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ABSTRACT 

 

 

OPIOID MODULATION OF INTRINSICALLY PHOTOSENSITIVE RETINAL GANGLION 

CELLS 

 

Widespread opioid use and abuse has resulted in an opioid epidemic in the United States 

and worldwide. Among several adverse effects of this drug class, opioids disrupt the sleep/wake 

cycle. While sleep induction and regulation is complex, and opioid receptors are known to be 

located in central sleep regulatory nuclei, it has not been specifically studied if opioids affect 

photoentrainment of circadian rhythm and thus the sleep/wake cycle. Intrinsically photosensitive 

retinal ganglion cells (ipRGCs) are the exclusive conduits for non-image forming visual 

functions, such as the aforementioned photoentrainment of systemic circadian rhythms, including 

the drive to sleep, and the pupillary light reflex (PLR). Systemically applied opioids cross the 

tight blood/retina barrier and thereby might alter the activity of retinal neurons. It has been 

recently shown that ipRGCs express µ-opioid receptors (MORs) and exogenously applied 

opioids inhibit the firing of ipRGCs. The current work aimed to identify the mechanism by 

which opioids inhibit ipRGC firing as well as downstream behavioral consequence of such 

inhibition at the organism level, specifically as manifested by modulation of PLR.  

Through the use of transgenic mice, electrophysiology including multi-electrode array 

recordings and patch clamp in whole and dissociated retinas, and immunohistochemistry, we 

have documented the following: (1) In the rodent retina M1-M3 types of intrinsically 

photosensitive ganglion cells (ipRGCs) express µ-opioid receptors (MORs). (2) Light-evoked 

firing of ipRGCs is attenuated by the MOR-specific agonist DAMGO in a dose-dependent 
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manner. (3) MOR activation reduces ipRGC excitability by modulating IK and reducing the 

amplitude of non-inactivating ICa.  

Additionally, we explored the effect of modulation of ipRGC signaling via MORs on the 

murine PLR using transgenic mice and pupillometry. Our main findings were: (1) In WT mice 

but not in systemic µ-opioid receptor knockout mice (MKO) or mice in which µ-opioid receptors 

were selectively knocked out of ipRGCs alone (McKO), intraocular  application of the MOR 

selective agonist DAMGO strongly inhibited rod/cone driven PLR and slowed melanopsin-

driven PLR. (2) Intraocular application of a MOR selective antagonist CTAP enhanced rod/cone 

driven PLR in the dark-adapted retina and melanopsin driven PLR under photopic conditions in 

WT mice.  

In summary, these results identify both a novel site of action, MORs on ipRGCs, and a 

mechanistic description of a novel neural pathway by which exogenous and potentially 

endogenous opioids might alter light driven behavior, including the PLR, which may serve as a 

biomarker of systemic opioid effect.   
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CHAPTER 1. INTRODUCTION 

 

 

1.1 Overview 

Widespread opioid use and abuse has resulted in an opioid epidemic in the United States 

and worldwide. Over fifty-eight percent of Americans were prescribed opioids in 2017 (Centers 

for Disease Control and Prevention, 2018). In 2016, 11.8 million people misused prescription 

opioids and/or heroin (Substance Abuse and Mental Health Services Administration, 2017). 

Among several adverse effects of this drug class, opioids disrupt the sleep/wake cycle (Angarita 

et al., 2016).   

An organism’s sleep/wake cycle is set in part by its circadian clock. The circadian clock 

is a biological clock, located in the brain’s suprachiasmatic nucleus (SCN), which controls the 

body’s homeostatic functions. These functions, which include sleep drive, are synchronized with 

environmental day-night cycles through a process called photoentrainment. Without external 

environmental cues, an organism’s clock will free run, and the cycle of sleep/wake will run 

longer or shorter than a 24 hour period, depending on the species (Purves et al., 2001). A specific 

class of retinal cells, the intrinsically photosensitive retinal ganglion cells (ipRGCs), project to 

the SCN and are exclusively responsible for photoentrainment of circadian rhythms (Foster et al., 

1991; Güler et al., 2008; Hatori et al., 2008; Tsai et al., 2009). Projections downstream of the 

SCN promote the production of melatonin from the pineal gland, which in turn modulates 

brainstem circuits that determine the sleep/wake state (Moore, 1995; Purves et al., 2001).  

While sleep induction and regulation is complex, and opioid receptors are known to be 

located in central sleep regulatory nuclei (Korf et al., 1974; Pert et al., 1976; Aghajanian et al., 

1977; Bird and Kuhar, 1977; Pivik et al., 1977; Simantov et al., 1977; Aghajanian, 1978; Young 
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et al., 1978; Lydic et al., 1993; Cronin et al., 1995; Nelson et al., 2009), it has not been 

specifically studied if opioids affect photoentrainment of circadian rhythm and thus the 

sleep/wake cycle. However, it has been recently shown that ipRGCs express µ-opioid receptors 

(MORs) and exogenously applied opioids inhibit the firing of ipRGCs (Gallagher, 2013). The 

current work aimed to identify the mechanism by which opioids inhibit ipRGC firing as well as 

the downstream simple behavioral consequences of such inhibition at the organism level, 

specifically as manifested by modulation of the pupillary light response (PLR).  

This section reviews: (1) intrinsically photosensitive retinal ganglion cells; (2) ipRGCs 

and their roles in non-image forming vision; and (3) opioids and the retina.  

1.2 Intrinsically photosensitive retinal ganglion cells 

Light is processed by two functionally distinct systems within the mammalian CNS: (1) 

an image forming visual system and (2) a non-image forming visual system, which detects 

environmental irradiance (Foster, 1998). Intrinsically photosensitive retinal ganglion cells 

(ipRGCs) are a subset of the general retinal ganglion cell (RGC) population, comprising 1-5% of 

the murine RGC population (Sand et al., 2012). These cells are so named because they serve as 

photoreceptors, capable of responding to light using an intrinsic phototransduction cascade 

mediated by the photopigment melanopsin without synaptic input from classical photoreceptors, 

i.e. rods and cones (Takahashi et al., 1984; Lucas et al., 2001; Berson et al., 2002; Hattar et al., 

2002).  

ipRGCs critically mediate non-image forming visual functions. ipRGCs project to the 

olivary pretectal nucleus (OPN) (Hattar et al., 2002, 2006; Baver et al., 2008) and as such are 

responsible for the PLR, with PLR maintained in mice lacking rods and cones (Lucas et al., 

2001). ipRGCs also project to brain regions implicated in circadian photoentrainment, namely 
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the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and ventral lateral geniculate 

nucleus (vLGN) (Harrington, 1997; Hattar et al., 2002; Baver et al., 2008). ipRGCs are 

exclusively responsible for photoentrainment of circadian rhythms, i.e. the synchronization of an 

organism’s internal circadian time with the solar day. Phase adjustment of circadian rhythms 

represents a mechanism by which light can indirectly affect sleep. Loss of classical 

photoreceptors has no negative impact on photoentrainment (Foster et al., 1991; Freedman et al., 

1999), while bilateral enucleation of such rodless / coneless mice eliminates circadian response 

to light (Foster et al., 1991). Ablation of ipRGCs using diphtheria toxin permits maintenance of 

image forming visual functions but not non-image forming visual functions including 

photoentrainment of circadian rhythms and PLR (Altimus et al., 2008; Güler et al., 2008; Hatori 

et al., 2008).  

However, in melanopsin knock out (KO) mice where the ipRGCs’ intrinsic 

phototransduction cascade is absent, the ipRGCs themselves continue to serve as conduits for 

classical photoreceptor mediated photoentrainment of circadian rhythms (Altimus et al., 2008). 

Does this render intrinsic melanopsin signaling in ipRGCs an unnecessary redundancy? No. The 

intrinsic melanopsin mediated phototransduction cascade makes specific contributions to sleep / 

wake induction, sleep modulation, and the PLR. 

In addition to indirect mechanisms of sleep state modulation, light can directly modulate 

sleep state through circadian independent nonvisual mechanisms. Acute pulses of light and dark 

respectively induce sleep and wakefulness in the nocturnal mouse; this is referred to as negative 

vs. positive masking. In mice lacking ipRGCs, negative and positive masking were absent. In 

melanopsin KO mice, negative masking was present but less than in wild type (WT) mice and 

positive masking was entirely absent. In mice lacking functional rods/cones, negative and 
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positive masking were present but less than in WT mice. This indicates that both classical and 

melanopsin-mediated photoreception is required for light levels to have their full modulatory 

effect on the sleep/wake state, and that this effect is mediated via the conduit of ipRGCs. Further, 

that positive masking requires the ipRGC as conduit as well melanopsin-mediated 

phototransduction suggests that dark pulse mediated waking requires a reduction of ipRGC 

signaling and not an OFF signal from classical photoreceptors (Altimus et al., 2008). Similar 

findings in melanopsin KO mice were reported by Tsai et. al. in 2009; light-induced c-fos 

immunoreactivity, which serves as a marker for neuronal activity (Bullitt, 1990), is increased in 

the ipRGC target areas of the SCN and the VLPO in WT but reduced in melanopsin KOs, 

confirming both sleep-regulatory structures as central targets for melanopsin-mediated effects on 

sleep. In addition to altered acute effects of light on sleep, melanopsin KOs also demonstrated 

decreased total sleep time and a paradoxical decrease in sleep need, supporting an additional role 

for melanopsin in regulation of sleep homeostasis and thereby both sleep quality and initiation 

(Tsai et al., 2009).  

Melanopsin is also important for achieving the PLR in response to a full range of lighting 

conditions. Full miosis at high irradiances is lost in melanopsin KO mice (Lucas et al., 2003). 

Furthermore, very few ipRGCs are necessary for this reflex, with only 17% of ipRGCs necessary 

for maximal miosis in response to high irradiances subsequent to partial ablation of ipRGCs with 

diphtheria toxin. Similarly, < 1% of ipRGCs are necessary to evoke some degree of PLR (Güler 

et al., 2008).   

In addition to non-image forming vision, ipRGCs are also known to have distinct roles in 

image forming vision, such as contrast sensitivity (Schmidt et al., 2014a) and light avoidance 
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behavior (Johnson et al., 2010); however, a detailed description of such functions are beyond the 

scope of this dissertation.  

1.2.1 ipRGC subtypes 

There are 6 major ipRGC subtypes, M1-M6, which are morphologically classified by 

their dendritic ramification in specific layers of the inner plexiform layer (IPL), Fig. 1.1. The IPL 

contains the synapses of the second and third order neurons of the visual pathway, i.e. bipolar 

cells (BCs) and retinal ganglion cells (RGCs), and is divided into functionally distinct 

sublaminae, the ON (inner three) and OFF (outer two) sublaminae. These are so named because 

those BCs which depolarize in response to light, the ON BCs, and those which hyperpolarize in 

response to light, the OFF BCs, synapse accordingly with ON and OFF RGCs in the respectively 

named sublaminae of the IPL, the ON BCs with shorts axons and the OFF BCs with long axons. 

ON and OFF RGCs are those ganglion cells which fire when the stimulus is brighter or darker 

than background, respectively (Wässle, 2004; Kolb et al., 2007).   

M1 ipRGCs stratify in the OFF sublamina and M2s in the ON sublamina. The M2s have 

large soma, which at 15 µm on average are slightly larger than those of the M1s, with a mean of 

13 µm. Similarly, the dendritic arborizations of the M1s are slightly smaller and less branched 

Figure 1.1 Dendritic stratification of the six ipRGC subtypes in the inner plexiform layer (IPL). The 
sublaminae of the IPL are delineated by the OFF and ON choline acetyltransferase (ChAT) immunoreactive bands, 

respectively corresponding to the OFF and ON sublaminae in which the ipRGC dendrites stratify. M1 ipRGCs 

stratify distal to / above the OFF ChAT band; M2, M4, and M5s stratify proximal to / below the ON ChAT  band; 

and M6 stratify in both sublaminae. Of note is that the M3 ipRGCs mimic M6 stratification and as such are not 

listed in the above figure. INL: inner nuclear layer. GCL: ganglion cell layer. (adapted from Quattrochi 2019, with 

permission from John Wiley and Sons, License 4574910504365). 
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than those of the M2s, averaging 275 µm and 310 µm respectively (Berson et al., 2002, 2010). 

Functionally, M1 cells demonstrate ~ 10 fold higher light sensitivity and higher maximal light 

responses than M2s, with M1s having a more depolarized Vm, higher input resistance, and lower 

spike frequencies (Schmidt and Kofuji, 2009). Such findings are unsurprising given the increased 

anti-melanopsin antibody staining in M1s vs. M2s, with melanopsin being the photopigment 

responsible for the phototransduction cascade in ipRGCs (Takahashi et al., 1984; Lucas et al., 

2001; Hattar et al., 2002; Baver et al., 2008).   

M3 ipRGCs are bistratified, with dendrites terminating in both the ON and OFF 

sublamina, though there is heterogeneity in this stratification with some M3s confining a greater 

or lesser proportion of their dendrites to one sublamina or the other. Their dendritic field size 

exceeds those of M1 but not those of M2 ipRGCs, and the complexity of branching of the M3 

ipRGC dendrites was similar to that of M2s, with both M2 and M3 ipRGCs manifesting highly 

branches arborizations (Schmidt and Kofuji, 2009, 2011). There is some debate as to whether 

these cells truly constitute a distinct ipRGC subtype, given their sparse distribution and 

consequent lack of retinal tiling (Berson et al., 2010).  

Like M2s, M4 and M5 ipRGCs are monostratified within the ON sublamina of the IPL, 

although M4 dendrites are located distal to those of M2 ipRGCs and proximal to the ON CHAT 

or cholinergic band (i.e one of two bands of choline acetyltransferase (ChAT)-like 

immunonopositivity within the IPL, the other band being localized to the OFF sublamina). M4 

cells have the largest somata of the ipRGC subtypes and manifest wide, radiating dendritic 

arbors; in contrast, M5 somata are smaller and more spherical than those of the M4 ipRGCs and 

the M5 ipRGCs have compact bushy dendritic profiles with a higher number of dendritic 

branchpoints. While poorly melanopsin immunoreactive, they do exhibit intrinsic light responses 



 7 

typical for ipRGCs and thus have functional photopigment / melanopsin based 

phototransduction. However, these light responses are even smaller and less sensitive than those 

of M2 ipRGCs (Ecker et al., 2010; Estevez et al., 2012; Stabio et al., 2018).  

M6 ipRGCs are the most recently identified subtype of ipRGCs. Their spiny dendrites 

are, like M3 ipRGCs, bistratified but are the most densely branched and contribute to the 

smallest dendritic fields of all the subtypes. They are also poorly melanopsin immunoreactive 

with correspondingly weak intrinsic light responses similar in maximal amplitude to those of M4 

and M5 ipRGCs (Quattrochi et al., 2019).  

1.2.2 ipRGC central projections 

In terms of central projections, ipRGCs as a whole were originally known to project to 

the SCN, IGL, OPN, vLGN, and preoptic area as well as to the lateral nucleus, peri-supraoptic 

nucleus, and subparaventricular zone of the hypothalamus, posterior limitans nucleus, medial 

amygdala, margin of the lateral habenula, and periaqueductal gray with sparse projections to the 

ventral lateral geniculate nucleus (dLGN) and superior colliculus (SC) (Hattar et al., 2002, 

2006). M1 cells form the primary population projecting to the SCN, with SCN ipRGC 

innervation consisting of 80% M1 axons and 20% M2 axons. And, while M1 and M2 

populations project roughly equally to the OPN, 45% and 55% respectively, M1 cells 

predominantly project to the OPN shell, largely considered to be the major link between the 

pupillomotor output and the retina, and M2 cells to the core (Baver et al., 2008). The OPN core 

may make a small contribution to the PLR. M1 ipRGCs can be distinguished by differential 

expression of the Brn3b transcription factor into functionally distinct populations, with Brn3b 

negative ipRGCs innervating the SCN, driving photoentrainment, and Brn3b positive ipRGCs 
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innervating the remaining brain targets, including the OPN, which is responsible for mediating 

the PLR (Chen et al., 2011). 

Later work using a cre-lox system that more sensitively labeled an expanded spectrum of 

ipRGCs as compared to early work with Opn4tau-LacZ mice, which predominantly labeled M1 

ipRGCs (Hattar et al., 2002, 2006), revealed additional ipRGC terminal projections. ipRGCs as a 

class are now known to additionally project to the posterior prectectal nucleus (PPN) and 

demonstrate more extensive projections to the SC and dLGN than previously reported. Non M1 

axons project to the dLGN as well as the OPN core and demonstrated convergence with M1 

projections in the SCN, IGL, and vLGN. While ipRGCs are predominantly known for their 

contributions to non-image forming vision, as is consistent with innervation of the SCN, IGL and 

OPN, non-M1 ipRGCs dominate projections to nuclei which mediate spatial/discriminative 

visual functions such as the dLGN and SC nuclei, indicating a role for ipRGCs in pattern 

forming vision, as supported by Gnat1-/-; Cnga3-/- double KO mice which maintain spatial visual 

discrimination but not optokinetic tracking (OKT) despite the lack of rod/cone phototransduction 

(Ecker et al., 2010). The absence of OKT is not unexpected, given the paucity of ipRGC 

innervation of the accessory optic nuclei responsible for reflexive retinal image stabilization 

(Douglas et al., 2005). While all ipRGCs innervate the dLGN to some degree, most M4 ipRGCs 

innervate the dLGN (Estevez et al., 2012). Additional work focused on M5 and M6 subtypes 

revealed central projections concentrated in the OPN, IGL, vLGN, and dLGN, with a greater 

contribution from M6 vs. M5 ipRGCs, indicating a predominant role in pattern vision for these 

subtypes (Estevez et al., 2012; Quattrochi et al., 2019). A summary table of ipRGC central 

projections is given in Fig. 1.2, from (Quattrochi et al., 2019). Of note is that M3 ipRGCs are not 
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depicted as they match the IPL stratification of M6 cells and very little is known of their central 

axonal projections.  

1.2.3 ipRGC signaling  

IpRGCs respond to light via extrinsic (synaptically mediated) and intrinsic (melanopsin-

mediated cascades). Developmentally, ipRGCS are the first functional photosensitive cells. Prior 

to eye opening and classical photoreceptor development, ipRGCs utilize intrinsic 

phototransduction and at the time of eye opening, as the retina matures and coincident with 

ipRGC dendritic architectural maturation and stratification within the IPL, integrate outer retinal 

signals from rods and cones (Schmidt et al., 2008).  

Figure 1.2 Central projections of ipRGCs. The circles indicate confirmed central projections of a given ipRGC 

subtype, with diameter corresponding to the strength of the projection. SCN: suprachiasmatic nucleus, OPNs: shell 

of the olivary pretectal nucleus, PHb: perihabenular nucleus of the thalamus; IGL: intergeniculate nucleus, vLGN: 

ventral division of the lateral geniculate nucleus, dLGNc: core of the dorsal division of the LGN, OPNc: core of the 

olivary pretectal nucleus, PPN: posterior pretectal nucleus, SCso: stratum opticum of the superior colliculus, SCsgs: 

superficial gray layer of the superior colliculus, dLGNs: shell of the dLGN, AOS: accessory optic system (adapted 

from Quattrochi 2019 with permission from John Wiley and Sons, License 4574910504365). 
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Similar to other RGCs, all ipRGCs are the downstream recipients of photic information 

from classical photoreceptors, Fig. 1.3 (Wong et al., 2007; Güler et al., 2008; Hatori et al., 2008). 

Despite M1 dendritic stratification in the OFF sublamina of the IPL, the ON-pathway is 

primarily responsible for excitatory input to both the M1 and M2 ipRGCs (Schmidt and Kofuji, 

2010), though M1 cells do receive some OFF pathway input (Wong et al., 2007). Structurally, 

this may be a consequence of ON BCs that provide atypical synaptic input prior to terminal 

specialization via en pessant ectopic ribbon synapses that contact M1 dendrites within the OFF 

sublamina (Dumitrescu et al., 2009; Hoshi et al., 2009). However, in mice in which the intrinsic 

phototransduction cascade is absent (i.e. melanopsin null or Opn4-/- mice), M1 cells responded to 

light with significantly smaller and shorter duration inward current vs. the typical slow, large, 

sustained inward current typical of M1 cells in WT mice. In contrast, M2 light responses were 

preserved in the KO mice, and, in conditions of synaptic blockade of ON pathway inputs, both 

kinetics and magnitude of M2 light responses were reduced in WT mice while those of M1 

ipRGCs were not reduced. Thus, despite the unusual ON pathway input, the M1 response to 

photic stimuli is more reliant upon the more sensitive intrinsic phototrandsuction cascade than 

extrinsic synaptic input while that of M2s is dominated and modulated by synaptic input from 

the ON pathway (Schmidt and Kofuji, 2010). This is consistent with the high input resistance 

Figure 1.3 ipRGC roles in both image and non-image forming vision. ipRGC integrate light signals from the 

rods and cones and their own intrinsic phototransduction cascades to contribute to both image and non-image 

forming vision (adapted from Hatori 2010 with permission from Elsevier, License 4574910361206). 
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and large, sensitive intrinsic light response of M1s vs. the low input resistance and small, 

relatively insensitive photocurrents of M2s (Schmidt and Kofuji, 2009). Thus, M1 and M2 cells 

may have discreet influences on non-image forming vision, with M1 cells serving as conduits for 

rod and melanopsin-mediated and M2s for cone-mediated signaling (Schmidt and Kofuji, 2010).  

The predominant synaptic input to the M3 ipRGCs is the ON pathway, despite the 

bistratifying nature of this subtype. As M3 OFF arborizations costratify with those of M1s, the 

predominant ON pathway input may be also be mediated by ectopic synapses with ON BCs, akin 

to M1 ipRGC dendrites (Dumitrescu et al., 2009; Hoshi et al., 2009; Schmidt and Kofuji, 2011).  

With regard to intrinsic membrane and spiking properties, M3s are more physiologically similar 

to the M2s in terms of their maximal light evoked intrinsic depolarization, resting Vm, spike 

frequencies, and input resistance. However, their sensitivity to 480 nm light is greater than that 

of M2s but less than that of M1s (Schmidt and Kofuji, 2011). Similar to M3 ipRGCs, M6 

ipRGCs are bistratified and yet their synaptically driven light responses are ON-dominant, 

suggesting another instance of ectopic ON BC input in the OFF sublamina. Their intrinsic 

responses mimic those of M4 and M5 ipRGCs, and they have correspondingly low melanopsin 

levels (Quattrochi et al., 2019). 

M4 ipRGCs have ON center receptive fields and antagonistic surrounds, which is not 

surprising given their dendritic arborization within the ON sublamina of the IPL, and as such are 

suited for contrast encoding and enhancement. They have brisk extrinsic light responses. 

However, their melanopsin levels are modest and given the accordingly decreased probability of 

photon capture, they have weak and insensitive intrinsic photoresponses (Estevez et al., 2012). 

Akin to M4 ipRGCs, M5s have low melanopsin immunoreactivity and weak intrinsic light 

responses. M5 ipRGCs manifest sustained ON responses, again as expected given their arboral 
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stratification within the IPL, but unique amongst other ipRGC subtypes, the synaptically driven 

light responses of M5 ipRGCs have chromatic opponency and as such, with their projections to 

the dLGN, M5s contribute to geniculo-cortical color vision. Full field UV light exposure triggers 

sustained ON responses while that of green light is suppressive. Such chromatic information 

could augment cues provided by ambient light levels alone and thereby influence 

photoentrainment of circadian rhythms, with the IGN projecting from the greater LGN complex 

to the SCN (Harrington, 1997; Stabio et al., 2018).  

The different physiological properties displayed by distinct ipRGC subtypes pairs well 

with the organization of those subtypes within the sublaminae of the IPL, given that M1 ipRGCs 

that stratify in the OFF sublamina are largely responsible for non-image formatting vision and 

non-M1 ipRGCs, which predominantly stratify in the ON sublamina, are largely responsible for 

contributions to image forming vision, consistent with the notion that ipRGC subtypes contribute 

differentially to visual function (Hattar et al., 2002, 2006; Ecker and Hattar, 2010; Ecker et al., 

2010; Estevez et al., 2012; Quattrochi et al., 2019).  

