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ABSTRACT

STATISTICAL MODELS FOR ANIMAL TELEMETRY DATA WITH APPLICATIONS

TO HARBOR SEALS IN THE GULF OF ALASKA

Much is known about the general biology and natural history of harbor seals (Phoca

vitulina), but questions remain about the aquatic and terrestrial space use of these marine

mammals. This is in large part because methods for examining the spatial ecology of harbor

seals are poorly developed. The objective of this dissertation is to pair existing telemetry

data with contemporary spatio-temporal modeling to quantify the space use and resource

selection of harbor seals in the coastal waters of southern Alaska.

Recent extensions to models for analyzing animal telemetry data address complications

such as autocorrelation and telemetry measurement error; however, additional challenges

remain, especially in the context of analyzing Argos satellite telemetry data collected on

marine mammals like harbor seals. For example, existing methods assume elliptical (or

circular) patterns of measurement error, even though Argos satellite telemetry devices impose

more complicated error structures on the data. Constraints, or barriers, to animal movement

present another complication. Harbor seals and other marine mammals are constrained

to move within the marine environment, and mechanistic models that do not adhere to

movement barriers yield unreliable inference. Therefore, a primary goal of this research is

to develop statistical tools that account for these nuances and provide rigorous, ecologically

relevant inference. Even though the models presented in this dissertation were specifically

developed with Argos satellite telemetry data and harbor seals in mind, the methods are

general and can be applied to other species and types of telemetry data. This dissertation

consists of five chapters.
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In Chapter 1, I briefly discuss the general biology of harbor seals, focusing on what is

known about their spatial habits in Alaska. I then summarize trends in Alaskan harbor

seal abundance, a topic that motivated my research as well as the work of many others.

I describe the existing Alaska Department of Fish and Game telemetry data sets that are

available for examining harbor seal spatial ecology, commonly-used statistical methods for

analyzing animal telemetry data, and conclude with the objectives of my research and an

outline for the remainder of the dissertation.

In Chapter 2, I propose an approach for obtaining resource selection inference from

animal location data that accounts for complicated error structures, movement constraints,

and temporally autocorrelated observations. The model consists of two general components:

a model for the true, but unobserved, animal locations that reflects prior knowledge about

constraints to animal movement, and a model for the observed telemetry locations that is

conditional on the true locations. I apply the model to simulated data, showing that it

outperforms common ad hoc approaches used when confronted with telemetry measurement

error and movement constraints. I then apply the framework to obtain inference concerning

aquatic resource selection and space use for harbor seals near Kodiak Island, Alaska.

Chapters 3 and 4 shift the focus from inference concerning aquatic space use and resource

selection, to inference concerning the use of coastal resources (i.e., haul-out sites) by harbor

seals. In Chapter 3, I present a fully model-based approach for estimating the location of

central places (e.g., haul-out sites, dens, nests, etc.) from telemetry data that accounts for

multiple sources of uncertainty and uses all of the available locational data. The model

consists of an observation model to account for large telemetry measurement error and

animal movement, and a highly flexible mixture model (a Dirichlet process) to identify the

location of central places. Ancillary behavioral data (e.g., harbor seal dive data obtained
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from the satellite-linked depth recorders) are also incorporated into the modeling framework

to obtain inference concerning temporal patterns in central place use. Based on the methods

developed in Chapter 3, I present a comprehensive analysis of the spatio-temporal patterns

of haul-out use for harbor seals near Kodiak Island in Chapter 4. Chapter 4 also extends

previously developed methods to examine the affect of covariates on haul-out site selection

and to obtain population-level inference concerning haul-out use.

I conclude, in Chapter 5, with some general thoughts about analyzing animal telemetry

data, as well as potential future research directions.
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CHAPTER ONE

Introduction

Much is known about the general biology and natural history of harbor seals (Phoca

vitulina), but questions remain about the aquatic and terrestrial space use of these marine

mammals. This is in large part because methods for examining the spatial ecology of harbor

seals are poorly developed. The objective of this dissertation is to pair existing telemetry

data with contemporary spatio-temporal modeling to quantify the space use and resource

selection of harbor seals in the coastal waters of southern Alaska. In particular, this research

is mostly focused on methods and modeling contributions that will help us learn more about

where harbor seals go, and why they go where they go.

In what follows, I briefly discuss the general biology of harbor seals, focusing on what is

known about their spatial habits in Alaska. I then summarize trends in Alaskan harbor seal

abundance, a topic that motivated my research as well as the work of many others. I describe

the existing Alaska Department of Fish and Game telemetry data sets that are available for

examining harbor seal spatial ecology, as well as commonly-used statistical methods for

analyzing animal telemetry data. Finally, I conclude Chapter 1 with the objectives of my

research and an outline for the remainder of the dissertation.

1.1 General Biology of Harbor Seals

1.1.1 Description and life history

Harbor seals belong to the “true seal” family, Phocidae. True seals lack external ear flaps

and have short forelimbs that limit their ability to move on land. Adult male harbor seals
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are slightly larger than females, weighing approximately 85–170 kg and measuring 160–185

cm in length (Pitcher and Calkins 1979, Perrin et al. 2009). Harbor seals generally live <

30 years in the wild, with males reaching sexual maturity at 5–6 years of age and females at

3–7 years of age. Females usually bear a single pup (although twins have been documented)

in May to July (in Alaska), and weaning occurs 3–5 weeks after birth (Scheffer and Slipp

1944, Perrin et al. 2009).

1.1.2 Distribution

Harbor seals are widely distributed in the coastal waters of the temperate and subarctic

latitudes of the Northern Hemisphere (Scheffer and Slipp 1944, Perrin et al. 2009). In the

Atlantic Ocean, harbor seals are found along the eastern coast of North America from Florida

to Greenland, and in Europe from France to Norway. In the Pacific Ocean, harbor seals are

found from Baja California north to the Bering Sea and Kamchatka Peninsula, and south to

Hokkaido Island, Japan (Scheffer and Slipp 1944, Perrin et al. 2009). In Alaska specifically,

harbor seals occur from the panhandle of southeastern Alaska northward to Prince William

Sound, westward to the Aleutian Islands, and as far north as Bristol Bay and the Pribilof

Islands (Fig. 1.1; Muto 2015).

1.1.3 Aquatic space use and movements

Harbor seals are semi-aquatic in that they depend on the marine environment for their

food source but haul out of the water onto beaches, intertidal areas, and floating ice (in

glacial fjords) to rest, molt, escape aquatic predators, give birth, and rear their pups (Fig

1.2; Ling 1984, da Silva and Terhune 1988, Thompson 1989, Watts 1992). Harbor seals

typically forage near their haul-out sites, favoring shallower waters relatively close to shore

2



Figure 1.1. Harbor seals occur in the coastal waters of Alaska from southeastern Alaska
(i.e., the Alaskan Panhandle) to Bristol Bay. Areas in which the Alaska Department of Fish
and Game telemetered harbor seals are circled in red. From left to right, the circled regions
are Bristol Bay, Tugidak and Kodiak Islands, Prince William Sound, and southeast Alaska.
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(Frost et al. 2001, Lowry et al. 2001). For example, previous telemetry studies indicate that

nearly all at-sea harbor seal locations occur within 25 km of their haul-out sites in water <

200 m deep (Frost et al. 2001, Lowry et al. 2001, Cunningham et al. 2009). Hastings et

al. (2004) found that harbor seals in the Gulf of Alaska typically dove to depths < 20 m,

whereas Frost et al. (2001) found 20–100 m water depths to be favored by seals in the same

region. Exogenous factors like physical environment (e.g., bathymetry and substrate) and

time of year can better predict movement and foraging behavior than intrinsic factors like

sex and age (Small et al. 2005, Sharples et al. 2012). For example, movements of harbor seal

pups were more extensive at Tugidak Island, which is on the continental shelf adjacent to the

Gulf of Alaska, compared to movements of pups in the more bathymetrically complex Prince

William Sound (Fig. 1.1; Small et al. 2005). Similarly, seasonal changes in the locations

of haul-out sites used by harbor seals is a function of prey availability (Montgomery et al.

2007, Cunningham et al. 2009).

Harbor seals occasionally travel 100 km or more from their haul-out sites (Lowry et

al. 2001, Peterson et al. 2012); however, adults exhibit high levels of site fidelity over

months to years and typically return to the same haul-out sites between at-sea foraging

bouts (Härkönen and Heide-Jørgensen 1990, Thompson et al. 1997, Cunningham et al.

2009). Despite movements that are generally more extensive than adults (Lowry et al. 2001,

Hastings et al. 2004), juvenile harbor seals often return to haul-out sites within 20–50 km

of their natal sites (Small et al. 2005).

1.1.4 Terrestrial haul-out use

Temporal patterns in haul-out use are influenced by behaviors (e.g., breeding and forag-

ing), physiological functions (e.g., thermoregulation and molting), and environmental con-

4



Figure 1.2. Aerial photograph of harbor seals at a haul-out site in Glacier Bay National
Park, Alaska.
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ditions (e.g., tidal state) that operate at varying time scales (Boveng et al. 2003, London

et al. 2012). At daily time scales, the highest proportion of seals onshore are typically

observed at times nearest low tide when favorable haul-out sites are exposed (e.g., sites iso-

lated from terrestrial predators; Schneider and Payne 1983, Pauli and Terhune 1987) and

during midday when the air temperature is most conducive to thermoregulation (Stewart

1984, Calambokidis et al. 1987, Pauli and Terhune 1987; see London et al. 2012 for an ex-

ception to these patterns in Hood Canal, WA). At annual time scales, temporal patterns in

haul-out use are influenced by breeding and molting cycles that can be sex- and age-specific

(e.g., adult females nurse pups onshore, pups do not molt, etc.; Everitt and Braham 1980,

Brown and Mate 1983, Calambokidis et al. 1987, Huber et al. 2001, Jemison and Kelly

2001, Boveng et al. 2003, Daniel et al. 2003), as well as the distribution and availability of

prey.

1.1.5 Prey and predators

Harbor seals are opportunistic consumers and eat a wide variety of fish and invertebrate

prey that varies seasonally, and probably annually, depending on availability (Imler and

Sarber 1947, Fisher 1952, Wilke 1957, Pitcher and Calkins 1979, Pitcher 1980). Harbor seal

diets also vary regionally (Iverson et al. 1997, Jemison 1999). For example, walleye pollock

(Theragra), arrowtooth flounder (Atheresthes), herring (Clupeidae), and cephalopods were

the most frequent prey items of harbor seals in southeastern Alaska, whereas Irish lord

(Hemilepidotus) and sandlance (Ammodytes) were the predominant prey items among harbor

seals in the Kodiak Archipelago (Jemison 1999). The composition of harbor seal diets in the

Bering Sea were more diverse and included sandlance, rock sole (Lepidopsetta), flounders
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(Pleuronectidae), sculpin (Cottidae), yellowfin sole (Limanda), rainbow smelts (Osmerus),

and tomcod (Microgadus) (Jemison 1999).

The principal natural predators of harbor seals are killer whales (Orcinus orca) and sharks

(Selachimorpha), although wolves and bears also depredate harbor seals at haul-out sites that

are not protected from terrestrial carnivores (Scheffer and Slipp 1944, Perrin et al. 2009).

Aside from natural mortality, other sources of mortality include incidental take related to

commercial fisheries, illegal killing, and hunting. As prescribed by the U.S. Marine Mammal

Protection Act of 1972, hunting in Alaska is limited to Alaska Natives for subsistence and

handicraft purposes. Subsistence harvests usually take fewer than 2,000 individuals per year

statewide (Muto 2015).

1.2 Population Biology of Harbor Seals in Alaska

The abundance of harbor seals has declined in many parts of Alaska over the past few

decades. For example, there was an 85% decline in harbor seal abundance at Tugidak

Island from 1976 to 1988 (Pitcher 1990, Jemison et al. 2006), a 63% decline from 1984 to

1997 in Prince William Sound (Frost et al. 1999), and similar declines along the Aleutian

Archipelago (Small et al. 2008), at Kodiak Island (Small et al. 2003), and in Glacier Bay

National Park (Mathews and Kelly 1996, Mathews and Pendleton 2006). In contrast, harbor

seal abundance was stable or increasing in Bristol Bay and parts of southeastern Alaska over

approximately the same periods (Small et al. 2003).

Some populations of harbor seals that were once declining started to rebound in the

1990s. Despite the recent upswing at some locations, like a 67% increase in harbor seal

abundance at Kodiak Island from 1993–2003 (Small et al. 2003), harbor seal numbers in

the Gulf of Alaska remain substantially reduced (Jemison et al. 2006). Even so, recent
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estimates indicate harbor seals are still fairly abundant in Alaska, with approximately 200,000

harbor seals statewide (Muto 2015); however, large declines like those experienced during

the 1970s–1990s are alarming nonetheless. Harbor seals are often the most numerous marine

mammal in coastal Alaska ecosystems and likely play an important role in structuring marine

communities as a consumer and as prey for other upper-trophic level species (Boveng and Ziel

2015). Therefore, sustaining harbor seal populations is important for maintaining the health

and stability of marine ecosystems. Indeed, a primary management objective according to

the Marine Mammal Protection Act is to maintain “optimum sustainable population levels”

and to restore depleted populations of harbor seals.

Declines in harbor seal numbers coincided with the 1976–1977 shift in the Pacific Decadal

Oscillation (Pitcher 1990, Hare and Mantua 2000, Jemison and Kelly 2001); however, prox-

imate causes for the declines are undetermined (Wade et al. 2007). Harbor seal population

trajectories mirrored those of other marine mammals in the region (e.g., Steller sea lions (Eu-

metopias jubatus), northern fur seals (Callorhinus ursinus), and sea otters (Enhydra lutris);

Braham et al. 1980, Fowler 1982, Merrick et al. 1987, York and Kozloff 1987, Loughlin et al.

1992), leading some to suggest that increased predation by transient, marine-mammal-eating

killer whales was the primary mechanism behind the declines (Springer et al. 2003, Springer

et al. 2008). In contrast, others asserted that more plausible explanations for the decline

of marine mammals in the Gulf of Alaska and Bering sea included factors such as direct

mortality (incidental mortality related to fisheries, subsistence hunts, and illegal killing),

environmental contaminants, disease, human disturbance, and reduction in the quantity and

quality of prey (Mizroch and Rice 2006, DeMaster et al. 2006, Trites et al. 2007, Wade et

al. 2007).
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Despite the many hypotheses concerning the underlying mechanisms that caused the

collapse of harbor seal (and other marine mammal) populations in Alaska, there is little em-

pirical evidence pertaining to the factors that ultimately caused the declines. Consequently,

there was a call for expanded research on marine mammals in general, and specifically for

harbor seals this led to additional studies pertaining to their physiology (e.g., Atkinson et

al. 2015), health and disease (e.g., Hueffer et al. 2011), diet (e.g., Herreman et al. 2009),

foraging behavior (e.g., Womble et al. 2014), vital rates (survival and reproductive rate), age

structure (e.g., Blundell and Pendleton 2008), and spatial ecology (e.g., Brost et al. 2015).

1.3 Harbor Seal Telemetry Data

The Alaska Department of Fish and Game collected a rich telemetry data set on harbor

seals during the 1990s and early 2000s. Harbor seals were captured and equipped with

satellite telemetry devices in four areas throughout Alaska: Bristol Bay, Kodiak and Tugidak

Islands, Prince William Sound, and southeast Alaska (Fig. 1.1). The telemetry devices

transmitted to Argos receivers attached to polar orbiting meteorological satellites, a system

that uses the Doppler effect (i.e., the shift in frequency observed when the telemetry devices

and the satellites are moving relative to each other) for geopositioning.

The Argos least-squares positioning algorithm assigns each telemetry location to one of

six quality classes based on the number of transmissions received during a satellite pass.

In order of decreasing accuracy, the location quality classes are 3, 2, 1, 0, A, and B. The

location quality classes have different error patterns and magnitudes, and some exhibit an

x-shaped error distribution that has greatest error variance along the NW-SE and NE-SW

axes (Costa et al. 2010, Douglas et al. 2012, Brost et al. 2015, Buderman et al. 2016). The

x-shaped error pattern is an artifact of the polar orbiting Argos satellites and error that is
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largest in the direction perpendicular to the orbit. The magnitude of Argos location errors

are often >10 km and in some cases >100 km (Fig. 1.3; Costa et al. 2010, Douglas et al.

2012, Brost et al. 2015), errors that exceed the typical extent of harbor seal movements

(Frost et al. 2001, Lowry et al. 2001, Cunningham et al. 2009).

A subset of the captured harbor seals were equipped with satellite-linked depth recorders

that provide information on harbor seal diving behavior (Wildlife Computers, Redmond,

WA). The depth recorders measured water depth at 10 second intervals with an accuracy

of approximately 2 meters; however, these data were summarized into bins (or histograms)

over 6-hours intervals to circumvent data transmission limitations. The number of bins, as

well as the thresholds defining the bins, vary by region and year of the telemetry study. The

dive data consist of four histogram types: (1) maximum depth for individual dives per 6-

hour period tabulated by depth bin; (2) length of dives per 6-hour period tabulated by time

bin; (3) proportion of time in each depth bin per 6-hour period; and (4) a binary indicator

that records whether the majority of time per 20-minute interval is at-sea or on-land. In

addition to these data, an on-board conductivity sensor determined if the device was wet

(low resistance) versus dry (high resistance) at the time positional data were recorded. The

devices were programmed with a delay (10 consecutive readings at 45 sec. intervals) to

prevent spurious wet/dry state transitions associated with splashing on a haul-out or short

dry periods experienced by the sensor while a seal was surfaced in the water.

1.4 Statistical Methods for Animal Telemetry Data

Animal telemetry data arise as the outcome of periodic observations of a continuous

animal movement process. Telemetry locations are a type of presence-only data because

they consist of observations of an animal through space and time, and lack information
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Figure 1.3. Example of Argos satellite telemetry locations (red crosses) collected on a single
harbor seal monitored on the southern coast of Kodiak Island, Alaska. (a) The magnitude of
error in Argos satellite telemetry data is evident given that telemetry locations in the interior
of Alaska are implausible for a marine mammal (e.g., the northern telemetry location that
is circled in red). Similarly, even though harbor seals are capable of extensive movements
at sea, telemetry locations like the one circled in the Pacific Ocean are most likely errors
because harbor seals favor shallow water near shore. (b) Telemetry locations in the vicinity
of Kodiak Island. Because of telemetry measurement error, many of the locations occur on
land in areas inaccessible by harbor seals.
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concerning where the animal was not found (Pearce and Boyce 2006). Most statistical

models for telemetry data fall into one of two broad classes, namely spatial point process

models and models for animal trajectories (“movement models” hereafter). Much overlap

exists between these two general approaches to examining animal telemetry data, although

spatial point process models often address questions concerning the spatial distribution and

habitat use of animals, whereas movement models typically explore behavioral responses and

the mechanics of animal movement.

The specific methods for analyzing telemetry data encompassed by the spatial point

process and movement modeling approaches are numerous. In fact, entire books cover the

topic (e.g., Hooten et al., in press). Therefore, I focus on commonly-used spatial point

process and movement models for analyzing animal telemetry data in the exposition below.

1.4.1 Spatial point process models

Spatial point process models describe the relationship among animal locations in geo-

graphic space. They focus on the animal’s position and consider movement from a fixed

frame of reference (i.e., geographic space). In fact, the “response” variable of interest in a

spatial point process model is the animal’s location itself (i.e., the telemetry locations).

Perhaps the most common method used to analyze animal telemetry data is a type of

heterogeneous, spatial point process model known as a “resource selection function” (Manly

et al. 2002). Denote a telemetry location recorded for a single individual at time t as

s (t) ⌘ (sx (t) , sy (t))
0. The model takes the form of a weighted distribution (Lele and Keim

2006, Aarts et al. 2012)

s (t) ⇠ g (x (s (t)) ,β) f (s (t))
´

S
g (x (s) ,β) f (s) ds

, (1.1)
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where g (x (s) ,β) represents the “selection function,” f (s) represents the “availability func-

tion,” and S is the spatial support of the point process. The selection function often takes

an exponential form (i.e., g (x (s) ,β) ⌘ exp
(
x (s)0 β

)
) and consists of x (s), a vector of re-

source (or habitat) characteristics measured at location s, and a vector of coefficients, β,

that describes how the individual selects resources from those available to it. The spatial

domain S is often defined as the animal’s estimated home range or as some arbitrary geo-

graphic region of interest (Johnson 1980, Manly et al. 2002). The availability function is

typically assumed to be uniform over S (i.e., f (s) ⌘ Unif (S)), implying that all points in S

are equally accessible to the animal at all times (Aarts et al. 2008).

The selection function, g (x (s) ,β), is said to be proportional to the probability of use,

but in practice resource selection functions determine whether resource use is proportional

to resource availability (Aarts et al. 2012). Use that is disproportionate to availability

is often equated with preference (Manly et al. 2002). A positive relationship between

resource use and animal fitness assumes individuals are distributed in proportion to resource

availability (i.e., the ideal free distribution); however, animal behavior such as territoriality

can undermine this assumption (i.e., the ideal despotic distribution; Fretwell and Lucas

1969, Van Horne 1983, Morris 2011). Nonetheless, resource selection analyses are a valuable

starting point for more in-depth studies concerning the resources and conditions that are

important drivers of fitness, and by extension species distributions and population dynamics.

In practice, animal resource selection is rarely quantified by evaluating the weighted

distribution (Eq. 1.1) directly. Rather, a common approach is to augment the telemetry

data with “pseudo-absences,” or randomly selected locations within S, and subsequently

analyze the resulting presence/pseudo-absence data using standard statistical methods such

as generalized linear or additive models (McCullagh and Nelder 1989, Ruppert et al. 2003).
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Alternatively, a Poisson likelihood can be used to model the counts of telemetry locations

within discretized units of S (i.e., grid cells of a rasterized version of S). Only recently,

however, was it shown that these approaches approximate the spatial point process intensity

function (Eq. 1.1; Warton and Shepherd 2010, Aarts et al. 2012).

Most resource selection studies assume the telemetry data are measured without er-

ror, and thus the telemetry locations are the same as the true animal locations µ (t) ⌘

(µx (t) , µy (t))
0 (i.e., s (t) ⌘ µ (t), as assumed in Eq. 1.1). In situations where telemetry

measurement error is a concern, the spatial point process model and its approximations (the

standard statistical methods described in the preceding paragraph) can be extended to ac-

count for an imperfect observation process (Brost et al. 2015, Hefley and Hooten 2016). In

particular, hierarchical models are useful for estimating (and separating) uncertainty that

results from imperfect observations of the true animal locations, as well as uncertainty re-

lated to the biological process that generates the true locations themselves. Consider, for

example, the generic hierarchical model

s (t) ⇠ [s (t) | µ (t) ,θs] (1.2)

µ (t) ⇠ [µ (t) | θµ] , (1.3)

where the bracket notation [·] represents some probability distribution, θs is a vector of

parameters that describe telemetry measurement error, and θµ is a vector of parameters

related to the biological process. The “observation” model (Eq. 1.2) describes how telemetry

locations (s (t)) arise conditional on the true locations (µ (t)), whereas the “process” model

(Eq. 1.3) represents a hypothesis about the mechanics of the ecological process that gives

rise to the true but unobserved animal locations. For example, the process model could take

14



the form of a weighted distribution as in Eq. 1.1, or a Poisson likelihood if one wishes to

model the counts of locations within raster cells.

The spatial point process model (Eq. 1.1) can also be adapted to account for depen-

dent telemetry locations. Modern telemetry devices are capable of recording locations at

a relatively high temporal frequency, and the time elapsed between locations can be quite

short. In these circumstances, the extent of potential movements by an animal within S is

limited, and the common assumption that resource availability is uniform over a predeter-

mined region is dubious (Aarts et al. 2008). Using Eq. 1.1, autocorrelated locations can be

accommodated by calculating resource availability as a function of the time elapsed between

telemetry locations, thereby reflecting a dynamic animal movement process (e.g., Brost et

al. 2015); however, such a space-time point process model is more similar to a movement

model than it is to the spatial point process models discussed in this section. Autocor-

related telemetry locations limit application of standard statistical methods in a rigorous,

model-based manner.

1.4.2 Movement models

Movement models often focus on the change in an animal’s position (i.e., the difference

between consecutive locations) rather than the locations themselves (e.g., Morales et al.

