-sigmoid, tan-

sigmoid, and pure linear function. The pure linear function was not utilized, as the desirability of 

using an ANN is its nonlinear nature. The log-sigmoid and tan-sigmoid functions are bound by 

[0,1] and [-1,1], respectively, as outlined by the following equations:  
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𝑓(𝑠𝑖) = 1(1+𝑒−𝑠𝑖)           (3-1) 

𝑓(𝑠𝑖) = 2(1−𝑒−2𝑠𝑖)− 1          (3-2) 

where si is each neurons’ activation (or voltage to excite), ranging from infinity to negative 

infinity, such that  𝑠𝑖 = 𝑏𝑖 + ∑ 𝑊𝑖𝑗𝑥𝑗𝑖−1𝑗=1           (3-3) 

where W represents the weight from the jth to the ith neuron, b is the bias on the ith neuron, and 

x relates to the neuron values being “fed” into the following layer (Svozil et al. 1997; Werbos 

1990), as shown graphically in Figure 3-3. 

 

Figure 3-3 Relationships of weights and biases between a network’s neurons. 

This research, along with most other classification type problems, used target values 

that are binary. This may seem to suggest that a log-sigmoid transfer function would be ideal as 

it bounds the asymptotes to zero and one. However, choosing this function would cause weights 

to become “stuck”. The training process would attempt to fit the output data as close as possible 

to the target values (causing over-fitting), which would only be achieved asymptotically, causing 

large weight values that would eventually result in a gradient that produces weight update 
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values to be close to zero (LeCun et al. 2012). Therefore, the tan-sigmoid function was used 

from as the transfer function in building these ANNs.  

 The weights and biases were updated, as previously mentioned, as part of the process 

to minimize error between the output and target values using standard backpropagation in a 

multi-layer network. Backpropagation refers to the fact that the error value was transmitted 

backwards through the network from output to hidden to the input layer. Within this research, 

ANNs were trained by minimizing the mean square error (MSE) or sum square error (SSE), E, 

between the network output value, y, and the actual target value (known from data set), Y, as 

computed by: 𝐸(𝑤𝑖𝑗) = 1𝑧∑ [𝑦𝑖 − 𝑌𝑖]2𝑛𝑖=1          (3-4) 

for n number of output neurons (for example, damage states 0-4) with z=n for MSE and z=2 for 

SSE approaches.            

Subsequently, the target value, Y, was a function of the data set D(x,y) and the 

activation function, s. The error determined in Equation (3-4) was propagated back through the 

network to adjust the weights and biases as well as change the neuron activations by means of 

a myriad of training algorithm approaches. Most of these approaches predicate on first 

determining the gradient of the Cost (Error) Function (3-4) with respect to the weights (−𝛿𝑤𝑖𝑗), 
such that 

𝜕𝐸𝜕𝑤𝑖𝑗 = 𝜕𝐸𝜕𝑦𝑖 × 𝜕𝑦𝑖𝜕𝑤𝑖𝑗 = −(𝑌𝑖 − 𝑦𝑖)𝑥𝑖 = −𝛿𝑤𝑖𝑗        (3-5) 

The −𝛿𝑤𝑖𝑗parameter would eventually update to a zero value in over-fitting cases if the log-

sigmoid activation function was used in first normalizing the data. Table 3-1 outlines some of the 

method variations used in achieving this step. Changing how the network learns, through each 

of these algorithmic methods, was one of the proposed variations to the ANNs in determining 

the best performing network for the problem types to be addressed herein. 
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Table 3-1 Learning Algorithm Variations for updating weights and biases. 

Acronym Name Brief Description 

LM Levenberg-Marquardt Least-squares curve fitting function (Marquardt 
1963). 

RP Resilient Backpropagation Function fitting depending on the gradient of 
the transfer function with respect to the weights 
(Riedmiller 1994). 

BFG BFGS Quais-Newton Function fitting with respect to the transfer 
function gradient (Gill et al. 1981). 

SCG Scaled Conjugate Gradient Gradient descent with line search techniques to 
adjust “steps” to fit a function (Møller 1993). 

CGB Conjugate Gradient with 
Powell/Beale Restarts 

Function fitting with respect to the transfer 
function gradient. Update for each iteration is a 
factor of the previous gradient and the previous 
direction used to find the minimum point of the 
function (Powell 1977). 

CGF Fletcher-Powell Conjugate 
Gradient 

Function fitting with respect to the transfer 
function gradient. Update for each iteration is a 
factor of the square of the previous gradient 
and the square of the current gradient (Scales 
1985). 

CGP Polak-Ribiere Conjugate 
Gradient 

Function fitting with respect to the transfer 
function gradient. Update for each iteration is a 
factor of the square of the previous gradient 
and current gradient (Scales 1985). 

OSS One Step Secant Function fitting with the goal of determining 
where the gradient is zero (Constantinescu et 
al. 2008). 

GDX Variable Learning Rate 
Backpropagation 

Function fitting similar to gradient descent with 
the incorporation of momentum training 
(Mathworks n.d.). 

BR Bayesian Regulation Probabilistic approach using Bayes Theory 
(Buntine and Weigend, Andreas 1991; Neal 
1992). 

 

3.1.2 PROPOSED VARIATIONS 

An ANN can be altered by many different characteristics, including but not limited to: the 

training algorithm, the performance function, the number of checks performed during validation, 

the number of hidden neurons, the transfer function, and even how the data was divided for 
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each stage. For the research discussed herein, the number of checks was six (6), number of 

hidden neurons was ten (10), the transfer function was the tan-sigmoid function, and the data 

was divided as a 70/15/15 among training/validation/testing phases. The training function was a 

mathematical approach used to track the provided data through the network and adjust 

connection weights and neuron biases as outlined in Equations 3-1 through 3-5. For pattern 

recognition, multi-layer, feed-forward networks, only certain performance functions were used: 

MSE and SSE. These two ANN characteristics (training algorithm and performance function) 

were the initial ANN structural variants to be adjusted, as they may prove more useful for 

exploring different problem types.  

Within this research, the training algorithms and performance functions were first 

assessed for an initial model containing all the data gathered (Model 1) before moving on to 

evaluating model variations. The training algorithms examined for Model 1, for both damage and 

recovery modeling, were shown in Table 3-1. In evaluating the various training algorithms, the 

same performance function (MSE) was used followed by the SSE performance function. The 

mathematical differences between training functions are outlined as follows: 

LM is a least-squares curve fitting function that began its first training iteration with an 

initial guess of s (the activation function) to be adjusted by 𝛿 (Marquardt 1963). As one of the 

first algorithms created for machine learning purposes, LM uses the Jacobian Matrix, J, and 

identity matrix, I, in order to adjust s by  (𝐽𝑖𝑇𝐽𝑖 + 𝜆𝐼)𝛿𝑖𝑗 = 𝑱𝒊𝑻[𝑦𝑖 − 𝑓(𝑠𝑖)]                 (3-6) 

where 𝜆 was considered a kind of “damping” variable that can change size for each iteration. 

Similarly, RP uses a weight related update value, ∆, that ties to the weight value change, ∆w, as 

follows (Riedmiller 1994): 

Δ𝑤𝑖𝑗(𝑡) = {  
  −∆𝑖𝑗(𝑡) , 𝑖𝑓 𝜕𝑠𝜕𝑤(𝑡) > 0+∆𝑖𝑗(𝑡) , 𝑖𝑓 𝜕𝑠𝜕𝑤(𝑡) < 00 , 𝑒𝑙𝑠𝑒                  (3-7) 
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with update-values following each iteration (t), as follows: 

∆𝑖𝑗(𝑡)= {  
  𝜂+ ∗ ∆𝑖𝑗(𝑡−1) , 𝑖𝑓 𝜕𝑠𝜕𝑤(𝑡−1) ∗ 𝜕𝑠𝜕𝑤(𝑡) > 0𝜂− ∗ ∆𝑖𝑗(𝑡−1)  , 𝑖𝑓 𝜕𝑠𝜕𝑤(𝑡−1) ∗ 𝜕𝑠𝜕𝑤(𝑡) < 0∆𝑖𝑗(𝑡−1)  , 𝑒𝑙𝑠𝑒               𝑤ℎ𝑒𝑟𝑒 0 < 𝜂− < 1 < 𝜂+           (3-8) 

These equations were executed for neuron bias values (b) much in the same way the 

weights were adjusted. Additionally, these procedures were performed for every possible 

neuron connection. In other words, w is a matrix containing all weights from the input to hidden 

layers and the hidden and output layers.  

Similar to LM and RP, a significant portion of training algorithms were based in 

optimization using conjugate gradient where initial weight values were assumed and adjusted. 

This is to say that these algorithms were function-fitting problems that used a function gradient 

scale and direction to update weight (and bias) values. Simply put, this would describe weight 

updates such that: 𝑤𝑖𝑗(𝑡) = 𝑤𝑖𝑗(𝑡−1) + 𝑎 × 𝛿𝑤𝑖𝑗                 (3-9) 

where a is the step to be minimized along the search direction 𝛿𝑤𝑖𝑗 . Starting with a simpler 

version of how 𝛿𝑤𝑖𝑗 was determined, gives the conjugate gradient method in the form of the 

BFGS Quasi-Newton Learning Algorithm, which defines: 𝛿𝑤𝑖𝑗 = −𝐻 𝑔𝑤𝑖𝑗⁄                (3-10) 

where gwij is the gradient at a specific point on the function and H is the Hessian matrix. This 

value was initiated as the steepest point then adjusted per the calculated network error. For the 

remaining algorithms, with the exception of BR, the determination of 𝛿𝑤𝑖𝑗 is outlined in Table 3-

2 (Beale et al. 2016; Møller 1993). 
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Table 3-2 Conjugate Gradient Based Training Algorithms 

Algorithm 𝜹𝒘𝒊𝒋 = where Equation 

CGB −𝑔𝑤𝑖𝑗 + 𝛿𝑤𝑖𝑗(𝑡−1)  (3-11) 

CGF −𝑔𝑤𝑖𝑗 + 𝛿𝑤𝑖𝑗(𝑡−1) × 𝑟(𝑡)𝑟(𝑡−1) r is the normal square 
of the gradient 

(3-12) 

CGP −𝑔𝑤𝑖𝑗+ 𝛿𝑤𝑖𝑗(𝑡−1) × (𝑔𝑤𝑖𝑗(𝑡) − 𝑔𝑤𝑖𝑗(𝑡−1)) × 𝑔𝑤𝑖𝑗(𝑡)𝑟(𝑡−1)  

 (3-13) 

OSS −𝑔𝑤𝑖𝑗(𝑡) + 0.001 × 𝛿𝑤𝑖𝑗(𝑡−1)+ 0.1 × 𝑔𝑤𝑖𝑗(𝑡−1) The values 0.001 and 
0.1 are used in this 
study but can be 
altered. 

(3-14) 

GDX 𝑀𝐶 × 𝛿𝑤𝑖𝑗(𝑡−1) + 𝐿𝑅 ×𝑀𝐶 × 𝛿𝑃/𝛿𝑤 MC is the momentum 
constant (=0.9), LR is 
the learning rate 
(0.01), and P is the 
performance of that 
iteration 

(3-15) 

  

The majority of previously established learning algorithmic methods evaluated ANNs as 

a function-fitting problem. BR, however, is probabilistic focused in Bayes Theory such that,  

𝑝(𝑤𝑖𝑗|𝐷𝑖) = 𝑃(𝑤𝑖𝑗)𝑃(𝐷𝑖|𝑤𝑖𝑗)∫𝑃(𝑤𝑖𝑗)𝑃(𝐷𝑖|𝑤𝑖𝑗)           (3-16) 

In other words, BR evaluates the probability of the weights, wij, on the connections between 

neurons given the data set, D (Buntine and Weigend, Andreas 1991; Neal 1992).  

Within this research, the various training methods and square error types were explored 

for their impact on the resulting network built to address the problems of modeling building 

damage state and recovery from severe weather events. Following the network training method 

variations, different possible input arrangements were considered with the ultimate goal of 

evaluating what potential parameters should be used in determining impact and recovery of a 

community’s building stock. 
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To determine the best performing network algorithmic methods and input variations, the 

percent error (number of parameters misclassified through all phases), training performance 

(how well the network was able to minimize error through backpropagation), false positive rate 

(FPR), false negative rate (FNR), true positive rate (TPR), and true negative rate (TNR) were 

tracked. The FPR, FNR, TPR, and TNR are associated with the receiver operating 

characteristics (ROC) of the network, which was why they were deemed valuable parameters to 

judge the network. The percent error is essentially an overall result of these rates. As an 

example, the FPR is known as the number of false positives associated with the produced 

network. For example, a false positive is similar to the “crying wolf” outcome where it is said a 

“worse” result will occur, but it does not and can be given by the equation: 𝐹𝑃𝑅 =  𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠         (3-17) 

The remaining rates are given by the following equations 𝐹𝑁𝑅 =  𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠         (3-18) 

𝑇𝑃𝑅 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠         (3-19) 

𝑇𝑁𝑅 =  𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠         (3-20) 

The “true” rates were desired to be closer to one (or 100%), while the “false” rates were 

desired to be closer to zero. Model 1 was initially built a minimum of 50 times for each training 

algorithm outlined above. The data from these builds was then assimilated in order to determine 

the mean, mode, maximum, minimum, and standard deviation for each performance 

characterizing parameter (PCI). FPR, FNR, TPR, and TNR were originally calculated for each 

“class”, for example the damage state classification neuron, but the mean of all the five classes 

was used in the evaluation of the PCIs in the interest of assessing the accuracy across the 

whole network. In order to ensure this was an adequate representation of each algorithm, the 

PCI data from multiple builds was evaluated for a coefficient of variation of less than 0.5 with 
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95% of the data falling within +/- 2SD (two standard deviations). In other words, majority of 

builds did not vary by more than 50% of the mean, making the sample size representative of the 

most likely PCI outcomes. If 50 builds did not result in meeting these requirements, then 

additional builds were created until the PCI data fell within these requirements, resulting in 

builds for certain algorithms counting in the hundreds. The “best performing” Model 1 builds 

were determined to be those with lower percent errors (typically associated with a lower mean 

square error), FPR, and FNR, but higher TPR and TNRs. From this point, those best performing 

ANN methods (training algorithms and performance functions) were used in the subsequent 

step of altering the input parameters. 

Two ANN model types were created within this research: one type to determine building 

damage state and one to determine recovery time. The inputs to the neural network were 

altered multiple times with the desired goal of determining which factors best contributed to a 

resulting damage state and/or recovery time. Model variations for the inputs contributing to 

damage state are outlined in Table 3-3, in which certain variables were lumped together, such 

as race (e.g. either all race categories were included in the model or none were). The 10 

damage models were designed so that subsequent evaluation could determine if an ANN was 

able to capture debris potential and how some socioeconomic factors may influence the 

resulting damage states. The primary form of evaluating this was through the PCIs and how 

each model compared to the other models. The model with the most desirable PCIs was then 

chosen as the final ANN for application. However, in application, an ensemble consisting of 

multiple ANNs of the same structure (different weights and biases), for the best build 

performance across training algorithms and model input variations, was used for graphical 

analysis and hindcasting the Joplin, MO tornado event.  
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Table 3-3 List of variables and associated models that contain each. (Blue shading indicates 
current factors considered and green indicates new factors to combine. Key images are various 

forms of clipart (CanStockPhoto n.d.; ClipartXtras n.d.; Emojipedia n.d.; GalleryYoPriceVille 
n.d.) ) 

 

3.1.3 DATA COLLECTION 

Building an ANN hinges on the availability of reliable data with known matching inputs 

and targets. In order to build an ANN that could be used to ultimately forecast the damage and 

subsequent recovery from a wind hazard scenario, historical events must be evaluated for 

relevant information based on what is available. Within this study, the NWS Damage Survey 

viewer was used to analyze damage photos for the structural characteristics and their 

respective damage states following a wind-related weather event (National Weather Service 

2018). This site also listed a wind speed associated with each geo-tagged damage photo. 
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These photos and satellite images provided the structural and hazard related inputs, 

respectively, introduced in the blue sections of Table 3-3. The remaining data was extracted 

from the 2015 U.S. Census American Community Surveys (ACS). This data was available by 

census block, block group, tract, and county. NWS survey photos from January 1, 2011 to 

December 31, 2015 were used in order to match data availability of ACS block group 

demographics. However, it is worth noting that ACS data does have significant error 

distributions and will therefore impact the resulting ANNs built. For this research it was 

determined that an individual building would be located within a census block group and would 

assume the characteristics of that group. The U.S. Census block groups were chosen for the 

social parameters because while it is the second smallest size, it is not too fine as to create 

issues in processing large data sets. Census block groups, like blocks, are bounded by roads, 

water, and governmental defined boundaries and are therefore different shapes and sizes. The 

relevant demographic data of a block group assigned to a building spatially residing within its 

boundaries, were chosen based on the SoVI (Cutter et al. 2003) and other peer reviewed 

vulnerability indices (Burton 2010; Flanagan et al. 2011; Fothergill and Peek 2004; Morrow 

1999; Sherrieb et al. 2010). This data was considered as the building’s surrounding conditions 

potentially affecting the structure itself. 

