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ABSTRACT 

 

 

 

TROPHIC RELATIONSHIPS IN SOIL COMMUNITIES: HOW ABIOTIC STRESS AFFECTS 

BIOTIC INTERACTIONS IN THE MCMURDO DRY VALLEYS, ANTARCTICA  

 

 

Understanding of the distribution and complexity of soil food webs and their role in 

ecosystem processes is limited. This is partially due to the difficulty studying the enormous 

diversity of species in belowground ecosystems and identifying the many roles of this diversity 

in ecosystem processes. Despite this, there is strong interest in understanding how the soil food 

web contributes to ecosystem processes such as decomposition, nutrient cycling, and carbon 

cycling. Yet, before we can fully understand how soil food webs are linked to ecosystem 

processes, more information is needed on their complex trophic interactions and how soil food 

webs respond to changing environmental variables. The McMurdo Dry Valleys in Antarctica 

provide an excellent opportunity to study soil communities and their trophic interactions because 

of soil food web simplicity and limited ecological interactions that are not easily distinguished in 

more diverse systems. However, it is unknown whether trophic interactions actually play a role 

in structuring soil communities in this ecosystem and whether these interactions are affected by 

environmental factors. The aim of this dissertation is to disentangle those questions.   

 In the first chapter of this dissertation, I give the background for my research. I introduce 

the challenges for studying soil biodiversity and its food web structure. Next, I discuss the 

usefulness of the McMurdo Dry Valleys as a simple, model system for researching trophic 

interactions in soil. The details of the current understanding of the McMurdo Dry Valley soil 

food web are demonstrated and I have highlighted gaps in this knowledge. In the second chapter 
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of this dissertation, I address the question: What trophic interactions are present in the McMurdo 

Dry Valley soils? Here, I sought to elucidate the soil food web structure using stable isotopes 

(particularly 15N) and I present isotopic signatures for soil fauna taxa for one location in Taylor 

Valley, Antarctica. The natural abundance of 13C and 15N were measured for soil fauna and 

microbial mats sampled in both wet and dry soils near Von Guerard stream. This study revealed 

that three trophic levels were present in wet soils at this location and two trophic levels were 

present in dry soil. This is the first isotopic confirmation of Eudorylaimus antarcticus 

(Nematoda) as an omnivore-predator (in wet soil habitat), and challenges long-held assumptions 

of trophic simplicity of the McMurdo Dry Valley region.  

 Building on the findings of Chapter 2, Chapter 3 seeks to expand the understanding of 

dry valley food webs and the role of trophic interactions in structuring communities under 

environmental change. Specifically, I address the question: How do environmental variables (soil 

salinity and moisture) affect dry valley soil taxa and their trophic interactions? I show the results 

of a laboratory microcosm experiment on how elevated salinity and moisture affect four soil 

communities. Using soil collected from Taylor Valley, Antarctica, bacteria, bacteria with 

Scottnema lindsayae, bacteria with E. antarcticus, and bacteria with both S. lindsayae and 

E. antarcticus were established in microcosms under control or high salinity treatments and 

control or high moisture treatments (full factorial design). The results of this experiment showed 

that S. lindsayae has top down effects on bacterial abundance under control salinity but these top 

down effects were alleviated under high salinity. This study is the first to empirically show that 

biological interactions structure dry valley soil communities. 

 The fourth chapter follows the conclusions of Chapters 2 and 3, and seeks to determine 

food web structure and trophic interactions at the landscape scale in the McMurdo Dry Valleys. I 
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sampled soil from 160 sites across 8 valleys ranging from the coast to high elevation near the 

polar plateau to address the question: How does the soil food web and its organic carbon sources 

vary across the McMurdo Dry Valley landscape with distance from coast and elevation? These 

valleys represent a temperature and moisture gradient, which affects ecosystem primary 

productivity. This study revealed that food web structure varies by habitat – the most diverse and 

complex trophic interactions exist in wet habitat near the coast where resources are more 

abundant. However, in dry habitat, where organic carbon resources are scarce, up to two trophic 

levels exist. These results build off of Chapter 2, and show that E. antarcticus can occupy either 

a predator trophic position when resources are high (wet soil) or a primary consumer position 

when resources are low (dry soil). Since climate-driven increases in hydrological connectivity 

are expected to alter soil moisture and resources, the distribution and abundance of soil 

biodiversity and their biotic interactions in formerly dry soil habitats may ultimately shift.   

  In Chapter 5, I asked if the lessons learned about soil food webs in the McMurdo Dry 

Valleys apply to a more complex ecosystem? In this study, I used soil nematode communities 

from the Loch Vale Watershed (Rocky Mountain National Park, Colorado) to test whether long-

term nitrogen addition affected soil food web structure and function. Results from this study 

indicated that a faster-cycling, bacterial food web was prevalent in N-addition plots, as 

evidenced by abundance of r-selected bacterivore nematodes. Previously, lower bacterial 

abundance and soil carbon were found in the N-addition plots (compared to control) and the 

results presented in this dissertation suggest that these changes are likely trophic. Along with 

Chapter 3, the evidence that I present here support the hypothesis for top-down effects of 

microbivore nematodes on bacteria, which is consistent in subalpine and Antarctic soils.  
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In summary, through both field and laboratory experiments, my PhD project has: 

1) defined the soil food web structure of the McMurdo Dry Valleys using stable isotopes; 

2) revealed how top down interactions affect bacteria populations and how elevated stress (e.g. 

soil salinity) relieves the top down pressure; 3) showed how the soil food web structure varies 

across the landscape of the McMurdo Dry Valleys, Antarctica as related to soil C sources; and 

4) shown how nitrogen addition affects soil food web dynamics in Colorado sub-alpine 

soil nematode community (Loch Vale Watershed, LVWS, Rocky Mountain National 

Park). These results have informed our understanding of soil communities and their 

trophic relationships in polar and subalpine ecosystems.  

  



vi 

ACKNOWLEDGEMENTS 

 

 

 

First of all, I owe a huge amount of gratitude to my advisor, Diana Wall, without whom, 

none of this work would have been possible. Diana was a fantastic mentor, advocate, teacher, 

and friend. Her passion and enthusiasm for soil biodiversity is infectious, and her curiosity, 

inclusiveness, and love for science is inspiring. I cannot thank her enough for her guidance over 

the past 8 years. I would also like to thank Jill Baron for enthusiastically adopting me into her 

long-term project and including me in her lab group meetings. Thank you to my committee 

members: Mike Gooseff, Mary Stromberger, and Jill Baron whose thoughtful feedback and 

advice helped shape my research.  

 I received an enormous amount of help in the field and lab over the years. I would like to 

thank Cecilia Tomasel, who manages the Wall Lab, for keeping the lab running smoothly and 

always working hard behind the scenes. She never gets enough thanks. Thank you to current and 

former Wall lab members Walter Andriuzzi, Elizabeth Bach, Andre Franco, Cecilia Tomasel, 

Kaytee Ankrom, Pingting Guan, Tandra Fraser, Matthew Knox, Nisha Gill, Diana Granados, 

Abby Jackson, Deanna Cox, Emily Bernier, and Will Beaton for all of the help in the lab and 

field, and for reading my messy drafts and giving thoughtful feedback. Your friendship and 

community over the years has been invaluable to me. Thanks also to the McMurdo Long Term 

Ecological Research (MCM LTER) team and its leaders for so much support throughout my 

research. I am especially grateful to Berry Lyons and Ross Virginia whose mentorship has been 

invaluable.  

Thanks to the Crary Laboratory staff, Stable Isotope Mass Spectrometry Laboratory at 

Kansas State University, and PHI helicopters whose assistance with lab and fieldwork helped 



vii 

make this work possible. This work was funded by the United States National Science 

Foundation (NSF) for the MCM LTER site, NSF OPP 1115245. Geospatial support for Chapter 

1 was provided by the Polar Geospatial Center under NSF OPP awards 1043681 & 1559691.  

 I am and will always be grateful for my family, for their never-ending love and support. 

My sister, Sarah, has been my lifetime cheerleader – always ready to put a positive spin on 

whatever’s getting me down and to support me no matter the hour without complaint. I am 

forever thankful to my parents, Mark and Laura Shaw, who worked hard to give Sarah and me 

the best education possible. My dad, Mark, inspired my love for nature and its abundant life. I 

treasure my memories of us flipping over rocks looking for crawdads, chasing lizards, and 

watching him get so excited over a turtle or a bird or a fish. He started me on this crazy journey 

without even knowing it. My mom, Laura, showed me what it means to be a light in this world 

through her unending positivity, selflessness, and kindness. She’s also one of the most fun 

people that I know and taught me that to enjoy life sometimes all you need is a good sense of 

humor, music that makes you want to dance, or time with friends. I’m also thankful to the Adams 

clan, who quickly adopted me into their family and for their generous love, support, and jokes.  

 Finally, I am thankful to my husband – my partner and best friend in life – Kevin Adams, 

for so many more reasons than I can describe here.  

  



viii 

TABLE OF CONTENTS 

 

 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... vi 

LIST OF TABLES ......................................................................................................................... ix 

LIST OF FIGURES .........................................................................................................................x 

Chapter 1 – Introduction  .................................................................................................................1 

Chapter 2 – Stable C and N isotope ratios reveal soil food web structure and identify the 

nematode Eudorylaimus antarcticus as an omnivore-predator in Taylor Valley, Antarctica .........5 

Summary ..............................................................................................................................5 

Introduction ..........................................................................................................................6 

Methods................................................................................................................................8 

Results and Discussion ......................................................................................................10 

Chapter 3 – Biotic interactions in experimental Antarctic soil microcosms vary with abiotic 

stress ...............................................................................................................................................19 

Summary ............................................................................................................................19 

Introduction ........................................................................................................................20 

Methods..............................................................................................................................24 

Results ................................................................................................................................29 

Discussion ..........................................................................................................................31 

Chapter 4 – Soil food web complexity varies with carbon source across the McMurdo Dry 

Valley landscape ............................................................................................................................42 

Summary ............................................................................................................................42 

Introduction ........................................................................................................................43 

Methods..............................................................................................................................47 

Results ................................................................................................................................51 

Discussion ..........................................................................................................................53 

Chapter 5 – Nitrogen addition affects the soil nematode community structure and successional 

maturity in a subalpine forest .........................................................................................................65 

Summary ............................................................................................................................65 

Introduction ........................................................................................................................66 

Methods..............................................................................................................................68 

Results ................................................................................................................................71 

Discussion ..........................................................................................................................72 

Chapter 6 – Conclusions  ...............................................................................................................81 

REFERENCES ..............................................................................................................................87 

APPENDIX 1 ...............................................................................................................................100 

APPENDIX 2 ...............................................................................................................................104 

  



ix 

LIST OF TABLES 

 

 

 
TABLE 2.1: Abundance of taxonomic groups from Taylor Valley soil samples in total live individuals 

kg-1 dry soil. Data are shown as mean ± standard error. Dry soil (n=3) corresponds to samples 1, 2, and 3, 

which were >5m from the stream and had soil moisture <1% (gravimetric). Wet soil (n=3) corresponds to 

samples 4, 5, and 6, which were <5m from the stream and had soil moisture >17% (gravimetric). .......... 15 

 

TABLE 3.1: Effects of salinity and moisture on soil taxa from population to ecosystem ......................... 36 

 

TABLE 3.2: ANOVA table. Effects of community (C), moisture (M), and salinity (S) treatments on 

Eudorylaimus total abundance, Scottnema total abundance, Scottnema adults, Scottnema juveniles, 

Scottnema females, Scottnema males, total bacterial cells, fungal biomass (d.f. = degrees of freedom). 

Significance was accepted at alpha<0.05 and is denoted by (*). ................................................................ 37 

 

TABLE 4.1: Mean values of species richness, total fauna abundance, and nematode, rotifer, and 

tardigrade abundance (±standard error). ..................................................................................................... 57 

 

TABLE 4.2: Results of two-way ANOVA. Effects of location (L) and habitat (H) and their interaction 

(L*H) on food web connectance, trophic link density, diversity, and total soil fauna abundance (d.f. = 

degrees of freedom). ................................................................................................................................... 58 

 

TABLE 4.3: Results of mixed effects models. With location in Taylor Valley as a random effect, the 

effects of habitat and elevation on food web connectance, link density, diversity, total soil fauna 

abundance, Scottnema abundance, Eudorylaimus abundance, Plectus abundance, rotifer abundance, and 

tardigrade abundance (d.f. = degrees of freedom, t = t-value, p=p value). Significance was accepted at 

alpha<0.05 and is denoted by (*). ............................................................................................................... 59 

 

TABLE 5.1: Nematode families shown by their trophic group, colonizer-persister value (c-p), and 

relative abundance by year and treatment (mean ± standard error, n=12). Significant results from the 

mixed model for each family are shown (p<0.05); T= treatment and Y=year. Different lowercase letters 

denote significant differences across treatments and years (LSMeans, p<0.05). Groups with no letters had 

no significant differences between years/treatments ................................................................................... 76 

 

TABLE 5.2: Mean values of nematode diversity, nematode community indices, nematode trophic group 

abundances, and other soil fauna groups (±standard error, n=12). Significant results from the mixed 

model are shown (p<0.05). Different letters denote significant differences across treatments and years 

(LSMeans, p<0.05). Groups with no letters had no significant differences between years/treatments. ..... 77 

 

TABLE A1.1: Record of samples collected by valley and year .............................................................. 100 

 

 

  



x 

LIST OF FIGURES 

 

 

 
FIGURE 1.1 – Current understanding of the McMurdo Dry Valleys soil food web (adapted from Wall 

and Virginia 1999) ........................................................................................................................................ 4 

 

FIGURE 2.1: Location of study site near Von Guerard stream in the Lake Fryxell basin in Taylor Valley, 

Antarctica. Taylor Valley is located in the McMurdo Dry Valleys of Southern Victoria Land, Antarctica 

(inset). Map created by Brad Herried, Polar Geospatial Center.................................................................. 16 

 

FIGURE 2.2: δ 13C and δ 15N signature of fauna groups from wet soil within 5 m of Von Guerard stream 

in Taylor Valley, Antarctica. Data presented are ‰ and are means with standard error bars. ................... 17 

 

FIGURE 2.3: δ 13C and δ 15N signature of fauna groups from dry soil 5 to 10 m from Von Guerard stream 

in Taylor Valley, Antarctica. Data presented are ‰ and are means with standard error bars. ................... 18 

 

FIGURE 3.1: Community and salinity treatment effects on total bacterial cells. Treatments on the x-axis 

are Control salinity and High salinity. Colors correspond to community treatments: N= no nematodes 

(control), S= Scottnema only, E = Eudorylaimus only, B = Both Scottnema and Eudorylaimus. Different 

letters denote community treatments with significant differences (p<0.05, LSMeans). ............................. 38 

 

FIGURE 3.2: Salinity treatment effects on (A) total living, adult, juveniles, female, and male Scottnema. 

Asterisks denote significant differences (p<0.05) between salinity treatments, (B) 

Community*Salinity*Moisture effects on Scottnema adults, Community treatments are S= Scottnema and 

B = Both Scottnema and Eudorylaimus ...................................................................................................... 39 

 

FIGURE 3.3: Effect of community treatment on total living Eudorylaimus. N= no nematodes (control), 

S= Scottnema only, E = Eudorylaimus only, B = Both Scottnema and Eudorylaimus ............................... 40 

 

FIGURE 3.4 Relationship between (A) Scottnema and bacteria abundance overall, (B) Scottnema and 

bacteria abundance by salinity treatment, and (C) Eudorylaimus and Scottnema abundance. ................... 41 

 

FIGURE 4.1: Map of the dry valleys showing soil fauna abundance and diversity by location. Circle size 

increases with increasing abundance of soil fauna. Colors indicate low (blue) to high (red) diversity 

(number of species). Other features (glaciers, streams, and lakes) are shown in gray. .............................. 60 

 

FIGURE 4.2: Comparison of the stable isotope composition of primary producers. Lake mats are 

denoted with an X, stream mats with a circle, mosses with a square, and endoliths with a diamond. All 

lake mat data except Garwood are from Lawson et al. (2004). Battleship endolith and Garwood lake mat 

data are from Hopkins et al (2009). Beacon endolith data are from Burkins et al (2001). All other data 

from this study. All mats shown here were active (wet) when sampled, except Fryxell Mat Detritus, which 

was a dried mat >1m from the lake shore. .................................................................................................. 61 

 

FIGURE 4.3: δ13C and δ15N values for soil fauna, soil, and organic sources for high elevation valleys 

(A, B), coastal valleys (C, D), and an intermediate valley (E). Colors denote fauna groups. All primary 

producers are green, but have different shapes. Soil is a black triangle. Shapes show habitat (circles=wet 

and triangles=dry). Endolith values shown in plot A and E and Garwood soils in plot D are from Hopkins 

et al 2009. Beacon endolith values shown in plot B are from (Burkins et al. 2000). All others are from this 

study. All mats shown here were active (wet) when sampled. ........................................................................... 62 



xi 

FIGURE 4.4: δ13C and δ15N values for soil fauna, soil, and organic sources for locations in Taylor 

Valley. Colors denote fauna groups. All primary producers are green, but have different shapes. Soil is a 

black triangle. Shapes show habitat (circles=wet and triangles=dry). Empty shapes are from high 

elevation and filled shapes are from low elevation sites. Lake mat values shown in plot B, C, D, and E are 

from Lawson et al. (2004) and Garwood soils in plot D are from Hopkins et al (2009). Endolith values 

shown in plot B and E, and soil values shown in B, C, and D are from Burkins et al. (2000). All others are 

from this study. All mats were active (wet) when sampled, except one dried mat sampled near Lake 

Fryxell (B).  ................................................................................................................................................. 63 

 

FIGURE 4.5: Mean natural abundance of (A) δ13C and (B) δ15N of the primary consumer, Scottnema, by 

soil age and habitat (±standard error) in Taylor Valley. ............................................................................. 64 

 

FIGURE 5.1: NMDS ordination (Bray-Curtis dissimilarity) of nematode communities based on relative 

abundances of nematode families. Each point reflects the community found in an individual sample (n=12 

per treatment x 2 years). Points that are close together have more similar communities than points that are 

far apart. Colors show treatment: fertilized is red and control is blue. Shapes show year: open squares are 

2014 and filled circles are 2015. Names of families are overlaid. .............................................................. 78 

 

FIGURE 5.2: Maturity index and plant parasite index. Colors show treatment: fertilized is red and 

control is blue. Asterisks denote significant differences in treatment effects (p<0.05). ............................. 79 

 

FIGURE 5.3: Structure-Enrichment plot by treatment and year. Quadrats are labeled A thru D after 

Ferris et al. (2001). Colors show treatment: fertilized is red and control is blue. Shapes show year: circles 

are 2014 and triangles are 2015. ................................................................................................................. 80 

 

FIGURE 6.1. McMurdo Dry Valley wet soil food web diagram showing realized relationships (solid 

lines) based on isotopic evidence and potential relationships (dashed lines) based on evidence from other 

habitats or studies (Wall 2007) ................................................................................................................... 85 

 

FIGURE 6.2. McMurdo Dry Valley dry soil food web diagram showing realized relationships (solid 

lines) based on isotopic evidence and potential relationships (dashed lines) based on evidence from other 

habitats ........................................................................................................................................................ 86 

 

FIGURE A2.1: δ13C values for S. lindsayae two months post C addition were 21760.07 ± 3488.52 

and -26.31 ± 1.43 ‰ for C addition treatment and control, respectively (n=10). ..................................... 106 



1 

CHAPTER 1 – INTRODUCTION 
 

 

 

Life in soil is immensely abundant and diverse. Estimates suggest that over ¼ of all 

living species on earth live in soil or litter (Decaëns et al. 2006). Not only is the number of 

organisms great, soil biodiversity is also vast. This biodiversity is often several orders of 

magnitude greater than that present aboveground or in the canopy of rainforests (Heywood 1995, 

Decaëns et al. 2006). Even a single gram of soil is estimated to contain more than 1000 taxa 

(Orgiazzi et al. 2016, Fierer 2017). But, much of this soil biodiversity is still undescribed (De 

Deyn and Van der Putten 2005) and its spatial distribution is not well understood (Phillips et al. 