2004, Johnson et al. 2008, McClintock et al. 2012). They consider the dynamics of animal

movement from the perspective of the moving animal, and thus define accessibility of points

in space as a function of an individual’s starting position, speed, travel duration, and mode of

movement. Consequently, movement models naturally account for dependence in telemetry

data. Movement models typically yield a spatial surface that represents the likelihood of

observing an animal given no habitat preference. Inference concerning the affect of habitat
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covariates on animal movement is often left to a secondary analysis (e.g., Hooten et al. 2010,

Hanks et al. 2015, Hooten et al. 2016; however, see Morales et al. 2004 for an exception).

Movement models can be divided into discrete-time and continuous-time approaches.

Regardless of the manner in which time is treated, movement models typically consist of two

hierarchical components: a mechanistic model that describes the animal movement process

and a statistical model for the observation process (e.g., Eqs. 1.2 and 1.3). Observation

models are interchangeable between the two movement modeling frameworks. Therefore,

I specifically focus on common discrete-time and continuous-time process models in the

descriptions below. In other words, the quantities discussed are a function of the true animal

locations µ (t), not the observed telemetry data s (t).

Discrete-time movement models.—A widely used discrete-time approach to emulating

animal movement is the (discrete-time) correlated random walk, an approach that often

deconstructs a movement path into a series of step lengths and turning angles (e.g., Morales

et al. 2004, McClintock et al. 2012, McClintock et al. 2013). In this framework, step lengths

(r (t)) are modeled using some non-negative, right-skewed distribution and turning angles

(φ (t)) are given a circular, non-uniform distribution. For example, common specifications

are

r (t) ⇠ Weibull (a (t) , b (t)) (1.4)

φ (t) ⇠ wCauchy (λ (t) , ρ (t)) , (1.5)

although other distributions can also be used (Morales et al. 2004, McClintock et al. 2012,

McClintock et al. 2013). Correlated movements are captured by turning angles that are

concentrated near zero degrees, thus inducing short-term persistence in movement direction

(Turchin 1998). Under this modeling framework (Eqs. 1.4 and 1.5), the polar dimensions
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of discretized movements are independent; therefore, the model does not account for any

relationship between step lengths and turning angles. Alternatively, the “first-difference”

discrete-time correlated random walk model of Jonsen et al. (2005) is specified on the

velocities, thereby inducing dependence between the speed and direction of movements (e.g.,

long steps are possible when turning angles are small).

Discrete-time approaches to modeling animal trajectories are highly flexible and have

been adapted to accommodate various aspects of animal behavior. For example, mixtures

consisting of > 1 discrete-time random walks have been developed to accommodate multiple

movement modes associated with latent behavioral states (Morales et al. 2004, Jonsen

et al. 2005, McClintock et al. 2012, McClintock et al. 2013). Furthermore, long-term

directional persistence has also been incorporated into discrete-time models to allow for

movements associated with a specific location in geographic space (e.g., a center of attraction;

McClintock et al. 2012). The primary limitation of discrete-time movement models is

that they are predicated on observations recorded at regular intervals; however, telemetry

data are usually recorded irregularly through time. Thus, discrete-time movement model

implementation requires “corrections” to translate the observed data to a regular interval

timeline (e.g., interpolation) that matches the desired scale of inference (McClintock et al.

2012).

Continuous-time movement models.—Continuous-time models are appealing because they

consider movement more realistically as a process that occurs continuously through time.

The inference obtained from a continuous-time model is also not dependent on any partic-

ular timescale (as in discrete-time movement models; McClintock et al. 2014). Moreover,

modeling animal movement as a continuous stochastic process is a natural way to account
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for any relationship (i.e., correlation) between step lengths and turning angles (McClintock

et al. 2014).

A common continuous-time movement model is the correlated random walk of Johnson

et al. (2008), a continuous time analog of the discrete-time movement model proposed by

Jonsen et al. (2005). This model accounts for dependence between locations, as well as a

tendency to drift toward a central location, using a stochastic process model known as the

Ornstein-Uhlenbeck process. For each separation in time ∆t, the model is defined by an

autoregressive specification for velocity, v (t) ⌘ (vx (t) , vy (t))
0, such that

vc (t+∆t) = γc + exp (−β∆t)⇥ (vc (t)− γc) + ςc (∆t) , (1.6)

where c 2 {x, y}, γc is the mean velocity, β is an autocorrelation parameter, and ςc (∆t) is

a normal random variable with mean zero and variance σ2 (1− exp (−2β∆t)) / − 2β. The

parameter σ2 controls the overall variability in velocity. Accordingly, the velocity vc (t+∆t)

is a combination of the previous velocity weighted by its difference from the mean velocity,

plus a random variable with variance that increases with ∆t. The animal’s position for any

time t is subsequently obtained by integrating over the velocities

µ (t) = µ (0) +

ˆ t

0

v (u) du, (1.7)

where µ (0) is the initial location. As β approaches 1 (Eq. 1.6), the location process becomes

standard Brownian motion, a continuous-time random walk. Although Brownian motion is

another common approach to modeling animal movement (e.g., Hooten and Johnson, in

press), its use is motivated by mathematical convenience and ease of implementation rather

than its ability to accurately depict animal trajectories.
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1.5 Objectives and Dissertation Structure

Despite the rapidly increasing number of studies concerning animal resource selection

and movement, our ability to analyze telemetry data has not kept pace with our ability to

collect individual movement data. Even though recent extensions to models for analyzing

animal telemetry data address complications such as autocorrelation and telemetry measure-

ment error, additional challenges remain. This is especially true in the context of analyzing

Argos satellite telemetry data collected on marine mammals like harbor seals. For exam-

ple, existing methods assume elliptical (or circular) patterns of measurement error, even

though Argos satellite telemetry devices impose more complicated error structures on the

data. Constraints, or barriers, to animal movement present another complication. Harbor

seals and other marine mammals are constrained to move within the marine environment,

and mechanistic models that do not adhere to movement barriers yield unreliable inference.

Therefore, a primary goal of this dissertation is to develop statistical tools that account for

these nuances and provide rigorous, ecologically relevant inference. Even though the models

presented in this dissertation were specifically developed with Argos satellite telemetry data

and harbor seals in mind, the methods are general and can be applied to other species and

types of telemetry data. This dissertation consists of three core chapters.

In Chapter 2, I propose an approach for obtaining resource selection inference from

animal location data that accounts for complicated error structures, movement constraints,

and temporally autocorrelated observations. The model consists of two general components:

a model for the true, but unobserved, animal locations that reflects prior knowledge about

constraints to animal movement, and a model for the observed telemetry locations that is

conditional on the true locations. I apply the model to simulated data, showing that it
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outperforms common ad hoc approaches used when confronted with telemetry measurement

error and movement constraints. I then apply the framework to obtain inference concerning

aquatic resource selection and space use for harbor seals near Kodiak Island, Alaska.

Chapters 3 and 4 shift the focus from inference concerning aquatic space use and resource

selection, to inference concerning the use of coastal resources (i.e., haul-out sites) by harbor

seals. In Chapter 3, I present a fully model-based approach for estimating the location of

central places (e.g., haul-out sites, dens, nests, etc.) from telemetry data that accounts for

multiple sources of uncertainty and uses all of the available locational data. The model

consists of an observation model to account for large telemetry measurement error and

animal movement, and a highly flexible mixture model (a Dirichlet process) to identify the

location of central places. Ancillary behavioral data (e.g., harbor seal dive data obtained

from the satellite-linked depth recorders) are also incorporated into the modeling framework

to obtain inference concerning temporal patterns in central place use. Based on the methods

developed in Chapter 3, I present a comprehensive analysis of the spatio-temporal patterns

of haul-out use for harbor seals near Kodiak Island in Chapter 4. This chapter also extends

previously developed methods to examine the affect of covariates on haul-out site selection

and to obtain population-level inference concerning haul-out use.

I conclude in Chapter 5 with some general thoughts about analyzing animal telemetry

data, as well as potential future research directions. Although each core chapter includes

a harbor seal application, this work is primarily methodological. I described the methods

in a manner approachable to ecologists with a background in hierarchical modeling, and I

included additional resources to help others with model implementation. For example, each

chapter includes appendices containing the full model specifications, derivations of the full-

conditional distributions, pseudo-code for the Markov chain Monte Carlo algorithms used
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for parameter estimation, and annotated R code for model fitting. The statistical rigor,

applications, and algorithms presented here may be useful for others to extend my work and

tackle a wide variety of problems in animal movement ecology.
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CHAPTER TWO

Animal Movement Constraints Improve Resource Selection

Inference in the Presence of Telemetry Error1

Summary. Multiple factors complicate the analysis of animal telemetry location data.

Recent advancements address issues such as temporal autocorrelation and telemetry mea-

surement error, but additional challenges remain. Difficulties introduced by complicated

error structures or barriers to animal movement can weaken inference. We propose an ap-

proach for obtaining resource selection inference from animal location data that accounts for

complicated error structures, movement constraints, and temporally autocorrelated observa-

tions. We specify a model for telemetry data observed with error conditional on unobserved

true locations that reflects prior knowledge about constraints in the animal movement pro-

cess. The observed telemetry data are modeled using a flexible distribution that accommo-

dates extreme errors and complicated error structures. Although constraints to movement

are often viewed as a nuisance, we use constraints to simultaneously estimate and account

for telemetry error. We apply the model to simulated data, showing that it outperforms

common ad hoc approaches used when confronted with measurement error and movement

constraints. We then apply our framework to an Argos satellite telemetry data set on harbor

seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the

marine environment and adjacent coastlines.

1The material in Chapter 2 is based on the following publication: Brost, B. M., M. B. Hooten, E. M.
Hanks, and R. J. Small. 2015. Animal movement constraints improve resource selection inference in the
presence of telemetry error. Ecology 96:2590–2597. Thank you to my coauthors, George Wittemyer, and to
several anonymous reviewers for comments that improved this manuscript.
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2.1 Introduction

Conservation and management of animal populations requires knowledge of factors af-

fecting their abundance and distribution. The locations of animals, coupled with information

about associated environmental characteristics, can be used to quantify species-habitat re-

lationships. This has stimulated the widespread use of telemetry devices to collect animal

location data (hereafter telemetry data), which are often analyzed in a resource selection

framework (Manly et al. 2002). The goal of such analyses is to quantify the probability

of resource (or habitat) use conditional on resource availability (i.e., selection). Use that is

disproportionate to availability is often equated with preference (Manly et al. 2002).

Multiple factors complicate the application of resource selection methodology. Modern

satellite telemetry devices, for example, can collect multiple locations per day. Although

such data increase the prospects for obtaining inference about animal behavior, they often

violate the usual independence assumption of basic statistical analyses (Aarts et al. 2008,

Fieberg et al. 2010). Telemetry measurement error poses another challenge. Measurement

errors, or deviations between recorded telemetry locations and true animal locations, can

interact with environmental heterogeneity to bias inferences on species-habitat relationships

(Visscher 2006, Johnson and Gillingham 2008, Hefley et al. 2014).

Recent extensions to models for analyzing animal telemetry data address temporal auto-

correlation and measurement error. Johnson et al. (2008b), for example, modeled temporally

autocorrelated location data using a weighted distribution that combines a resource selection

function with a movement model. Morales et al. (2004), Hooten et al. (2010), and Hanks et

al. (2011) provide alternatives to the weighted distribution approach that also account for

temporally dependent data. So-called “state-space” movement models further account for
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telemetry measurement error by coupling a statistical model for the telemetry observation

process with a model that describes the true, but unobserved, movement process (Patterson

et al. 2008). In principle, state-space movement models can be used to directly quantify

species-habitat relationships (McClintock et al. 2012); however, they are typically used only

to estimate true animal paths and infer behavioral states.

The contemporary methods highlighted above are important developments for the analy-

sis of telemetry location data; however, additional challenges remain. For example, existing

models assume elliptical (or circular) patterns of measurement error, even though some re-

mote sensing devices impose more complicated error structures on the data. Constraints, or

barriers, to animal movement present another complication. Constraints modify the spatial

support of the animal movement process by limiting where an individual or species exists,

and may interact with measurement error to yield telemetry locations that occur in areas

not accessible by the telemetered individual (e.g., Fig. 2.1a). Though spatial constraints

have been incorporated into animal movement models (e.g., Sumner et al. 2009, McClintock

et al. 2012), they have not been used to quantify resource selection.

We propose an approach for obtaining inference concerning resource selection from an-

imal location data that accounts for complicated error structures, constraints to animal

movement, and temporally autocorrelated observations. To our knowledge, these objectives

have not been addressed previously in a unified framework. We specify a model for observed

telemetry data conditional on true but unknown locations that reflects prior knowledge about

constraints on the animal movement process. Though constraints to animal movement are

typically viewed as a nuisance, our approach uses constraints to simultaneously estimate and

account for telemetry error. We first apply the model to a simulated data set and compare it

to common ad hoc approaches used when confronted with constraints to animal movement.
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We also illustrate our framework by analyzing an Argos satellite telemetry data set on harbor

seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the

marine environment and adjacent coastlines.

2.2 Telemetry Location Data

The model we propose is general and can be applied to various combinations of telemetry

data types (e.g., VHF, GPS, or geolocation telemetry); however, our focus here is on Argos

telemetry data. Argos satellite telemetry is a popular platform for collecting animal location

data because it is cost effective, and because all location estimates are conveniently delivered

to the end user electronically, making tag recovery unnecessary. Argos satellite telemetry

has also seen extensive use for more than two decades, resulting in massive historical data

sets that are ripe for reanalysis using state-of-the-art methodology (Movebank.org currently

contains > 250 Argos telemetry data sets).

Our model application specifically focuses on telemetry locations like those in our harbor

seal data set, which were calculated via the Argos least squares positioning algorithm (Service

Argos 2015). These location data require special treatment because they exhibit an x-shaped

error distribution that has greatest error variance along the NW-SE and NE-SW axes, a

consequence of the polar orbiting Argos satellites and error that is largest in the direction

perpendicular to the orbit (Costa et al. 2010, Douglas et al. 2012). Analysis of these data

is further complicated by the fact that valid Argos telemetry locations are assigned one of

six location classes, each exhibiting different error patterns and magnitudes. In order of

decreasing accuracy, the location classes are 3, 2, 1, 0, A, and B.
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2.3 Model Formulation

Suppose individuals in a population of animals are constrained to move within S, the

spatial support of the movement process. Let st ⌘ (s1,t, s2,t)
0 be the pair of coordinates for

an observed telemetry location on a single individual at time t, and µt ⌘ (µ1,t, µ2,t)
0 be the

pair of coordinates for the corresponding latent (i.e., unobserved) true location. Although

µt is restricted to be within S, this is not true for the observed telemetry location which can

fall outside of S due to measurement error (Fig. 2.1a).

2.3.1 Observation model

An appropriate observation model must describe how telemetry locations arise conditional

on true locations. We allow for various telemetry error structures using

st ⇠

8
>>><
>>>:

tν(µt,Σ), with prob. pt

tν(µt, eΣ), with prob. 1− pt

. (2.1)

In this expression, the observed telemetry locations st arise from a mixture of multivariate

t distributions with mean µt (the true location), scale matrices Σ and eΣ, and ‘degrees of

freedom’ ν. The parameters Σ, eΣ, and ν describe error in the telemetry measurement

process. The degrees of freedom parameter ν specifically adjusts the heaviness of the tails

in the t distribution, thereby accommodating extreme errors commonly seen in telemetry

data (Jonsen et al. 2005, Hoenner et al. 2012). Note that the t distribution approximates a

Gaussian distribution for ν ≥ 30. The scale matrix Σ is parametrized in a flexible manner:

Σ = σ2

2
64

1 ρ
p
a

ρ
p
a a

3
75 , (2.2)
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where σ2 quantifies scale in the longitude direction, a modifies σ2 to describe scale in the

latitude direction, and ρ describes the correlation between variation in the two directions.

The scale matrix eΣ is identical to Σ except for the off-diagonal elements which are multiplied

by −1; thus, the off-diagonals of eΣ are −ρ
p
a.

When ρ = 0, Eq. 2.1 collapses to a single multivariate t distribution that is appropriate

for circular (a = 1) and elliptical error distributions (a 6= 1). Alternatively, ρ 6= 0 results in

two distributions that are reflected across the vertical axis. Consequently, when ρ 6= 0, Eq.

2.1 specifies a mixture distribution that decomposes potentially complicated error structures

like the x-shaped pattern evident in Argos telemetry data into two simpler forms, with one

mixture component for errors along the NE-SW axis (described by Σ) and another for errors

along the SE-NW axis (described by eΣ). We define pt = 0.5 because the orbital plane of

Argos satellites changes continuously; therefore, observations are equally likely to come from

either mixture component.

The parameters relating to measurement error (i.e., σ2, ρ, a, and ν) can be estimated

independently for different error classes (e.g., Argos location quality classes) or adapted

to accommodate a continuous metric of location quality (e.g., GPS dilution of precision).

Since 2011, Argos has also provided error ellipses associated with locations processed via a

Kalman filtering algorithm. Error ellipses better characterize the magnitude and orientation

of errors than location classes, and can be used to inform observation model parameters

(e.g., McClintock et al. 2014).

2.3.2 Process model

Animal locations are naturally viewed as a realization of a point process that has a

spatially heterogeneous intensity function (Aarts et al. 2012, Johnson et al. 2013). The
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intensity function summarizes the ecological processes that give rise to animal locations, and

thus provides inference for species-habitat relationships. A weighted distribution is often

used to model this intensity function (Lele and Keim 2006, Aarts et al. 2012), which is the

approach we adopt as a model for the true locations:

µt ⇠
exp

{
x0(µt)β − η

(
µt,µt−∆t

) 
´

S
exp

{
x0(µ)β − η

(
µ,µt−∆t

) 
dµ

. (2.3)

In Eq. 2.3, x(µt) is a vector of spatially-referenced resource or habitat covariates at location

µt, β is a vector of resource selection coefficients, and η
(
µt,µt−∆t

)
is a spatially-explicit

movement kernel centered at µt−∆t
, the previous true location (∆t denotes the time elapsed

between µt and the previous true location). We approximate the integral in the denominator

of Eq. 2.3 by numerical quadrature (Dorazio 2012). The kernel η
(
µt,µt−∆t

)
governs the

distribution of available habitat and accounts for temporal autocorrelation among locations.

The movement kernel is modeled as

η
(
µt,µt−∆t

)
=

d(µt,µt−∆t
)

∆tφ
, (2.4)

where d(µt,µt−∆t
) is the distance between µt and µt−∆t

, and φ is a scaling parameter.

Importantly, d(·, ·) must adhere to animal movement constraints and is thus measured ex-

clusively through the domain defined by S. In the case of marine mammals like harbor seals,

d(·, ·) represents the distance through water (i.e., the swim distance). In practice, we calcu-

late d(·, ·) using least-cost distance (Dijkstra 1959). Given that Eq. 2.4 takes the form of an

exponential kernel, the range of correlation between consecutive locations can be inferred by

noting that η
(
µt,µt−∆t

)
⇡ 0 when d(µt,µt−∆t

)/∆t > 3φ.
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2.3.3 Prior distributions

To complete the Bayesian formulation of this model, we specify prior distributions for the

unknown parameters. We assume σ ⇠ Uniform(0, u) with similar uniform priors for ρ, a, ν,

and φ, and β ⇠ N(0, τ 2I). See Appendix A1 for the full model specification and Appendix

A2 for details regarding model implementation.

2.4 Model Application

2.4.1 Model evaluation using simulated data

An example realization from the model described above is shown in Fig. 2.1a. All param-

eters in the simulation were chosen to be similar to those estimated in an analysis of harbor

seal telemetry data (see Case study below). To simplify presentation of results, telemetry

measurement error corresponded to high, medium, and low accuracy Argos locations (i.e.,

location classes 3, 0, and B, respectively).

We fit the model using a Markov chain Monte Carlo (MCMC) algorithm written in R

(provided in the Supplement; R Core Team 2013) to 250 data sets simulated using the

process described above, each containing 1,000 locations randomly allocated to the three

error classes. Inference was based on 2,000 MCMC samples after convergence. An example

of posterior inference for the true locations µt is shown in Fig. 2.1b.

We compare inference for µt and β from our model to three ad hoc alternatives commonly

used when confronted with telemetry measurement error and constraints to animal move-

ment. These alternative approaches approximate µt by (1) “snapping” observed telemetry

locations to the nearest location in S; (2) excluding from analysis all observed locations not

in S; or (3) using a speed filter (Frietas et al. 2008) to first remove particularly aberrant
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observations, then eliminating remaining observations that are not in S. A spatial point pro-

cess model is then used for resource selection inference (Aarts et al. 2012). Specifically, we

modeled the counts of µt per spatial unit (e.g., raster grid cell) using a Poisson generalized

linear model. We make one additional comparison with a model wherein Eq. 2.1 is updated

to be a normal distribution with ρ = 0. This modification mimics the simpler observation

models commonly used in other approaches (e.g., Jonsen et al. 2003, Johnson et al. 2008a,

Sumner et al. 2009) and provides a benchmark for assessing the performance of a mixture

model that accommodates complicated error distributions.

Inference pertaining to the latent state variable µt and resource selection coefficients β

from the approaches described above are summarized in Table 2.1. Our model retains all

telemetry locations to estimate µt with greater accuracy than the alternative approaches, and

particularly excels for the lower quality error classes that often dominate animal telemetry

data sets (Douglas et al. 2012). Censoring observations (approaches 2 and 3) eliminated

> 66% of the observed locations; data loss was particularly severe for the lower quality

error classes. Estimates of β were overly confident when µt was approximated by filtering,

snapping telemetry locations to S, or excluding observations not in S (Table 2.1). For

example, interval coverage for one of the resource selection coefficients was 0% for all of

these approaches. Coverage of intervals for the mixture t model was comparable to coverage

attained when Eq. 2.1 was updated to a bivariate normal observation model. Both provided

nominal coverage for β, as well as estimates of β that were the least biased among all

approaches (Table 2.1). Estimates of other parameters in our model were satisfactory and

are described in detail in Appendix A3.
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2.4.2 Case study: harbor seals

To demonstrate our approach with real data, we apply our model to telemetry locations

of an adult female harbor seal monitored near Kodiak Island, Alaska during 1995 and 1996

(Fig. 2.2). Telemetry locations were collected on average every 4.3 hours (range: 0.02,

131.9 hours) using an Argos satellite telemetry device. The animal’s position was measured

on 1,457 occasions, with ⇡ 80% of locations coming from the three least accurate Argos

location classes (i.e., large measurement error). We used a 250-m resolution raster of the

marine environment to define S, the extent of which was limited to 60 km (measured through

the water) from the haul-out location. Defining S in this way should capture all potential µt

because harbor seals typically stay within 30 km of their haul-outs (Lowry et al. 2001, Small

et al. 2005), and nothing suggests this individual exhibited longer distance movements. For

illustration purposes, we focused on selection inference pertaining to distance to haul-out

site and bathymetry. Both covariates were represented as 250-m resolution rasters and were

only marginally correlated (r = 0.14).

Point estimates for µt (posterior mode) were 4.2 km from the haul-out site, on average,

and 95% of the posterior probability for µt was within 13.0 km of the haul-out site in water

55-m deep or less (Fig. 2.2). Resource selection coefficients for distance to haul-out and

bathymetry were estimated as β1 = −2.03 (95% CI: −2.45, −1.62) and β2 = −0.82 (95% CI:

−1.12, −0.53), respectively, indicating that habitat far from the haul-out site and deeper

water were selected against. These results are consistent with other findings that harbor

seals generally use shallower water near their haul-out sites (Lowry et al. 2001, Small et al.

2005). Estimates for ν were less than 30 for all Argos error classes, supporting our use of

the t distribution to ensure extreme observations do not exert undue influence on inferences.
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Estimates for all parameters are provided in Appendix A4 and we illustrate the flexibility of

our observation model in Appendix A5. All inference was based on 100,000 MCMC samples,

which required 55 hours of processing time on a computer equipped with a 3.0 GHz Intel

Xeon processor.

2.5 Discussion

Our model for resource selection inference addresses several complicating factors in the

analysis of animal telemetry data. Our model accounts for telemetry measurement error and

temporally autocorrelated observations, and, unlike other approaches, it also accommodates

complicated error structures and constraints to animal movement. In fact, we show that

constraints to movement are helpful in estimating and accounting for measurement error.