With an ANN, all data must be in numeric form; therefore, a key was created to denote 

structural component type designation (such as roofing material), hazard type (such as tornadic 

versus straight-line winds), and locational characteristics (such as surface roughness). This full 

key can be found in Appendix A. While Census data represents a numerical range, the 

structural data is mostly categorical. However, in reconciling this discrepancy, the categories 

were established with some sense of order. For example, the materials were “ranked” by their 

modulus of elasticity such that a lower ID value of “1” would indicate a material with a lower 

modulus of elasticity than the other materials available.  
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The output damage states were defined based on commonly accepted and previously 

applied definitions (Memari et al. 2018; The Federal Emergency Management Agency 2016) as 

outlined in Table 3-4. These damage states were also chosen over the “Degree of Damage” 

(DoD) scale so that they may be compared to the previous work conducted by Memari et al. 

(2018), which included19 different archetype fragilities. In essence, each survey photo of a 

structure was assigned multiple attributes to illustrate its structural characteristics, surrounding 

demographics, hazard, and its ultimate damage state. These input data were extracted from 

multiple sources and are detailed in Table 3-5. 

Table 3-4 Windstorm Damage States for Buildings and EPN 

Damage 
State 

Range 
of 
damage 
ratio (%) 

Description Equivalent FEMA 
Assessment 
Description 

Additional 
Descriptions 

Ex. NWS 
Wording or 
Image 
descriptions 

0 0 No damage No damage   
1 > 0-10 Slight 

damage 
Affected. Some 
missing shingles. 
Cosmetic damage 
such as siding.  

One or two 
damaged/down 
EPN wires. 

"Threshold of 
visible 
damage" 
(typically) 

2 > 10 - 20 Moderate 
damage 

Minor. 
Nonstructural 
damage. Blown 
out windows.  

Most wires off 
EPN pole. Poles 
tilted as if being 
lifted out of 
ground. 

"Loss of roof 
covering 
<20%" 

3 > 25-50 Substantial 
to heavy 
damage 

Major. Failure or 
partial failure of 
structural 
elements. Missing 
roof but walls still 
intact. Water line 
18" above floor.  

EPN pole 
cracked/ all 
wires down. 
Manufactured 
home shifted off 
piers (HUD) 

"Large 
sections of 
roof structure 
removed." 
"Most walls 
remain." "Uplift 
of roof deck" 

4 > 50 Very heavy 
damage 
(destroyed) 

Destroyed. 
Complete failure 
of at least two 
structural 
components. 
Imminent threat of 
collapse.  

EPN pole 
completely 
down 

Exterior wall 
collapse, but 
some of roof 
might remain. 
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Table 3-5 Potential Input Variables 

Input 
Category 

Input Sub-
Category 

Description Source Additional 
collection 
method 
notes 

Hazard Hazard Type Designation of wind or flooding 
hazard 

(National 
Weather 
Service 
2018) 

See 
Appendix A 
Designation 

Intensity 1 Primary descriptive data such 
as wind speed 

 

Intensity 2 Secondary descriptive data 
such as tornadic versus 
straight-line winds 

 

Locational Surface 
Roughness 

ASCE designations based on 
surrounding landscape. 

(American 
Society of 
Civil 
Engineers 
2010) 

 

% Impervious 
Surfaces 

Approximately how much of the 
surrounding area consists of 
roads, buildings, or other non-
natural surfaces. 

Satellite 
(Google 
2018)  

Visual 
estimation 
based on 
satellite 
view of 
area 
surrounding 
the 
parameter 
in question. 

% Forested Of the remaining pervious 
surfaces, approximated amount 
of trees (area).  

Housing 
Density 

   

Median Age  

(U.S. 
Census 
Bureau 
2018) 

 
Per Capita 
Income 

  

% African 
American 

 Calculation 
to retrieve 
as fraction 
of total 
population 

% Hispanic  
% Native 
American 

 

% Asian  

Tenancy Percent owning their own 
property (over renting) 

Calculation 
based on 
total 
housing 
units 

Unemployment 
Rate 

Poverty to income ratio  
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Table 3-5 Potential Input Variables Continued. 

Input 
Category 

Input Sub-
Category 

Description Source Additional 
collection 
method 
notes 

Buildings Year Built Median year built for census 
block 

  

Year 
Retrofitted 

Any upgrades in structural 
performance (if none value of 
zero entered) 

  

Occupancy IBC Occupancy Class (IBC 2007) See Appendix 
A 

Wall Material The actual MWRFS and the 
façade. Connections were 
assumed to be based on the 
materials.  

Visual: 
NWS 
damage 
assessment 
photos.  

 

Roofing 
Materials 

The actual MWRFS and the 
cover. Connections were 
assumed to be based on the 
materials. 

 

Roof 
type/shape 

Standard roof designations  

Extra 
Measures 

If a note of structural measures 
such as hurricane straps/ties. 

 

Height The equivalent number of 
stories. 

Visually 
approximated 
for buildings 
that did not 
have clearly 
divided floors. 

Footprint 
Area 

Estimated as very small (trailer) 
to extra-large (shopping mall). 

Estimated as 
very small 
(trailer) to 
extra-large 
(shopping 
mall). 

 

The variables listed in Table 3-5 were chosen based on factors used to create structural 

fragilities, common structural concerns found in case studies, social vulnerability related to 

natural hazards, and any other attributes of the hazard that would ultimately affect the structure. 

Some of these parameters, such as percent area forested and the size of the hazard event, are 

intended as options in communicating potential debris impacts of a building, to an ANN learning 

system. In other words, increased number of trees nearby indicates a potential for branches to 
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become projectiles, while a larger tornado event would encompass more debris to be 

transported across the path. Similar logic was used in deciding to incorporate the housing 

density, since Yau et al. (2011) showed that neighboring buildings do have an effect on 

structural damage.  

The building data points used to build the ANNs discussed herein were all taken from 

various severe wind events across the state of Missouri, due to the idea that the Joplin tornado 

would later be used to validate the models. The focus on one state allowed for inherent 

similarities among the population and building codes, however if other states were included in 

the data set, then an identifier variable could be added to alert the ANN to changes in the data’s 

inherent location characteristics. All data points (buildings) from the NWS Damage Survey 

Viewer, within the state of Missouri (minus the Joplin tornado), were exported as a shapefile and 

the census block group data shapefile (specifically, the ACS 2015) was obtained from U.S. 

Census. Both were analyzed within ArcGIS and each data point was associated with the census 

characteristics of the block group it resides in, with examples shown in Figure 3-4. The values 

for the percent area forested and percent impervious surfaces were estimated through satellite 

views of the area. The resulting data set contained 117 features, each with 31 attributes to be 

assessed as possible ANN inputs and 5 additional attributes to denote damage state. The 

recovery ANN models included similar inputs that followed the same concept of a building 

residing in a census block group. However, the 5 outputs became 6-month, 1-year, 1.5 years, 2 

years, and over 2 years (abandoned) time to rebuild and reoccupy (recover). 
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Figure 3-4 Example structure feature and the U.S. block group data of where it is located. 

In gathering this data, the most subjective, or difficult, portion was evaluating the photos 

found through the NWS Damage Survey Viewer. Only NWS damage points with photos could 

be used, but even those posed difficulties in deciphering the original structure shape and 

materials if the building was completely destroyed. If a photo showed a house (or even roof) 

completely gone, then the materials and roof shape were taken from context of nearby debris, 

neighboring homes, standard construction for the building type described, and prior satellite 

imagery where possible. Mixed materials, especially in the building façade, were taken into 

account through the use of decimal numbers and are further detailed in Appendix A. The 

occupancy type was typically noted in the damage survey, and if not, educated judgment was 

used based on structural appearance and the surrounding buildings. The ASCE surface 
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roughness was typically assigned as either B or C depending on if the structure was in an urban 

or forested area, or in the plains. For example, farmlands were treated as surface roughness C. 

Examples of each of the damage states and some of the associated characteristics from photos 

throughout the state of Missouri for various extreme wind events are shown in Figure 3-5 

through Figure 3-8.  

 

Figure 3-5 Damage State 1 structure with example ANN input values. 

 

Figure 3-6 Damage State 2 structure with example ANN input values. 
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Figure 3-7 Damage State 3 structure with example ANN input values. 

 

Figure 3-8 Damage State 4 structure with example ANN input values. 

These same 117 data points, which cover an array of wind events, locations, structures, 

and damage states, were then used in creating the recovery model ANNs. Each photo was geo-

tagged and then located within Google Earth, which possesses an ability to step back through 

satellite images over time. Once a structure was geographically located within Google Earth 
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based on the NWS geo-tagged photos, a visual assessment was made of the structure prior to 

the hazard event up to 3 years following the event, which would bring us to present day, if 

possible. Each structure’s condition was assessed for whether it was rebuilt and reoccupied by 

6 months, 1 year, 1.5 years, 2 years, or not yet recovered by 2 years. Each structure (feature) 

was given a recovery score at each time step as shown in Table 3-6. A building was considered 

“good as new” when it reached a recovery state four. The output data for the ANNs was coded 

as whether it had recovered by each of the time designations listed. Furthermore, in addition to 

the input parameters listed in Table 3-5 social factors outlined in other studies (Flanagan et al. 

2011; Morrow 1999) (in addition to the SoVI) were introduced. This was conducted based on a 

previously established concept that recovery has a stronger social component than damage 

theoretically would due to contributions of social vulnerability to permitting and construction 

delay time. These new parameters are shown in Table 3-7. 

Table 3-6 Recovery States defined by (Curtis and Fagan 2013) 

Recovery 
State 

Description 
Sub-

Category 
Elaboration 

1 Uninhabited 2 Liveable: unoccupied 

5 Blighted 

10 Non-livable: extreme 

2 Cleared  Lot empty due to destroyed home or 
clear for reconstruction 

3 Rebuilding 1 Frame skeleton is up. This would 
only appear for homes needing a 
complete rebuild. 

  2 Walls are enclosed 

  3 Non-structural components have 
been added. Likely that DS 2&3 
would not require more than this 

  4 Cosmetic finishes 

4 Rebuilt and Occupied  “Good as new” 
5 No rebuild/new 

structure 
 Abandoned lot 
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Table 3-7 Additional Input Variables for Recovery ANNs 

Input 
Category 

Input Sub-
Category 

Description Source Additional 
notes 

Locational % Population 
over 65 yrs 

Total number of males and 
females over 65 years of age 
divided by the total population. 

(U.S. 
Census 
Bureau 
2018) 

 

% Population 
without 
vehicle 

Number of persons without 
access to a vehicle divided by 
the total population. 

 

% One year 
residence  

Number of persons living in a 
metropolitan statistical area for 
at least one year, divided by 
the total population 

One year 
residence 
variable chosen 
with goal of 
communicating 
ties to 
community 

% Single 
female head 
of household 

Number of female heads of 
households, no spouse, with 
own children under 18 years, 
divided by total population 

 

% Group 
quarters 

Number of people in group 
quarters divided by the total 
population 

 

 % Disability Number of people claiming 
disability divided by total 
population 

 

 

As with analyzing the original damage state photos, there were some complications in 

evaluating satellite images. The main issues were with concern to where a photo was geo-

located and what building was the focus associated with the photo. In these cases, neighboring 

features present in both the photo and satellite imagery were compared to determine which 

structure was being evaluated. There were instances where a structure could not be either 

located or evaluated from the satellite imagery. These cases were classified as “ND” or “no 

data” and were removed from the data set, resulting in a final tally of 93 data points for the 

recovery models. Other instances causing an ND classification included: satellite images with a 

large time span gap (example: image availability in 2012 and 2015) with no way to ascertain 

when the structure was repaired, and images that may still show a structure damaged or being 
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repaired but there are no more recent satellite images to determine when repairs were 

completed. A damaged structure, as it appears through Google Earth at various points in time, 

is shown in Figure 3-9. Figure (a) shows a standard progression in rebuild, while Figure (b) 

shows how occupancy was used in determining recovery for buildings with damage states that 

were less obvious from a satellite view. 

 

Figure 3-9 Example Google Earth images and corresponding recovery states over time for (a) 
DS2 residential building that decided to rebuild from June 1, 2013 tornado event and (b) DS1 
office building (windows were blown out) that wasn’t reoccupied until August 2017 following 

June 1, 2013 tornado event (circles show indications of building in use). 

The ultimate goal of creating any model is to validate it with a real-world event. Within 

this research, the 2011 Joplin tornado was used as a hindcasting validation event. Therefore, all 

the above-mentioned data points fall within the state of Missouri in the interest of data 

consistency and the time it would take to review every image over multiple years. The resulting 

building damage state and recovery from the Joplin tornado also needed to be post-processed 

and analyzed. This is discussed in detail in Section 3.3.   
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3.1.4 CONCLUSION 

Of the data collected, as described above, the inputs variables relate to input neurons 

within the ANNs, while each damage state or recovery time, relate to the output neurons. The 

inputs were then connected to the outputs through a hidden layer of 10 hidden neurons, where 

each input was assumed to connected to each hidden neuron and each hidden to each output 

neuron, with initialized network weights and biases. The data was then normalized through the 

use of a transfer function and processed through the network structure, resulting in an output 

damage state or recovery time. This output was compared to the known damage state 

(gathered from NWS survey photos) or the known recovery time (determined from Google 

Earth) to determine a MSE or SSE for a specific training algorithm. This error was then 

propagated back through the network to adjust the weights and biases. Once a minimum MSE 

or SSE was reached, a built ANN was produced and it’s PCIs were tallied. This process was 

repeated multiple times for each training algorithm, performance function, and model (varied 

inputs) to gather statistics on how well each network structure established patterns. The best 

training algorithm and performance function were chosen prior to varying the model inputs. 

Then the best performing model was chosen, resulting in the final ANN structure, in which 

multiple networks were then built to create an ensemble. The networks within this ensemble fell 

within the best 50% of each PCI range. These final networks were then further analyzed using 

graph theory in order to determine more detail on what patterns were established.  

3.2 GRAPH THEORY 

Graph Theory (or graphical analysis) is another mathematical concept that relates nodes 

(neurons) through edges (connections) and provides a way to analyze a networked graph 

structure. Within this research, Graph Theory was used as a mean to interpret the final ANNs as 
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to how the input variables, both engineering and social, relate to each other and to the final 

outputs (damage states and recovery times), similarly to how work has been conducted in 

interpreting human brain fMRIs and/or EEGs. Instead of measured brain activity, though, the 

ANN and its final weights (connections) made up the graph to be evaluated. 

3.2.1 OVERVIEW 

One of the main goals within this study was to identify connectivity between 

socioeconomic and engineering parameters as it pertains to the problem of wind hazard impact 

and recovery of a community. Graph theory models connectivity through a networked set of 

vertices (V) and edges (E) such that the graph (G) follows the function  𝑮 = 𝑮(𝑽, 𝑬)               (3-21) 

This is the traditional base equation in establishing a graph. Since in this study graph 

theory was used in conjunction with ANNs, the vertices were instead thought of as neurons (X), 

which encompassed m input nodes, p hidden nodes, and n output nodes for to total amount of 

nodes (or neurons) Q (m+p+n = Q). The edges were then considered similar to the neuron 

connections and the associated weights (W), such that 𝑮 = 𝑮(𝑿,𝑾)               (3-22) 

Note that bolded variables denote a matrix, whereas subscripts (for example, wij) were 

used to trace equations between individual neurons within the ANN structure outlined 

previously. An individual weight (wij) within the set W was considered the value associated with 

a connection (uv) between two vertices within the set X. Some graphs may consist of 

connections, e, where the directionality is not the same across the graph while some may be 

considered “undirected” such that uv is considered the same as vu (Jungnickel 2005).  𝑒 = 𝑢𝑣                (3-23) 

In using graph theory to evaluate feedforward ANNs, the graph was considered a 

directed graph, such that connections flowed from input to hidden to output neurons. In other 
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words, only weights of positive values were used in constructing a graph from a feedforward 

ANN, as negative weights denoted the “deactivation” of a connection. Not all neurons were 

connected, however, some had multiple “walks” for how to go from one neuron to another using 

a different sequence of connections (Jungnickel 2005). 

There are three commonly used measures to identify importance: degree, which is the 

number of a neuron’s neighbors, closeness, which is the shortest distance of neuron xi to every 

other neuron, and betweenness, which is considered as a ratio of the number of shortest paths 

that pass through xi from two distinct neurons to the total number of shortest paths between the 

same two neurons (Freeman 1979; Jungnickel 2005). Previous studies in evaluating fMRIs and 

EEGs used mainly degree and shortest path (closeness). These analytical measures were the 

focus of similarly analyzing ANN graphs that consist of neurons and connection weights.  