2017, Cameron et al. 2018). This is not limited to bacteria alone (McDonald et al. 2011); it also 

includes eukaryotes (Bik et al. 2012) such as fungi, protists, tardigrades, rotifers, nematodes, and 

arthropods.  

The high biodiversity in soils makes unraveling their ecology difficult (Brussaard 1998). 

Their food webs are highly complex with trophic levels that range from detritivores to plant 

parasites to predators. Current schematics of soil food web structure often greatly simplify their 

trophic connections, leaving out many groups, and not accounting for species diversity 

(Holtkamp et al. 2008), although some recent efforts have been made to improve on this for 

forest soils (Digel et al. 2014). Furthermore, soil food webs contribute to ecosystem processes, 

but their role relative to environmental factors in controlling ecosystem functions varies spatially 

with shifting environmental gradients (de Vries et al. 2013). Yet, quantifying how soil 

biodiversity contribute to ecosystem functions remains difficult because these are often assessed 

at different scales depending on the process of interest (Kardol et al. 2016), which lack 

standardized methods (Greiner et al. 2017), and leave out groups of soil biodiversity, particularly 

soil fauna (García‐Palacios et al. 2014). 



2 

Due to their simplicity, Antarctic soils have been proposed as a model system in which to 

study soil processes and species relationships in soil food webs (Freckman and Virginia 1997, 

Wall and Virginia 1999). Antarctic soils contain relatively simple soil food webs compared to 

the highly diverse soil food webs of temperate systems (Wall and Virginia 1999). Firstly, the soil 

ecosystems in the McMurdo Dry Valleys, Antarctica lack complication by vascular plants, and 

secondly, soil fauna biodiversity is <5% that of temperate soils (Freckman and Virginia 1997). 

While these soil food webs are composed of soil cyanobacteria, microbes, nematodes, rotifers, 

tardigrades, collembolans, and mites, their distributions are heterogeneous and >90% of soils 

studied contain only one or two invertebrate species (Freckman and Virginia 1997, Adams et al. 

2014).  

Two typical soil foodwebs exist in the McMurdo Dry Valleys, Antarctica. These are: wet 

and dry. The “wet” soil foodwebs are associated with moss and algae mats in stream or lake 

margins (<5% of landscape) and have relatively high faunal diversity, which can include several 

genera of nematodes, tardigrades, rotifers, and microarthropods. The “dry” foodweb (~95% of 

landscape) has low faunal diversity (often just one nematode species, Scottnema lindsayae). 

S. lindsayae, a microbivore, sometimes co-occurs with other taxa, most often the nematode 

Eudorylaimus antarcticus (Freckman and Virginia 1997). Despite recognized differences in the 

wet and dry soil ecosystems and their food webs (Treonis et al. 1999, Ayres et al. 2007), 

understanding of the trophic levels and food web structure in these soils is limited. Food web 

structure has been illustrated (Fig 1.1, Wall and Virginia 1999); however, the specific trophic 

levels have not been explicitly tested and often rely on laboratory culturing studies (e.g. Overhoff 

et al. 1993, Adhikari et al. 2010) or mouthparts (e.g. Yeates et al. 1993) to identify feeding 

ecology. Furthermore, groups such as E. antarcticus have been identified in multiple trophic 
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groups (e.g. omnivorous and algivorous, Wall and Virginia 1999, Wall 2007). Resolving the 

trophic levels of the McMurdo Dry Valley food web structure would be a first step and would 

allow more general ecological questions about how biological interactions structure soil 

communities, and how these communities and their interactions are affected by changing 

environmental factors.  

The aim of my PhD work has been to answer the following questions:  

1) What trophic interactions are present in the McMurdo Dry Valley Soil?  

2) How do environmental variables affect dry valley soil taxa and their trophic interactions?  

3) How does the soil food web and its organic carbon sources vary across the McMurdo Dry 

Valley landscape with distance from coast and elevation?  

4) Do the lessons about soil food webs learned in the McMurdo Dry Valleys apply to more 

complex ecosystems?  

Antarctic Dry Valleys represent one of the most extreme soil habitats on earth. There are 

no other soil systems known where nematodes represent the top of the food chain and where 

food webs have so little functional redundancy (Virginia and Wall 1999). Even the nematode 

species richness in the Dry Valleys appears to be the lowest of any ecosystem (Freckman and 

Virginia 1998). Yet, lessons learned about these low-diversity soil communities can lead to 

insights that apply to more complex ecosystems (Wall and Virginia 1999, Wall 2007) where the 

functional grouping of soil invertebrates, food web modeling, and food web indices are ways to 

measure and simplify the vast biodiversity of soil food webs.  
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Figure 1.1 – Current illustrated understanding of the McMurdo Dry Valleys soil food web (adapted from 

Wall and Virginia 1999) 
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CHAPTER 2 – STABLE C AND N ISOTOPE RATIOS REVEAL SOIL FOOD WEB 

STRUCTURE AND IDENTIFY THE NEMATODE EUDORYLAIMUS ANTARCTICUS AS 

AN OMNIVORE-PREDATOR IN TAYLOR VALLEY, ANTARCTICA1 

 

 

 

Summary 

Soil food webs of the McMurdo Dry Valleys, Antarctica are simple. These include 

primary trophic levels of mosses, algae, cyanobacteria, bacteria, archaea, and fungi, and their 

protozoan and metazoan consumers (including relatively few species of nematodes, tardigrades, 

rotifers, and microarthropods). These biota are patchily distributed across the landscape, with 

greatest faunal biodiversity associated with wet soil. Understanding trophic structure is critical to 

studies of biotic interactions and distribution; yet, McMurdo Dry Valley soil food web structure 

has been inferred from limited laboratory culturing and microscopic observations. To address 

this, we measured stable isotope natural abundance ratios of C (13C/12C) and N (15N/14N) for 

different metazoan taxa (using whole body biomass) to determine soil food web structure in 

Taylor Valley, Antarctica. Nitrogen isotopes were most useful in differentiating trophic levels 

because they fractionated predictably at higher trophic levels. Using 15N/14N, we found that three 

trophic levels were present in wet soil habitats. While cyanobacterial mats were the primary 

trophic level, the nematode Plectus murrayi, tardigrade Acutuncus antarcticus, and rotifers 

composed a secondary trophic level of grazers. Eudorylaimus antarcticus had a 15N/14N ratio that 

was 2 to 4 ‰ higher than grazers, indicating that this species is the sole member of a tertiary 

trophic level. Understanding the trophic positions of soil fauna is critical to predictions of current 

and future species interactions and their distributions for the McMurdo Dry Valleys, Antarctica.   

 

                                                        
1 This chapter is an edited version of Shaw, E. A., B. J. Adams, J. E. Barrett, W. B. Lyons, R. A. Virginia, and D. H. 

Wall. 2018. Polar Biology. https://doi.org/10.1007/s00300-017-2243-8 
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Introduction 

The McMurdo Dry Valleys, Antarctica are an extreme ecosystem: they are very cold, dry, 

and windy, their soils have high pH, low moisture, low organic carbon, and are often saline 

(Campbell et al. 1998, Fountain et al. 1999, Burkins et al. 2001). These are simple ecosystems 

compared to temperate systems: they lack vascular plants, soil fauna biodiversity is 1.1 to 2.6% 

of temperate soils, and approximately 30-40 % of studied soils lack soil fauna (Freckman and 

Virginia 1997). While the presence of soil cyanobacteria, microbes, nematodes, rotifers, 

tardigrades, collembolans, and mites has been recorded in locations throughout the dry valleys, 

their distributions are patchy, with greatest invertebrate diversity in wetted lake and stream 

margins (Freckman and Virginia 1997, Adams et al. 2014). For example, soil invertebrates found 

in Taylor Valley include four species of nematode: Scottnema lindsayae, Plectus murrayi, 

Geomonhystera antarcticola, and Eudorylaimus antarcticus, a tardigrade, Acutuncus antarcticus, 

and rotifers. Of these, S. lindsayae is the only taxon whose most suitable habitat is the dry soil 

(Freckman and Virginia 1997, Treonis et al. 1999, Adams et al. 2006, Ayres et al. 2007) that 

makes up >95% of the landscape. The low biodiversity in both wet and dry soils makes each 

trophic link significant, due to the lower redundancy in function compared to more temperate 

soils (Freckman and Virginia 1997). However, in situ observation of feeding is difficult due to 

the opaque nature of soil and the small size of these fauna. The current understanding of dry 

valley soil trophic structure is limited to laboratory studies and microscopic observations.   

Some Taylor Valley soil fauna have been grown in the laboratory, helping to identify 

their feeding ecology. For example, P. murrayi feeds on bacteria in laboratory cultures (Adhikari 

et al. 2010, de Tomasel et al. 2013), while the tardigrade A. antarcticus feeds on algae (Cecilia 

Milano de Tomasel, personal communication). Additionally, S. lindsayae is a known 
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microbivore, feeding on yeast and bacteria in a laboratory study (Overhoff et al. 1993). 

Furthermore, mouthparts are often used to identify nematode trophic groups under microscopic 

observation (Yeates et al. 1993). While P. murrayi, S. lindsayae, G. antarcticola all possess the 

tube-like esophagus of typical bacterivore nematodes, E. antarcticus bears an odontostylet – a 

piercing structure inside its mouth which can puncture food, such as plant or animal tissue. 

Previous studies predicted E. antarcticus was a likely omnivore-predator in the dry valleys (Wall 

and Virginia 1999) due to its mouthparts and the trophic classification of the genus 

Eudorylaimus as an omnivore-predator in temperate habitats (Yeates et al. 1993). Other 

Antarctic studies hypothesized that soil algae was the only food source for E. antarcticus 

(Powers et al. 1998). More recently, E. antarcticus was revealed to be an algal feeder through 

observation of chlorophyll in the intestine using a fluorescent microscope and acridine orange 

filter (Wall 2007). While other locations in Antarctica have predaceous taxa (Sohlenius and 

Boström 2005), no studies to date have confirmed a metazoan predator in Taylor Valley. 

The nematode genus Eudorylaimus is widespread in soils (McSorley 2012). This 

odontostylet bearing group is considered omnivorous or predaceous in temperate ecosystems 

(Yeates et al. 1993, McSorley 2012, Stirling 2014). As early as 1929, Cobb observed 

Eudorylaimus feeding on mite eggs. Additionally, Eudorylaimus in laboratory culture preys on 

nematodes, such as the bacterivore genera Acrobeloides, Plectus, and Panagrellus (Tjepkema et 

al. 1971, Ferris and Ferris 1989), but its food sources are diverse: it also feeds on algae, 

enchytraeids, fungi, protozoa, and mites, but with reproduction only observed on nematodes, 

algae, moss, and protozoa (Hollis 1957, Wood 1973, Ferris and Ferris 1989). Its diverse feeding 

strategy and occupation of a top trophic position may make it an important driver of food web 
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structure in temperate climates. However the high taxonomic and functional biodiversity in soil 

makes these relationships difficult to discern.  

 The natural abundance of stable isotopes fractionate predictably up trophic levels at 

approximately +3 to 4 ‰ for δ15N and +0.5 to 1 ‰ for δ13C (Post 2002b, McCutchan et al. 

2003). Previous stable isotope studies showed that nematode orders and families differ in their 

trophic structure (Kudrin et al. 2015). Eudorylaimus antarcticus belongs to order Dorylaimida, 

and Kudrin et al. (2015) found this order to have a similar isotopic composition to predaceous 

nematodes in boreal forests. However, in hot desert soils, Dorylaimida have isotopic composition 

similar to bacterivore nematodes, probably due to feeding on cyanobacteria (Darby and Neher 

2012). Following this logic, we used natural abundance of stable isotopes to characterize the 

trophic levels for the three most abundant nematode species in Taylor Valley (E. antarcticus, P. 

murrayi, and S. lindsayae), the tardigrade A. antarcticus, and rotifers (grouped at phylum level). 

We did not include G. antarcticola in this study because it is an extremely rare species, and we 

did not find it at our study sites. We hypothesized that the grazers P. murrayi, S. lindsayae, A. 

antarcticus, and rotifers would be 3 to 4 ‰ for δ15N and around +0.5 to 1 ‰ for δ13C higher than 

the microbial mat values. We also expected E. antarcticus would be 3 to 4 ‰ for δ15N and 

around +0.5 to 1 ‰ for δ13C higher than P. murrayi, S. lindsayae, A. antarcticus, and rotifers.  

 

Methods 

To test our hypothesis, we chose a well-studied site in Taylor Valley (e.g. Spaulding and 

McKnight 1998, Treonis and Wall 2005) near Von Guerard stream in the Lake Fryxell basin of 

Taylor Valley (77.608 S, 163.254 E). In January 2014, six soil samples were collected near Von 

Guerard stream (Fig. 2.1). Three random soil samples (sites 1, 2, 3) were collected in dry soil 
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more than 5 m from the stream (but not more than 10 m) and three random soil samples (sites 4, 

5, 6) were collected within 5 m of the stream (within wetted margin, but not within stream 

sediments). Sites 1-3 were considered ‘dry’ soil replicates and sites 4-6 were considered ‘wet’ 

soil replicates. These samples were collected into Whirl-Pak® bags to 10 cm using a clean 

plastic scoop. Approximately 500 g of soil was collected per sample. The soils were stored in an 

ice chest, and transported to the Crary Laboratory at McMurdo Station (United States Antarctic 

Program) where they were slowly cooled from +4°C to -20°C over 4 days (i.e., 24h at +4°C, 24h 

at -4°C, 24h at -10°C, and 24h at -20°C). Samples were shipped frozen (-20°C) to Colorado State 

University, Fort Collins, Colorado, USA, and slowly defrosted (as described by de Tomasel et al. 

2013) before extracting soil fauna. 

For each of the six sites, fauna were extracted from 100 g of soil via cold sugar 

centrifugation technique (Freckman and Virginia 1993). Within 48 h of extraction, taxonomic 

groups were identified (nematodes and tardigrades identified to species and rotifers to phylum, 

Olympus CKX41, 200X magnification) and counted. An additional 50-g subsample of soil was 

used to determine gravimetric soil moisture (water mass per unit soil mass) by mass loss from 

soils dried at 105°C for 48 h. The soil fauna counts were then corrected for soil moisture content 

and expressed kg-1 dry soil. After identification and enumeration, each group was separated and 

collected into tin capsules (8x5mm, Elemental Microanalysis BN/170056) with an eyelash tool 

(Superfine eyelash with handle, Ted Pella, Inc., Prod no. 113) under a dissecting microscope 

(Olympus SZX10, 30X magnification) per the method described by Shaw et al. (2016). A 

minimum of 0.02 mg biomass dry weight (approximately 50 to 100 live individuals) was 

collected for each taxon. For each taxon identified at each site, we aimed to triplicate fauna 

collections for isotope analysis. Extractions from 100 g of soil were repeated by site until 
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sufficient biomass was achieved for each group found at that site. For this study, it was possible 

to collect 8 total replicates for E. antarcticus (three replicates from sites 4, 5, and two replicates 

from site 6), 9 total replicates for P. murrayi (three replicates from each site 4, 5, and 6), 5 total 

replicates for S. lindsayae (two replicates from site 2, and three replicates from site 3), 9 total 

replicates for A. antarcticus (three replicates from each site 4, 5, and 6), 3 replicates for rotifers 

(one replicate from each site 4, 5, and 6), and 9 total replicates for the cyanobacterial mat (three 

replicates from each site 4, 5, and 6). Samples were dried for 48 h in a dessicator prior to 

shipment to the Stable Isotope Mass Spectrometry Laboratory (SIMSL) at Kansas State 

University for isotope analysis (CE-1110 EA coupled via Conflo II interface to an IRMS, 

ThermoFinnigan Delta Plus).  

We also extracted P. murrayi from cultures grown on Bold’s Modified Basal Freshwater 

Nutrient Media with Ottawa Sand (Adhikari et al. 2010) by both modified Baermann funnel 

technique, which uses water only (Hooper 1970), and the sugar centrifugation technique to check 

for any effect of sugar (which the fauna are submerged in for ~2 min) on the carbon isotope 

composition of the animals. We used 3 replicates for each extraction technique. Our tests 

revealed that there was no significant difference (p = 0.25, df = 4, unpaired t-test) between 

cultured P. murrayi extracted via Baermann funnel or sugar centrifugation, which had δ13C 

isotopic compositions of -17.81 ± 0.76 and -19.26 ± 0.77 (Mean ± SE), respectively.  

 

Results and Discussion 

Across the six sites near Von Guerard stream, the nematodes S. lindsayae, P. murrayi, E. 

antarcticus, tardigrade A. antarcticus, and rotifers were found. However, their distributions were 

not equal across all sites. Wet sites had soil moistures of 17.91 ± 0.29 %; all groups were found 
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in these samples but S. lindsayae was in very low abundance compared to dry sites (e.g., sites 1-

3; Table 2.1). Dry sites had gravimetric soil moistures of 0.70 ± 0.12 %; only S. lindsayae was 

found in these samples (Table 2.1). This is unsurprising; many studies have found S. lindsayae 

dominating dry habitat, while other taxa prefer wetter habitats in the dry valleys (e.g. Freckman 

and Virginia 1997, Treonis et al. 1999, Adams et al. 2006, Ayres et al. 2007).  

The stable isotope composition of soil fauna biomass revealed a wet soil food web with 

three trophic levels: a basal level of cyanobacterial mat, a secondary level of rotifers, tardigrade 

A. antarcticus, nematode P. murrayi, and a tertiary level occupied by nematode E. antarcticus 

(Fig. 2.2). The primary trophic level had an overall isotopic composition of δ15N -5.36 ± 0.96 ‰, 

δ13C -24.99 ± 0.63 ‰. These cyanobacterial mats from the Von Guerard stream margin has a 

similar isotopic ratio to the organic matter measured by Lawson et al. (2004) for streams in 

Taylor Valley, Antarctica. While these mats are composed of multiple groups including 

cyanobacteria and diatoms, which have differing isotopic signatures (Lawson et al. 2004, 

Velásquez et al. 2017), our analysis is limited to composite mat samples.  

The secondary trophic level at the wet sites was composed of rotifers, tardigrades, and the 

nematode P. murrayi. Generally, the trophic position of culturable groups, such as P. murrayi 

and A. antarcticus as revealed by stable isotopes corresponds to the established understanding of 

their feeding habits. The nematode, P. murrayi, was enriched in δ13C relative to cyanobacterial 

mat (~ +1 ‰), but only about +2 ‰ for δ15N relative to the cyanobacterial mats (Fig. 2.2). Other 

studies have shown the isotopic composition of Plectidae from boreal forests also support its 

trophic position as a bacterivore (Kudrin et al. 2015). The rotifers and tardigrades had similar 

isotopic compositions to each other, but differed slightly from P. murrayi, and are likely mat 

grazers (Fig. 2.2). Both were enriched δ13C +0.3 to 0.5 ‰ and δ15N +4 ‰ relative to 
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cyanobacterial mat. Cyanobacterial mats in the McMurdo Dry Valleys are highly species diverse 

with varying community compositions (Van Horn et al. 2016). Even Von Guerard stream’s mat 

community varies along stream length (Van Horn et al. 2016). Furthermore, Lawson et al. (2004) 

showed that mats of varying species composition differ in their isotopic signatures in Taylor 

Valley. In maritime Antarctica, Velázquez et al. (2017) used stable isotopes to show that mat 

grazers feed from multiple sources, which varies by taxon. Also, Plectus from maritime 

Antarctica has been shown to selectively feed on specific taxa (Newsham et al. 2004). 