The photopigment melanopsin, with a peak wavelength sensitivity of ~ 479 nm, is 

necessary for the intrinsic light sensitivity of ipRGCs (Takahashi et al., 1984; Lucas et al., 2001; 

Hattar et al., 2002). In Opn4-/- mice in which synaptic input to ipRGCs is pharmacologically 

blocked, ipRGCs fail to demonstrate intrinsic light responses or light-evoked inward currents 

(Schmidt and Kofuji, 2010). On a behavioral scale, Opn4-/-; rd/rd mice (i.e. those that lack both 

melanopsin and classical photoreceptor function), demonstrate complete loss of nonvisual photic 

responses including photoentrainment of the SCN, PLRs, and negative masking (again, bright 

light suppression of locomotor activity) (Panda et al., 2003).   
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Photopigments consist of a non-protein light sensitive moiety (the chromophore) and an 

associated protein-moiety (the opsin) that spectrally tunes the molecule’s absorbance of light. In 

general, phototransduction cascades start with the absorption of a photon of light by the 

chromophore; the resultant photoisomerization of the chromophore releases the opsin from its 

binding pocket. The opsin is a G-protein-coupled receptor (GPCR). The GPCR then activates a 

multimeric G-protein, the alpha subunit (Ga) of which then triggers a subsequent downstream 

signaling cascade that alters the photoreceptor’s membrane potential. Phototransduction in rods 

and cones is mediated via the chromophore retinal and the release of the opsin from its pocket 

allows for interaction with transducin (Gat, a Gi/o family G protein), which activates 

phosphodiesterase (PDE), which hydrolyzes cyclic guanosine monophosphate (cGMP) to 5’-

guanosine monophosphate (5’GMP) that in turn closes a cyclic nucleotide gated channel (CNG), 

Figure 1.4 Comparison of phototransduction in mammalian rods vs. Drosophila rhabdomeres and 

mammalian ipRGCs. Key differences: in rods, a Gi pathway is used and the photoreceptor hyperpolarizes in 

response to light. Key similarities: in rhadomeres and ipRGCs, a Gq signaling pathway is used in conjunction with a 

TRP channel and the photoreceptor depolarizes in response to light. (adapted from Rupp 2014 with permission from 

Springer Nature,  License 4574910426415) 
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resulting in hyperpolarization of the photoreceptor. Melanopsin, a rhodopsin-like GPCR with a 

seven-pass transmembrane domain, resembles invertebrate rhodopsins more closely than 

vertebrate opsins. In contrast to classical photoreceptors, in ipRGCs phototransduction leads to 

depolarization of the cell via a Gaq/Ga11-mediated cascade and opening of a transient receptor 

potential (TRP) channel, Fig. 1.4 (Peirson and Foster, 2006).  

In greater detail, in ipRGCs light activated melanopsin interacts with Gaq/Ga11, activating 

phospholipase C-b (PLC-b), the obligate effector enzyme of that G protein class. Of the four 

known subtypes of PLC-b, this is most likely PLC-b4, as Plcb4-/- mice lack intrinsic light 

responses in M1 ipRGCs (Xue et al., 2011). In PLC mediated second messenger cascades, PLC 

generates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PI(4,5)P2] (PIP2) two 

primary second messengers (1) Ins(1,4,5)P3 (IP3) and (2) diacylglycerol (DAG). IP3 represents 

the cytosolic branch of this cascade, as it binds to IP3 receptors to trigger release of intracellular 

Ca2+. However, this release of Ca2+ from IP3 sensitive stores has proven unnecessary for 

phototransduction given that the intrinsic light responses of ipRGCs persist in the face of indirect 

pharmacologic blockage of Ca2+ release from IP3 dependent stores or direct blockade or 

occupation of IP3 receptors (with heparin or IP3 itself). Additionally, inward currents are not 

detected upon intracellular injection of IP3. However, intracellular [Ca2+] increases are 

apparently involved in phototransduction as application of a rapid and readily diffusible Ca2+ 

chelator (BAPTA), which chelates all available intracellular free Ca2+ derived from any source 

including cell membrane associated channels, abolishes the intrinsic light response after 20 

minutes. That this required a time scale of such magnitude suggests that Ca2+’s role as a second 

messenger is largely modulatory and not requisite for phototransduction. Given that excised 

patches of ipRGCs are still capable of exhibiting photoresponses, the most likely candidate for 
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the critical second messenger would seem to be DAG, which is membrane associated. However, 

application of DAG analogues have failed to induce inward current in isolated ipRGC membrane 

patches. Diffusible cytosolic cascade components and DAG, while apparently not required for 

basic intrinsic light responses in ipRGCs, nonetheless may one day prove to serve in situ 

modulatory roles (Graham et al., 2008).  

Regarding basic phototransduction, there may exist an interaction between PIP2 and the 

light gated channel in ipGRCs that, in darkness, maintains the channel in a closed state. Light 

mediated PIP2 hydrolysis via PLC-b4 could decrease intracellular [PIP2] to the point that the 

channels would open. Indeed, alterations in PIP2 levels have been shown to open channels even 

in the face of static IP3, DAG, or Ca2+ levels (Suh et al., 2006). Pharmacologic blockade of PIP2 

synthesis in ipRGCs does slow termination of photocurrent, increase latency to peak, and reduce 

the changes of a second light response, indicating that phototransduction in ipRGCs is dependent 

upon a phosphoinositide signaling cascade localized to the plasma membrane (Graham et al., 

2008). PIP2 may then via a PKC modulate a TRPC6 or TRPC7 channel. Evidence for TRPC6/7 

involvement lies in the loss of ~99% of photocurrent in M1 ipRGCs in Trpc6-/- Trpc7-/- mice. 

Single KOs of either TRPC failed to abolish the light responses, though kinetics were altered. As 

such, TRPC6/7 heteromers or redundant homomers appears to be the most likely candidates for 

light activated channels in ipRGCs (Xue et al., 2011). Protein kinase C zeta (Prkcz / PKCz) may 

also contribute to the phototransduction cascade as Prkcz-/- mice behaviorally mimic melanopsin 

null mice; PKCz may participate via a signaling complex composed of PLC and PKC as PKCz 

has been localized to the plasma membrane of ipRGCs (Hankins et al., 2007; Peirson et al., 

2007). 
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 The membrane depolarization secondary to the TRP channel activation in turn activates 

TTX sensitive voltage gated sodium channels (NaV); the subsequent Na+ flux and membrane 

depolarization activates verapamil sensitive L-type voltage gated calcium channels (CaV), which 

are responsible for the sustained firing of ipRGCs. The CaV channels are responsible for 90% of 

the somatic Ca2+ increase; however, there is a minor contribution of Ca2+ influx via the TRP 

channel, Fig. 1.5 (Hartwick et al., 2007).  A set of voltage-gated and Ca2+-dependent K+ currents 

(IK and IK(Ca), respectively) are also critical for repolarization of the membrane potential of 

ipRGCs after each spike (Hu et al., 2013). 

Another difference between classical photoreceptors and iPRGCs is the mechanism of 

chromophore regeneration, Fig. 1.6. Following photoisomerization from 11-cis retinal to all-

trans retinal, all-trans retinal is recycled back to 11-cis retinal via esterification by 

Figure 1.5 Intrinsic light-mediated signaling cascade in ipRGCs. Following melanopsin-mediate 

phototransduction, the membrane potential is depolarized (1) which allow for sodium influx through voltage gated 

sodium channels  / VGNC (2) and action potential firing, which are sustained by calcium influx through voltage 

gated calcium channels / VGCC. (adapted from Hartwick 2007 with permission from Journal of Neuroscience).  
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lecithin:retinol acyltransferase (LRAT) and isomerization by RPE65 in the retinal pigmented 

epithelium (RPE), as is the case for the retinoid cycle between the RPE and both rods and cones. 

In cones, Müller cells (MCs) also contribute to the regeneration process (Wang and Kefalov, 

2011). In contrast, while ipRGCs utilize retinal akin to classical photoreceptors, chromophore 

regeneration is an intrinsic property of ipRGCs. Melanopsin is a bistable or bireactive 

photopigment, meaning that it can use all-trans-retinal as a chromophore due to intrinsic 

photoisomerase activity conferred by melanopsin itself in response to absorption of long 

wavelength light. Again, melanopsin functions in a fashion more akin to invertebrate opsins that 

remain tightly bound to their chromophores, consistent with melanopsin’s resistance to light 

bleaching. Pharmacologic blockade of the visual retinoid cycle in rd/rd mice (mice with loss of 

all rod and nearly all cone function) does not impair PLR photosensitivity, and ipRGCs from 

rpe65-/- and lrat-/- retinas maintain ex vivo photosensitivity, consistent with the notion that the 

ipRGC photocycle functions independently. Anatomically this would be of benefit for the 

ipRGCs, given their relatively far distance from the RPE as compared to classical photoreceptors 

(Panda et al., 2005; Tu et al., 2006; Sexton et al., 2012). Despite these findings, however, there 

remains some question regarding RPE65’s and LRAT’s role in regulation of chromophore 

availability for melanopsin and as to whether ipRGCs are definitively able to function entirely 

independently of the RPE and MCs as rpe65-/- mice are unable to phase shift. Circadian 

photosensitivity was restored upon ablation of lingering rod function in this line but not upon 

loss of melanopsin, suggesting that while ipGCs can function without RPE65, interactions exist 

between classical photoreceptors and ipRGCs, e.g. ipRGCs may be able to avail themselves of 

regenerated chromophores if not utilized locally by rods (Doyle et al., 2006). In a similar vein, 

rpe65-/-; rdta mice (in which there is outer retinal degeneration secondary to diphtheria toxin 



 18 

driven by a rod-specific promotor) and lrat-/-; rd/rd mice exhibited paradoxically increased PLR 

photosensitivity compared to rpe65-/- and lrat-/- mice – implying that outer retinal degeneration 

rescued the functional ipRGC phenotype of mice mutant in visual retinoid cycle enzymes alone 

(Tu et al., 2006). This has implications regarding manifestations of differing photoentrainment 

phenotypes depending upon the degree of pathological outer retinal degeneration. Given the 

physical proximity of MCs and ipRGCs, the former may theoretically also contribute to 

chromophore maintenance in ipRGCs.  

ipRGCs are not optimized for high spatial resolution or temporal fidelity. However their 

slow, insensitive signaling is excellent for the continuous transmission of average environmental 

irradiance levels critical to non-image forming visual processes while simultaneously excluding 

photic environmental “noise.”  With melanopsin membrane density 104-fold lower than that of 

rod and cone opsins, making the likelihood of photon capture 106-fold lower than for rods and 

cones, ipRGCs are relatively insensitive to light. As such, intrinsic phototransduction occurs only 

in bright light. (Of note: at lower light levels, rods and cones remain capable of synaptically 

driving the ipRGCs.) While this might seem insufficient for melanopsin mediated signaling, in 

fact a single photon is sufficient for triggering the analog signaling of ipRGCs, making ipRGC 

efficient though insensitive photic sentinels. This is accomplished through several mechanisms. 

ipRGC resting membrane potential is close to that of their action potential threshold and fire 

Figure 1.6 Melanopsin visual cycle. See text for description. The participation of Müller cells is not confirmed. 

(adapted from Rupp 2014 with permission from Springer Nature, License 4574910426415). 
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spontaneously in dark at a low rate; a single 1 mV depolarization from one photon thus 

dramatically increases the rate of action potential firing. ipRGCs also have prolonged integration 

times on the order of seconds so that, should additional photon absorption occur as is the case in 

prolonged ambient light exposure, further depolarization remains possible. ipRGCs can transmit 

the average amount of environmental light continuously, spiking for up to minutes after stimulus 

offset. (Nelson and Takahashi, 1991; Berson et al., 2002; Do et al., 2009; Schmidt and Kofuji, 

2009). The function of ipRGCs as irradiance detectors is reflected in the extensive dendritic 

arborization of the ipRGCs which provides an expansive net for light detection (Sollars et al., 

2003). Further, retinohypothalamic tract (RHT) neurons do not demonstrate precise retinopathic 

mapping to the SCN  (Provencio et al., 1998).   

1.3 ipRGCs and their roles in non-image forming vision  

The downstream output of ipRGCs is critical for non-image forming vision and its 

behavioral outputs, e.g. the PLR and photoentrainment (Hattar et al., 2003; Güler et al., 2008). 

While modulation of ipRGC signaling and its effect on the PLR is the subject of the third chapter 

of this work, photoentrainment will be subsequently discussed in this introduction as it represents 

both a key role for ipRGCs, which is relevant from a holistic perspective, as well as an avenue 

for future translational / clinical research.  

1.3.1 ipRGCs and the pupillary light reflex  

Given that tolerance of the PLR to a light flash develops at a different rate than that of 

pupil diameter (Pickworth et al., 1990), it is generally held that different mechanisms control 

resting pupil size and the constriction phase of the PLR (Nisida and Okada, 1959; Adler et al., 

1981; Pickworth et al., 1989, 1990; Sharpe, 1991). These mechanisms diverge at the level of the 

midbrain. Resting pupil diameter is controlled by tonic firing of the Edinger-Westphal nucleus / 
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EWN (aka the oculomotor nucleus / OMN), which is spontaneous and persistent in the face of 

deafferenation. The PLR, however, is determined by retinal illumination and subsequent light-

evoked EWN excitation and an increase in the firing rate of parasympathetic neurons arising 

from the EWN and innervating the iris via the short ciliary nerve (Nisida and Okada, 1959).  

The afferent arm of the pupillary light reflex (PLR) is mediated by ipRGCS, which again 

are most sensitive to intense, short wavelength (blue) light (Lucas et al., 2001, 2003; Berson et 

al., 2002). The axons of Brn3b+ ipRGC course through the optic nerve to the optic chiasm, 

where nerves from the nasal retina project to the contralateral side and those from the temporal 

retina maintain an ipsilateral orientation along the optic tracts. The first synapse occurs at the 

olivary pretectal nucleus (OPN) of the dorsal midbrain. The percentage of axons which decussate 

to the opposite optic tract is species dependent, with 50% decussation in man. From there, 

pretectal neurons continue ipsilaterally or cross the posterior commissure to EWN. At that 

Figure 1.7 The pupillary light reflex.  See text for description. (adapted from Hall 2018 – open access). 
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juncture, the efferent arm of the PLR begins with pre-ganglionic parasympathetic fibers 

integrating with cranial nerve III or the oculomotor nerve to synapse at the ciliary ganglion. Post-

ganglionic parasympathetic fibers travel via the short ciliary nerves to innervate the muscles of 

the iris sphincter, where acetylcholine is released to mediate pupil constriction, Fig. 1.7 (Young 

and Lund, 1994; Hattar et al., 2002, 2006; Gooley et al., 2003; Baver et al., 2008; Chen et al., 

2011; Hall et al., 2018).  

Both classical photoreceptors, i.e. rods and cones, and the ipRGCs contribute to the PLR. 

Rodless, coneless mice maintain normal PLRs in response to high irradiance stimuli (Lucas et 

al., 2001; Panda et al., 2003). Melanopsin KO mice maintain normal PLRs in response to low 

irradiance stimuli but not high, with melanopsin being requisite for maximal constriction (Lucas 

et al., 2003; Panda et al., 2003), and treatment with opsinamides slowing pupil constriction 

starting 1 second after onset of high irradiance stimuli (Jones et al., 2013). Triple KO mice, i.e. 

mice lacking both classical photoreceptor transduction mechanisms and melanopsin, do not 

manifest a PLR, supporting the complementary nature of both systems (Hattar et al., 2003; Panda 

et al., 2003). However, outer retinal signals contribute to the PLR via the conduit of ipRGCs, as 

genetic ablation of ipRGCs eliminates rod-cone mediated miosis in response to all light 

intensities (Güler et al., 2008). 

The PLR consists of both sustained and transient components that are determined by the 

contribution of specific photoresponses.  In addition to promoting maximal miosis in response to 

high irradiance stimuli as well as late PLR constriction velocity, melanopsin phototransduction is 

responsible for the post illumination pupillary response (PIPR), i.e. sustained miosis after light 

offset (Gamlin et al., 2007; Adhikari et al., 2015) as well as maintenance of miosis under long 

term low-irradiance photopic conditions (McDougal and Gamlin, 2010). This sustained 
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component of the PLR as well as stable daytime pupil diameter is mediated by the central release 

of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP) by ipRGCs into 

the brain (Keenan et al., 2016). The synaptic input generated by classical photoresponses that 

impinge upon the ipRGCs extends the dynamic range of the PLR in both the temporal frequency 

and intensity domains. Blockade of rod-cone signaling increases PLR response latency by ~ 1 

second (Gamlin et al., 2007), and the pupils of patients with outer retinal blindness cannot track 

high-frequency intermittent light (Gooley et al., 2012). In mice without classical photoreceptor 

input to ipRGCs, the PLR is ~ 4 log units less sensitive than WT (Lucas et al., 2001, 2003). It is 

of note that the photoresponses of both rods, cones, and ipRGCs are not linearly additive, as the 

melanopsin photoresponse exclusively drives the PLR given stimuli above the threshold of the 

melanopsin photoresponse (480 nm, 1011.5 photons/cm2/s) (Lucas et al., 2001), effectively 

shunting rod-cone mediated outer retinal signals that feed into the ipRGCs. Below this threshold, 

after a brief period of adaptation, tonic rod signaling synergistically drives the PLR via central 

ipRGC glutamatergic output, maintaining miosis at irradiances below the melanopsin threshold 

and enhancing sensitivity to long-wavelength light (McDougal and Gamlin, 2010; Keenan et al., 

2016). In contrast, cones minimally contribute to maintaining miosis at either high or low 

irradiances (McDougal and Gamlin, 2010), unless they are permitted to dark adapt with short, 

intermittent dark pulses (Gooley et al., 2012). 

1.3.2 ipRGCs and the hypothalamic regulation of sleep and circadian rhythms 

Sleep is integral to physical and mental well-being; inadequate or poor quality sleep can 

have both short and long term consequences for both health and performance (NHLBI, 2018). 

Given the importance of sleep, the architecture and timing of sleep / wake states are closely 

regulated. This is achieved via two processes that work in concert with each other (1) the 
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homeostatic process, or the drive to sleep and (2) the circadian process, or the sleep-independent 

timing of the sleep/wake cycle that, if properly synchronized with environmental cues, provides 

an arousal signal in antiphase to the sleep drive (Borbély, 1982). The processes are integrated by 

the SCN, which (in a diurnal primate) actively facilitates wakefulness during the subjective day 

and opposes the homeostatic drive to sleep in order to regulate daily total sleep/wake time and 

rhythms (Edgar et al., 1993). As previously mentioned, light (via ipRGCs) can impact sleep both 

indirectly (through phase adjustments of sleep independent circadian rhythms) and directly 

(through nonvisual mechanisms that impact the homeostatic drive to sleep), though these 

mechanisms are not entirely independent of each other.  

The SCN is the master biological clock, with lesioning of the SCN resulting in 

elimination of the capacity for photoentrainment and the loss of endogenous circadian rhythms 

of multiple homeostatic functions (Moore and Eichler, 1972; Stephan and Zucker, 1972). Free 

running rhythms, though not the ability to photoentrain, in an SCN-lesioned animal can be 

restored with brain grafts containing fetal SCN (Lehman et al., 1987). The axons of the ipRGCs 

project to the SCN (Berson et al., 2002; Hattar et al., 2002) and are exclusively responsible for 

its photoentrainment and thus that of endogenous circadian rhythms, such as the sleep wake 

cycle. ipRGCs are capable of photoentrainment in the absence of rods and cones, utilizing their 

melanopsin mediated intrinsic phototransduction cascade (Provencio et al., 2000; Hattar et al., 

2003); in the absence of melanopsin, ipRGCs convey upstream rod and cone signals to the SCN 
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as long as the ipRGCs remain in the retinal circuit (Güler et al., 2008). ipRGCs reach the SCN 

via the monosynaptic retinohypothalamic tract (RHT) (Hattar et al., 2002, 2006), Fig. 1.8, and 

there release both the excitatory neurotransmitter glutamate and pituitary adenylate cyclase-

activating polypeptide (PACAP), triggering slow and sustained EPSCs that mimic the light 

responses of ipRGCs (Berson et al., 2002; Meijer and Schwartz, 2003; Hannibal, 2006; Engelund 

et al., 2010). The exact mechanism linking the rhythm of SCN neuronal firing and alteration of 

oscillation of clock gene transcription, and therefore activity of descending circuits, remains to 

be fully elucidated, though glutamate and PACAP are thought to regulate mPer1 gene expression 

in the SCN, which in turn may modulate SCN neuronal excitability and thus firing rate (Pennartz 

et al., 2002; Reppert and Weaver, 2002). The rhythmic firing of the SCN is required for the 

circadian rhythmicity of homeostatic functions, and it is the light signals mediated by the RHT 

that are critical for the daily resetting of the SCN, with a single pulse of short wavelength light 

mediated by ipRGCs capable of phase advancing circadian rhythms in man (Warman et al., 

2003). Other factors, e.g. locomotor activity, sleep-wake cycles, and food / reward systems, are 

capable of circadian clock resetting or, as is the case with serotinergic signaling, modulation of 

Figure 1.8 M1 ipRGC central projections, lateral view. PO: preoptic area, SCN: suprachiasmatic nucleus, pSON: 

peri-supraoptic nucleus, SPZ: subparaventricular zone, AH: anterior hypothalamic nucleus, LH: lateral 

hypothalamus, MA: medial amygdaloid nucleus, LGv: lateral geniculate nucleus - ventral division, IGL: 
intergeniculate leaflet, BST: bed nucleus of the stria terminalis, LGd: lateral geniculate nucleus - dorsal division, 

LHb: lateral habenula, PAG: periaqueductal grey, OPN: olivary prectecal nucleus, SC: superior colliculus. (adapted 

from Hattar 2006 with permission from John Wiley and Sons, License 4574910025338). 
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photic input to the SCN, but photic signals remains the strongest zeitgeber for the SCN 

(reviewed in: Fuller et al., 2006; Sollars and Pickard, 2015).  

The circadian clock of the SCN sets the rhythm of melatonin secretion from the pineal 

gland, with melatonin levels being elevated ~10 fold at night relative to daytime levels. It is 

melatonin’s feedback as an endogenous zeitgeber on the SCN in a homologous loop that 

reciprocally resets the central pacemaker at night to consolidate the sleep-wake cycle (Cassone et 

al., 1986). Melatonin is also capable of antagonizing light induced phase advances in circadian 

rhythms when contemporaneously administered with light pulses (Cagnacci et al., 2017). Further 

a single light pulse at night is capable of depressing melatonin levels to daytime values (Reiter, 

2003), and physiologic doses of melatonin shift human circadian rhythms according to a phase-

response curve (Lewy et al., 1992). Such light pulses are mediated by the ipRGCs, which 

monosynaptically project along the RHT to the SCN which in turn projects via GABAergic 

neurons to the parvocellular autonomic subdivision of the paraventricular nucleus (PVN), 

Figure 1.9 Neural pathway for melatonin production.  See text for description. ON: optic nerve, MFB: medial 

forebrain bundle, IML: intermediolateral cell column, PVN: paraventricular nucleus, SGC: superior cervical 

ganglion, SCN: suprachiasmatic nucleus. (adapted from Moore 1995 with permission from Elsevier, License 

4574910131886). 



 26 

relaying the circadian signals of the SCN through the medial forebrain bundle and brainstem 

reticular formation to the intermediolateral (IML) cell column of the T1-T3 segments of spinal 

cord; the preganglionic cholingergic IML projections extend to superior cervical ganglion and 

finally the melatonin-synthesizing pineal gland via sympathetic noradrenergic postganglionic 

fibers, Fig. 1.9 (Moore, 1995). Indeed, nighttime melatonin suppression tests were one of the 

earlier studies to suggest a novel circadian photoreceptor and opsin photopigment, with 446-477 

nm identified as the most potent l range responsible for melatonin suppression (Brainard et al., 

2001). Further, individuals blind from rod/cone degeneration maintain the ipRGC mediated 

decrease in melatonin production upon bright light exposure (Czeisler et al., 1995). As a 

consequence of central excitatory glutamatergic ipRGC signaling (Engelund et al., 2010), the 

SCN tonically inhibits the pineal gland’s production of melatonin, with daytime GABA release 

from the SCN eliminating the PVN’s excitatory glutamatergic input to downstream sympathetic 

preganglionic neurons (Kalsbeek et al., 2000). And, while the SCN is in general less active at 

night, a subpopulation of glutamatergic SCN neurons stimulates the PVN at night and therefore 

melatonin secretion (Perreau-Lenz et al., 2004).  