3.2.2 ANALYTICAL CONCEPTS 

The ANN structure has already been previously defined within Section 3.1. Based on 

this already given network structure, the following graph analyses were used to evaluate social 

and engineering connectivity to resulting wind hazard impact and recovery: 

Shortest Path:  

The shortest path problem considers the minimum “length” to travel from neuron j to 

neuron i. A common example of this concept would be to consider two buildings with multiple 

road routes from building A to building B. Each road had a travel time associated with it, which 

would be equivalent to a weight value. The shortest path problem assesses the shortest travel 

time between A and B (Bellman 1958). With an ANN, the travel time was considered equivalent 

to the weights, such that the shortest path (P) is defined as 𝑃 = 𝑀𝑖𝑛[𝑤𝑖𝑗𝑖𝑛𝑝𝑢𝑡−ℎ𝑖𝑑𝑑𝑒𝑛 +𝑤𝑖𝑗ℎ𝑖𝑑𝑑𝑒𝑛−𝑜𝑢𝑡𝑝𝑢𝑡]       (3-24) 

where the possible path summations were simply the possible routes information can flow from 

input to hidden and then hidden to output layers. Higher value weights were considered stronger 
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connections between neurons; therefore, the results of this analysis allowed for an evaluation of 

how strongly an input correlated to the desired output.  

Degree: 

The degree of a neuron was considered as the number of connections associated with 

said neuron (Diestel 2017). This was further subdivided into how many of those connections 

were “entering” the neuron, or the “in-degree” (Din), and how many were exiting the neuron, or 

the “out-degree” (Dout), such that 𝐷𝑖𝑛 = ∑𝑒𝑖𝑗(𝑝 𝑜𝑟 𝑛)          (3-25) 

𝐷𝑜𝑢𝑡 = ∑𝑒𝑖𝑗(𝑚 𝑜𝑟 𝑝)          (3-26) 

where in-degree could only be calculated for on the connection (e) a hidden (p) or output (n) 

neuron, and out-degree can only be calculated for an input (m) or hidden neuron (p) in a 

feedforward network. By using graphical analysis, a single neuron was isolated for its 

contribution to the network (inputs) or its reliance on data translated through the network 

(outputs). 

Closeness: 

Closeness is another way to measure a neuron’s importance within the network. This 

form of centrality measures the inverse sum of the weights from one neuron to all other neurons 

such that 

𝐶 = ( 𝐴𝑥𝑄−1)2 1∑𝑤𝑖𝑗𝑥           (3-27) 

where Ax is the total number of reachable nodes, Q is the total nodes within the network, 

squared then divided by the sum of all reachable connection lengths (weights) from node x. For 

in-closeness, the focus of this analysis was on the output neurons, as these are the factors with 

data feeding “in” to them. Conversely for out-closeness, the focus was on the input neurons.  

Betweenness is often considered a measure of centrality. In early definitions, centrality 

was considered the sum of the minimum distances from one node, xi, to all other nodes in the 
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graph (Bavelas 1950; Beauchamp 1965; Sabidussi 1966). However, for feedforward ANNs this 

would primarily provide information of the hidden neurons. In this research, the focus was on the 

inputs and outputs. Therefore, betweenness was not included herein.  

3.2.3 CONCLUSIONS 

Based on the applicability of the above-mentioned graphical analysis procedures, and 

those used to analyze fMRIs and EEG, shortest path, degree, and closeness centrality were 

used to further analyze the constructed ANNs. The shortest path analysis was used to 

determine which inputs were strongly, or weakly, connected to which outputs. Degree and 

closeness centrality were used conjunctly to determine how influential an input was to the entire 

network or how widely influenced an output was by the numerous inputs. Additionally, as was 

similarly performed with human analyses, two different network models (of various inputs) were 

assessed for how these graphical results changed when new information was incorporated to 

the network. The results of this analysis provided additional insight into the socio-technical 

aspect of community damage and recovery due to wind hazards.  

3.3 VALIDATING MODEL RESULTS THROUGH HINDCASTING 

A hindcast requires model results compared to actual observed results of an event in 

order to ascertain a level of error from the modeling approach(es). Therefore, data comparable 

to model outputs must be recorded and available. Currently, the most extreme events have 

such detailed data on more refined scales. The hindcasting event used herein was the 2011 

Joplin, MO EF5 tornado. Damage states of buildings immediately following the tornado we 

documented by Jasper Co., USACE, and NIST. Additionally, researchers at Kent State 

University periodically visited Joplin for years following the event, to record video data of the 

recovery process (Curtis and Fagan 2013). These then were the sources used in the validation 

through hindcasting portion of this research. 
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3.3.1 ASSIGNING BUILDING DATA TO JOPLIN COMMUNITY 

Before any model can be further validated, the Joplin Community’s building stock was 

first categorized in the same manner as the model inputs. The primary models being validated 

through hindcasting herein are the ANN models; however, there must be consistency in the 

building categorization so that the results may be considered comparable to a physics-based 

approach. Therefore, the buildings within Joplin were assigned the 19 archetypes proposed by 

Memari et al. (2018) and each archetype was given corresponding ANN input values as outlined 

in Table 3-8. 
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Table 3-8 Cross-Identification of 19 Building Archetypes and ANN Descriptors 

Arch
etype 

Description 
 (Memari et al. 2018) 

Walls Roofing 
Roof 

Shape 
Size & 
Height 

Occupancy 

T1 Residential wood bldg., 
gable roof 5.3 5.2 10.22 

Data 
taken 
from 

provided 
geo-

tagged 
building 
informati

on 

310.5 

T2 Res. wood bldg., gable roof 5.3 5.2 10.22 310.5 

T3 Res. wood bldg., gable roof 5.3 5.2 10.22 310.5 

T4 Res. wood bldg., hip roof 5.3 5.2 7 310.5 

T5 Res.l wood bldg., gable roof 5.3 5.2 10.22 310.5 

T6 Strip-mall, reinforced 
masonry, gable roofs, metal 
sheathing 

7.1 10.8 10.12 309.1 

T7 Light industrial, aluminum 
siding 8 10.8 1 311.2 

T8 Heavy industrial, reinforced 
masonry, flat roof 7 10.4 1 306.3 

T9 Elementary/middle school, 
unreinforced masonry, flat 
roof 

6.1 6.4 1 305.1 

T10 High school, reinforced 
masonry, flat roof 7.1 7.4 1 305.1 

T11 Fire station, brick exterior 
walls, gable metal roof 1 5.8 6.2 304.1 

T12 Hospital, glass walls with 
unreinforced masonry, 
concrete frame, flat roof 

7.9 7.4 1.2 308.4 

T13 Community Center, 
unreinforced masonry 6.1 7.4 6.2 303.4 

T14 Government building, 
reinforced masonry 7.1 7.4 1 304.1 

T15 Large big-box 6 10.8 1 309.1 

T16 Small big-box 6 10.8 1 309.1 

T17 Mobile home 0.5 0.5 6.1 310.4 

T18 Shopping center, reinforced 
masonry, partially glass flat 
roof. 

7 10.4 1 309.1 

T19 Office building, masonry 
bldg., asphalt shingles and 
wood rafters 

7.1 5.2 6.2 304.1 
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The remaining ANN input values were extracted from the U.S. Census data of the block 

group within which a building was located, with a surface roughness of B throughout the city of 

Joplin and a percent forested area ranging from 2-50% depending on building location. Each 

building was also located within a certain EF-Scale based on the historic wind swath of the 

Joplin tornado and randomly assigned a wind speed value (in mph) within that scale’s range. 

The Joplin tornado was also considered a large tornadic wind type event.  

3.3.2 DATA ASSIMILATION OF KNOWN RESULTS FROM THE JOPLIN TORNADO 

Researchers at Kent State University were able to travel periodically to Joplin, MO for 

the five years following this disastrous tornado event. They were able to take geo-tagged video 

data representing some of the buildings within the tornado path and the current state these were 

in (Curtis and Fagan 2013). The video was then post-processed by assessing which recovery 

state a single building would be categorized in by Table 3-6 and expanded upon for specifics of 

the rebuilding process by Table 3-9, in which Recovery State 3 was expanded upon and a 

Recovery State 6 was added. The same buildings were visited over equal intervals over this 5-

year period and a date of rebuilt and occupied (Recovery State 4) status was ascertained. Post-

processing of this data involved visually reviewing video data to ascertain the Recovery State of 

each building. Once that was determined, the latitude and longitude were used to match it to a 

building polygon within the ArcGIS data shapefile to add the Recovery State as an attribute.  
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Table 3-9 Cross-Identification of 19 Building Archetypes and ANN Descriptors 

Recovery 
State 

Sub-
State 

Description 

3 1 Frame Skeleton: Foundation laid (typically remains following a 
wind event) and building frame is going up. 

2 Enclosure: Installation of roofing structure and exterior walls. 
3 Non-structural: Completion of roof sheathing and installation 

of doors and windows. This will also include laying utility 
piping and conduit.  

4 Non-Structural/Cosmetics: Installation of interior sheetrock (as 
applicable) and exterior finishes (e.g., brick stucco). This will 
also include completion of finishes such as interior cabinets 
and painting 

6  A new structure built on land that is not the same archetype 
as the original. 

 

The data currently provided by Dr. Andrew Curtis’s research group covered the 

rebuilding process through year 2, which was considered comparable for the design of the 

recovery ANNs. Dr. Curtis’s group gathered video data for over 3,000 buildings within the 

tornado track. For hindcasting using the models created herein, only these data points were 

used even though the number of structures within the tornado path was over 8,000.  

The video data also provided a mean by which to categorize each building’s initial 

damage state as Curtis et al. (2013) also documented these. However, the research discussed 

herein refers to building Damage Sates (DS) instead of the Tornado Injury Scale (TIS) 

previously defined by Curtis (2013). The necessary conversions from TIS to DS by structure 

types are described in Table 3-10 & Table 3-11. 
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Table 3-10 Converting TIS ranking to DS for wood and steel buildings (Curtis and Fagan 2013; 
Memari et al. 2018). 

TIS Descriptions TIS  DS DS Descriptions 

No visible damage 1 0 No damage 
Minor visible damage (usually loss 
of roof tiles, gutters, and other 
facades.) 

2 

1 
Slight damage to doors and 
winds/roof covering-able to be 
occupied and repaired More substantial roof loss and/or 

boarded windows, and doors 
3 

Large sections of roof material are 
lost, as are less rigid sections of 
the house such as the collapse of 
carports 

4 2 
Moderate damage to windows and 
or doors/roof covering - not able to 
be occupied but repairable 

The building has shifted on its 
foundation or sizable holes have 
been knocked through walls or the 
roof 

5 
3 

Not able to be occupied but 
repairable 

The roof has been removed 6 

Exterior walls have collapsed 7 

4 
Not able to be occupied and not 
repairable 

All exterior walls have collapsed, 
leaving just a few inner walls 
standing 

8 

The entire structure has been 
reduced to rubble 

9 

Even the debris has blown away, 
leaving just dirt or concrete slab 

10 
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Table 3-11 Converting TIS ranking to DS for masonry and concrete buildings (Curtis and Fagan 
2013; Memari et al. 2018). 

TIS Descriptions TIS  DS DS Descriptions 

No visible damage 1 0 No damage 
Minor visible damage (usually loss 
of roof tiles, guttering, and other 
facades) 

2 1 
Slight damage to doors and winds/roof 
covering-able to be occupied and 
repaired 

More substantial roof loss and/or 
boarded windows, and doors 

3 2 
Moderate damage to windows and or 
doors/roof covering - not able to be 
occupied but repairable 

Large sections of roof material are 
lost, as are less rigid sections of 
the house such as the collapse of 
carports 

4 3 Not able to be occupied but repairable 

The building has shifted on its 
foundation or sizable holes have 
been knocked through walls or the 
roof 

5 

4 
Not able to be occupied and not 
repairable 

The roof has been removed 6 

Exterior walls have collapsed 7 

All exterior walls have collapsed, 
leaving just a few inner walls 
standing 

8 

The entire structure has been 
reduced to rubble 

9 

Even the debris has blown away, 
leaving just dirt or concrete slab 

10 

 

Once the building damage states were converted from their already identified TIS, the 

video data were then evaluated for the same building’s condition over time. At each time interval 

the buildings were given a recovery state designation, outlined in Table 3-6 and Table 3-7. 

These recovery states (RS) are intended to progress towards a full recovery, with RS4 

indicating the building is completely rebuilt and reoccupied. RSs5 & 6 were added to illustrate 

when a lot has either been abandoned or rezoned for a different usage. Additionally, RS3 was 

expanded upon to document where in the construction (rebuilding) process a structure was. An 

example of one of these rebuilding states is shown in Figure 3-10 with graphics from the video 

player used to analyze the data. 
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Figure 3-10 Example image of a RS 3.2 building as seen when using video player to review 
recovery data. Red dot indicates location within Google Maps. 

Once the building recovery states were identified for each feature (building), the time to 

recover that feature was determined by evaluating when RS4 was reached. Following this 

process, the number of buildings in each DS and each recovery time were summed and 

subsequently evaluated for how many of those buildings in a specified DS recovered in 1 year, 

1.5 years, 2 years, or greater than two years. For example, what percentage of buildings that 

were classified as DS4 recovered by 1 year? Recovery time of each archetype was then 

summarized for evaluation as well.  

Following this generalized analysis were specific spatial analyses. The first spatial 

analysis was to see if buildings within a neighborhood recovered at the same times. These 

neighborhoods were first considered to be parcels of land that contained multiple building and 

were bounded by roads. To evaluate each neighborhood, individual layers were created from 

the RS data shapefile such that all buildings of 1-year recovery time were on one layer, all 

buildings of 1.5-year recovery time were on another layer, and so on. Each of these layers was 

then spatially joined with the neighborhood parcels, so that the parcel itself would take on a RS 
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for the buildings residing within it. This neighborhood analysis was meant to investigate whether 

a building recovered at the same pace as its neighbor. 

The next analysis was conducted to determine whether or not certain Census Block 

Group neighborhoods recovered the same or consisted of a variety of recovery time patterns. 

This analysis was conducted in the interest of comparing the overall pattern of damage state 

distribution and relative recovery times, as described above for the whole data set, at the block 

group level. These block groups were also associated with specific demographic data from the 

2010 U.S. Census American Community Survey (U.S. Census Bureau 2018). Select 

demographic options were evaluated based on results from building damage state and recovery 

ANNs, the availability in the 2010 ACS, and their relevance to Joplin. For example, Joplin is not 

racially or ethnically diverse in comparison to the rest of the state. Therefore, demographics 

related to race and ethnicity were not analyzed for the Joplin dataset. This data analysis allowed 

for potential explanation as to why one block group may have recovered its DS4 buildings faster 

than another block group, while also providing additional context to the results from analyzing 

the designed ANNs. 
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CHAPTER 4  RESULTS AND MAIN OBSERVATIONS 

4.1 SYNOPSIS 

The research conducted herein involved the creation of two different models, one for 

predicting damage state and one for recovery time. There are three evaluation steps for each of 

the two. The first step was to build the best possible ANNs through evaluating the training 

algorithms and various model input variables. For both damage state and recovery, the final 

models utilized Bayes Theory (BR) as a means to train the data. Additionally, in this step found 

it was found that the final models must include both social and structural (engineering) factors. 

The second step involved the use of graph theory to further examine how patterns were made 

within the network using the shortest path, degree, and closeness centrality calculations. The 

results of this step showed varying importance among the input variables. For example, the use 

of a building occupancy type and tenure were shown to be critical variables in determining 

damage state. The third, and final, step was to validate both models against video recorded 

data following the 2011 Joplin tornado. The results showed 40-50% damage state match and  

20-40% recovery time match at the individual building level. This chapter outlines these results 

in more detail. 

4.2 IMPACT MODELING 

The first ANN types built were designed with the intent of predicting a building’s damage 

state resulting from wind hazards. The general structure is shown in Figure 4-1, with 10 hidden 

neurons and 5 output neurons representing damage states (DS) 0 through 4. The inputs varied 

for each of the 10 models outlined in Table 3-3 and generally consisted of hazard-related inputs, 

structural, and social characteristics. Section 4.2 covers the results from alternating training 

theory algorithms, variations in model inputs, a graphical analysis of the final ensemble of ANNs 
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used to predict damage state, and final model validation through hindcasting the 2011 Joplin 

tornado. The final ensemble of ANNs has the same inputs and training algorithm, but different 

connection weights and neuron biases as a result of the build process. These ensemble ANNs 

therefore process data independently to provide output values from each network and are 

averaged when used in application for hindcasting the 2011 Joplin tornado.  

 

Figure 4-1 ANN structure for relating hazard, structural, and sociological inputs to building 
damage state. (Photos are from NWS damage surveys (National Weather Service 2018). Input 

images are various forms of clipart(CanStockPhoto n.d.; ClipartXtras n.d.; Emojipedia n.d.; 
GalleryYoPriceVille n.d.)) 

4.2.1 TRAINING ALGORITHM VARIATIONS 

The training algorithms outlined in Table 3-1 represent the core of current theories in 

neural network training. These theories utilize variations on gradient descent methods or Bayes 

Theory. The merit to applying a specific theory can change depending on the problem being 
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modeled. Each ANN was “built” once the lowest possible error (MSE or SSE) had been reached 

through multiple iterations. Each ANN model herein was built a minimum of 50 times (with 

multiple iterations within each build) to determine a range and subsequent mean for each PCI 

for training algorithm capability comparisons.  