Differences in feeding ecology or food preferences may account for the difference in isotopic 

composition between P. murrayi and the other grazers.  

The tertiary trophic level was occupied solely by E. antarcticus. This nematode had an 

isotopic composition of δ15N 0.84 ± 0.44 ‰, δ13C -22.23 ± 0.25 ‰ (Fig. 2.2). For δ15N is an 

enrichment of +2.25 ‰ relative to rotifers and tardigrades and +4 ‰ relative to P. murrayi. The 

order Dorylaimida are usually considered omnivore-predators, but have also been shown to eat 

bacteria, fungi, algae and plants (Freckman 1988, Yeates et al. 1993, Kudrin et al. 2015). 

Protozoa may also be a possible food source for nematodes and although present in dry valley 

soil (Bamforth et al. 2005), were not included in this study due to difficulty in isolating 

individuals and collecting sufficient biomass for isotope measurement.  Given our isotope results 

and that E. antarcticus also eats algae (Wall 2007), it should be described as an omnivore-

predator for the McMurdo Dry Valleys.  

The dry soil food web had the lone consumer S. lindsayae, a microbivore nematode 

(Overhoff et al. 1993). Scottnema lindsayae had an isotopic composition of δ15N -4.18 ± 1.05 ‰, 

δ13C -27.91 ± 0.39 ‰ (Fig. 2.3), which is considerably lighter than consumers in the wet food 

web (Fig. 2.2), making the wet soil’s cyanobacterial mats an unlikely primary level for dry soil. 
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Other studies have suggested that lithic primary producers (e.g. cryptoendoliths, hypoliths) could 

be a carbon source in dry soils (Burkins et al. 2000), and these sources have a lower isotopic 

signature than lake and stream-associated cyanobacterial mats (Burkins et al. 2000). 

Additionally, we did not find E. antarcticus in the dry soil sites, but it is occasionally found in 

dry soil in the dry valleys (Freckman et al. 1997). The most frequent two-species community in 

the dry valleys is S. lindsayae with E. antarcticus (Freckman and Virginia 1997).  Further work 

is needed to confirm trophic positions of soil fauna across the heterogeneous dry valleys 

landscape, especially in habitats with varied carbon sources (Burkins et al. 2000) and 

communities of multiple invertebrate species. 

Our results have ecosystem implications. Around 95% of the McMurdo Dry Valleys 

region is considered dry soil habitat (=<2% gravimetric water content), which is most suitable 

for the dominant nematode, bacterivore S. lindsayae. While E. antarcticus are present in low 

abundance in dry soil habitat, many are found in moist or wet soils. Around 5% of the McMurdo 

Dry Valleys are considered moist soil habitat, which is most suitable for E. antarcticus (Virginia 

and Wall 1999, Burkins et al. 2001). The McMurdo Dry Valleys have recently been termed, "a 

landscape on the threshold of change" because significant increases in the loss of both glacier 

and buried ice are expected to occur (Fountain et al. 2014). This predicted future increase in 

glacial melt and permafrost thaw will produce larger amounts of liquid water during the austral 

summer, generally "wetting up" what is now dry landscape (Gooseff et al. 2017b).With this 

increased melt from glaciers, massive buried ice and permafrost, moist habitat area should 

increase. Such a change could impact the distribution and abundance of soil fauna, which differ 

in their habitat preferences (Freckman and Virginia 1997), altering community composition 

(Nielsen et al. 2011), and ultimately having ecosystem level impacts on soil processes including 
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carbon cycling (Barrett et al. 2008, Gooseff et al. 2017a). Understanding trophic positions and 

biotic interactions of soil fauna is critical for predicting future changes in species distributions 

and interactions due to increased connectivity. 
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Table 2.1: Abundance of taxonomic groups from Taylor Valley soil samples in total live individuals kg-1 dry 

soil. Data are shown as mean ±±±± standard error. Dry soil (n=3) corresponds to samples 1, 2, and 3, which were 

>5m from the stream (soil moisture <1% gravimetric). Wet soil (n=3) corresponds to samples 4, 5, and 6, 

which were <5m from the stream and had soil moisture >17% (gravimetric). 

 

  

Taxonomic Group Overall Abundance Dry Soil Abundance Wet Soil Abundance 

Nematoda    

Scottnema lindsayae 1822.98 ± 213.22 533.07 ± 402.76 54.59 ± 054.59 

Plectus murrayi 300.23 ± 172.73 0.00 ± 0.00 600.45 ± 243.00  

Eudorylaimus antarcticus 1325.61 ± 640.76 0.00 ± 0.00 2651.22 ± 543.74 

Tardigrada    

Acutuncus antarcticus 545.67 ± 287.81 0.00 ± 0.00 1091.33 ± 341.23 

Rotifera    

 1299.48 ± 667.53 0.00 ± 0.00 2598.95 ± 734.38 
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Figure 2.1: Location of our sample site near Von Guerard stream in the Lake Fryxell basin in Taylor Valley, 

Antarctica. Taylor Valley is located in the McMurdo Dry Valleys of Southern Victoria Land, Antarctica 

(inset). Map by Brad Herried, Polar Geospatial Center. 
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Figure 2.1: δ 13C and δ 15N signature of fauna groups from wet soil within 5 m of Von Guerard stream in 

Taylor Valley, Antarctica. Data presented are ‰ and are means with standard error bars. 
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Figure 2.2: δ 13C and δ 15N signature of fauna groups from dry soil 5 to 10 m from Von Guerard stream in 

Taylor Valley, Antarctica. Data presented are ‰ and are means with standard error bars. 
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CHAPTER 3 – BIOTIC INTERACTIONS IN EXPERIMENTAL ANTARCTIC SOIL 

MICROCOSMS VARY WITH ABIOTIC STRESS  

 

 

 

Summary 

Biotic interactions structure ecological communities worldwide and abiotic stress affects 

the strength of these relationships. These interactions are difficult to study in soils due to the 

shear amount of biodiversity and the myriad factors that affect soil species, including 

aboveground life. Thus, there is little research on how the strength of trophic interactions in soils 

varies with environmental conditions. The McMurdo Dry Valleys, Antarctica are relatively 

simple soil ecosystems compared to temperate soils, making them an excellent study system for 

addressing questions on soil’s trophic relationships. Soil microbes and relatively few species of 

nematodes, rotifers, tardigrades, springtails, and mites are patchily distributed across the 

landscape, which is devoid of vascular plants and vertebrates. The trophic structure of these soil 

food webs span from microbes to microbivore and omnivore-predator invertebrates. However, to 

date, whether these biotic interactions have a role in community structure or if their trophic 

relationships change with abiotic stress is still unknown. The McMurdo Dry Valley Long Term 

Ecological Research program data show that Scottnema lindsayae, a microbivore nematode, and 

Eudorylaimus antarcticus, an omnivore-predator nematode, are negatively associated with 

increased soil salinity, but have opposite responses to increased soil moisture (negative and 

positive, respectively). However, the magnitude of their responses differs. To test how increased 

moisture and salinity affect soil invertebrates and subsequently influence their biotic interactions 

in this cold desert, we established a laboratory microcosm experiment in a full factorial design (4 

community x 2 moisture x 2 salinity treatments). Community treatments were 1) Control 

(bacteria only), 2) Scottnema (S. lindsaye + bacteria), 3) Eudorylaimus (E. antarcticus + 
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bacteria), and 4) Both (S. lindsayae with E. antarcticus + bacteria). Salinity and moisture 

treatments were control and high. Eudorylaimus antarcticus did not survive microcosm 

establishment except in the Both community treatment. Elevated moisture significantly reduced 

the abundance of adult S. lindsayae, but not the total population of S. lindsayae. Elevated salinity 

significantly reduced the total population of S. lindsayae, including juveniles and females, but 

not males. We found that S. lindsayae, exerted top-down control over soil bacteria populations, 

but this effect was dependent on the salinity treatment. In the high salinity treatment, soil 

bacteria were released from top-down pressure. Ours is the first study to confirm, although in lab 

microcosm conditions, top-down control in the MDV soil food web. 

 

Introduction 

How biological interactions affect communities is a key research theme in ecology. 

Biotic interactions are ubiquitous in most terrestrial ecosystems, and interact with abiotic factors 

and dispersal to determine populations and community structure (Maestre et al. 2010). For 

example, studies have shown how biotic interactions affect plants (Maestre et al. 2010), benthic 

invertebrates (Kolar and Rahel 1993), and bird communities (Heikkinen Risto et al. 2007) under 

varying environmental conditions, but relatively few studies have empirically examined how 

biotic interactions affect soil community structure and function (but see Coleman et al. 1977, 

Wall and Moore 1999). This is partly due to the vast biodiversity in soils, whose relationships are 

further confounded by many interacting factors including plants and aboveground animals. 

The McMurdo Dry Valleys (MDV) in Victoria Land, Antarctica compose the largest ice-

free area on the continent (Fountain et al. 1999). Among the world’s harshest environments, they 

are a simple ecosystem with very limited diversity of eukaryotes (Freckman and Virginia 1997, 
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Treonis et al. 1999) compared to temperate ecosystems, making them an excellent system in 

which to study soil communities (Wall 2007). There are no vascular plants or vertebrates, and 

the metazoan diversity includes just a few species of nematodes, rotifers, tardigrades, 

collembolans, and mites (Adams et al. 2006, Adams et al. 2014), the most abundant of which is a 

nematode (Freckman and Virginia 1997, Wall and Virginia 1999). Low temperatures, low water, 

low organic carbon availability, and high salinity are factors known to constrain life in the MDV 

(Wall and Virginia 1999, Courtright et al. 2001, Poage et al. 2008). However, these factors are 

shifting across the landscape due to climate-induced changes (Fountain et al. 2014). For 

example, elevated solar radiation and episodic warming has altered the availability of liquid 

water through melted buried ice, higher stream flows, expanded stream margins, and the 

formation of shallow groundwater transports, e.g. water tracks (Fountain et al. 2016). When 

water reaches previously dry soils, it liberates and mobilizes soil nutrients and salts, weathers 

soil, and stimulates primary productivity in newly wetted areas, significantly altering soil 

properties that affect soil biota (Ball et al. 2011, Ball and Virginia 2012, Ball and Levy 2015). 

Greater hydrological connectivity through the formation of more abundant streams and water 

tracks is predicted for the future (Gooseff et al. 2017b), and could alter soil habitats and their 

biodiversity landscape-wide. 

Previous work has shown that abiotic factors explain a large part of the variation in 

invertebrate populations and community structure in the MDV. Along with other factors such as 

pH and carbon availability, moisture and salinity affect microbes and invertebrates from 

population to ecosystem (see Table 3.1; Courtright et al. 2001, Barrett et al. 2006, Poage et al. 

2008). Dry habitat (~2-3% gravimetric water content) is dominated by an endemic, microbivore 

nematode, Scottnema lindsayae. This nematode co-occurs with other invertebrates such as the 
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omnivore-predator nematode Eudorylaimus antarcticus, and sometimes with the nematode 

Plectus murrayi along with tardigrades and rotifers. However, P. murrayi, E. antarcticus, 

tardigrades, and rotifers prefer wet habitat and S. lindsayae is most frequently found in single 

species communities in dry soils (Treonis et al. 1999, Courtright et al. 2001). When soil moisture 

increases in dry soil, E. antarcticus and P. murrayi populations often increase while S. lindayae 

populations decrease (Freckman and Virginia 1997), but the long-term ecosystem response 

differs when wetting occurs as an extreme pulse event (Nielsen et al. 2012, Andriuzzi et al. 

2018) or as a long-term press (Gooseff et al. 2017a). Andriuzzi et al (2018) showed that long-

term climate-associated increases in soil moisture have detrimental effects on the dominant 

nematode, S. lindsayae, and marginal positive effects on the other taxa.  

Salinity co-varies with soil moisture and these two factors interact to affect invertebrates. 

For example, moisture facilitates the movement of solutes and thus alters the salinity of habitats. 

In drier soils, elevated soil salinity reduces water availability and puts osmotic pressure on 

MDV biota (Andriuzzi et al. 2018). In newly wetted areas, the magnitude of changes to soil 

moisture and salinity and their interaction can result in either an increase or a decrease in 

biological activity (Wynn-Williams 2000). Soil salinity is a primary driver of nematode 

populations in the MDV and affects taxa differently (Ball and Virginia 2012). This may be 

because of physiological stress and especially nitrogen toxicity on nematodes (Courtright et al. 

2001, Nkem et al. 2006, Poage et al. 2008). Poage et al (2008) found that S. lindsayae were more 

abundant in saline soils than the nematodes E. antarcticus or P. murrayi, but that mortality of all 

species increases as salinity increases. However, Scottnema lindsayae is more tolerant of 

increased salinity than other species (Nkem et al. 2006). Besides mortality, the effect of high 

salinity on soil water potential may cause nematodes to become inactive and decoupled from 



23 

ecological processes (Treonis and Wall 2005). Nematodes are able enter a state of suspended 

animation called anhydrobiosis as a desiccation survival strategy (Crowe and Madin 1975, 

Freckman and Womersley 1983). Treonis and Wall (2005) showed that the proportion of the 

nematode community in anhydrobiosis was positively correlated with increasing soil salinity in 

the dry valleys. In addition to physiological stress on nematodes, soil salinity and moisture likely 

also have trophic effects on nematodes through their food availability. For example, soil salinity 

is an important driver of microbial communities in the MDV (Nkem et al. 2006) and other 

ecosystems (Van Horn et al. 2014), where salinity can be toxic to microbial metabolism through 

extracellular enzyme denaturation or changes to cell ion balance (Lozupone and Knight 2007, 

Wang et al. 2011).  

The effects of salinity and moisture on soil invertebrates are likely twofold: 1) 

physiological and 2) trophic. Previous research provides evidence for direct physiological effects 

of water and salt on soil invertebrates and microbes (Table 3.1), but it is also plausible that any 

effect on microbes could indirectly affect their invertebrate consumers and vice versa. While 

evidence for biotic interactions’ roles in community structure and/or ecosystem functions have 

not been documented in the MDV, Hogg et al (2006) suggested that patterns of invertebrate 

co-occurrence could be coincidental due to the shared basic requirement for suitable soil 

moisture. Recent evidence shows that E. antarcticus occupies the omnivore-predator trophic 

level in Taylor Valley (Shaw et al. 2018). The presence of multiple trophic levels – from 

microbes, to microbivores, to omnivore-predators – suggests that biotic interactions are present 

in the MDV. Whether or not these biotic interactions are significant drivers of community 

structure or how these interactions change under varying environmental conditions is still 

undetermined.  
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We asked: 1) How does soil moisture and salinity affect populations of bacteria, S. 

lindsayae, and E. antarcticus? 2) Does the strength of their biotic interactions shift with abiotic 

stress? To test these questions we designed a fully crossed laboratory microcosm experiment (4 

community x 2 moisture x 2 salinity treatments) to test the effects of soil salinity, moisture, and 

their interaction on bacteria, S. lindsayae, and E. antarcticus at four levels of community 

diversity (bacteria only, bacteria+S. lindsayae only, bacteria+E. antarcticus only, and bacteria + 

both nematode species). We hypothesized that 1) elevated moisture would have a positive effect 

on soil bacteria, a positive effect on E. antarcticus, but a negative effect on S. lindsayae, 2) 

elevated salinity would negatively impact all biota, and 3) the magnitude of responses would 

vary by community. Specifically, we expected bacterial abundance to be negatively related to the 

abundance of total nematodes, and the response of S. lindsayae to depend on the response of E. 

antarcticus in the community treatment with both nematode species.  

 

Methods 

Study site 

The McMurdo Dry Valleys are a cold desert with mean annual temperature of -16 to -

20°C and <10 cm mean annual precipitation annually (Clow et al. 1988, Fountain et al. 1999, 

Doran et al. 2002, Fountain et al. 2009). Glaciers, large areas of arid soils, polygons (patterned 

ground caused by freeze-thaw), permanently ice-covered lakes, and seasonal glacial meltstreams 

make up the MDV landscape. The McMurdo Dry Valleys Long Term Ecological Research 

(LTER) project has been collecting data on this ecosystem through monitoring studies and 

experiments since 1993. Data include biological, geochemical, and climatic variables. The MDV 

LTER is primarily located in Taylor Valley (77 S, 162 E), which expands ~35km from the Polar 
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Plateau to the Ross Sea. The soils of Taylor Valley are gelisols, generally over 95% sand with 

very low soil organic matter (<2 g /kg) and high salinity (Clow et al. 1988, Fountain et al. 1999, 

Doran et al. 2002, Fountain et al. 2009). The summer air temperature is frequently >0°C, and 

liquid water is present annually as soil pore water and meltstreams.  

Twenty-five 500g surface soil samples (10cm depth) were collected in January 2015 near 

Many Glaciers Pond in Taylor Valley, Antarctica (77.598 S, 163.323 E) for microcosm set up. 

An additional 10 bulk soil samples were collected from moss beds at Hjorth Hill (77.539 S, 

163.562 E) to provide nematodes for the community treatments. Prior to microcosm set-up, soils 

were shipped to and stored frozen (-20°C) at Colorado State University. At collection, these soils 

were 107.51 ± 1.03 uS/cm electrical conductivity (a proxy for soil salinity) and 2.94 ± 0.63 % 

soil moisture (gravimetric). Electrical conductivity (EC) was determined using a 5:1 water to soil 

dilution, mixing (10s), and reading EC (uS/cm) using a conductivity meter. Gravimetric soil 

moisture (water mass per unit soil mass) was determined via mass loss from a 10-g soil 

subsample dried at 105°C for 48 h. 

Microcosm set-up 

Using the bulk soil collected from the McMurdo Dry Valleys, community (4 levels), 

moisture (2 levels), and salinity treatments (2 levels) were applied in a full factorial design with 

5 replicates (4 x 2 x 2 x 5 = 80). Community treatments were Control (bacteria only), Scottnema 

(bacteria + S. lindsayae), Eudorylaimus (bacteria + E. antarcticus), and Both (bacteria + S. 

lindsayae and E. antarcticus). Moisture treatments were high moisture (~8% g/g soil moisture) 

and control moisture (~3% g/g soil moisture). Salinity treatments were high salinity (~600 

uS/cm) and control salinity (~100 uS/cm). For the soil moisture treatments, 8% gravimetric soil 

moisture level was chosen as the ‘high moisture’ treatment because it is representative soil 
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moisture levels in stream and lake margins, and in water tracks (Treonis et al. 1999, Ayres et al. 

2007, Ball and Virginia 2012). We considered 3% soil moisture (gravimetric) as the control soil 

moisture because soils were 2.94 ± 0.63 % moisture at collection. Additionally, we wanted 

nematodes to be active in both our control and wet treatments, and activity drops off as 

nematodes enter anhydrobiosis at <2% moisture (Treonis and Wall 2005). We chose 600uS/cm 

electrical conductivity as our ‘high salinity’ treatment because models suggest that this level 

negatively affects both S. lindsayae and E. antarcticus populations, but does not cause complete 

mortality (Poage et al. 2008). Soil collected for the microcosms had background electrical 

conductivity of 107.51 ± 1.03 uS/cm, and we considered this the control salinity.  

The 25 bulk soil samples from Many Glaciers Pond were homogenized and used for 

microcosm set-up in March 2017 (2kg soil was reserved for nematode extraction). A total of 

10kg of bulk soil was combined in large aluminum trays and defaunated by heating soil at 65°C 

for 48h (Franco et al. 2017). Next, 125g of soil were added to 80 pre-autoclaved glass mason jars 

(1Pint size). After soil was added, microcosms were chilled for 24h (4°C). Then all microcosms 

were inoculated with bacteria using a soil slurry method (Setälä and Huhta 1991, Bouwman et 

al. 1994, Laakso et al. 2000). Briefly, 150g of fresh soil was mixed with 800mL of cold (4°C) 

sterile deionized water in a pre-sterilized 1000mL beaker on a stir plate for 45min. This water 

was passed though a 25-micron (500 mesh) sieve to remove any nematodes, but allow bacteria to 

pass through. Next, 7mL of microbial inoculant was added to each jar with a sterile pipette. 