There is anatomic and physiologic evidence that melatonin levels are regulated by 

environmental light levels via the ipRGCs and capable of phase shifting circadian rhythms; 

however, does melatonin in fact impact the sleep/wake homeostat and promote sleep? Yes; in 

addition to its chronobiotic effects, melatonin has hypnotic / sleep-promoting effects. Exogenous 

melatonin administration prior to nocturnal sleep advances sleep timing in man without altering 

the duration of sleep stages and additionally facilitated sleep for 3 hours post-administration, 

suggesting that in addition to its phase-shifting effects, melatonin directly facilitates sleep but 

does not induce it akin to classic hypnotics (Rajaratnam et al., 2004). While the circadian effects 
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of melatonin are mediated by melatonin receptors in the SCN (Vaněček et al., 1987), the 

mechanism for sleep-promoting effects are less clear. One possible mechanism may be that 

melatonin increases sleep drive, as measured by latency to sleep onset and sleep consolidation, 

by inducing a drop in body temperature (Cagnacci et al., 1997; Dijk and Cajochen, 1997; 

Kräuchi et al., 1997). It is of note that in lower mammals, even nocturnal ones, melatonin levels 

are highest during the day and lowest at night. Thus, the link between melatonin and sleep in 

such species must still be further explored (Fuller et al., 2006).  

Murine studies detailing ipRGC and melanopsin mediated direct and indirect photic 

effects on sleep have been detailed in Section 1.2. In man, ipRGC dysfunction has been clinically 

shown to contribute to reduced sleep quality. Might the PLR be useful as a metric of sleep 

impairment? In advanced age related macular degeneration (AMD), ipRGC dysfunction as 

quantified by the melanopsin-mediated post-illumination pupil response (PIPR), a test that 

provides a direct measure of the intrinsic melanopsin photoresponse (Adhikari et al., 2015), 

accounted for 13% of the total reduction in sleep efficacy in AMD patients (Maynard et al., 

2017). Given that a single M1 ipRGC send can send bilateral output to the SCN as well as 

collateral outputs to multiple brain regions relevant to non-image forming vision (Fernandez et 

al., 2016), dysfunctional ipRGC projections to both the SCN and OPN may account for the 

correlation between reduced sleep efficacy and PIPR. There is similar reduced PIPR in glaucoma 

patients (Kankipati et al., 2011), a patient population wherein impaired ipRGC function 

contributes to daytime sleepiness as well as lower total sleep time and efficiency (Gracitelli et 

al., 2015, 2016).  

1.4 Opioids and the retina  
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Opioids are a drug class that includes pain relievers such as codeine, morphine, 

hydrocodone (Vicodin ®), and oxycodone as well as synthetic drugs, e.g. fentanyl, and illegal 

drugs of abuse, e.g. heroin (NIH: National Institute on Drug Abuse (NIDA), 2019). Opioids are a 

mainstay of chronic pain therapy, and while chronic pain can intrinsically cause insomnia and 

worsen it (Ohayon, 2005), opioid administration alone in healthy, pain free opioid-naïve adults 

has been shown to disrupt sleep and cause insomnia (Lewis et al., 1970; Shaw et al., 2005; 

Dimsdale et al., 2007). While opioids may have centrally mediated effects on the sleep/wake 

state, no consensus has been reached on which specific CNS sites therapeutic or abused opioids 

act upon to trigger sleep abnormalities nor have targeted pharmacotherapeutics been developed 

to alleviate such side effects (Angarita et al., 2016). As discussed above, ipRGC dysfunction can 

negatively modulate the PLR. In chronic opioid users, the PLR evoked by bright blue light has 

reduced velocity (Grace et al., 2010). Thus, given the notion that light can both directly and 

indirectly impact the sleep/wake state and the PLR, it is of interest to understand if and how 

opioids might modulate photically induced ipRGC signaling.  

1.4.1 Endogenous opioids and their receptors 

In addition to exogenous opioid modification of the sleep wake state and potentially the 

PLR, endogenous opioids might serve a physiologic role in ipRGC signaling. There are four 

prohormone peptides from which the endogenous opioid peptides are derived by the action of 

endo and carboxypeptidases and post-translation modification: (1) proenkephalin (ProEnk) (2) 

prodynorphin (ProDyn) (3) proopiomelanocortin (POMC) and (4) pronociceptin/orphanin FQ 

(Pasternak, 2010). Further, all opioid peptides contain the amino acid sequences Tyr-Gly-Gly-

Phe-Met or Leu, known as the YGGF motif, that enables binding to the opioid receptors 

(Kakidani et al., 1982; Yoshikawa et al., 1984). The classical opioid receptors are µ-, k-, and d-
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opioid receptors; or, MOR, KOR, and DOR respectively. There is also a non-classical opioid 

receptor, or NOP receptor. All the receptors are G-protein coupled and consistent of 7 

transmembrane spanning linked domains with an intracellular C-terminal tail and extracellular 

N-terminus. Overall homology between receptor types is ~ 60%. Various splice variant and 

SNPs exist (McDonald and Lambert, 2016). While there is no absolute receptor ligand pair 

specificity, in general, a Tyr-Gly-Gly-Phe-Met or Leu core is necessary and sufficient for 

binding to MORs and DORs while a Tyr-Gly-Gly-Phe-Met or Leu with an Arg-X extension is 

necessary and sufficient for binding to KORs (Mansour et al., 1995). 

ProEnk carries six copies of Met-enkephalin and subsequent to processing gives rise to 

the pentapeptides Leu-enkephalin and Met-enkephalin (Hughes et al., 1975), as well as 

heptapeptide, octapeptide, metorphamide, and bovine adrenal medulla peptides of 18 residues 

(BAM18) (Pasternak, 2010). The pentapeptides are selective for DORs but the extended peptides 

share affinity for all three classical receptor subtypes (Mansour et al., 1995).  

Dynorphins A and B and a- and b-neoendorphin are derived from ProDyn (Kangawa et 

al., 1979; Minamino et al., 1980, 1981; Goldstein et al., 1981) and preferentially bind KORs but 

also bind MORs and DORs (Mansour et al., 1995; Pasternak, 2010).  

POMC predominantly gives rise to the b-endorphins (Li and Chung, 1976), a-, b-, and g-

melanocyte stimulating hormones (MSH), adrenocorticotropic hormone (ACTH), corticotropin-

like intermediate lobe peptide (CLIP), g-lipoprotein / lipotropic hormones (LPH), g- and a-

endorphin (also known as b-LPH variants), and J-peptide; aside from the endorphins, the 

majority of POMC products are non-opioid peptides (De Wied and Jolles, 1982; Krieger, 1983; 

Pasternak, 2010). It is interesting to note that a-MSH and CLIP have been shown to increase 
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SWS and REM sleep, respectively (Chastrette et al., 1990). b-endorphin serves as the 

endogenous ligand for MORs and DORs, with preferential binding to MORs (Pasternak, 2010).  

Pronociceptin/orphanin FQ gives rise to nocistatin and nociceptin/orphanin FQ (N/OFQ). 

The actions of the heptadecapeptide N/OFQ are mediated through the nociceptin opioid peptide 

receptor (NOP) which is also referred to as ORL-1 in man and LC12 in rat and MOR-3 in 

mouse. Activation of NORs results in decreased locomotor activity and hyperalgesia, suggesting 

that this opioid may have pro-nociceptive properties (Meunier et al., 1995; Reinscheid et al., 

1995; Pasternak, 2010; McDonald and Lambert, 2016). However, an alternative notion is that 

N/OFQ does not in fact intrinsically cause hyperalegisa but has anti-analgesic action via reversal 

of stress-induced analgesia derived from the release of endogenous opioids (McDonald and 

Lambert, 2016). NOR-/- (NOP KO) mice demonstrate reduced analgesic tolerance to chronic 

morphine administration as well as reduced morphine-induced dependence. However, acute 

morphine analgesia is not impacted in the NOP KO vs. WT. As such, the NOP system may play 

a role in the neuroplasticity seen with opioid tolerance and dependence; NOP antagonism may 

represent an avenue for reducing the dose required for opioid mediated analgesia and the 

development of tolerance and dependence (Ueda et al., 2000). Nocistatin, unlike N/OFQ, does 

not bind NOP but does bind brain and spinal cord membranes and attenuates allodynia and 

hyperalgesia and reverses N/OFQ inhibition of morphine-induced analgesia (Okuda–Ashitaka 

and Ito, 2000).   

Two additional endogenous opioids exist; these are endomorphin 1 and 2; their 

precursors are unknown, however, they have been shown to preferentially bind to MORs 

(McDonald and Lambert, 2016).  

1.4.2 Opioids in the retina 
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Enkephalins (Jackson et al., 1980; Altschuler et al., 1982; Isayama and Zagon, 1991; 

Britto and Hamassaki-Britto, 1992; Pan et al., 2008) and b-endorphin  (Jackson et al., 1980; 

Gallagher et al., 2010) have been detected in the avian, amphibian, and mammalian retina. 

Retinal opiate binding sites have been demonstrated in several species, including chick, rabbit, 

goldfish, rat, mouse, cow, toad, and skate (Medzihradsky, 1976; Howells et al., 1980; Djamgoz 

et al., 1981; Borbe et al., 1982; Slaughter et al., 1985; Gallagher et al., 2012; Cleymaet et al., 

2019). Indeed, opioid receptors (most likely MORs given dihydromorphine’s preferential MOR 

binding) were localized to the IPL, GCL, and the optic nerve of rats, non-human primates, and 

humans (Wamsley et al., 1981). DOR (and possibly MOR and KOR) activation has been shown 

to be neuroprotective in times of ischemic and/or hypoxic stress in the rat (Peng et al., 2008; 

Husain et al., 2009, 2012), and morphine has also been shown to mediate its protective effects 

against ischemia-reperfusion injury via opioid receptors in a rabbit model of ischemic 

retinopathy (Riazi-Esfahani et al., 2009). DOR activation is neuroprotective in the rat in the face 

of glaucomatous injury (Abdul et al., 2013). 

Converging lines of evidence suggest that systemically applied opioids could act on 

(MORs) expressed by ipRGCs in the retina. Novel MOR immunolabeling of ipRGCs has been 

demonstrated (Gallagher, 2013). Opioids, including morphine and methadone, cross the tight 

retina/blood barrier (Hosoya et al., 2011) and accumulate in the vitreous humor of the eye 

(Wyman and Bultman, 2004; Fernández et al., 2013) at concentrations high enough to trigger 

cellular effects via activation of MORs (Selley et al., 2001; Lee et al., 2011). Morphine (0.30 

µg/ml) and methadone (0.11 µg/ml) have been detected in the vitreous of opioid-dependent 

individuals (Fernández et al., 2013). Topical application of 1% morphine in the equine eye is 

sufficient to achieve vitreal concentrations on the order of ng/mL (Gordon et al., 2018). Drugs 



 32 

administered via intravitreal injection are known to alter the activity of retinal neurons (Saszik et 

al., 2002), thus intravitreal opioids are expected to activate opioid receptors in the retina. 

Modulatory processes that are capable of inhibiting ipRGC activity have been proposed to inhibit 

ipRGC-mediated, light-driven behavior (Jones et al., 2013). Indeed, preliminary data has shown 

that the synthetic MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) inhibits 

ipRGC spiking in responses to light recorded on multi-electrode arrays (MEA) in a dose 

dependent fashion; this effect is reversed by naloxone, confirming opioid-receptor mediated 

negative modulation of ipRGC light responses (Gallagher, 2013).  

1.4.3 Opioid signaling 

Opioids, via opioid-receptors expressed on ipRGCs, may exert their inhibitory effect on 

ipRGC firing via ion channels that are critical for photosignaling of ipRGCs. Opioid signaling is 

overwhelmingly inhibitory at the cellular level. Activation of opioid receptors has been shown to 

increase neuronal potassium currents (IK), decrease calcium currents (ICa) via closure of voltage 

sensitive calcium channels (VSCC), and inhibit adenylate cyclase (AC), depending on the 

studied cell type (Kieffer, 1995; Minami and Satoh, 1995; Pasternak, 2010; Al-Hasani and 

Bruchas, 2011; McDonald and Lambert, 2016). All subtypes of opioid receptors are coupled to 

inhibitory pertussis toxin-sensitive G-proteins (Gi/o) that are sensitive to pertussis toxin (Hsia et 

al., 1984). Binding of the ligand promotes the exchanges of GDP for GTP and the Ga and Gbg 

dimer dissociates, triggering a downstream signal cascade. Eventually, the Ga subunit’s intrinsic 

GTPase activity converts GTP to GDP, terminating the signal. In general, Ga modulates AC 

activity and IK and Gbg modulates the activity of VSCCs (Kieffer, 1995; Minami and Satoh, 

1995; Pasternak, 2010; Al-Hasani and Bruchas, 2011; McDonald and Lambert, 2016). Given the 

coupling of the GPCR to a similar set of signaling pathways, opioids achieve their specific 
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effects via biased agonism. Also known as ligand-directed signaling, this reflects a specific 

opioid agonist’s ability to direct the receptor to preferentially favor a particular set of signaling 

events (Kanakin, 2009). 

Documented opioid inhibition of VSCC include the following types of calcium channels: 

N- and P/Q-type as well as L-, R- and T-types. In light of N- and P/Q-type VSCC’s location at 

the synaptic terminal, opioid inhibition of their function leads to a reduction of transmitter 

release (Bourinet et al., 1996; Rusin et al., 1997; Zamponi and Snutch, 1998). Opioids also 

stimulate the opening of G-protein-coupled inwardly rectifying potassium channels (GIRK or 

Kir3); the resultant membrane hyperpolarization reduces neuronal excitability and transmitter 

release (Torrecilla et al., 2002, 2008). (Note: GIRK has not been described in ipRGCs.) AC 

inhibition results in a decrease in cyclic adenosine 3’,5’-monophosphate (cAMP). Typically, 

cAMP positively regulates the hyperpolarization-activation cation current, Ih, a membrane K+ 

current, akin to prostaglandins and other inflammatory mediators that shift the voltage 

dependence of Ih to more depolarized potentials. Ih reduces neuronal refractory periods; by 

reducing cAMP levels, neuronal excitability and thus nocicipetive transmission is reduced by 

opioids. cAMP dependent Ca+2 influx is also reduced by opioid inhibition of AC (Yatani et al., 

1987; Ingram and Williams, 1994). After prolonged opioid agonist treatment, however, AC 

activity levels and cAMP increased above baseline when the agonist is withdrawn, a 

phenomenon known as AC superactivation, which is thought to contribute to tolerance (Nestler 

et al., 1988; Avidor-Reiss et al., 1996). While opioid signaling is complex, the above represent 

potential avenues by which opioids may modulate ipRGC firing.  

1.5 Hypothesis and aims of this study  
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Our overall hypothesis is that opioids alter light-evoked activity of ipRGCs and this has 

behavioral consequences detectable at the reflex level i.e. in the pupillary light reflex. The 

specific aims are as follows: (1) Analyze the molecular mechanism by which opioids modulate 

light-evoked signaling of ipRGCs; (2) Determine if acute inhibition of ipRGC signaling via 

MORs reduces pupillary light reflex (PLR) and (3) alters circadian rhythm of wheel running and 

the sleep/wake cycle. The following two chapters will discuss aims 1 and 2. Future directions 

targeting aim 3 and the translational potential / clinical relevance for this work will be discussed 

in the final chapter.  
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CHAPTER 2. µ-OPIOID RECEPTOR ACTIVATION DIRECTLY MODULATES 

INTRINSICALLY PHOTOSENSITIVE RETINAL GANGLION CELLS 

 

This chapter includes the complete published manuscript for this aim, µ-opioid receptor 

activation directly modulates intrinsically photosensitive retinal ganglion cells (Allison M. 

Cleymaet, Shannon K. Gallagher, Ryan E. Tooker, Mikhail Y. Lipin, Jordan M. Renna, Puneet 

Sodhi, Daniel Berg, Andrew T.E. Hartwick, David M. Berson and Jozsef Vigh, Neuroscience, 

2019). My contributions to this publication included generating retinal cultures, performing the 

whole cell electrophysiology experiments, data analysis and drafting of the relevant sections of 

the paper. This paper is reproduced with minimal modification beyond those necessary to meet 

the formatting requirements. As author of this Elsevier article, I retain the right to include it in a 

thesis or dissertation. 

2.1 Summary 

The aim of the present study was to investigate how µ-opioid receptor activation 

modulates intrinsically photosensitive retinal ganglion cell signaling. The main findings of this 

study were: (1) In the rodent retina M1-M3 types of intrinsically photosensitive ganglion cells 

(ipRGCs) express µ-opioid receptors (MORs). (2) Light-evoked firing of ipRGCs is attenuated 

by the MOR-specific agonist DAMGO in a dose-dependent manner. (3) MOR activation reduces 

ipRGC excitability by modulating IK and reducing the amplitude of non-inactivating ICa. These 

findings suggest a potential new role for endogenous opioids in the mammalian retina. 

Abbreviations: 

adenylate cyclase (AC); 4-Aminopyridine (4-AP); basolateral amygdala (BLA); calcium-

dependent potassium currents (IK(Ca)); [S-(R*,R*)]-[3-[[1-(3,4-Dichlorophenyl)ethyl]amino-2-

hydroxypropyl] (cyclohexylmethyl) phosphinic acid (CGP54626); H-D-Phe-Cys-Tyr-D-Trp-
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Orn-Thr-Pen-Thr-NH2 CTAP, H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTOP); [D-

Ala2, MePhe4, Gly-ol5]-enkephalin (DAMGO); D-(-)-2-Amino-5-phosphonopentanoic acid (D-

AP5);, D-(-)-2-Amino-7-phosphonoheptanoic acid (D-AP7); enhanced green fluorescent protein 

(EGFP); ganglion cell layer (GCL); G-protein-activated inwardly rectifying K+ channels 

(GIRK); half-blocking concentration (IC50); half-activation potential (V0.5);  4-(2-

Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES); inner nuclear layer (INL); inner 

plexiform layer (IPL); intrinsically photosensitive retinal ganglion cells (ipRGCs); L-(+)-2-

Amino-4-phosphonobutyric acid (L-AP4); liquid junction potential (LJP); membrane potential 

(Vm); multielectrode array (MEA); µ-opioid receptor (MOR); 2,3-Dioxo-6-nitro-1,2,3,4-

tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX); outer nuclear layer (ONL); outer 

plexiform layer (OPL); series resistance (Rs); (1,2,5,6-Tetrahydropyridin-4-yl) methylphosphinic 

acid (TPMPA); tetrodotoxin (TTX); voltage-gated calcium channel (Cav); voltage-gated calcium 

current (ICa); voltage-gated potassium channel (Kv); voltage-gated potassium current (IK); 

voltage-gated sodium current (INa); command voltage at which the resulting IK was 5% of the 

peak (V0.05). 

2.2 Introduction  

The discovery of melanopsin-containing intrinsically photosensitive retinal ganglion cells 

(ipRGCs) has fundamentally altered our understanding of how light influences mammalian 

physiology and behavior. These ganglion cells were initially identified as a third photoreceptor 

type that respond to environmental light cues and help synchronize circadian rhythms to external 

day/night cycles (Berson et al., 2002; Hattar et al., 2002). Since their discovery, intense research 

has broadened our understanding of morphology and function of ipRGCs. These photosensitive 

cells are now classified into several distinct subtypes (M1-M6 cells) that, as a group, send axons 
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to diverse brain areas that participate in both image-forming and non-image-forming vision 

(Baver et al., 2008; Schmidt and Kofuji, 2009; Ecker et al., 2010; Schmidt et al., 2011; Lee and 

Schmidt, 2018; Quattrochi et al., 2108). In addition, ipRGCs have been implicated in light-

mediated pathological processes such as light-evoked exacerbation of migraine headache 

(photophobia) (Noseda et al., 2010) and altered mood and cognitive function associated with 

irregular light schedules (LeGates et al., 2012). 

Although capable of producing light responses intrinsically (Berson et al., 2002; 

Hartwick et al., 2007), ipRGCs receive rod/cone-mediated light information through synapses 

employing fast excitatory and inhibitory transmitters (Perez-Leon et al. 2006; Wong et al. 2007; 

Schmidt et al. 2008).  IpRGCs are also subject to neuromodulatory influences that tune their 

signaling to physiological needs. For example, dopamine acts through D1 receptors to directly 

modify ipRGC signaling  (van Hook et al., 2012). Adenosine inhibits light-stimulated responses 

in ipRGCs via A1 receptor activation (Sodhi and Hartwick, 2014), and somatostatin has been 

implicated in parallel inhibition of dopaminergic amacrine cells and ipRGCs (Vuong et al., 

2015).  Acetylcholine stimulates ipRGC spiking even in the absence of light through a 

muscarinic receptor-mediated mechanism (Sodhi and Hartwick, 2016).   

We have previously confirmed the expression of the endogenous opioid, β-endorphin, 

and its preferred receptor, the µ-opioid receptor (MOR), in the mouse retina (Gallagher et al., 

2010, 2012). Specifically, we have shown that besides dopaminergic amacrine cells, other GAD-

67-expressing amacrine cells and some Brn3a-positive ganglion cells also express MORs 

(Gallagher et al., 2012). Here we show that the M1-M3 types of ipRGCs express MORs in both 

rats and mice. Further, we show that exogenously applied opioids acting on MORs inhibit light-

evoked ipRGC signaling two ways: by delaying the onset of light-evoked firing and by reducing 
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the duration of spiking. We propose that the delayed onset of light-evoked firing is caused by a 

shift in the activation of voltage-gated potassium currents (IK) to hyperpolarized potentials, 

thereby elevating the current threshold of voltage-gated sodium currents (INa) and spike 

initiation.  We provide evidence that the MOR-mediated reduced duration of light-evoked 

spiking of ipRGCs results from suppression of non-inactivating voltage-gated calcium currents. 

These findings outline a previously unrecognized role for endogenous opioids in the mammalian 

retina.    

2.3 Materials and Methods 

Animals 

Animals were handled in compliance with the Institutional Animal Care and Use 

Committees of Colorado State University, Ohio State University, and Brown University, and all 

procedures met United States Public Health Service Guidelines. Every effort was made to 

minimize the number of animals used and to mitigate any possible discomfort. Experiments were 

performed using both rat and mouse tissue. Rats were young (postnatal day 6-11) or adult (>3 

months) males and females of the Sprague Dawley strain (Harlan Laboratories, Indianapolis, 

IN). For multielectrode array experiments on adult rat retinas, adult (>3 months) males and 

females of the Long-Evans strain were utilized (Charles River, Wilmington, MA).  Mice were of 

the transgenic Tg(Opn4-EGFP)ND100Gsat/Mmucd strain, generated by the GENSAT project.  

These mice carry a bacterial artificial chromosome (BAC) in which the melanopsin (Opn4) 

promoter drives expression of enhanced green fluorescent protein (EGFP); for simplicity, they 

will be referred to here as Opn4::EGFP mice. Animals were kept on a 12 hr light:12 hr dark 

cycle, with lights on at 6:00 AM, and were fed standard chow and water ad libitum.  Adult rats 

were anesthetized with 0.2ml sodium pentobarbital (i.p. injection) or isoflurane (inhalation) and 
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euthanized by decapitation; postnatal day 6-11 (P6-P11) rats, and wildtype mice were 

anesthetized with isoflurane and euthanized via decapitation, Opn4::EGFP mice were euthanized 

with CO2 asphyxiation or anesthetized with isoflurane and euthanized via decapitation.  