Our model consists of two general components, one “process” model for the true ani-

mal locations and another for the observed telemetry locations that is conditional on the

true locations (the “observation” model). These components are implemented in a unified

framework such that uncertainty naturally propagates through the model, thereby properly

accounting for uncertainty in parameter estimates. This unification further allows resource

or habitat covariates to improve estimation of µt. Methods that are implemented in two

stages, where the true locations are first estimated and then used in a secondary analy-

sis to quantify resource selection, do not allow uncertainty in the first stage to propagate

through the second stage unless a bootstrapping or multiple imputation procedure is used

(e.g., Hanks et al. 2011). The ad hoc alternatives presented in our simulation study bear

this shortcoming, as do state-space movement models which are often applied in a two-step

fashion. Our framework also allows for generalizations such as the joint analysis of multi-
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ple individuals using random effects for β and φ, which could themselves be functions of

auxiliary demographic information such as gender or age.

Methods that account for sampling artifacts improve ecological inference. Ignoring

telemetry measurement errors, or hiding them in a pre-processing stage, yields inaccurate es-

timates of true animal locations and inference for resource selection coefficients that is biased

and overly confident (Table 2.1). Censoring poor quality locations leads to substantial data

loss, particularly when dealing with wildlife data sets that often largely consist of low-quality

observations (Douglas et al. 2012). Given the x-shaped error pattern in Argos telemetry

data, true animal locations are more likely to occur on a diagonal from the observed location,

rather than, for example, due north of the observed location. Our observation model incor-

porates this nuance and estimates µt with greater accuracy than one that assumes simpler,

elliptical error structures (Table 2.1). However, both approaches account for uncertainty in

µt and thus provided comparable inference for β.

Animal behavior, such as increased milling by harbor seals near haul-out sites, can bias

times at which satellite telemetry locations are acquired and may therefore affect resource

selection inference (Frair et al. 2010). The telemetry device used in our case study was

programmed to suspend transmissions after 6 hours during haul-out bouts, mitigating this

concern. Alternatively, predicting µt at a fixed time interval may account for bias (e.g.,

McClintock et al. 2012, 2013), although this general technique appears to be untested.

Nonetheless, augmenting our model to obtain predictions for unobserved µt at any time or

sequence of times is straightforward; however, methods that are conceptually based on loca-

tions collected at regular time intervals may not be applicable when data are as intermittent

as those in our harbor seal data set (Breed et al. 2011, Silva et al 2014). Methods for
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point process data collected under preferential sampling present another promising option

for modeling temporally biased telemetry locations (Diggle et al. 2010).

2.5.1 Constraints in space and time

Many animals such as African elephants, European bison, Asiatic wild asses, and Mongo-

lian gazelles encounter fences, railroads, roads, and other barriers that prevent free-ranging

movements (Loarie et al. 2009, Kowalczyk et al. 2012, Ito et al. 2013). Our model could

easily be extended to accurately estimate the locations of these species in their spatially

constrained environments. Features that restrict but do not preclude movement, such as

proximity to water, a nest site, or escape terrain, also represent constraints. These “soft”

constraints can be modeled in much the same way as we modeled attraction to a haul-out

site for harbor seals (i.e., as a component of the resource selection function).

Methods that account for measurement error, like state-space movement models, often

require an a priori understanding of error patterns, usually obtained from published studies

(Jonsen et al. 2003, Jonsen et al. 2005, Johnson et al. 2008a). Unfortunately, observed

error patterns can differ in unpredictable ways due to differences in animal behavior, habitat

obstructions, environmental conditions, and geographic locations (Cargnelutti et al. 2007,

Lewis et al. 2007, Douglas et al. 2012). Consequently, no single description of measurement

error may be universally applicable to a tracking technology. Constraints to movement, and

the subsequent discrepancy between the spatial support of µt and st, allow our model to

estimate species- and system-specific telemetry measurement error without the expense of

collecting additional data (e.g., Costa et al. 2010 and Douglas et al. 2012, who used two

telemetry technologies to simultaneously collect locations on free-ranging animals). As such,

we view constraints as an aid in the modeling and estimation process.
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A second constraint, namely a mechanistic temporal movement constraint (Eq. 2.4),

also operates in our model. This movement kernel expands and contracts inversely with ∆t,

thereby accounting for temporal autocorrelation between consecutive locations (Aarts et al.

2008, Johnson et al. 2008b, Forester et al. 2009, Hooten et al. 2014). The kernel also defines

the distribution of resources available to the individual, which is data-driven as it is governed

by the estimated scale parameter φ and the previous location µt−∆t. The process model (Eq.

2.3) balances the effect of η
(
µt,µt−∆t

)
with that of the resource selection function; both are

modified by the spatial constraint when µt−∆t is near the boundary of S.

2.5.2 Guidance

Methods that accommodate barriers to movement are important for obtaining reliable

inference on animals living in highly constrained environments; however, such methods are

computationally expensive compared to alternatives that do not incorporate movement con-

straints (e.g., Johnson et al. 2008a). Future work comparing approaches, as well as varying

degrees of constrained movements, will help provide additional guidance. We encourage

researchers to model the mechanisms affecting their measurements. Other ecological mod-

els have emphasized the observation process with much success (e.g., models for occupancy

and capture-recapture abundance estimation). Analyses of telemetry data merit the same

attention.
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Table 2.1. Performance of five methods for estimating µt based on 250 simulations of 1,000
telemetry locations each. The notation E(·) denotes the expectation, or mean value over the
simulations. Specifically, E(n) is the expected sample size and E[d(µ̂t,µt)] is the expected
distance in meters between µ̂t (the estimated location) and µt as measured through the
domain defined by S. For the mixture t and normal models, µ̂t was calculated as Mode(µ|s).
The expected distance E[d(µ̂t,µt)] for all locations combined was weighted to account for
varying sample sizes in the “Exclude st /2 S” and “Speed filter” methods.

High accuracy Medium accuracy Low accuracy

All locations locations locations locations

Estimation

method E(n) E [d(µ̂t, µt)] E(n) E [d(µ̂t, µt)] E(n) E [d(µ̂t, µt)] E(n) E [d(µ̂t, µt)]

Mixture t model 1000 2178 333 1811 334 2208 333 2513

Snap st to S 1000 10890 333 3173 334 6108 333 23393

Exclude st /2 S 326 9867 160 2715 125 4416 40 22472

Speed filter 211 4971 117 2460 83 3116 11 9357

Normal model 1000 2615 333 2162 334 2778 333 2905

Notes: High, medium, and low accuracy observed locations were simulated to be consistent with Argos location classes 3, 0,

and B, respectively.
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Table 2.2. Performance of five methods for estimating β based on 250 simulations of 1,000
telemetry locations each.

Distance to

haul-out (β1) Bathymetry (β2)

Estimation

method

Relative

bias Coverage

Relative

bias Coverage

Mixture t model 0.01 0.96 0.01 0.90

Snap st to S -0.33 0.00 0.02 0.83

Exclude st /2 S -0.05 0.63 -0.94 0.00

Speed filter 0.28 0.10 -0.92 0.00

Normal model 0.02 0.92 0.02 0.85

Notes: Relative bias in estimating β was calculated as (E(β) − β)/β and “Coverage” is the percentage of 95% intervals that

contained the true β.
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Figure 2.1. Simulation of 300 true animal locations (µt, black circles) according to the
process model (Eq. 2.3) using two resource selection covariates, namely distance to a point of
attraction (e.g., a haul-out site; blue triangle) and bathymetry. The blue polygon represents
S, the spatial support of the movement process within which all µt occur. (a) Observed
telemetry locations (st; crosses) were simulated according to the observation model (Eq. 2.1)
with three levels of telemetry measurement error corresponding to high (yellow), medium
(orange), and low (red) accuracy Argos locations (i.e., Argos location classes 3, 0, and B,
respectively). The lines connect a subset of observed locations with their corresponding
true location. (b) The posterior distribution of µt (blue to purple color gradient in S;
darker colors represent higher posterior probability). Lines connect a subset of true animal
locations (black circles) with their corresponding observed locations (yellow crosses) and
posterior modes (red crosses).
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Figure 2.2. Argos satellite telemetry locations (red crosses) of an adult female harbor
seal monitored from 09 OCT 1995 to 04 JUN 1996 along the southern coast of Kodiak
Island, Alaska, USA. The blue polygon represents S, the spatial support of the movement
process; for seals, this is the marine environment and adjacent coastlines. Our analysis
focused on resource selection inference pertaining to distance to haul-out site (blue triangle)
and bathymetry (gray contour lines). The posterior distribution of µt is represented by
the blue to purple color gradient in S; darker colors indicate higher posterior probability.
Lines connect a subset of observed locations with their corresponding posterior modes (black
circles). Water depth contours are labeled in meters.
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CHAPTER THREE

Leveraging Constraints and Biotelemetry Data to Pinpoint

Repetitively Used Spatial Features2

Summary. Satellite telemetry devices collect valuable information concerning the sites

visited by animals, including the location of central places like dens, nests, rookeries, or

haul-outs. Existing methods for estimating the location of central places from telemetry

data require user-specified thresholds and ignore common nuances like measurement error.

We present a fully model-based approach for locating central places from telemetry data

that accounts for multiple sources of uncertainty and uses all of the available locational

data. Our general framework consists of an observation model to account for large telemetry

measurement error and animal movement, and a highly flexible mixture model specified using

a Dirichlet process to identify the location of central places. We also quantify temporal

patterns in central place use by incorporating ancillary behavioral data into the model;

however, our framework is also suitable when no such behavioral data exist. We apply the

model to a simulated data set as proof of concept. We then illustrate our framework by

analyzing an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf

of Alaska, a species that exhibits fidelity to terrestrial haul-out sites.

2The material in Chapter 3 is based on the following publication: Brost, B. M., M. B. Hooten, and R. J.
Small. In press. Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features.
Ecology. Thank you to my coauthors, as well as to several anonymous reviewers, for comments that improved
this manuscript.
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3.1 Introduction

Many animal species return regularly to one or more central places like a den, nest,

roost, or foraging site. Central places can be located by sighting individuals during aerial

(Montgomery et al. 2007) or ground-based surveys (Blakesley et al. 1992), or by using

radio-telemetry equipment to locate individuals in the field (Holloran and Anderson 2005);

however, direct observation may only provide a snapshot of the animal’s behavior if surveys

are infrequent (Ruprecht et al. 2012), and could be altogether impractical when surveys

are encumbered by remote locations, rugged terrain, or otherwise difficult conditions. We

address these issues using a model-based approach for locating central places from satellite

telemetry data.

Satellite telemetry devices collect regular sequences of animal locations (Tomkiewicz et al.

2010), data that contain valuable information concerning the sites visited over a monitoring

period. Repeated use of a site often yields multiple telemetry locations collected at that

site. Therefore, clusters of locations in mapped telemetry data are important indicators of

a central place (Knopff et al. 2009).

When deviations between true animal locations and the observed telemetry locations

are small (i.e., small telemetry measurement error), clusters are well-defined. Accordingly,

central places can be located by identifying clusters consisting of some pre-specified number

of telemetry locations collected within a certain distance and time frame (Anderson and

Lindzey 2003, Knopff et al. 2009). However, results are sensitive to the distance and

time thresholds used (Zimmermann et al. 2007). Moreover, distance thresholds fail when

telemetry measurement error is large. Large errors lead to diffuse clusters, which, in turn,

create uncertainty in the location of a central place as well as the composition of the clusters
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themselves. For example, observed telemetry locations can plausibly originate from more

than one central place (i.e., cluster membership is ambiguous), or locations collected at a

central place can be confused with locations collected during movements away from the site.

Therefore, a method that accounts for telemetry measurement error is required.

We present a model-based approach for estimating the location of central places from

satellite telemetry data. Our approach incorporates an observation model that explicitly

accounts for measurement error, and uses a mixture model as a device for exposing latent

structure (i.e., clustering) in telemetry location data. The mixture model is specified using a

flexible Dirichlet process prior, a well-developed Bayesian nonparametric model that adapts

its complexity to the data at hand. We also quantify temporal patterns in central place use

(i.e., factors affecting when a central place is used) by incorporating ancillary data related

to animal behavior into the model; however, we also extend the model to situations when

no such behavioral data exist. We first apply the model to a simulated data set as proof of

concept. We then illustrate our framework using an Argos satellite telemetry data set on

harbor seals (Phoca vitulina) in the Gulf of Alaska. Harbor seals are central place foragers

that exhibit fidelity to terrestrial haul-out sites (Lowry et al. 2001).

3.2 Telemetry Data

The model we propose can be applied to various telemetry data types like VHF, GPS, or

geolocation telemetry. We focus on Argos satellite telemetry data like those in our harbor

seal data set that were calculated via the Argos least-squares positioning algorithm (Ser-

vice Argos 2015). These data require special treatment because they exhibit an x-shaped

error distribution that has greatest error variance along the NW-SE and NE-SW axes, a

consequence of the polar orbiting Argos satellites and error that is largest in the direction
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perpendicular to the orbit (Costa et al. 2010, Douglas et al. 2012). Furthermore, valid

Argos telemetry locations are assigned one of six location classes (3, 2, 1, 0, A, and B), each

of which exhibits different error patterns and magnitudes.

In addition to positional data, modern telemetry devices often collect ancillary data

related to animal behavior (Tomkiewicz et al. 2010) that can be helpful for partitioning

when individuals are actively using a central place versus other resources. The harbor seals

in our data set, for example, were equipped with satellite-linked depth recorders that gathered

information pertaining to diving behavior. Specifically, we use information from an on-board

conductivity sensor that differentiates when a tag is wet (low resistance) versus dry (high

resistance) as a surrogate for central place use. Resistance values ranged from 0-255, which

we converted into a binary indicator for haul-out status using a threshold value of 127 (i.e.,

resistance values > 127 were categorized as hauled-out). The devices were programmed

with a delay (10 consecutive readings at 45 sec. intervals) to prevent spurious wet/dry

state transitions associated with splashing on a haul-out or short dry periods experienced by

the sensor while a seal was surfaced but swimming; therefore, these wet/dry data reliably

indicate when an individual is hauled-out on shore (dry) or at-sea (wet).

3.3 Model Formulation

Let s (t) ⌘ (sx (t) , sy (t))
0 represent the pair of coordinates for an observed telemetry

location at time t 2 T , and µ (t) ⌘ (µx (t) , µy (t))
0 represent the coordinates for a corre-

sponding latent central place. We denote the spatial support of central places as eS and the

ancillary behavioral data as y (t). In the case of harbor seals, eS represents the coastline

where haul-out sites can occur and y (t) 2 {0, 1}, where 0 indicates the individual is at-sea

and 1 indicates the individual is on-shore using terrestrial resources.
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3.3.1 Observation model

The observed telemetry locations arise from a process that reflects animal movement and

measurement error. Movement influences the true animal locations which are then observed

imperfectly due to the telemetry measurement process. We accommodate various error

patterns using a flexible mixture distribution, which itself is conditioned on the ancillary

behavioral data to accommodate movement. First, consider a model for telemetry locations

collected while the individual is at a central place (i.e., y (t) = 1):

s (t) ⇠

8
>>><
>>>:

N (µ (t) ,Σ), with prob. p (t)

N (µ (t) , eΣ), with prob. 1− p (t) .

(3.1)

In Eq. 3.1, an observed telemetry location (s (t)) arises from a mixture of multivariate

normal distributions with mean µ (t) corresponding to the location of a central place, and

variance-covariance matrices Σ or eΣ that describe telemetry measurement error. The matrix

Σ is parameterized in a flexible manner (Brost et al. 2015, Buderman et al. 2016):

Σ = σ2

2
64

1 ρ
p
a

ρ
p
a a

3
75 , (3.2)

where σ2 quantifies measurement error in the longitude direction, a modifies σ2 to describe

error in the latitude direction, and ρ describes the correlation between errors in the two

directions. The matrix eΣ equals Σ on the diagonal, but the off-diagonal elements are −ρ
p
a.

This model specification accounts for circular (a = 1) and elliptical (a 6= 1) errors when

ρ = 0, as well as x-shaped error patterns evident in Argos telemetry data when ρ 6= 0.
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We model telemetry locations collected while the individual is not at the central place

(i.e., y (t) = 0) in a fashion similar to Eq. 3.1:

s (t) ⇠

8
>>><
>>>:

N (µ (t) ,Σ+ σ2
µI), with prob. p (t)

N (µ (t) , eΣ+ σ2
µI), with prob. 1− p (t) ,

(3.3)

except the variance-covariance structure in Eq. 3.3 is augmented by σ2
µ, a parameter ac-

counting for dispersion due to animal movement about the central place. In other words,

µ (t) and σ2
µ define the center and spread of an individual’s “homerange.” As in Eq. 3.1, Σ

and eΣ account for error in the telemetry measurement process.

The observation model in Eq. 3.3 represents an integrated likelihood (Berger et al. 1999).

Consider, for example, the hierarchical model

s (t) ⇠ N
(
µ̃ (t) , σ2I

)
(3.4)

µ̃ (t) ⇠ N
(
µ (t) , σ2

µI
)
, (3.5)

where µ̃ (t) is the true but unobserved animal location. The parameters µ (t), σ2, and σ2
µ

are defined as in Eqs. 3.1–3.3, but note that the telemetry error structure in Eq. 3.4 is

simplified for the purposes of illustration. In principle, we could estimate the true location

µ̃ (t); however, our interest here is not the true locations but rather the location of the

central place, µ (t). Therefore, we treat µ̃ (t) as a “nuisance” parameter and remove it from

the likelihood by integration (i.e., Rao-Blackwellization; Berger et al. 1999):

ˆ

µ̃(t)

N
(
s (t) | µ̃ (t) , σ2I

)
N
(
µ̃ (t) | µ (t) , σ2

µI
)
dµ̃ (t) = N

(
s (t) | µ (t) , σ2I+ σ2

µI
)
. (3.6)

Aside from the simplified error structure, the resulting marginal distribution is the same as

Eq. 3.3 and has a reduced parameter space compared to Eqs. 3.4 and 3.5. It also yields a
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Markov chain Monte Carlo (MCMC) algorithm that is typically quicker to converge (Finley

et al. 2015). Models for animal movement where individuals are attracted to a particular

point are also available if inference concerning µ̃ (t) is desired (Blackwell 2003, McClintock et

al. 2012); however, these methods require the number of central places used by an individual

to be known.

We define p (t) = 0.5 because the orbital plane of Argos satellites changes continuously

and observations are equally likely to arise from either mixture component. The parameters

related to measurement error (i.e., σ2, ρ, and a) are estimated for different Argos location

quality classes (Appendix B1). Alternatively, Eq. 3.2 can be adapted to accommodate a

continuous metric of location quality (e.g., GPS dilution of precision) or the Argos satellite

telemetry location error ellipse (McClintock et al. 2014).

3.3.2 Spatial process model

As specified in the observation model (Eqs. 3.1 and 3.3), a telemetry location arises

from an unknown (but estimable) central place, µ (t). When considering multiple teleme-

try locations recorded over some period of time, the number of unique central places used

by an individual is potentially > 1, but the exact number is unknown. Modeling central

places is further complicated by possible multimodality (central places located in disjoint

areas) and skewness (some central places are close together). We resolve these issues (i.e.,

multimodality, skewness, and an unknown number of central places) by using a Dirichlet pro-

cess, a widely used probability model for unknown distributions that exhibits an important

clustering property (Ferguson 1973, Hjort 2010). Following the constructive, stick-breaking

representation of a Dirichlet process (Sethuraman 1994, Ishwaran and James 2001), we model
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µ (t) as a mixture of infinitely many components:

µ (t) ⇠
1X

j=1

πjδµj
, (3.7)

where µj is the location of a potential central place, δµj
is a point mass (or “atom”) at µj,

πj is the corresponding mixing proportion, and
P1

j=1 πj = 1. Because Eq. 3.7 is a discrete

distribution, draws from it are generally not distinct, thereby inducing replication in the

values for µ (t). Thus, realizations from the Dirichlet process simultaneously provide a value

for µ (t) and partition telemetry locations with the same value for µ (t) into clusters. The

distinction between µj and µ (t) is subtle. The µj, for j = 1, . . . ,1, are unique and represent

the location of potential central places. The µ (t), on the other hand, have a functional

interpretation because they are time-specific and associate a µj to each telemetry location

s (t). Greater replication of µ (t), for t 2 T , confers higher intensity use of the associated

central place (i.e., more telemetry locations associated with the same central place). Note

that, even though the Dirichlet process assumes infinitely many mixture components (central

places), only a finite number are used to generate the observed data.

We formulate πj using a stick-breaking process (Sethuraman 1994):

πj = ηj
Y

l<j

(1− ηl) , (3.8)

where ηj ⇠ Beta (1, θ) and θ is a concentration parameter that controls the prior expected

number of mixture components in the Dirichlet process. To describe the stick-breaking

process, begin with a stick of unit length that represents the total probability allocated to the

infinitely many mixture components in Eq. 3.7. Initially, we break off a piece of length η1 ⇠

Beta (1, θ) from the stick and assign this probability (π1 = η1) to the first component, µ1.

Next, we break off another proportion η2 ⇠ Beta (1, θ) from the remaining length of stick (1−
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η1) and assign this probability (π2 = η2 (1− η1)) to the second component, µ2. As the process

is repeated, the stick gets shorter such that the lengths (i.e., mixing proportions) assigned

to components with a higher index decrease stochastically. The concentration parameter (θ)

controls the rate of decrease.

In practice, we implement the Dirichlet process using a truncation approximation (Ish-

waran and James 2001). For a sufficiently high index J , notice that
P1

J+1 πj ⇡ 0 because

the mixing proportions decrease in the index j. Thus, an accurate approximation to the

infinite Dirichlet process (Eq. 3.7) can be obtained by letting ηJ = 1, resulting in πj = 0 for

j = J + 1, . . . ,1. The index J is an upper bound on the number of mixture components in

Eq. 3.7, not the number of components necessary to model the observed data.

3.3.3 Temporal process model

We model the ancillary behavioral data using a binary probit regression formulated under

a data augmentation approach (Albert and Chib 1993, Johnson et al. 2012, Dorazio and

Rodriguez 2012). In particular, we introduce the parameter v (t) as a continuous, latent

version of the binary process y (t), which we model as a normal random variable with unit

variance:

v (t) ⇠ N
(
x (t)0 β +w (t)0 α, 1

)
. (3.9)

This expression represents a semiparametric regression with mean structure that includes

parametric and nonparametric components (Hastie et al. 2009, Ruppert et al. 2003). The

parametric component consists of a vector of time-varying covariates that affect the proba-

bility of central place use, x (t), and a corresponding vector of coefficients, β. The nonpara-

metric component, w (t)0 α, is described below. Assuming y (t) = 1 if v (t) > 0 and y (t) = 0
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if v (t)  0, the specification in Eq. 3.9 implies the probit regression model

y (t) ⇠ Bernoulli
(
Φ
(
x (t)0 β +w (t)0 α

))
, (3.10)

where Φ is the standard normal cumulative distribution function. The auxiliary variable

specification in Eqs. 3.9 and 3.10 streamlines computation because the associated full-

conditional distributions are known and can be sampled in closed form when fitting the

model using MCMC.

We use the nonparametric component of Eq. 3.9 to account for temporal autocorrelation,

which often occurs in data collected over time from a single individual (e.g., y (t)). The

nonparametric component consists of a linear combination of basis functions evaluated at

time t, w (t), and the vector of basis coefficients, α (Ruppert et al. 2003). The coefficients

weight the basis functions to produce a smooth process through time, thereby inducing

dependence among observations. The basis functions are arbitrary and should have features

that match those of the underlying process being estimated. Commonly used basis functions

include splines, wavelets, and Fourier series. The number of functions should also reflect the

temporal resolution of that process (Ruppert et al. 2003).

3.3.4 Prior distributions

To complete the Bayesian formulation of this model, we specify prior distributions for un-

known parameters. We assume β ⇠ N
(
µβ, σ

2
βI
)
, θ ⇠ Gamma (rθ, qθ), log (σµ) ⇠ N (µσ, σ

2
σ),

and σ ⇠ Uniform(0, u), with similar uniform priors for ρ and a. The lognormal distribution

for σµ allows prior information concerning animal movement and homerange size, if available,

to be incorporated into the model. We adopt a penalized approach to avoid overfitting α

by assuming α ⇠ N (0, σ2
αI) and σ2

α ⇠ IG (rα, qα) (Ruppert et al. 2003). The prior for µj,
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referred to as the base distribution of the Dirichlet process (Hjort 2010), determines where

the atoms δµj
tend to be located. We assume µj ⇠ f eS (S), where S is a matrix containing all

of the observed telemetry locations and f eS (S) represents the density of telemetry locations

in eS. We approximate f eS (S) using a kernel density estimator evaluated over a rasterized

domain eS. See Appendix B1 for the full model specification and Appendix B2 for details

regarding model implementation.