Microcosms were placed into a 4°C incubator for 2 weeks to allow bacteria to establish before 

moisture, salinity, and community treatments were added. 

For the community treatments, S. lindsayae was extracted from twenty replicates of 100g 

soil from the bulk soil collected at Many Glaciers Pond via cold sugar centrifugation method 
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(Freckman and Virginia 1993) and counted under an inverted microscope (Olympus CKX41). 

Approximately 8500 total S. lindsayae were available for inoculation of 40 microcosms. Next, 

these nematodes were pooled in a falcon tube, allowed to settle for an hour, and then the total 

volume was reduced to 20mL with an aspirator. The supernatant was reserved in a separate 

falcon tube and examined under the microscope to ensure no nematodes were present. Using the 

vortex on the lowest setting, nematodes were gently mixed and 0.5mL of water + nematodes was 

pipetted into to each Scottnema and Both treatment microcosm. During inoculation, five samples 

were counted at random, where the 0.5mL inoculant was pipetted directly onto a counting dish. 

An average of 180 ± 10.5 live S. lindsayae were present in the inoculant per microcosm. Then, 

0.5mL of the reserved nematode-free supernatant was added to the remaining microcosms 

(Eudorylaimus and Control treatments) to account for the effect of any bacteria or nutrients 

present in the water. 

Because very few E. antarcticus were present in the Many Glacier Pond soil, ten bulk 

soil samples collected from moss beds in 2015 at Hjorth Hill were used for extraction and 

collection of E. antarcticus for the Eudorylaimus treatment. Ten replicates of 100g of soil were 

extracted and counted under the inverted microscope. Many E. antarcticus were present, along 

with Plectus murrayi, rotifers, and tardigrades. Due to the biodiversity in these samples, E. 

antarcticus were picked by hand using an eyelash tool (Superfine eyelash with handle, Ted Pella, 

Inc., Prod no. 113). Approximately 2100 live E. antarcticus were hand picked into a single 

falcon tube with water. Then Eudorylaimus and Both treatments were established the same way 

as Scottnema treatment (described above). Five test samples were counted during inoculation, 

and each contained an average of 52 ± 4.3 live Eudorylaimus. Again, 0.5mL of the reserved 
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supernatant containing no nematodes was added to the remaining microcosms (Scottnema and 

Control community treatments). 

After community treatments were applied to microcosms, salinity and moisture 

treatments were added. We added 50mg NaCl to the High Salinity treatments to bring the soil 

electrical conductivity from ~100uS/cm up to ~600 uS/cm. Microcosms that did not receive 

NaCl (e.g., Control) were removed from the incubator for the same amount of time to account 

for any effects of movement or brief temperature changes. We added 2mL of sterile, deionized 

water to the High moisture treatments to bring gravimetric soil moisture up to ~8% (g water/g 

dry soil). Dry treatments were weighed and placed in a dessicator (inside the incubator) until 

moisture levels were ~3% (g water/g dry soil). Microcosms were weighed every 2 weeks to 

check moisture levels and sterile deionized water was added as needed.  

Microcosms were incubated at 8°C for three months, approximately the length of one 

active season (Fountain et al. 1999).. Then, microcosms were destructively harvested. Soil 

subsamples were taken in the following quantities for analyses: 5g for bacteria extraction, 100g 

for nematode extraction, 10g for soil moisture, and 10g for electrical conductivity. All extra soil 

was placed in sterile whirlpac bags and frozen (-20°C). Direct counts of bacteria cells were 

assessed via epi-fluorescent microscopy (as in: Bloem 1995, Frey et al. 1999, Sistla et al. 2013). 

Nematodes were extracted via sugar centrifugation method (Freckman and Virginia 1993) and 

then nematode abundance was assessed via bright-field microscopy (Olympus CKX41). 

Nematodes were identified to species, sex, and life stage (e.g., adult or juvenile).  

Data analysis 

Nematode counts were standardized to soil mass and expressed as the number of 

individuals kg dry soil−1. Bacterial cells were calculated to number of cells g dry soil−1. A three-
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way ANOVA was used to test the effects of moisture, salinity, and community treatments on 

nematode and bacteria populations. Specifically, bacterial abundance, S. lindsayae total 

abundance, E. antarcticus total abundance, and S. lindsayae juveniles, S. lindsayae adults, S. 

lindsayae females, and S. lindsayae males were assessed with F tests followed by post hoc tests 

(Tukey HSD) to confirm significant effects (p < 0.05). Residuals were tested for normality of 

distributions via Q-Q plots and Shapiro-Wilks tests, and data were log (x+1) or square root 

transformed if they failed (rejected when Shapiro-Wilks p<0.05). Specifically, square-root 

transformation was chosen for bacterial cells, and log (x+1) was chosen for Eudorylaimus 

abundance. Scottnema abundances met assumptions of normality and were not transformed. The 

relationships between a) nematode and bacteria abundance and b) S. lindsayae abundance and E. 

antarcticus abundance were tested via linear models. All analyses were done using R 3.1.3 (R 

Core Development Team 2013). 

 

Results 

Microcosm establishment  

An average of 180 ± 10.5 S. lindsayae were added to Scottnema and Both community 

treatments, but overall, 71 ± 4.1 survived to the end of the experiment. An average of 52 ± 4.3 E. 

antarcticus were added to Eudorylaimus and Both community treatments, but very few survived 

(<1%). At the end of the experiment, gravimetric soil moisture (% g/g) was 3.93 ± 0.17 (mean ± 

S.E.) for the dry soil treatment and 6.48 ± 0.25 (mean ± S.E.) for the wet treatment. Electrical 

conductivity of the control soil was 107.51 ± 1.03 uS/cm while electrical conductivity of the 

High Salinity treatment was 612.33 ± 4.94 uS/cm. 
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Effect of treatments on nematodes and bacteria 

There were significant overall effects of the community treatments and a significant 

interaction between community and salt treatment on total bacteria (Table 3.2). Moisture 

treatment did not significantly affect bacterial abundance (LSMeans, p=0.827). There were 

significantly less bacterial cells in the Control, Scottnema, and Both community treatments 

compared to the Eudorylaimus treatment in Control salinity microcosms (LSMeans, p<0.05), but 

this effect was diminished under the high salt treatment (Fig 3.1). Furthermore, there were 

significantly more bacterial cells present in the high salinity treatment for the Scottnema and 

Both community treatment compared to the Scottnema and Both community treatments with low 

salinity (Fig 3.1; LSMeans, p<0.05).  

There were significant overall effects of the salinity treatment, but not moisture or 

community treatment on S. lindsayae abundance (Table 3.2). Total S. lindsayae abundance was 

significantly less in the elevated salt treatment compared to the control (LSMeans, p=0.02; Fig 

3.2A). This effect was particularly evident for juveniles and females (LSMeans, p= 0.042 and 

0.004, respectively; Fig 3.2A), but not for males (LSMeans, p=0.168; Fig 3.2A). While there was 

no significant moisture treatment effect on the total population (Table 3.2), there were 

significantly less adult S. lindsayae in the wet treatment compared to the dry treatment 

(LSMeans, p=0.041), but this effect differed by community and salinity treatment (Fig 3.2B). 

The moisture treatment did not affect the total abundance of juveniles (LSMeans, p=0.498). 

Scottnema lindsayae was added to two of the community treatments: Both and Scottnema. There 

were no differences in the total abundance of S. lindsayae between these two treatments 

(LSMeans, p=0.198).  
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Eudorylaimus antarcticus did not survive in most microcosms (was <1%). One single 

microcosm had 3 living E. antarcticus, this was the greatest survival of E. antarcticus (Both 

community, Control salinity, Wet). Eleven other microcosms had 1 or 2 living E. antarcticus, 

and all but two of these were the Both community treatment. Thus, the only treatment where E. 

antarcticus has significant survival was the Both community treatment (Fig 3.3), making the 

community treatment the only significant effect on E. antarcticus abundance (Table 3.2).  

Bacteria declined as S. lindsayae density increased up to ~500 individuals kg dry soil-1 

and then bacteria populations leveled off (Fig 3.4A, p <0.05, r2=0.229). However, this 

relationship depended on salinity treatment. In the control salinity treatment, the linear 

relationship between bacteria and S. lindsayae abundance was not significant (Fig 3.4B, p=0.402, 

r2=0.050). But in the high salinity treatment, the bacteria abundance was significantly greater as 

S. lindsayae abundance declined (Fig 3.4B, p=0.020, r2=0.333).  Due to the low survival of E. 

antarcticus, a linear relationship between the abundance of E. antarcticus and S. lindsayae was 

not assessed (Fig 3.4C).  

 

Discussion 

Antarctica’s McMurdo Dry Valleys are among the coldest and driest terrestrial 

ecosystems in the world, making this habitat one of the harshest to support life.  Here, little 

evidence of biotic interactions has been found (Hogg et al. 2006) and prior research has focused 

primarily on the relationship between abiotic factors and soil biodiversity. Four genera of 

nematodes co-occur across the MDV and include microbivores and an omnivore-predator. These 

nematodes co-occur with other invertebrates, tardigrades and rotifers. Scottnema lindsayae, a 

microbivore, is the most common nematode in the MDV, most commonly found in dry soil 
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communities as the only metazoan species; however the second most common community in dry 

soil is S. lindsayae with E. antarcticus, the omnivore-predator (Freckman and Virginia 1997). 

While the presence of two to three trophic levels (microbes, microbivores, omnivore-predators) 

indicates that biotic interactions occur in the MDV, biotic interactions have not been identified as 

significant drivers of communities or ecosystem function.  

Effects of salinity and moisture on populations of bacteria and nematodes 

We hypothesized that elevated soil moisture would have a positive effect on soil 

microbes and E. antarcticus, and a negative effect on S. lindsayae, but we found that moisture 

had no effect on bacteria and a negative effect on S. lindsayae adults only. A decline in the adults 

is an indication that future fecundity could be negatively impacted. In other words, a decrease in 

adult nematodes could have lag effects through reduced reproduction, which negatively impacts 

future populations. Moisture has been shown to have a negative impact in field studies on dry-

soil adapted S. lindsayae (Wall 2007), but these effects either occurred with an extreme flooding 

event when the soil became saturated (e.g. Nielsen et al. 2012) or over a decade, when the 

populations decline steadily (Andriuzzi et al. 2018). Since our microcosm study mimicked the 

length of one ‘active’ season, and S. lindsayae generation time likely occurs over multiple 

seasons (e.g. Porazinska et al. 2002, Nielsen et al. 2012, Andriuzzi et al. 2018), it likely would 

have taken longer to see a moisture effect on the total S. lindsayae population.  

Our results show that the relative high soil salinity had significant negative effects on 

total S. lindsayae abundance as well as juveniles and females (Fig 3.2A), which could impact 

long term populations through an effect on reproduction and recruitment to adulthood (Overhoff 

et al. 1993). In other studies, not only nematode survival but also nematode activity was affected 

by soil salinity. Treonis and Wall (2005) found a significant relationship between the number of 
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nematodes in anhydrobiosis (a form of cryptobiosis) and soil water potential, which is affected 

by the interaction between soil water and salt content. Furthermore, the response of S. lindsayae 

to elevated soil salinity in situ is likely to depend on the type and composition of salts, which are 

often more toxic than NaCl alone (Nkem et al. 2006) 

Scottnema lindsayae grazing inhibits bacterial response to dead nematodes 

Carbon availability may be a significant limitation for bacterial biomass even when other 

conditions are favorable (low salinity, suitable moisture). As Van Horn (2014) found, microbes 

quickly take advantage of a new carbon source when it becomes available, especially in areas of 

low salinity. In our study, bacterial abundance was significantly higher in the Eudorylaimus 

community treatment (Fig 3.1) over the other three treatments in control salinity. In this 

treatment, effectively all of the ~50 nematodes added died during the experiment (1 microcosm 

had a single survivor), and were presumably decomposed by bacteria. When no nematodes were 

added, and thus no new carbon was added in the Control community treatment, the bacterial 

abundance was lower (Fig 3.1). Bacteria were inhibited when living S. lindsayae were present, as 

there was no difference in number of cells for the Both community treatment compared to the 

Control, despite high E. antarcticus mortality, suggesting that S. lindsayae grazing inhibits 

bacterial response to the elevated carbon provided by dead E. antarcticus. 

Biotic interactions between Scottnema lindsayae and soil bacteria depends on salinity 

treatment 

We hypothesized that the magnitude of responses would vary by community, driven by 

biotic interactions. We expected bacterial abundance to be negatively related to the abundance of 

total nematodes. We found that the number of bacterial cells declined with increasing abundance 

of total living S. lindsayae, but this relationship leveled off at >500 S. lindsayae per kg dry soil 



34 

(Fig 3.4A). Furthermore, this relationship differed depending on the salinity treatment. In the 

control soil alone, there was no relationship between bacteria cells and S. lindsayae abundance, 

suggesting a more stable bacteria population or a constant rate of S. lindsayae activity (Fig 3.4B). 

In the high salt treatment, bacteria abundance was significantly correlated to S. lindsayae 

abundance (Fig 3.4B), with bacteria abundance increasing as S. lindsayae declined, suggesting a 

release of top-down pressure on bacteria. 

We expected the response of S. lindsayae to depend on the response of E. antarcticus in 

the community treatment with both nematode species. Due to the low survival of E. antarcticus, 

we were unable to evaluate our last hypothesis. The only significant survival of E. antarcticus 

occurred when S. lindsayae was present (Fig 3.3), but even this survival was very low. This 

could be due to a number of stresses including transferring the nematodes from Hjorth Hill soils 

to Many Glaciers Pond soil, the stress of picking the nematodes by hand with the eyelash tool, or 

providing insufficient food sources. Similarly, labs that culture other Antarctic nematodes have 

been unable to keep E. antarcticus alive in culture (C. Tomasel personal communication, B. 

Adams personal communication). Nkem et al. (2006) found a negative relationship between S. 

lindsayae and E. antarcticus in a field survey, and suggested that this could be due to either a 

biological interaction or differing habitat requirements. Testing the biotic relationship between S. 

lindsayae and E. antarcticus and how this relationship is affected by environmental factors will 

require additional studies.  

Biotic interactions – including competition, predation, and facilitation – are among the 

primary drivers of ecological community structure in ecosystems worldwide. The relative 

importance of these drivers differs across various ecosystems and depends on a suite of factors 

that influence strength of interactions. Not only have recent climate changes altered nematode 
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populations and community structure (Porazinska et al. 2002), but the long-term effects of these 

changes are predicted to impact trophic structure and the strength of biotic interactions in the 

MDV (e.g. Gooseff et al. 2017a, Andriuzzi et al. 2018). Recent research suggested top-down 

effects of S. lindsayae on soil bacteria abundance (Nielsen et al. 2011), but until now, these 

effects have been unconfirmed. Ours is the first study to demonstrate, although in lab microcosm 

conditions, top-down control in the MDV soil food web through S. lindsayae’s effects on 

bacterial abundance. Furthermore, our results show that biotic interactions are significantly 

altered by abiotic stress, specifically salinity. This has large implications for MDV biodiversity, 

where a future ecosystem is expected experience a new distribution of soil solutes with changing 

hydrological connectivity.  
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Table 3.1. Effects of salinity and moisture on soil taxa from population to ecosystem. 

 

 

 

  

Level Taxa Effects Citations 

Populations 

 Microbes  -Gene expression of AOA or AOB changes in more 

saline, drier valleys1 

-Moisture was positively correlated to fungi abundance 

while salinity was negatively correlated2 

1Magalhaes et al 2014 
2Arenz et al 2011 

 Invertebrates -Scottnema and Plectus are both negatively affected by 

salt, but type and concentration matter1 

-Populations of Scottnema, Eudorylaimus, and Plectus 

are negatively related to salinity2 

1Nkem et al 2006 
2Powers et al 1998 
 

 

Communities 

 Microbes -Community composition shifts with salinity (i.e. shift 

from Actinobacteria to Firmicutes dominated)1,5 

-Greater community diversity of microbes in drier soils2 

-Salinity is a significant driver of microbial communities 

across 4 valleys3 

-negative relationship between alpha diversity of 

microbial communities and salinity4 

-Soil moisture is a significant predictor of bacterial 

community diversity at the genus level5 

1Van Horn et al 2014 
2Takacs-Vesbach et al 

2010 
3Lee et al 2011 
4Okie et al 2015 
5Geyer et al 2014 

 Invertebrates -Greater invertebrate community diversity in less saline 

soils1,2,3 

-Greater invertebrate community diversity with higher 

soil moisture1,2,3 

-Community structure is influenced by soil moisture 

Plectus and Eudorylaimus are associated with wetter 

soils, Scottnema with drier1,2,3,4 

1Nielsen et al 2011 
2Ayres et al 2007 
3Treonis et al 1999 
4.Powers et al 1998 
 

Ecosystem 

 Microbes -Water tracks alter respiration rates, but depends on the 

soil chemistry, including salinity2 

-Lower microbial biomass in saltier, drier valleys3 

- Moisture addition did not affect microbial biomass in a 

field experiment4 

-Along with pH and organic carbon, salinity was one of 

the best predictors of microbial activity in soils of lake 

and stream margins5 

2Ball and Virginia 

2012 
3Tampaari et al 2012 
4Ball et al 2018 
5Zeglin et al 2009 

 Invertebrates -Water tracks affect soil invertebrate habitats, but 

depends on soil chemistry, including salinity1, and have 

been found to have lower invertebrate abundance, 

associated with higher salinity3 

-Salinity and moisture are significant drivers of habitat 

suitability for invertebrates, S. lindsayae is found in 

saltier, drier soils2 

1Ball & Virginia 2012 
2Courtright et al 2001 
3Smith et al 2012 
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Table 3.2. Results of three-way ANOVA. Effects of community (C), moisture (M), and salinity (S) treatments 

on Eudorylaimus total abundance, Scottnema total abundance, Scottnema adults, Scottnema juveniles, 

Scottnema females, Scottnema males, total bacterial cells, fungal biomass (d.f. = degrees of freedom). 

 

 

Effect d.f. F p   Effect d.f. F p 

Eudorylaimus total abundance   Scottnema total abundance 

C 1,32 19.89 <0.0001   C 1,31 2.02 0.165 

M 1,32 0.29 0.597   M 1,31 1.57 0.220 

S 1,32 0.10 0.759   S 1,31 6.25 0.018 

C*M 1,32 0.033 0.858   C*M 1,31 0.62 0.437  

M*S 1,32 1.252 0.271  M*S 1,31 0.48 0.494 

C*S 1,32 0.164 0.688  C*S 1,31 0.10 0.758 

C*M*S 1,32 3.362 0.076  C*M*S 1,31 3.21 0.083 

 

Scottnema adults   Scottnema juveniles 

C 1,35 0.82 0.371   C 1,31 1.46 0.237 

M 1,35 4.82 0. 035   M 1,31 0.38 0.544 

S 1,35 8.47 0. 007   S 1,31 4.24 0.048 

C*M 1,35 0.195 0. 662   C*M 1,31 0.38 0.541 

M*S 1,35 0.49 0.489  M*S 1,31 0.039 0.844 

C*S 1,35 0.11 0.737    C*S 1,31 0.226 0.638 

C*M*S 1,35 5.75 0.023  C*M*S 1,31 1.675 0.205 

 

Scottnema females   Scottnema males 

C 1,31 3.60 0.067   C 1,31 0.35 0.5574 

M 1,31 2.01 0.167   M 1,31 3.239 0.0817 

S 1,31 9.81 0.004   S 1,31 2.023 0.1649 

C*M 1,31 0.72 0.403  C*M 1,31 0.448 0.5085 

M*S 1,31 1.49 0.232   M*S 1,31 0.677 0.4169 

C*S 1,31 0.37 0.548  C*S 1,31 0.599 0.4450 

C*M*S 1,31 3.38 0.076  C*M*S 1,31 3.436 0.0733 

 

Bacteria cells   

C 3,53 7.34 0.0003   

M 1,53 0.35 0.557   

S 1,53 3.51 0.067   

C*M 3,53 0.75 0.527   

M*S 1,53 0.03 0.870      

C*S 3,53 16.41 <0.0001      

C*M*S 3,53 0.68 0.568      
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Figure 3.1: Community and salinity treatment effects on total bacterial cells. Treatments on the x-axis are 

Control salinity and High salinity. Colors correspond to community treatments: N= no nematodes (control), 

S= Scottnema only, E = Eudorylaimus only, B = Both Scottnema and Eudorylaimus. Different letters denote 

community treatments with significant differences (p<0.05, LSMeans). 
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Figure 3.2: Salinity treatment effects on (A) total living, adult, juveniles, female, and male Scottnema. 