Patch-clamp recording solutions 

For investigation of ipRGC excitability in whole cell current-clamp experiments, a K-

gluconate based internal solution was used. It contained (in mM) the following: 110 K-

gluconate, 7 phosphocreatine-di(tris) salt, 10 L-ascorbic acid, 2 EGTA, 3 Mg-ATP, 0.5 Na-GTP, 

20 KCl, 10 HEPES, pH 7.2 (adjusted with KOH) and osmolarity of 300 ± 5 mOsmol. For 

isolation of IK in whole-cell voltage-clamp, 2 mM QX 314 was added to the above K-gluconate 

based internal solution to block INa with appropriate adjustments made to the solution to maintain 

constant osmolarity. For ICa recordings, a Cs-gluconate based internal solution was used that 

contained (in mM) the following: 100 Cs-gluconate, 10 phosphocreatine-di(tris) salt, 10 L-

ascorbic acid, 2 EGTA, 3 Mg-ATP, 0.5 Na-GTP, 10 tetraethylammonium chloride, 0.1 CaCl2, 10 

NaCl, pH 7.2 (adjusted with CsOH) and osmolarity of 300 ± 5 mOsmol, and the extracellular 

solution was supplemented with 5 mM CaCl2 (Hu et al., 2013). The standard extracellular / 

bathing solution was Ames’ medium (US Biological), with osmolarity of 300 ± 10 mOsmol 

constantly gassed with 95% O2 / 5% CO2. [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAMGO), H-

D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-

Thr-NH2 (CTOP), QX 314 and 4-Aminopyridine (4-AP) were obtained from Tocris Bioscience 

(Bristol, UK). Tetrodotoxin (TTX) obtained from Alomone Labs (Jerusalem, Israel). Other salts 

or chemicals were purchased from Sigma (St. Louis, MO).  

Dissociated ipRGC preparation for loose patch recording  
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Eyes were enucleated and hemisected posterior to the limbus; the lens and vitreous 

humor were removed. Retinal neurons from Opn4::EGFP mice were dissociated using enzymatic 

digestion for 30 min at 37°C with 20 U/mL papain (Worthington, Lakewood, NJ), 1mM L-

Cysteine, B-27  (Invitrogen, Grand Island, NY), 0.5 mM GlutaMAX (Gibco, Grand Island, NY), 

and 0.004% DNase in Hibernate-A without calcium (BrainBits, Springfield, IL). The cells were 

centrifuged (3 min at 200g) then washed and gently triturated with Hibernate-A (with calcium) 

containing 10% (vol/vol) heat-inactivated fetal calf serum, 0.004% DNAse and 0.5 mM 

GlutaMAX. Retinal ganglion cells (RGCs) were enriched by incubating with magnetic 

nanoparticles conjugated to antibodies towards the pan-RGC surface marker Thy1.2 and filtering 

the suspension through a 30µm Pre-Separation Filter and magnetic columns (Miltenyi Biotec, 

Auburn, CA). The eluted RGCs were then plated and cultured on coverslips for 18-64 hr as 

previously described (Van Hook et al., 2012) with culturing additives (Chen et al., 2008).  

Dissociated ipRGC preparation for whole cell recording 

 IpRGCs were enzymatically dissociated from Opn4::EGFP mouse retina as previously 

described (Meyer-Franke et al., 1995; Van Hook and Berson, 2010). In brief, eyes were 

enucleated and hemisected posterior to the limbus; the lens and vitreous humor were removed. 

Retinas were detached in dark from the retinal pigmented epithelium and incubated for 15 min at 

37˚C in a papain solution (10 U/ml, Worthington; Lakewood, NJ). After rinsing in a papain free 

solution, manual trituration was performed with a large-bore Pasteur pipette and dissociated cells 

were plated on poly-d-lysine/laminin coated coverslips (Corning™BioCoat™; Bedford, MA) 

followed by overnight incubation in MACS® NeuroMedium without L-Glutamine (Miltenyi 

Biotech; Auburn, CA). The medium was supplemented with MACS® NeuroBrew-21 as per the 

manufacturer’s instructions, antibiotics (100 u/ml penicillin and 100 µg/ml streptomycin), ciliary 
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neurotrophic factor (10 ng/ml; Sigma), brain-derived neurotrophic factor (25 ng/ml; Sigma), and 

forskolin (5 mM; Tocris; Ellisville, MO). Coverslips were transferred to a perfusion chamber 

mounted on an upright microscope (Akioskop 2 FS plus, Zeiss) and superfused at 2-5 ml/min 

with 300 ± 10 mOsmol bicarbonate buffered Ames’ medium (US Biological; Swampscott, MA) 

constantly gassed with 95% O2 / 5% CO2. Coverslips were viewed through a 40X water 

immersion objective, infrared differential contrast, and an infrared CCD camera with 2.5 pre-

magnification (XC-75; Sony, Japan) connected to a Camera Controller C2741–62 (Hamamatsu; 

Japan), which directed output to a 19” monitor (Westinghouse; Santa Fe Springs, CA). 

Dissociation yielded a mixture of retinal neurons from which M1 ipRGCs were identified based 

on their large size (~ 10 µm) and bright green fluorescence.  

Multielectrode array recordings of opioid effects on ipRGC photoresponses   

Retinas of P6-P10 rats were isolated from eye cups in bicarbonate buffered Ames’ 

medium (A1372-25; US Biological, Swampscott, MA) supplemented with 0.1 mM EGTA 

(Sigma) and bubbled with 95% O2 /5% CO2. A flat portion of the central retina not including the 

optic nerve head was placed with the ganglion cell layer down on a multielectrode array 

(60MEA200/30iR-ITO; Multi Channel Systems, Reutlingen, Germany) and was secured with 

nylon mesh and a wire weight. For all recordings, retinas were superfused with Ames’ medium 

constantly gassed with 95% O2 /5% CO2 at 37 °C. Synaptic inputs to ipRGCs were blocked by 

bath application of a cocktail of pharmacological agents in Ames’ medium as previously 

described  (Wong et al., 2007; Perez-Leighton et al., 2011). The cocktail contained 100 µM L-

(+)-2-Amino-4-phosphonobutyric acid (L-AP4), 30 µM D-(-)-2-Amino-5-phosphonopentanoic 

acid (D-AP5) or 100 µM D-(-)-2-Amino-7-phosphonoheptanoic acid (D-AP7), 25 µM 2,3-

Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), 50 µM picrotoxin, 
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5 µM [S-(R*,R*)]-[3-[[1-(3,4-Dichlorophenyl)ethyl]amino]-2-

hydroxypropyl](cyclohexylmethyl) phosphinic acid (CGP54626), 50 µM (1,2,5,6-

Tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA), 10 µM strychnine, 10 µM atropine 

and 100 µM (+)-Tubocurarine chloride. Apart from the experiment shown in Fig 3Ai-Aiv, single 

doses (1 nM-10 µM) of DAMGO were bath applied with the synaptic blockers. Results were 

considered for further processing only if DAMGO-mediated (inhibitory) effects were reversed 

with 1µM-10µM of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP, a MOR-selective 

antagonist). Apart from atropine and strychnine (Sigma), all pharmacological agents were 

obtained from Tocris (Ellisville, MO).  

Full-field light stimuli were generated using a light-emitting diode (470 nm; Digikey, 

Thief River Falls, MN). The intensity of light pulses was set to 7.5 x 1014 photons cm-2 s-1 by a 

function generator (Berkley Nucleonics, CA) and calibrated by an optical power meter (Newport, 

model 1918-C). Retinas were dark adapted for at least one hour prior to initial light stimulation.  

Responses to 20 s flashes presented every 15 min were recorded, amplified, band-pass filtered 

between 500 Hz and 1.5 kHz, and digitized at 25 kHz using MCRack software (Multi Channel 

Systems). Spikes were isolated using a -4.5 standard deviation of noise threshold filter (MCRack 

software, MCS). 

Adult rats were dark adapted for 1 h prior to enucleation, and the retinas were dissected 

under dim red light. Retinas were placed RGC-side down on multielectrode arrays as described 

above for the neonatal retinas. Prior to recordings, array-mounted retinas were stored in 

Hibernate-A medium plus 2% B-27 supplements (Life Technologies), and during recordings, the 

superfusing Ames’ medium was buffered with 10 mM HEPES (pH 7.4) and constantly gassed 

with 100% O2. The light stimulus (20 s duration) was generated by a blue LED source (470 nm, 
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Colibri system, Zeiss, Germany) and delivered through a 40x objective on an upright microscope 

(Axio Examiner, Zeiss) in previous work (Sodhi and Hartwick, 2014). The irradiance of the 20 s 

light stimulus was 3.9 x 1015 photons cm-2 s-1 at 470 nm. After an initial light pulse to confirm 

retina viability, the array-mounted adult rat retinas were superfused with a cocktail of 

glutamatergic antagonists (100 µM L-AP4, 25 µM NBQX, 10 µM MK-801) to block rod/cone-

driven excitatory signaling. 

Cluster analysis of the isolated spike data (obtained from both neonatal and adult rat 

retinas) was performed using Offline Sorter (Plexon Inc., Dallas, TX) in two consecutive steps 

(first using a T-distribution Expectation-Maximization algorithm followed by iterative K-means 

sorting) and then the number of spikes in 1 s bins were separated and counted using 

Neuroexplorer (Plexon Inc. Dallas, TX). Only cells with robust intrinsic light responses were 

used for further analysis; specifically, all analyzed cells produced at least twice as many spikes 

during the first 10 seconds of light stimulation as during the 10 seconds immediately preceding 

the light stimulation (i.e., in darkness). Due to these relatively strict criteria, the cell sample was 

likely biased towards the selection of M1-type ipRGCs. Further information on the spike sorting 

and ipRGC identification criteria can be found in previous work (Sodhi and Hartwick, 2014, 

2016).  

Peristimulus time histograms for each channel (1 ms binwidth) were normalized to their 

maximum spike frequency, then pooled and averaged across channels to yield a light response 

for a given retina. The duration of the light response was defined as the time (in seconds) from 

light onset to the time when binned spike frequency fell below the prestimulus baseline. Using 

Graphpad Prism software, best-fit dose response curves were generated for DAMGO 

concentrations of 1 nM-10 µM. We used the following two alternative output measures: the 
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duration of light response and the average number of spikes during the 20 s light stimulus. Both 

measures were normalized to their control value, assessed under synaptic blocker cocktail 

(presented as mean ± SEM). 

When testing the effect of DAMGO on ipRGC photoresponses, individual retinas were 

exposed to only a single concentration; concentrations across experiments ranged from 1 nM-10 

µM.  Only ipRGCs showing recovery of photoresponses in the MOR antagonist CTOP were 

included in the analysis. We assessed the magnitude of the opioid effect from the duration of the 

light-evoked spike train spiking and the number of spikes fired during the light stimulation, both 

normalized to pre-drug control responses. Normalized data were then averaged across all 

recorded ipRGCs exposed to a given DAMGO dose to generate dose-response curves. 

Whole cell voltage- and current-clamp recording from dissociated, solitary ipRGCs.  

A horizontal puller (model p-97, Sutter; Novato, CA) was used to pull patch pipettes of 

5–15 MΩ from 1.5-mm-diameter, thick-walled borosilicate glass (World Precision Instruments; 

Sarasota, FL). The pipettes were subsequently coated with dental wax (Cavex; Netherlands) to 

minimize stray pipette capacitance. Whole-cell voltage- and current-clamp recordings were made 

from dissociated ipRGC somas using an EPC-10 USB patch-clamp amplifier and Patchmaster 

software (version 2.3; HEKA) at room temperature during daytime. Membrane current and 

voltage data were filtered at 3 kHz. Recordings with leak >50 pA at -70 mV holding potential 

and/or series resistance (Rs) >30 MΩ at any time during the recording were terminated and 

excluded from analysis. Similarly, if the leak or Rs changed more than 44% and 13%, 

respectively during the recording, data was not considered for further analysis (see Results for 

details). The holding current to set the holding potential at -70 mV at break in was determined in 

voltage-clamp mode and maintained via Patchmaster’s “Gentle CC-switch” function in current-
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clamp mode. Membrane potential spikes were evoked from ipRGCs using a current-clamp ramp 

protocol that lasted 2 seconds and extended from -20 to 25 pA relative to the holding current 

injection required to introduce -70 mV membrane potential; the sampling rate was 20 kHz. 

Voltage-gated potassium current (IK) was evoked by a voltage-clamp ramp protocol that lasted 2 

seconds and extended from -100 to 50 mV (sampled at 5 kHz) or with 500 ms voltage-clamp 

steps between -120 mV and 50 mV in 5 mV increments, with a 5 second interval between each 

step (sampled at 50 kHz). Inactivating and non-inactivating portions of the total ICa were 

determined as previously described (Hu et al., 2013). In brief, ipRGCs were held at -80 mV and 

subjected to a voltage-clamp step protocol consisting of 150 ms steps, from - 90 mV to 30 mV in 

10 mV increments, with 2 seconds between steps and a sampling rate of 50 kHz to obtain total 

ICa. To reveal the non-inactivating portion of ICa, cells were then held at - 40 mV to apply steps 

from -40 mV to 30 mV in 10 mV increments, with 2 seconds between steps.  

Loose patch recording of light responses of dissociated, solitary ipRGCs. 

Following identification of an ipRGC by EGFP fluorescence, the cell was dark adapted 

for 10-30 minutes, and drugs were bath-applied 1-2 minutes prior to a 10 s light stimulus. White 

light stimuli (2.7 x 1015 photons cm-2 s-1 at 500 nm) were generated by a 100 W tungsten-halogen 

lamp and blue light stimuli (1014 photons /cm2/s at 470 nm) by a LED (Digikey, Thief River 

Falls, MN). To record light-evoked spiking of single ipRGCs at room temperature pipettes made 

of borosilicate glass were filled with extracellular solution. 

Recording light-evoked responses from ipRGCs in whole-mount preparation. 

Euthanasia of Opn4::EGFP mice and tissue preparation for whole-mount preparation 

were performed under infrared illumination. Both eyes were enucleated and retinas were 

detached from the retinal pigment epithelium and placed in Ames’ medium gassed with 95% 
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O2/5% CO2 at room temperature. A piece of retina was secured with a tissue anchor (harp) to the 

glass bottom of a superfusion chamber with the ganglion cell layer up. The retinas were 

visualized with an upright microscope (Axioskop; Zeiss) with a custom-built infrared LED (940 

nm; Osram) light source through a 40x water-immersion objective coupled to a 2.5x 

magnification Optovar (Zeiss) and camera (AxioCam; Zeiss). The chamber sat in a light-tight 

Faraday cage and except during brief epifluorescence viewing (470±20 nm) to locate EGFP-

positive large, putative M1 type ipRGCs, the retina was maintained in darkness. In the presence 

of synaptic blocking cocktail (see Multielectrode array recordings) retinas were stimulated with 

full-field blue light (1014 photons cm-2 s-1 at 470 nm) stimuli with an LED (Digikey, Thief River 

Falls, MN) positioned 3 cm above the preparation at a 30° angle. The LED voltage was 

controlled by the EPC-10 (HEKA Electronik) through D/A output. Whole cell voltage- and 

current-clamp recordings were made from ipRGCs using an EPC-10 USB patch-clamp amplifier 

and Patchmaster software (version 2.3; HEKA) at room temperature as described for solitary 

ipRGCs above.  

Data analysis 

Data was analyzed off-line using IgorPro software (version 5.03; Wavemetrics), 

SigmaPlot (version 11; Systat Software), and Excel (Microsoft). Current  ramp evoked spike 

threshold was defined as the membrane potential value at which the sharpest phase of the 

voltage-gated Na+ influx-mediated depolarization started, and current threshold was defined as 

the injected current which correlated with the spike threshold (Hu et al., 2013). Current-clamp 

recordings were neither baseline-subtracted nor normalized. For IK analysis, voltage-clamp ramp 

and step evoked I-V curves were leak subtracted and normalized to the peak (Tooker et al., 

2013). Briefly, leak current, estimated from extrapolation of the slope of the line between -100 to 
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-60 mV in voltage-clamp ramp experiments or the first 13 points i.e. from - 120 to -60 mV in 

voltage-clamp step experiments, was subtracted from the raw recording to determine the actual 

IK. The normalized, leak-subtracted ramp and step evoked I-V curves were then fit using 

SigmaPlot with the following third order sigmoidal equation:  

I = a/(1+exp(-(V-V0.5)/b)) 

where V0.5 is the half-activation potential, b is the slope of the voltage dependency, and a 

is the maximal IK (constrained to 1 for normalized traces). I-V kinetic analysis was performed 

using SigmaPlot.  Activation was defined as the voltage at which the resulting IK was 5% of the 

peak (V0.05) and half-activation as the voltage at which the resulting current was 50% of the peak 

(V0.5). For ICa analysis, voltage-clamp step evoked I-V curves were generated from leak 

subtracted data (Hu et al., 2013; Tooker et al., 2013), with the first three points (-90, -80, -70 

mV) used to estimate the leak current for extrapolation. The total ICa (ICa,total) was considered to 

be the ICa elicited by the step protocol applied to the cell held at -80 mV. The non-inactivating 

component of ICa (ICa,non-inact) was considered to be the ICa elicited by the step protocol applied to 

the cell held at -40 mV. The inactivating component of ICa (ICa,inact) was calculated as the 

difference between the total and the non-inactivating component (ICa,total - ICa,non-inact = ICa,inact).  

Liquid junction potential (LJP) was calculated as 13.05 mV for IK and 13.1 mV for ICa 

recordings. All voltage-clamp recordings were a posteriori corrected for LJP. 

Statistics were performed with SigmaPlot (version 11; Systat Software) and Excel 

(Microsoft). Paired and unpaired Student t-tests, Mann-Whitney Rank Sum tests, and one way 

ANOVA were used for comparisons between groups of paired traces. Data are presented as 

mean ± SEM and p < 0.05 considered significant.  

Immunohistochemistry.  
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Immunohistochemical procedures were conducted as previously described for retinal 

sections (Gallagher et al., 2010). In brief, animals were deeply anesthetized with isoflurane and 

decapitated before both eyes were enucleated. A small incision was made anterior to the ora 

serrata, and the whole eye was fixed at room temperature in freshly prepared 4% 

paraformaldehyde in 0.1 M phosphate buffered saline (PBS; pH 7.35) for 15 min. The cornea 

and lens were removed and the eyecups left in the same fixative solution for an additional 5 min.  

Fixed eye cups were cryoprotected in 30% sucrose overnight, embedded in OCT (Ted Pella Inc.) 

and cut into 20 µm thick vertical sections. Sections were mounted on glass slides and stored 

frozen until immunostained. The melanopsin immunolabeling was done according to a 

previously described protocol (Van Hook et al., 2012); primary antibody: c26962, 1:50; Santa 

Cruz Biotechnology, Santa Cruz, CA). Methods for anti-MOR immunostaining (AOR-011, 

1:200; Alomone Labs, Jerusalem, Israel) were also described previously (Gallagher et al., 2012). 

Retinal sections from Opn4::EGFP mice in some cases were also colabeled with an anti-GFP 

antibody (ab13970, 1:500; Abcam, Cambridge, MA). Fluorescent images were taken with a 

Zeiss LSM 800 confocal microscope (Carl Ziess, Oberkochen, Germany). For all acquisitions, 

sequential scans at the different wavelengths were performed. Z-stack images through the full 

thickness of immunolabeled tissues were taken at 40x, with 1 µm increments between images. 

Brightness and contrast of images were adjusted uniformly in Photoshop CS3 (Adobe 10.1). 

Images were compiled and analyzed using Zeiss LSM Image Examiner software (Carl Zeiss, 

Oberkochen, Germany). Subjective assessment of fluorescent signal colocalization was 

performed on single plane optical sections.  

2.4 Results  

ipRGCs express µ-opioid receptors in rat and mouse retinas.  
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We detected immunoreactivity for µ-opioid receptors (MORs) in ipRGCs of both rats and 

mice.  In adult rats (n=3), substantial anti-MOR immunolabeling marked the inner retina (Fig. 

2.1A). The labeling pattern resembled that observed previously in mice (Gallagher et al., 2012), 

but in the rat retina, labeling of the inner plexiform layer (IPL) was more robust, with discernible 

MOR+ processes. The anti-melanopsin antibody strongly labeled ipRGCs of the M1 type, with 

dendrites extending into the outermost layer of the IPL (Fig. 2.1B, white arrow). The M2/M3 

types were also identified as more weakly immunolabeled cells of the ganglion-cell layer, often 

with dendrites extending into the innermost layer of the IPL (Fig. 2.1F, white arrow). 

Melanopsin+ dendrites were invariably MOR immunoreactive (Fig. 2.1, white arrow, 28/28 

dendrites from 3 animals). Melanopsin+ cell bodies were also typically labeled by the MOR 

antibody, although usually more weakly than the dendrites (Fig. 2.1: hollow arrowhead, insets).  

To evaluate MOR expression in mouse ipRGCs, we used retinas from adult Opn4::EGFP 

melanopsin reporter mice (n=3). In other melanopsin reporter mice generated by using BAC 

technology (Schmidt et al., 2008; Do et al., 2009), only ipRGCs of the M1, M2 and M3 types 

express detectable levels of the fluorescent reporter evidenced by the high coincidence of 

transgenic reporter protein and melanopsin immunolabeling (Lee and Schmidt, 2018); similarly, 

in the Opn4::EGFP mice we found that 173 of 182 EGFP-expressing cells were also 

melanopsin+. M1 cells are easily distinguished from the other types by their brighter 

fluorescence and dendritic arborizations in the outer IPL (Fig. 2.2B). The pattern of MOR 

immunolabeling resembled that previously reported in wild type mice (Gallagher et al., 2012), 

with heaviest MOR immunolabeling occurring in a minority of somata in the inner nuclear and 

ganglion-cell layers (INL and GCL), as well as puncta and some dendritic profiles in the IPL. 

Nearly all EGFP+ somas of ipRGCs were strongly MOR immunopositive (173/182 cells from 3 
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animals; Fig. 2.1E-H). The double labeled cells included M1 ipRGCs (including ‘displaced’ 

M1s, with somata in the INL), M2 cells (characterized by weak EGFP fluorescence and 

processes in the inner IPL), as well as M3 cells with bistratified dendrites occupying the same 

layers as M1 and M2 cells (Pickard et al., 2011) (Fig. 2.2H, hollow arrowhead and white arrow, 

respectively). Importantly, ipRGCs dissociated enzymatically from the Opn4::EGFP mouse 

retina showed positive immunolabeling with the anti-MOR antibody, suggesting MOR 

expression (Fig. 2.2I-M).   
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Figure 2.1. In the rat retina M1 ipRGCs are immunopositive for µ-opioid receptors (MORs).  A: Single-

plane confocal image of vertically sectioned adult rat retina showing a MOR+ dendrite (red) within the IPL 

(white arrow). Weaker MOR immunofluorescence is apparent in a ganglion cell body (hollow arrowhead). B: 

Immunolabeling for melanopsin (green) in the same optical section as in A, showing a single melanopsin+ 

ipRGC soma in the GCL (hollow arrowhead) and a well-labeled dendrite in the IPL (white arrow). C: A merged 

image of A and B, showing that the same cell is immunoreactive for MOR and melanopsin. Inset: expanded 
view of MOR+ labeling of melanopsin+ ipRGC soma marked by the box in C (brightness and contrast adjusted). 

D: Projected image compiled from five single-plane Z-stack confocal images of the same field of view as in A-C 

showing that the melanopsin immunopositive dendrite derives from the labeled soma; this appears to be an M1 

cell based on its strong melanopsin staining and dendrites ascending into the outer IPL. Note that punctate 

MOR+ labeling decorates most of this dendrite. E: Single-plane confocal image of vertically sectioned adult rat 

retina showing a MOR+ dendrite (red) deep within the IPL (white arrow). F: melanopsin immunolabeling 

(green) in the same optical section as in E, showing a single melanopsin+ ipRGC soma in the GCL (hollow 

arrowhead) and a well-labeled dendrite deep in the IPL (white arrow). G: A merged image of E and F, showing 

that the melanopsin+ dendrite is immunoreactive for MOR (white arrow); based on its position at the border of 

IPL and GCL it originates from a putative M2 or M3 ipRGC.  ONL: outer nuclear layer; OPL: outer plexiform 

layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer; Scale bars: D and G: 
20µm; C inset: 5µm. 
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Figure 2.2. EGFP-expressing ipRGCs in the Opn4::EGFP mouse retina are immunopositive for µ-opioid 

receptors (MORs). A: Single-plane optical section of the Opn4::EGFP mouse retina showing red MOR 

immunolabeling in a soma of the GCL (hollow arrowhead) and a dendritic process in the IPL (arrow). B: The 

same optical section as in A, but showing a green EGFP+ ipRGC soma in the GCL (hollow arrowhead) and its 

processes in the IPL (white arrow). C: A merged image of A and B, indicating colocalization of MOR 

immunolabeling and EGFP in the GCL (hollow arrowhead). Weak MOR immunoreactivity also marks the 

dendrite (white arrow), as shown more clearly in the inset in C, represented the area marked by the rectangle in 

C, with brightness and contrast adjusted. D: Projected image of the same field of view compiled from four 

single-plane Z-stack confocal images. E: Single-plane confocal image of vertically sectioned adult Opn4::EGFP 

mouse retina showing a MOR+ puncta (red) within the GCL (white arrow, hollow arrowhead). F: melanopsin 

immunolabeling (green) in the same optical section as in E, showing two EGFP+ somas of putative ipRGCs in 
the GCL. G: A merged image of E and F, showing that the EGFP+ somas are immunoreactive for MOR. H: 

Projected image compiled from five single-plane Z-stack confocal images of the same field of view as in E-G 

revealing that EGFP+ putative ipRGCs expressing MOR+ immunolabeling are most likely M2 (hollow 

arrowhead) and M3 (white arrow) types based their dendritic arborization pattern. I-M: DIC image (I) of a 

representative EGFP-expressing (J), putative ipRGC enzymatically dissociated from the Opn4::EGFP mouse 

retina. The same cell shows both anti- MOR (K) and melanopsin immunolabeling (L), evident on the merged 

fluorescent image (M). ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: 

inner plexiform layer; GCL: ganglion cell layer; Scale bars: D: 20µm; H and M: 10µm. 
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Multielectrode array recordings reveal dose-dependent µ-opioid attenuation of light 

responses in ipRGCs.  