3.4 Model Application

3.4.1 Simulated data example

We demonstrate our modeling framework when parameters are known in a simulated

data example. Figure 3.1 shows 1,000 locations simulated from the model using parameters

obtained from an analysis of harbor seal telemetry data (see Case study below). To simplify

presentation of results, simulated locations were randomly allocated to Argos location classes

3, 0, and B (high-, medium-, and low-accuracy locations). We set J = 50 in the truncation

approximation to the Dirichlet process and modeled dependence in central place use with

B-spline basis functions (w (t)). B-splines are commonly used in semiparametric regression

because they have local support and stable numerical properties (Ruppert et al. 2003). We

fit the model using a MCMC algorithm written in R (provided in Data S1; R Development

Core Team 2015).

Inference concerning µ (t), the spatial intensity of central place use, is summarized in

Figure 3.1. Posterior probability is concentrated near known central places, and inference is

more certain for central places associated with many telemetry locations (i.e., locations that

were heavily used). Posterior probability for µj, the location of potential central places, is
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more diffuse than that of µ (t), but still generally concentrated near central places (Appendix

B3). The model recovers parameters related to telemetry measurement error, animal move-

ment, and the temporal process of central place use (Appendix B3). Additional simulated

data examples are presented in Appendix B4.

3.4.2 Case study: harbor seals

To demonstrate our approach with real data, we apply our model to Argos satellite teleme-

try locations collected from a harbor seal near Kodiak Island, Alaska (Fig. 3.2). Harbor seals

repeatedly use terrestrial haul-out sites along the coastline ( eS), which we represented using

a 100-m resolution raster. Haul-out behavior changes over time due to physiological func-

tions (thermoregulation, molting, pupping, etc.) and environmental conditions (e.g., tidal

state) that affect the availability of haul-out sites (London et al. 2012). Thus, we evaluated

the affect of several temporal covariates on the use of haul-out sites: the number of hours

since solar noon (13:00 hours), the number of hours since low tide, and the number of days

since August 15 and its quadratic effect. Tide information was obtained from the nearest

National Oceanic and Atmospheric Administration station (Kodiak Island, ID: 9457292).

We set J = 50 in the truncation approximation to the Dirichlet process, which greatly ex-

ceeds the expected number of haul-out sites used by a single harbor seal. We modeled the

temporal haul-out process using B-splines (w (t)) defined at 6-hour intervals. In addition to

allowing for smooth patterns in the probability of haul-out use, a basis expansion defined at

this interval allows haul-out behavior to vary throughout day.

Inference concerning the intensity of haul-out site use (µ (t)) is shown in Figure 3.2.

Posterior probability is concentrated in three regions, generally occurring near clustered

telemetry locations. The highest posterior probability occurs along the northernmost coast-
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line of Ugak Bay, indicating this area was most actively used by the individual. Similar to

the simulated data example, inference concerning µj was more diffuse, but resembles that of

µ (t) (Appendix B5). Parameters in the temporal process model (β) indicate haul-out use

was highest at times near solar noon, during summer months, and at high tide (Appendix

B5). Inference concerning animal movement (σµ) suggests approximately 95% of at-sea lo-

cations were within 6.6 km of a haul-out site. Parameters related to telemetry measurement

error are provided in Appendix B5. All inference was based on 50,000 MCMC samples,

which required 5 hours of processing time on a computer equipped with a 3.4 GHz Intel

Core i7 processor.

3.5 Discussion

A fully model-based approach rigorously accommodates multiple sources of uncertainty

when estimating the location of central places from satellite telemetry data. Our framework

consists of three constituent models: an observation model that accounts for telemetry mea-

surement error and animal movement, a spatial process model for estimating the location of

central places, and a temporal process model for quantifying patterns in central place use.

Unlike other approaches, our model does not require user-specified distance or time thresh-

olds to identify central places (Anderson and Lindzey 2003), or prior knowledge regarding

cluster characteristics (Webb et al. 2008). Model implementation is unified to properly

account for uncertainty in parameter estimates.

We demonstrate our model using simulated data examples and an application to harbor

seals near Kodiak Island, Alaska. Harbor seals typically exhibit localized movements and

regularly return to one or more terrestrial haul-outs between at-sea foraging bouts (Lowry

et al. 2001). Our model could also be applied to species that display other behaviors. For
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example, our model could be used to examine the location of migratory stopover sites or kill

sites (Higuchi et al. 2004, Zimmermann et al. 2007. Chevallier et al. 2010); however, the

ability to model ephemeral locations requires telemetry data collected at a relatively high

temporal frequency.

3.5.1 Observation model

Our observation model consists of a flexible, finite mixture distribution (Eqs. 3.1 and

3.3) that accounts for potentially complex telemetry measurement errors like those evident in

Argos data (Brost et al. 2015, Buderman et al. 2016). The observation model also accounts

for movements away from the central place via an integrated likelihood (Eq. 3.3; Berger

et al. 1999). Because measurement error and animal movement are incorporated into the

observation model, we use all telemetry locations to estimate the location of central places,

not just those with small magnitude errors or those collected while the individual is at the

central place. Furthermore, we use a constrained spatial support for central places (e.g.,

haul-out sites that only occur along the coastline), and the subsequent discrepancy between

the spatial supports of s (t) and µ (t), to simultaneously estimate telemetry measurement

error (Brost et al. 2015). In applications where central places do not have a constrained

support, telemetry error must be known a priori or estimated from a secondary data source

(e.g., Jonsen et al. 2005, Costa et al. 2010, Douglas et al. 2012).

3.5.2 Process models

The spatial process model consists of a Dirichlet process, a Bayesian nonparametric

model that adapts its complexity (e.g., the number of central places) to the observed data.

In conjunction with the observation model, the spatial model comprises a Dirichlet process
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mixture model, a highly flexible framework that includes a large class of distributions (Hjort

2010). As such, the model accommodates multimodal and skewed distributions, like the

distribution of central places.

The Dirichlet process allows for potentially infinite clusters as T , the number of observa-

tions, approaches 1; however, the number of occupied components cannot exceed T and is

generally much smaller than T . Consequently, a mixture of a finite number of components

could be used in practice, which is the strategy we adopt by using a truncation approxima-

tion to produce a computationally efficient algorithm for parameter estimation (Ishwaran

and James 2001). Other representations of the Dirichlet process, like the Chinese restaurant

process, do not rely on truncations for model fitting (Teh et al. 2006).

Our spatial process model could be adapted to include temporal dynamics in the location

of central places. For example, seasonal patterns in the location of harbor seal haul-out sites

could be incorporated by modeling the central places in a Markovian fashion such that µ (t) is

a function of previous central places. Adjusting our model to differentiate between behaviors

would also be necessary if the goal is to examine multiple types of central places in a single

dataset (i.e., long-term use of a den site and short-term use of kill sites). One approach to

accommodating different behaviors is to formulate the Dirichlet process as a hidden Markov

model, a commonly-used method for identifying multiple behavioral states in telemetry data

(Patterson et al. 2009, Langrock et al. 2012).

We use a semiparametric regression to model the temporal process of central place use

and account for dependence in the behavioral data (Ruppert et al. 2003). Telemetry data are

generally not equally spaced in time; thus, serial correlation would be difficult to model using,

for example, an autoregressive process. The basis function approach that we implement is a

flexible alternative to modeling autocorrelated data (Hefley et al. in revision).
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The basis functions, which are continuous in time, also facilitate prediction of animal

behavior. For example, animal behavior can be predicted at times associated with telemetry

locations when the positional and behavioral data are temporally misaligned (Appendix B6).

Our model can even be adapted to estimate animal behavior when ancillary data are not

available (Appendix B6). Indeed, prediction is a key advantage of a probabilistic framework

like the one we present.

3.5.3 Guidance

The joint analysis of multiple individuals can be achieved by applying our model to

several individuals separately, and then combining inference across individuals to obtain

population-level parameters with a meta-analysis (e.g., Hartung et al. 2008, Hooten et al.

2016). Alternatively, multiple individuals could be analyzed concurrently using a hierarchical

Dirichlet process (Teh et al. 2006, Hjort 2010). A hierarchical approach extends our model

by placing individual-specific Dirichlet processes under a common prior (another Dirichlet

process), thereby allowing central places to be unique to, or shared amongst, individuals.

In either approach, heterogeneity among individuals can be accommodated and explained

through the introduction of demographic covariates (e.g., sex and age), and the location of

central places could be modeled as a function of environmental covariates to examine site

selection.

Bayesian nonparametric models, like the Dirichlet process we use to examine the location

of central places, have been adapted to analyze time series data, grouped data, data in a tree,

binary data, relational data, and spatial data (Gershman and Blei 2012). This highly flexible

framework has been widely used in other fields (Rodriguez and Dunson 2011), although we

are aware of few examples from ecology. However, potential ecological applications are
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numerous and include abundance estimation (Dorazio et al. 2008, Johnson et al. 2013),

population genetics (Huelsenbeck and Andolfatto 2007), and disease spread (Verity et al.

2014), among other applications where the goal is to infer latent structure based on empirical

data (Morales et al. 2004, Brost and Beier 2012).
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Figure 3.1. Simulation of 1,000 telemetry locations (s (t)) arising from three central places
(µj). The point symbology associates telemetry locations (black and gray numerals; most
are smaller gray numerals to reduce clutter) to their corresponding central places (white,
numbered circles). For example, a telemetry location labeled “1” is associated with the

central place labeled “1.” The spatial support of central places ( eS) exists at the intersection
of the blue and gray polygons (black line). The posterior distribution of µ (t) (red gradient)
in the vicinity of the central places is shown in the bottom panels; brighter red corresponds
to higher posterior probability. Inference concerning the location of central place “3,” which
was associated with 608 telemetry locations, is most certain. Inference concerning central
places “1” and “2,” which were associated with fewer telemetry locations (approximately 200
locations each), is more diffuse. All inference was based on 20,000 MCMC samples after
convergence. Note that 326 simulated telemetry locations are beyond the extent of this
map, occurring up to 880 km away.
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Figure 3.2. Telemetry locations (top panel) of a subadult female harbor seal monitored
from 09 OCT 1995 to 04 JUN 1996 in Ugak Bay (57.42982°N, -152.5715°W) on the southern
coast of Kodiak Island, Alaska, USA. Point symbology reflects whether the individual was
hauled-out (black points) or at-sea (black crosses) at the time a telemetry location was
recorded. Telemetry locations were collected on average every 5.7 h (range: 0.0 − 54.8 h)
using an Argos satellite telemetry device. The animal’s position was measured on 1,004
occasions, with ⇡ 72% of locations coming from the three least accurate Argos location
classes. Approximately 40% of locations were collected while the individual was at a haul-
out site (y (t) = 1). The spatial support of haul-out sites ( eS) exists along the coastline (black
line) at the intersection of the blue (water) and gray (land) polygons. The insets show three
regions where the posterior probability of µ (t) (red gradient) is most concentrated (bottom
panels). Brighter red corresponds to higher posterior probability. All inference was based
on 50,000 MCMC samples after convergence. Note that 190 telemetry locations are beyond
the extent of this map, occurring up to 1,100 km away from Ugak Bay.
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CHAPTER FOUR

Model-based Clustering Reveals Spatio-temporal Patterns in

Central Place Use of a Marine Top Predator3

Summary. Central places like dens, nests, roosts, and rendezvous sites are often associ-

ated with important life history events and may exhibit unique characteristics. Consequently,

information concerning the location of these sites, as well as the temporal patterns in their

use, is essential for the effective management and conservation of many species. Satellite

telemetry data contain valuable information concerning the behavior associated with central

places; however, using satellite telemetry data to study central places is complicated by com-

mon nuances like locational error and animal movement. We coupled a recently developed

modeling framework with Argos satellite telemetry data to examine the spatio-temporal

behavior associated with harbor seal haul-out sites on Kodiak Island, Alaska, USA. Informa-

tion concerning harbor seal haul-out behavior has implications for mitigating human-caused

disturbances, as well as improving population monitoring programs. The novel modeling

framework we used incorporates an observation model that accommodates multiple sources

of uncertainty in telemetry data, and a flexible Bayesian nonparametric model called a

Dirichlet process to uncover latent clustering in the telemetry locations. We also extend

previously developed methods to examine the affect of covariates on haul-out site selection

and to obtain population-level inference concerning haul-out use. Our analysis indicates

that haul-out sites generally occurred in inlets and bays, areas that are isolated from the

3The material in Chapter 4 is similar to a manuscript of the same title by B. M. Brost, M. B. Hooten,
and R. J. Small soon to be submitted to Ecological Applications. Thank you to my coauthors and George
Wittemyer for their helpful feedback on this manuscript.
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open water of the Gulf of Alaska. Accordingly, most individuals selected haul-out sites that

were protected from waves; effects of bathymetry and shoreline complexity on haul-out site

selection were variable amongst individual seals. The affects of time of day, time since low

tide, and day of year on temporal patterns of haul-out use were also highly variable. The

model-based approach we describe is general and offers a practical and rigorous means for

using satellite telemetry data to learn about the location of central places, as well as the

temporal patterns in their use.

4.1 Introduction

Central places like dens, nests, roosts, and rendezvous sites are often associated with

important life history events (e.g., rearing of young) and may exhibit unique characteristics

(e.g., protection from predators or proximity to water). Consequently, information concern-

ing the location of these sites, as well as the temporal patterns in their use, is essential for

the effective management and conservation of many species (e.g., Quinlan and Hughes 1990,

Blakesley et al. 1992, Brigham et al. 1997, Ciarniello et al. 2005, Holloran and Anderson

2005, Baldwin and Bender 2008). Central places can be studied by sighting individuals dur-

ing aerial (Montgomery et al. 2007) or ground-based surveys (Blakesley et al. 1992), or by

using radio-telemetry equipment to locate tagged individuals in the field; however, direct ob-

servation may only provide a snapshot of an animal’s behavior if surveys are infrequent, and

may be impractical when remote locations, rugged terrain, or otherwise difficult conditions

hamper survey efforts. Satellite telemetry data provide regular information over extended

periods of time, and thus offer a more complete account of an animal’s central place use.

Moreover, as repositories of satellite telemetry data on a wide variety of species accumulate,

60



so do opportunities for using this information to learn about the locations of central places,

as well as the temporal patterns in their use.

Satellite telemetry devices record regular sequences of animal locations (Tomkiewicz et al.

2010). Consequently, repeated use of a site yields multiple telemetry locations collected at

that site, and central places are often identified by clusters of locations in mapped telemetry

data (Knopff et al. 2009). When telemetry location errors are small (i.e., the observed

telemetry locations are near the true animal locations), clusters are conspicuous and central

places can be easily identified visually or by using a series of user-specified time and distance

thresholds (Fig. 4.1a; Anderson and Lindzey 2003, Knopff et al. 2009); however, a more

sophisticated methodology is required when errors are large because clusters are poorly

defined, and the number and location of central places are highly uncertain (Fig. 4.1b).

Brost et al. (in press) recently proposed a model-based approach to estimate the location

of central places that rigorously accommodates multiple sources of uncertainty in telemetry

data. Their modeling framework is general and can be applied to different types of teleme-

try data or used to examine various marine and terrestrial animals and their associated

central places. The hierarchical approach incorporates an observation model that allows for

telemetry location error and animal movement, and a flexible Bayesian nonparametric model

called a Dirichlet process to uncover latent clustering in telemetry location data. They fur-

ther incorporated ancillary behavioral data (e.g., accelerometer data, wet/dry status) into

the model to improve location estimation, as well as to quantify temporal patterns in central

place use. In this paper, we extend the framework of Brost et al. (in press) to investigate the

spatio-temporal haul-out behavior of a marine top predator, the harbor seal (Phoca vitulina).

Harbor seals are widely distributed in the temperate and arctic waters of the Northern

Hemisphere (Scheffer and Slipp 1944). Harbor seals regularly leave the water and haul-out
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on beaches, intertidal areas, and floating ice (in glacial fjords) to rest, molt, escape aquatic

predators, give birth, and rear their pups (Ling 1984, da Silva and Terhune 1988, Thompson

1989, Watts 1992). The locations of haul-out sites may change seasonally to track available

food sources (Montgomery et al 2007, Cunningham et al. 2009), although harbor seals

exhibit high levels of site fidelity over months to years and typically return to the same haul-

out sites between at-sea foraging bouts (Härkönen and Heide-Jørgensen 1990; Thompson et

al. 1997; Cunningham et al. 2009).

Knowledge of harbor seal haul-out behavior is necessary to effectively manage and con-

serve this species. For example, human-caused disturbances can flush harbor seals from their

haul-out sites, resulting in increased energy expenditure and potentially decreased fitness

(Suryan and Harvey 1999, Jansen et al. 2010, Cordes et al. 2011, Blundell and Pendleton

2015). In particular, the impact of tourism vessels (i.e., cruise ships) on hauled-out harbor

seals has received much attention recently (Jansen et al. 2010, Young et al. 2014, Blundell

and Pendleton 2015, Mathews et al. 2016), and mitigation efforts require an understanding

of harbor seal haul-out behavior. Furthermore, harbor seal population monitoring, which

relies on counts of haul-out groups for abundance estimation, can benefit from additional

information concerning when and where harbor seals haul out of the water (e.g., to estimate

and maximize detection probability during aerial surveys; Boveng et al. 2003, Small et al.

2003, Ver Hoef and Frost 2003).

Although harbor seal haul-out behavior has been studied via direct observation (e.g.,

Cordes et al. 2011), remote locations and harsh conditions often inhibit extensive field

investigations. In Alaska, for example, current knowledge concerning the location of haul-

out sites is limited to aerial surveys conducted during August and September (Boveng et

al. 2003, Small et al. 2003, Ver Hoef and Frost 2003). Existing satellite telemetry datasets
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provide a practical means for learning about harbor seal haul-out behavior throughout the

full annual cycle, without the expense of conducting additional fieldwork. We examined an

existing Argos satellite telemetry dataset, collected on a population of harbor seals monitored

near Kodiak Island, Alaska, USA, to understand the spatial distribution of haul-out sites

used by individuals in this population, as well as the temporal patterns in haul-out use. We

extend the methods presented by Brost et al. (in press) to examine the affect of covariates on

haul-out site selection and to obtain population-level inference concerning haul-out use. Our

study simultaneously offers insight into harbor seal haul-out behavior, extends a previously

developed modeling framework, and demonstrates how satellite telemetry data are useful for

examining spatio-temporal patterns in central place use by marine and terrestrial animals.

4.2 Methods

4.2.1 Harbor seal telemetry data

Harbor seals were captured near Kodiak Island, Alaska (Fig. 4.2) and equipped with

satellite-linked depth recorders (SDRs; Wildlife Computers, Redmond, WA) during 1993-

1997. The SDRs transmitted to Argos receivers onboard polar orbiting meteorological satel-

lites, a system that uses the Doppler effect (i.e., the shift in frequency observed when the

SDRs and the satellites are moving relative to each other) for geopositioning. The Ar-

gos least-squares positioning algorithm assigns each telemetry location to one of six quality

classes based on the number of transmissions received during a satellite pass. In order of

decreasing accuracy, the location quality classes are 3, 2, 1, 0, A, and B. The location qual-

ity classes have different error patterns and magnitudes, and some exhibit an x-shaped error

distribution that has greatest error variance along the NW-SE and NE-SW axes (Costa et
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al. 2010, Douglas et al. 2012, McClintock et al. 2014, Brost et al. 2015, Buderman et al.

2016). The magnitude of Argos location errors are often >10 km, and in some cases >100

km (Costa et al. 2010, Brost et al. 2015), errors that exceed the typical extent of harbor

seal movements (Frost et al. 2001, Lowry et al. 2001, Cunningham et al. 2009).

The SDRs included a conductivity sensor that determined when the device was wet (low

resistance) versus dry (high resistance), ancillary behavioral data that we used as a proxy for

haul-out use. In other words, instances when the device was dry indicate the individual was

out of the water at a haul-out site when the location was recorded, whereas locations collected

while the device was wet indicate the individual was at-sea. The devices were programmed

with a delay (10 consecutive readings at 45 sec. intervals) to prevent spurious wet/dry state

transitions associated with splashing on a haul-out or short dry periods experienced by the

sensor while a seal was surfaced in the water. Therefore, the wet/dry data reliably indicate

a harbor seal’s haul-out status.

4.2.2 Statistical notation

Let sic (t) ⌘ (si,c,x (t) , si,c,y (t))
0 represent the pair of coordinates for an observed teleme-

try location collected at time t 2 T , where i indexes an individual harbor seal (i =

1, . . . , N) and c indexes Argos location quality class (c 2 {3, 2, 1, 0, A,B}). Also let µi (t) ⌘

(µi,x (t) , µi,y (t))
0 be the coordinates for the corresponding latent haul-out site. We denote

the ancillary behavioral data as yi (t), where yi (t) = 0 indicates the telemetry device on

individual i was wet at time t and thus the harbor seal was at-sea, and yi (t) = 1 indicates

the device was dry and the individual was at a haul-out site. We also denote the spatial

domain within which haul-out sites can exist as S (e.g., the shoreline).
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4.2.3 Haul-out site location estimation

Haul-out site location estimation was performed using a hierarchical model that consists

of two primary components, an observation model and a process model (Brost et al., in

press). The observation model accounts for telemetry location error and animal movement,

whereas the process model is used to estimate the true but unobserved locations of the

haul-out sites.

The observation model consists of two parts, one part for telemetry locations collected

while the harbor seal is hauled-out of the water and another part for locations collected while

it is at-sea. First, we consider a model for telemetry locations collected while the individual

is at a haul-out site (i.e., yi (t) = 1) and the true but unknown harbor seal location is the

same as µi (t), the location of the latent haul-out site. In this case, the observation model

accounts for the various error patterns evident in Argos telemetry data (Brost et al., in

press):

sic (t) ⇠

8
>>><
>>>:

N (µi (t) ,Σic), with prob. pi (t)

N (µi (t) , eΣic), with prob. 1− pi (t)

. (4.1)

In Eq. 4.1, an observed telemetry location arises from a mixture of two multivariate normal

distributions centered at µi (t) with variance-covariance matrices Σic or eΣic that describe

Argos telemetry measurement error. The parameter pi (t) defines the probability associated

with the mixture components. The matrix Σic is parameterized as

Σic = σ2
ic

2
64

1 ρic
p
aic

ρic
p
aic aic

3
75 (4.2)

to allow for various error structures (Brost et al. 2015, Buderman et al. 2016), where σ2
ic

quantifies measurement error in the longitude direction, aic modifies σ2
ic to describe error in
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the latitude direction, and ρic describes the correlation between errors in the two directions.

The matrix eΣic is identical to Σic except for the off-diagonal elements which are −ρic
p
aic.

When ρic = 0, the model specification in Eq. 4.2 allows for circular (aic = 1) and elliptical

(aic 6= 1) error patterns. Alternatively, the error covariance model allows for the x-shaped

error pattern evident in Argos telemetry data when ρic 6= 0, where the mixture component

with variance-covariance matrix Σic describes error along the SW-NE axis and the mixture

component with variance-covariance matrix eΣic describes error along the NW-SE axis. The

parameters related to telemetry location error are also indexed by c, allowing the character-

istics of locational error to vary for each Argos location quality class.

For telemetry locations collected while the individual is at-sea (i.e., yi (t) = 0), the true

harbor seal location is not the same as the location of the haul-out site (as in Eq. 4.1), but,

rather, is in the vicinity of µi (t). In this case, the observation model is similar to Eq. 4.1,

except that the variance-covariance structure includes an extra component, τ 2i , to account

for additional uncertainty due to animal movement around the haul-out site (Brost et al., in

press), resulting in

sic (t) ⇠

8
>>><
>>>:

N (µi (t) ,Σic + τ 2i I), with prob. pi (t)

N (µi (t) , eΣic + τ 2i I), with prob. 1− pi (t)

. (4.3)

As in Eq. 4.1, Σic and eΣic account for various error patterns in the telemetry measurement

process, whereas µi (t) and τ 2i define the center and spread of the “home range” for individual

i. The mixture probabilities in Eqs. 4.1 and 4.3 are defined as pi (t) = 0.5 because the orbital

plane of the Argos satellites changes continuously, and telemetry locations are equally likely

to arise from either mixture component (i.e., locations have a 50% chance of arising from

either axis of the x-shaped Argos error distribution; Brost et al. 2015).
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The process model, which is used to estimate the true but unobserved locations of the

haul-out sites (µi (t)), consists of a clustering model known as a Dirichlet process that

associates telemetry locations with haul-out sites probabilistically. Following Brost et al. (in

press), we represent the Dirichlet process as a mixture of infinitely many components

µi (t) ⇠
1X

j=1

πijδµij
, (4.4)

where µij are locations within the spatial domain S, δµij
is a point mass (or “atom”) at µij,

πij is the probability associated with the mixture component, and
P1

j=1 πj = 1. In other

words, each mixture component in Eq. 4.4 represents the location of a possible haul-out site

and πij is the probability of the location being used by a harbor seal.