Asterisks denote significant differences (p<0.05) between salinity treatments, (B) 

Community*Salinity*Moisture effects on Scottnema adults, Community treatments are S= Scottnema and B = 

Both Scottnema and Eudorylaimus. 

 

A. 

B. 
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Figure 3.3: Effect of community treatment on total living Eudorylaimus. N= no nematodes (control), S= 

Scottnema only, E = Eudorylaimus only, B = Both Scottnema and Eudorylaimus. 
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Figure 3.4: Relationship between (A) Scottnema and bacteria abundance overall, (B) Scottnema and bacteria abundance by salinity treatment, and (C) 

Eudorylaimus and Scottnema abundance

B. A. 

C. 
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CHAPTER 4 – SOIL FOOD WEB COMPLEXITY VARIES WITH CARBON SOURCE 

ACROSS THE MCMURDO DRY VALLEYS 

 

 

 

Summary 

Despite extremely low organic carbon availability, the McMurdo Dry Valleys of 

Antarctica support a multi-level soil food web, including microbivore and omnivore-predator 

invertebrates. This challenges the classical understanding of food web structure, where such low 

resource availability is predicted to limit trophic complexity. Various combinations of soil fauna 

communities exist in the McMurdo Dry Valleys depending on habitat, resources, and geographic 

location, but it is unclear which organic carbon (C) sources fuel these food webs and if the soil 

food web structure varies with carbon source and availability. While soil organic C includes 

minor contemporary inputs from moss, cyanobacterial, or cryptoendolithic sources, additional 

sources include windblown detritus from modern cyanobacterial mats, marine detritus, and 

remnant ancient detritus from paleo-lakes. We asked: How do soil food webs vary across the 

landscape? We expected the trophic position of soil fauna to remain stable across the landscape, 

while complexity varied. Specifically, we hypothesized that food webs would have lowest 

complexity in the lowest productivity sites (high elevation) and highest in the most productive 

sites near the coast. We expected that paleo-lakes would impact soil food webs at low elevations 

and isotopic signatures would reflect C source. In a field study, we sampled both wet and dry 

habitats across 8 valleys. We then did an in-depth study of Taylor Valley to assess the potential 

impact of a paleo-lake on the soil food web. Results showed that C sources were identifiable 

with unique isotopic signatures and there were three distinct trophic levels in the soil food web. 

While isotopes revealed Eudorylaimus as an omnivore-predator in wet soils, its trophic position 

differed in dry soils, reflecting a switch to a primary consumer positions under low resource 
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availability. Furthermore, the isotopic signatures of Scottnema from the oldest soils (Taylor IV 

drift) were significantly lighter in 13C than the younger dry soils, but this pattern was reversed in 

wet soil. This suggests that there is very old, highly processed soil organic matter in Taylor IV 

dry soils, which do not receive contemporary inputs from primary production as in wet habitats. 

This research reveals that Antarctic Dry Valley soil food webs are variable in their complexity 

and structure across the dry valleys landscape and with habitat. 

 

Introduction  

One of the oldest organizing concepts in ecology is the food web (Elton 1927). Food web 

structure and size varies in natural communities and repeatable patterns have been found in 

ecosystems around the world (Pimm 1982, Cohen and Briand 1984, Cohen et al. 2003). Food 

webs are limited by primary productivity and resource availability because energy is lost with 

each transfer up the food chain (Hutchinson 1959). Productivity is not the only control on food 

web complexity: disturbance and ecosystem size also play a role in determining the number of 

trophic levels, or food chain length (Post 2002a, Thompson and Townsend 2004, Takimoto et al. 

2012). However, low productivity ecosystems still challenge our understanding of the drivers of 

food web structure. For example, arid regions often support highly complex food webs (Ayal 

2007, Megías et al. 2011, Segoli et al. 2016), despite the once classic paradigm that abiotic 

conditions control the diversity and trophic complexity of deserts. Questions remain about 

whether cold deserts also exhibit complex food webs despite harsh conditions and low 

productivity. 

The harshest terrestrial ecosystems on earth include the ice-free regions of Antarctica. 

The largest of these areas is the McMurdo Dry Valleys, where low temperatures and scarcity of 
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liquid water constrain the abundance and activity of terrestrial organisms. There are no vascular 

plants and the cryptogamic vegetation is sparsely distributed. Thus, the primary production by 

mosses, lichens, terrestrial cyanobacteria and algae, including the microbial communities that 

grow inside of rocks (i.e. cryptoendoliths), is very limited (Friedmann and Ocampo 1976, 

Friedmann 1982, Green et al. 1992, Schwarz et al. 1992, Pannewitz et al. 2003, Novis et al. 

2007). Despite this, soil organic carbon is present throughout the dry valleys, even in extremely 

arid soils that lack any sign of primary productivity (Cameron et al. 1970). The concentrations of 

this soil organic matter are extremely low – among the lowest on earth – and average just 0.01–

0.03% organic carbon by weight and 0.003% by total nitrogen by weight (Campbell and Claridge 

1987). Yet, these soils respire heterotrophic CO2 (Parsons et al. 2004, Ball et al. 2009) and 

support active soil food webs (Freckman and Virginia 1997, Treonis et al. 1999, Stevens and 

Hogg 2002, Cowan et al. 2010). Furthermore, the widespread distribution of the microbivore 

nematode, Scottnema lindsayae, throughout the McMurdo Dry Valleys (Freckman and Virginia 

1997) demonstrates that the quality and quantity of soil organic matter is sufficient to support at 

least two trophic levels.  

Which organic sources support McMurdo Dry Valley soil food webs, whether one source 

dominates or various sources occur, and how these sources vary with habitat is poorly 

understood. Potential sources include windblown detritus from the microbial mats of modern 

lakes and from cryptoendoliths (Parker et al. 1982, Elberling et al. 2006, Hopkins et al. 2006), 

marine detritus (Burkins et al. 2001), and ancient organic deposits from paleo-lakes (Burkins et 

al. 2001, Hendy 2004, Moorhead 2007). The wind transport of organic matter from productive 

sites to bare soils has been a longstanding explanation for soil organic matter accumulation in 

dry valley soils (Matsumoto et al. 1990, Wharton 1993). Lacustrine microbial mats and 
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cryptoendoliths are visibly eroded by wind (Parker et al. 1982) and organic matter has been 

found in aeolian collections (Hopkins et al. 2009). However, some of the organic compounds 

found in soil are not likely derived from modern lacustrine detritus and a possible source is relict 

organic matter from ancient glacial tills and glacial lake deposits (Matsumoto et al. 1990). The 

McMurdo Dry Valley landscape is heterogeneous and is composed of soils deposited from at 

least 4 glacial tills ranging in age from 12,000-3,700,000 years old (Burkins et al. 2000). 

Additionally, glacial meltwater collects at low elevation in Taylor Valley during climate 

warming (Doran et al. 1994). Glacial Lake Washburn was the last large paleolake in Taylor 

Valley and covered all of Taylor Valley to a depth of 300 m about 22,800–8500 yr BP (Doran et 

al. 1994). Buried algal mats exist throughout the dry valleys and range from 1900 and 26,000 14C 

years BP in age (Hopkins et al. 2009). While this organic matter is a potential source, there is 

currently no direct estimate of the quantity of ancient algal mats in the different valleys.  

Organic C has an estimated turnover time of about 130 years in the dry valleys, but under 

optimal conditions, its turnover could be much shorter (Barrett et al. 2005). This indicates that 

paleo-lake inputs from about 22,800–8500 yr BP (Doran et al. 1994) are either used up or are not 

the only source present. Stable isotopes have been used to identify sources of organic matter in 

soils in ecosystems around the world. Following this logic, previous research has used δ15N and 

δ13C to explore the sources of soil organic matter in the McMurdo Dry Valleys. Burkins et al 

(2001) found that soils were generally depleted in both isotopes, with values from Taylor Valley 

low elevations that generally tracked signatures for lake-derived organic material while higher 

elevations indicated marine or endolithic inputs. Hopkins et al (2009) expanded on this work 

showing that organic materials become depleted during decomposition and that soils in Wright 

Valley have endolithic origins while Garwood Valley soils are mixtures of lake-derived organic 
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inputs and either moss or endolith. However, it is unclear how these carbon sources might affect 

the soil food web structure and function.  

Soil food webs vary across the landscape, with more complex communities in wetter 

environments at lower elevations (i.e., lake or stream margins) and less complex communities in 

drier, higher elevation sites (Treonis et al. 1999, Ayres et al. 2007). Generally, two soil food 

webs are defined in the dry valleys: wet and dry (see Chapter 1 and 2). Briefly, Scottnema 

lindsayae dominates dry soils while the nematodes Eudorylaimus antarcticus, Plectus murrayi, 

along with rotifers and tardigrades prefer wetter soil (Treonis et al. 1999). The trophic position of 

each of these nematode species, rotifers, and tardigrades have been identified using stable 

isotopes for one site in Taylor Valley (Shaw et al. 2018, Chapter 2). However, soil community 

structure varies with edaphic characteristics (Powers et al. 1998) and it is unclear if the trophic 

structure is the same landscape-wide.  

We asked: How do soil food webs vary in their complexity and structure across the 

valleys with soil habitat (wet/dry), soil age, and elevation (a proxy for productivity)? Does 

trophic position of individual species shift across the landscape with resource availability? We 

hypothesized that food webs would be most complex in wet soils where biodiversity is known to 

be highest. We expected trophic structure to be stable and for each taxa, if present, to remain in 

the same trophic level regardless of location. We expected that soil carbon source would be 

detectable in soil fauna due to fractionation that occurs when energy is transferred up trophic 

levels and would reflect the primary producers most prominently in wet habitats where they are 

conspicuous. If paleo-lakes affect the soil food web, we expected the isotopic signature at low 

elevations to differentiate from the isotopic signature of the same habitat at high elevations.  
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Methods  

Study site and sampling scheme 

To assess a broad scale elevation gradient, we collected 160 soil samples from across the 

McMurdo Dry Valleys landscape (specific locations with GPS coordinates are in Appendix 1). 

We selected sites along in 8 valleys from the coast to high elevation valleys near the polar 

plateau. The high elevation, low productivity valleys were Beacon, Wall, Virginia, and 

University and the low elevation, higher productivity valleys were Garwood, Taylor, Miers. 

Wright Valley was considered as a mid elevation valley. The high elevation valleys such as 

University and Beacon are known to be extremely cold and dry, among the harshest places for 

life (Goordial et al. 2016). In each valley, we aimed to collect 6 samples from two habitats: wet 

and dry (12 samples total). Wet habitats were within 3m of stream, lake or snowpack and had 

visibly moist soil. Dry sites were >5m from any stream or lake with no physical evidence of 

recent inundation. Due to the remoteness of the fieldwork and difficulty reaching these locations, 

these samples were collected over four years (see details in Appendix 1). Both habitat types were 

not always present in every valley. For example, Beacon, University, Wall, and Virginia Valleys 

have no streams or lakes and soil moisture is extremely low. Therefore, no wet habitats were 

sampled in these locations. Within Taylor Valley, we designed a more detailed sampling scheme 

to explore the effects of local factors on food web structure and to help to understand how 

differences in elevation might influence food webs. We chose sites in each lake basin (Lakes 

Fryxell, Hoare, and Bonney) as well as at the mouth of Taylor Valley near the Ross Sea (e.g 

Hjorth Hill) and high elevation ponds (e.g. Marr and Parera Ponds). Within each location, we 

collected samples from both wet and dry habitats. We also collected both high (>300m ASL, 

above paleo-lake bounds) and low elevation samples within each lake basin. Our samples were 
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collected in a range of glacial tills. Specifically, Hjorth Hill and Fryxell basin were in the Ross I 

drift (24,000–12,000 yr BP), Hoare basin samples and low elevation Bonney basin samples were 

taken in Taylor II/Bonney drift (98,000–74,000 yr BP) and high elevation Hoare samples were in 

Taylor III (200,000 – 210,000 yr BP), and the Upland Pond and high elevation Bonney samples 

(e.g. Andrew’s Ridge) were in Taylor IV (2,100,000-3,700,000 yr BP). 

Samples were collected with clean plastic scoops to 10 cm depth or to permafrost 

(whichever was reached first) and placed in sterile polyethylene Whirl-Pak bags. Coordinates for 

the location of each sample was recorded with a handheld GPS unit. All soils were kept in 

insulated coolers while in transit to the McMurdo Station laboratory facilities, where they were 

immediately placed into temporary storage at 4°C. Soil were slowly frozen by lowering the 

temperature to -20°C over 4 days (as in: Shaw et al. 2018). The soil was shipped frozen (-20°C) 

to Colorado State University, Fort Collins, Colorado, USA. At time of soil fauna extractions, we 

slowly defrosted the soils (as in: de Tomasel et al. 2013) before use.  

Soil fauna extraction and identification 

Nematodes, tardigrades, and rotifers were extracted from soils using sugar centrifugation 

procedures, modified to keep Antarctic soils and all extraction materials at a constant cold 

temperature (Freckman and Virginia 1993). Within 48 h of extraction, taxonomic groups were 

identified (nematodes identified to species and tardigrades and rotifers to phylum, Olympus 

CKX41, 200X magnification) and counted. At the time of extraction, a 10 to 20-g soil subsample 

was dried at 105°C for 48 h to determine gravimetric soil moisture (water mass per unit soil 

mass) by mass loss. All soil fauna counts were then adjusted for soil moisture content and 

expressed as number per kg of dry soil.  
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Soil fauna isotope analysis 

The natural abundance of 13C and 15N of cryptogams (mosses and algae), nematodes 

(Eudorylaimus, Scottnema, Plectus), tardigrades, and rotifers were measured to assess trophic 

position (Bokhorst et al. 2007, Crotty et al. 2014). We sorted nematodes to species under 

microscope and handpicked approximately 100 individuals of each for isotope analysis. Rotifers 

and tardigrades were also separated for isotope analysis and were grouped by phylum. A small 

subsample of moss and algae was taken and assessed when present. All invertebrate individuals 

were collected into tin cups (8x5mm, Elemental Microanalysis BN/170056) using an eyelash 

tool (Superfine eyelash with handle, Ted Pella, Inc., Prod no. 113) for hand picking (as in: Shaw 

et al. 2016). For each taxon identified at each site, we aimed to triplicate fauna collections for 

isotope analysis. Extractions from 100 g of soil were repeated by site until sufficient biomass 

was achieved for each group found at that site. Note that at each site not all groups were present 

or lacked sufficient abundance to collect enough biomass for isotope analysis.  

Data analysis 

All isotope ratios are expressed in delta notation (δ) as a part per mil (‰) relative to a 

standard. Nitrogen is expressed as: 

δ15N=[(15N/14N(sample) –
15N/14N(atmosphere N)) ÷ ( 15N/14N(atmosphere N)) × 1000 

and carbon is expressed as: 

δ13C=[(13C/12C(sample) –
13C/12C (PDB)) ÷ (13C/12C (PDB)) × 1000 

where atmospheric N is and PeeDee belemnite (PBD) are used as standards for N and C, 

respectively. Using isotopic mixing models (Phillips and Koch 2002), we determined trophic 

position and feeding preference for each of the invertebrate groups at each sample site.  
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Then, trophic complexity was measured as connectance and link density (Ulanowicz et 

al. 2014). Specifically, the number possible directional links in the McMurdo Dry Valley food 

web was counted (see food web schematic, Appendix 2), and link density (LD) was calculated 

as:  

�� =
�

�
 

and connectance (C) was then calculated as: 

� =
�

�((� − 1)/2)
 

where L is the total number of directional links and S is the number of species present (van 

Altena et al. 2016). The number of species present at each site was used to assess richness. 

Abundance of organisms was used as a proxy for biomass present in a food web.  

We mapped species abundance and diversity in R using packages maptools and rgdal. 

Briefly, Shapefiles for the Antarctic coastline, glaciers, streams and lakes were stacked. Then, 

our sampling sites were projected as points using latitude and longitude of sample location. 

Increasing circle size represented greater total fauna abundance, and increasing color warmth 

represented greater species richness.  

Two-way ANOVAs were used to test for differences in food web connectance, link 

density, richness, and total soil fauna abundance between location and habitat across all valleys 

and all samples. For Taylor Valley, we used a mixed effects model to test if habitat and elevation 

affect total food web connectance, link density, richness, total soil fauna abundance, Scottnema 

abundance, Eudorylaimus abundance, Plectus abundance, Rotifer abundance, and Tardigrade 

abundance. Habitat (wet/dry) and elevation (high/low) were fixed effects with location within 

Taylor Valley as a random effect. We used post hoc tests (Tukey HSD) to confirm genuine 



51 

significant effects (p < 0.05). Residuals were tested for normality of distributions via Q-Q plots 

and Shapiro-Wilks tests, and data were log (x+1) if they failed (rejected when Shapiro-Wilks 

p<0.05). All data were transformed to log (x+1) for analysis. All analyses were performed in R 

(R-Core-Team 2014). 

 

Results 

Effects of habitat, valley location, and elevation on soil fauna and their food webs 

The abundance and diversity of soil fauna varied across the dry valleys and differed by 

habitat (Table 4.1). There were significant main effects of habitat and valley location on food 

web complexity (connectance and link density), species richness, and total soil fauna abundance 

(Table 4.2). Generally, there was greater abundance and diversity in Garwood and Taylor 

Valleys, followed by Miers, Wright, Wall, University, Beacon, and Virginia (Fig 4.1). However, 

this diversity and food web complexity varied with habitat and location (Habitat*Location 

interaction, Table 4.2), where there was greater abundance of soil fauna in wet habitats in 

Garwood Valley and in low elevation sites in Taylor Valley, but in valleys farther from the coast 

and higher in elevation, there were less fauna in wet habitats and more found in dry habitats 

(Table 4.1). In the high elevation valleys (Beacon, University, Wall, and Virginia) diversity was 

very limited. No living fauna were found in Virginia Valley, while University Valley only 

contained rotifers (Table 4.1). Tardigrades and rotifers were present at one site in Beacon Valley, 

along with a single living Scottnema. One site in Wall Valley had abundant Scottnema and 

tardigrades. In other locations, species diversity was generally greater.  

Within Taylor Valley, there was a significant main effect of habitat on foodweb 

connectance, link density, richness, as well as Scottnema, Plectus, rotifers, and tardigrades 
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(Table 4.3). Diversity, and thus, food web complexity, was greatest in wet soils. Only Scottnema 

was less abundant in wet habitat (Table 4.1). Additionally, there was a significant interactive 

effect of habitat and elevation on Eudorylaimus, Plectus, and tardigrades (Table 4.3). While 

these groups were more abundant in wet habitat at low elevation, at high elevation the effect of 

moisture on their abundance was not significant. The greatest density and diversity of soil fauna 

was at the low elevation, wet site at Lake Fryxell (Fig 4.1). 