To test whether MOR activation affects ipRGC signaling, we recorded light-evoked 

spiking of ipRGCs in early postnatal rat retinas (P6-P11) on a multielectrode array (MEA). A 

drug cocktail blocked all major retinal neurotransmitters (GABA, glycine, acetylcholine and both 

ionotropic and metabotropic glutamate receptors (Wong et al., 2007; Perez-Leighton et al., 2011; 

Sodhi and Hartwick 2016, see Experimental Procedures). Synaptogenesis is incomplete in rat 

retinas at this young age (P6-11) (Sernagor et al., 2001), further minimizing any influence of 

synaptic inputs on ipRGCs in these studies. 

Intrinsic photoresponses of ipRGCs were clearly modulated by bath application of the 

MOR-specific opioid antagonist DAMGO.  Figure 2.3Ai shows the intrinsic light responses of a 

representative ipRGC recorded under synaptic blockade.  In control medium (top), spiking 

remained elevated through the full stimulus duration (20 s) and persisted for many seconds after 

stimulus offset. This is as expected for intrinsic responses derived from melanopsin 

phototransduction (Emanuel and Do, 2015). The MOR-specific agonist DAMGO shortened the 

duration of the light response in a dose-dependent manner (Fig. 2.3Ai, 2.3Aii; doses: 10 nM, 100 

nM, 1 µM and 10 µM). Even the lowest dose (10 nM) significantly reduced the number of light-

evoked spikes (n=43 cells from 3 retinas, ANOVA, p<0.05), and the effect appeared to saturate 

because increasing the concentration from 1 µM to 10 µM did not further reduce the number of 

spikes (ANOVA, p=0.72). Subsequent application of the MOR- selective antagonist CTOP (10 

µM) not only restored the intrinsic light responses but actually increased the number of spikes 

compared to the control (Fig. 2.3Ai, 2.3Aii). This increase, though slight, was significant 
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(ANOVA, p<0.05). Thus, the reduction of ipRGC in response to increasing DAMGO 

concentrations was not due to rundown.  

A second functional effect of DAMGO application was to delay the onset of light-evoked 

spiking in ipRGCs (Fig. 2.3Aiii, 2.3Aiv).  Group data revealed no clear dose dependence of this 

effect (Fig. 2.3Aiv), and dose-response curves for individual cells were highly variable (Fig. 

2.3Aiii).  Nonetheless, for the population of ipRGCs (n=43 cells from 3 retinas) DAMGO 

significantly increased the delay to the first spike (Fig. 2.3Aiv). The MOR antagonist CTOP (10 

µM) reversed the opioid-induced delay to levels statistically indistinguishable from the initial 

control response (ANOVA, p=0.96). 

Importantly, the robust effects on spiking of DAMGO (1µM; Fig. 2.3Ai) were abolished 

by simultaneous application of CTOP (10 µM) (Fig. 2.3B; n=60 from 2 retinas).  Application of 

CTOP alone (1 µM and 10 µM) did not alter the light responses of ipRGCs (Fig. 2.3C; n=52 

from 3 retinas).  

These results collectively suggest a dose-dependent and MOR-specific opioid modulation 

of ipRGC photoresponses. Because these effects may have been distorted by opioid receptor 

desensitization during prolonged agonist exposures (Kelly et al., 2009; Dang and Christie, 2012; 

Williams et al., 2013), we constructed dose-response curves for MOR-mediated inhibition of 

ipRGC photoresponses (see Experimental procedures) (Fig. 2.3Di, Dii). The dose-response 

relationships revealed IC50 values of 23 nM for the duration index (Fig. 2.3Di) and 39 nM for the 

spike-count measure (Fig. 2.3Dii) with saturation occurring at ~1µM in both cases.  At saturating 

DAMGO concentrations, the suppression of the spike-count (~70%) was greater than that for the 

decrease in response duration (~50%).  Regardless, both outcome measures indicated that the 
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Figure 2.3. The µ-opioid-specific agonist DAMGO inhibits intrinsic light responses of ipRGCs in isolated 

retinas. Ai: Multielectrode array (MEA) recording of the light responses a representative ipRGC in response to 

a 20 s stimulation (3.9 x 1015 photons cm-2 s-1 at 470 nm, black bar) a P10 rat retina in the presence of increasing 

concentrations of MOR-selective agonist DAMGO (0.01-10 µM) followed by application of MOR-selective 

antagonist CTOP (10 µM). Light-evoked ipRGC spiking was greatly attenuated by DAMGO in a dose-

dependent manner, and rescued by consecutive application of CTOP. Aii: Cumulative ipRGC light response data 

obtained in increasing concentrations of DAMGO (0.01-10 µM) followed by CTOP as in Ai. Data is shown as 

Average ± SEM, n=43 from 3 retinas.  *: p<0.05; **: p<0.001.  Aiii: Delay of the 1st light-evoked spikes of 
representative ipRGCs (Cell 1-4) recorded by MEA in the presence of increasing concentrations of MOR-

selective agonist DAMGO (0.01-10 µM) followed by application of MOR-selective antagonist CTOP (10 µM). 

Aiv: Cumulative data summarizing 1st spike delays ipRGC light response as in Aiii. DAMGO significantly 

increased the 1st spike delays in all instances, whereas consecutive CTOP treatment resulted in a delay close to 

that observed in control. Average ± SEM, n=43 from 3 retinas.  *: p<0.05; **: p<0.001. B: Simultaneous 
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intrinsic light response of ipRGCs in the isolated juvenile rat retina was highly sensitive to 

selective activation of MORs.  

To determine whether similar MOR-mediated ipRGC modulation was present in more 

developed retinas with fully functional retinal circuit wiring, we assessed the effects of DAMGO 

on MEA-mounted retinas from adult (> 3 month old) rats. A saturating dose (10 µM; see Fig. 

2.3Di, 2.3Dii) of DAMGO was chosen for these experiments. IpRGCs were identified by their 

sustained spiking responses to a bright blue light stimulus in the presence glutamate receptor 

antagonists (Fig. 2.4A).  DAMGO significantly reduced both peak spike rate and response 

duration of the light response relative to control (n=6 from N=5 retinas; Fig. 2.4B; p=0.03, one 

way repeated measures ANOVA, Holm-Sidak post-hoc) (Fig. 2.4C). After 40 min of drug 

application of DAMGO (1 µM) and CTOP (10 µM) did not alter light-evoked ipRGCs firing. Data is shown as 

Average ± SEM, n=60 from 2 retinas C: CTOP (1 and 10 µM) application does not alter light-evoked ipRGCs 

firing. Dots and error bars representing Average ± SEM were omitted for better visibility of the lines connecting 

the average values; n=52 from 3 retinas. Di: Dose-response curve of the duration of the ipRGC light responses in 

DAMGO (1nM-10µM). Data are plotted as a percentage of light response under control conditions (synaptic 

blocker cocktail without DAMGO). Parenthetical numerals indicate the number of retinas studied for each 
DAMGO dose. Every retina was exposed to a single DAMGO concentration. Error bars represent ± SEM. Dii: 

Dose-response curve plotting the number of spikes recorded in ipRGCs during the 20 s light stimulus as a 

function of the applied DAMGO concentration; data normalized as in Di. Parenthetical numerals indicate the 

number of retinas studied for each DAMGO dose. 
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washout, responses exhibited partial recovery (Fig. 2.4B, 2.4C), so that the light-evoked spike 

count was no longer significantly different from that measured for the initial control response 

(p=0.10). Thus, the effect of DAMGO on ipRGC light responses is not restricted to early 

development. This is consistent with our immunohistochemical evidence demonstrating MOR 

localization to ipRGC dendrites in adult rat retinas (Fig. 2.1). 

Loose-patch recordings from dissociated ipRGCs confirm direct modulation by µ-opioid 

receptors. 

Though retinal cells other than ipRGCs do express MORs (Gallagher et al., 2012), the 

DAMGO effects on ipRGCs we observed occurred during blockade of fast neurotransmitters in 

our experiments. This suggests that the observed effects were likely due to direct action on 

MORs expressed by ipRGCs themselves. As a more stringent test of this interpretation, we made 

loose patch recordings from isolated ipRGCs, which have been shown to maintain their light 

sensitivity in primary culture (Hartwick et al., 2007; van Hook et al., 2012). We enzymatically 

dissociated retinas from Opn4::EGFP mice and targeted the largest and brightest EGFP+ cells 

(presumably corresponding to M1 ipRGCs) for loose-patch single cell recordings (Fig. 2.5A). 

Bath application of DAMGO (1µM) diminished light-evoked spiking in isolated ipRGCs (5/5 

cells), as shown for a representative cell in Fig. 2.5B.  In this cell, the light response partially 

recovered upon long washout of DAMGO (“recovery”), but in most cases (3/5) no recovery was 

observed before losing the cell during the wash. It is important to note that recovery of ipRGC 

light responses from intact retinas recorded on the MEA, following DAMGO treatment, was not 

Figure 2.4. DAMGO modulates spiking activity in adult rat ipRGCs. A: Spike rasters from an example 

MEA recording from an ipRGC. Sustained spiking response to bright (3.9 x 1015 photons cm-2 s-1, 10 s) blue 

light persisted in the presence of glutamatergic antagonists, confirming ipRGC identity. Rasters of spiking 

activity recorded before, during and after treatment with 10 µM DAMGO illustrates inhibitory effect of this 

MOR agonist on ipRGC spiking. B: Summary of mean spike frequency (spikes per 1 s bins) and C: total counts 

of spikes fired over 80 s period (20 s light stimulation plus 60 s post-light) by light-stimulated ipRGCs (n=6 
from N=5 retinas) before during and after DAMGO treatment. *p<0.05, one way repeated measures ANOVA, 

Holm-Sidak post-hoc testing. 



 58 

complete after tens of minutes of wash without subsequent application of a MOR antagonist, 

which is consistent with the recovery paradigm used in other neural preparations following 

DAMGO application (Pennock and Hentges, 2011; Qu et al., 2015). Furthermore, it is important 

to point out that phototransduction of ipRGCs at room temperature is weaker than at 37 °C (Do 

et al., 2012) that might explain the more robust DAMGO-mediated inhibition of light responses 

in these experiments compared to the results of MEA experiments. Nonetheless, as for the earlier 

MEA experiments, co-application of the MOR antagonist CTOP (1µM) blocked the effects of 

DAMGO on the light responses of solitary, cultured ipRGCs (n=3) (Fig. 2.5C). 

 

MOR signaling reduces excitability of ipRGCs   

The sequence of depolarizing events along with the ion channels that mediate the 

characteristically sluggish but sustained intrinsic light responses of melanopsin-expressing 

ipRGCs have not been fully identified, but evidence supports the involvement of TRP channels, 

voltage-gated sodium currents (INa), and voltage-gated calcium currents (ICa) (Warren et al., 

2006; Hartwick et al., 2007; Xue et al., 2011). A set of voltage-gated and calcium-dependent 

potassium currents (IK and IK(Ca), respectively) are also critical to repolarizing the membrane 

potential of ipRGCs after each spike (Hu et al., 2013). 

Figure 2.5. The DAMGO modulated intrinsic light responses of dissociated ipRGCs directly, by MORs 

expressed by ipRGCs. A: Direct opioid modulation of intrinsic light responses via MORs expressed by ipRGCs 

was revealed by loose-patch recordings of an isolated EGFP+ ipRGC dissociated from an Opn4::EGFP mouse 

retina. B: Representative recording showing that bath application of DAMGO (1µM) reversibly eliminated the 
light-evoked spikes of an enzymatically dissociated ipRGC. C: Simultaneous application of DAMGO (1 µM) 

and CTOP (10 µM) did not alter light-evoked firing of enzymatically dissociated ipRGCs. 
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To determine how MOR activation reduces light responses of ipRGCs, first we recorded 

melanopsin-driven light responses from ipRGCs in whole mount preparation, bathed in Ames’ 

medium that was supplemented with the synaptic blocking cocktail in the presence of 2 mM 

Co2+ to block ICa; the recording pipette solution contained 2 mM QX 314 to eliminate INa (Fig. 

2.6). QX 314 at this concentration is expected to slightly inhibit ICa (Talbot and Sayer, 1996), 

acting in concert with Co2+ in these experiments. Under these conditions DAMGO (1 µM) 

altered neither the light-induced inward current in voltage-clamp recordings (Fig. 2.6A; Vhold 

= -60 mV) nor the light-evoked membrane depolarization (Fig. 2.6B) of the same ipRGCs (n=3; 

Vm set by current injection at -60 mV).  These results indicate that in ipRGCs MOR activation 

does not affect melanopsin-dependent phototransduction including the photocurrent flowing 

through TRP channels, unlike in sensory neurons where MOR activation reduces TRPV1 

currents (Bao et al., 2015).  

Therefore, we next tested whether MOR activation altered spiking of ipRGCs depolarized 

by current injections in whole mount preparations that were bathed in Ames media supplemented 

with the synaptic blocking cocktail. IpRGCs held at ~-70 mV resting potential in current clamp 

by injecting -70 pA holding current were subjected to a depolarizing current ramp from -70 pA 

to -20 pA over 2 s (see Experimental procedures). A representative recording is shown in Fig. 

Figure 2.6. MOR agonist DAMGO did not alter the melanopsin-driven increase in light-evoked cationic 

conductance/depolarization in ipRGCs. Representative light responses of the same ipRGC were evoked by a 10 s 

light flash (1014 photons cm-2 s-1, 470 nm, black bar) and recorded in voltage-clamp mode at -60 mV holding 

potential (A) or in current-clamp mode with resting potential set at -60 mV (B). 

 



 60 

2.7Ai. In this cell, the depolarizing current ramp evoked the first spike with 1.68±0.04 s delay 

(n=15 trials) in control, but the delay increased to 1.87±0.03 s (n=15 trials) after 3 min in the 

presence of 1 µM DAMGO (p<0.0004; Student t-test). In other words, DAMGO increased the 

current threshold of action potential generation in this ipRGC (Fig. 2.7Aii) from 15.07 ± 0.98 pA 

(relative to the holding current maintaining the membrane potential at -70 mV) in control to 

20.82 ± 1.08 pA (n=15; p< 0.007, Student t-test) but did not alter the membrane potential 

threshold (Fig. 2.7Aiii) for action potential generation (-54.02± 3.59 mV vs. -54.09± 3.62 mV, in 
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control and DAMGO, respectively). Importantly, DAMGO application did not cause a 

significant change in the resting membrane potential measured just before the depolarizing ramp 

(-79.47± 1.14 mV vs. -76.76± 0.87 mV, in control and DAMGO, respectively; p=0.07, Student t-

test). Similar results were obtained from two other intact ipRGCs in whole mount preparation.  

To confirm that DAMGO exerted its effect on the excitability of ipRGCs directly, via 

MORs expressed by ipRGCs, we turned to solitary ipRGCs enzymatically dissociated from the 

Opn4::EGFP mouse retina. In solitary, dissociated ipRGCs, as in intact retina, DAMGO (1 µM) 

consistently increased the delay of the first spike evoked by a depolarizing current ramp (Fig. 

2.7Bi) by increasing the current threshold of action potential generation (Fig. 2.7Bii) from 3.95 ± 

1.05 pA (relative to the holding current injected to maintain the membrane potential at -70 mV) 

in control to 6.02 ± 1.20 pA (n=11, paired Student t-test, p< 0.004) (Fig. 2.7Ci) without affecting 

the membrane potential threshold for spike generation (Fig. 2.7Cii) that was -52.06 ± 0.56 mV in 

control and -52.39 ± 0.66 mV in DAMGO (n =11; p = 0.37, paired Student t-test). Importantly, 

DAMGO did not alter the holding current injected into ipRGCs to maintain their resting Vm at -

70 mV (Fig. 2.7Ciii),  indicating that  in ipRGCs DAMGO did not activate G-protein activated 

Figure 2.7. MOR agonist DAMGO reduced excitability of ipRGCs. Ai: Representative current clamp 

recording from an M1 ipRGCs made in whole mount preparation in the presence of the synaptic blocking 

cocktail. DAMGO (1 µM) increased delay of the 1st spike evoked by a depolarizing current ramp from -70 pA to 

-20 pA over 2 s, starting at 1 s. Aii: Replotting Vm changes shown in Ai against the injected current (relative to 

the holding current of -70 pA) revealed that DAMGO increased the current threshold for the 1st spike. Aiii: 

Extended timescale view of Aii shows that DAMGO did not alter the Vm threshold for spike generation in 
ipRGCs. Bi: Representative current clamp recording from an enzymatically dissociated solitary ipRGCs 

showing that similar to intact cells, DAMGO (1 µM) increased delay of the 1st spike evoked by a depolarizing 

current ramp. Bii: Plotting Vm changes against the injected current (relative to the holding current necessary to 

maintain Vm at -70 mV) from the same recordings as in Bi revealed that DAMGO increased the current 

threshold for the 1st spike. Note the smaller current values here, due to the higher input resistance of dissociated 

ipRGCs compared to the intact ones in situ (Aii). Ci: Summary graph showing that current threshold for spike 

generation is significantly increased by DAMGO (D) compared with control (cont). White circles represent 

control; gray circles represent DAMGO. *p< 0.004 (paired Student t test). n=11. Cii: Summary graph showing 

that membrane potential (Vm) threshold for spike generation was not altered by DAMGO (D) compared with 

control (cont). White circles represent control; gray circles represent DAMGO. p=0.37 (paired Student t test) 

n=11. Ciii: Summary graph showing that holding current necessary to maintain Vm at -70 mV was not altered by 
DAMGO (D) compared with control (cont). White circles represent control; gray circles represent DAMGO. p= 

0.51 (paired Student t test). n=11. 
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inward rectifier K+ currents (GIRK) (Pennock and Hentges, 2011) that are widely distributed 

effectors of  MOR signaling in the CNS (Williams et al., 2001, 2013) .  

In parallel experiments, pretreatment of solitary ipRGCs with the MOR selective 

antagonist CTAP (1 µM) did not alter current threshold for depolarizing current ramp-evoked 

action potentials (2.18 ± 0.6 pA) compared to control (3.39 ± 0.86 pA) or to that seen during the 

consecutive application of CTAP+DAMGO (1 µM each) (2.37 ± 0.66 pA) (n=5-8, p=0.19, one 

way repeated measures ANOVA, data not shown). Similarly, the membrane potential threshold 

of depolarizing ramp-evoked action potential firing did not change in consecutive treatments 

with CTAP and CTAP+DAMGO (control: -50.28 ± 1.12 mV; CTAP: -50.32 ± 0.93 mV; CTAP 

+ DAMGO: -50.61 ± 0.89 mV, n=5-8, p=0.43, one way repeated measures ANOVA, data not 

shown).  

Effectors of MOR signaling in ipRGCs 

The above results collectively suggested that MOR signaling altered the excitability of 

ipRGCs without interfering with the melanopsin-mediated signal transduction, TRP channel 

function, or by opening GIRK channels. Furthermore, the fact that DAMGO did not alter the 

membrane potential threshold for spike generation indicated that INa in ipRGCs is not modulated 

upon MOR activation; this is consistent with the lack of evidence for INa being an effector of 

MOR signaling-evoked neuronal responses. 

To test whether MOR activation affects voltage-gated potassium currents (IK) of 

enzymatically dissociated ipRGCs, IK was isolated in the presence of 2 mM Co2+ in the bath 

solution to eliminate ICa and by using a recording pipette solution containing 2 mM QX 314 to 

eliminate INa. IK was then evoked in voltage-clamp using both depolarizing voltage steps and 

depolarizing ramp protocols (see Experimental procedures). DAMGO (1 µM) shifted activation 
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(V0.05) of IK to more negative potentials regardless of the voltage-clamp protocol (i.e., sequential 

steps or continuous ramp). When depolarizing ramps were used, 6-10 minutes of DAMGO (1 

µM) application reduced the activation threshold (V0.05) of IK (Fig. 2.8Ai) from -39.44± 2.85 mV 

in control to -51.43 ± 3.36 mV (n=10, p<0.001, paired Student t test) as well as the half 

activation potential (V0.5) from -6.14± 2.28 mV in control to -12.30± 1.93 mV in DAMGO 

(n=10, p<0.001, paired Student t test) (Fig. 2.8Aii).  The ramp evoked IK activation steepness, 

defined as the slope of the sigmoidal fit to I-V curve (b), was not significantly altered by 

DAMGO (13.02 ± 0.95) relative to control (11.26 ± 0.67, n = 10, p = 0.101, paired t test, data not 

shown). Similar results were obtained when IK was activated by a voltage step protocol (see 

Experimental procedures). Namely, the activation threshold of step-evoked IK (V0.05: -40.63± 

0.92 mV) was significantly lowered by DAMGO (V0.05: -48.51± 1.22 mV, n=10, p<0.001, paired 

Student t test, data not shown) along with the half activation potential (V0.5 of -8.24± 1.07 mV in 

control to -12.16 ± 1.31 mV in DAMGO, n=10, p=0.003, data not shown). We found no 

statistical difference between the ramp-evoked versus step-evoked IK parameters (V0.05, V0.5 and 

b) in similar conditions (i.e. in control or in DAMGO, respectively; p=0.04-0.95, Mann-Whitney 

Rank Sum test).  

To make sure that the shift in IK kinetics was due to MOR activation, we again performed 

a parallel series of experiments in which CTAP (5 µM) was applied for at least 2 min prior to 

concurrent application of both DAMGO (1 µM) and CTAP (5 µM) for at least 3 min. Neither 

treatment with CTAP alone, nor consecutive application of CTAP+DAMGO together altered the 

depolarizing ramp-evoked IK activation parameters (Fig. 2.8Bi) in ipRGCs (n=8) (V0.05 control: -

37.31± 2.28 mV, V0.05 CTAP:-41.30± 3.27 mV, V0.05 CTAP+DAMGO:-36.11± 4.71 mV,  

p=0.47; V0.5 control: -6.57± 1.78 mV, V0.5 CTAP:-5.32± 1.82 mV, V0.5 CTAP+DAMGO:-6.61± 
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2.12 mV, p=0.28;  b control: 10.74 ± 0.59, b CTAP: 12.13 ± 0.78 , b CTAP + DAMGO: 10.01 ± 

1.63, p = 0.39; one way repeated measures ANOVA)  (Fig. 2.8Bii).  

In addition, we explored the possibility whether the rundown of IK in ipRGCs could 

artificially cause a negative shift of the activation curve (DiFrancesco et al., 1986) although there 

was no appreciable loss of IK amplitude after DAMGO application (Fig. 2.8Ai). To test this 

notion we held the dissociated ipRGCs in whole-cell voltage-clamp as long as the amplitude of 

IK started to decay, up to 10 min; no significant difference was found for any of the measured IK 

kinetic parameters between the first (control) trace obtained within seconds of patch break and 

the latest (“second”) trace without amplitude rundown (V0.05: -39.95 ± 1.23 mV vs. -40.35 ± 1.14 

mV, p = 0.18; V0.5: -7.76 ± 1.25 vs. -7.59 ± 1.38, p = 0.74; b: 10.38 ± 0.40 vs. 10.25 ± 1.06 mV, 

p = 0.72; for control and second traces, respectively, n = 8, paired Student t test, data not shown).  