In modeling building damage state, across most algorithms, the PCI’s were more 

desirable with the MSE performance function than the SSE function as shown in Figure 4-2, 

Figure 4-3, and Figure 4-4. These figures show the majority of builds that were within the +/-

2SD by the thick bars and the maximum and minimums reached by the extended lines/nodes 

from those bars. The BR training algorithm (with a percent error mode of 4.3%) clearly best fits 

the desired PCIs out of all the training algorithm options with 100% of the builds bounded by the 

maximum and minimum values reached. The LM and RP training algorithms (percent error 

modes of 54.7% and 34.2%, respectively, for the MSE performance function) were the next best 

performing algorithms. While LM had better false negative rates, the percent error mode for RP 

was lower than LM. LM’s PCIs were also highly varied with a change from MSE to SSE 

performance along with the OSS algorithm approach. RP is the only algorithm that actually 

showed improved results when switched from the MSE to SSE performance. Note that when 

evaluating the performance functions, training performance is desired to be close to zero, which 

indicates that the ANN outputs are closely matching the targets. 
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Figure 4-2 (a) Percent error for MSE performance, (b) Percent error for SSE performance, (c) 
training performance for MSE performance and (d) training performance for SSE performance 

for the explored training algorithms. 
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Figure 4-3 Explored algorithms’ (a) FNR, (b) FPR, (c) TNR, and (d) TPR for MSE performance. 
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Figure 4-4 Explored algorithms’ (a) FNR, (b) FPR, (c) TNR, and (d) TPR for SSE performance. 

Based on the above results, BR with MSE performance, LM with MSE performance, and 

RP with SSE performance were chosen for the next step in evaluating model input variations to 

evaluate the effect of combining sociological and engineering related variables in determining 

damage state. While BR clearly produces the lowest percent errors in training, the LM and RP 

algorithms were also used in the following step as a check that the conclusions being drawn 

were consistent across each training theory and not a result of over-fitting, which can occur in 

using BR methods. 
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4.2.2 INPUT VARIABLE VARIATIONS 

The multi-variant aspect of this research occurred in the evaluation of multiple models of 

varying data inputs for modeling the same predictive outputs. These were created in order to 

evaluate how structural and sociological characteristics relate to determine impact from wind 

related hazards. It was noted above that, among the PCIs, if the percent error was low, so were 

the false rates, while the true rates were higher (as desired). The percent error associated with 

an ANN is equivalent to how many data points fell within a network-produced output that did not 

match their target (known) output. In order to evaluate this, 10 ANNs of varying inputs were built 

as outlined in Table 3-3 with Figure 4-1 relating how those variables fit in the ANN mathematical 

structure. 

The 10 models were designed with the intent to learn what sociological factors interact 

best with hazard and structural related factors causally linking to impact, in the form of building 

damage state, from wind related events. It may also be possible that none of the subject factors 

interact well and this remains simply an engineering-related problem (Model 3). The results of 

building these 10 different models are shown in Figure 4-5. As can be seen, the best performing 

models include certain sociological factors such as housing tenure and per capita income. 

Additionally, the models with variables that relay debris potential to the ANN, such as percent 

area forested and housing density, performed very well. What was also noticeable across each 

learning algorithm was that Model 3, solely hazard and engineering related inputs, was one of 

the poorer performing models, indicating that determining impact from wind hazards, in terms of 

physical damage state, is not solely a structural engineering-related problem. 
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Figure 4-5 Resulting percent error data ranges from 80+ ANN builds for (a) LM, (b) RP, and (c) 
BR training algorithms (Key images are various forms of clipart(CanStockPhoto n.d.; 

ClipartXtras n.d.; Emojipedia n.d.; GalleryYoPriceVille n.d.)).  

The results from model variations with BR, LM, and RP algorithms, showed Model 3 as 

one of the worst performing options and Model 8 as one of the better performing options, 

indicating that the BR results showed a similar pattern in model comparison to that of the LM 

and RP results. Therefore, BR will be used for the following assessments and for creating the 

final model ensemble consisting of multiple (designated A through F) ANNs. 

 As previously stated, Damage Model (DM) 3 served as a control comparison of how 

damage states have been historically modeled in considering the hazard and engineering 

characteristics (structural, surface roughness, wind speed). Damage Model (DM) 8 was built as 

a mix of DM5 and DM7 in consisting of the housing tenure (percent owners and percent renters) 

and the potential for debris impacts (percent forested area and the housing density) based on 

the relatively improved performance of these models across the three algorithm types. Both 

DM3 and DM8 had final model ensembles built for comparative evaluations in the following 

sections. Figure 4-6 shows the percent error of the ensemble ANNs A through F for both DMs, 
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as well as the confusion matrices for the lowest percent error ANNs of each model. The percent 

error of each ANN build is defined as the percent of data points incorrectly matched to their 

known target outcome during the training, validation, and testing phases. Within a confusion 

matrix, ANN outputs were compared to the desired targets. If the outputs matched the targets 

for a data point it was tallied along the diagonal of the matrix. The confusion matrices illustrated 

that many data points were correctly placed to their resulting output damage state during 

training and testing. The matrices shown in Figure 4-6 are examples; it is possible to reach the 

same percent error with differing misplaced data points. These final ensemble ANNs all fall 

within the 50% lowest possible error from the build analysis, shown in Figure 4-5, and with 

ROCs clustered primarily in the “true positive” region as shown in Figure 4-7. 

 

Figure 4-6 Final Ensemble ANNs’ build percent error and how that error occurred through the 
training process as shown by respective confusion matrices. 
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Figure 4-7 ROCs for ensemble ANNs (a) DM3-C and (b) DM8-E. 

Having a perfectly performing ANN is rather unrealistic, but a desirable ANN will have a 

lower number of incorrectly placed data points and primarily high true positive rates. DM3’s 

percent error was higher for all algorithm types with some having data points output as far off as 

three damage states. However, DM8 showed a focus in error in the DS3 and DS4 regions for 

those it did misplace. A 1.7% error (BR) was the lowest percent error reached across all 

algorithms and model builds.  

From the above results and analysis, BR was considered the best performing training 

algorithm with DM8 being the best structure. The final machine learning model for predicting 

impact to a community’s building stock, therefore, consisted of an ensemble of 6 ANNs requiring 

DM8 inputs, with 10 hidden neurons, and 5 output damage states, trained using BR to reach a 

lowest possible MSE. These final 6 ANNs for DM3 and DM8 were used for the following 

graphical analysis and hindcasting individual building damage from the 2011 Joplin Tornado.  

4.2.3 GRAPHICAL NETWORK ANALYSIS 

Once the ANN model structure was established, graph theory concepts were then used 

to analyze the relationships between the various inputs and the resulting building damage state. 
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This analysis was designed to mirror work previously performed in analyzing brain fMRIs and 

EEGs by specifically looking at the shortest path problem and centrality of neurons within a 

network (degree and closeness). For this analysis only the combined network (Approach A from 

the shortest path analysis) was used. This was performed so that the influence of each 

parameter to an overall model result could be evaluated. 

The shortest path analysis allowed for observations in what inputs may be strongly 

connected to specific damage states. For this analysis within an ANN, the interest focused on 

higher connection weights. Therefore, if the shortest possible path from one neuron to another 

was a relatively high value, then any other path options within the network would be equally, or 

more, strongly connected. However, in this evaluation, two approaches were taken: (a) 

combining all the ANNs into one overall network to determine the shortest path within the 

resulting combined network, and (b) evaluating the shortest path from each input to each output 

within each of the six individual ANNs and averaging the results. This allowed for a way to 

validate conclusions to be drawn from the results of each approach. If a relatively strong 

connection (high weight values) was found in both approaches, then that was considered a 

finding of this analysis. Similarly, the weaker connections were also evaluated. It is worth noting 

that a strong/weak connection between a specific input and specific output did not necessarily 

indicate that this input was/ was not valuable to other outputs; only that this input had an 

increased contribution to a specific output.  

Figure 4-8 and Figure 4-9 show the relative results in calculating the shortest path for 

DM3, primarily engineering-related inputs, and DM8, the final suggested predictive model. By 

analyzing both DM3 and DM8, the effect of including social factors could be assessed. In DM3, 

the roof material and building height showed a strong connection to DS0. This was considered 

reasonable due to the fact that the wind pressure increases with height and wind damage tends 

to first appear at the roof level. The wind speed was also found to be strongly tied to DS4, which 

was to be expected given that at a certain wind speed, the rest of the factors would become less 
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vital in determining the resulting damage state. Additionally, weaker connections were found 

between the event size and DS0 and DS2, as well as the connection between surface 

roughness and DS1, suggesting a relationship between areal extent and lower damage states. 

Once tenure and density factors were introduced to the network for DM8, a shift occurred from 

strong connections between structural aspects to how the structure was used. While a strong 

connection still remains between building height and DS0, building occupancy and tenure have 

now become strong contributors to DS2 and DS3, respectively. These connections indicate a 

potential criticality of how the structure is used and maintained to whether or not the resulting 

building damage becomes an insurance write-off (DS3) or not (DS2). Housing density has taken 

the place of surface roughness in being weakly connected to DS1, and event size has shifted 

from being weakly connected to DS0 and DS2 to being weakly connected to DS4. These shifts 

could indicate that the event’s size contributes more to lower damage states and housing 

density, or debris potential, takes its place at higher damage states, which would illustrate a 

criticality of density over size for worsening damage.  
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Figure 4-8 Shortest path relative values for DM3 (a) combined ANNs and (b) averaged results 
from each ANN. 
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Figure 4-9 Shortest path relative values for DM8 (a) combined ANNs and (b) averaged results 
from each ANN. 

The shortest path results revealed how each input connects to each output. The 

centrality analysis, through the concepts of closeness and degree, related how connected a 

neuron is within the network as a whole. In other words, a high shortest path result indicated 

that a specific input is strongly influencing a specific output, while a high centrality score 

indicated that a specific input has wide-spread influence to the network or that a specific output 

is influenced by many variables. Both in- or out-degree and in- or out-closeness scores (“in” 
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being for output/DS neurons and “out” being for input neurons) were evaluated for analysis and 

validation that if one neuron had a high degree, it also had a relatively high closeness.  

Figure 4-10 shows the centrality scores, plotted as closeness versus degree, for DM3. 

Plotting both scores together allowed for an assessment of how closely degree rank matched 

closeness. It is interesting to note that the association between the two centrality scores for 

DM8 more closely match a linear relationship, than those for DM3. Specifically, the output (DS) 

neurons did not share similar centrality scores for DM3 and appeared to be less consistent and 

therefore less organized. DM3, as shown in Figure 4-10, resulted in a combined network where 

the wind event size, building height, and surface roughness contribute widely to the overall 

network. In combination with the shortest path results, this would suggest that building height is 

a significant factor in determining damage state, for the current engineering-factor-based 

modeling approach, as it is widely connected within the network as well as strongly connected 

to DS0.  

 

Figure 4-10 DM3 (combined ANN structure) centrality scores as closeness versus degree. 

While DM3 represented current modeling variables, DM8 introduced some social and 

debris potential variables. The centrality scores that resulted from adding in these new factors 
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are shown in Figure 4-11. Wind speed, population, housing density, roof shape, and wind event 

type and size were all inputs that connected widely to the possible outputs within this network. 

DS4 and DS0 were also widely influenced by the inputs. The output DSs were also more 

aligned than in the centrality analysis of DM3, suggesting more organizational structure within 

the network. Conversely to widely-connected parameters, surface roughness and building 

height showed lower centrality scores, which indicated that these were not widely influential 

parameters with the model. This does not indicate that these are not important parameters for 

modeling building damage state from wind hazards, more so that these parameters may have 

been focused more towards specific damage states instead of having a breadth of influence to 

the network. Building height, for example, showed higher connectivity to the lower damage 

states through the shortest path analysis in Figure 4-9. The variable order along the linear path 

ultimately changes between DM3 and DM8 as the variables are altered and the ANN 

compensates. 

 

Figure 4-11 DM8 (combined ANN structure) centrality scores as closeness versus degree. 

The results from the centrality analysis showed more organization among the output 

damage states within the DM8 structure than within the DM3 structure. Additionally, the shortest 
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path analysis results illustrated a shift in stronger connections from structural factors to building 

usage related factors. However, across both model types, the size of the wind event was shown 

to have a high connectivity within the network, indicating that the areal extent (tornado path) 

contributes well to all possible damage states. Similarly the building height presented a strong 

connection to DS0 independent of the incorporation of social factors.  

4.2.4 HINDCASTING DAMAGE FROM THE 2011 JOPLIN TORNADO 

In order to validate the applicability of this approach for predicting the damage states of 

buildings, the 2011 Joplin, MO Tornado was simulated using DM3 and DM8, then compared to 

actual damage statistics and the results from using physics-based fragilities. The tornado path 

and intensity was overlaid with the community building stock within ArcGIS. The tornado path 

gave the EF scale zones, which required random wind speed values within each range to be 

assigned to the buildings based on location within the path. Next, the buildings were coded so 

that the ANN could interoperate the engineering characteristics along with the corresponding 

Census data. To do this, the near 8,000 buildings were assigned by archetype as outlined in 

Memari et al (2018). These archetypes were then given ANN variable designations as outlined 

in Table 3-8. 

The results from modeling using the ANNs were compared to that of the physics-based 

fragilities originally modeled by Memari et al (2018) and Attary et al (2018). Within the physics-

based analysis, the probabilistic value for damage states 1 through 4 based on 3-sec gust wind 

speeds were calculated through Monte-Carlo analysis as discussed by Attary et al (2018). 

These probabilities are mutually exclusive and collectively exhaustive. The most likely damage 

state provided by these probabilities was used for comparison against the ANN outputs in the 

interest of comparing predictions for a specific damage state. 

The overall results shown in Figure 4-12 and Table 4-1 demonstrate an initial validation 

of this overall modeling approach using ANNs. The building damage spatially followed the 
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tornado intensity and actual damage satellite image track (Missouri Spatial Data Information 

Service n.d.) as well as resulting in an overall 10-13% error when tallying building damage 

states. This overall error was simply the sum of all buildings within a DS designation and was 

determined from the combination of DS’s 1 & 2 and DS’s 3 & 4 largely due to the fact that 

determining damage state is a qualitative analysis, which introduces a degree of error within the 

actual observed results as well. Following an event, DS’s 3 and 4 are considered total losses, 

monetarily speaking, and as this is an arguably more critical component in determining impact, 

the errors shown in Table 4-1 were considered acceptable.  

 

Figure 4-12 (a) May 22, 2011 Joplin tornado track, (b) resulting damage path(Missouri Spatial 
Data Information Service n.d.), (c) Model 8 ANN determined damage path over actual satellite 

image, and (d) Model 8 ANN damage path over local tenure demographics(U.S. Census Bureau 
2018). 
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Table 4-1 Total buildings damaged as recorded by Jasper County, MO and the United States 
Army Corps of Engineers (USACE) with comparison to physics-based fragilities and DM8 ANN 

results. 

 Light 
DS1 

Moder
ate 
DS2 

Combine 
DS1 & 
DS2 

Totaled/ 
Extensive 

DS3 

Demolished/ 
Catastrophic 

DS4 

Combine 
DS3 & 
DS4 

Total 
Buildings 

with 
Damage 

Jasper 
County 

3,865 736 4,601 1,238 2,520 3,758 8,359 

USACE 2,013 1,641 3,654 1,632 2,322 3,954 7,608 
Avg.   4,127   3,856 7,983 
ANN 
DM8 
Results 

2,519 1,074 
3,593 
(13% 
error) 

268 3,974 
4,242 
(10% 
error) 

7,835  
(2% diff) 

Physics 
Based 
Results 

1,290 1,193 
2,483 
(40% 
error) 

293 4,727 
5,020 
(30% 
error)  

7,503  
(6% diff) 

 

Following this initial assessment, an exact building-to-building match was evaluated 

using video data from Kent State University immediately following the event. When each 

individual building’s predictive damage state was analyzed against its matched observed 

damage state from video cataloged images, it was found that the physics-based and ANN 

approaches produced overall similar results, that were of higher error than the generalized 

results above. However, both the physics-based approach and ANN DM8 have a match 

percentage of roughly 40-45%, indicating similar modeling accuracy when categorizing a 

community’s building stock by 19 archetypes. The ANN DM8 did categorize 187 buildings, of 

the 3,283 buildings recorded in the video data, to the observed damage state that the physics-

based model missed (Figure 4-13). Similarly, the physics-based approach matched 70 buildings 

that the ANN DM8 failed to correctly categorize.  
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Figure 4-13 Results in matching individual buildings damage state to that modeled from physics-
based and ANN methods. 

The results above were subsequently separated by building archetype as best as 

possible. Building descriptions provided in the shapefile data linked to video observations were 

matched to the 19 archetypes outlined for the modeling discussed herein. The majority of these 

buildings were residential archetype 1, as summarized in Table 4-2. These buildings also 

showed a higher error for both physics-based and ANN models. However, this may be attributed 

to the much larger number of buildings categorized under this archetype than any other. 