In theory, there are infinitely many possible haul-out sites for a harbor seal to select

from (e.g., all locations along the shoreline) and thus infinitely many mixture components

in Eq. 4.4; however, only a handful of haul-out sites are likely used by a harbor seal (see

next paragraph). The distinction between possible haul-out sites and those actually used by

a harbor seal is reflected in the interpretations of µij and µi (t). The µij, for j = 1, . . . ,1,

are unique locations and represent potential sites where a seal could haul-out. Conversely,

the µi (t) have a functional interpretation because they associate a µij to each telemetry

location sic (t); they are locations that are actually used as a haul-out site. The number of

mixture components necessary to generate the observed data can, at most, be the number

of telemetry locations collected for an individual (e.g., a harbor seal never uses the same

haul-out site twice); however, the number of requisite components is much fewer in practice.

The mixture probabilities are formulated in a manner such that πij decreases stochasti-

cally with increasing index j, favoring fewer clusters (i.e., haul-out sites) with many locations

per cluster (Sethuraman 1994, Ishwaran and James 2001). The number of haul-outs used
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by an individual seal is unknown; therefore, the rate of decrease in the πij, and thus the

number of clusters, is data-driven, allowing the complexity of the mixture to be tailored

to each individual seal. Realizations from Eq. 4.4 are generally not distinct because the

Dirichlet process is a discrete distribution (i.e., each mixture component is a discrete entity),

and because probability mass is concentrated over the first several components. Therefore,

it follows that replication in the values of µi (t), for t 2 T , partition telemetry locations into

clusters. Replication also provides a measure of intensity of use, such that sites associated

with more telemetry locations have higher intensity of use.

We used a custom Markov chain Monte Carlo (MCMC) algorithm written in R (R Core

Team 2015) to estimate the observation and process model parameters in a unified frame-

work. Markov chain Monte Carlo is an iterative approach to obtaining random draws, or

samples, from the posterior distribution of the unknown parameters (e.g., σ2
ic, τi, µi (t);

Gelfand and Smith 1990). The full model statement, including prior distributions for all

unknown parameters, is shown in Appendix C1. Inference was based on 100,000 MCMC

samples after convergence.

4.2.4 Haul-out site selection

We examined the affect of covariates on haul-out site selection in light of uncertainty in the

estimated location of haul-out sites, instead of, say, modeling point estimates for the locations

of the haul-out sites themselves. To simplify notation, we let Mi be a matrix containing

estimated haul-out site locations corresponding to the telemetry locations for individual

i (i.e., Mi ⌘ {µi (t) , 8t}). Assuming for now only a single value for Mi (e.g., obtained

from one sample of the posterior distribution of the haul-out site locations, [µi (t) | ·]), the
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posterior distribution is

⇥
βi,µβ | g (Mi)

⇤
/
Y

i

[g (Mi) | βi]
⇥
βi | µβ

⇤ ⇥
µβ

⇤
, (4.5)

where the notation [·] represents a probability distribution and Mi may be transformed

with some deterministic function g (·). The expression in Eq. 4.5 provides a way to obtain

inference for βi, a vector of individual-level parameters quantifying the affect of covariates

on haul-out site selection, and µβ, a vector of population-level parameters that describe the

mean effect across all harbor seals; however, Eq. 4.5 does not incorporate uncertainty in

the estimates of µi (t). To account for uncertainty when making inference on the individual-

and population-level parameters, we seek the posterior distribution of βi and µβ given the

observed telemetry locations recorded for individual i, which we denote as the matrix Si (i.e.,

Si ⌘ {sic (t) , 8t}). Accordingly, the desired posterior distribution is obtained by integrating

over [g (Mi) | Si]:

⇥
βi,µβ | Si

⇤
=

ˆ ⇥
βi,µβ | g (Mi) ,Si

⇤
[g (Mi) | Si] dg (Mi) . (4.6)

Assuming the posterior distribution of Mi provides complete knowledge of Si, we have

⇥
βi,µβ | Si

⇤
⇡
ˆ ⇥

βi,µβ | g (Mi)
⇤
[g (Mi) | Si] dg (Mi) (4.7)

/
ˆ Y

i

[g (Mi) | βi]
⇥
βi | µβ

⇤ ⇥
µβ

⇤
[g (Mi) | Si] dg (Mi) . (4.8)

We perform the integration in Eq. 4.8 using a multiple imputation procedure described

by Hooten et al. (2010) and Hanks et al. (2015), where [g (Mi) | Si] is the imputation

distribution (see below for procedural details).

In practice, we constructed a model for wi = g (Mi), where the function g aggregates Mi

to obtain the count of telemetry locations for individual i allocated to raster cells in S, the
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spatial support of haul-out sites. In particular, we used a hierarchical mixture model that

accommodates zero inflation while also allowing variability among individual harbor seals:

wij ⇠

8
>>><
>>>:

Pois (λij) , zij = 1

0, zij = 0

, (4.9)

where wij is the number of telemetry locations for individual i allocated to raster cell j, λij

is the intensity of the Poisson distribution, and zij is a latent indicator variable that specifies

the mixture component from which wij arises. The mixture component consisting of a point

mass at 0 (i.e., when zij = 0) accommodates the large number of instances where wij = 0

(i.e., more 0 values than expected under the Poisson distribution alone; Welsh et al. 1996,

Martin et al. 2005). We model the mean as a function of environmental characteristics using

log (λij) = x0
ijβi, (4.10)

where xij is a vector of covariates associated with raster cell j. The hierarchical specification

is completed with individual- and population-level models:

βi ⇠ N
(
µβ,Σβ

)
(4.11)

µβ ⇠ N
⇣
0, σ2

µβ
I
⌘
, (4.12)

where Σβ and σ2
µβ
I are the respective covariance matrices. The multiple imputation pro-

cedure described in Eqs. 4.6–4.8 is implemented by sampling g
⇣
M

(k)
i

⌘
⇠ [g (Mi) | Si] on

the kth iteration of an MCMC algorithm used to estimate the parameters in Eqs. 4.9–4.12,

which are subsequently updated conditional on the value for g
⇣
M

(k)
i

⌘
(Hooten et al. 2010

and Hanks et al. 2015). See Appendix C2 for the full model statement, prior specifications,

and details regarding model implementation.
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We investigated the affect of three covariates on the locations of haul-out sites, namely

water depth, biological wave exposure, and shoreline complexity. Bathymetric data in the

form of depth soundings from National Oceanic and Atmospheric Administration Electronic

Navigation Charts were used to examine the relationship between estimated haul-out site

locations and distance to water depth. We converted the depth sounding data (points) to a

100-m resolution raster and calculated the distance from each cell in S to the closest raster

cell with water depth 20 m or greater (Montgomery et al. 2007). All distances were cal-

culated as least-cost distance such that measurements were made exclusively through the

water, thereby reflecting distances ‘as the seal swims’ (distance measurements did not cross

land; Dijkstra 1959). Biological wave exposure, obtained from ShoreZone aerial surveys,

was used to determine whether harbor seals selected certain exposures more than others.

Biological wave exposure is assigned based on the presence and abundance of coastal biota

that have known wave energy tolerances (Harper and Morris 2014). We combined the 6 bio-

logical wave exposure categories into 2 broader classes: protected (very protected, protected,

and moderately protected categories) and exposed (very exposed, exposed, and moderately

exposed categories). Biological wave exposure is considered a better index of exposure than

physical wave exposure, which is based on fetch and coastal geomorphology (Harper and

Morris 2014). We calculated shoreline complexity as the number of raster cells in S within

5 km of a focal cell. Thus, raster cells surrounded by neighborhoods consisting of more

circuitous sections of shoreline have higher values for shoreline complexity. All inference was

based on 100,000 MCMC iterations after convergence.
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4.2.5 Temporal patterns in haul-out use

We obtained individual- and population-level inference concerning temporal patterns in

haul-out use with a hierarchical model that accommodates the simultaneous analysis of

multiple individuals (Gelman and Hill 2007). Specifically, we modeled the behavioral data

using binary regression as

yi (t) ⇠ Bernoulli (ψi (t)) , (4.13)

where yi (t) is the haul-out status of individual i at time t and ψi (t) is the corresponding

probability of being hauled-out. We used the probit link to relate ψi (t) to environmental

conditions:

ψi (t) = Φ
(
ui (t)

0
γi

)
, (4.14)

where ui (t) are covariates measured at time t, γi are the corresponding individual-level

coefficients, and Φ is the standard normal cumulative distribution function. In contrast to the

more common logit link used in logistic regression, the probit link streamlines computation

when fitting the model using MCMC (Albert and Chib 1993, Hooten et al. 2003, Johnson

et al. 2013, Dorazio and Rodriguez 2012). The individual-level parameters were further

modeled using

γi ⇠ N
(
µγ,Σγ

)
(4.15)

µγ ⇠ N
⇣
0, σ2

µγ
I
⌘
, (4.16)

where µγ is a population-level parameter that represents the average affect across all indi-

viduals, and Σγ and σ2
µγ

are the respective variance-covariance matrices. The full model

statement and details pertaining to model implementation are provided in Appendix C3.
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Previous studies indicated that temporal patterns in haul-out use are influenced by be-

haviors (e.g., breeding and foraging), physiological functions (e.g., thermoregulation and

molting), and environmental conditions (e.g., tidal state) that operate at varying time scales

(Boveng et al. 2003, London et al. 2012). Consequently, we examined the affect of the

following covariates on harbor seal haul-out use: the number of hours since solar noon (i.e.,

13:00 hours near Kodiak Island), the number hours since low tide, the number of days since

August 15, and the quadratic effect associated with days since August 15. August 15 is ap-

proximately the beginning of the annual molting period in Alaska when harbor seals are most

likely to be hauled out (Calambokidis et al. 1987, Boveng et al. 2003). Tide information was

obtained from the National Oceanic and Atmospheric Administration water level monitoring

stations nearest the locations of monitored seals (Kodiak Island, Station ID: 9457292 and

SW Terror Bay, Station ID: 9457493). Inference was based on 100,000 MCMC samples from

the posterior distributions after convergence.

4.3 Results

4.3.1 Harbor seal telemetry data

Twelve harbor seals were telemetered near Kodiak Island between October 1994 and June

1996, including 6 males and 6 females (Appendices C.4 and C.5). The age composition of

harbor seals at the time of capture included 7 adults, 3 subadults, and 2 pups. The average

duration seals were monitored was 183 days (range: 76, 261 days), the average number of

telemetry locations per individual was 760 (range: 301, 1460 locations), and the average

time elapsed between telemetry locations was 5.8 hours (range: 0, 499 hours). On average,
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37% of locations were recorded while an individual was hauled-out of the water (range: 17,

61%).

Overall, 82% of the telemetry locations belonged to the Argos location quality classes

that typically have the largest locational errors (classes 0, A, and B). Poor quality location

classes were more likely to be associated with telemetry locations recorded while a harbor

seal was at-sea and higher quality location classes were more often associated with telemetry

locations recorded while a harbor seal was hauled-out. For example, 65% of at-sea locations

belonged to Argos location classes A and B, whereas only 35% of locations recorded while

a harbor seal was hauled-out of the water belonged to the same classes. Conversely, 31%

of telemetry locations recorded while a harbor seal was hauled-out belonged to the highest

quality location classes (3, 2, and 1); only 12% of at-sea telemetry locations belonged to

these higher quality classes.

4.3.2 Haul-out site location estimation

Inference concerning the intensity of haul-out site use (i.e., µi (t)) for all 12 harbor seals

is summarized in Figure 4.2. High posterior probability of haul-out use typically occurred

in inlets and bays that were isolated from the open ocean (Figs. 4.2b–4.2d). One exception,

however, was a subadult female that had high posterior probability of hauling-out on an islet

at the southeast corner of Kodiak Island, a location that is adjacent to the Gulf of Alaska

(Fig. 4.2e). Inference concerning haul-out use for each individual harbor seal is presented

in Appendix C4, and estimates for parameters in the observation model (i.e., parameters

related to Argos telemetry error and animal movement) are presented in Appendix C5.
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4.3.3 Haul-out site selection

Individual-level coefficients indicate a highly heterogeneous response to distance to 20-

m bathymetric depth and shoreline complexity, and responses were not consistent among

individuals within sex or age classes (Fig. 4.3). Inference concerning µβ, the population-level

parameters, reflect this heterogeneity and suggest the individual harbor seals we examined

lacked a common behavior relative to these two covariates (i.e., 95% credible intervals overlap

0; Fig. 4.3).

We were unable to evaluate the affect of wave exposure on haul-out site selection for most

individuals due to complete separation in the counts wij and the two exposure categories

(Albert and Anderson 1984, Hefley and Hooten 2015). Complete separation occurred when

all instances of wij > 0 (or wij = 0) for an individual were allocated to one of the exposure

categories (protected or exposed), resulting in Markov chains that exhibited poor mixing and

failed convergence. Instances of wij > 0 were allocated exclusively to the “protected” category

for 6 individuals, whereas all instances of wij > 0 were allocated to the “exposed” category for

1 individual (shown in Fig. 4.2e). A model of the subset of 5 individuals for which complete

separation did not occur indicated that haul-out site selection was negatively affected by

“exposed” shorelines for 3 individuals; the remaining 2 individuals exhibited no effect for

this covariate (Appendix C6). Furthermore, the average affect of “exposed” shoreline was

negative for these 5 harbor seals (95% CI for µβ: -4.55,-0.20).

4.3.4 Temporal patterns in haul-out use

The affect of environmental conditions (time of day, time since low tide, and day of year)

on temporal patterns of haul-out use were highly heterogeneous among the 12 harbor seals
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we examined (Fig. 4.4). A consistent pattern among individuals within sex or age classes

was also not evident (Fig. 4.4). Inference for parameters related to day of year was highly

uncertain and 95% credible intervals for most individuals included 0. Inference concerning

the population-level parameters reflect the individual-level heterogeneity and show that a

common effect across individuals was generally lacking (i.e., 95% credible intervals for µγ

overlap 0; Fig. 4.4), although there appears to be a weak negative effect for the covariate

hours since solar noon (95% CI: -0.37, 0.04).

4.4 Discussion

We combined a previously collected Argos satellite telemetry dataset with a fully model-

based framework to examine the spatio-temporal behavior associated with harbor seal haul-

out sites on Kodiak Island, Alaska. We adopted a recently developed approach to estimate

the location of haul-out sites that rigorously accommodates large telemetry location error and

animal movement (Brost et al., in press). We also extended existing methods for examining

temporal patterns in central place use to accommodate the simultaneous analysis of multiple

individuals and obtain population-level inference (i.e., µγ). Our methods are general and

can be applied to various types of telemetry data collected on terrestrial or marine species.

We augmented the modeling framework to quantify the affect of environmental charac-

teristics on the location of central places. Our approach uses a multiple imputation pro-

cedure that allows the individual-level coefficients (i.e., βi) to reflect uncertainty in the

estimated location of the central places (Hooten et al. 2010, Hanks et al. 2011, Hanks et

al. 2015). Inference concerning individual-level parameters is statistically upscaled to obtain

population-level inference (µβ) describing the average effect across individuals.
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Our analysis couples positional data with behavioral (wet/dry) data to help inform a

model of haul-out site location estimation. We could have also formulated a simpler model

by exclusively using telemetry locations collected while harbor seals were hauled-out of the

water (i.e., yi (t) = 1) and uncertainty due to animal movement does not degrade inference;

however, nearly two-thirds of the locations in our data set were recorded while individuals

were at sea (i.e., yi (t) = 0). These “at-sea” locations contain valuable information concerning

the true location of the haul-out sites, making it important to incorporate both behavioral

states using a two-part observation model that explicitly accounts for animal movement.

Other behavioral information, such as accelerometer data, could also be used to partition

when individuals were using coastal versus at-sea resources, or the model can be adapted to

situations when no such ancillary data are available (e.g., Brost et al., in press).

4.4.1 Harbor seal haul-out behavior

Almost all existing information concerning the location of harbor seal haul-out sites in

Alaska has been acquired from aerial surveys of haul-out groups that are typically conducted

during the molting season in August and September (Boveng et al. 2003, Small et al. 2003,

Ver Hoef and Frost 2003). Satellite telemetry data, collected throughout the full annual

cycle, provide an opportunity to learn about the location of haul-out sites used at other

times of year. Our results suggest that harbor seals favor haul-out sites in isolated bays

and inlets (Fig. 4.2); however, one harbor seal in our study used a haul-out site on an islet

adjacent to the open water of the Gulf of Alaska (Fig. 4.2e). Locations determined to have

high posterior probability of haul-out use in our study match the locations of haul-out sites

observed during aerial surveys conducted between 1993 and 2001 (see haul-out sites 7–10
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in Fig. 4 of Small et al. 2003 and Fig. 1 of Boveng et al. 2003), serving as an informal

evaluation of the methodology we used.

We are aware of only one previous study that examined the relationship between envi-

ronmental variables and the selection of haul-out sites by harbor seals. Montgomery et al.

(2007) used counts of harbor seals obtained from aerial surveys to model terrestrial habitat

use in Cook Inlet, a 20,000 km2 tidal estuary that opens into the Gulf of Alaska < 100 km

north of Kodiak Island. They found that abundance of harbor seals was negatively related

to distance to Cook Inlet communities, bathymetric depths of 20 m, and anadromous fish

streams, and that harbor seals tended to use haul-out sites with a rock substrate. Mont-

gomery et al. (2007) also examined wave exposure but did not find evidence supporting an

effect for this covariate. Our results do not indicate an effect of proximity to a bathymetric

depth of 20 m and show a highly heterogeneous response to shoreline complexity (Fig. 4.3).

Half of the harbor seals in our analysis exhibited complete separation such that estimated

locations of haul-out sites only occurred on “protected” shoreline. This relationship could be

coincidental or reflect selection for “protected” shorelines. An analysis of the subset of harbor

seals for which complete separation did not occur revealed that 3 of 5 individuals selected

against “exposed” shorelines (Appendix C6). The areas in which seals were monitored for this

study are isolated from the human communities on Kodiak Island, do not contain substantial

variation in shoreline substrate (the majority of shoreline was sedimentary or of mixed types

as determined by ShoreZone aerial surveys), and data concerning seasonal variation in prey

availability were lacking. Therefore, we did not examine the affect of communities, shoreline

substrate, or proximity to fish streams on haul-out use.

Several studies have used counts of harbor seal haul-out groups to investigate patterns in

haul-out use at multiple temporal scales. At daily time scales, the highest proportion of seals
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onshore are typically observed at times near low tides when favorable haul-outs are exposed

(e.g., sites isolated from terrestrial predators; Schneider and Payne 1983, Pauli and Terhune

1987) and during midday when the air temperature is most conducive to thermoregulation

(Stewart 1984, Calambokidis et al. 1987, Pauli and Terhune 1987; see London et al. 2012

for an exception to these patterns). At annual time scales, temporal patterns in haul-out use

are influenced by breeding and molting cycles that can be sex- and age-specific (e.g., adult

females nurse pups onshore, pups do not molt, etc.; Everitt and Braham 1980, Brown and

Mate 1983, Calambokidis et al. 1987, Huber et al. 2001, Jemison and Kelly 2001, Boveng

et al. 2003, Daniel et al. 2003), as well as the distribution and availability of prey. Our

results do not show a consistent affect of environmental conditions on haul-out behavior

and thus do not corroborate the conclusions of these earlier studies (Fig. 4.4); however,

haul-out behavior is known to vary regionally because seals likely adapt their behavior to

local conditions (Simpkins et al. 2003). Patterns related to sex and age class were also not

evident in our study, although our analysis of 12 individuals was limited in terms of revealing

demographic effects.

4.4.2 Conclusion

Satellite telemetry data provide an important source of animal distribution information

and are commonly used to quantify resource selection (Johnson et al. 2008b, Johnson et

al. 2013), examine movements (Jonsen et al. 2003, Johnson et al. 2008a, McClintock et al.

2012), and delineate home ranges (Kie et al. 2010). These data also contain information

concerning another key aspect of an animal’s habitat use, namely the behavior associated

with locations that are used repeatedly through time, such as dens, nests, roosts, and ren-

dezvous sites (Anderson and Lindzey 2003, Knopff et al. 2009, Brost et al., in press). As
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demonstrated in this paper, examining the spatio-temporal behavior associated with these

central places by coupling satellite telemetry data with a model-based approach that rigor-

ously accommodates multiple sources of uncertainty is possible.
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a.) b.)

Figure 4.1. Simulation demonstrating the signal of central place behavior in telemetry
location data (gray closed circles). (a) When telemetry location error is small, clusters of
locations (large black open circles) indicate the location of central places. (b) When telemetry
location error is large, the number and location of central places is much less certain. The
locations shown in (b) are the same as those shown in (a) but with additional error.
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Figure 4.2. Posterior distribution of µi (t) (red gradient) for 12 harbor seals telemetered
near Kodiak Island, Alaska (a); brighter red corresponds to higher posterior probability. Gray
segments of shoreline either have very low or no posterior probability of haul-out use. The
inset in the top right shows the location of Kodiak Island and inset (a) (red box) within the
state of Alaska, USA (light gray). Boxes in (a) reflect the location of insets (b)–(e) where
high posterior probability of µi (t) occurs. The posterior distribution for each individual
harbor seal is presented in Appendix C4.
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Posterior distribution
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Figure 4.3. Individual- and population-level inference concerning parameters examined in
the haul-out site selection model. The top row (blue box) represents inference concerning the
population-level parameter (µβ) that represents an average affect across the 12 harbor seals
analyzed. The remaining rows show individual-level parameters (βi), and individual seals
are labeled according their sex and age class. The points indicate the posterior mean, the
thick lines represent the 50% credible interval, and the thin lines represent the 95% credible
interval.
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Figure 4.4. Individual- and population-level inference concerning parameters examined in
the temporal haul-out use model. The top row (blue box) represents inference concerning the
population-level parameter (µγ) that represents an average affect across the 12 harbor seals
analyzed. The remaining rows show individual-level parameters (γi), and individual seals
are labeled according their sex and age class. The points indicate the posterior mean, the
thick lines represent the 50% credible interval, and the thin lines represent the 95% credible
interval.
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CHAPTER FIVE

Conclusion

The research presented in this dissertation pairs existing Argos satellite telemetry data

with contemporary spatio-temporal modeling to quantify harbor seal resource selection and

space use in the coastal waters of southern Alaska. Information concerning harbor seal space

use and habitat requirements is necessary for assessing the impact of human activities, iden-

tifying environmentally sensitive areas, understanding factors that affect population trends

(e.g., condition and survival), improving population monitoring programs, and developing

effective management strategies for maintaining populations in conjunction with subsistence

harvest and commercial fisheries.

Recent methodological advancements address difficulties in the analysis of telemetry data

such as temporally autocorrelated observations; however, multiple additional factors com-

plicate the analysis of the harbor seal telemetry data. For example, difficulties introduced

by large telemetry location error, complicated error structures, and barriers to animal move-

ment can weaken inference. In addition to developing models that explicitly address these

difficulties, obtaining statewide inference concerning harbor seal space use was a central goal

of my research. Indeed, the rich harbor seal telemetry data sets collected by the Alaska

Department of Fish and Game offer a unique opportunity to examine the spatial ecology

of harbor seals from Bristol Bay to the panhandle of southeastern Alaska; however, the dif-

ficulties mentioned above make comprehensive analyses of the harbor seal telemetry data

particularly challenging, and my work focused on computationally feasible applications to

regional groups of harbor seals (e.g., harbors seal monitored near Kodiak Island). Conse-
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quently, the primary contributions from this dissertation are novel methods for addressing

nuances in telemetry data and obtaining reliable inference concerning harbor seal spatial

ecology.

In this concluding chapter, I discuss some of the themes common to the work performed

in Chapters 2–4. I then discuss some of the challenges encountered while performing this

work, and potential avenues going forward to obtain rigorous, statewide inference concerning

harbor seal spatial ecology.