We also considered the possibility that small uncompensated increases in inter-trace 

series resistance (Rs) could result in hyperpolarizing shifts of V0.05 and V0.5 between control and 

DAMGO treated traces (Armstrong and Gilly, 1992). We tested and found that the presence or 

absence of automatic Rs compensation up to 54.83% ± 2.42 (n=13) did not cause a significant 

difference between the first, uncompensated control trace and the second, Rs compensated trace 

for any of the measured IK kinetic parameters (V0.05: -41.45 ± 1.87 mV vs. -42.17 ± 1.42 mV, p = 

0.38; V0.5: -10.71 ± 0.94 mV vs. -12.74 ± 1.12 mV, p = 0.002; b: 10.42 ± 0.43 vs. 9.91 ± 0.34, p 

= 0.15 for control and Rs compensated traces, respectively, paired Student t test, data not shown) 

for the recordings falling within the range of acceptable Rs (< 30 MΩ, see Experimental 

procedures). With the small, round, electronically compact soma of dissociated ipRGCs that lack 

processes and the gradual activation kinetics of IK, it is likely that these small (< 13%), 

uncompensated increases in Rs did not cause significant shifts in V0.05 and V0.5. Notably, a leak  
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Figure 2.8. MOR agonist DAMGO alters IK activation in ipRGCs. Ai: Representative leak-subtracted current 

traces show that DAMGO (1 µM) increased the voltage ramp-evoked IK between -55 mV and -15 mV by 

shifting the activation to hyperpolarized potentials without increasing the overall IK amplitude. Aii: Summary 

graph showing IK activation (V0.05) and half-activation (V0.5) from Boltzmann fits in control and DAMGO (*: 
p<0.001, paired Student t test, n=10). Bi: Representative leak-subtracted current traces show that pretreatment 

with MOR selective antagonist CTAP (5 µM) or consecutive application of CTAP (5 µM) +DAMGO (1 µM) did 

not alter voltage ramp-evoked IK. Bii: Summary graph showing IK activation (V0.05) and half-activation (V0.5) 

from Boltzmann fits in control, followed by pretreatment with CTAP and with CTAP+DAMGO (V0.05: p=0.47, 

one way repeated measures ANOVA, n=8; V0.5: p=0.28, one way repeated measures ANOVA, n=8). Ci: 

Representative leak-subtracted current traces show that IK evoked by depolarizing voltage steps in ipRGCs was 

markedly reduced by 4-AP (2 mM). In presence of 4-AP, DAMGO (1 µM) did not shift the activation of the 

remaining IK. Cii: Same as in Ci, but traces obtained in 4-AP and 4-AP+DAMGO normalized to their peak 

showing no difference in their activation kinetics. Di: Representative leak-subtracted current traces show that IK 

evoked by depolarizing voltage ramps in ipRGCs was markedly reduced by TEA (1 mM). In presence of TEA, 

DAMGO (1 µM) did not shift the activation of the remaining IK. Dii: Same as in Di, but traces obtained in TEA 

and TEA+DAMGO normalized to their peak showing no difference in their activation kinetics. 
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increase of up to 44% did not affect measured IK kinetic parameters in these parallel 

experiments and these cut-offs were accordingly imposed on recordings chosen for analysis 

across experiments (see Experimental procedures). 

 The activation properties of IK, namely the V0.05 of ~-40 mV in control, suggested that 

the voltage-gated potassium channels expressed by ipRGCs might belong to the Kv1 or perhaps 

to the Kv4 family (Grissmer et al., 1994; Cox, 2005). To investigate the identity of Kv gene 

product(s) that might be responsible for mediating the DAMGO effect in ipRGCs, we exploited 

the differences in efficacy of IK inhibition by two broad-based K+ channel blockers, 4-

aminopyridine (4-AP) and tetraethyl ammonium (TEA). Namely, Kv4 family members are 

inhibited by 4-AP only at 5 mM or higher concentrations, whereas Kv1 channels are blocked by 

2 mM 4-AP (Grissmer et al., 1994; Cox, 2005). We found that 2 mM 4-AP not only markedly 

reduced IK in ipRGCs (Fig. 2.8Ci), but 4-AP prevented significant shift of the IK activation to 

more negative potentials by DAMGO (1 µM) (V0.05 4-AP: -37.31± 2.28 mV, V0.05 4-

AP+DAMGO:-41.30± 3.27 mV, n=7, p=0.33) (Fig. 2.8Cii). The action of 4-AP in blocking the 

DAMGO-sensitive IK component in ipRGCs supports the premise that Kv1 family members 

mediate the DAMGO-sensitive IK component in ipRGCs. We also found that 10 mM TEA 

eliminated IK in ipRGCs (data not shown).  Importantly, Kv4 channels, as well as most Kv1 

channels, are resistant to TEA of ~10 mM concentration (Jerng et al., 2004), except Kv1.1, 

which is inhibited by TEA with an IC50 of ~0.3 mM (Grissmer et al., 1994; Gutman et al., 

2005). In our hands, 1 mM TEA reduced IK in dissociated ipRGCs (Fig. 2.8Di) and also 

markedly reduced the potential of DAMGO (1 µM) to shift the activation to hyperpolarized 

potentials (V0.05 TEA: -42.60± 2.54 mV, V0.05 TEA+DAMGO: -44.45± 2.42 mV, n=5, 

p=0.61) (Fig. 2.8Di, 2.8Dii).  Taken together, the pharmacological and biophysical data together 
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strongly implicate Kv1.1 channels as the effector of MOR signaling that mediate DAMGO 

effects in ipRGCs.   

Next we tested if MOR activation affects voltage-gated Ca2+ currents (ICa) (Kieffer, 

1995) in ipRGCs (Hartwick et al., 2007; Hu et al., 2013). ICa in voltage-clamped solitary ipRGCs 

was recorded in the presence of 5 mM extracellular Ca2+ (Hu et al., 2013) using cesium-based 

pipette solution (see Experimental procedures). Inactivating and non-inactivating components of 

ICa in ipRGCs were separated according to Hu et al. (2013): Total ICa (ICa,total) was obtained with 

depolarizing steps from -80 mV holding potentials (Fig. 2.9A). The non-inactivating ICa (ICa,non-

inact) component was recorded in response to depolarizing voltage-steps from the holding 

potential of -40 mV (Fig. 2.9B). Peak ICa,non-inact values were subtracted from the peak values of 

ICa,total at corresponding step potentials to calculate the inactivating portion of ICa (ICa,inact) in 

ipRGCs (Fig. 2.9C). These were lengthy experiments, and we often found ICa run down well 

before the desired 3-5 min DAMGO application following the acquisition of control data. 

Therefore, ICa recordings in control (n=26) and DAMGO (n=6) were not performed on the same 

cells. Our results show that in the presence of DAMGO (1 µM) the current density of ICa,total was 

significantly smaller than that in control (p=0.01, two way ANOVA) (Fig. 2.9A). Similarly, the 

non-inactivating component (ICa,non-inact) was significantly reduced in DAMGO (p=0.01, two way 

ANOVA) (Fig. 2.8B) but not the calculated ICa,inact (p=0.43, two way ANOVA) (Fig. 2.7C). 
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Together, these results suggest that voltage-gated Ca2+ channels mediating the non-inactivating 

component of ICa in ipRGCs are also subject to opioid modulation upon MOR activation. 

2.5 Discussion  

We have previously shown β-endorphin and MOR expression in the mouse retina 

(Gallagher et al., 2010, 2012). Here we present convergent evidence that: (1) ipRGCs in both 

mouse and rat retinas express MORs; (2) the activation of MORs on ipRGCs results in the 

suppression of light responses by (3) increasing the delay of the first light-evoked spike as well 

as by reducing the duration of the spike train through a (4) shift in the activation of Kv1 channels 

to hyperpolarized membrane potentials and (5) inhibition of the non-inactivating component of 

Figure 2.9. MOR agonist DAMGO inhibits ICa in ipRGCs. Ai: DAMGO (1 µM) inhibited the total ICa 

(ICa,total) evoked with depolarizing steps from -80 mV holding steps between -10 mV and 0 mV (p=0.01, two way 

ANOVA). Aii: The non-inactivating ICa (ICa,non-inact) component, recorded in response to depolarizing voltage-

steps from the holding potential of -40 mV was also significantly reduced by DAMGO (p=0.01, two way 

ANOVA) at -10 mV and 0 mV. Aiii: Peak ICa,non-inact values were subtracted from the peak values of ICa,total at 

corresponding step potentials to calculate the inactivating portion of ICa (ICa,inact), which was not inhibited 

significantly (p=0.43, two way ANOVA) by DAMGO. 
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voltage-gated ICa. In addition to being observed in both mouse and rat, the MOR-mediated effect 

was present in young animals (P6-10 rats) as well as in adults (rats and Opn4::EGFP mice). 

Whether opioid modulation of ipRGCs has a fully conserved role at distinct time-points during 

development and adulthood remains to be examined. Interestingly, the MOR mediated 

physiological effect was shown in rat at a developmental time-point in which ipRGCs can 

modulate retinal wave activity and development of the visual system (Renna et al., 2011).  

MOR activation and downstream modulation of Cav and Kv channels  

Voltage-gated calcium (Cav) channels are activated downstream of TRP and INa in 

ipRGCs during light-evoked signaling (Hartwick et al., 2007), and they are thought to contribute 

to sustained firing of ipRGCs that characteristically outlasts the duration of stimulation: indeed, 

blocking ICa resulted in reduced spiking upon light stimulation (Berson et al., 2002). MOR 

activation in ipRGCs caused dose-dependent reduction of the duration of light-evoked ipRGC 

signaling (Fig. 2.3Ai, 2.3Aii) that is consistent with the observation that the non-inactivating 

component of ICa in ipRGCs (Hu et al., 2013) was inhibited by DAMGO (Fig. 2.9).  MOR 

activation can result in the activation of multiple downstream pathways, including G-protein-

dependent and -independent ones (reviewed by (Williams et al., 2013). Furthermore, some 

effectors are directly coupled to MORs, such as the G protein-gated inwardly rectifying 

potassium [GIRK, GIRK isoform (Kir3)] channels, in which case the amplitude of GIRK is 

proportional to the MOR activation by a given agonist (i.e. dose-dependent) (Pennock and 

Hentges, 2011). Similarly, many types of Cav channels have been shown to be inhibited directly 

by G proteins where, upon activation of various G protein–coupled receptors, in a dose-

dependent manner the Gβγ dimer binds to Cav channels to inhibit ICa (reviewed by Proft and 

Weiss, 2015). It is noteworthy, however, that activation of somatic MOR in hypothalamic 
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proopiomelanocortin (POMC) neurons leads to inhibition of ICa and activation of GIRK, with 

apparently distinct MOR reserves for the separate process (Fox and Hentges, 2017). In our 

experiments, we isolated IK by blocking voltage-gated ICa with Co2+. This pharmacological 

manipulation has been shown to eliminate the calcium-dependent potassium currents (IK(Ca)) 

(Solessio et al., 2002), therefore the DAMGO-mediated changes of IK in our hands could not 

include a potential DAMGO-mediated increase in IK(Ca) at ~-50 mV. Nonetheless, the fact that 

MOR-mediated analgesic effects were not sensitive to IK(Ca) blockers such as apamin or 

charybdotoxin (Welch and Dunlow, 1993; Ocaña et al., 2004), suggests that a direct interaction 

between MOR signaling and IK(Ca) is unlikely.  

The IK that we identified to be modulated via MOR activation by DAMGO in ipRGCs 

was blocked by 1 mM TEA or by 2 mM 4-AP, making Kv1.1 the most plausible candidate 

(Grissmer et al., 1994; Cox, 2005; Gutman et al., 2005). However, it has been shown that Kv1.1 

channels are capable of heterotetramerization in vivo, often with Kv1.2  and that TEA 

sensitivities as well as half activation values of these Kv1.1 and Kv1.2 heterotetramers can vary 

depending on both subunit composition and arrangement (Wang et al., 1993). The IC50 of TEA 

for a Kv1.1 homotetramer ranges from 0.47 mM to 0.67 mM, for a Kv1.2 homotetramer ranges 

from 47 mM to 50 mM, and for a Kv1.1 and Kv1.2 heterotetramer ranges from 0.8 mM to10 mM, 

depending on subunit arrangement. As well, while the activation threshold of Kv1.1 

homotetramers has been reported near -50 mV and that of Kv1.2 near -40 mV, varying spatial 

arrangements of 2:2 Kv1.1:Kv1.2 heterotetramers in heterologous systems can alter measured 

half activation of IK by ~ 5 mV (Al-Sabi et al. 2010; Kew and Davis, 2010) . Given our 

pharmacological data, it seems most likely that the DAMGO sensitive channel in ipRGCs is a 

Kv1.1 and Kv1.2 heterotetramer. While a Kv1.1 homotetramer cannot be entirely ruled out based 
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strictly upon TEA affinity, it would seem less likely given the reported activation threshold of 

near -50 mV ( Kew and Davis, 2010). 

Of particular relevance to this study, Kv1.1 and Kv1.2 have been shown to form 

heterotetramers in vivo (Wang et al., 1993; Shamotienko et al., 1997; Coleman et al., 1999), and 

opioid induced negative regulation of GABAergic tone of basolateral amygdala (BLA) output 

neurons occurs through modulation of pre-synaptic Kv1.1 and Kv1.2 channels (Finnegan et al., 

2006). Dendrotoxin-K and tityustoxin-Ka, purported to be Kv1.1 and Kv1.2 specific blockers, 

respectively, each blocked the inhibitory effects of 1 µM DAMGO on miniature inhibitory 

postsynaptic currents (mIPSCs) in the BLA, leading the authors to suspect that BLA Kv1.1 and 

Kv1.2 form heteromeric complexes. Kv1.1 and Kv1.2 are important determinants of cellular 

excitability (Smart et al., 1998; Glazebrook et al., 2002; Brew et al., 2003, 2007) and as such are 

key players in nociceptive pathways and their modulation by opioid signaling (Clark and 

Tempel, 1998; Galeotti et al., 1999; Finnegan et al., 2006). For example, mice with an antisense 

oligonucleotide on the Kv1.1 gene lack morphine and baclofen-induced antinociception (Galeotti 

et al., 1997), and Kv1.1 null mice have reduced morphine-induced antinociception (Clark and 

Tempel, 1998). In a sense, Kv1.2 provides for increased neuronal excitability, and Kv1.1 provides 

for negative regulation of that excitability; adjustments of the Kv1.1:Kv1.2 stoichiometric balance 

may represent a precise, real-time method for down-regulation of neuronal excitability (Brew et 

al., 2007). Another mechanism of Kv1.2 subunit containing channel modulation by opioids could 

involve Kvb subunit modulation of IK activation. Coexpression of Kv1.5 and Kvb2.1 in 

heterologous systems results in a 10 mV hyperpolarizing shift in V0.05 without alteration of IK 

amplitude as seen in our experiments (Fig. 2.7Ai), with phosphorylation of Kvb2.1 postulated to 

rapidly regulate its interaction with the a subunit (Uebele et al., 1996). Kvb2 is the predominant 
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subunit isoform present in the brain, and it has additionally been shown to positively regulate 

Kvb2/Kv1.2 complex stability and Kv1.2 surface expression (Shi et al., 1996). 

MOR activation and consequent Gai/o signaling might be coupled to the effectors through 

enzymatic steps: for example, in pyramidal neurons of the lateral amygdala, activation of the 

PLA2/arachidonic acid/12-lipoxygenase cascade with morphine and DAMGO enhances spike 

frequency adaptation, which involves shifting the voltage dependence of Kv channels containing 

Kv1.2 subunits to more negative potentials by ~ 14 mV (Faber and Sah, 2004). Furthermore, 

extensive literature documents G protein coupled receptor - mediated changes in Kv1.1 and 

Kv1.2 surface expression via clathrin-dependent endocytotic mechanisms (Bosma et al. 1993; 

Cachero et al. 1998; Connors et al. 2008; Hattan et al. 2002; Huang et al. 1993; Nesti et al. 2004; 

Stirling et al. 2009; Williams et al. 2007, 2012). In addition, MOR activation results in decreased 

adenylyl cyclase (AC) activity and thus cAMP levels and PKA activity; to that end, Kv1.2 is 

affected by cAMP levels, with elevation of cAMP increasing Kv1.2 surface expression and low 

cAMP decreasing it. Thus, through its effects on Kv1.2 surface levels, cAMP homeostasis also 

functions as buffer for cellular excitability (Connors et al., 2008).  

Integration of opioid signaling with the retinal-ipRGC circuit  

What might be the retinal circuit that leads to a rise in endogenous retinal opioid levels 

and what are the functional consequences of the effect of these opioids on ipRGC excitability? 

Similar to how MOR activation in the lateral amygdala serves to attenuate neuronal spiking in 

depolarizing conditions (Faber and Sah, 2004), modulation of Kv and Cav channels in ipRGCs by 

MOR activation may serve to limit ipRGC output in response to depolarizing stimuli. When 

might ipRGC output need to be suppressed? The biological clock is located in the 

suprachiasmatic nucleus in the hypothalamus, and it receives photic information through 



 73 

ipRGCs. As clock neurons are active during the day / light cycle and its output accordingly 

integrated by central sleep-regulatory systems, there would be advantages to mechanisms of 

ipRGC output suppression during the dark cycle that are capable of modulating the cells 

sensitivity to depolarizing input (Saper et al., 2005).  

IpRGCs exhibit both intrinsic (melanopsin-driven) and extrinsic (synaptically-driven) 

light responses (Wong et al., 2007; Schmidt et al., 2011), and these responses have a powerful 

impact on ipRGC-mediated central processes. The intrinsic phototransduction cascade has very 

high gain, with ipRGCs capable of signaling single photon absorption to the brain via spiking, as 

a 1 mV depolarization results in a several-fold increase in the spike rate of ipRGCs. Such high 

efficiency signaling of ipRGCs could be achieved by the ipRGCs operating near spike threshold. 

Furthermore, at the organism level, only a few hundred melanopsin molecules need to undergo 

photoisomerization in order to trigger the pupillary light reflex (PLR) (Do et al., 2009). Selective 

elimination of ≥ 99% of ipRGCs does not eliminate the PLR completely (Güler et al., 2008), 

confirming that signaling from even a very limited number of ipRGCs has significant 

downstream behavioral consequence. These findings suggest that relatively small shifts in 

ipRGC spiking could be expected to have discernable impact on behaviors and reflexes regulated 

by these photoreceptors. Opioid signaling could serve to modulate the efficiency of ipRGC 

signaling in darkness when such high gain is both unnecessary and counter-productive. As even 

a slight rise in the spike threshold would decrease ipRGC light signaling by orders of magnitude, 

the spike threshold of ipRGCs has previously been postulated to be a regulatory point for ipRGC 

sensitivity (Do et al., 2009). We have shown that the spike threshold is indeed a regulatory point, 

although MOR activation in ipRGCs reduces ipRGC excitability not by increasing the spike 
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threshold itself but by increasing IK at the threshold of voltage-gated Na+ channels, thereby 

delaying the Na+-mediated depolarization of ipRGCs. 

Negative regulation of ipRGCs by opioids during darkness could serve as an effective 

nighttime counterpart to the known regulation by dopamine (DA) of ipRGCs during daylight 

(van Hook et al., 2012). DA, via D1-receptor activation, has been shown to affect light-evoked 

spiking in ipRGCs by both attenuating the photocurrent and depolarizing ipRGC resting 

membrane potentials (van Hook et al., 2012). While cAMP’s effects on light evoked spiking 

were not directly investigated in the study by van Hook et al. (2012), a subsequent study showed 

that elevated cAMP increased light evoked spiking via a PKA-dependent pathway (Sodhi and 

Hartwick, 2014). Given that opioids are known to decrease cAMP (Kieffer, 1995), in ipRGCs 

DA and opioids might act to promote the transition between daytime and nighttime, respectively, 

as it was proposed for avian retinas (Morgan and Boelen, 1996). In support of this notion in the 

rabbit retina, exogenous opioids were shown to inhibit the release of dopamine (Dubocovich and 

Weiner, 1983). The increased number of light-evoked spikes after application of CTOP (Fig. 

2.3Ai, 2.3Aii) suggests the presence of a weak inhibitory tone mediated by endogenous opioids 

in dark-adapted retinas (Morgan and Boelen, 1996). With our experimental paradigm, however, 

this effect of CTOP could instead be the result of a homeostatic sensitization of AC triggered by 

the long exposure to multiple concentrations of DAMGO, resulting in an overshoot of cAMP 

production upon the addition of a competitive MOR antagonist (Watts, 2002; Levitt et al., 2010). 

The fact that CTOP alone did not increase light-evoked signaling (Fig. 2.3C) suggests that the 

CTOP-mediated increase of ipRGC light responses seen in our experiments, which were 

performed during the day following long DAMGO exposures (Fig. 2.3Ai, 2.3Aii), was most 

likely caused by MOR antagonist-induced cAMP overshoot (Watts, 2002). In the mouse retina β-
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endorphin, the endogenous opioid that is preferentially bound by MORs, is expressed by a 

subpopulation of ON and OFF cholinergic amacrine cells (Gallagher et al., 2010): the OFF types 

somas are located at the INL/IPL border and their processes arborize in a thin layer between 

sublaminae 1 and 2 of the IPL, whereas the ON types somas are displaced to the GCL and whose 

processes arborize between IPL sublaminae 3 and 4 (Haverkamp and Wassle, 2000). In essence, 

this close spatial apposition of putative β-endorphin release sites to M1 and M3 ipRGC processes 

that cross the inner retina might support either direct synaptic or paracrine opioid regulation of 

ipRGCs, whereas a paracrine opioid regulation of M2 type ipRGCs with processes running along 

in sublamina 5 is more likely.  Although it is not known whether the expression and release of β-

endorphin follows a circadian rhythmicity in the retina, it is tempting to speculate that 

endogenous opioid levels, akin to those of adenosine, rise at night to likewise co-regulate 

nighttime signals from ipRGCs to the brain. A1 adenosine receptor activation in ipRGCs, like 

MOR activation, decreases AC activity, cAMP levels, and PKA activity, with the consequence 

of decreased light evoked spiking. While not yet explicitly investigated, postulated downstream 

targets of A1 receptor signaling include Cav channels, TRPCs, and (less likely) 

hyperpolarization-activated cyclic nucleotide-gated channels (Sodhi and Hartwick, 2014). It 

would appear that opioids and adenosine are poised to work synergistically to inhibit light-

evoked spiking in ipRGCs. While in the basal forebrain increases in adenosine promote sleep 

and increases in opioids promote insomnia (as reviewed by Nelson et al. 2009), the effects of 

adenosine and opioids in the spinal cord are not in opposition but are instead additive (Sawynok, 

1998), and this is consistent with how they appear to function in the retina. 
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CHAPTER 3. OPIOID SIGNALING IN THE MOUSE RETINA MODULATES PUPILLARY 

LIGHT REFLEX 

 

 

3.1 Summary 

The aim of the present study was to determine the effect of modulation of ipRGC 

signaling via MORs on the murine PLR. The main findings of this study were: (1) In WT mice 

but not in systemic µ-opioid receptor knockout mice (MKO) or mice in which µ-opioid receptors 

were selectively knocked out of ipRGCs alone (McKO), intraocular application of the MOR 

selective agonist DAMGO strongly inhibited rod/cone driven PLR and slowed melanopsin-

driven PLR. (2) Intraocular application of a MOR selective antagonist CTAP enhanced rod/cone 

driven PLR in the dark-adapted retina and melanopsin driven PLR under photopic conditions in 

WT mice. These results identify a novel site of action for exogenous and potentially endogenous 

opioids in the retina, i.e. MORs on ipRGCs, that has significant impact on a behavioral measure 

of opioid effect, the PLR. 