Marginally lower errors occur in matching the damage state of T6, strip mall, archetypes. A 

difference in relative error did occur for the T19 archetype, office buildings, in which the physics-

based model results matched more accurately than the ANN results.  
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Table 4-2 Summation by Building Archetype 

Archetyp
e 

Physics 
Matching 

Video 
Observations 

ANN DM8 
Matching 

Video 
Observations 

Total Number of 
Building 

Captured by 
Video 

Percent 
Error: 

Physics 

Percent 
Error: 
ANN 

1 1253 1361 3197 60.8% 57.4% 
2 

Archetypes not captured in video observations 
3 
4      
5 11 11 22 50% 50% 
6 15 14 28 46.4% 50% 
7 

Archetypes not captured in video observations 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 21 17 36 41.7% 52.8% 

 

An additional comparative analysis was conducted between ANN DM3 and DM8. DM3 

would be considered closer to the physics-based approach, based on the input variables used. 

The results of the analysis shown in Figure 4-14, therefore, appear similar to the results in 

Figure 4-13. DM3’s percent error almost exactly matched that of the physics-based error on the 

building level. However, while the percent errors match, the number of buildings matched only 

by DM3 was 184, which was greater than the 70 matched only by physics when compared to 

DM8. The number of buildings only matched by DM8 to the observed damage state is greater 

when compared to DM3 than the physics model, suggesting a greater overlap between DM8 

and physics-based modeling even though the variables used to create each model differ.  



 102 

 

Figure 4-14 Results in matching individual buildings damage state to that modeled from DM3 
and DM8. 

Overall, the application of ANN modeling proved only slightly, if at all, more accurate 

than physics-based modeling. The differences in individual building matching accuracy were 

considered essentially negligible. However, it is noted that the ANN models were fitted to the 

originally identified 19 archetypes, which constrained the modeling approach. In future 

applications, the community building stock could be refined further per the structural 

characteristic designation codes outlined in Chapter 3 and Appendix A. It is theorized that if 

these designations were applied, the resulting match percentages would increase.  
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4.3 RECOVERY 

Following the construction and analysis of the damage state ANN models, similar build 

evaluations and network analyses were executed in the interest of modeling recovery time. For 

this work, the term “recovery” refers to when a building was rebuilt and reoccupied. The general 

structure for the recovery model was similar to that of Figure 4-1, with 10 hidden neurons and 5 

output neurons representing recovery times of 6 months, 1 year, 1.5 years, 2 years, and greater 

than 2 years (or abandoned). The inputs vary for each of the 15 models, as outlined in Table 4-

3, for how they may differ from the damage models, and generally consist of hazard-related 

inputs, structural, and social characteristics. Some social characteristics for recovery were 

added based on the literature review, as well as a “1 year residence” factor, which was added in 

attempt to further communicate individual ties to a community. Recovery Model (RM) 1 

consisted of all possible variables, RM2 utilized primarily social parameters, and RM15 was 

designed to be a “bare minimum” model in terms of inputs. The remaining models were based 

on how previous models performed during the build process and involved the removal of 

different select variables. Section 4.3 covers the results from alternating training theory 

algorithms, variations in model inputs, a graphical analysis of the final set of ANNs used to 

predict recovery times, and a hindcast of the 2011 Joplin Tornado. The final ANNs had the 

same inputs and training algorithm, but have difference connection weights and neuron biases, 

and formed an ensemble of ANNs that process data independently to provide outputs that were 

averaged when used in application for hindcasting the 2011 Joplin tornado.  
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Table 4-3 List of variables for damage and recovery models 

Input Variable Associated Damage 
Models 

Associated Recovery 
Models 

Hazard  
(wind type, speed, and 
event size) 

1 2 3 4 5 6 7 8 9 10 1 8 9 10 11 14 

Structural  
(year built, occupancy, roof  
& wall materials, roof shape, 
footprint) 

1 2 3 4 5 6 7 8 9 10 1 4 5 6 7 8 9 10 11 12 14 

Surface Roughness  1 2 3 4 5 6 7 8 9 10 1 2 3 4 8 9 10 11 12 14 
Estimated Percent 
Forested  
(and Impervious Surfaces) 

1 7 8 9 10 1 2 3 4 8 9 10 11 12 14 

Tenure  
(% own, % rent) 

1 2 5 8 9 1 2 3 4 5 6 7 8 9 11 12 15  

Housing & Population 
Density 

1 7 8 1 2 3 4 5 7 8 9 10 11 12 14 

Total Population 1 2 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 14 
Age 1 2 6 1 2 3 4 5 6 7 8 10 11 12 14 
Race  
(% Asian, African American, 
Native American & 
Hispanic) 

1 2 6 1 2 3 4 5 6 7 9 10 11  

Industry Employment 
(extractive and service) 

1 2 4 1 2 3 4 5 6 8 9 10 11 12 14 

Income  
(per capita & income: 
poverty) 

1 2 4 9 10 
1 2 3 4 5 6 7 8 9 10 11 12 14 
15 

Add’l Tenure 
(single female head of 
household w children, group 
quarters) 

 1 2 3 4 5 6 7 8 9 11 12 15 

Disability  
1 2 3 4 5 6 7 8 9 10 11 12 14 
15 

Persons over 65 y.o.  
1 2 3 4 5 6 7 8 9 10 11 12 14 
15 

No Vehicle   1 2 3 4 5 6 7 8 9 10 11 12 14 
Residence for at least one 
year 

 1 2 3 4 5 6 7 8 9 10 12 14 15 

Damage State  1 2 3 5 6 7 8 9 10 11 14 15 

 

4.3.1 TRAINING ALGORITHM VARIATIONS 

The training algorithms outlined in Table 3-1 represent the core of current training 

theories used for both the damage and recovery ANN models. Each ANN was “built” once the 
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lowest possible error (MSE or SSE) was reached through multiple iterations. Each ANN model 

herein was built a minimum of 50 times (with multiple iterations within each build) to determine a 

range and subsequent mean for each PCI for training algorithm capability comparisons. To 

determine if this was enough builds, a coefficient of variation of less than 0.5 with 95% of the 

data falling within +/- 2 standard deviation was used as a mean of determining an adequate 

sample size of ANN builds and evaluated similar to that of the damage model ANNs. 

In modeling recovery time, across most algorithms, the PCI’s were more desirable with 

the MSE performance function than the SSE function as shown in Figure 4-15 through the lower 

percent errors of the MSE functions. The BR training algorithm (with a percent error mode of 

7.53% when using MSE) clearly best fit the desired PCIs out of all the training algorithm options 

by having low percent error and false negative and positive rates, as well as high true positive 

and negative rates; shown in Figure 4-16. The LM training algorithm (percent error mode of 

40.86% for the MSE performance function) was the next best performing algorithm. Similarly, to 

the damage state modeling analysis, LM was chose to be a form of verification for the BR 

training algorithm in choosing the most applicable model moving forward. 
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Figure 4-15 (a) Percent error for MSE performance, (b) Percent error for SSE performance, (c) 
training performance for MSE performance and (d) training performance for SSE performance 

for the explored training algorithms in modeling recovery time. 
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Figure 4-16 Explored algorithms’ (a) FNR, (b) FPR, (c) TNR, and (d) TPR for MSE performance 
in modeling recovery. 
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Figure 4-17 Explored algorithms’ (a) FNR, (b) FPR, (c) TNR, and (d) TPR for SSE performance. 

4.3.2 INPUT VARIABLE VARIATIONS 

As with the damage models, multiple recovery models were created in order to further 

explore relevant variables in determining recovery time. However, instead of a solely structural 

and hazard model option (DM3), a model focused on social characteristics was created for 

recovery (RM2). In evaluating how well neural connections were established for different 

variables, 15 ANNs of varying inputs were built, as outlined in Table 4-3. The results of varying 

model inputs for both BR and LM training algorithms are shown in Figure 4-18. The resulting 

best performing models included most sociological, structural, and hazard variables, more so 

than were required for modeling damage state. While RM8 (all variables minus race), performed 

the best in establishing patterns between the variables and recovery time, RM2 (primarily social 
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variables), produced slightly less desirable PCIs. This would suggest that building materials 

(perhaps availability and ease for construction) do factor into the recovery time. However, RM3, 

7, and 11, were some of the poorer performing model structures. RM3 did not include the 

hazard or structural characteristics. RM7 did not include surface roughness, percent area 

forested, or the amount of individuals working in extractive or service industries. RM11 did not 

include the “residence for 1 year” variable, suggesting that, while this variable was not added 

from the literature, having some form of commitment to a location/community does affect 

recovery time.   

 

Figure 4-18 Resulting percent error data ranges from 50+ ANN builds for (a) BR and (b) LM, 
training algorithms, with identifiers for RM2, which doesn’t include structural characteristics, and 

RM8, which negates race. 

RM8 was found to be one of the better performing options, comparatively, for both BR 

and LM training algorithms. Therefore, BR was used for the following assessments and for 

creating the final model consisting of multiple (designated A through F) ANNs. A model of RM2 

was also built for comparison in the following analysis, as well as the graphical analysis, for how 

connections change when structural variables are introduced. However, it is worth noting that 

RM2, unlike DM3, was not the poorest performing ANN structure of the model options. Figure 

4-19 shows the percent error of the ensemble ANNs A through F for both RMs, as well as the 

confusion matrices for the lowest percent error ANNs of each model. The confusion matrices 

show how many data points were correctly placed to their recovery time during training and 
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testing. These final ensemble ANNs all fell within the 50% lowest possible error from the build 

analysis, shown in Figure 4-18, and with ROCs clustered primarily in the “true positive” region 

as shown in Figure 4-20. 

 

Figure 4-19 Final Ensemble ANNs’ build percent error and how that error occurred through the 
training process as shown by respective confusion matrices. 
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Figure 4-20 ROCs for ensemble ANNs (a) DM3-C and (b) DM8-E. 

RM2’s percent error was higher for all algorithm types with some having data points 

output as far off as three damage states. A 3.2% error (BR) was the lowest percent error 

reached across all algorithms and recovery model builds, and the overall errors reached in 

modeling recovery time were generally higher than that of the damage state models. 

From the above results and analysis, BR was considered the best performing training 

algorithm with RM8 being the best model input structure. The final machine learning model for 

predicting a community’s building stock recovery time therefore consisted of an ensemble of 6 

ANNs requiring RM8 inputs, with 10 hidden neurons, 5 output recovery times, and trained using 

BR to reach a lowest possible MSE. These final 6 ANNs for RM8 were used for the following 

graphical analysis and hindcasting the recovery from the 2011 Joplin Tornado. RM2 was also 

comparatively assessed for the graphical analysis. Since modeling recovery time is still 

relatively new, there was not a widely accepted and consistent approach to modeling, that has 

previously been validated against a hindcast, as there was with damage states and the focus on 

structural components. As a result, recovery from the Joplin tornado was only hindcasted using 

the best performing model option: RM8. 
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4.3.3 GRAPHICAL NETWORK ANALYSIS 

The graphical analysis of the recovery models was conducted in the same manner as 

the damage models. In the shortest path analysis, if a relatively strong connection (high weight 

values) was found in both the combined and averaged approach, then that was considered a 

finding of this analysis. Similarly, the weaker connections were also evaluated. Figure 4-21 

presents the relative results from calculating the shortest path for RM2, primarily social inputs 

model structure. Note that certain structural parameters, such as size and occupancy, were kept 

as inputs in RM2, as these were originally considered foundational variables for reconstruction. 

In RM2, the building size, in terms of footprint area, was linked to a 6mo recovery time, whereas 

building height was found to strongly link to a 1-year recovery time. Additionally, building 

damage state was found to strongly connect to a 1.5-year recovery time, population density to 2 

years, and area forested to the building taking longer than 2 years to recover (or become 

abandoned). Weaker connections were found between the amount of people on disability and 

the income to poverty ratio to a 6-month recovery time. Owning tenure and the wind event type 

(straight-line or tornadic) were shown to be weakly connected to 1- and 1.5-year recovery times, 

respectively. Both building height and the amount of people working in the service industry 

demonstrated a weak connection to determining if the structure would be abandoned in RM2. 
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Figure 4-21 Shortest path relative values for RM2 (a) combined ANNs and (b) averaged results 
from each ANN. 

 The results from analyzing RM2 provide an initial description of the network connection 

structure without parameters related to building materials. Figure 4-22 presents the shortest 

path analysis results after introducing building variables and subtracting out racial variables in 

the ANN structure to form RM8. While building height still ties strongly to a 1-year recovery time, 

it has also tied strongly to the 6-month recovery time, which is more intuitive since building 

height tied strongly to no damage (DS0) in the previous graphical analysis for the damage 

models. The wind speed and a single female head of household with children were also found 

to strongly connect to a 1-year recovery time, while the roof shape was strongly connected to an 

over 2-year recovery or abandonment. Conversely, individuals with disability moved from having 

a relatively weak connection to 6-month to a 1-year recovery time. The structure’s median year 
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built and occupants working within extractive industries were found to weakly connect to 

recovery by 1.5 years. While building height remained strongly connected to earlier recovery 

times and disability weakly connected to earlier recovery times, the remaining strong and weak 

connections did not suggest any significant shifts in focus. In dropping strong connections from 

building footprint, damage state, population density, and area forested, strong connections were 

gained in relation to wind speed, roof shape, and single female head of household with children 

for RM8. RM2’s stronger connections focused more on the area of and surrounding the building, 

but the inclusion of structural variables does not seem to have replaced those connections with 

any similar pattern. A similar assessment could be said for the weaker connections, with the 

exception of the shift from percent of population employed in service industries to percent 

employed in extractive industries having weak connections.  
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Figure 4-22 Shortest path relative values for RM8 (a) combined ANNs and (b) averaged results 
from each ANN. 

As with the shortest path analysis, the centrality analysis, through the concepts of 

closeness and degree, was conducted for recovery modeling in the same manner as the 

damage model analysis. Figure 4-23 shows the centrality scores, plotted as closeness versus 

degree. RM2 resulted in a combined network where the recovery times of 1 to greater than 2 

years were widely influenced by the multiple input variables. The lack of vehicle, other tenure 

(neither rent nor own), damage state, employment in extractive industries, income to poverty 

ratio, renting tenure, building occupancy code, and footprint area are also widely connected 

within the network structure. In combination with the shortest path results, this would suggest 

that building footprint area and damage state are significant factors in determining recovery time 

within the RM2 structure. Conversely, owning tenure is a less significant factor in this structure 
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as it shows a weak connection to a 1-year recovery time and low centrality scores when related 

to the overall network.  

 

Figure 4-23 RM2 (combined ANN structure) centrality scores as closeness versus degree. 

The RM8 centrality scores are shown in Figure 4-24. Single female head of household 

with children, wind speed, and percent of area consisting of impervious surfaces were all inputs 

found to be widely connected to the possible recovery times within this network. The 1-year 

recovery time was also shown to remain a heavily influenced output, indicating that many 

variables contributed to determining this outcome, as opposed to the 6-month recovery time, 

which showed a lower degree centrality. In combination with the shortest path results, the wind 

speed and single female head of household with children variables were found to be overall 

significant contributors to the time it would take to rebuild and reoccupy a structure following a 

severe wind event. In RM8, the variables that showed weak connections to specific recovery 

times did not also rank among the lowest centrality scores. This would indicate that while the 

number of population employed in extractive industries weakly tied to a 1.5-year recovery time, 

it also tied relatively well within the entire network overall. 
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Figure 4-24 RM8 (combined ANN structure) centrality scores as closeness versus degree. 

The results from the centrality analysis showed similar organization among both input 

variables and output recovery times for both RM2 and RM8, indicating that overall connectivity 

within the network may be similar even with a switched variable hierarchy and differing inputs. 

Additionally, the shortest path analysis results indicated a remaining importance of wind speed, 

building height, and roof shape when continuing on from modeling damage state to recovery. 

Overall, in comparison to modeling damage state, modeling recovery time proved to be a more 

involved and complex problem due to the overall higher percent errors and similarities in 

network organization between RM2 and RM8 through shortest path and centrality analyses. The 

lack of a significant shift in strong network connections and any organizational differences 

among the centrality plots brings into question how the ANN is built giving the data provided. 
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4.3.4 HINDCASTING RECOVERY FROM THE 2011 JOPLIN TORNADO 

In order to further validate this approach as a method of predicting the time to rebuild 

and reoccupy a building, the 2011 Joplin, MO Tornado was simulated for RM2 and RM8, then 

compared to documented recovery of select buildings from video data provided by Kent State 

University (Curtis and Fagan 2013). The tornado path and intensity was overlaid with the 

buildings in the area, similar to how the damage hindcast was conducted to include the wind 

hazard, structural type, and U.S. Census social characteristics.   

As was performed with the damage models, the recovery model errors were assessed 

on a broad scale and a more exact scale. Each building within the video data set was analyzed 

for whether it was fully recovered (Recovery State 4) by 1-year, 1.5-years, 2-years, or longer. 

The 6-month recovery data was not available within the actual video data; therefore, the ANN 

results would subsume 6-month recovery under the 1-year recovery categorization. For the first 

error assessment, and exact match for each building was assessed for 1-year, 1.5-year, 2-year, 

and greater than 2-years recovery times. For the second analysis a +/- 6 month error was 

introduced, such that if the ANN model predicted a 1-year recovery and building actually 

reached Recovery State 4 by 1.5-years, this was considered a match. This approximated match 

was used based on the assumption that if a singular building recovered by 10 months or 14 

months, the overall impact to the community from such a difference would be minimal. The 

results are shown in Figure 4-25 with a match percent of 23-42% for the exact match and 76-

84% for the approximated match. 
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Figure 4-25 Actual recovery time for select buildings within Joplin and the percent errors from 
hindcasting with RM2 and RM8 for the exact match approach and a +/- 6-month error buffer. 