Primary producers in the McMurdo Dry Valleys vary in their isotopic composition (Fig 

4.2). Lake and stream mats have a consistent δ15N of 2.67±0.86, but vary from -24.99 to -4.42 in 

δ13C. On the other hand, mosses and endoliths have a consistent δ13C of -26.98±4.95 but vary 

widely in their δ15N (Fig 4.2). Endoliths and the mosses from Garwood and Miers are depleted in 

δ15N, while Hjorth mosses along with the microbial mats are more enriched (Fig 4.2). The 

primary producers were enriched relative to the soil organic matter (Fig 4.3 and 4.4), and  

similarly, a dried mat above the shoreline at Lake Fryxell was also depleted compared nearby 

active mats (see Fig 4.2b; Lawson et al. 2004). To assess the state of organic matter 

decomposition, we measured the δ13C and δ15N for a primary consumer, Scottnema, by soil age 

and habitat. We found that in dry habitat (vs. wet habitat), Scottnema biomass was significantly 

depleted in δ13C and δ15N with soil age, and was lightest in the oldest soil, the Taylor IV drift 

(Fig 4.5). However, Scottnema in wet habitat did not significantly differ in isotopic composition 

by soil age (Fig 4.5).  

In wet habitats, where primary productivity was evident, the soil food webs derived 

energy directly from the primary producers and were more enriched in δ15N and δ13C relative to 

the source (e.g. Fryxell wet, Bonney wet, and wet and dry in Garwood, Fig 4.4b and 4.4e, Fig 

4.3d, respectively). When food webs were detrital, soil fauna were depleted in δ13C relative to 
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the source, but δ15N values varied. For example, in Wall Valley (Fig 4.3a) the nematodes and 

tardigrades tracked endolith-derived organic matter. The trophic positions of soil fauna are well 

conserved across wet habitats, but varied in dry habitats (Fig 4.3 and 4.4), where Plectus, 

rotifers, and tardigrades are primary consumers in wet habitats, with Eudorylaimus at the top of 

the food web. In dry habitats, (particularly Miers Valley, Wright Valley, Lake Hoare low 

elevation, and Lake Fryxell) Scottnema, a primary consumer, has a very similar or even heavier 

isotopic signature than Eudorylaimus (Fig 4.3c,e and Fig 4.4b-c). However, Eudorylaimus is in 

the top trophic position in Bonney dry habitats at low elevation soils (Fig 4.4e) and Lake Hoare 

dry habitats at high elevation (Fig 4.4c).  

 

Discussion 

Soil food web complexity and structure varies with habitat 

As ‘McMurdo's equivalent of elephants and tigers’(Wilson 2002), the soil fauna are the 

top consumers and predators in this food web. Until recently, no top-down effects had been 

found (but see Chapter2 1 and 2) and all factors affecting soil communities were assumed to be 

abiotic (Hogg et al. 2006). Even so, abiotic factors such as water, temperature, salinity, and pH 

are known to limit life in Antarctic soils (Courtright et al. 2001, Poage et al. 2008), while the role 

of biotic interactions in structuring natural communities is still uncertain. As expected, soil food 

webs were most complex in wet habitats in the lowest elevations (e.g. Garwood and Taylor 

Valleys). This is similar to recent findings of Andriuzzi et al. (2018), who found that invertebrate 

diversity (Pielou’s E) was greater in Garwood Valley compared to Taylor, but not Miers Valley. 

Furthermore, we found that food web complexity, measured as connectance and link density, 

decreased with distance from coast and elevation. This supports previous findings of soil fauna 

distributions (Adams et al. 2014), and suggests that complexity is tied to environmental factors 
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that may also play a role in primary productivity (Geyer et al. 2017). Within Taylor Valley at 

high elevations, wet communities were not significantly more diverse and abundant than the dry 

communities, suggesting that a factor besides moisture is limiting their diversity.  

 We hypothesized that food web structure would be stable, i.e. that soil fauna taxa would 

remain in the same trophic level whenever they were present at a site. However, food web 

structure was not conserved across habitats: Eudorylaimus was predominantly an omnivore-

predator in wet habitats and a primary consumer in dry habitats (with a few exceptions, Fig 4.3 

and 4.4). This finding, though counterintuitive, could be explained by resource quality and 

Eudorylaimus’ role as an omnivore. When a shared resource for which two species compete 

becomes enriched, omnivores often switch to predation on their competitor (Diehl and Feissel 

2001). Thus in low resource environments, omnivores remain as competitors, but in high 

resource environments, omnivores become more predatory (Diehl and Feissel 2001). As greater 

moisture across the landscape is predicted for the future (Gooseff et al. 2011, Fountain et al. 

2014), which is likely to affect the extent of primary production, a potential shift in trophic 

positions has consequences for ecosystem functioning and community structure (Woodward et 

al. 2008). 

Primary productivity and decomposition in the McMurdo Dry Valleys 

Mosses and endoliths exhibit δ13C values of -26.98 ± 4.95, typical of C3 photosynthesis 

(Fig 4.2), but stream and lake microbial mats vary in δ13C. The fractionation associated with CO2 

concentration in frozen, aquatic or temporally aquatic environments contributes to higher δ13C in 

mat biomass (Lawson et al. 2004). The relatively heavy δ15N of the mats (2.67 ± 0.86) suggests 

biological N fixation (Delwiche et al. 1979), while the lighter values of endoliths and mosses are 

derived from atmospheric N deposition. The relatively higher δ15N of the mosses at Hjorth Hill 
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(Fig 4.2) compared to the mosses from Miers and Garwood can be attributed to marine aerosols, 

which have a heavier isotopic signature than N from atmospheric deposition (Burkins et al. 

2000). 

Soil organic matter in the McMurdo Dry Valleys becomes lighter (δ13C, δ15N) during 

decomposition (Fig 4.3 and 4.4). This could be a result of structural components (biopolymers) 

in endoliths and mosses, that are not present in microbial mats and remain after preferable 

sources are used up (Matsumoto et al. 1990, Hopkins et al. 2009). These structural components 

are typically lighter in 13C and 15N than other components. Hopkins et al (2009) showed that 

organic matter become more depleted in 13C during an incubation experiment and suggest that 

this could account for the light isotopic signatures of soils in the dry valleys. Similarly, Lawson 

et al (2004) found that dried lake mats decreased in δ13C at increments from the shore, 

suggesting that older, more decomposed mats are more depleted.  

We hypothesized that the primary consumers would reflect their sources and thus, those 

from older soils would have a lighter δ13C signature relative to younger soils, reflecting more 

degraded organic materials. The isotopic signature of Scottnema from dry habitats became more 

negative in older soils, and was lightest in the oldest soil (Taylor IV, 2,100,000-3,700,000 yr 

BP). Furthermore, very light isotopic signatures indicate a lack of new organic input into the 

system, suggesting that residual carbon is very old. However, Scottnema from wet habitats did 

not track this depletion and there was no difference between young and old soils. Thus, we 

expect that even in very old soils, new moisture is linked to new carbon sources through primary 

production, which alleviate the isotope depletion and are quickly incorporated into the soil food 

web (see supplementary study, Appendix 2).  
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Overall, our study shows that trophic structure, complexity and diversity of soil 

invertebrate communities varies across the McMurdo Dry Valleys with habitat, elevation, and 

soil age. We have demonstrated that the organic sources that fuel these soil communities also 

vary, and that oldest soils receive very little input from contemporary sources. Furthermore, our 

results inform understanding of potential trophic interactions, which depend on the resource 

availability that varies from dry to wet habitat. Specifically, Eudorylaimus’ trophic position 

differs from a predator in wet habitat and a competitor (potential predator) in dry habitat. As 

hydrological connectivity increases across the landscape and resource availability changes with 

climate change, we predict that increased primary productivity will drive greater organic carbon 

availability in formerly dry habitat and subsequently, the relative importance of predator-prey 

interactions will increase. 
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Table 4.1. Mean values of species richness, total fauna abundance, and nematode, rotifer, and tardigrade 

abundance (±±±±standard error). Sample locations are organized by increasing distance from coast/elevation. 
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   Nematodes   

 Species 

Richness 

Total 

Abundance 
Scottnema Eudorylaimus Plectus Rotifers Tardigrades 

Garwood Valley 

Dry 

Wet 

 

1.82±0.38 

4.18±0.46 

 

992±278 

4318±1622 

 

590±192 

388±157 

 

86±28 

689±171 

 

0±0 

183±102 

 

4±3 

1816±1154 

 

8±7 

1026±433 

        

Miers Valley 

Dry 

 Wet 

 

2.0±0.0 

2.80±0.37 

 

2875±1642 

757±279 

 

1796±970 

187±741 

 

55±45 

297±210 

 

0±0 

8±6 

 

0±0 

71±42 

 

0±0 

2±1 

        

Taylor Valley        

Low elevation: 

(<100m ASL) 

       

Hjorth Hill 

Wet 

 

4.25±0.25 

 

1983±811 

 

47±21 

 

332±177 

 

1107±634 

 

265±114 

 

21±21 

Lake Fryxell 

Dry 

Wet 

 

1.00±0.00 

5.00±0.00 

 

557±409 

6993±937 

 

13±9 

0±0 

 

0±0 

2145±640 

 

0±0 

326±128 

 

0±0 

2599±734 

 

0±0 

1091±341 

        

Lake Bonney 

Dry 

Wet 

 

1.00±1.00 

3.00±1.00 

 

428±428 

2748±2074 

 

216±216 

0±0 

 

10±10 

66±56 

 

0±0 

95±95 

 

0±0 

2121±2121 

 

0±0 

56±56 

High elevation: 

(>100m ASL) 

       

Lake Fryxell 

Dry 

 

1.71±0.29 

 

1369±681 

 

899±462 

 

25±12 

 

0.0±0.0 

 

0.0±0.0 

 

0.0±0.0 

Lake Hoare 

Dry 

Wet 

 

1.8±0.37 

6 

 

3210±1917 

1040 

 

494±126 

235 

 

6±4 

55 

 

4±4 

22 

 

0±0 

165 

 

0±0 

330 

Upland Ponds 

Dry 

Wet 

 

1.00±0.46 

3.25±0.37 

 

1518±958 

1469±498 

 

1276±909 

0±0 

 

5±4 

0±0 

 

0±0 

232±182 

 

152±134 

1074±526 

 

0±0 

86±42 

Lake Bonney 

Dry 

Wet 

 

1.2±0.49 

1.67±1.67 

 

1976±1272 

607±602 

 

1012±738 

277±277 

 

0±0 

42±42 

 

0±0 

3±3 

 

4±2 

0±0 

 

0±0 

66±66 

        

Wright Valley 

Dais (Dry)

Vanda (Dry)

Brownworth (Wet)

 

1.50±0.19 

0±0 

0.25±0.25 

 

1047±273 

0±0 

163±163 

 

460±171 

0±0 

91±91 

 

19±14 

0±0 

9.25±9.25 

 

0±0 

0±0 

0±0 

 

0±0 

0±0 

0±0 

 

1.25±1.25 

0±0 

0±0 

        

Wall Valley 0.38±0.26 914±913 30±30 0±0 0±0 0±0 783±783 

Virginia Valley 0.13±0.13 1.25±1.25 0±0 0±0 0±0 0±0 0±0 

Beacon Valley 0.24±0.14 431±253 0.59±0.59 0±0 0±0 430±253 0±0 

University Valley 0.45±0.21 220±125 0±0 0±0 0±0 216±124 3±2 
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Table 4.2. Results of two-way ANOVA. Effects of location (L) and habitat (H) and their interaction (L*H) on 

food web connectance, trophic link density, diversity, and total soil fauna abundance (d.f. = degrees of 

freedom). Significance was accepted at alpha<0.05 and is denoted by (*).  

 

 

Effect d.f. F p   Effect d.f. F p 

Trophic link density   Food web connectance 

L 14,133 18.14 <0.0001*   L 14,133 17.74 <0.0001* 

H 1,133 57.06 <0.0001*   H 1,133 63.04 <0.0001* 

L*H 4,133 2.57 0.041*   L*H 4,133 2.93 0.023* 

         

Species richness  Soil fauna abundance 

L 14, 133 16.795 <0.0001*  L 14,133 11.42 <0.0001* 

H 1,133 42.87 <0.0001*  H 1,133 13.17 0.0004* 

L*H 4,133 1.848 0.123  L*H 4,133 2.01 0.097 
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Table 4.3. Results of mixed effects models. With location in Taylor Valley as a random effect, the effects of 

habitat (H) and elevation (E) on food web connectance, link density, diversity, total soil fauna abundance, 

Scottnema abundance, Eudorylaimus abundance, Plectus abundance, rotifer abundance, and tardigrade 

abundance (d.f. = degrees of freedom, t = t-value, p=p value). Significance was accepted at alpha<0.05 and is 

denoted by (*).  

 

 

Effect d.f. t p   Effect d.f. t p 

Trophic link density   Food web connectance 

E 38 -0.72 0.473   E 38 -0.72 0.473 

H 38 3.18 0.003   H 38 3.18 0.003* 

E*H 38 2.38 0.022   E*H 38 2.38 0.022* 

 

Species richness   Soil fauna abundance 

E 38 -0.65 0.522   E 38 -0.39 0.697 

H 38 4.03 0.0002*   H 38 0.10 0.921 

E*H 38 1.66 0.104   E*H 38 1.57 0.123 

 

Scottnema   Eudorylaimus 

E 38 -1.73 0.090   E 38 -0.92 0.365 

H 38 -2.68 0.010*   H 38 0.11 0.913 

E*H 38 0.54 0.587   E*H 38 4.87 <0.0001* 

         

Plectus   Rotifers 

E 38 0.04 0.9679  E 38 -0.30 0.764 

H 38 3.48 0.001*  H 38 2.69 0.010* 

E*H 38 2.89 0.006*   E*H 38 2.31 0.026* 

      

Tardigrades   

E 38 -0.18 0.860   

H 38 3.58 0.001*      

E*H 38 1.62 0.111      
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Figure 4.1. Map of the dry valleys showing soil fauna abundance and diversity by location. Circle 

size increases with increasing abundance of soil fauna. Colors indicate low (blue) to high (red) 

diversity (number of species). Other features (glaciers, streams, and lakes) are shown in gray.  

  

Garwood    Valley    

Miers    Valley    
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Figure 4.2. Comparison of the stable isotope composition of primary producers. Lake mats are denoted with 

an X, stream mats with a circle, mosses with a square, and endoliths with a diamond. All lake mat data except 

Garwood are from Lawson et al. (2004). Battleship endolith and Garwood lake mat data are from Hopkins et 

al (2009). Beacon endolith data are from Burkins et al (2001). All other data from this study. All mats shown 

here were active (wet) when sampled, except Fryxell Mat Detritus, which was a dried mat >1m from the lake 

shore. 
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Figure 4.3. δ13C and δ15N values for soil fauna, soil, and organic sources for high elevation valleys (A, B), 

coastal valleys (C, D), and an intermediate valley (E). Colors denote fauna groups. All primary producers are 

green, but have different shapes. Soil is a black triangle. Shapes show habitat (circles=wet and triangles=dry). 

Endolith values shown in plot A and E and Garwood soils in plot D are from Hopkins et al 2009. Beacon 

endolith values shown in plot B are from (Burkins et al. 2000). All others are from this study. All mats shown 

here were active (wet) when sampled. 
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Figure 4.4. δ13C and δ15N values for soil fauna, soil, and organic sources for locations in Taylor Valley. 

Colors denote fauna groups. All primary producers are green, but have different shapes. Soil is a black 

triangle. Shapes show habitat (circles=wet and triangles=dry). Empty shapes are from high elevation and 

filled shapes are from low elevation sites. Lake mat values shown in plot B, C, D, and E are from (Lawson et 

al. 2004). Endolith values shown in plot B and E, and soil values shown in B, C, D, and E are from (Burkins et 

al. 2000). All others are from this study. All mats were active (wet) when sampled, except one dried mat 

sampled near Lake Fryxell (B).  
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Figure 4.5. Mean natural abundance of (A) δ13C and (B) δ15N of the primary consumer, Scottnema, by soil age 

and habitat (±standard error) in Taylor Valley.  

A. 

B. 



65 

CHAPTER 5 – NITROGEN ADDITION AFFECTS THE SOIL NEMATODE COMMUNITY 

STRUCTURE AND SUCCESSIONAL MATURITY IN A SUBALPINE FOREST 

 

 

 

Summary 

Nitrogen deposition from anthropogenic sources is a global problem that reaches even the 

most remote ecosystems. Ecosystem responses belowground vary by ecosystem, and have 

feedbacks to geochemical processes, including carbon storage. A long-term nitrogen addition 

study in a subalpine forest has shown carbon loss over time, atypical for a forest ecosystem. Loss 

of microbial biomass is likely linked to lower soil carbon, but the mechanism behind this is still 

unknown. One possible explanation is through increased turnover due to grazing by soil fauna. 

Because nematodes occupy many trophic levels and are sensitive to trophic and environmental 

changes, assessing their communities helps to reveal belowground responses. In this study, we 

tested the hypothesis that long-term nitrogen fertilization affects nematode community structure 

and maturity beneath coniferous forests in the Rocky Mountains, indicating a faster cycling, 

bacterial driven system. We identified and enumerated nematodes by trophic group and family 

from experimental plots. Total nematode abundance was greater in fertilized plots compared to 

the control, but richness, diversity, and ecological maturity were lower. Nonmetric 

multidimensional scaling of the relative abundance of nematode families demonstrated that 

nematode community composition differed between treatments, driven by opportunistic 

bacterivores (e.g. Rhabditidae) in the fertilized plots and long-lived omnivores and predators in 

the control (e.g. Aporcelaimidae). Nematode maturity indices showed the nematode food web 

was enriched (indicating high nutrient/resource status) and structured (all trophic levels, 

including long-lived predators present) in both treatments, but significantly more enriched in the 

fertilized. The mechanism of this aboveground–belowground link between nitrogen deposition 
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and nematode community composition is likely through increased microbial turnover, and 

sustained high-quality food for nematodes.   

 

Introduction 

Anthropogenic nitrogen (N) deposition has increased more than an order of magnitude 

over the last century and is far greater than N deposition from natural sources (Galloway et al. 

2004, Galloway et al. 2008). Largely from food and energy manufacture and use, N deposition 

can have extensive effects on greenhouse gases, above- and belowground biodiversity, and soil 

biogeochemical cycles (Tilman 1986, Vitousek et al. 1997, Sala et al. 2000, Gough et al. 2012, 

Ramirez et al. 2012). These effects are not isolated to human-managed systems, and reach even 

very secluded places (Fenn et al. 2003, Pardo et al. 2011). While the impacts of N deposition 

aboveground generally include increased primary production, which stores carbon (Quinn et al. 

2009), belowground responses differ by ecosystem (Liu and Greaver 2010, Lu et al. 2011, Zhou 

et al. 2014). These responses vary from soil net carbon storage (e.g. forests, Janssens et al. 2010) 

to net loss (e.g. arctic tundra, Mack et al. 2004).  

A long-term nitrogen addition study in the subalpine forest of the Colorado Rocky 

Mountains found that soil organic horizon carbon decreased by 11% in fertilized plots compared 

to control plots (Boot et al. 2016), which contrasts findings in other forests undergoing N 

amendments (e.g. Frey et al. 2014). Additional results from this study included reduced soil pH 

and microbial biomass; these results are more typical of N addition studies (Boot et al. 2016). 