3.2 Introduction  

Over the past 25 years, the liberalization of laws governing opioid prescription for the 

treatment of chronic non-cancer pain has led to dramatic increases in opioid use, often referred to 

as an opioid epidemic in the United States (Manchikanti et al., 2012; Cobaugh et al., 2014; Poon 

and Greenwood-Ericksen, 2014). While there exist several biomarkers for opioid effect, in man 

the development of resting miosis is used as an indicator of systemic opioid effect (Murray et al., 

1983; Pickworth et al., 1989, 1991; Zacny and Goldman, 2004; Verster et al., 2006; Grace et al., 

2010).  
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The effect of opioids on resting pupil diameter is highly variable and species dependent, 

in some species causing resting mydriasis and in others resting miosis (Murray et al., 1983). The 

exact mechanism by which opioids regulate resting pupil diameter is not definitively understood, 

though both central (midbrain) and local regulatory sites have been postulated, with likely 

species-specific differences (Lee and Wang, 1975; Korczyn and Maor, 1982; Murray et al., 

1983). There is evidence that central opioid receptors that modulate resting pupil size are located 

in the EWN (Sharpe and Pickworth, 1985), and their activation may decrease EWN tonic firing 

in species where opioids cause resting mydriasis (Pickworth et al., 1989). In species in which 

opioids cause resting miosis, pupil constriction may be secondary to opioid induced inhibition of 

cholinergic neurons that otherwise tonically inhibit the EWN (disinhibition), given that injections 

of opioids into the EWN caused miosis (Lee and Wang, 1975) and injections of cholinergic 

(specifically muscarinic) agonists into the EWN induced mydriasis in sympathectomized and 

decerebrated dogs (Sharpe and Pickworth, 1981). There are likely species specific variations in 

neurocircuitry and chemistry which account for the different direct effects of opioids on the 

EWN (Sharpe and Pickworth, 1985). Outside of the EWN, opioid receptors located in the 

reticular formation may also serve to link respiration to pupil changes, though the species-

dependent effects of opioids on respiration often preclude a direct link between opioid-RAS 

interactions and resting pupil diameter (Lynch et al., 1985, 1990). There also exists support for 

local ocular effects of opioids, as topical morphine results in mydriasis in rats and in miosis in 

man, and both topical and intraocular opiates induce miosis in rabbits; the intraocular site of 

action has previously been postulated to be at iris though definitive proof of iridial opioid 

receptors has not been shown (Drago et al., 1980; Fanciullacci et al., 1981; Korczyn and Maor, 

1982; Bonfiglio et al., 2006).  
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Given the variability of opioid effect on resting pupil diameter, the PLR may prove a 

more consistent reflexive read-out of opioid effect. Indeed, while opioids also exert species-

specific effects on the PLR, there is less variability as opioids retard the PLR in most species 

including the cat (Pickworth and Sharpe, 1985; Sharpe, 1991) and man (Pickworth et al., 1989, 

1991) yet enhance it in the rabbit (Murray and Loughnane, 1981). It is noteworthy that the PLR 

evoked by bright blue light in chronic human opioid users has reduced velocity (Grace et al., 

2010). 

How might opioids modulate the PLR? Prior work demonstrated that opioids, via µ-

opioid receptors (MORs), strongly attenuate the light-evoked firing of ipRGCs. As well, in 

Opn4::EGFP mouse retinas, 54% of the EGFP+/ MOR+ ipRGCs (93/173) were also Brn3b+ 

(Cleymaet et al., 2019). As previously discussed in section 1.4.2, systemically applied opioids 

could act on the MORs expressed by ipRGCs (Selley et al., 2001; Saszik et al., 2002; Wyman 

and Bultman, 2004; Hosoya et al., 2011; Lee et al., 2011; Fernández et al., 2013). This suggests 

that PLR might be influenced by opioids acting on Brn3b+ M1 ipRGCs. In the present study, we 

test the hypothesis that inhibition of ipRGC signaling via MORs negatively modulates the 

murine PLR, and we determine the relative impact of opioids on classical photoreceptor vs. 

ipRGC contributions to the PLR utilizing cell specific knock-outs.  

3.3 Materials and Methods 

Animals 

All animals used in these studies with handled in compliance with the Institutional 

Animal Care and Use Committees of Colorado State University and in accordance with the 

ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Animals were 

housed under a 12:12 light dark (LD) cycle. Food and water were made available ad libitum. 
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Four strains of mice were used. C57BL/6J (stock # 000664, Jackson Labs) mice, in which opioid 

dependence-relevant behaviors are robust, were used as wild-type (WT) controls (Kirkpatrick 

and Bryant, 2015). Mice lacking functional MORs globally (B6.129S2-Oprm1tm1Kff/J, MKO 

for short, stock# 007559, Jackson Labs) were used. We generated a conditional KO mouse line 

in which only ipRGCs were lacking MORs (McKO) by crossing a well-characterized mouse line 

expressing Cre recombinase upstream of the melanopsin coding sequence (Opn4) (Tg(Opn4-

cre)SA9Gsat/Mmucd or Opn4::Cre for short, stock # 036544-UCD, MMRRC) with mice where 

exon 2 and 3 of the MOR gene (Oprm1) are flanked by a loxP site (“floxed µ” or Oprm1fl/fl2). 

Primary anti-melanopsin antibody verification was carried out using the previously described 

Opn4::EGFP mouse line (Cleymaet et al., 2019). 

In vivo pupillometry  

Control series:  

Mice were dark adapted for 15 minutes. PLR was tested on mice that were either awake 

or maintained on a very light plane of anesthesia with isoflurane (Hattar et al., 2003; Lucas et al., 

2003; Panda et al., 2003; Mohan et al., 2012; Kostic et al., 2016). There was limited bias due to 

handling stress or anesthetic plane as reproducible control pupil sizes were obtained prior to each 

stimulus. Dark adapted PLR mediated by classical photoreceptors was evoked by stimulating the 

right eye with green light at an intensity below the melanopsin activation threshold i.e. rod and 

green cone opsin saturating green light (1011 photons/cm2/s at 525 nm) (Lucas et al., 2001, 

2003). The second stimulus (1014 photons/cm2/s at 470 nm) was well above melanopsin 

threshold to activate ipRGCs, which has been reported be as low as 1011.5/photons/cm2/s at 480 

nm (Berson et al., 2002; Lucas et al., 2003). Photopic PLR was tested with the blue stimuli 

superimposed on the rod and green cone opsin saturating green intensity. Intermittent light 
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enhances pupillary constriction responses and prevents adaptation (Gooley et al., 2012); 

accordingly, we delivered the 1 min long light stimulation at 2 Hz to the right eye, while 

recording PLR in the left eye at 30 frames/sec. Control stationary pupil measurements were 

taken 1-10s before the stimulation was begun. Stationary PLR was recorded after 1 min of 

intermittent light stimulation. Stationary recovery values of the pupil size were recorded ~ 2 min 

after the termination of light stimulation protocol. Pupil area was measured off-line at 1s 

intervals using NIH ImageJ. Similar to prior studies (Lucas et al., 2001), to correct for individual 

variation in dark adapted pupil area, pupil sizes during illumination were calculated as 

percentage of the average of the stationary control and recovery pupil sizes. 

It is of note that recent work with dynamic pupillometry comparing WT vs. rodless or 

coneless mice has demonstrated that rods contribute to blue light PLR and low and medium 

intensity red light PLRs while cones drive the initial rapid dilation of low intensity blue light 

PLR (Kostic et al., 2016). However, the focused goal of this study is to clearly delineate MOR 

mediation of classical photoreceptor vs. ipRGC input on the (stationary) PLR, without 

subdividing the classical photoreceptor inputs into those of rods vs. cones. As previously 

discussed by (McDougal and Gamlin, 2010), it is difficult to chromatically make a distinction 

between the relative contributions of rod and cone input to ipRGCs, given that the wavelength 

sensitivity of rods and green cones in mice closely overlap at lmax 498 nm and 508 nm, 

respectively (Lucas et al., 2001). Also of note is that photoresponses of both rods, cones, and 

ipRGCs are not linearly additive, as the melanopsin photoresponse exclusively drives the PLR 

given stimuli above the threshold of the melanopsin photoresponse (480 nm, 1011.5 

photons/cm2/s) (Lucas et al., 2001), effectively shunting rod-cone mediated outer retinal signals 

that feed into the ipRGCs. Below this threshold, after a brief period of adaptation, tonic rod 
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signaling synergistically drives the PLR via central ipRGC glutamatergic output, maintaining 

miosis at irradiances below the melanopsin threshold and enhancing sensitivity to long-

wavelength light (McDougal and Gamlin, 2010; Keenan et al., 2016). In contrast, cones 

minimally contribute to maintaining miosis at either high or low irradiances (McDougal and 

Gamlin, 2010), unless they are permitted to dark adapt with short, intermittent dark pulses 

(Gooley et al., 2012). For these reasons, most landmark studies assessing the relative 

contribution of classical photoreceptor and melanopsin photoresponses to ipRGC physiology 

pool rod and cone inputs together as a collective outer retinal input, utilizing high vs. low 

intensity light stimulus protocols (Hattar et al., 2003; Lucas et al., 2003; Panda et al., 2003; Güler 

et al., 2008; Jones et al., 2013). Additional laboratories have utilized red light (630 nm, 

luminance 200 kcd/m2) to elicit PLRs in mice; however, without the benefit of genetic KO mice, 

the resultant PLR was still considered to be a combined, rod-cone-mediated PLR (Mohan et al., 

2012). Given the above considerations, we elected to use rod and green cone opsin saturating 

green light in our study. 

Sham/opioid injection series:  

Different mice were used in the sham/opioid injection series vs. the control series mice. 

MOR selective agonist [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAMGO) or the MOR selective 

antagonist CTAP (2 mg/ml each) were administered via unilateral intravitreal injection (2 µl/eye) 

under isoflurane anesthesia following application of topical 0.5% proparacaine (Mojumder et al., 

2009). Controls received saline (2 µl/eye). Mice were dark adapted for 15 minutes. PLR was 

tested on mice maintained on a light plane of anesthesia with isoflurane, in the same fashion as 

for the control series, with the light stimulus being delivered to the sham/opioid treated right eye 

and PLR recorded from the contralateral left eye.  
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Previous MEA data (Cleymaet et al., 2019) shows that maximal effect of DAMGO for 

reducing ipRGC response was reached at ~1 µM. Intravitreal injection of 2 µl of 2 mg/ml 

DAMGO will result in ~100 M DAMGO concentration in the vitreous, assuming equal 

distribution in the estimated total vitreous volume (~20 µl) of the mouse eye (Saszik et al., 

2002). Thus, even if some drug reflux took place during and following the injection (Rappoport 

et al., 2013), the intravitreal concentration of DAMGO is expected to produce maximal 

inhibition of light-evoked ipRGC spiking, and in turn, inhibition of PLR. Existing evidence 

supports this: pharmacological inhibition of melanopsin with opsinamides inhibited ipRGC firing 

by about 50%, and reduced bright light-triggered PLR in rodless/coneless mice by about 50%, 

without affecting PLR evoked by dim intensities (i.e. rod-cone mediated PLR) in wild-type mice 

(Jones et al., 2013). 

Verification of MKO / McKO mouse strains via retinal immunohistochemistry  

Following the pupillometry experiments, the mice were immediately euthanized via 

cervical dislocation following establishment of a deep plane of anesthesia with isoflurane. The 

eyes were subsequently enucleated and eye cups were prepared for cryosectioning. Validation of 

transgenic mice was performed via immunohistochemistry proving lack of MOR 

immunolabeling in ipRGCs in McKOs. Tissue preparation, IHC, and confocal laser microscopy 

were performed as previously described (Gallagher et al., 2012).  

Statistical analysis  

All data were analyzed using SigmaPlot11 (version 11; Systat Software) and Excel 

(Microsoft). Specific statistical comparisons are described in text. Data are presented as mean ± 

SEM, and p < 0.05 considered significant. 

3.4 Results  
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MOR specific agonist DAMGO inhibited dark adapted pupillary light reflex (PLR) in WT 

mice  

 In dark adapted WT mice, unilateral, intraocular injection of DAMGO (1 µl of 2 mg/ml) 

strongly inhibited contralateral rod/cone driven PLR. The normalized pupil area of green light 

evoked stationary PLR was significantly greater after DAMGO injection compared to control, 

Fig. 3.1 (control: 41.78±3.16%, n=16, DAMGO: 107.77±5.56%, n=9, p<0.001, Student’s t-test).  

The stationary PLR evoked by bright blue irradiance that can activate melanopsin 

signaling directly was inhibited by DAMGO, but not significantly - see Fig. 3.1, (normalized 

pupil area of control: 8.67±3.02%, n=5, DAMGO: 14.18±2.67%, n=5, p=0.82, Student’s t-test). 

dark adapted green               dark adapted blue  
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However, a more detailed analysis of the dynamic PLR showed a marked slowing of the blue 

light response under DAMGO conditions compared to control, Fig. 3.2.  

Dark adapted MKO and McKO mice showed normal stationary and dynamic PLR, and 

DAMGO had no effect on dark adapted PLR 

To elucidate whether the intraocular DAMGO effect on the pupillary light reflex is 

exclusively mediated by MORs expressed by ipRGCs, or whether other retinal cells expressing 

MORs also contribute, we then performed a parallel series of experiments on MKO and McKO 

mice.  

Figure 3.2 MOR specific agonist DAMGO slowed blue light driven dynamic PLR in dark adapted WT mice. 

Unilateral, intraocular injection of DAMGO (1 µl of 2 mg/ml) slowed PLR stimulated by blue (1014 photons/cm2/s 

at 470 nm) light (red circles, n=5) compared to control (white circles, n=3). Data points fit with the following 

sigmoid curve: f=y0+a*exp(-b*x) 

Figure 3.1 MOR specific agonist DAMGO inhibited dark adapted  stationary PLR in WT mice. Ai: WT mice 

had normal PLR in response to green (1011 photons/cm2/s at 525 nm) and blue (1014 photons/cm2/s at 470 nm) light. 

Aii: Unilateral, intraocular injection of DAMGO (1 µl of 2 mg/ml) strongly inhibited contralateral rod/cone driven 

PLR and partially inhibited melanopsin driven PLR. B: Cumulative stationary PLR data under control (white bar, 

n=16 green light stimulus, n=5 blue light stimulus) and DAMGO (red bar, n=9 green light stimulus, n=5 blue light 

stimulus) conditions in WT mice. Average ± SEM. ***: p<0.001, Student’s t-test.  
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Control stationary PLR of dark adapted MKO and McKO mice were not significantly 

different from that of WT mice for any light stimulus, Fig. 3.3 (normalized pupil area of green 

light WT: 41.78±3.16%, n=16, MKO: 32.74±3.98%, n=21, McKO: 34.08±5.38, n=9, p=0.55; 

blue light WT: 8.67±3.02%, n=5, MKO: 6.47±0.80%, n=15, McKO: 9.74±1.60%, n=9, p=0.22, 

one way ANOVA). Detailed analysis of the dynamic PLR of MKO and McKO mice did not 

show slowing of the blue control response compared to WT mice. MKO and McKO mice are 

thus valid models for the assessment of acute MOR mediated inhibition of ipRGCs on PLRs.  

In dark adapted MKO mice, unilateral, intraocular injection of DAMGO (1 µl of 2 

mg/ml) did not inhibit contralateral green or blue light evoked PLR, Fig. 3.4A (normalized pupil 

area of green light control: 32.74±3.98%, n=21, DAMGO: 24.98±3.08%, n=12, p=0.19; blue 

light control: 6.47±0.80%, n=15, DAMGO: 3.53±0.30%, n=10, p=0.008, Student’s t-test). 

Figure 3.3 Control stationary PLR of dark adapted MKO and McKO mice are comparable to that of WT 

mice. Cumulative stationary PLR response to green light (1011 photons/cm2/s at 525 nm) (WT: white bar, n=15; 
MKO: grey bar, n=21; and McKO: black bar, n=9) and blue light (1014 photons/cm2/s at 470 nm) (WT: white bar, 

n=5; MKO: grey bar, n=16; and McKO: black bar, n=9). Average ± SEM. One way ANOVA.  

dark adapted green               dark adapted blue  
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Unlike with WT mice, detailed analysis of the dynamic PLR of MKO mice did not show 

slowing of the blue light response under DAMGO conditions compared to control, Fig. 3.4B.  

  

 

In dark adapted McKO mice, unilateral, intraocular injection of DAMGO (1 µl of 2 

mg/ml) also had no effect on contralateral green or blue light evoked PLR, Fig. 3.5 A 

(normalized pupil area of green light control: 34.08±5.38%, n=9, DAMGO: 30.38±10.90%, n=6, 

p=0.94; blue light control: 9.74±1.60%, n=9, DAMGO: 7.27±1.06%, n=11, p=0.20; Student’s t-

test). As with MKO mice, detailed analysis of the dynamic PLR of McKO mice did not show 

slowing of the blue light response under DAMGO conditions compared to control, Fig. 3.5 B.  

  

 

 

Figure 3.4 MOR specific agonist DAMGO does not inhibit dark adapted stationary or dynamic PLR in MKO 

mice. Unilateral, intraocular injection of DAMGO (1 µl of 2 mg/ml) did not inhibit contralateral rod/cone driven 

PLR or melanopsin driven PLR. A. Cumulative stationary PLR data under control (white bar, n=21 green light 
stimulus (1011 photons/cm2/s at 525 nm), n=15 blue light stimulus (1014 photons/cm2/s at 470 nm)) and DAMGO 

(red bar, n=12 green light stimulus, n=10 blue light stimulus) conditions in MKO mice. Average ± SEM. **:p<0.01 

Student’s t-test. B. Unilateral, intraocular injection of DAMGO did not slow PLR stimulated by blue light (red 

circles) compared to control (blue circles) in MKO mice. Data points fit with the following sigmoid curve: 

f=y +a*exp(-b*x) 

A B 

dark adapted green         dark adapted blue  

ns 

** 
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 Importantly, PLRs of dark adapted MKO and McKO mice that received a unilateral, 

intraocular injection of DAMGO (1 µl of 2 mg/ml) were significantly different from that of WT 

mice that received a unilateral, intraocular injection of DAMGO (1 µl of 2 mg/ml) for either light 

stimulus, Fig. 3.6 (normalized pupil area of green light WT: 107.77±5.56%, n=9, MKO: 

24.98±3.08%, n=12, McKO: 30.38±10.90%, n=6, p<0.001; blue light WT: 14.18±2.67%, n=5, 

MKO: 3.53±0.30%, n=10, McKO: 7.27±1.06%, n=11, p<0.001, one way ANOVA). The greatest 

relative negative modulatory effect exerted by DAMGO on the PLR was observed with rod-cone 

mediated PLR. While there was no significant difference in PLRs between the KOs for dark 

adapted green light conditions, there was a significant difference in PLRs between MKOs and 

McKOs subject to bright blue irradiance, with greater pupillary constriction in the MKO group 

vs. the McKO group (MckO vs. MKO difference of mean maximal normalized pupil area for 

Figure 3.5 MOR specific agonist DAMGO does not inhibit dark adapted stationary or dynamic PLR in 

McKO mice. Unilateral, intraocular injection of DAMGO (1 µl of 2 mg/ml) did not inhibit contralateral rod/cone 

driven PLR or melanopsin driven PLR. A. Cumulative stationary PLR data under control (white bar, n=9 green light 

stimulus (1011 photons/cm2/s at 525 nm), n=9 blue light stimulus (1014 photons/cm2/s at 470 nm)) and DAMGO (red 

bar, n=6 green light stimulus, n=11 blue light stimulus) conditions in McKO mice. Average ± SEM. Student’s t-test. 

B. Unilateral, intraocular injection of DAMGO did not slow PLR stimulated by blue light (red circles) compared to 

control (blue circles) in McKO mice. Data points fit with the following sigmoid curve: f=y0+a*exp(-b*x) 

A B 

dark adapted green         dark adapted blue  
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green light: 5.40%, p=0.53; blue light: 3.74%, p=0.02; Holm-Sidak pairwise multiple 

comparisons).  

DAMGO injection can be noted to consistently enhance the PLR in both knockout mice. 

To determine if this was a direct effect of DAMGO or side effect of the intraocular injection 

itself, we performed unilateral, intraocular injections of 1 µL of saline and compared the saline 

control to baseline PLRs. The normalized pupil area of green light evoked stationary PLR was 

smaller after saline injection compared to baseline control (normalized pupil area of green light 

baseline: 48.70±0.27%, saline control: 18.40±1.67%, n=2, p=0.04, paired t-test, data not shown). 

While a neurogenic reflex uveitis may result in miosis in the injected eye, the cause of the post-

injection enhancement of PLR in the contralateral eye is not known. However, it appears that the 

negative modulatory effects of DAMGO on the PLR are sufficiently potent to overcome this 

phenomenon in the WT mouse, given the absence of miosis in response to photic stimulation in 

the WT mice.  

Figure 3.6 MOR specific agonist DAMGO effects on the stationary PLR of dark adapted MKO and McKO 

mice differ from those of WT mice. Cumulative stationary contralateral PLR response to green light (1011 

photons/cm2/s at 525 nm) (WT: white bar, n=9; MKO: grey bar, n=12; and McKO: black bar, n=6) and blue light 

(1014 photons/cm2/s at 470 nm) (WT: white bar, n=5; MKO: grey bar, n=10; and McKO: black bar, n=11) post 

unilateral, intraocular injection of DAMGO (1 µl of 2 mg/ml). Average ± SEM. ***:p<0.001. One way ANOVA.  
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MOR specific antagonist CTAP increased dark adapted PLR triggered by rod-saturating 

green light in WT mice 

Unilateral, intraocular CTAP (1 µl of 2 mg/ml) significantly enhanced the rod-saturating 

green light-evoked stationary PLR of dark adapted WT mice compared to that of control, Fig. 3.7 

(normalized pupil area of control: 41.78±3.16%, n=16, CTAP: 14.77±3.32%, n=6, p<0.001, 

Student’s t-test). The CTAP mediated enhancement of PLR was also associated with a slight 

increase in the velocity of constriction (data not shown). And, while not significant, unilateral, 

intraocular CTAP similarly enhanced the stationary PLR of WT mice evoked by bright blue light 

stimulus superimposed on rod-saturating background illumination (normalized pupil area of 

control: 37.99±4.55%, n=10, CTAP:27.58±2.92%, n=5, p=0.15, Student’s t-test).  

 

When comparing rod-saturating green light-evoked stationary PLR of dark adapted WT 

mice, MKO mice, McKO mice, and WT mice given CTAP, there was a significant difference 

Figure 3.7 MOR specific antagonist CTAP increased dark adapted PLR in WT mice. Unilateral, intraocular 

injection of CTAP (1 µl of 2 mg/ml) significantly enhanced the green light-evoked stationary PLR of dark adapted 

WT mice compared to that of control and non-significantly enhanced blue light-evoked stationary PLR of light 
adapted WT mice compared to that of control. Cumulative stationary PLR data under control (white bar, n=16 green 

light stimulus (1011 photons/cm2/s at 525 nm), n=10 blue light stimulus (1014 photons/cm2/s at 470 nm on rod 

saturating background)) and CTAP (purple bar, n=6 green light stimulus, n=5 blue light stimulus) conditions in WT 

mice. Average ± SEM.  ***:p<0.001. Student’s t-test.  
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between only the normalized pupillary area of WT control mice and WT mice given CTAP, Fig. 

3.8 (p=0.004, one way ANOVA and Holm-Sidak pairwise multiple comparisons).  

 

3.5 Discussion    

Our results show that opioids are negative modulators of the PLR in the WT mouse. It 

could be argued that opioid inhibition of PLR is secondary to miosis and thus decreased photic 

stimulation of the retina, however, this seems unlikely as in species where resting miosis is seen 

secondary to opioids, e.g. in cats (Sharpe, 1991), and man (Pickworth et al., 1991), opioids 

continue to inhibit the PLR over a wide range of pupil size. And, while intense blue irradiance is 

still capable of driving the PLR in the face of DAMGO, this is not surprising given prior studies 

in which elimination of 97% of ipRGCs in the mouse resulted in incomplete PLR in response to 

low light intensity but did not prevent full pupil constriction in response to high light intensity 

(Güler et al., 2008). As well, the slowing of the blue light response under DAMGO conditions 

Figure 3.8 Dark adapted stationary green light-evoked PLR of WT control mice and WT mice given the 

MOR specific antagonist CTAP were significantly different, however, the PLRs of MKO mice, McKO mice, 

and WT mice injected with CTAP were not significantly different. WT control (white bar), WT with CTAP 

(purple bar), MKO control (teal bar), and McKO control (yellow bar). Average ± SEM.  **:p<0.01. One way 

ANOVA and Holm-Sidak pairwise multiple comparisons.  
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compared to control is in accordance with previous studies in man in which opioids decreased 

the constriction velocity of the PLR (Grace et al., 2010). The absence of DAMGO effect in 

McKO mice indicates that although MOR expression is not restricted to ipRGCs in the mouse 

retina (Gallagher et al., 2012), MORs expressed by ipRGCs are necessary and sufficient to 

mediate opioid action on the bright blue light evoked PLR. 