The recovery modeling errors proved to be higher than that of the damage modeling 

analysis. This was expected since there were differing damage state categorizations across the 

multitude of post-event assessment surveys, which lead to an error within the known data set, 

as well as potentially greater uncertainties in categorizing a building’s recovery state over time. 

Additionally, while DM8 had a slightly lower error than DM3, RM2 resulted in a lower error for 

the exact match when compared to RM8, with this result switched for the approximated match. 

However, as with the damage models, the percent error/percent match were close enough such 

that both models were considered to perform similarly in hindcasting the 2011 Joplin tornado.  

Subsequently, an analysis by building type was conducted for both RM2 and RM8 as 

provided in Table 4-4. As with the damage models, residential (T5) and strip-malls (T6) were 

better matched to their actual outcomes, specifically for the approximated approach. Residential 

T5 did not match well for the exact match of RM8, however nearly all possible T5 structures 

were correctly categorized under the approximated approach. The results from the recovery 
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hindcasting analysis primarily show sensitivity in modeling by 6-month intervals and should be 

considered in further recovery modeling development. 

Table 4-4 RM8 and RM2 results by building archetype. 

 Exact Match +/- 6 month match 

 Archetype RM8   %Match RM2  %Match  RM8   %Match RM2   %Match 

1 659 24% 1142 42% 2317 86% 2114 78% 

2         

3         

4         

5 0 0% 7 50% 14 100% 14 100% 

6 1 6% 11 61% 17 94% 15 83% 

7         

8         

9         

10         

11         

12         

13         

14         

15         

16         

17         

18         

19 5 17% 19 63% 24 80% 23 77% 

 

4.4 THE JOPLIN DATA 

Thus far, the actual Joplin damage and recovery data has been presented as it pertains 

to the validation of various modeling approaches. However, this data had patterns of its own to 

present as well. The total number of buildings within the tornado path, as defined in Attary et al. 

(2018), was 7,912. However, of those 7,912 buildings, only 2,771 had recovery data recorded 

for the first two years, which lead to an approximate 35% of affected buildings analyzed for this 

case study. The majority of the buildings analyzed were residential, specifically, T1 and T5 

archetypes, with some business and retail buildings (T6), a hospital (T12), and some office 
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buildings (T19). Approximately 38% of the residential buildings in Joplin recovered within the 

first year, while most retail buildings took longer to recover. The hospital building captured in the 

video data took 2-years to recover. Additionally, most schools were documented as also 

recovering in 2 years’ time (Onstot, 2016). 

Most of the buildings with damage data were categorized as DS4 and would have 

needed to be rebuilt, however, most buildings within the dataset recovered within the first year. 

At first assessment, this would indicate a correlation between high damage states and quick 

recovery times. However, by evaluating each DS group individually, as shown in Figure 4-26, it 

was observed that most DS 1, 2, and 3 buildings, recovered within the first year, with DS1 

buildings sometimes needing additional recovery time through 1.5 years. The DS4 buildings 

were relatively evenly spread out across the 1-year, 1.5-year, 2-year, and longer time frames. 

Of the over 600 buildings still not yet recovered, only 53 were noted as in the “rebuilding” phase, 

or RS3, at the two-year mark. 
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Figure 4-26 Distribution of buildings categorized as being in damage states 0 through 4, 
recovery time, and how many buildings in each damage state corresponded to each recovery 

time. 

When these recovery times were distributed spatially by neighborhoods (parcels 

bounded by streets), it was found that the majority of neighborhoods contained buildings that 

took various time frames to recover. The spatial distribution by neighbors is shown in Figure 

4-27. The results of this distribution also indicated that neighbor recovery time did not 

necessarily contribute to an individual building’s subsequent recovery time. In other words, if a 

building’s neighboring structures were all recovered by 1 year, that did not necessarily correlate 

to that building also recovering within 1 year. 
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Figure 4-27 Neighborhoods containing structures that were recovered by (a) 1 year, (b) 1.5 
years, (c) 2 years, or (d) structures that had not recovered by 2 years. 

From here, the neighborhood areas were expanded to Census Block Groups (BG), so as 

to evaluate any demographics that may correlate to certain recovery times. These BGs were 

designated Blocks A-N as shown in Figure 4-28a. Figure 4-28b then shows which elementary 
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school contains attendance from each BG. Note that there are numerous elementary schools, 

but Joplin High School serves the entire city. 

 

Figure 4-28 Census block group designation (a) for structures with recovery data (Curtis and 
Fagan 2013; U.S. Census Bureau 2018) and (b) by school district (Joplin Schools 2019). 

The damage and recovery patterns were then assessed for each BG using the data in 

Figure 4-29 & Figure 4-30, respectively. Each BG’s damage state distribution and 

corresponding division by recovery state (Figure 4-30) allowed for evaluation of which areas 

deviated from the overall pattern previously found in Figure 4-26. Blocks C, D, E, and F showed 

patterns that indicated slower recovery times. In Block C, DS1 buildings were more spread out 

across the possible recovery times and a larger percent of structures had not yet recovered by 

the 2-year mark. This was similar for Blocks D & F, with most DS4 buildings taking at least 2 

years to recover, instead of being evenly spread out across the multiple recovery time frames. 

Block E interestingly had most of DS 3 structures not yet recovered by 2 years, but the DS 4 

structures were mostly rebuilt by the 2-year mark. The BGs with some quicker recovery 

indicators were Blocks B & N, with Block N showing most buildings recovered within the first 

year across all damage states, and Block B had a larger percentage of DS1 & 2 buildings 
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recovered by 1 year when compared to the overall community pattern. Blocks K, L, & M showed 

a mix of quicker recovery for DS1 & 2 (similar to Blocks B & N) but a slower recovery for DS3 & 

4 as indicated by the percent of buildings in each damage state recovered by each time step. 

 

Figure 4-29 Building damage state distribution by census block group. 
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Figure 4-30 Percent of each damage state’s buildings corresponding to each recovery time by 
census block group. 

These results prompted an assessment of the BGs demographics and which of the 

previously studied vulnerability factors correlated to changes in recovery distributions by 

building damage state. However, not all of the social characteristics are discussed herein as 

some did not show much correlation and/or were not available in the 2010 ACS for the state of 

Missouri. For example, one of the most commonly discussed demographics in association with 

recovery from natural hazard is income. However, as can be seen in Figure 4-31, the per capita 

income was not very diverse across the Joplin area. Blocks B, C, E, and N all had per capita 

incomes of less than $25,000, even though these blocks also showed differing recovery 

patterns. However, a stronger correlation was found between the Median Year Built of the 

structures in a BG and slower recovery times. The same BGs that showed slower recovery time 
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(C, D, E, & F) also had structures of a Median Year Built (YB) prior to 1970. Overall, Figure 4-31 

shows the correlation between older structures and slower recovery times, but not a correlation 

with income. 

 

Figure 4-31 Building recovery and corresponding census block group by (a) the structures’ 
median year built and (b) per capita income.  

The BGs that showed some tendencies towards quicker recovery times were Blocks B, 

K, L, M, N, with Blocks K, L, and M containing a higher percentage of DS3 & 4 structures that 

conversely took longer to recover. There were multiple demographics that were correlated to 

these areas. Block B, which showed the majority of DS1 & 2 buildings recovering within the first 

year, also consisted one of the lowest median age BGs as well as a low percentage of 

individuals who did not have access to a vehicle. Similarly, Blocks K, M, and N, which all 

showed quicker recovery times for DS1 & 2, also had a low percentage of individuals without a 

vehicle. These same three BGs actually had a low percentage of individuals who neither rented 
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nor owned that correlated to quicker recovery times. These correlations within the Joplin 

community are shown below in Figure 4-32.  

 

Figure 4-32 Block groups that tended towards quicker recovery times by (a) median age, (b) 
percentage of individuals who do not have access to a vehicle, and (c) percentage of individuals 

who neither rent nor own. 

A summary of these demographics are provided in Table 4-5. In addition to older 

structures tying to slower recovery times, a low population count was also found to correlate 

buildings of more severe damage states (DS3 & 4) to requiring at least 2 years for recovery. 

Blocks D, E, and F also corresponded to the attendance zone of the Irving Elementary School, 

which suffered severe damage and was not recovered until 2013 (Onstot, 2016).  
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Table 4-5 Summary of BG Recovery by select demographics. 

 A B C D E F G H I J K L M N 

Low Housing Density               
Pre-1970 Bldgs               
Pop. <1,000               
Per Capita Income <25k               
<5% Other Tenure               
>50% Renters               
<1% w/o Vehicle               
>5% SFHwC               
<2% Employed Extract. 
Ind. 

              

Median Age <20               
Median Age >50               
Irving Elementary (2013)               
Soaring Heights El. 
(2013) 

              

Cecil Floyd El.               
Kelsey Norman El.               
East Middle (2013)               

Block met specified 
metric 

              

Quicker Recovery               
Slower Recovery                

Slower Recovery DS3&4               
DS3 Not Yet Recovered               

 

4.5 SUMMARY 

The build process for the damage and recovery models resulted in the use of BR training 

with MSE performance evaluation. The final suggested damage model was DM8, which 

included hazard and structural characteristics as well as percent area forested, housing density, 

total population, and housing tenure. From the graphical analysis of DM8, wind event size, 

height, and owning tenure were found to be critical inputs to the network. The results of 

hindcasting the 2011 Joplin tornado subsequently showed that the use of ANNs is comparable 

to that of physics-based modeling using fragilities in terms of accuracy. The overall differences 

between the percent errors for each modeling approach were considered negligible.  
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For the recovery models, both structural and social variables were also found to be 

critical in modeling with a wind hazard event. From the graphical analysis, single female head of 

household with children, building height, wind speed, and employment (industry and income) 

were highlighted as potential critical variables within a recovery modeling ANN, while a 1-year 

recovery time was also found to be widely influenced by the input variables. However, the 

hindcasting results did not show a consistent best performing ANN structure, with overall 

differences in error also being considered negligible. The changes in the shortest path and 

centrality analyses for RM2 and RM8 also failed to show patterned changes as the input 

variables were changed. The Joplin data then showed a correspondence between slower 

recovery times and census block group median year built and a population under 1,000. The 

single female head of household demographic within the Joplin area also correlated to slower 

recovery times specifically for DS3 structures. The lack of agreement, or noticeable pattern 

differences, among the ANNs evaluated and the Joplin data may suggest either missing 

variable input data or perhaps that the building recovery process requires further evaluation to 

improve understanding. The following chapter will further discuss the potential implications of 

the above results.  
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CHAPTER 5  IMPLICATIONS OF RESULTS 

5.1 THE USE OF ARTIFICIAL NEURAL NETWORKS FOR MODELING SOCIO-TECHNICAL 

INTERACTIONS 

The results of this research have demonstrated a preliminary comparability with physics 

based approaches, in terms of accuracy, while potentially introducing another option in 

modeling complex interactions for socio-technical variables. The similar percent errors from 

real-world use in hindcasting highlight this modeling approach’s applicability. However, the 

similarities of the damage state hindcasting results from both physics-based and ANN methods 

highlight the question of whether or not one approach is necessarily preferable to the other.  

The damage state analysis for the 2011 Joplin tornado yielded results of approximately 

40-45% matching for both methods. The 5% additional accuracy from the ANN method could be 

due to the specific community hindcasted or even considered negligible, which implies the 

question of why the results were so similar and how the errors could be further reduced, 

specifically for the ANNs. One of the first considerations to this point would be the amount of 

data. The damage models were built with 117 data points, while the recovery models were built 

with 93 data points. While this was the data available for the state of Missouri, the general 

consideration would typically be that more data points (greater than 100) are better. However, a 

previous study on sample size and variability of data for the use of neural networks found that 

this is generally true for highly variable data (Markham and Rakes 1998). For data that is less 

variable, an ANN may perform just as well as a standard regression analysis. Therefore, for the 

ANNs discussed herein, this may suggest that the data set was not variable enough to require 

the use of ANNs or that more than 117 data points were needed. It is worth noting here that the 

use of data solely from the state of Missouri was decided in the interest of minimizing the 

potential introduction of complexities related to differing construction practices across states. 
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This leads into another query as to the possibility of only using data from the 2011 Joplin 

tornado, where 2,000 of the approximately 3,000 data points could be used to train the network 

and the remaining used to validate and test the network without an additional hindcast 

validation. While this would provide more data points to build an ANN, the variability of those 

data points would be low. The hazard itself was an extreme (and rare) event. Additionally, the 

social demographics of Joplin, MO are not very diverse (as will be highlighted in the next 

section). While an ANN trained with more variable data could be used to predict a rarer event 

falling within the bounds of the training data, an ANN of less variance would not be well suited 

for predicting less extreme events or for drawing comprehensive conclusions on socio-technical 

interactions.  

Finally, in any modeling approach the resolution at which the model is to be executed 

will contribute to the resulting errors. Note that for both the damage and recovery ANNs, when 

the damage states were grouped (DS1&2 and DS3&4) and a +/- 6-month buffer was used, the 

errors drastically improved. This may similarly relate to creating predictive models at the building 

level versus a coarser mesh or neighborhood resolution. Not only is there a lack of explicit, 

correct, data collected relating to a hazard at a specific building, but the structures have also 

been generalized to fit the construction characteristics of the predefined 19 archetypes. At the 

building level the number of variables that could contribute to damage state and recovery 

drastically increases as well as the differences among each variable, whereas at the 

neighborhood level, an aggregate generalization may provide more feasible data sets. 

Ultimately, in using ANNs at the building level, given the data variance, the hindcasting results 

would likely improve if each individual building maintained information on its construction, 

retrofits, occupancy, usage, and wind speed that could be used to train, validate, and test an 

ANN. Maintaining a consistent data set, using similar variable values as proposed in Table 3-5 

and Table 3-7, may allow for subsequent verification of this modeling approach in the future.  
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5.2 THE USE OF GRAPH THEORY TO ANALYZE ARTIFICIAL NEURAL NETWORKS 

The use of ANNs, and AI in general, has had a “black box” type of implication when 

applied for modeling use. Inputs are provided to the ANN and in turn the ANN provides outputs 

without much understanding of what happens in between those two steps. This ultimately 

introduces the questions: Are the connections being made the “correct connections” and does 

the use of such modeling impact our understanding of the phenomena being studied? These 

concerns are certainly valid, especially when AI may perform better at a task than its physics 

counter parts. This “better” performance may also raise the question of “what were we missing?” 

Graphical analysis of resulting network patterns provides some insight into these questions.  

The damage models built herein provided some specific insight into the relationship 

between social demographics of a community, structural characteristics of a building subjected 

to a wind hazard, and the potential for debris impacts. The addition of even some social 

parameters, such that were added to DM8 in comparison to DM3, ultimately created a more 

organized network structure. Figure 5-1 further illustrates this more organized structure of the 

combined six (6) final networks for DM3 and DM8 through the compact nature of the network in 

a force-directed graph form. Closer clustered nodes/neurons towards the graph center have a 

higher centrality to the network. The graphical analysis results of DM8 showed a distinct shift 

from structural materials to building usage once social parameters were added, without losing 

the importance of critical variables such as building height. In fact the hazard and social 

demographics appeared more prominent than the standard engineering-related factors.  
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Figure 5-1 3D Force directed graphs of combined network ensembles for (a) DM3 and (b) DM8. 

The focus on social demographics and the organization of the output damage state 

centralities, specifically, also highlight the concept of social vulnerability becoming more vital at 

the extensive damage point, as was also discussed by Burton (2010). The shortest path 

analysis of DM8 highlights a strong connection between owning tenure and DS3 (similar to 

“extensive damage”). The DS4 output neuron was also more connected within the DM8 

structure instead of DS1, within the DM3 structure.  

The addition of housing density, percent area forested, and tenure to DM8 proved to 

produce better network connections. The further implications of this stretch to how these 

parameters affect the resulting outcome. Through sensitivity analyses where each variable was 

incrementally increased while all other variables remained the same for a hypothetical scenario, 

the increase of housing density and area forested behaved as expected and resulted in higher 

damage states. This was essentially confirmation of increased potential for debris impacts 

resulting in increased damage to a structure. The more interesting variable was that of tenure, 

as the increase of renting or owning tenure on their own did not provide any distinguishable 

results. However, the decrease in both of these, therefore the increase in other tenure, such as 
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government subsidized housing, did show an increase in resulting damage state (Figure 5-2). If 

all other variables are the same (wind speed and type of building) but the neighborhood has a 

larger percentage of those classified under “other tenure”, the resulting damage states will be 

higher. In combination with social vulnerability analyses for owning and renting tenure, this 

demonstrates further that the building use and maintenance is critical to the resulting damage 

state from an extreme event. Those who own a building are more likely to keep up with 

maintenance and invest, if able, in additional measures to further increase the structure’s wind 

loading resistance. This leaves individuals renting or residing in other structures in more 

severely damaged buildings.  

 

Figure 5-2 The effect of increasing the amount of structures in a neighborhood classified as 
“other tenure” on resulting damage states and the distribution across tornado alley with satellite 

image examples of highly forested and high housing density areas. 