Reduced microbial biomass after N addition is often attributed to lower plant C flux through 

reduced litter, root growth, and exudate input (Liu and Greaver 2010), but could also be a result 

of increased aluminum toxicity caused by lower soil pH (Vitousek et al. 1997). Although food 
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web dynamics are often left out of N addition studies, elevated grazing by soil fauna resulting in 

increased turnover could explain the loss of microbial biomass (Lokupitiya et al. 2000, Parfitt et 

al. 2010).  

Nematoda is an incredibly diverse phylum, ubiquitous in soil. Nematodes span multiple 

trophic groups, with different taxa feeding on fungi, bacteria, cyanobacteria, algae, protozoans, 

roots, and other soil fauna (Yeates et al. 1993, Wardle et al. 1995, Bongers and Bongers 1998). 

Because they occupy many trophic levels and are sensitive to environmental changes, their 

communities reveal the soil’s condition and are useful as environmental and food web indicators 

(Bongers 1990, Ruess et al. 1999, Ferris et al. 2001, Yeates 2003). The successional maturity of 

nematode communities can be measured using the maturity index (MI; Bongers 1990). Briefly, 

undisturbed soil communities with sufficient resources have greater MI values than those from 

disturbed systems. The extensions of the MI – including the enrichment index (EI) and structural 

index (SI) – are useful for assessing soil food web structure and function (Ferris et al. 2001). 

Higher EI values indicate greater availability and turnover of resources, and are characterized by 

opportunistic groups; while greater SI values indicate low stress, high stability, and are generally 

systems where greater diversity, number of trophic links, and long-lived omnivore-predators are 

present (Ferris et al. 2001).    

Commonly, opportunistic nematode groups (particularly r-selected bacterivores) increase 

in abundance with N-addition (Ettema et al. 1999, Lokupitiya et al. 2000, Ruess et al. 2002) 

while long-lived omnivore-predators decrease (Todd 1996, Sarathchandra et al. 2001), reflecting 

an increased abundance of resource availability along with stress caused by N addition. 

However, the effects of N addition on nematode community vary by ecosystem. For example, 

lower nematode abundance and diversity with N addition has been found in grasslands (Wei et 
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al. 2012) and temperate forests (Sun et al. 2013). Meanwhile, Zhao et al. (2014) showed that 

nematode diversity and trophic composition were unaffected by N addition for tropical forests. 

Nematodes likely track the ecosystem response to N addition rather than responding directly to 

elevated N. 

The objective of our study was to use the MI and similar nematode community indices, to 

test the hypothesis that nematode community maturity and diversity are correlated negatively 

with long-term fertilization. We hypothesized a switch to a bacterial-driven, faster cycling soil 

food web with long-term nitrogen fertilization, which would be reflected by a lower MI, higher 

EI, lower SI, and overall significant increase in the total abundance of nematodes. We expected 

that nematode communities in control plots would have greater MI and SI, lower EI, greater 

richness and diversity values, and a distinct composition compared to fertilized plots.  

 

Methods 

Study site  

Loch Vale watershed (LVWS) is located on the east side of the continental divide in 

Rocky Mountain National Park, Colorado, USA, where soils are shallow and coarse entisols 

(Baron et al. 1992). Located at about 3200m ASL in elevation, the mean annual temperature is 

1.2 °C and mean annual precipitation is 105 cm (Mast et al. 2014). This area receives 

approximately 3 to 4 kg N ha-1 yr-1 as wet deposition (Baron et al. 2000). In 1996, a nitrogen 

fertilization experiment was established in LVWS in a split-plot design (for experiment details 

see: Rueth et al. 2003). Briefly, three pairs of experimental plots (30m x 30m) are located on 

undisturbed, closed-canopy, old growth Engelmann spruce and subalpine fir stands on northeast 

facing slopes. Each pair of plots includes one control and one fertilized plot. For fertilized plots, 
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dry ammonium nitrate (NH4NO3) was applied throughout the year to mimic natural atmospheric 

deposition. Specifically, NH4NO3 pellets were applied at a rate of 2.5 kg N ha-1 month-1 from 

April to October and 7.5 kg N ha-1 after the first snow in October. In total 25 kg N-1 yr-1 was 

applied. The rate chosen was similar to natural atmospheric N deposition rates in other parts of 

the United States during the setup of the experiment in 1996.  

Soil collection and analyses 

In July 2014 and July 2015, 24 soil cores (5.5cm diameter x 10cm depth) were collected 

in the LVWS experimental plots (4 samples per each of 3 control and fertilized plots). Cores 

were taken approximately 3m apart in the innermost 15m2 area of experimental plots to minimize 

any edge effects. Samples were stored at 4° C at Colorado State University until processing. Soil 

nematodes were extracted within 48h of collection by the sugar centrifugation floatation method 

(Jenkins 1964; Freckman and Virginia 1993). Five nematode trophic groups (bacterivore, 

fungivore, plant parasite, omnivore, and predator) were identified according to Yeates et al. 

(1993) using an inverted microscope (Olympus CKX41, 200X magnification). After trophic 

group identification, 50 nematodes were randomly subsampled and identified to family level. 

Nematodes were assigned to colonizer–persister groups based on Bongers (1990). Additional 

fauna groups present in the soil extract were enumerated and included Rotifera, Tardigrada, and 

enchytraeids (Annelida). Mass loss of soils dried at 105° C for 48h was assessed to determine 

gravimetric soil moisture (water mass per unit soil mass). Soil fauna absolute abundance was 

then expressed on an oven dry weight basis as the number of individuals kg dry soil−1. Bulk 

density was 37,004.73 ± 4632.92 g soil m-2 and 42986.22 ± 5013.79 g soil m-2 for control and 

fertilized plots, respectively (mean  ± standard error). 
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Nematode community indices 

We measured nematode family richness, family diversity, and ecological maturity indices 

of nematode communities (plant parasitic and free-living). Shannon diversity index was 

calculated to assess the diversity of families. Two nematode maturity indices were used: 1) the 

maturity index for free-living nematodes (MI) and 2) the plant-parasitic nematodes index (PPI). 

To calculate these indices, nematodes are first assigned a colonizer– persister value (c–p) ranging 

from enrichment colonizers (c–p = 1) and disturbance colonizers (c–p = 2) to persisters (c–p = 

5). The MI is the weighted mean for the frequency distribution of collective c–p values. Specific 

details for MI and PPI calculations can be found in (Bongers 1990). Additionally, two maturity 

index extensions - the enrichment index (EI) and structural index (SI) – were calculated 

according to Ferris et al. (2001) to identify nematode food web properties.  

Analysis of treatment effects 

We assessed the effects of fertilization treatment and sampling year on nematode total 

absolute abundance, trophic group absolute abundance, family relative abundance, family 

diversity, and maturity indices with mixed effect models. Treatment and year were fixed effects 

and plot was random. We also tested these effects on rotifer, tardigrade and enchytraeid absolute 

abundances. We used Tukey's HSD for post-hoc comparisons. Distributions were assessed for 

normality and data were transformed (log x+1) when necessary to meet assumptions. For all 

analyses n=12. Statistical significance was accepted at alpha <0.05. All analyses were performed 

in R (Oksanen et al. 2013, R-Core-Team 2014) 

Community ordinations 

Non-metric multidimensional scaling (NMDS) was performed to show soil nematode 

community position in ordination space and to investigate if fertilization was a significant driver 
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of community structure. NMDS is a robust unconstrained ordination method often used for 

community ecology (Minchin 1987). Unlike other ordination techniques that rely on distances, 

such as Euclidean distances, NMDS relies on the rank order of dissimilarity in a community 

(Kruskal 1964). Using relative abundances of nematode families, we defined the original 

position of the community in multidimensional space using the bray-curtis distance coefficient. 

We then ran the NMDS with 1 through 6 dimensions and chose 6 dimensions as the best, 

rerunning the NMDS ordinations multiple times with several random starting configurations and 

then choosing the best configuration. This returned a stress value of 4.5%. Permutational 

multivariate analysis of variance (PERMANOVA) was used to test if communities significantly 

grouped by treatment. All of these analyses were performed in R using the vegan package 

(Oksanen et al. 2013, R-Core-Team 2014). 

 

Results 

Thirteen nematode families were identified in subalpine soils (Table 5.1). All families 

were found in both treatments, except Aporcelaimidae, which was only found in control plots. 

Treatment was a significant main effect on the relative abundance of all bacterivore families: 

Plectidae, Rhabditidae, Cephalobidae, plant parasitic Tylenchidae, fungivorous Aphelenchidae, 

and predaceous Aporcelaimidae. In fertilized plots, Rhabditidae and Tylenchidae made up a 

greater proportion of the community compared to control plots (Table 5.1, LSMeans, p<0.05), 

while Aphelenchidae, Aporcelaimidae, Cephalobidae, and Plectidae made up a greater 

proportion of the community in the control (Table 5.1).  

Dissimilarity tests based on the Bray-Curtis distance showed that nematode communities 

from fertilized plots were significantly different from the control plots when assessed at the 



72 

family level (Fig. 5.1, PERMANOVA p=0.001). The community structure shifted significantly 

from 2014 to 2015 (Fig 5.1, PERMANOVA p=0.006) with a significant decrease in the relative 

abundance of Aphelenchidae and an increase in Dorylaimidae and Monochidae for control plots 

(Table 5.1).  

Total nematode abundance, plant parasitic nematode abundance, EI, and PPI were 

significantly greater in fertilized plots (Table 5.2), while family richness, Shannon diversity, and 

MI were significantly greater in control plots (Table 5.2). The community structure (e.g. relative 

abundances) were more variable by year in the control plot (Table 1), while the absolute 

abundance was more variable by year in the fertilized plots despite relative abundances 

remaining constant (Table 5.2). We enumerated additional soil fauna – rotifers, tardigrades, and 

enchytraeids – that were present in the sample extracts, and rotifers were also significantly more 

abundant in the fertilized plots (Table 5.2). 

We observed an inverse relationship between the nematode MI and the PPI (Fig 5.2), 

where the MI was significantly lower but the PPI was significantly greater in fertilized plots 

compared to control plots (Table 5.2). Additionally, EI values were significantly greater in 

fertilized plots while there was no significant difference in SI values between control and 

fertilized (Table 5.2 and Fig 5.3). On the structure-enrichment plot, both control and fertilized 

communities were structured and enriched (quadrat B, Fig 5.3).   

 

Discussion 

As hypothesized, the nematode community was more diverse and ecologically mature in 

control compared to fertilized plots. The relative dominance of rhabditid bacterivores and 

tylenchid plant parasites in fertilized plots was associated with lower ecological maturity. Both 
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are opportunistic and respond rapidly to flushes of resources. Lokupitiya et al. (2000) and Ruess 

et al. (2002) observed similar shifts in nematode community with N addition. For c-p 1 

bacterivores to dominate 19 years after N addition began, suggests that the enrichment and 

turnover through the bacterial pathway is sustained over time. Bongers et al (1997) found similar 

results and showed that differences in nematode communities (as evidenced by MI) persisted for 

19 years even after nutrient addition ceased.  

We also observed a significant increase in the PPI in fertilized plots compared to control 

plots. An increase in the plant parasitic index is related positively to soil nutrient enrichment, and 

has been observed systems undergoing N amendments (Bongers et al. 1997). The MI and PPI are 

two indices that respond in opposite directions at increased nutrient availability (Bongers et al. 

1997). The MI decreases as a result of an increasing proportion of enrichment opportunists, the 

PPI increases, we assume, by an increased carrying capacity for plant parasitic nematodes, and 

particularly for tylenchid plant parasites (Bongers et al. 1997), which are root associates (Yeates 

et al. 1993). However, some studies have found no changes in the PPI with nitrogen addition (Li 

et al. 2013, Song et al. 2016), and these results could be due to plant species identity (Wardle et 

al. 2003) and their differing responses to N addition.  

We expected the fertilized nematode communities to have a higher EI and a lower SI than 

the control. The structure-enrichment plot (Fig 5.3) reflects an increase in trophic linkages along 

the x-axis (SI) and in reproductive potential along y-axis (EI). We expected control communities 

in the structure-enrichment plot to fall into quadrat C, which is typical for undisturbed forests 

(Ferris et al. 2001). Both control and fertilized plots fall into quadrat B (Fig 5.3), where fertilized 

communities have a significantly greater EI than control (Table 5.2). Communities in quadrat B 

are characterized as diverse, mature food webs, occur in ecosystems that are N-enriched, and 



74 

experience low levels of disturbance (Ferris et al. 2001). The high enrichment of the control 

communities may be due to the natural atmospheric N deposition, which is an order of 

magnitude greater than pre-European settlement background values (Baron 2006). Additionally, 

we expected that N addition would disturb the nematode communities and cause a loss of the 

omnivores and predators (c-p 4 and 5), but only the predator Aporcelaimidae was negatively 

affected by N addition (Table 5.1). Other groups such as Dorylaimidae and Monochidae were not 

affected by N addition and overall there was no difference in total Omnivore and Predator 

abundance between the treatments (Table 5.2). As a result, both fertilized and control plots were 

structured (no significant differences between SI, Table 5.2 and Fig 5.3), with equal trophic 

links.  

Despite soil sampling on the same calendar date each year, the variation in nematode 

communities by year could be due to differences in season, such as total precipitation, timing of 

snowmelt, or soil moisture, which varies from year to year in the subalpine ecosystem. Total 

annual precipitation was greater in 2014 than 2015, (138 cm vs 117 cm, respectively; NADP). 

The nematode community reflected these temporal differences as evidenced by a lower relative 

abundance of omnivores and higher relative abundance of bacterivores in 2014 control plots. 

Other studies have shown that omnivore nematode populations (e.g. dorylaimids) decline during 

winter (Wasilewska 1971) and after high precipitation (Sun et al. 2016) while bacterivores 

increase during cold, wet periods (Sohlenius 1985).  

In conclusion, we characterized the nematode communities in fertilized and control plots 

in a long-term N addition study in a subalpine forest. Nematode communities are distinct 

between treatments and are more diverse and successionally mature in control plots. Higher 

abundance of nematodes and an enriched food web characterized by opportunistic taxa was 
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sustained even 19 years after treatments began. Changes in nematode community have 

ecosystem implications. In a meta-analysis, Sackett et al. (2010), found that soil fauna had a 

positive effect on the growth of coniferous plants, suggesting increased abundance of soil fauna 

could impact the growth of coniferous forests. Further, our study complements findings of Boot 

et al. (2016) and suggests that lower microbial biomass in N-amended plots may be linked to 

top-down control by soil fauna.  
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Table 5.1: Nematode families shown by their trophic group, colonizer-persister value (c-p), and relative 

abundance by year and treatment (mean ±±±± standard error, n=12). Significant results from the mixed model 

for each family are shown (p<0.05); T= treatment and Y=year. Different lowercase letters denote significant 

differences across treatments and years (LSMeans, p<0.05). Groups with no letters had no significant 

differences between years/treatments.  

 

 

 

Trophic group 

                    Control                Fertilized Model 

Summary c-p Family 2014 

(%) 

2015 

(%) 

2014 

(%) 

2015 

(%) 

Bacterivore 

2 

1 

2 

Plectidae 

Rhabditidae 

Cephalobidae 

0.08±0.01a 

0.07±0.01a 

0.10±0.02a 

0.04±0.01a 

0.06±0.01a 

0.11±0.01a 

0.04±0.01bc 

0.22±0.04b 

0.03±0.01b 

0.05±0.01ac 

0.25±0.04b 

0.06±0.01b 

T, Y, T*Y 

T 

T 

Fungivore 
2 

2 
Aphelenchidae 

Aphelenchoididae 

0.10±0.02a 

0.28±0.02ab 

0.02±0.00b 

0.29±0.02ab 

0.01±0.00b 

0.31±0.03a 

0.01±0.01b 

0.20±0.02b 

T 

T*Y 

Plant parasite 

2 

3 

3 

3 

3 

Tylenchidae 

Hoplolaimidae 

Dolichodoridae 

Criconematidae 

Pratylenchidae 

0.03±0.01a 

0.02±0.00 

0.04±0.01 

0.03±0.02 

0.01±0.00 

0.06±0.01a 

0.01±0.00 

0.01±0.00 

0.02±0.00 

0.01±0.00 

0.15±0.02b 

0.02±0.00 

0.02±0.00 

0.02±0.01 

0.01±0.00 

0.12±0.02b 

0.04±0.01 

0.05±0.02 

0.01±0.00 

0.01±0.00 

T 

 

T*Y 

 

 

Predator & 

Omnivore 

4 

5 

4 

Dorylaimidae 

Aporcelaimidae 

Monochidae 

0.08±0.01a 

0.07±0.02a 

0.05±0.01a 

0.16±0.02b 

0.04±0.01a 

0.12±0.02bc 

0.09±0.02a 

0.00±0.00b 

0.03±0.01a 

0.08±0.02a 

0.00±0.00b 

0.08±0.02ac 

Y, T*Y 

T 

Y  
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Table 5.2. Mean values of nematode diversity, nematode community indices, nematode trophic group 

abundances, and other soil fauna groups (±±±±standard error, n=12). Significant results from the mixed model 

are shown (p<0.05). Different letters denote significant differences across treatments and years (LSMeans, 

p<0.05). Groups with no letters had no significant differences between years/treatments. 

 

 

                    Control              Fertilized Model 

Summary  2014 2015 2014 2015 

Nematode abundance (kg soil-1) 20484±3343ac 11356±2108b 40168±9227a 15854±1458bc T, Y 

Nematode family richness 10.67±0.38a 9.67±0.48ac 8.17±0.55b 8.33±0.45bc T 

Shannon diversity (H’) 2.04±0.04a 1.90±0.05ac 1.64±0.06b 1.82±0.07bc T, T*Y 

      

Nematode trophic group abundance (kg soil-1) 
Bacterivore 7245±1123a 2366±385b 12507±3179a 5436±317a Y, T*Y 

Fungivore 6154±1244abc 3096±550ac 13318±4368b 3541±746c Y 

Plant parasite 2440±407ab 1628±430a 8194±2232b 3838±560b T 

Omnivore 3030±655a 2423±712ab 4073±1474a 1116±199b  

Predator 932±217 1288±305 876±180 1405±294  

      

Nematode community indices       

MI  2.05±0.10a 2.28±0.08a 1.46±0.08b 1.52±0.11b T 

PPI 0.35±0.06ac 0.25±0.04ab 0.47±0.07bd 0.54±0.09cd T 

EI 53.61±1.80a 54.17±1.96a 74.55±3.07b 77.25±3.71b T 

SI 60.99±3.36ab 73.00±2.94ac 50.85±7.34b 64.02±4.50bc  

      

Other soil fauna abundances (kg soil-1) 
Rotifers 960±227a 1373±242ab 2297±449b 1627±398ab T 

Tardigrades 763±254 442±81 976±409 864±214  

Enchytraeids 114±30 217±57 187±62 133±31  
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Figure 5.1: NMDS ordination (Bray-Curtis dissimilarity) of nematode communities based on relative 

abundances of nematode families. Each point reflects the community found in an individual sample (n=12 per 

treatment x 2 years). Points that are close together have more similar communities than points that are far 

apart. Colors show treatment: fertilized is red and control is blue. Shapes show year: open squares are 2014 

and filled circles are 2015. Names of families are overlaid. 
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Figure 5.2: Maturity index and plant parasite index. Colors show treatment: fertilized is red and control is 

blue. Asterisks denote significant differences in treatment effects (p<0.05). 
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Figure 5.3: Structure-Enrichment plot. Quadrats are labeled A thru D after Ferris et al. (2001). Colors show 

treatment: fertilized is red and control is blue. Shapes show year: circles are 2014 and triangles are 2015. 
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CHAPTER 6 – CONCLUSIONS 

 

 

 

This dissertation advances our understanding of trophic structure and biological 

interactions in soil food webs. By defining Antarctic soil food web structures at various scales 

using stable isotopes (Figs 6.1 and 6.2), implementing a laboratory microcosm experiment with 

soil collected in the McMurdo Dry Valleys, and analyzing soil nematode food web indices for a 

long-term nitrogen addition study in the subalpine ecosystem in Colorado, I answered four 

questions (see Chapter 1) designed to increase the knowledge of the soil food web and how its 

biotic interactions structure soil communities. Using stable isotope analysis (13C and 15N) of soil 

fauna presented in Chapter 2, we found that the nematode Eudorylaimus antarcticus occupies the 

omnivore-predator trophic position in the McMurdo Dry Valleys wet soil food web, which is 

consistent with previous predictions (Freckman and Virginia 1997) and matches the trophic level 

of this genus from differing ecosystems (McSorley 2012). By defining the soil food web 

structure for the wet soil habitat in the McMurdo Dry Valleys (Fig 6.1), this chapter shows that 

biological interactions (e.g. predator-prey) at least exist in this ecosystem and this set the stage 

for further tests of biological interactions’ role in community structure in this system.  