5.1 Overarching Themes

Each core chapter of this dissertation features a hierarchical model designed to account

for various nuances related to animal telemetry data and the behavior of harbor seals. Hier-

archical models are commonplace in statistics (Gelman and Hill 2007, Gelman et al. 2014)

and are becoming increasingly prevalent in the field of ecology (Royle and Dorazio 2008,

Zuur et al. 2009, Hobbs and Hooten 2015, Kery and Royle 2016). For example, hierarchical

models are often used to specify overdispersion, accommodate dependence in repeated mea-

surements taken on the same individual or at the same location, and accurately account for

uncertainty in prediction and estimation (Gelman and Hill 2007). Some of the most common

models in ecology are hierarchical models that formally deal with imperfect observations and

provide inference concerning some unobservable state of interest, such as true species occur-

rence or abundance (e.g., occupancy and N -mixture models; MacKenzie et al. 2002, Tyre

et al. 2003, Royle 2004).

The hierarchical models developed in this dissertation also provide inference on a latent

state of interest, namely the true location of individual harbor seals, while accounting for

imperfect observations. In many cases, observed Argos satellite telemetry locations are more
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than 10 km or even 100 km from the corresponding true harbor seal locations (Costa et

al. 2010, Douglas et al. 2012, Brost et al. 2015). When ignored, telemetry measurement

error can interact with environmental heterogeneity to bias inferences on species-habitat

relationships and disguise true patterns in animal space use (Visscher 2006, Johnson and

Gillingham 2008, Hefley et al. 2014, Brost et al. 2015). The hierarchical point process

model and Dirichlet process mixture models presented in Chapters 2–4 properly account for

uncertainty and provide reliable inference concerning the spatial ecology of harbor seals, even

though the magnitude of Argos telemetry location error often exceeds the extent of typical

harbor seal movements (Lowry et al. 2001).

Although discrete- and continuous-time movement models are often formulated as hierar-

chical models (e.g., McClintock et al. 2012, McClintock et al. 2013, Buderman et al. 2016),

to my knowledge Chapter 2 presents the first point process model applied to animal teleme-

try data that accounts for non-Gaussian telemetry measurement error. Indeed, a similar

hierarchical construction could be used to extend resource selection functions and species

distribution models to account for locational error in a model-based framework (Hefley and

Hooten 2016).

Another overarching theme is that the models developed here explicitly accommodate

constraints to animal movement. In Chapter 2, which focuses on the aquatic space use and

resource selection of harbor seals, estimated true harbor seal locations are constrained to

be exclusively within the marine environment. The focus shifts to the terrestrial space use

and haul-out site selection of harbor seals in Chapters 3 and 4. Accordingly, the estimated

locations of haul-out sites are constrained to occur along the coastline in these chapters.

Appropriate models for true harbor seal locations require versatile routines for parameter

estimation, like the Markov chain Monte Carlo algorithms used throughout this dissertation

87



for incorporating custom, highly irregular probability distributions that accurately reflect

aquatic and terrestrial constraints.

Some discrete-time movement models use a “mask” to constrain estimated true animal

locations to occur within some spatial domain (Sumner et al. 2009, McClintock et al. 2012);

however, these models assume movements between consecutive locations are Euclidean. Re-

alistically, though, animal movements are constrained to occur within the same domain in

which the true locations must exist. The model presented in Chapter 2 is unique in that

movements are calculated “as the seal swims.” In other words, distances between estimated

true harbor seal locations are non-Euclidean and measured exclusively through the marine

environment. The models presented in this dissertation also use constraints to movement,

and the subsequent discrepancy between the support of the true harbor seal locations and

the observed telemetry locations, to simultaneously estimate and account for telemetry lo-

cation error. Spatial constraints can similarly be used to account for locational uncertainty

in species distribution models (Hefley et al., in review).

5.2 Future Directions

Like any other scientific endeavor, there is much research on harbor seal spatial ecology

yet to be done. Comprehensive analyses of the existing Argos satellite telemetry data sets

to obtain inference concerning the aquatic space use of harbor seals across the entire state of

Alaska is a high priority. Rigorous inference concerning aquatic space use requires techniques

that deal with the same difficulties addressed throughout this dissertation, namely large

telemetry locational error, complicated error structures, temporally autocorrelated observa-

tions, and constraints to harbor seal movement. Indeed, given that maps of 2-dimensional
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space use are by-products of the resource selection modeling framework presented in Chapter

2, a similar model could be used to accomplish this objective.

A key asset of the current resource selection modeling framework is also its primary

downfall. Modeling the animal movement process subject to movement constraints reflects

an important aspect of harbor seal biology, but calculating swim distances is computationally

expensive. Simplifying the existing model such that telemetry locations are treated as in-

dependent observations (i.e., by not modeling the autocorrelated animal movement process)

would permit a large-scale, statewide analysis of the harbor seal telemetry data; however,

modeling the animal movement process allows high quality telemetry locations (small loca-

tional error) to inform estimates corresponding to the poor quality telemetry locations (large

locational error). Considering poor quality observed locations comprise > 75% of the harbor

seal telemetry data, ignoring the movement process would likely yield spurious inferences.

Explicitly modeling the movement process also helps meet critical statistical assumptions.

Thus, appropriately modeling movement is vital for characterizing harbor seal space use.

Coupling the current resource selection modeling framework with more advanced com-

puting techniques, such as swim distance calculations that use so-called graphics processing

units and cloud computing (e.g., Amazon Web Services), could facilitate a more compre-

hensive analysis of the harbor seal telemetry data sets; however, model fitting would ideally

require no more than a standard personal computer. Perhaps the most promising options

going forward, then, will rely on methods for sidestepping the computationally demanding

swim distance calculations. For example, one approach might be to interpolate true har-

bor seal locations at a high temporal frequency in the model fitting and estimation process.

Given the temporal resolution of the interpolated locations, assuming straight-line, Euclidean

movements in the augmented data set may roughly conform to the spatial support of the

89



marine environment and approximate the more complex swim distances. Such an approach

would trade one computationally demanding procedure (i.e., calculating swim distances) for

another (i.e., interpolating many locations), although fast computing languages like C++

may make this a practical option. Another option could be to “warp” the non-Euclidean

support of real-life harbor seal movements to create an “artificial” 2- or 3-dimensional space

in which Euclidean distances approximate the original swim distances. This approach would

require a one-time startup cost of calculating swim distances between all pairs of points

in the original non-Euclidean domain, followed by a transformation (e.g., using non-metric

multidimensional scaling) to create the new Euclidean space (Borg and Groenen 2005, Manly

2005). Clever indexing could facilitate translation between the two domains, and thus a uni-

fied model implementation could be conducted that properly account for uncertainty. These

are a few preliminary approaches that require further vetting to assess practicality.

Despite the magnitude of the task, a statewide analysis of harbor seal space use may

soon be within reach. Considerable progress has been made toward obtaining reliable in-

ference concerning the spatial ecology of harbor seals while addressing common problems

encountered in animal telemetry analyses using rigorous, model-based approaches; however,

the research initiated in this dissertation is ongoing and there is potential for improvement.

This dissertation serves as a foundation for new innovative ideas that will make compre-

hensive analyses of the rich telemetry data sets available for harbor seals in Alaska more

accessible.
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Appendix A1. Complete specification of mixture t model used for the simulation study
and harbor seal analysis.

Specification of mixture t model used for the simulation study and harbor seal analysis.
Argos location quality class is indexed by c.

stc ⇠
(
t(µt,Σc, νc), with prob. 0.5

t(µt, eΣc, νc), with prob. 0.5

Σc = σ2
c


1 ρc

p
ac

ρc
p
ac ac

]

eΣc = σ2
c


1 −ρc

p
ac

−ρc
p
ac ac

]

µt ⇠ exp
{
x0(µt)β − η

(
µt,µt−∆t

) 
´

S
exp

{
x0(µ)β − η

(
µ,µt−∆t

) 
dµ

η
(
µt,µt−∆t

)
=

d(µt,µt−∆t
)

∆tφ

σc ⇠ Unif(0, 20000)

ac ⇠ Unif(0, 1)

ρc ⇠ Unif(0, 1)

νc ⇠ Unif(0, 30)

φ ⇠ Unif(0, 750)

β ⇠ N(0, 102 ⇥ I)

112



Appendix A2. Full-conditional distributions and Markov chain Monte Carlo algorithm for
parameter estimation.

The model we propose is well-suited to a Bayesian analysis using Markov chain Monte
Carlo (MCMC) methods. Such an approach estimates the joint posterior distribution by
sampling iteratively from the full-conditional distributions. Below, we use bracket notation
to denote a conditional probability distribution. For example, [x|y] indicates the conditional
probability distribution of x given the parameter y. The notation “ ·” represents the data
and other parameters in the model. The full-conditional distributions for each of the model
parameters are

[σc|·] ⇠
Y

t

⇣
pt ⇥ t(stc|µt,Σc, νc) + (1− pt)⇥ t

⇣
stc|µt,

eΣc, νc

⌘⌘
⇥ Uniform (σc|0, uσ)

[ac|·] ⇠
Y

t

⇣
pt ⇥ t(stc|µt,Σc, νc) + (1− pt)⇥ t

⇣
stc|µt,

eΣc, νc

⌘⌘
⇥ Uniform (ac|0, ua)

[ρc|·] ⇠
Y

t

⇣
pt ⇥ t(stc|µt,Σc, νc) + (1− pt)⇥ t

⇣
stc|µt,

eΣc, νc

⌘⌘
⇥ Uniform (ρc|0, uρ)

[νc|·] ⇠
Y

t

⇣
pt ⇥ t(stc|µt,Σc, νc) + (1− pt)⇥ t

⇣
stc|µt,

eΣc, νc

⌘⌘
⇥ Uniform (νc|0, uν)

[µt|·] ⇠
 
µt

∣∣∣∣∣
exp

{
x0(µt)β − η

(
µt,µt−∆t

) 
´

S
exp

{
x0(µ)β − η

(
µ,µt−∆t

) 
dµ

!
⇥
 
µt+∆t

∣∣∣∣∣
exp

{
x0(µt+∆t

)β − η
(
µt+∆t

,µt

) 
´

S
exp {x0(µ)β − η (µ,µt)} dµ

!

⇥
⇣
pt ⇥ t(stc|µt,Σc, νc) + (1− pt)⇥ t

⇣
stc|µt,

eΣc, νc

⌘⌘
, for t = ∆t, . . . , T −∆t

[φ|·] ⇠
Y

t

 
µt

∣∣∣∣∣
exp

{
x0(µt)β − η

(
µt,µt−∆t

) 
´

S
exp

{
x0(µ)β − η

(
µ,µt−∆t

) 
dµ

!
⇥ Uniform (φ|0, uφ)

[β|·] ⇠
Y

t

 
µt

∣∣∣∣∣
exp

{
x0(µt)β − η

(
µt,µt−∆t

) 
´

S
exp

{
x0(µ)β − η

(
µ,µt−∆t

) 
dµ

!
⇥ N

(
β|µβ , τ

2I
)

The parameters σc, ac, ρc and νc are estimated for each error class c; therefore, the products
in their full-conditionals are only over observations stc within a single error class. The
full-conditionals above are non-conjugate and must be sampled using Metropolis-Hastings
updates. Normalizing constants cancel in the Metropolis-Hastings ratio, and thus may be
omitted in the pseudocode below (e.g., the uniform prior distributions). One can implement
a MCMC algorithm to estimate the parameters of the observation and process models as
follows:

1. Define initial values for all model parameters: µ
(0)
t for t = 0, . . . , T ; σ

(0)
c , a

(0)
c , ρ

(0)
c and

ν
(0)
c for c = 3, 2, 1, 0, A, and B (i.e., c indexes Argos location quality class); φ(0); and
β(0). Set k = 1.
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2. Let t̃ 2 {t1 . . . , tm}, where t1, . . . , tm are the times of locations collected for a single error
class. Update the observation model parameters (Eqs. 1 and 2) for the corresponding
error class by:

(a) Let

Σ(k)
c =

(
σ(k−1)
c

)2
2
4 1 ρ

(k−1)
c

q
a
(k−1)
c

ρ
(k−1)
c

q
a
(k−1)
c a

(k−1)
c

3
5

and

eΣ(k)

c =
(
σ(k−1)
c

)2
2
4 1 −ρ

(k−1)
c

q
a
(k−1)
c

−ρ
(k−1)
c

q
a
(k−1)
c a

(k−1)
c

3
5 ,

= HΣ(k)
c H0

where

H =


1 0
0 −1

]
.

(b) Sample σ
(⇤)
c from a proposal distribution [σ

(⇤)
c |σ(k−1)

c ] (e.g., N
⇣
σ
(⇤)
c |σ(k−1)

c , τ 2σ

⌘
,

where τ 2σ is a tuning parameter). If σ
(⇤)
c 2 [0, uσ], calculate the Metropolis-

Hastings ratio as

rσ =

Q
t̃

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(⇤)
c , ν

(k−1)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(⇤)
c H0, ν

(k−1)
c

⌘⌘

Q
t̃

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(k)
c , ν

(k−1)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(k)
c H0, ν

(k−1)
c

⌘⌘ ,

where

Σ(⇤)
c =

(
σ(⇤)
c

)2
2
4 1 ρ

(k−1)
c

q
a
(k−1)
c

ρ
(k−1)
c

q
a
(k−1)
c a

(k−1)
c

3
5 .

Note that the ratio rσ assumes the proposal distribution is symmetric with respect
to σ

(⇤)
c and σ

(k−1)
c . If rσ > u, where u ⇠ Uniform(0,1), let σ

(k)
c = σ

(⇤)
c and

Σ(k)
c =

(
σ(k)
c

)2
2
4 1 ρ

(k−1)
c

q
a
(k−1)
c

ρ
(k−1)
c

q
a
(k−1)
c a

(k−1)
c

3
5 .

Otherwise, let σ
(k)
c = σ

(k−1)
c if rσ < u, or if σ

(⇤)
c /2 [0, uσ].
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(c) Sample a
(⇤)
c from a proposal distribution [a

(⇤)
c |a(k−1)

c ] (e.g., N
⇣
a
(⇤)
c |a(k−1)

c , τ 2a

⌘
,

where τ 2a is a tuning parameter). If a
(⇤)
c 2 [0, ua], calculate the Metropolis-Hastings

ratio as

ra =

Q
t̃

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(⇤)
c , ν

(k−1)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(⇤)
c H0, ν

(k−1)
c

⌘⌘

Q
t̃

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(k)
c , ν

(k−1)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(k)
c H0, ν

(k−1)
c

⌘⌘ ,

where

Σ(⇤)
c =

(
σ(k)
c

)2
2
4 1 ρ

(k−1)
c

q
a
(⇤)
c

ρ
(k−1)
c

q
a
(⇤)
c a

(⇤)
c

3
5 .

Note that the ratio ra assumes the proposal distribution is symmetric with respect
to a

(⇤)
c and a

(k−1)
c . If ra > u, where u ⇠ Uniform(0,1), let a

(k)
c = a

(⇤)
c and

Σ(k)
c =

(
σ(k)
c

)2
2
4 1 ρ

(k−1)
c

q
a
(k)
c

ρ
(k−1)
c

q
a
(k)
c a

(k)
c

3
5 .

Otherwise, let a
(k)
c = a

(k−1)
c if ra < u, or if a

(⇤)
c /2 [0, ua].

(d) Sample ρ
(⇤)
c from a proposal distribution [ρ

(⇤)
c |ρ(k−1)

c ] (e.g., N
⇣
ρ
(⇤)
c |ρ(k−1)

c , τ 2ρ

⌘
,

where τ 2ρ is a tuning parameter). If ρ
(⇤)
c 2 [0, uρ], calculate the Metropolis-Hastings

ratio as

rρ =

Q
t̃

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(⇤)
c , ν

(k−1)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(⇤)
c H0, ν

(k−1)
c

⌘⌘

Q
t̃

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(k)
c , ν

(k−1)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(k)
c H0, ν

(k−1)
c

⌘⌘ ,

where

Σ(⇤)
c =

(
σ(k)
c

)2
2
4 1 ρ

(⇤)
c

q
a
(k)
c

ρ
(⇤)
c

q
a
(k)
c a

(k)
c

3
5 .

Note that the ratio rρ assumes the proposal distribution is symmetric with respect

to ρ
(⇤)
c and ρ

(k−1)
c . If rρ > u, where u ⇠ Uniform(0,1), let ρ

(k)
c = ρ

(⇤)
c and

Σ(k)
c =

(
σ(k)
c

)2
2
4 1 ρ

(k)
c

q
a
(k)
c

ρ
(k)
c

q
a
(k)
c a

(k)
c

3
5 .

Otherwise, let ρ
(k)
c = ρ

(k−1)
c if rρ < u, or if ρ

(⇤)
c /2 [0, uρ].

(e) Sample ν
(⇤)
c from a proposal distribution [ν

(⇤)
c |ν(k−1)

c ] (e.g., N
⇣
ν
(⇤)
c |ν(k−1)

c , τ 2ν

⌘
,

where τ 2ν is a tuning parameter). If ν
(⇤)
c 2 [0, uν ], calculate the Metropolis-Hastings
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ratio as

rν =

Q
t̃

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(k)
c , ν

(⇤)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(k)
c H0, ν

(⇤)
c

⌘⌘

Q
t̃

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(k)
c , ν

(k−1)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(k)
c H0, ν

(k−1)
c

⌘⌘ .

Note that the ratio rν assumes the proposal distribution is symmetric with respect
to ν

(⇤)
c and ν

(k−1)
c . If rν > u, where u ⇠ Uniform(0,1), let ν

(k)
c = ν

(⇤)
c . Otherwise,

let ν
(k)
c = ν

(k−1)
c if rν < u, or if ν

(⇤)
c /2 [0, uν ].

(f) Repeat step 2 for each error class c.

3. Sample φ(⇤) from a proposal distribution [φ(⇤)|φ(k−1)] (e.g., N
(
φ(⇤)|φ(k−1), τ 2φ

)
, where τ 2φ

is a tuning parameter). If φ(⇤) 2 [0, uφ], calculate the Metropolis-Hastings ratio as

rφ =

QT
t=0

✓
exp
n
x0
⇣
µ

(k−1)
t

⌘
β(k−1)−η

⇣
µ

(k−1)
t ,µ

(k−1)
t−∆t

,φ(⇤)
⌘o

´

S exp
n
x0(µ)β(k−1)−η

⇣
µ,µ

(k−1)
t−∆t

,φ(⇤)
⌘o

dµ

◆

QT
t=0

✓
exp
n
x0
⇣
µ

(k−1)
t

⌘
β(k−1)−η

⇣
µ

(k−1)
t ,µ

(k−1)
t−∆t

,φ(k−1)
⌘o

´

S exp
n
x0(µ)β(k−1)−η

⇣
µ,µ

(k−1)
t−∆t

,φ(k−1)
⌘o

dµ

◆ ,

where

η
⇣
µ

(k−1)
t ,µ

(k−1)
t−∆t

,φ(⇤)
⌘
=

d
⇣
µ

(k−1)
t ,µ

(k−1)
t−∆t

⌘

∆tφ(⇤)

and

η
⇣
µ

(k−1)
t ,µ

(k−1)
t−∆t

,φ(k−1)
⌘
=

d
⇣
µ

(k−1)
t ,µ

(k−1)
t−∆t

⌘

∆tφ(k−1)
.

Note that the ratio rφ assumes the proposal distribution is symmetric with respect to
φ(⇤) and φ(k−1). If rφ > u, where u ⇠ Uniform(0,1), let φ(k) = φ(⇤). Otherwise, let
φ(k) = φ(k−1) if rφ < u, or if φ(⇤) /2 [0, uφ].

4. Sample β(⇤) from a proposal distribution [β(⇤)|β(k−1)] (e.g., N
⇣
β(⇤)|β(k−1), τ 2βI

⌘
, where

τ 2β is a tuning parameter). Calculate the Metropolis-Hastings ratio as

rβ =

QT
t=0

✓
exp
n
x0
⇣
µ

(k−1)
t

⌘
β(⇤)−η

⇣
µ

(k−1)
t ,µ

(k−1)
t−∆t

,φ(k)
⌘o

´

S exp
n
x0(µ)β(⇤)−η

⇣
µ,µ

(k−1)
t−∆t

,φ(k)
⌘o

dµ

◆
⇥ N

⇣
β(⇤)|µβ, τ

2I
⌘

QT
t=0

✓
exp
n
x0
⇣
µ

(k−1)
t

⌘
β(k−1)−η

⇣
µ

(k−1)
t ,µ

(k−1)
t−∆t

,φ(k)
⌘o

´

S exp
n
x0(µ)β(k−1)−η

⇣
µ,µ

(k−1)
t−∆t

,φ(k)
⌘o

dµ

◆
⇥ N

⇣
β(k−1)|µβ, τ

2I
⌘ .

Note that the ratio rβ assumes the proposal distribution is symmetric with respect to

β(⇤) and β(k−1). If rβ > u, where u ⇠ Uniform(0,1), let β(k) = β(⇤). Otherwise, let

β(k) = β(k−1).

5. For each t = ∆t, . . . T − ∆t in sequence, sample µ
(⇤)
t from a proposal distribution

[µ
(⇤)
t |µ(k−1)

t ] (e.g., N
⇣
µ

(⇤)
t |µ(k−1)

t , τ 2µI
⌘
, where τ 2µ is a tuning parameter). If µ

(⇤)
t 2 S,
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calculate the Metropolis-Hastings ratio as

rµ =

h
µ

(⇤)
t |µ(k)

t−∆t

i
⇥
h
µ

(k−1)
t+∆t

|µ(⇤)
t

i
⇥
h
stc|µ(⇤)

t ,Σ(k)
c , ν

(k)
c

i

h
µ

(k−1)
t |µ(k)

t−∆t

i
⇥
h
µ

(k−1)
t+∆t

|µ(k−1)
t

i
⇥
h
stc|µ(k−1)

t ,Σ(k)
c , ν

(k)
c

i

=

✓
exp
n
x0
⇣
µ

(⇤)
t

⌘
β(k)−η

⇣
µ

(⇤)
t ,µ

(k)
t−∆t

,φ(k)
⌘o

´

S exp
n
x0(µ)β(k)−η

⇣
µ,µ

(k)
t−∆t

,φ(k)
⌘o

dµ

◆

✓
exp
n
x0
⇣
µ

(k−1)
t

⌘
β(k)−η

⇣
µ

(k−1)
t ,µ

(k)
t−∆t

,φ(k)
⌘o

´

S exp
n
x0(µ)β(k)−η

⇣
µ,µ

(k)
t−∆t

,φ(k)
⌘o

dµ

◆ ⇥

✓
exp
n
x0
⇣
µ

(k−1)
t+∆t

⌘
β(k)−η

⇣
µ

(k−1)
t+∆t

,µ
(⇤)
t ,φ(k)

⌘o

´

S exp
n
x0(µ)β(k)−η

⇣
µ,µ

(⇤)
t ,φ(k)

⌘o
dµ

◆

✓
exp
n
x0
⇣
µ

(k−1)
t+∆t

⌘
β(k)−η

⇣
µ

(k−1)
t+∆t

,µ
(k−1)
t ,φ(k)

⌘o

´

S exp
n
x0(µ)β(k)−η

⇣
µ,µ

(k−1)
t ,φ(k)

⌘o
dµ

◆ ⇥

⇣
pt ⇥ t

⇣
stc|µ(⇤)

t ,Σ(k)
c , ν

(k)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(⇤)

t ,HΣ(k)
c H0, ν

(k)
c

⌘⌘

⇣
pt ⇥ t

⇣
stc|µ(k−1)

t ,Σ(k)
c , ν

(k)
c

⌘
+ (1− pt)⇥ t

⇣
stc|µ(k−1)

t ,HΣ(k)
c H0, ν

(k)
c

⌘⌘

Note that the ratio rµ assumes the proposal distribution is symmetric with respect to

µ
(⇤)
t and µ

(k−1)
t . If rµ > u, where u ⇠ Uniform(0,1), let µ

(k)
t = µ

(⇤)
t . Otherwise, let

µ
(k)
t = µ

(k−1)
t if rµ < u, or if µ

(⇤)
t /2 S.

6. Save µ
(k)
t for t = 0, . . . , T ; σ

(k)
c , a

(k)
c , ρ

(k)
c , and ν

(k)
c for c = 3, 2, 1, 0, A, and B; φ(k);

and β(k).

7. Set k = k + 1 and return to step 2. The algorithm is iterated by repeating steps 2
through 7 until a sufficiently large sample has been obtained from which to approximate
the posterior distribution.
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Appendix A3. Performance of mixture t model in simulation study.