Following the damage models, the creation of recovery models performed better when 

parameters such as tenure, housing density, and area forested were included. For example, 
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RM7 did not include the area forested or housing density and was listed as one of the poorer 

performing networks. Of the 15 recovery model networks, the two evaluated (RM2 and RM8) did 

include area forested, housing density, and tenure. However, the differences between these two 

from the analysis results show more in common than different. The analysis of the damage 

models resulted in more apparent differences within the ANN building process, the graphical 

analysis, and the hindcast. RM2 and RM8 mostly showed similar resulting network structures, 

with both networks showing organization (Figure 5-3). The shift seen in the damage models 

once social factors were added was not seen in the recovery models once structural 

characteristics (building materials) were added. Additionally, while both the damage and 

recovery models showed negligible differences in hindcasting error, the recovery models also 

switched which model performed slightly better for the exact match and approximated error.  

Both RM2 and RM8 produced acceptable errors when considering a +/- 6 month approximation 

and could both be considered viable model structures.  

 

Figure 5-3 3D Force directed graphs of combined network ensembles for (a) RM2 and (b) RM8. 

The lack of any significant difference between recovery models in the overall analysis 

could also indicate missing variables. Either a specific connection type was not captured in the 
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15 model options, or there were other factors to consider that have not yet been highlighted in 

the literature. The 15 RMs did not include a specific parameter related to time to obtain building 

permits and set up construction jobs. The assumption that preceded creating these models was 

that some social characteristics may inherently overlap with these factors, such as low income 

or occupation, by tying an ability to manage the system and obtain a permit within a reasonable 

time frame to a general delay time characterized by social demographics. However, no 

variables were included on the policy system itself, which could be considered an oversight 

within this research.  

It is also plausible that there are factors that contributed to recovery in past events that 

cannot yet be captured with a numerical data point. For example, both RM2 and RM8 included 

the “1 year residency” variable as an attempt to show ties to a community. There is a concept of 

community mentality that could have a significant effect on how long it would take a community 

to recover. How close together (socially) is the community? Do they offer to help each other? Is 

their outlook following an event more accepting or defeatist? These parameters could arguably 

be more important than any other variables considered herein, but are not easily quantifiable for 

the purposes of modeling with ANNs.  

The potential importance of abstract social concepts, along with the lack of consistent 

differences between RM2 and RM8, highlighted the low significance of structural characteristics 

to the recovery process. These characteristics were vital in modeling damage state, or initial 

impact, but did not appear as critical to modeling recovery time. Within the terms of resilience, 

this further highlights that the importance of engineering variables exists at the initial impact 

stage, while the social characteristics are integrated at all points along the resilience curve.  
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5.3 SOCIO-TECHNICAL ASPECTS OF THE 2011 JOPLIN TORNADO DATA AS IT RELATES TO THE 

ANN ANALYSES 

The hindcasting of the Joplin tornado provided a means of evaluating modeling 

approaches as well as a case study to assess the ANN variable importance findings from the 

builds and graphical analysis. The general assumption in modeling building damage state has 

typically been that the more extreme the wind speed is the more damage it will cause. However, 

by assessing these with the social demographic characteristics identified previously, some 

discrepancies can be highlighted. For example, note that the first block group (A), highlighted in 

green, has a majority of its buildings classified as DS4 in Figure 4-29 even though the most 

intense part (EF5) of the tornado was not present within its boundaries. The only block group 

that did not have an EF4 or EF5 region of the tornado track was Block G, which did have a very 

low number of DS4 buildings, while Block N contained mostly an area of EF2 and mostly DS4 or 

DS0 buildings. Ultimately, in terms of damage state patterns, the resulting data from the 2011 

Joplin event did not directly correlate to a wind speed, which would support the hypothesis of 

introducing building/tree density and social characteristics into modeling building damage 

states, especially since most of the gathered recovery data was for residential structures and 

therefore did not contain a variety of building archetypes. 

It appeared that areas where damage state patterns diverged from wind speed tracks 

consisted primarily of a relatively higher population count. There were additional pockets of 

buildings at higher damage states for lower wind speeds in regions of moderate or high housing 

density. Contradictory to the results of the ANN analysis, Blocks B & C show pockets of low 

damage states despite the higher percentage of other tenure structures. However, relatively 

speaking, the area this tornado struck was not as demographically diverse as other areas of 

Missouri, which made up the ANN data set. From the selected social demographics shown in 

Figure 5-4, single female head of household and those working in service industries are the 

more variable demographics within the Joplin area.  
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Figure 5-4 Census Block Group distribution of (a) single female head of household with children 
(SFHwC), (b) renting tenure, (c) Hispanic population, (d) extractive industry employment, (e) 
African American population, and (f) service industry employment for the state of Missouri. 

While industry employment and single female head of household with children were not 

included in the damage models, they were in the recovery models. Specifically, block groups of 

greater than 5% single female heads of households with children did correlate to slower 

recovery times of DS3 buildings (Table 4-5) following the 2011 Joplin tornado. The ANNs 

showed single female heads of households as a vital variable with strong ties to a 1-year 

recovery time in RM8. Given the slower recovery times within the block groups of higher 

concentration of this demographic, this would suggest that the strong tie to 1-year recovery with 

the ANN refers to a lower number of single female heads of households with children. 
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Therefore, if a block group has a low number of single female heads of households with 

children, then there is a strong correlation to recovering within one year.  

The ANNs also demonstrated a potentially weak connection between the median year 

built and a 1.5-year recovery time (RM8), as well as a potentially strong connection between the 

building damage state and a 1-year recovery time (RM2). Within the Joplin data, older buildings 

tended towards slower recovery times. Within the RM8 model, this may illustrate a dividing line 

between 1- and 2-year recovery times as it relates to year built. In other words, the stronger 

connections within the network to <1.5 years to recover and >1.5 years to recover could 

correlate to post-1970 structures and pre-1970 structures, respectively. Median year built was 

not included as a variable within the RM2 structure, which may explain why the strong 

connection to damage state did not remain for the RM8 structure once structural variables were 

added, including year built.   

While the Joplin data did provide some supporting evidence for the importance of the 

single female head of household variable and the use of the median year built variable for 

modeling recovery, the lacking demographic diversity for other variables in this region limited 

any further analysis. Additionally, 100% of residents in Joplin had wind insurance and this case 

study has historically been regarded as a quickly recovering community from such an extreme 

event, which may provide some additional insight into the error sources in hindcasting this 

event. 

5.4 SUMMARY OF FINDINGS AND LIMITATIONS 

The results and discussions above highlight findings within the realm of modeling 

community resilience that could further assist in developing more accurate models through 

focusing on the factors listed by a categorized importance within the ANNs shown in Table 5-1. 

An important fraction (If) was calculated by multiplying the centrality scores (C and D) with the 
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shortest past scores (P) for the combined network for each variable (v) and summed across 

each damage state (DS) such that 𝐼𝑓(𝑣) = ∑ [𝑃(𝑣)𝐷𝑆 × 𝐷𝐷𝑆𝑖𝑛 × 𝐷(𝑣)𝑜𝑢𝑡 × 𝐶𝐷𝑆𝑖𝑛 × 𝐶(𝑣)𝑜𝑢𝑡 ×𝐷𝑆=4𝐷𝑆=0
𝑅(𝑣)𝐷𝑆]       {𝑅 = 1.5, 𝑠𝑡𝑟𝑜𝑛𝑔 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑅 = 0.5, 𝑤𝑒𝑎𝑘 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑅 = 1, 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟𝑠         

     (5-1) 

where the R-values are considered for strong/weak connections that were identified in 

conjunction with the individual network analysis in Figures 4-9, 4-23, and 4-24. The Importance 

(I) was then calculated by dividing each variable’s importance factor by the maximum 

importance factor (IM) in the network set, such that 𝐼(𝑣) = 𝐼𝑓(𝑣)𝐼𝑀                                                                                                                             (5-2) 

The general findings are outlined as follows: 

❖ ANNs using BR were found to be comparable to physics-based methods in terms 

of hincasting accuracy for damage state and provide an ability capture 

sociological, structural, and debris potential in a combined model.  

❖ The combination of total population, building tenure, housing density, and area 

forested with hazard and structure characteristics produced more cohesive 

patterns than that of solely structural and hazard characteristics. These models 

include the presence of social contributions that are not able to be covered within 

wind codes. 

❖ Building tenure is a critical variable for modeling damage state and increases in 

“other tenure” (such as government subsidized housing) increase the resulting 

damage state. 
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❖ Single female heads of households with children were shown to be a critical 

variable to recovery, with >5% of the population falling within this demographic 

indicating slower recovery times. 

❖ The Median Year Built of structures within a census block group correlates to 

slower recovery times and may be the driving structural characteristic when 

combined with socioeconomic demographics for recovery modeling. 

❖ Top 5 most critical variables for modeling damage states (Table 5-1) Wind 

Speed, % Owner Occupied, tornadic versus straight-line winds (Wind Type), 

Building Occupancy Code, and Total Population in census block group. 

❖ Top 5 most critical concepts for modeling building stock recovery (Table 5-1) 

considering both ANN recovery models and Joplin Data): Wind Speed, Building 

Height/Categorizations (Occupancy, Damage State, and Median Year Built), area 

densities (Population, Surface Roughness, Forested Area, Impervious Surfaces, 

and housing densities), Tenure (rent, own, and other), and SFHwC. 

❖ Graph theory concepts may provide a means to better understand the “black-

box” of AI and could potentially inform physics-based models by highlighting 

relationships between certain variables.  
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Table 5-1 Calculated importance (I) values for the variables used in DM8, RM8, and RM2 
ANNs. 

Damage State Modeling 
(DM8) 

Recovery Modeling  

Importance Variable 
RM8 

Importance 
Variable 

RM2 
Importance 

Correlation 
to Joplin  

1 Wind Speed 1 Wind Speed 1  
0.902 % Owner 

Occupied 
0.863 Height 0.947  

0.835 Wind Type 0.862 Damage State 0.481  
0.828 Occupancy 0.817 Population 0.385 X 
0.770 Population 0.762 No Vehicle 0.374 X 
0.724 % Renter 

Occupied 
0.728 Event Size 0.429  

0.706 Roughness 0.724 Occupancy 0.767  
0.703 Event Size 0.644 Roughness 0.649  
0.693 Median Year 

Built 
0.630 Walls   

0.665 Forested 0.594 Forested area 0.914  
0.620 Height 0.594 Roof Shape   
0.579 Roof type 0.583 Service Ind. 0.297  
0.573 Housing 

density 
0.538 Impervious 

Surfaces 
0.810  

0.500 Walls 0.533 Income:Poverty 0.444  
0.495 Roofing 0.502 Roofing   
  0.502 Median Age 0.467 X 
  0.480 SFHwC 0.867 X 
  0.465 Other Tenure 0.517 X 
  0.456 Extractive Ind. 0.378  
  0.431 Footprint 0.691  
  0.427 Median Year 

Built 
 X 

  0.426 Wind Type 0.399  
  0.365 Over 65 y.o. 0.447  
  0.358 Rent 0.911  
  0.356 Housing Density 0.506 X 
  0.320 Group Quarters 0.404  
  0.308 Per Capita 

Income 
0.452  

  0.292 Disability 0.296  
  0.258 1 yr. Residence 0.449  
  0.253 Own 0.514  
  0.174 Population 

Density 
0.401  

   % Asian 0.663  
   % Native 

American 
0.481  

   % African Amer. 0.459  
   % Hispanic 0.312  
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These findings were determined with consideration of the errors and limitations for such 

modeling and analytical approaches. The determination of a building’s damage state is, by 

definition, a qualitative assessment. This resulted in differences across the actual data tallied 

from post-storm surveys as well as in the data collection for ANN training. The individuals 

collecting post-survey data and ANN training data were different and would therefore observe 

images of buildings slightly differently. This is where the approximation error analysis by 

grouping DS1+DS2 and DS3+DS4 together attempted to consolidate such errors. Similarly, the 

+/- 6 months approximate analysis for recovery would have consolidated such errors for 

recovery modeling. In the case of recovery, the Joplin data set, provided by Kent State 

University, was also post-processed by at least three different researchers, which introduced 

such error to the hindcast data set. The error contributions of modeling using ANNs primarily 

resulted from data availability and sampling error since machine learning methods are only as 

good as the data set available. Data used to build these ANNs included what could be found 

through publically available data sources, which would leave out more detailed accounts on the 

individual building level as well policy codes for emergency management by county. The same 

data may also be skewed as individuals are more likely to document extreme damage and since 

this data was only gathered for a specific U.S. state. Data was only available in shapefile form 

from recent years and collected for the state of Missouri, whereas larger data sets are more 

desirable for machine learning methods. U.S. Census shapefile data had margins of error for 

each demographic that also carried on into the ANNs. The main sources of error for this 

research were therefore considered tied to data sampling quality, consistency, and availability.  

Data availability was also a limitation of ANN modeling as the models must be built for 

reasonable application across various locations and hazards. If data was not available for 

constructing a training data set or if it would not be available if real-world use, it was not used. 

This included many data points found within the NWS Damage Survey Viewer that did not have 

images to properly categorize a structure by its building materials. However, the biggest 
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limitation was brought to attention in the recovery modeling, in that ANNs require quantifiable 

data. If there was a concept that does not yet have a numerical quantification or has not yet 

been considered when evaluating community resilience and recovery, it could not be included 

within the ANNs.  

For the graphical analysis, the errors related to the results found could tie to wide array 

of connection options with an ANN. If 100 people were to solve the same problem and all came 

to the same solution, the neural pathways activated to reach that solution would likely all differ. 

The approaches used that involved averaging multiple ANN pathways and combining multiple 

ANNs into a conglomerate, were performed in an attempt to minimize this error. As a limitation, 

a feed-forward ANN with a singular hidden layer would be considered a relatively simple 

graphed network. More complex ANNs (deep learning networks) or other forms of AI could 

potentially produce differing results. However, it is worth noting that the patterns established 

were found to be consistent with case studies and logical modeling approaches.  

Overall, with these errors considered, the damage model would be an acceptable 

approach in modeling the impact portion of community resilience. However, the modeling of 

recovery, while proving relatively applicable due to its acceptable +/-6 month errors, could use 

more evaluation prior to implementation. This suggestion is based on the lack of discernible 

differences when using graph theory to evaluate the ANNs as well as the lowest error 

inconsistencies for the two hindcasting approaches (exact versus +/-6 months), The limitations, 

in turn call into question how data should be collected and managed in the future. If these 

methods are to be used, the collection and standardization of building level data post event will 

be necessary to produce more accurate ANNs in the future.  
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CHAPTER 6  CONCLUSION AND FUTURE RESEARCH 

6.1 SUMMATION 

The goal of this research was to create and evaluate ANNs for the use of modeling a 

community’s building stock damage and subsequent recovery from extreme wind hazard 

events. Overall, the use of ANNs to model building damage could be recommended, however 

differences in building recovery time modeling do not appear to be well understood enough to 

recommend using ANNs. The graphical analysis of the final ANNs showed how network 

connectivity changes as social and structural, or engineering-related, characteristics were 

combined with hazard intensity. Primarily as social demographics were considered for building 

damage state, the variable importance shifted from structural components to more of how that 

structure is used and maintained. The recovery models showed less obvious differences as the 

variables were altered and were even inconsistent within the hindcasting phase. This lack of 

clear organizational shift suggests that variables may be missing from the ANNs or even 

perhaps that the modeling problem for building recovery is not yet fully understood on a socio-

technical level. However, both the graphical analysis and Joplin case study support the 

importance of single female heads of households with children, building height, and damage 

state. Interestingly, higher percentages of single female heads of households and older 

structures both correlated to slower recovery times in the context of the 2011 Joplin tornado.  

These findings ultimately suggest that who uses a building mostly dictates its damage and 

recovery. 
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6.2 CONTRIBUTION TO COMMUNITY RESILIENCE AND INTERPRETING ARTIFICIAL NEURAL 

NETWORKS 

Modeling community resilience is considered a multidiscipline problem with hazard, 

engineering, social, and economical aspects. However, currently the initial impact portion of 

resilience is predicted using individual engineering, social, and economical models, which are 

first considered independently and then combined. By using ANNs, or other forms of ML, these 

variables may all be included in one model that allows for simultaneous integration across 

disciplines in a more cohesive manner. The data variables used to create an ANN also allow for 

the possibility of expanding beyond the 19+ archetype constraints (and assumptions) of 

physics-based modeling. The variables, as outlined in previous chapters, are customizable to 

each building and various demographics pertaining to the location of that building within any 

community. While the data set used herein was collected for the state of Missouri, it could be 

expanded to include the rest of the U.S. 

However, a typical concern with ANNs is their apparent “black-box” nature. The use of 

graph theory to understand the internal connections of an ANN may provide a means by which 

to interpret and evaluate the applicability of ANNs for various problems. Specifically, the 

analysis conducted herein highlighted relationships between input variables and resulting 

damage states that researchers desire for socio-technical considerations as well as an 

organizational structure to the networks. However, the ANNs modeling recovery did not illustrate 

similar features, leading to doubt in its accuracy and applicability for this specific modeling 

problem.  