 In Chapter 3, we experimentally tested the role of biological interactions in structuring 

soil communities in McMurdo Dry Valley soils under differing environmental treatments 

(salinity and moisture). Prior predictions suggest that biological interactions do not play a role in 

structuring Antarctic soil communities (Hogg et al. 2006), especially since biological interactions 

have long been accepted as weakest at high latitudes (Schemske et al. 2009). However, there is 

not much empirical support for greater biological interactions (e.g. mutualisms, host-parasite, 

and predator-prey) at low latitudes (Ollerton 2012). Furthermore, our experiment results 
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indicated that Scottnema lindsayae has top down control on bacteria populations, which is 

alleviated under high stress (salinity), showing that biological interactions play a role in 

community structure in soils from as far as 77°S. Additionally, these results suggest that saline 

soil could be a potential escape from predation for bacteria. This is an interesting result given 

that increasing hydrological connectivity in the McMurdo Dry Valleys is expected to redistribute 

salts and solutes across the landscape, altering soil habitats (Gooseff et al. 2017b). 

 In Chapter 4, we tested soil food web structure in McMurdo Dry Valley soils as was done 

in Chapter 1, but we expanded this to 8 valleys (from coastal to high elevation) and multiple 

habitat types (wet and dry) across the valleys to test if habitat and productivity (assumed to be 

lower with greater distance to coast and higher elevation) affected soil food web structure. Our 

results showed that soil food webs vary across the landscape and that wet soil food web structure 

is consistent with results of Chapter 1 (Fig 6.1). However, dry soil food webs were simpler than 

wet food webs. Generally, dry food webs had either one or two invertebrate consumers present 

(Fig 6.2): S. lindsayae and E. antarcticus. Surprisingly, E. antarcticus was a primary consumer 

in dry habitat (supported by isotopic evidence), which is likely due to a switch from predator to 

consumer when resource availability is low (Diehl and Feissel 2001). Additionally, S. lindsayae 

from the oldest soils (dry habitat) had very light δ13C signatures, indicating very old and highly 

processed C sources. However, S. lindsayae from these same age soils that were in wet habitat 

had δ13C signatures that reflected recent C inputs into the system. These results echo those from 

Chapter 2, and indicate that increased hydrological connectivity in the dry valleys could alter soil 

resources, which feeds back into the trophic structure of soil food webs. 

 In Chapter 5, we examined whether biological interactions structure communities in the 

more diverse subalpine forest ecosystems in Colorado. Sampling soil from a long-term N 
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addition study, we found that nematode abundance was greater under N fertilization and that 

communities were shifted to a faster-cycling, bacterial driven system (as evidenced by a lower 

maturity index in the fertilized plots; e.g. Bongers 1990). Functional grouping of nematodes and 

maturity indices of nematode families showed a shift in the nematode community towards r-

selected bacterivores for fertilized plots. Sustained top down effects of bacterivore nematodes on 

bacteria may explain lower microbial biomass and soil organic C in the same plots (Boot et al. 

2016). These results indicate that top down effects of nematodes on bacteria extend beyond 

Antarctic soils (e.g. Chapter 2) and feedback to ecosystem functions such as carbon storage.  

Currently, all biodiversity is undergoing a 6th great extinction, exacerbated by climate 

change. While there is a global effort to understand biodiversity, its drivers, and its changes (e.g. 

McGill et al. 2015), little is known about the immense biodiversity in soils (Phillips et al. 2017), 

or the complicated biological relationships that are hidden there (Wolkovich 2016). This 

dissertation contributes significantly to our understanding of soil food web structure and function 

in the McMurdo Dry Valleys, but it is also evident that significant gaps remain. For example, 

protists are widespread throughout the dry valleys (Bamforth et al. 2005), but were not 

considered in our work due to difficulty isolating taxa and quantifying isotopic signatures. These 

are likely important players in this system and should be considered explicitly in future studies. 

We found evidence for microbivore nematode control on bacteria populations in both Antarctic 

and subalpine soil ecosystems, but we did not quantify consumption or estimate turnover in these 

systems. Isotopic labeling studies could be used to better understand the feedback of these 

biological interactions to ecosystem functions. Furthermore, we found that soil food web 

structure varies across the landscape with habitat, but we did not specifically quantify soil 

organic carbon compounds or microbial communities at each sample location. Additional studies 
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that match soil invertebrate food webs to their specific resources would better inform spatial 

predictions of soil food webs and their expected shifts under climate change. Overall, the results 

of this dissertation represent significant improvements to the understanding of soil communities 

and their food web structure in Antarctica (Fig 6.1 and 6.2) and contribute to improved theory on 

the role of biological interactions in soil communities.  
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Figure 6.1. McMurdo Dry Valley wet soil food web diagram showing realized relationships (solid lines) based 

on isotopic evidence and potential relationships (dashed lines) based on evidence from other habitats or 

studies (Wall 2007) 

  



86 

 
 
Figure 6.2. McMurdo Dry Valley dry soil food web diagram showing realized relationships (solid lines) based 

on isotopic evidence and potential relationships (dashed lines) based on evidence from other habitats  
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APPENDIX 1 – SAMPLE COLLECTION DETAILS 

 

 

 
Table A.1.1 Record of samples collected by valley and year 

 

Location Habitat Elevation latitude longitude Date sampled 

Bonney Dry High -77.6585 162.7519 13-Jan-17 

Bonney Dry High -77.6587 162.7541 13-Jan-17 

Bonney Wet High -77.6591 162.7673 13-Jan-17 

Bonney Wet High -77.6591 162.7673 13-Jan-17 

Bonney Dry High -77.6578 162.9173 13-Jan-15 

Bonney Dry High -77.6586 162.9199 13-Jan-15 

Hoare Dry High -77.6378 162.8874 19-Jan-15 

Hoare Dry High -77.6378 162.8873 19-Jan-15 

Beacon Dry NA -77.8234 160.6202 18-Jan-17 

Beacon Dry NA -77.8235 160.6200 18-Jan-17 

Beacon Dry NA -77.8234 160.6202 18-Jan-17 

Beacon Dry NA -77.8232 160.6200 18-Jan-17 

Beacon Dry NA -77.8233 160.6206 18-Jan-17 

Beacon Dry NA -77.8233 160.6177 18-Jan-17 

Beacon Dry NA -77.8231 160.6158 18-Jan-17 

Beacon Dry NA -77.8230 160.6155 18-Jan-17 

Beacon Dry NA -77.8232 160.6154 18-Jan-17 

Beacon Dry NA -77.8232 160.6154 18-Jan-17 

Beacon Dry NA -77.8233 160.6180 18-Jan-17 

Beacon Dry NA -77.8234 160.6200 18-Jan-17 

Beacon Dry NA -77.8234 160.6198 18-Jan-17 

Beacon Dry NA -77.8214 160.6213 22-Jan-16 

Beacon Dry NA -77.8214 160.6213 22-Jan-16 

Beacon Dry NA -77.8214 160.6213 22-Jan-16 

Beacon Dry NA -77.8214 160.6213 22-Jan-16 

Bonney Dry Low -77.7245 162.3141 12-Jan-17 

Bonney Wet Low -77.7247 162.3148 12-Jan-17 

Bonney Dry NA -77.7273 162.3241 17-Jan-15 

Bonney Wet NA -77.7283 162.3239 17-Jan-15 

Bonney Dry NA -77.7247 162.3116 17-Jan-15 

Bonney Wet NA -77.7247 162.3117 17-Jan-15 

Garwood Dry NA -78.0177 163.8794 6-Jan-17 

Garwood Dry NA -78.0177 163.8794 6-Jan-17 

Garwood Wet NA -78.0177 163.8794 6-Jan-17 

Garwood Wet NA -78.0177 163.8794 6-Jan-17 

Garwood Wet NA -78.0177 163.8794 6-Jan-17 

Garwood Wet NA -78.0177 163.8794 6-Jan-17 
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Garwood Dry NA -77.0211 163.8993 6-Jan-17 

Garwood Dry NA -77.0211 163.8993 6-Jan-17 

Garwood Wet NA -77.0211 163.8993 6-Jan-17 

Garwood Wet NA -77.0211 163.8993 6-Jan-17 

Garwood Wet NA -77.0211 163.8993 6-Jan-17 

Garwood Wet NA -77.0211 163.8993 6-Jan-17 

Garwood Dry NA -78.0367 164.0794 21-Jan-15 

Garwood Wet NA -78.0378 164.0669 21-Jan-15 

Garwood Dry NA -78.0897 164.1319 21-Jan-15 

Garwood Wet NA -78.0919 164.1350 21-Jan-15 

Hjorth Wet Low -77.5382 163.5669 10-Jan-17 

Hjorth Wet Low -77.5382 163.5674 10-Jan-17 

Hjorth Wet Low -77.5386 163.5627 10-Jan-17 

Hjorth Wet Low -77.5384 163.5614 10-Jan-17 

Upland Ponds Dry High -77.7011 162.7063 21-Jan-16 

Upland Ponds Dry High -77.7008 162.7064 21-Jan-16 

Upland Ponds Dry High -77.7002 162.7148 21-Jan-16 

Upland Ponds Dry High -77.7015 162.7148 21-Jan-16 

Upland Ponds Wet High -77.7010 162.7090 21-Jan-16 

Upland Ponds Wet High -77.7011 162.7092 21-Jan-16 

Upland Ponds Wet High -77.7005 162.7120 21-Jan-16 

Upland Ponds Wet High -77.7006 162.7124 21-Jan-16 

Miers Wet NA -78.0887 163.7729 6-Jan-17 

Miers Wet NA -78.0887 163.7558 6-Jan-17 

Miers Wet NA -78.0888 163.7727 6-Jan-17 

Miers Wet NA -78.0888 163.7738 6-Jan-17 

Miers Wet NA -78.0946 163.7990 6-Jan-17 

Miers Wet NA -78.0946 163.7996 6-Jan-17 

Miers Wet NA -78.0948 163.7998 6-Jan-17 

Miers Wet NA -78.0945 163.7985 6-Jan-17 

Miers Dry NA -78.0890 163.7734 20-Jan-15 

Miers Wet NA -78.0890 163.7733 20-Jan-15 

Miers Dry NA -78.0941 162.7882 20-Jan-15 

Miers Wet NA -78.0942 163.7884 20-Jan-15 

Hoare Dry High -77.6221 162.9062 13-Jan-17 

Hoare  Wet High -77.6221 162.9062 13-Jan-17 

Upland Ponds Wet High -77.6542 162.9135 21-Jan-16 

Upland Ponds Wet High -77.6544 162.9133 21-Jan-16 

Upland Ponds Wet High -77.6533 162.9181 21-Jan-16 

Upland Ponds Wet High -77.6533 162.9181 21-Jan-16 

Upland Ponds Dry High -77.6541 162.9095 21-Jan-16 

Upland Ponds Dry High -77.6542 162.9098 21-Jan-16 

Upland Ponds Dry High -77.6529 162.9095 21-Jan-16 
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Upland Ponds Dry High -77.6530 162.9209 21-Jan-16 

Fryxell Dry High -77.6284 163.3778 11-Jan-15 

Fryxell Dry High -77.6291 163.3723 11-Jan-15 

Fryxell Dry High -77.6266 163.3561 11-Jan-15 

Fryxell Dry High -77.6254 163.3618 11-Jan-15 

Garwood Dry NA -78.0344 164.1442 21-Jan-15 

Garwood Dry NA -78.0341 164.1403 21-Jan-15 

Garwood Wet NA -78.0336 164.1363 21-Jan-15 

Garwood Dry NA -78.0290 164.1468 21-Jan-15 

Garwood Dry NA -78.0286 164.1484 21-Jan-15 

Garwood Dry NA -78.0284 164.1504 21-Jan-15 

Fryxell Dry High -77.6139 163.3109 10-Jan-15 

Fryxell Dry High -77.6139 163.3153 10-Jan-15 

Fryxell Dry High -77.6123 163.3233 10-Jan-15 

Fryxell Dry Low -77.6080 163.2540 20-Jan-14 

Fryxell Dry Low -77.6080 163.2542 20-Jan-14 

Fryxell Dry Low -77.6080 163.2544 20-Jan-14 

Fryxell Wet Low -77.6080 163.2533 20-Jan-14 

Fryxell Wet Low -77.6080 163.2535 20-Jan-14 

Fryxell Wet Low -77.6081 163.2539 20-Jan-14 

Hoare Dry High -77.6373 162.8865 18-Jan-17 

Hoare Dry High -77.6374 162.8868 18-Jan-17 

Hoare Low Dry -77.6331 162.8825 18-Jan-17 

Hoare Low Dry -77.6331 162.9827 18-Jan-17 

University Dry NA -77.8622 160.7111 18-Jan-17 

University Dry NA -77.8631 160.7002 18-Jan-17 

University Dry NA -77.8631 160.6995 18-Jan-17 

University Dry NA -77.8632 160.6981 18-Jan-17 

University Dry NA -77.8626 160.7041 18-Jan-17 

University Dry NA -77.8626 160.7048 18-Jan-17 

University Dry NA -77.8621 160.7087 18-Jan-17 

University Dry NA -77.8617 160.7126 18-Jan-17 

University Dry NA -77.8617 160.7125 18-Jan-17 

University Dry NA -77.8615 160.7128 18-Jan-17 

University Dry NA -77.8615 160.7128 18-Jan-17 

Virginia Dry NA -77.4919 160.9307 23-Jan-17 

Virginia Dry NA -77.4919 160.9309 23-Jan-17 

Virginia Dry NA -77.4919 160.9307 23-Jan-17 

Virginia Dry NA -77.4903 160.9340 23-Jan-17 

Virginia Dry NA -77.4903 160.9339 23-Jan-17 

Virginia Dry NA -77.4902 160.9340 23-Jan-17 

Virginia Dry NA -77.4911 160.9349 23-Jan-17 

Virginia Dry NA -77.4910 160.9346 23-Jan-17 
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Wall Dry NA -77.4957 160.8459 23-Jan-17 

Wall Dry NA -77.4958 160.8448 23-Jan-17 

Wall Dry NA -77.4958 160.8443 23-Jan-17 

Wall Dry NA -77.4933 160.8527 23-Jan-17 

Wall Dry NA -77.4935 160.8529 23-Jan-17 

Wall Dry NA -77.4934 160.8531 23-Jan-17 

Wall Dry NA -77.4950 160.8527 23-Jan-17 

Wall Dry NA -77.4949 160.8543 23-Jan-17 

Wright 

Brownworth Wet NA -77.4321 162.7146 23-Jan-17 

Wright Vanda Dry NA -77.5187 161.6932 23-Jan-17 

Wright Dias Dry NA -77.5411 161.0720 23-Jan-17 

Wright 

Brownworth Wet NA -77.4320 162.7144 23-Jan-17 

Wright Vanda Dry NA -77.5188 161.6933 23-Jan-17 

Wright Dias Dry NA -77.5412 161.0723 23-Jan-17 

Wright 

Brownworth Wet NA -77.4320 162.7136 23-Jan-17 

Wright Vanda Dry NA -77.5188 161.6933 23-Jan-17 

Wright Dias Dry NA -77.5411 161.0722 23-Jan-17 

Wright 

Brownworth Wet NA -77.4323 162.7130 23-Jan-17 

Wright Vanda Dry NA -77.5190 161.6923 23-Jan-17 

Wright Dias Dry NA -77.5409 161.0702 23-Jan-17 

Wright 

Brownworth Wet NA -77.4324 162.7127 23-Jan-17 

Wright Vanda Dry NA -77.5189 161.6919 23-Jan-17 

Wright Dias Dry NA -77.5408 161.0707 23-Jan-17 

Wright 

Brownworth Wet NA -77.4328 162.7155 23-Jan-17 

Wright Vanda Dry NA -77.5185 161.6915 23-Jan-17 

Wright Dias Dry NA -77.5412 161.0708 23-Jan-17 

Wright 

Brownworth Wet NA -77.4327 162.7152 23-Jan-17 

Wright Vanda Dry NA -77.5185 161.6917 23-Jan-17 

Wright Dias Dry NA -77.5412 161.0707 23-Jan-17 

Wright 

Brownworth Wet NA -77.4326 162.7148 23-Jan-17 

Wright Vanda Dry NA -77.5185 161.6916 23-Jan-17 

Wright Dias Dry NA -77.5413 161.0706 23-Jan-17 
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APPENDIX 2 – SUPPLEMENTARY STUDY: SOIL FOOD WEBS IN CARBON-LIMITED 

SOIL RAPIDLY RESPOND TO ELEVATED CARBON IN A FIELD MICROCOSM 

EXPERIMENT 

 

 

 

With low contemporary primary production, the McMurdo Dry Valley soils are 

extremely C limited and have soil organic carbon concentrations of 15 to 35μmol g-1 soil 

(Burkins et al. 2001). We asked: Will elevated C affect the dry soil food webs? We hypothesized 

that soil food webs would incorporate an influx of C, but this would take several active seasons 

to reach detectable levels in microbivores due to low temperatures that limit feeding, 

metabolism, and growth.  

To test our hypothesis we established a field-based microcosm experiment to trace the 

flow of increased C through the soil food web near Many Glaciers Pond in Taylor Valley, 

Antarctica. Briefly, 19.6mg of 13C-enriched mannitol (99.9 atom %) was added to 50g of fresh, 

unsterilized soil for each of 24 microcosms. In November 2014, microcosms in 50mL falcon 

tubes were established in the field. They were buried up to the top of the cap and caps were 

loosely covered with surrounding soil. Microcosms were collected at the end of January 2015 

after one austral summer. Soil fauna were extracted from soil, identified under microscope, and 

collected for isotopic analysis of whole body biomass. Results showed the metazoan community 

consisted of one nematode species, Scottnema lindsayae. Population density of S. lindsayae was 

1003±274 individuals kg-1 dry soil, comparable to nearby field data. Two months after C 

addition, S. lindsayae had incorporated mannitol-C in significant amounts. Nematode biomass 

from all samples was significantly enriched in 13C vs. control samples. Overall, δ13C was 

21,760.07±3488.52‰ (Fig A2.1) and total nematode-C was 15.07 to 24.08% (95% CI) mannitol-

derived. Total nematode C assimilation was 40-60 μg C kg soil. Rates of S. lindsayae 
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C-assimilation were comparable to previous findings in the dry valleys and on the same order of 

magnitude as nematodes of diverse temperate ecosystems (Barrett et al. 2008). This research 

reveals that Dry Valley food webs can rapidly respond to increased available C and incorporate 

this significantly into higher trophic level biomass. Our results have implications for Dry Valley 

C cycling under increased connectivity, and support the conclusion that modest changes in soil C 

can impact soil communities. 

  



106 

 

 
 

Figure A2.1: δ13C values for S. lindsayae two months post C addition were 21760.07 ± 3488.52 and -26.31 ± 

1.43 ‰ for C addition treatment and control, respectively (n=10) 

 

 