Table A3.1. Summary of the performance of our mixture t model in the simulation study.
“Mean” and “SD” are the mean and standard deviation across the 250 replicates of the
Bayesian point estimate (posterior mean). The parameter β1 describes selection relative
to a point of attraction (e.g., distance to haul-out site), whereas β2 describes selection for
bathymetry. Both covariates were centered and scaled to unit variance prior to model fitting.

Parameter True value Mean SD
σH 2291 2279 129
σM 2727 2776 203
σL 13252 13580 957
aH 0.70 0.71 0.07
aM 0.50 0.52 0.08
aL 0.75 0.75 0.08
ρH 0.85 0.84 0.03
ρM 0.16 0.25 0.08
ρL 0.30 0.28 0.10
νH 16.74 18.14 3.36
νM 1.60 1.67 0.18
νL 1.00 1.03 0.09
φ 424 397 31
β1 -2.12 -2.14 0.21
β2 -0.82 -0.83 0.14
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Appendix A4. Summary of results for an analysis of harbor seal data near Kodiak Island, Alaska, USA.

Table A4.1. Parameter estimates from an analysis of an adult female harbor seal near Kodiak Island, AK. Reported values are
the posterior mean and 95% equal-tail credible intervals based on 100,000 MCMC samples. Convergence was determined based
on potential scale reduction factors < 1.1 (Gelman and Rubin 1992). The parameter β1 describes selection relative to distance
to haul-out site, whereas β2 describes selection for bathymetry. Both covariates were centered and scaled to unit variance prior
to model fitting. Note that φ, β1, and β2 are process model parameters that describe harbor seal behavior; therefore, they are
global parameters that are not estimated for separate Argos location classes.

Argos

location class σ (m) a ρ ν φ (m/hour) β1 β2

3 2259 (1447, 3242) 0.69 (0.42, 0.97) 0.85 (0.51, 0.99) 16.52 (2.80, 29.34)

2 1089 (614, 1696) 0.42 (0.21, 0.82) 0.73 (0.14, 0.99) 2.29 (1.15, 4.53)

1 1365 (1051, 1718) 0.64 (0.42, 0.90) 0.40 (0.03, 0.70) 1.72 (1.27, 2.30) 413.00 -2.03 -0.82

0 2720 (2317, 3155) 0.50 (0.37, 0.66) 0.16 (0.01, 0.41) 1.59 (1.29, 1.95) (350.72, 480.70) (-2.45, -1.62) (-1.12, -0.53)

A 2702 (2257, 3186) 0.90 (0.72, 1.00) 0.21 (0.01, 0.48) 1.23 (1.00, 1.50)

B 13338 (11342, 15542) 0.74 (0.59, 0.92) 0.30 (0.02, 0.53) 1.01 (0.85, 1.18)

References

Gelman, A. and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7:457-511.
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Appendix A5. Estimated Argos satellite telemetry error by location class.

Table A5.1. Estimated percentiles of Argos satellite telemetry error (i.e., k st − µt k) by
location class.

Argos location 50th percentile 68th percentile 95th percentile
class error (m) error (m) error (m)

3 2156 3035 6054
2 1158 1727 4975
1 1764 2656 9049
0 3462 5281 19513
A 4203 6760 33920
B 21042 35980 235963
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Figure A5.1 Estimated distribution of Argos satellite telemetry errors (i.e., st − µt) by location class. Red circles denote error
estimates provided by Argos for location classes 3, 2, 1, and 0. Argos does not provide error estimates for location classes A and
B. The x-shaped pattern in Argos errors is particularly evident for location classes 3 and 2 (ρ = 0.85 and 0.74, respectively).
Errors in class 0 are distinctly elliptical with larger errors in the longitude direction (a = 0.50).
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APPENDIX B

Supplementary Material for Chapter 3
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Appendix B1. Model statement, posterior distribution, and full-conditional distributions.

The model we propose is well-suited to a Bayesian analysis using Markov chain Monte Carlo
methods. Such an approach estimates the joint posterior distribution by sampling iteratively
from the full-conditional distributions. In the posterior and full-conditional distributions be-
low, we use bracket notation to denote a probability distribution. For example, [x] indicates
the probability distribution of x. Similarly, [x|y] indicates the probability distribution of x
given the parameter y. The notation “·” represents the data and other parameters in the
model.

In addition to the notation introduced in the main document, let c index Argos location
quality class (i.e., c 2 {3, 2, 1, 0, A, and B}).
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Model Statement

sc (t) ⇠

8
>>><
>>>:

N (µ (t) ,Σc), with prob. p (t) , y (t) = 1

N (µ (t) , eΣc), with prob. 1− p (t) , y (t) = 1

N (µ (t) , σ2
µI+Σc), with prob. p (t) , y (t) = 0

N (µ (t) , σ2
µI+

eΣc), with prob. 1− p (t) , y (t) = 0

Σc = σ2
c


1 ρc

p
ac

ρc
p
ac ac

]

eΣc = σ2
c


1 −ρc

p
ac

−ρc
p
ac ac

]

µ (t) ⇠
JX

j=1

πjδµj

πj = ηj
Y

l<j

(1− ηl)

ηj ⇠ Beta (1, θ)

y (t) =

(
0, v (t)  0

1, v (t) > 0

v (t) ⇠ N
(
x (t)0 β +w (t)0 α, 1

)

µj ⇠ f eS (S)

θ ⇠ Gamma (rθ, qθ)

β ⇠ N
(
µβ, σ

2
βI
)

α ⇠ N
(
0, σ2

αI
)

log (σµ) ⇠ N
(
µσ, σ

2
σ

)

σ2
α ⇠ IG (rα, qα)

σc ⇠ Unif (lσ, uσ)

ac ⇠ Unif (la, ua)

ρc ⇠ Unif (lρ, uρ)

Note that f eS (S) represents the kernel density estimate of the observed telemetry locations

S ⌘ {sc (t) : t 2 T } at location µj, where f eS (S) is truncated and normalized over eS.
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Posterior Distribution

⇥
Mt,η,v,α,Mj, θ ,β, σµ, σ

2
α,σ, a,ρ | S,y

⇤
/

Y

t2T

JY

j=1

h
sc (t) | µ (t) , y (t) ,Σc, eΣc, σµ

i

⇥
⇥
µ (t) | µj, ηj

⇤
[ηj | θ]

⇥ [y (t) | v (t)] [v (t) | α,β]
⇥
α | 0, σ2

α

⇤

⇥
⇥
µj

⇤
[θ] [β] [σµ]

⇥
σ2
α

⇤
[σ] [a] [ρ] ,

where Mt ⌘ {µ (t) : t 2 T } is a matrix of functional central places µ (t) for all times t 2 T ;
η ⌘ (η1, . . . , ηJ)

0 is a vector of stick-breaking weights ηj for j = 1, . . . , J ; v ⌘ {v (t) : t 2 T }
is a vector of latent auxiliary variables v (t) for all times t 2 T ; Mj ⌘

{
µj : j = 1, . . . , J

 

is a matrix of potential central places µj for j = 1, . . . , J ; σ ⌘ (σ3, σ2, σ1, σ0, σA, σB)
0, a ⌘

(a3, a2, a1, a0, aA, aB)
0, and ρ ⌘ (ρ3, ρ2, ρ1, ρ0, ρA, ρB)

0 are vectors of parameters describing
telemetry measurement error for each Argos location quality class; S ⌘ {sc (t) : t 2 T } is a
matrix of observed telemetry locations sc (t) for all times t 2 T ; and y ⌘ {y (t) : t 2 T } is a
vector of ancillary behavioral data y (t) for all times t 2 T .

Full-Conditional Distributions

Locations of functional central places (µ (t)):

[µ (t) | ·] /
h
sc (t) | µ (t) , y (t) ,Σc, eΣc, σµ

i
[µ (t) | π]

/
JX

j=1

πjδµj

h
sc (t) | µj, y (t) ,Σc, eΣc, σµ

i
.

Here, we introduce a variable for the latent class status, h (t) 2 {1, . . . , J}, that assigns
each observed telemetry location sc (t) to one of the central places µj, for j = 1, . . . , J (i.e.,
µ (t) = µh(t)). The update proceeds just as in multinomial sampling:

[h (t) | ·] ⇠ Cat

0
B@

π1

h
sc (t) | µ1,Σc, eΣc

iy(t) h
sc (t) | µ1, σ

2
µI+Σc, σ

2
µI+

eΣc

i1−y(t)

PJ
j=1 πj

h
sc (t) | µj ,Σc, eΣc

iy(t) h
sc (t) | µj , σ

2
µI+Σc, σ2

µI+
eΣc

i1−y(t)
, · · · ,

πJ

h
sc (t) | µJ ,Σc, eΣc

iy(t) h
sc (t) | µJ , σ

2
µI+Σc, σ

2
µI+

eΣc

i1−y(t)

PJ
j=1 πj

h
sc (t) | µj ,Σc, eΣc

iy(t) h
sc (t) | µj , σ

2
µI+Σc, σ2

µI+
eΣc

i1−y(t)

1
CA

⇠ Cat
⇣a1
b
, · · · , aj

b

⌘
,
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where aj = πj ⇥
⇣
p (t)⇥N

(
sc (t) | µj,Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µj, eΣc

⌘⌘y(t)

⇥
⇣
p (t)⇥N

(
sc (t) | µj, σ

2
µI+Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µj, σ

2
µI+

eΣc

⌘⌘1−y(t)

and b =
PJ

j=1

⇢
πj ⇥

⇣
p (t)⇥N

(
sc (t) | µj,Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µj, eΣc

⌘⌘y(t)

⇥
⇣
p (t)⇥N

(
sc (t) | µj, σ

2
µI+Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µj, σ

2
µI+

eΣc

⌘⌘1−y(t)
}

.

Stick-breaking weights (ηj):

[ηj | ·] /
Y

t2T

[µ (t) | πj]
1{µ(t)=µj}

JY

i=j+1

Y

t2T

[µ (t) | πi]
1{µ(t)=µi} [ηj | 1, θ]

/
Y

t2T

π
1{µ(t)=µj}
j

JY

i=j+1

Y

t2T

π
1{µ(t)=µi}
i Beta (ηj | 1, θ)

/ π

P
t2T

 
1{µ(t)=µj}

!

j

JY

i=j+1

π

P
t2T

⇣
1{µ(t)=µi}

⌘

i η1−1
j (1− ηj)

θ−1

/
 
ηj
Y

l<j

(1− ηl)

!mj JY

i=j+1

 
ηi
Y

l<i

(1− ηl)

!mi

(1− ηj)
θ−1

/ ηj
mj

JY

i=j+1

 
Y

l<i

(1− ηl)

!mi

(1− ηj)
θ−1

/ ηj
mj (1− ηj)

PJ
i=j+1 mi (1− ηj)

θ−1

/ ηj
mj (1− ηj)

PJ
i=j+1 mi+θ−1

= Beta

 
mj + 1,

JX

i=j+1

mi + θ

!
,

where mj =
P

t2T

⇣
1{µ(t)=µj}

⌘
, i.e., the number of observed telemetry locations (sc (t))

allocated to central place µj.

Auxiliary variable for temporal process model (v (t)):

[v (t) | ·] / [y (t) | v (t)] [v (t) | α,β]

/
(
1{y(t)=0}1{v(t)0} + 1{y(t)=1}1{v(t)>0}

)
⇥N

(
v (t) | x (t)0 β +w (t)0 α,1

)

=

(
T N

(
x (t)0 β +w (t)0 α,1

)
0
−1, y (t) = 0

T N
(
x (t)0 β +w (t)0 α,1

)
1
0 , y (t) = 1

.

126



Basis coefficients in temporal process model (α):

[α | ·] / [v | β,α] [α | 0, σ2
α]

/ N (v | Xβ +Wα,1)N (α | 0, σ2
αI)

/ exp

⇢
−1

2
(v − (Xβ +Wα))0 (v − (Xβ +Wα))

}

⇥ exp

⇢
−1

2
(α− 0)0

(
σ2
αI
)−1

(α− 0)

}

/ exp

⇢
−1

2
((v −Xβ)−Wα)0 ((v −Xβ)−Wα)

}

⇥ exp

⇢
−1

2
α0
(
σ2
αI
)−1

α

}

/ exp

⇢
−1

2

⇣
−2
(
(v −Xβ)0 W

)
α+α0

⇣
W0W +

(
σ2
αI
)−1
⌘
α
⌘}

= N (A−1b,A−1),

where A = W0W+(σ2
αI)

−1
and b0 = (v −Xβ)0 W. Note that the matrix X ⌘ {x (t) : t 2 T }

contains the vectors x (t) for all times t 2 T . Similarly, W ⌘ {w (t) : t 2 T } is a matrix
containing the vectors w (t) for all times t 2 T .

Locations of potential central places
(
µj

)
:

⇥
µj | ·

⇤
/

Y

t2T

h
sc (t) | µ (t) , y (t) ,Σc, eΣc, σµ

i1{µ(t)=µj} ⇥
µj

⇤

/
Y

{t:µ(t)=µj}

⇢h
sc (t) | µj ,Σc, eΣc

iy(t) h
sc (t) | µj , σ

2
µI+Σc, σ

2
µI+

eΣc

i1−y(t)
}⇥

µj

⇤

/
Y

{t:µ(t)=µj}

⇢⇣
p (t)⇥N

(
sc (t) | µj ,Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µj ,

eΣc

⌘⌘y(t)

⇥
⇣
p (t)⇥N

(
sc (t) | µj , σ

2
µI+Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µj , σ

2
µI+

eΣc

⌘⌘1−y(t)
}

⇥
⇥
µj

⇤
.

Note that the product is over all t 2 T such that sc (t) is allocated to central place µj (i.e.,
instances where µ (t) = µj).
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Dirichlet process concentration parameter (θ):

[θ|·] /
J−1Y

j=1

[ηj | 1, θ] [θ]

/
J−1Y

j=1

Beta (ηj | 1, θ)Gamma (θ | rθ, qθ)

/
J−1Y

j=1

Γ (1 + θ)

Γ (1) Γ (θ)
η1−1
j (1− ηj)

θ−1 θrθ−1 exp {−qθθ}

/
✓

θΓ (θ)

Γ (1) Γ (θ)

◆J−1

θrθ−1 exp

(
−qθθ + log

 
J−1Y

j=1

(1− ηj)
θ−1

!)

/
✓

θΓ (θ)

Γ (1) Γ (θ)

◆J−1

θrθ−1 exp

(
−qθθ + log

 
J−1Y

j=1

(1− ηj)
θ (1− ηj)

−1

!)

/
✓

θΓ (θ)

Γ (1) Γ (θ)

◆J−1

θrθ−1 exp

(
−qθθ + log

 
J−1Y

j=1

(1− ηj)
θ

!)

/ θJ−1+rθ−1 exp

(
−qθθ +

J−1X

j=1

log (1− ηj)
θ

)

/ θJ−1+rθ−1 exp

(
−qθθ + θ

J−1X

j=1

log (1− ηj)

)

/ θJ−1+rθ−1 exp

(
−θ

 
qθ −

J−1X

j=1

log (1− ηj)

!)

= Gamma

 
rθ + J − 1, qθ −

J−1X

j=1

log (1− ηj)

!
.

Note that the product is over j = 1, . . . , J−1 because ηJ = 1 in the truncation approximation
of a Dirichlet process.
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Fixed effects in temporal process model (β):

[β | ·] / [v | β,α] [β]

/ N (v | Xβ +Wα,1)N (β | µβ, σ
2
βI)

/ exp

⇢
−1

2
(v − (Xβ +Wα))0 (v − (Xβ +Wα))

}

⇥ exp

⇢
−1

2

(
β − µβ

)0 (
σ2
βI
)−1 (

β − µβ

)}

/ exp

⇢
−1

2
((v −Wα)−Xβ)0 ((v −Wα)−Xβ)

}

⇥ exp

⇢
−1

2

(
β − µβ

)0 (
σ2
βI
)−1 (

β − µβ

)}

/ exp

⇢
−1

2

⇣
−2
⇣
(v −Wα)0 X+ µ0

β

(
σ2
βI
)−1
⌘
β + β0

⇣
X0X+

(
σ2
βI
)−1
⌘
β
⌘}

= N (A−1b,A−1),

where A = X0X+
(
σ2
βI
)−1

and b0 = (v −Wα) 0X+µ0
β

(
σ2
βI
)−1

. Note that the matrix X ⌘
{x (t) : t 2 T } contains the vectors x (t) for all times t 2 T . Similarly, W ⌘ {w (t) : t 2 T }
is a matrix containing the vectors w (t) for all times t 2 T .

Animal movement parameter (σµ):

[σµ | ·] /
Y

t2T

h
sc (t) | µ (t) , y (t) ,Σc, eΣc, σµ

i
[σµ]

/
Y

t2T

h
sc (t) | µ (t) ,Σc, eΣc, σ

2
µ

i1−y(t)

[σµ]

/
Y

{t:y(t)=0}

⇣
p (t)⇥N

(
sc (t) | µ (t) , σ2

µI+Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µ (t) , σ2

µI+
eΣc

⌘⌘

⇥N
(
log (σµ) | log (µσ) , σ

2
σ

)
.

Note that the product is over all t 2 T such that y (t) = 0 (i.e., all observed telemetry
locations (sc (t)) collected when the individual is not at the central place).
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Variance of basis coefficients (σ2
α):

⇥
σ2
α | ·

⇤
/

⇥
α | 0, σ2

α

⇤ ⇥
σ2
α

⇤

/ N
(
α | 0, σ2

αI
)
IG
(
σ2
α | rα, qα

)

/
∣∣σ2

αI
∣∣−1/2

exp

⇢
−1

2

⇣
(α− 0)0

(
σ2
αI
)−1

(α− 0)
⌘}(

σ2
α

)−(qα+1)
exp

⇢
− 1

rασ2
α

}

/
(
σ2
α

)−M/2
exp

⇢
− 1

2σ2
α

α0α

}(
σ2
α

)−(qα+1)
exp

⇢
− 1

rασ2
α

}

/
(
σ2
α

)−(M/2+qα+1)
exp

⇢
− 1

σ2
α

✓
α0α

2
+

1

rα

◆}

= IG

 ✓
α0α

2
+

1

rα

◆−1

,
M

2
+ qα

!
,

where M is the length of α (or column dimension of W).

Longitudinal telemetry measurement error (σc):

[σc | ·] /
Y

t̃2T

h
sc
(
t̃
)
| µ
(
t̃
)
, y
(
t̃
)
,Σc, eΣc, σµ

i
[σc]

/
Y

t̃2T

⇢h
sc
(
t̃
)
| µ
(
t̃
)
,Σc, eΣc

iy(t̃) h
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+Σc, σ
2
µI+

eΣc

i1−y(t̃)
}
[σc]

/
Y

t̃2T

⇢⇣
p
(
t̃
)
⇥N

(
sc
(
t̃
)
| µ
(
t̃
)
,Σc

)
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)
, eΣc

⌘⌘y(t̃)

⇥
⇣
p
(
t̃
)
⇥N

(
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+Σc

)
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+
eΣc

⌘⌘1−y(t̃)
}

⇥Unif (σc | lσ , uσ) ,

where t̃ 2 T is the subset of times for all observed telemetry locations (sc (t)) belonging to
Argos location quality class c. In other words, the product is over all t 2 T such that sc (t)
is allocated to location quality class c.

Adjustment for latitudinal telemetry measurement error (ac):

[ac | ·] /
Y

t̃2T

h
sc
(
t̃
)
| µ
(
t̃
)
, y
(
t̃
)
,Σc, eΣc, σµ

i
[ac]

/
Y

t̃2T

⇢h
sc
(
t̃
)
| µ
(
t̃
)
,Σc, eΣc

iy(t̃) h
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+Σc, σ
2
µI+

eΣc

i1−y(t̃)
}
[ac]

/
Y

t̃2T

⇢⇣
p
(
t̃
)
⇥N

(
sc
(
t̃
)
| µ
(
t̃
)
,Σc

)
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)
, eΣc

⌘⌘y(t̃)

⇥
⇣
p
(
t̃
)
⇥N

(
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+Σc

)
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+
eΣc

⌘⌘1−y(t̃)
}

⇥Unif (ac | la, ua) .
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where t̃ 2 T is the subset of times for all observed telemetry locations (sc (t)) belonging to
Argos location quality class c. In other words, the product is over all t 2 T such that sc (t)
is allocated to location quality class c.

Correlation between longitudinal and latitudinal telemetry measurement error
(σc):

[ρc | ·] /
Y

t̃2T

h
sc
(
t̃
)
| µ
(
t̃
)
, y
(
t̃
)
,Σc, eΣc, σµ

i
[ρc]

/
Y

t̃2T

⇢h
sc
(
t̃
)
| µ
(
t̃
)
,Σc, eΣc

iy(t̃) h
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+Σc, σ
2
µI+

eΣc

i1−y(t̃)
}
[ρc]

/
Y

t̃2T

⇢⇣
p
(
t̃
)
⇥N

(
sc
(
t̃
)
| µ
(
t̃
)
,Σc

)
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)
, eΣc

⌘⌘y(t̃)

⇥
⇣
p
(
t̃
)
⇥N

(
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+Σc

)
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)
, σ2

µI+
eΣc

⌘⌘1−y(t̃)
}

⇥Unif (ρc | lρ, uρ) .

where t̃ 2 T is the subset of times for all observed telemetry locations (sc (t)) belonging to
Argos location quality class c. In other words, the product is over all t 2 T such that sc (t)
is allocated to location quality class c.
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Appendix B2. Markov chain Monte Carlo algorithm for parameter estimation.

One can implement a Markov chain Monte Carlo algorithm to estimate the parameters of
the observation and process models using the sequence of steps outlined below. Proposal
distributions for all parameters with non-conjugate full-conditional distributions (i.e., µj,
σµ, σc, ac, and ρc) are assumed to be symmetric and updates proceed using Metropolis
sampling; therefore, the proposal distribution is not factored into the associated ratios as in
Metropolis-Hastings sampling. Also note that normalizing constants cancel in the Metropolis
ratios and thus may be omitted for clarity.

1. Define initial values for: µ
(0)
j and π

(0)
j for j = 1, . . . , J ; θ(0); σ

(0)
µ ; α(0); (σ2

α)
(0)

; and σ
(0)
c ,

a
(0)
c , and ρ

(0)
c for c = 3, 2, 1, 0, A, and B.

2. For each Argos location quality class, let

Σ(0)
c =

(
σ(0)
c

)2
2
4 1 ρ

(0)
c

q
a
(0)
c

ρ
(0)
c

q
a
(0)
c a

(0)
c

3
5

and

eΣ(0)

c =
(
σ(0)
c

)2
2
4 1 −ρ

(0)
c

q
a
(0)
c

−ρ
(0)
c

q
a
(0)
c a

(0)
c

3
5

= HΣ(0)
c H0,

where

H =


1 0
0 −1

]
.

Also let
Q(0)

c = Σ(0)
c +

(
σ(0)
µ

)2
I

and

eQ(0)
c = eΣ(0)

c +
(
σ(0)
µ

)2
I

= HQ(0)
c H0.

3. Set k = 1.

4. Update the spatial process model parameters (i.e., h (t), ηj, θ, and µj ).

(a) Sample h (t)(k), for all times t 2 T , using a Gibbs step:

h
h (t)(k) | ·

i
⇠ Cat

 
a
(k−1)
1

b(k−1)
, · · · , a

(k−1)
J

b(k−1)

!
,
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where

a
(k−1)
j = π

(k−1)
j ⇥

⇣
p (t)⇥N

⇣
sc (t) | µ

(k−1)
j ,Σ

(k−1)
c

⌘
+ (1− p (t))⇥N

⇣
sc (t) | µ

(k−1)
j ,HΣ

(k−1)
c H0

⌘⌘y(t)

⇥
⇣
p (t)⇥N

⇣
sc (t) | µ

(k−1)
j ,Q

(k−1)
c

⌘
+ (1− p (t))⇥N

⇣
sc (t) | µ

(k−1)
j ,HQ

(k−1)
c H0

⌘⌘1−y(t)

and

b =

JX

j=1

⇢
π
(k−1)
j ⇥

⇣
p (t)⇥N

⇣
sc (t) | µ

(k−1)
j ,Σ

(k−1)
c

⌘
+ (1− p (t))⇥N

⇣
sc (t) | µ

(k−1)
j ,HΣ

(k−1)
c H0

⌘⌘y(t)

⇥
⇣
p (t)⇥N

⇣
sc (t) | µ

(k−1)
j ,Q

(k−1)
c

⌘
+ (1− p (t))⇥N

⇣
sc (t) | µ

(k−1)
j ,HQ

(k−1)
c H0

⌘⌘1−y(t)
}
.