The results from a graphical analysis of an ANN may even provide an opportunity in 

future research as to how engineering and social parameters could be connected within 

physics-based modeling. By evaluating variable importance in data-driven models, such as 

ANNs, it may be possible to introduce factors of interest into the fragility building process or 

even fault-tree analysis. For example, it may be possible to weight the importance of certain 
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structural variables based on building usage, or social variables. While recovery modeling 

through ANNs may not be recommended at this time, the findings related to shifting variable 

importance within an ANN also provide a way forward in understanding which of these variables 

contribute to recovery and what data is perhaps missing.  

6.3 FUTURE APPLICATIONS 

The damage model ANNs could likely be applied for real-time events. Modeling damage 

state through the use of ANNs could also provide a way to streamline the modeling process. 

Building fragilities for multiple different building types is intensive work and the 19 fragilities 

provided by Memari (2018) took seven researchers over a year to construct. The ANN models 

herein, however just require the initial data set that can be compiled by an individual in a matter 

of months and is less programming-intensive. The structure of the ANNs also allows for 

flexibility in assigning building types by providing ID codes to the network for specific building 

materials. Since the graphical analysis of these ANNs highlighted patterns and critical variables 

in support of past research, the ANNs could be assumed at least as reliable as the current 

methods. Although, it is worth noting that when hindcasting the 2011 Joplin tornado, the ANN 

errors were determined through fitting the ID codes to the 19 archetypes defined in previous 

research work. The error would likely improve if each structure could be coded more specifically 

than the 19 options.  

The recovery models, however, need further work with potential collaboration from 

multiple county assessor offices and building departments to address missing parameters that 

would relate to building permit and construction times on the building level. This data was not 

readily available and should an entire state cooperate in providing such data, the viability of this 

modeling option could improve. The other aspect of the recovery models that remains difficult to 

address within any modeling approaches currently explored is that there are potentially some 

factors that have yet to be quantified in a usable manner. If a community has strong social 
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connections and a resilient/accepting mentality, the recovery time may improve. However, this is 

an abstract concept that cannot yet accurately be related to an ANN. There may be other forms 

of AI that could potentially capture this concept. 

6.4 FUTURE RESEARCH 

The research discussed herein was intended to provide a step forward in the use of AI 

for modeling community resilience as well as the use of graph theory to assess that AI similar to 

how  MRIs (or (f)MRIs) and EEGs can be used to better understand the human brain. The next 

step would be to verify these finding using different AI forms, including ANNs with an increased 

number of hidden layers, or for the same ANN structure but using different methods to ID 

structural factors taken from images (change the parameters in Appendix A) or different 

definitions of recovery states, which may have contributed to some of the issues within the 

recovery ANNs. A deep learning network would consist of more than one hidden layer and the 

shortest path analysis would be of primary concern for confirmation within this structure. An 

unsupervised network may also evolve as new data becomes available and neuron connections 

could shift, leading to a prospective research question into what made those connections shift. 

Verifying the results through similar or other forms of AI could also provide an assessment of 

the uncertainties related to input contributions to the network by addressing the variance in the 

graphical analysis shortest path and centrality results.  

ANNs built to a different scale may also be evaluated for the same variables used 

herein. For example, instead of an individual building, a single data point in the training set 

could be a census block group where the individual structural features (and damage state) are 

aggregated as a representation of the block group. Hindcasting and graphical analysis at this 

resolution would be of interest in addressing not only model accuracy, but if the same variable 

connection patterns exist once multiple buildings (or even building clusters) are aggregated up 
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to coarser resolutions. The block group level could then be expanded to the census tract and 

county level for further evaluation of these patterns. 

Future advancements in AI could provide more options beyond deep learning and neural 

networks. The analysis conducted herein and future analysis could also aid in altering the 

mathematical principals for training machine so that they may be better suited for the application 

of community resilience. For example, after the transfer function is applied, there may be a 

benefit to applying a shift in the s-curve for certain input neurons to focus the data on social 

factors or specific structural factors, such as building height. The potential work moving forward 

could essentially become a looped process in which the AI provides insight into modeling 

parameters, while physics and case/field study results provide insight into the missing 

components not being capture by the AI. Subsequently, the importance factors discussed above 

could be combined with physics-based methods and other modeling types such that social 

characteristics are applied in conjunction with structural variables.   

Overall, the results of this research suggest that applications in AI be constrained to 

problems where the variables are mostly understood but their interactions are not, or are 

exceedingly complicated to model. If verified, the results of this research could be best used to 

communicate socio-technical variable interaction when determining building damage from wind 

hazards, while highlighting areas of interest for modeling recovery. These modeling variables 

could even be used within decision-making, development of community resilience plans, and 

potentially public policy.   
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 APPENDIX A:  ARTIFICIAL NEURAL NETWORK VARIABLES  

Table A-1 Building code (surface roughness and occupancy) key for ANN inputs. 

Parameter 
Code 

Notation 
Brief Description 

ANN 
Notation 

Surface 
Roughness 
Categories 

B 

Urban and suburban areas, wooded areas, or 
other terrain with numerous closely spaced 
obstructions having the size of single-family 
dwellings or larger. 2 

C 

Open terrain with scattered obstructions having 
heights generally less than 30 ft (9.1 m). This 
category includes flat open country, grasslands, 
and all water surfaces in hurricane prone regions. 3 

D 

Flat, unobstructed areas and water surfaces 
outside hurricane prone regions. This category 
includes smooth mud flats, salt flats, and 
unbroken ice.  4 

IBC Use and Occupancy 
Assembly A-1 Assembly uses, usually with fixed seating, 

intended for the production and viewing of the 
performing arts or motion pictures. (Theaters, 
concert halls, TV studios admitting an audience) 

303.2 

 
A-2 Assembly uses intended for food and/or drink 

consumption. (Restaurants, Bars, Banquet halls, 
casinos) 

303.3 

 
A-3 Assembly uses intended for worship, recreation, 

or amusement, and other assembly not classified 
elsewhere in Group A. (Bowling alleys, community 
halls, gyms, lecture halls, libraries, museums, 
churches, billiards, waiting areas in transportation 
terminals). 

303.4 

 
A-4 Viewing of indoor sporting events (tennis courts, 

swimming pools, arenas) 
303.5 

 
A-5 Viewing of outdoor sporting events (stadiums, 

grandstands, amusement park structures) 
303.6 

Business B The use of building or structure or a portion 
thereof, for office, professional or service-type 
transactions, including storage of records and 
accounts. (Airport traffic control towers, animal 
hospitals, banks, salons, car wash, civic admin, 
clinic outpatient, educational occupancies for 
students above 12th grade, data processing, food 
processing, cafeterias < 2500 sqft, labs, post 
offices, professional services). 
  

304.1 
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Parameter 
Code 
Notation 

Brief Description 
ANN 
Notation 

Education E The use of a building or structure or a portion 
thereof, by six or more persons at any one time for 
educational purposes through the 12th grade. 
Includes occupancy of more than five children 2.5 
years of age or older who receive education or 
personal care for fewer than 24 hours per day 
(day care). 
  

305.1 

Factory F-1 Moderate hazard. (Aircraft appliances, athletic 
equipment, automobiles, bakeries, beverages 
over 16% alcohol, bicycles, boats, business 
machines, cameras and photo equipment, canvas, 
rugs, construction or agriculture machinery, 
disinfectants, dry cleaning, furniture, laundries, 
machinery, fabrics, television filming w no 
spectators, paper mills, film or printing, textiles, 
tobacco, wood) 

306.2 

 
F-2 Low-hazard. Industrial uses that involve the 

fabrication or manufacturing of non-combustible 
materials that during finishing, packing, or 
processing do not involve a significant fire hazard. 
(Beverages with < 16% alcohol, brick and 
masonry, foundries, glass products, gypsum, ice, 
fabrication and assembly of metal products) 

306.3 

High Hazard H The use of a building or structure, or a portion 
thereof, that involves the manufacturing, 
processing, generation or storage of materials that 
constitute a physical or health hazard in quantities 
in excess of those allowed in control areas 
complying maximum allowable quantity limits. 

 

 
H-1 Detonation hazard: Explosives, organic peroxide 

(Class UD), Oxidizer (class 4), Unstable reactive 
(Classes 4 & 3). 

307.3 

 
H-2 Deflagration hazard or hazard from accelerated 

burning: Combustible dust, combustible liquid, 
cryogenic flammable, flammable gas, flammable 
liquid, organic peroxide (Class I), Oxidizer (Class 
3), Pyrophoric, Water reactive (Class 3). 

307.4 

 
H-3 Readily support combustion or pose a physical 

hazard: Combustible fiber, combustible liquid, 
consumer fireworks, cryogenic oxidizing, 
explosives (Division 1.4), flammable liquid, 
flammable liquid combination, flammable solid, 
organic peroxide (Class II & III), oxidizer (Class 2), 
Oxidizing gas, unstable reactive (Class 2), water 
reactive (class 2). 

307.5 

 
H-4 Health hazards: corrosives, toxic materials 

  

307.6 
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Parameter 
Code 
Notation 

Brief Description 
ANN 
Notation 

 
H-5 Semiconductor fabrication facilities and 

comparable research and development areas in 
which hazardous production materials are used 
and the aggregate quantity of material is in 
excess. 

307.7 

Institutional  I-1 Occupancy shall include buildings, structures, or 
portions thereof for more than 16 persons, 
excluding staff, who reside on a 24-hour basis in a 
supervised environment and receive custodial 
care. (Alcohol/drug centers, assisted living, care 
facilities, group homes, halfway houses) 

308.3 

 
I-2 Occupancy shall include buildings and structures 

used for medical care on a 24-hour basis for more 
than five persons who are incapable of self-
preservation. (Foster case, Detox facilities, 
hospitals, nursing homes, psychiatric hospitals). 

308.4 

 
I-3 Occupancy shall include buildings and structures 

that are inhabited by more than five persons who 
are under restraint or security. (Correctional 
centers, detention centers, jails/prisons, 
reformatories).  

308.5 

 
I-4 Day care facilities (more than five persons who 

receive custodial care for fewer than 24 hours per 
day). 

308.6 

Mercantile M The use of building or structure or portion thereof 
for the display and sale of merchandise, and 
involves stock goods, wares or merchandise 
incidental to such purposes and accessible to the 
public. (Department stores, markets, drug stores, 
motor fuel-dispensing facilities, retail stores, sales 
rooms) 

309.1 

Residential R-1 Occupancies containing sleeping units where the 
occupants are primarily transient in nature. 
(Hotels, boarding houses, congregate living 
facilities with more than 10 occupants) 

310.3 

 
R-2 Occupancies containing sleeping units or more 

than two dwelling units where the occupants are 
primarily permanent in nature. (Apartment houses, 
non-transient boarding houses with more than 16 
occupants, convents, dorms, frats and sororities, 
non-transient hotels, live/work units, monasteries, 
vacation timeshare properties) 
 
 
 
 
  

310.4 
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Parameter 
Code 
Notation 

Brief Description 
ANN 
Notation 

 
R-3 Houses. Occupancies where the occupants are 

primarily permanent in nature and not classifies as 
R-1, R-2, R-4, or I. (Buildings that do not contain 
more than two dwelling units, non-transient 
boarding houses with <16 occupants, transient 
boarding houses with <10 occupants, care 
facilities for <5 persons receiving care, lodging 
houses with <5 guest rooms) 

310.5 

 
R-4 Occupancy shall include buildings, structures or 

portions thereof for more than five but not more 
than 16 persons, excluding staff, who reside on a 
24-hour basis in a supervised residential 
environment and receive custodial care. (drug 
centers, congregate care facilities, group homes, 
halfway houses, social rehab facilities) 

310.6 

Storage S-1 Moderate-hazard. Buildings occupied for storage 
uses that are not classified as S-2. (Aerosols, 
aircraft hangar, bags, bamboos, books and paper 
in rolls or packs, boots and shoes, indoor dry boat 
storage, glues, grains, clothing materials, sugar, 
tires, upholstery, wax candles) 

311.2 

 
S-2 Low-hazard. Buildings used for the storage of 

noncombustible materials such as products on 
wood pallets or in paper cartons with or without 
single thickness divisions or in paper wrapping. 
(Asbestos, beverages <16% alcohol, cement in 
bags, chalk and crayons, dairy products, dry cell 
batteries, electrical coils, empty cans, food 
products, glass, ivory, metals, parking garages, 
stoves, talc and soap stones, washers and dryers)  

311.3 

Utility and 
Miscellaneous 

U Buildings and structures of an accessory 
character and miscellaneous structures not 
classified in any specific occupancy. (Agriculture 
buildings, aircraft hangars, accessory to a one- or 
two- family residence, barns, carports, fences 
taller than 6 ft, silos, greenhouses, livestock 
shelters, private garages, retaining walls, sheds, 
stables, tanks, towers) 

312.1 
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Table A-2 Building materials and shapes key for ANN inputs. 

Parameter 
~ E 
(GPa) 

Example Descriptors ANN Notation 

Materials 
(ordered 
by 
modulus 
of 
elasticity) 

Open (N/A) 0 Stadiums 0 

Brick/ Clay 2 Brick veneer/façade, mortar 
connections. Typically older 
buildings. Older culverts. 

1 

Asphalt 3 Roof shingles 2 

PVC & Plastic 3 Water pipes & house siding  3 
BUR 4 Built-Up Roofing 4 

Wood/Timber 11.3 Wood studs, drywall, wood 
paneling, wood shingles. 
Typically wont exceed 4 
stories. 

5 

Unreinforced 
Masonry 
(URM) or Tilt-
ups 

17 Concrete blocks (CMU). 
Typically older buildings. 

6 

Concrete/ 
Masonry 
(reinforced) 

30 Poured concrete walls, 
basements, concrete blocks 

7 

Other Metals 69 Aluminum sheets, corrugated 
siding, metal connection 
brackets/nails. Typically 
storage facilities. Some 
transmission towers.  

8 

Glass 75 Mainly windowed façade. 9 

Steel 200 I-beams, gusset plates, roof 
joists, iron pipes, transmission 
towers. (use "89" after a 
decimal point) 

10 or 89 

Manufactured 
home 

 
Trailers, mobile homes 0.5 

Roof 
type/ 
shape 
(ordered 
by peaks) 

Open 

NA 

 0 

Flat Same story level 1 

 Various stories 1.numberofstories 

Domed Single 2 

 Multiple 2.numberofdomes 

Stepped 
 
 

 
 
 
 
 
 
 
 
 

3 
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Parameter 
~ E 

(GPa) 
Example Descriptors ANN Notation 

Roof 
type/ 
shape 
(ordered 
by peaks) 

Monoslope  

NA 

(theta <10) 4.1 

(theta >10) 4.2 

Sawtooth Multi-Monoslope 5.numberofslopes 

Gable  (theta <7) 6.1 

(theta >7) 6.2 

Hip  7 

Mansard  8 

Gambrel  9 

Intersecting 
(Gable) 

Multiple (theta <10) 10.1numberofgable
s 

Multiple (theta >10) 10.2numberof 
gables 

Intersecting 
(hip) 

Multiple 11.numberofhips 

Footprint 
Area 

Extra-Small 

NA 

Shed, mobile home, equally 
small house 

1 

Small Average size house, small 
office 

2 

Medium Multi-person home, avg. size 
business office, small strip mall 

3 

Large Mall, big box, industrial 
buildings 

4 

Extra-Large Airports, stadiums 5 
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 APPENDIX B: ITERATIVE ANALYSIS RESULTS FOR MODIFYING TRAINING ALGORITHM AND 

MODEL INPUTS 

 

Figure B-1 DM explored algorithms’ (a) percent error with MSE, (b) percent error with SSE, (c) 
training performance of MSE, and (d) percent error of SSE. 
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Figure B-2 DM explored algorithms’ with MSE (a) FNR, (b) FPR, (c) TNR, and (d) TPR. 

 

Figure B-3 DM explored algorithms’ with SSE (a) FNR, (b) FPR, (c) TNR, and (d) TPR. 
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Figure B-4 Various DMs’ percent error for (a) BR, (b) LM, and (c) RP training algorithms. 

 

Figure B-5 Various DM (a) FNR, (b) FPR, (c) TNR, and (d) TPR for BR. 
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Figure B-6 Various DM (a) FNR, (b) FPR, (c) TNR, and (d) TPR for LM. 

 

Figure B-7 Various DM (a) FNR, (b) FPR, (c) TNR, and (d) TPR for RP. 
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Figure B-8 RM explored algorithms’ (a) percent error with MSE, (b) percent error with SSE, (c) 
training performance of MSE, and (d) percent error of SSE. 

 

Figure B-9 RM explored algorithms’ with MSE (a) FNR, (b) FPR, (c) TNR, and (d) TPR. 
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Figure B-10 RM explored algorithms’ with SSE (a) FNR, (b) FPR, (c) TNR, and (d) TPR. 

 

Figure B-11 Various RMs’ percent error for (a) BR and (b) LM training algorithms. 
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Figure B-12 Various RM (a) FNR, (b) FPR, (c) TNR, and (d) TPR for BR. 

 

Figure B-13 Various RM (a) FNR, (b) FPR, (c) TNR, and (d) TPR for LM. 