It is of note that the PLR in response to bright blue irradiance was greater in the MKO 

mice compared to the McKO mice, Fig 3.6. As previously mentioned, synaptic inputs onto 

ipRGCs downstream of rods and cones, including ON/OFF bipolar cells and amacrine cells, have 

been shown to extend the dynamic range of ipRGCs in both the intensity and temporal frequency 

domains (Wong et al., 2007). Given that our prior work showed that MOR action in ipRGCs 

reduces excitability without affecting phototransduction (Cleymaet et al., 2019), DAMGO is 

expected to reduce ipRGC signaling both when driven by rod/cone inputs and by the intrinsic 

melanopsin phototransduction pathway under bright light conditions. The greater pupillary 

constriction in response to bright blue light in the MKO group vs. the McKO group suggests that 

in the McKO group, in which MORs are absent from ipRGCs alone, opioids may be exerting a 

greater inhibitory effect on elements of the retinal circuit downstream of the rod-cone 

photoreceptors (Gallagher et al., 2012) that are relevant for the integrated rod-cone and 

melanopsin mediated PLR in response to bright blue irradiance (Güler et al., 2008). Specifically, 

the inhibitory effects of opioids on the cone circuit mediated PLR are expected to be greater than 

on the rod circuit mediated PLR. While rod contribution to the PLR is minimal above the 

melanopsin stimulating light threshold (McDougal and Gamlin, 2010), cones do contribute to 

maintaining miosis at both low and high irradiances if permitted to dark adapt as per the 

paradigm used in these experiments (Gooley et al., 2012). Besides the relative contribution of the 



 92 

different photoreceptor classes to the PLR, previous studies suggest a link between opioids and 

inhibition of cone mediated retinal events. For example, dopamine release is greater in light 

adapted retinas vs. dark adapted retinas i.e. the cone circuit drives retinal dopamine release 

(Dong and McReynolds, 2017). Dopamine stimulates mydriasis (Bartošová et al., 2018), and 

opiates inhibit retinal dopamine release (Dubocovich and Weiner, 1983); as such, under 

DAMGO conditions, dopamine antagonism may account for the enhanced effect on cone-circuit 

mediated PLR in response to bright blue light. Alternatively there may be centrally mediated 

opioid effects, though this is less likely considering the ~100 µM DAMGO intravitreal 

concentration in the present study (see Materials and Methods) and that considerably larger 

concentrations of DAMGO administered directly to CNS are required to produce behavioral 

effects, with intracerebroventricular application (1-5 µg)(Liang et al., 2015) and direct, bilateral 

administration of DAMGO to the nucleus accumbens (2.5 µg /site, but not 0.25 µg /site) required 

for significant effects on behavior using a wheel running assay (Ruegsegger et al., 2015).  

The PLRs of MKO mice, McKO mice, and WT control mice were not significantly 

different; this may be due to compensatory mechanisms developed in the knockout mice from 

birth. 

CTAP’s enhancement of the rod/cone driven PLR in the dark-adapted retina and 

melanopsin driven PLR under photopic conditions in WT mice is consistent with b-endorphin’s 

being released in the dark adapted retina (Morgan and Boelen, 1996). And, given that the PLRs 

of MKO mice, McKO mice, and WT mice injected with CTAP were not significantly different, 

the intraocular application of CTAP appears to mimic the loss of opioid effects upon both the 

retinal circuit downstream of rods/cones and the melanopsin driven PLR achieved via knockout 

of systemic and ipRGC localized MORs, respectively. 
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Role for endogenous opioid regulation of the PLR 

Is there a physiologic role for endogenous opioid regulation of the pupil? Regarding 

resting pupil size, systemically applied enkephalins in rats (Tortella et al., 1980) and mice 

(Korczyn et al., 1980) produce resting mydriasis that is antagonized by naloxone. However, in 

the mouse, it seems unlikely that endogenous enkephalins have a significant role in the 

physiologic control of resting pupil size as neither pure naloxone blockade nor prolongation of 

endogenous enkephalin half-life altered pupil diameter (Korczyn et al., 1980). Nonetheless, 

given that separate neural mechanisms control pupil size vs. the PLR and that the effect of 

MORs on each is species-specific, endogenous opioids may yet have a physiologic role in the 

modulation of PLR.  

Enkephalins (Altschuler et al., 1982; Britto and Hamassaki-Britto, 1992; Pan et al., 2008) 

and b-endorphin (Gallagher et al., 2010) have been detected in the avian and mammalian retina. 

For these endogenous opioids to regulate the PLR, there must also be receptors for opioids on 

cells within the retinal circuit relevant for the PLR. Retinal opiate binding sites have been 

demonstrated in several species, including chick, rabbit, goldfish, rat, mouse, cow, toad, and 

skate (Howells et al., 1980; Slaughter et al., 1985; Gallagher et al., 2012; Cleymaet et al., 2019). 

It has been shown that opioid receptor subtypes facilitate different, stereospecific opioid effects 

on pupil control (Robin et al., 1985). While substrate specificity is not exclusive, of the 

endogenous opioids, enkaphalins bind preferentially to d-opioid receptors and b-endorphin to µ-

opioid receptors (Kieffer, 1995), and the latter’s effects on the PLR are the subject of this study.  

In the present study, DAMGO did not significantly impair static PLR stimulated by 

bright blue light in the dark-adapted retina but did negatively regulate rod-cone mediated PLR. 

This is not surprising given that the photoisomerization of only a few hundred melanopsin 
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molecules is all that is necessary to trigger a PLR (Do et al., 2009), and near total ablation of the 

ipRGC population does not prevent the PLR (Güler et al., 2008). Opioids could thus potentially 

allow more low-irradiance light through the pupillary aperture to allow for improved vision 

during night hours. Furthermore, given that CTAP significantly enhanced rod-cone mediated 

PLR in the dark-adapted retina but not melanopsin-mediated PLR in the light-adapted retina, we 

suspect that CTAP may well generate a blockage against the regulatory effects of endogenous 

opioids. In a light adapted retina, there maybe be less of an endogenous opioid tone and thus 

CTAP’s disinhibitory effects are less robust. The data suggests that endogenous opioids are 

present in the dark-adapted retina and exert a modest inhibition on PLR mediated by the 

endogenous phototransduction cascade of ipRGCs as well as on PLR triggered by mesopic / dim 

scoptopic light intensities.  

There is evidence for circadian variation in systemic opioid tone, akin to other 

neuropeptides known to regulate ipRGC signaling such as dopamine and adenosine (Ribelayga et 

al., 2004; Witkovsky, 2004; Van Hook et al., 2012; Sodhi and Hartwick, 2014). Total opioid 

levels in murine brains is increased in the late afternoon (Wesche and Frederickson, 1979), and 

pain-induced plasma b-endorphin levels peak at midnight (Rasmussen and Farr, 2003). In rat, 

there is also an increased degree of opiate receptor binding at night (Naber et al., 1981). An 

increase in nighttime retinal opioid levels and binding to MORs on ipRGCs could account for the 

previously documented nighttime reduction in the ipRGC driven pot-illumination pupil response 

(PIPR) in man (Zele et al., 2011), in addition to the results observed in the present study. 

However, in the young rat CNS (specifically the anterior pituitary), POMc mRNA levels are 

lowest in the afternoon and early evening (Cai et al., 1997), although it is unclear how closely b-

endorphin release follows the circadian rhythm of POMC expression. 
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Might opioids also affect the intrinsic PLR (iPLR), i.e. ipsilateral miosis in response to 

photic stimulation of the retina without input to the brain? Both melanopsin and MORs are 

expressed by the ciliary muscles of the iris (Bonfiglio et al., 2006; Wang et al., 2017). Recent 

studies also showed putative M1 ipRGC processes reach the ciliary muscles and that the iPLR is 

driven by melanopsin signaling from ipRGCs (Xue et al., 2011; Rupp et al., 2013; Schmidt et al., 

2014b; Semo et al., 2014). Together with prior data showing MOR expression on ipRGC 

processes (Cleymaet et al., 2019), this suggests that opioid action on the ciliary muscles might 

not be independent of ipRGCs. However, the effect of opioids on the iPLR are beyond the scope 

of the current study as we were only able to analyze the eye contralateral to the injected eye as 

reflex uveitis secondary to the injection procedure precluded the analysis of local opioid effects 

on the iPLR in the injected eye. 

Considerations for clinical practice  

It is of note that chromatic pupillometry is now utilized for the differentiation of retinal 

disease (inner vs. outer) and optic nerve disease in both human and veterinary medicine (Park et 

al., 2011; Rukmini et al., 2015; Yeh et al., 2017). The PLR is utilized in non-ophthalmic 

applications as well, with melanopsin-mediated PLR deficits considered an indicator for 

increased vulnerability to major depressive disorder in low light conditions (Laurenzo et al., 

2016). Given the prevalence of therapeutic opioid use, opioid modulation of the PLR should be 

taken into consideration when interpreting the results of diagnostic pupillometry. On the other 

hand, akin to resting pupillary diameter serving as an indicator of systemic opioid administration, 

altered PLR dynamics may represent a novel biomarker for response to / efficacy of opioid 

(ab)use therapy. For example, pupillary unrest under ambient light (PUAL) is depressed by 
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opioids, and there is a positive correlation between higher levels of post opioid administration 

PUAL changes and greater analgesia (Neice et al., 2017).  

Conclusion  

Our results indicate that intraocular opioids acting on MORs of ipRGCs are negative 

modulators of the PLR and are suggestive of a potential increase in endogenous opioid 

concentrations in the dark-adapted retina. Future studies should investigate the effect of systemic 

opioid administration on both the static and dynamic PLR, as this may have significant impact on 

the interpretation of diagnostic pupillomtery and as well serving as a potential biomarker of 

systemic opioid effect.   
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CHAPTER 4. CONCLUSION  

 

 

The specific aims of the body of this work were to: (1) Analyze the molecular mechanism 

by which opioids modulate light-evoked signaling of ipRGCs; (2) Determine if acute inhibition 

of ipRGC signaling via MORs reduces pupillary light reflex (PLR) and (3) alters circadian 

rhythm of wheel running and the sleep/wake cycle. Chapters 2 and 3 provide support the notion 

that opioids alter light-evoked activity of ipRGCs and this has behavioral consequences 

detectable at the reflex level i.e. the PLR.  The methods by which aim 3 might be addressed and 

the translational potential / clinical relevance for this work will be discussed here.  

Investigating if acute or chronic stimulation of MORs on ipRGCs triggers wheel running 

behavior in mouse and/or extended wakefulness 

The negative modulatory effects of MOR stimulation on ipRGCs on the PLR provide 

evidence at the reflex level that opioids can affect downstream functions mediated principally by 

ipRGCs. There is evidence that ipRGCs are critical for the hypothalamic regulation of sleep and 

circadian rhythms (see section 1.3.2). It is now important to investigate if the cellular effect 

noted in M1 ipRGCs is strong enough to facilitate a shift in circadian rhythms of sleep and 

wakefulness.  

Existing evidence for opioids and their role in circadian rhythm and sleep disturbance  

Given that the majority of clinically relevant opioid drugs bind to MORs (McDonald and 

Lambert, 2016), this discussion will focus on that classical opioid receptor subtype. What 

evidence exists for opioids modulation of circadian rhythms and sleep/wake cycles?  

Regarding circadian effects of systemically applied opioids, in mice, high dose morphine 

injections during the subjective night (the active period of these nocturnal animals) induced 
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phase shifts, but not when administered during other times. Morphine caused hyperactivity, and 

when wheel running was prevented, morphine no longer induced a phase shift, suggesting that 

the action of the opioid was due to behavioral alterations rather than direct pacemaker effects. 

Furthermore, bilateral enucleation did not alter the results, suggesting that these effects were not 

mediated through the retina or its input upon the circadian pacemaker (Marchant and 

Mistlberger, 1995). Subsequently, the same group investigated if morphine could induce 

behavioral inhibition of photic circadian resetting. They found that pretreatment with morphine 

caused a 63% attenuation of late night light pulse-induced phase advances; morphine’s inhibition 

of phase advances was prevented by activity restriction (Mistlberger and Holmes, 1999). An 

investigation of morphine’s acute and chronic effects (achieved via continual release of 

morphine from a pellet implant) on circadian locomotor activity patterns revealed that acutely 

there was a significant increase in total locomotor activity and moreover the circadian pattern of 

that activity was markedly altered compared to baseline. Chronically i.e. after three days of 

morphine administration, the activity had returned to baseline levels. Upon withdrawal, there 

was again a upswing of locomotor activity and its circadian rhythms were again altered 

compared to baseline (Glaser et al., 2012).  

Multiple studies have also been carried out in the hamster, which in contrast to rats and 

mice, is a diurnal species (Gattermann et al., 2008).  In the hamster, MOR agonism does not 

increase the animal’s activity, allowing for isolation of the effect of opioids on the circadian 

pacemaker. The injection of fentanyl, a MOR agonist, in the middle of the day induced phase 

advances (Meijer et al., 2000). A later study demonstrated similar findings (Vansteensel et al., 

2005).  During the subjective day, light alone did not induce a phase advance but did block that 

of fentanyl. During the subjective night, the inverse is true; fentanyl alone did not induce a phase 
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advance but did block that of light. Here, fentanyl appears to be functioning as a blind to light 

induced circadian alterations. Additionally, naloxone blocked the phase shifts in vivo, confirming 

opioid receptor involvement in the circadian modulations. Fentanyl additionally suppressed SCN 

firing rate in vitro as well as light induced nighttime Period 1 gene expression, suggesting that 

the effect of opioids on hamster circadian rhythm is mediated by direct modulation of neuronal 

activity in the SCN as well as regulation of Per genes (Vansteensel et al., 2005).  

What can be concluded from the circadian effects of opioids in animals? In some species, 

opioids can have direct effects on the circadian pacemaker and can functionally blind it to photic 

stimuli. In mice, it would appear that any circadian effects from opioids are behaviorally 

mediated; however, additional mechanisms cannot be ruled out as excitation vs. depression of 

locomotor activity in the mouse is known to be dose, chronicity, and mouse-strain dependent 

(Babbini and Davis, 1972; Murphy et al., 2008). And, as previously discussed, an organism’s 

circadian rhythms do not directly translate to sleep/wake states but can indirectly affect sleep via 

circadian phase adjustment. 

Regarding effects of systemically applied opioids on the sleep/wake patterns of animals, 

morphine and/or b-endorphin administrations has been shown to decrease sleep in rabbits 

(Khazan and Sawyer, 1964), rats in a dose dependent manner (Khazan et al., 1967; Arankowsky-

Sandoval and Gold, 1995), and cats (with reversal of opioid effects by nalaxone) (Echols and 

Jewett, 1972; King et al., 1981; Cronin et al., 1995). In the dog, however, morphine increased the 

sleep; these effects were antagonized by naloxone (Pickworth and Sharpe, 1979). The authors 

suggested that the increased somnolence may be drug history dependent i.e. the dogs used in the 

study were naïve to morphine, however in the above rat and cat studies, the animals were also 
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opioid naïve and responded with hyposomnolence at the start of their treatment cycles; as such 

there may be species specific opioid effects.  

In man, sleep disorders can be classified as insomnias and circadian rhythm disorders. 

There are additional disorders such as parasomnias, sleep breathing disorders etc. that are not 

relevant to this thesis. Insomnia is defined as difficulty falling or staying asleep. Within the 

classification of circadian rhythm disorders, there exist the following: jet lag, shift work 

disorders, advanced or delayed sleep phase, and irregular sleep/wake rhythm (no discernable 

sleep wake pattern) and non-24 sleep/wake rhythm (progressively later sleep time). While 

opioids have sedating effects, there is significant evidence that they disrupt actual sleep. 87.7% 

of patients dependent on opium have poor sleep quality (Khazaie et al., 2016). Subjectively, 

opioid-dependent individuals undergoing methadone detoxification have reported difficulty in 

initiating and maintain sleep with poor sleep quality and efficiency as well as sleep at 

inappropriate times. The last category is reported in substance-dependent individuals in general, 

as they typically adopt nocturnal lifestyle patterns due to perturbations in circadian rhythms. 

And, while several of these categories have been reported by patients with depression or anxiety, 

reports of inadequate/poor sleep quality are unique to the opioid-dependent population (Oyefeso 

et al., 1997). Additional circadian rhythm disruption has been reported in acutely abstinent 

heroin-dependent individuals; with loss of diurnal rhythmicity in hPER1 and 2 mRNA 

expressions as well b-endorphin, ACTH, cortisol, leptin, and IL-2 release. These neurobiological 

changes were protracted, most lasting at least 30 days (Li et al., 2009).  

Sleep disruption and increased wakefulness has also been shown in man via studies that 

objectively examine the effect of opioids on sleep stages using electroencephalograms (EEGs) or 

polysomnography. In healthy, non-dependent adults, heroin (Lewis et al., 1970), morphine 
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and/or methadone (Shaw et al., 2005; Dimsdale et al., 2007), morphine and/or methadone  

(Dimsdale et al., 2007) have been shown to decrease sleep duration and quality. In the opiate-

dependent population, similar disruptions of sleep have been found with acute and chronic 

morphine administration (Kay et al., 1969; Kay, 1975a; Kay et al., 1981) as well as acute 

methadone administration (Pickworth et al., 1981), though tolerance to methadone’s adverse 

effects on sleep is possible (Kay, 1975b), which may lend support to that opioid’s use in 

replacement therapy. Similar negative effects of sleep are noted with heroin (Kay et al., 1981), 

with heroin having the strongest effects when compared to those of morphine and methadone 

(Kay et al., 1979).  

Proposed future directions  

While opioids may certainly be capable of mediating their sleep disruptive effects via 

central mechanisms, no consensus has been reached on which specific CNS sites therapeutic or 

abused opioids act upon to trigger sleep abnormalities (Angarita et al., 2016). Given the 

importance of ipRGC signaling on the activity of the circadian pacemaker, such centrally 

mediated opioid effects do not rule out a potential role for opioid modulation of ipRGC signaling 

and thereby circadian rhythms and the sleep wake state. Given the notion that light can both 

directly and indirectly impact the sleep/wake state, it is of interest to understand if and how 

opioids might modulate ipRGC signaling. 

In order to use the MKOs and McKOs as models for assessing the effect of acute MOR 

mediated inhibition of ipRGCs on wheel running behavioral activity, we must first demonstrate 

if they are (or are not) still capable of photoentrainment. Akin to those experiments performed by 

(Güler et al., 2008) with Opn4aDTA/aDTA mice, MKO and McKO vs. WT wheel running activity 

should be assessed first under constant dark (DD) to determine if the MKOs and McKOs possess 
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functional circadian oscillators that determine standard period lengths. If capable of 

photoentrainment, the MKOs and McKOs should also be capable of responding to (1) 

advancements / delays of the photoperiod by synchronizing with the shifted cycle as 

demonstrated by a stable phase relationship with the new photoperiod(s) (2) light pulses as 

demonstrated by delayed phase onset of activity. Additionally, established effects of sex and 

potential effect of genotypes on wheel-running activity patterns should be verified in both the 

MKOs and McKOs, as well as the WT mice (Lightfoot et al., 2004). 

Once the MKO and McKO models are validated, bilateral intravitreal injections of 

DAMGO and morphine can be administered in the middle of the light phase (7 h after light ON) 

when the homeostatic drive to sleep in mice is minimal. One control group should receive saline 

and be kept in light conditions identical to the drug injected mice. Wheel running activity should 

be recorded and compared across groups.  If our hypothesis is correct, we would anticipate a 

larger increase in wheel running in WT mice that receive opioid agonists compared to mice 

receiving saline. We also expect opioid agonists to trigger more wheel running in WT  mice 

during the day than in MKOs or McKOs. The timing of the intraocular opioid 

administration/homeostatic drive for sleep should also influence the effect of intraocular opioids; 

specifically, we expect strong wheel running following opioid agonists administered 7 h into the 

light phase, when the homeostatic drive for sleep diminishes. The interpretation of such results 

will be relatively straightforward: in the nocturnal mouse, inhibition of (Brn3b-, M1) ipRGCs via 

MORs simulates acute dark exposure and triggers wakefulness as well as wheel running activity 

(Altimus et al., 2008; Lupi et al., 2008). If we see no increase in the wheel running of MKO and 

McKO mice after DAMGO, the interpretation would be that MORs expressed by ipRGCs are 

critical in mediating the intraocular DAMGO effect on wheel running. 



 103 

Although wheel running correlates well with circadian activity (De Visser et al., 2005; 

Altimus et al., 2008), it is not an exclusive measure of sleep/wake cycle (Novak et al., 2012). As 

such, to test the notion that systemically applied opioids alter the circadian rhythm of the 

sleep/wake cycle by inhibiting ipRGC signaling via MORs, WT, MKO, and McKO opioid 

dependent mice (established via the use of sustained release morphine pellets or osmotic mini 

pumps) will have their sleep/wake rhythm assessed by analysis of telemetrically transmitted 

recordings of two implanted biopotentials, i.e. EEG and EMG (Borniger et al., 2013). If our 

hypothesis is correct, we would anticipate that the circadian activity pattern in control animals 

receiving chronic opioid treatment will change over time i.e. we expect reduced activity at night 

and increased activity during the subjective day. In contrast, we expect no change in the MKO 

and less or no change McKO mice. Our interpretation of such results will be as follows: opioids 

accumulating in the vitreous inhibit light-evoked ipRGC signaling, therefore simulating 

darkness, even during the day. This would trigger wakefulness in the nocturnal mouse during the 

day. 

Translational potential / clinical relevance 

From a clinical perspective, it is important to note that disrupted sleep directly results in 

negative modulation of pain thresholds. In the rat, sleep disruption results in hyperalgesia which 

is reversed by sleep recovery (Onen et al., 2000). In man, total sleep deprivation similarly results 

in hyperalgesia, with sleep recovery providing an analgesic effect (Onen et al., 2001). Given the 

sleep disruptive effects of opioids, it may be that opioid administration represents a double-edged 

sword; while alleviating pain, opioids also decrease the pain threshold – thereby setting patients 

up for ever increasing opioid requirements and the attendant co-morbidities of excess opioid use. 

This may also bear relevance on abusers of opioids and risk for recidivism; sleep problems noted 
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in opioid-dependent patients have a negative impact on substance abuse treatment outcome 

(Burke et al., 2008). Furthermore, of patients on methadone maintenance treatment, those rated 

as poor sleepers also had higher levels of psychiatric disease such as anxiety and depression, 

chronic pain, drug abuse, and unemployment (Stein et al., 2004; Peles et al., 2006, 2009). As 

such, the translational potential of this project is significant: the results will directly predict if 

MORs expressed by ipRGCs could be considered as therapeutic targets for focally delivered 

MOR selective antagonists to reduce the severity and inherent comorbidities of sleep disorders in 

patients receiving chronic opioid treatment. 

Beyond sleep disorders, ipRGCs and the light signals they convey to the central nervous 

system are important for regulation of mood, learning, and cognitive function. Irregular light, 

e.g. as a consequence seasonal day length changes, transmeridian travel, and shift work, can 

negatively impact mental health leading to disorders such as depression, season affective 

disorder (SAD), and impaired learning / cognition (Legates et al., 2012). Indeed, patients with 

SAD manifest a reduced melanopsin-mediated post illumination pupil response (PIPR) 

(Roecklein et al., 2013). Circadian desynchronization has also been shown to promote metabolic 

pathologies including but not limited to impaired glucose tolerance, systemic blood pressure 

dysregulation, insulin resistance, obesity, and eating disorders (Albrecht, 2012). In migraneurs, 

photic signaling of ipRGCs plays an important role in the exacerbation of migraine-type 

photophobia, wherein headaches are exacerbated by light and there is abnormal sensitivity to 

light, and also photo-oculodynia, or light-induced ocular pain. The effects are mediated by 

enhanced activity of relay posterior thalamic trigeminovascular neurons (Noseda and Burnstein, 

2011).  
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Thus, in addition to amelioration of pupillary dysfunction and sleep disorders in chronic 

opioid users, MORs and modulation of their signaling on ipRGCs suggests a potential new target 

for therapy of light-mediated disorders. However, therapy for such disorders would need to be 

specifically directed so as not to disrupt the physiologic and beneficial roles of ipRGCs in non-

imaging forming vision. 
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