Recall that h (t)(k) 2 {1, . . . , J} allocates each observed telemetry location (sc (t))

to a central place µj (i.e., µ (t)(k) = µ
(k)

h(t)(k)
).

(b) For j = 1, . . . , J , tabulate cluster membership:

m
(k)
j =

X

t2T

1{h(t)(k)=j}.

In other words, m
(k)
j denotes the number of observed telemetry locations (sc (t))

allocated to central place µ
(k−1)
j .

(c) Sample η
(k)
j , for j = 1, . . . , J − 1, using a Gibbs step:

h
η
(k)
j | ·

i
⇠ Beta

 
m

(k)
j + 1,

JX

i=j+1

m
(k)
i + θ(k−1)

!
.

Set η
(k)
J = 1.

(d) Update π
(k−1)
j , for j = 1, . . . J , which is calculated as:

π
(k)
j = η

(k)
j

Y

l<j

⇣
1− η

(k)
l

⌘
.

Letting η
(k)
J = 1 in Step 4(c) guarantees

PJ
j=1 π

(k)
j = 1. Note that a sufficient

value for J , the upper bound to the truncation approximation of the Dirichlet
process, can be confirmed by ensuring π

(k)
J ⇡ 0.

(e) Update θ(k−1) using a Gibbs step:

⇥
θ(k) | ·

⇤
/ Gamma

 
rθ + J − 1, qθ −

J−1X

j=1

log
⇣
1− η

(k)
j

⌘!
.
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(f) Update µ
(k−1)
j , for each j such that mj > 0, using Metropolis sampling. Sample

µj
(⇤) from a proposal distribution

h
µ

(⇤)
j |µ(k−1)

j

i
. Depending on the nature of eS

(e.g., linear support like a coastline), proposals generated from

N
⇣
µ

(⇤)
j | µ(k−1)

j , τ 2µI
⌘
, where τ 2µ is a tuning parameter, may rarely occur in eS.

Therefore, sample locations µ 2 eS with probability proportional to

N
⇣
µ | µ(k−1)

j , τ 2µI
⌘
, thus guaranteeing µ

(⇤)
j 2 eS. Calculate the Metropolis ratio

as

rµ =

0
BBB@

Qn
t:h(t)(k)=j

o
⇢⇣

p (t) ⇥ N
⇣
sc (t) | µ

(⇤)
j

,Σ
(k−1)
c

⌘
+ (1 − p (t)) ⇥ N

⇣
sc (t) | µ

(⇤)
j

,HΣ
(k−1)
c H0

⌘⌘y(t)

Qn
t:h(t)(k)=j

o
⇢⇣

p (t) ⇥ N
⇣
sc (t) | µ

(k−1)
j

,Σ
(k−1)
c

⌘
+ (1 − p (t)) ⇥ N

⇣
sc (t) | µ

(k−1)
j

,HΣ
(k−1)
c H0

⌘⌘y(t)

⇥

⇣
p (t) ⇥ N

⇣
sc (t) | µ

(⇤)
j

,Q
(k−1)
c

⌘
+ (1 − p (t)) ⇥ N

⇣
sc (t) | µ

(⇤)
j

,HQ
(k−1)
c H0

⌘⌘1−y(t)
}

⇣
p (t) ⇥ N

⇣
sc (t) | µ

(k−1)
j

,Q
(k−1)
c

⌘
+ (1 − p (t)) ⇥ N

⇣
sc (t) | µ

(k−1)
j

,HQ
(k−1)
c H0

⌘⌘1−y(t)
}

1
CCA

⇥

0
@

h
µ

(⇤)
j

|f eS (S)
i

h
µ

(k−1)
j

|f eS (S)
i

1
A .

Note that the product is over all t 2 T such that sc (t) is allocated to central

place µj. If rµ > u, where u ⇠ Uniform(0,1), let µ
(k)
j = µ

(⇤)
j . Otherwise, let

µ
(k)
j = µ

(k−1)
j if rµ < u, or if µ

(⇤)
j /2 eS.

(g) Update µ
(k−1)
j , for each j such that m

(k)
j = 0 (i.e., central places µ

(k−1)
j with

zero membership), by sampling µj
(k) from the prior

h
µ

(k)
j |f eS (S)

i
. As in Step

4(f), sample locations µ 2 eS with probability proportional to f eS (S) to ensure

µ
(k)
j 2 eS.

(h) Use h (t)(k) to map the potential central places µ
(k)
j to observed telemetry locations

(sc (t)), for all times t 2 T :

µ (t)(k) = µ
(k)

h(t)(k)
.

5. Update σ
(k−1)
µ using Metropolis sampling. Sample σ

(⇤)
µ from a proposal distributionh

σ
(⇤)
µ |σ(k−1)

µ

i

(e.g., N
⇣
σ
(⇤)
µ |σ(k−1)

µ , τ 2σI
⌘
, where τ 2σ is a tuning parameter). If σ

(⇤)
µ ≥ 0, let

Q(⇤)
c = Σ(k−1)

c +
(
σ(⇤)
µ

)2
I

for c = 3, 2, 1, 0, A, and B. Calculate the Metropolis ratio as

rσµ =

0
@

Q
{t:y(t)=0}

n
p (t)⇥N

⇣
sc (t) | µ (t)(k) ,Q

(⇤)
c

⌘
+ (1− p (t))⇥N

⇣
sc (t) | µ (t)(k) ,HQ

(⇤)
c H0

⌘o

Q
{t:y(t)=0}

n
p (t)⇥N

⇣
sc (t) | µ (t)(k) ,Q

(k−1)
c

⌘
+ (1− p (t))⇥N

⇣
sc (t) | µ (t)(k) ,HQ

(k−1)
c H0

⌘o

1
A

⇥

0
@

N
⇣
log
⇣
σ
(⇤)
µ

⌘
| log (µσ) , σ2

σ

⌘

N
⇣
log
⇣
σ
(k−1)
µ

⌘
| log (µσ) , σ2

σ

⌘

1
A .
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Note that the product is over all t 2 T such that y (t) = 0. If rσµ
> u, where

u ⇠ Uniform(0,1), let σ
(k)
µ = σ

(⇤)
µ and Q

(k)
c = Q

(⇤)
c . Otherwise, let σ

(k)
µ = σ

(k−1)
µ and

Q
(k)
c = Q

(k−1)
c if rσµ

< u, or if σ
(⇤)
µ < 0.

6. Update the observation model parameters related to telemetry measurement error (i.e.,
σc, ac, and ρc).

(a) Let t̃ 2 T be the times of all observed telemetry locations (sc (t)) belonging to a
single Argos location quality class c.

(b) Update σ
(k−1)
c using Metropolis sampling. Sample σ

(⇤)
c from a proposal distribu-

tion
h
σ
(⇤)
c |σ(k−1)

c

i

(e.g., N
⇣
σ
(⇤)
c |σ(k−1)

c , τ 2σ

⌘
, where τ 2σ is a tuning parameter). If σ

(⇤)
c 2 [lσ, uσ], let

Σ(⇤)
c =

(
σ(⇤)
c

)2
2
4 1 ρ

(k−1)
c

q
a
(k−1)
c

ρ
(k−1)
c

q
a
(k−1)
c a

(k−1)
c

3
5

and
Q(⇤)

c = Σ(⇤)
c +

(
σ(k)
µ

)2
I.

Calculate the Metropolis ratio as

rσ =

0
BB@

Q
t̃

⇢⇣
p
(
t̃
)
⇥N

⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,Σ
(⇤)
c

⌘
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,HΣ
(⇤)
c H0

⌘⌘y(t̃)

Q
t̃

⇢⇣
p
(
t̃
)
⇥N

⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,Σ
(k−1)
c

⌘
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,HΣ
(k−1)
c H0

⌘⌘y(t̃)

⇥

⇣
p
(
t̃
)
⇥N

⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,Q
(⇤)
c

⌘
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,HQ
(⇤)
c H0

⌘⌘1−y(t̃)
}

⇣
p
(
t̃
)
⇥N

⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,Q
(k)
c

⌘
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,HQ
(k)
c H0

⌘⌘1−y(t̃)
}

1
CCA .

If rσ > u, where u ⇠ Uniform(0,1), let σ
(k)
c = σ

(⇤)
c , Σ(k)

c = Σ(⇤)
c , and Q

(k)
c = Q

(⇤)
c .

Otherwise, let σ
(k)
c = σ

(k−1)
c , Σ(k)

c = Σ(k−1)
c , and Q

(k)
c = Q

(k)
c = Σ(k−1)

c +
⇣
σ
(k)
µ

⌘2
I

if rσ < u, or if σ
(⇤)
c /2 [lσ, uσ].

(c) Update a
(k−1)
c using Metropolis sampling. Sample a

(⇤)
c from a proposal distributionh

a
(⇤)
c |a(k−1)

c

i

(e.g., N
⇣
a
(⇤)
c |a(k−1)

c , τ 2a

⌘
, where τ 2a is a tuning parameter). If a

(⇤)
c 2 [la, ua], let

Σ(⇤)
c =

(
σ(k)
c

)2
2
4 1 ρ

(k−1)
c

q
a
(⇤)
c

ρ
(k−1)
c

q
a
(⇤)
c a

(⇤)
c

3
5

and
Q(⇤)

c = Σ(⇤)
c +

(
σ(k)
µ

)2
I.
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Calculate the Metropolis ratio as

ra =

0
BB@

Q
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t̃
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⌘
+
(
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(
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⇣
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(
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)
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(
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)(k)

,HΣ
(⇤)
c H0
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Q
t̃

⇢⇣
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⇣
sc
(
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(
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⇣
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⇣
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(
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⇥N

⇣
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(
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)
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(
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)(k)

,Q
(⇤)
c

⌘
+
(
1− p

(
t̃
))

⇥N
⇣
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(
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)
| µ
(
t̃
)(k)

,HQ
(⇤)
c H0

⌘⌘1−y(t̃)
}

⇣
p
(
t̃
)
⇥N

⇣
sc
(
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)
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(
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)(k)

,Q
(k)
c

⌘
+
(
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(
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⇣
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(
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)
| µ
(
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)(k)

,HQ
(k)
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}

1
CCA .

If ra > u, where u ⇠ Uniform(0,1), let a
(k)
c = a

(⇤)
c , Σ(k)

c = Σ(⇤)
c , and Q

(k)
c = Q

(⇤)
c .

Otherwise, let a
(k)
c = a

(k−1)
c , Σ(k)

c = Σ(k)
c , and Q

(k)
c = Q

(k)
c if ra < u, or if

a
(⇤)
c /2 [la, ua].

(d) Update ρ
(k−1)
c using Metropolis sampling. Sample ρ

(⇤)
c from a proposal distributionh

ρ
(⇤)
c |ρ(k−1)

c

i

(e.g., N
⇣
ρ
(⇤)
c |ρ(k−1)

c , τ 2ρ

⌘
, where τ 2ρ is a tuning parameter). If ρ

(⇤)
c 2 [lρ, uρ], let

Σ(⇤)
c =

(
σ(k)
c

)2
2
4 1 ρ

(⇤)
c

q
a
(k)
c

ρ
(⇤)
c

q
a
(k)
c a

(k)
c

3
5

and
Q(⇤)

c = Σ(⇤)
c +

(
σ(k)
µ

)2
I.

Calculate the Metropolis ratio as

rρ =

0
BB@
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⇣
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⇣
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| µ
(
t̃
)(k)

,HΣ
(⇤)
c H0

⌘⌘y(t̃)

Q
t̃

⇢⇣
p
(
t̃
)
⇥N

⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,Σ
(k)
c

⌘
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,HΣ
(k)
c H0

⌘⌘y(t̃)

⇥

⇣
p
(
t̃
)
⇥N

⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,Q
(⇤)
c

⌘
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,HQ
(⇤)
c H0

⌘⌘1−y(t̃)
}

⇣
p
(
t̃
)
⇥N

⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,Q
(k)
c

⌘
+
(
1− p

(
t̃
))

⇥N
⇣
sc
(
t̃
)
| µ
(
t̃
)(k)

,HQ
(k)
c H0

⌘⌘1−y(t̃)
}

1
CCA .

If rρ > u, where u ⇠ Uniform(0,1), let ρ
(k)
c = ρ

(⇤)
c , Σ(k)

c = Σ(⇤)
c , and Q

(k)
c = Q

(⇤)
c .

Otherwise, let ρ
(k)
c = ρ

(k−1)
c , Σ(k)

c = Σ(k)
c , and Q

(k)
c = Q

(k)
c if rρ < u, or if

ρ
(⇤)
c /2 [lρ, uρ].

(e) Repeat Steps 6(a) through 6(d) for each Argos location quality class c.

7. Update the temporal process model parameters (i.e., β, α, v (t), and σ2
α).

(a) Sample β(k) using a Gibbs step:

h
β(k) | ·

i
⇠ N (A−1b,A−1),
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where A = X0X +
(
σ2
βI
)−1

and b0 =
(
v(k−1) −Wα(k−1)

)
0X + µ0

β

(
σ2
βI
)−1

. Note
that the matrix X ⌘ {x (t) : t 2 T } contains the vectors x (t) for all times t 2 T .
Similarly, W ⌘ {w (t) : t 2 T } is a matrix containing the vectors w (t) for all
times t 2 T .

(b) Update α(k−1) using a Gibbs step:

⇥
α(k) | ·

⇤
⇠ N (A−1b,A−1),

where A = W0W +
⇣
(σ2

α)
(k−1)

I
⌘−1

and b0 =
⇣
v(k−1) −Xβ(k)

⌘0
W. Note that

the matrix X ⌘ {x (t) : t 2 T } contains the vectors x (t) for all times t 2 T .
Similarly, W ⌘ {w (t) : t 2 T } is a matrix containing the vectors w (t) for all
times t 2 T .

(c) Sample v (t)(k), for t 2 T , using a Gibbs step:

h
v (t)(k) | ·

i
=

8
<
:
T N

⇣
x (t)0 β(k) +w (t)0 α(k),1

⌘
0
−1, y (t) = 0

T N
⇣
x (t)0 β(k) +w (t)0 α(k),1

⌘
1
0 , y (t) = 1

.

(d) Update (σ2
α)

(k−1)
using a Gibbs step:

h(
σ2
α

)(k) |·
i

⇠ IG

 ✓
α(k)0α(k)

2
+

1

rα

◆−1

,
M

2
+ qα

!
,

where M is the length of α (or column dimension of W).

8. Save µ (t)(k) (or h (t)(k) and µ
(k)
j for j = 1, . . . , J); θ(k); σ

(k)
µ ; β(k); α(k); v(k); (σ2

α)
(k)

;

and σ
(k)
c , a

(0)
c , and ρ

(0)
c for c = 3, 2, 1, 0, A, and B.

9. Set k = k + 1 and return to Step 4. The algorithm is iterated by repeating Steps 4
through 8 until a sufficiently large sample has been obtained from which to approximate
the posterior distribution.
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Appendix B3. Posterior quantities for the simulated data example.

Table B3.1. Known observation and process model parameters used in simulation, and the
corresponding posterior mean and 95% credible intervals. The subscripts on the observation
model parameters (i.e., σc, ac, and ρc) index the Argos location quality class and correspond
to high (3), medium (0), and low (B) accuracy telemetry locations.

True Posterior Lower 95% Upper 95%
Parameter value mean credible bound credible bound
σ3 (m) 1448 1521 1366 1693
σ0 (m) 8616 8559 7657 9564
σB (m) 29723 30284 27731 33049

a3 0.34 0.36 0.26 0.48
a0 0.36 0.40 0.31 0.52
aB 0.33 0.36 0.28 0.45
ρ3 0.34 0.18 0.01 0.42
ρ0 0.36 0.29 0.02 0.54
ρB 0.33 0.23 0.01 0.46

σµ (m) 3318 3406 3029 3806
β1 -0.52 -0.57 -0.79 -0.36
β2 -0.28 -0.30 -0.40 -0.19
β3 0.37 0.34 0.24 0.44
β4 0.03 0.07 -0.06 0.20
β5 0.20 0.24 0.10 0.39
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Figure B3.1. The posterior distribution of µ (t) (red gradient); brighter red indicates higher

posterior probability. The spatial support of central places ( eS) exists at the intersection of
the blue and gray polygons (black line). The triangles denote the location of central places
used in simulation.
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Figure B3.2. The posterior distribution of µj (red gradient); brighter red indicates higher

posterior probability. The spatial support of central places ( eS) exists at the intersection of
the blue and gray polygons (black line). The triangles denote the location of central places
used in simulation.
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Appendix B4. Simulated examples using location data that arises from a movement model.

a.)

b.)

Figure B4.1. Example using simulated movement recorded at a high temporal frequency.
(a) True locations (µ̃ (t); blue circles) and the corresponding observed locations (i.e., with
measurement error, s (t); red crosses). Movement was simulated subject to attraction to 3
central places (µj; black triangles). (b) The posterior distribution of µ (t) (red gradient);
brighter red corresponds to higher posterior probability. The spatial support of central places
( eS) covered the entire domain shown in the plots.
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a.)

b.)

Figure B4.2. Example using simulated movement recorded at a low temporal frequency. (a)
Same as Figure D1, except true (µ̃ (t); blue circles) and observed (s (t); red crosses) locations
were “thinned” to mimic data recorded at a lower temporal frequency. Thinning occurred by
keeping every third observation. Movement was simulated subject to attraction to 3 central
places (µj; black triangles). (b) The posterior distribution of µ (t) (red gradient); brighter

red corresponds to higher posterior probability. The spatial support of central places ( eS)
covered the entire domain shown in the plots.
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Appendix B5. Summary of results for an analysis of Argos telemetry data collected from
a subadult female harbor seal near Kodiak Island, Alaska, USA.

Table B5.1. Posterior mean and 95% credible intervals for observation model parameters
related to Argos satellite telemetry error.

Argos
location class σ (m) a ρ

3 1497 (866, 2477) 0.32 (0.07, 0.82) 0.36 (0.02, 0.86)
2 1689 (1306, 2169) 0.37 (0.19, 0.65) 0.30 (0.02, 0.62)
1 2110 (1818, 2468) 0.30 (0.19, 0.44) 0.41 (0.06, 0.64)
0 8691 (7542, 10018) 0.35 (0.27, 0.44) 0.77 (0.7, 0.83)
A 8144 (7080, 9367) 0.80 (0.62, 0.97) 0.67 (0.56, 0.78)
B 29777 (26898, 32938) 0.33 (0.26, 0.4) 0.67 (0.59, 0.74)

143



Table B5.2. Posterior mean and 95% credible intervals for parameters related to animal
movement (σµ), the Dirichlet process concentration parameter (θ), and the temporal process
(β). Parameters in the temporal process model correspond to an intercept (β1), the number
of hours since solar noon (13:00 hours, β2), the number of hours since low tide (β3), and
the number of days since 15 August (β4) and its quadratic effect (β5). All covariates in the
temporal process model were centered and scaled to unit variance prior to model fitting.

Posterior Lower 95% Upper 95%
Parameter mean credible bound credible bound
σµ (m) 3314 2663 4057

θ 1.69 0.62 3.24
β1 -0.76 -1.12 -0.45
β2 -0.38 -0.55 -0.21
β3 0.47 0.33 0.63
β4 0.04 -0.16 0.24
β5 0.27 0.06 0.49
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Figure B5.1. The posterior distribution of µ (t) (red gradient); brighter red indicates higher

posterior probability. The spatial support of harbor seal haul-out sites ( eS) exists along the
coastline (black line) at the intersection of the blue (water) and gray (land) polygons.
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Figure B5.2. The posterior distribution of µj (red gradient); brighter red indicates higher

posterior probability. The spatial support of harbor seal haul-out sites ( eS) exists along the
coastline (black line) at the intersection of the blue (water) and gray (land) polygons.
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Appendix B6. Alternative model specifications to accommodate situations when ancillary
behavioral data are absent or temporally misaligned with the telemetry locations.

Temporal Misalignment

Let y (ty) denote ancillary behavioral data recorded at time ty 2 T and z (ts) denote the
behavioral state corresponding to the time ts 2 T that an observed telemetry location is
recorded. When times ty and ts are not aligned, the behavioral state z (ts) can be predicted
using the following modifications to the model presented in Appendix B1.

Model Statement

Update the model statement in Appendix B1 to estimate the latent behavioral state z (ts)
and to reflect the two times ts and ty as follows:

sc (ts) ⇠

8
>>><
>>>:

N (µ (ts) ,Σc), with prob. p (ts) , z (ts) = 1

N (µ (ts) , eΣc), with prob. 1− p (ts) , z (ts) = 1

N (µ (ts) , σ
2
µI+Σc), with prob. p (ts) , z (ts) = 0

N (µ (ts) , σ
2
µI+

eΣc), with prob. 1− p (ts) , z (ts) = 0

z (ts) ⇠ Bern (φ (ts))

φ (ts) = Φ
(
x (ts)

0
β +w (ts)

0
α
)

y (ty) =

(
0, v (ty)  0

1, v (ty) > 0

v (ty) ⇠ N
(
x (ty)

0
β +w (ty)

0
α, I

)

µ (ts) ⇠
JX

j=1

πjδµj

Full-conditional Distributions

Latent class status for update of µ (ts) (h (ts)):

[h (ts) | ·] ⇠ Cat

0
B@

π1

h
sc (ts) | µ1,Σc, eΣc

iz(ts) h
sc (ts) | µ1, σ

2
µI+Σc, σ

2
µI+

eΣc

i1−z(ts)

PJ
j=1 πj

h
sc (ts) | µj ,Σc, eΣc

iz(ts) h
sc (ts) | µj , σ

2
µI+Σc, σ2

µI+
eΣc

i1−z(ts)
, · · · ,

πJ

h
sc (ts) | µJ ,Σc, eΣc

iz(ts) h
sc (ts) | µJ , σ

2
µI+Σc, σ

2
µI+

eΣc

i1−z(ts)

PJ
j=1 πj

h
sc (ts) | µj ,Σc, eΣc

iz(ts) h
sc (ts) | µj , σ

2
µI+Σc, σ2

µI+
eΣc

i1−z(ts)

1
CA

⇠ Cat
⇣a1
b
, · · · , aj

b

⌘
,

where aj = πj ⇥
⇣
p (ts)⇥N

(
sc (ts) | µj,Σc

)
+ (1− p (ts))⇥N

⇣
sc (ts) | µj, eΣc

⌘⌘z(ts)
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⇥
⇣
p (ts)⇥N

(
sc (ts) | µj, σ

2
µI+Σc

)
+ (1− p (ts))⇥N

⇣
sc (ts) | µj, σ

2
µI+

eΣc

⌘⌘1−z(ts)

and b =
PJ

j=1

⇢
πj ⇥

⇣
p (ts)⇥N

(
sc (ts) | µj,Σc

)
+ (1− p (ts))⇥N

⇣
sc (ts) | µj, eΣc

⌘⌘z(ts)

⇥
⇣
p (ts)⇥N

(
sc (ts) | µj , σ

2
µI+Σc

)
+ (1− p (ts))⇥N

⇣
sc (ts) | µj , σ

2
µI+

eΣc

⌘⌘1−z(ts)
}

.

Auxiliary variable for the observed behavioral process (v (ty)):

[v (ty) | ·] / [y (ty) | v (ty)] [v (ty) | α,β]

/
(
1{y(ty)=0}1{v(ty)0} + 1{y(ty)=1}1{v(ty)>0}

)
⇥N

(
v (ty) | x (ty)

0
β +w (ty)

0
α,1

)

=

(
T N

(
x (ty)

0
β +w (ty)

0
α,1

)
0
−1, y (ty) = 0

T N
(
x (ty)

0
β +w (ty)

0
α,1

)
1
0 , y (ty) = 1

.

Prediction of the latent behavioral state (z (ts)):

[z (ts) | ·] /
h
sc (ts) | µ (ts) , z (ts) ,Σc, eΣc, σµ

i
[z (ts) | φ (ts)]

/
h
sc (ts) | µ (ts) ,Σc, eΣc

iz(ts) h
sc (ts) | µ (ts) , σ

2
µI + Σc, σ

2
µI + eΣc

i1−z(ts)
Bern (z (ts) | φ (ts))

/
⇣
p (ts) ⇥ N (sc (ts) | µ (ts) ,Σc) + (1 − p (ts)) ⇥ N

⇣
sc (ts) | µ (ts) , eΣc

⌘⌘z(ts)

⇥
⇣
p (ts) ⇥ N

⇣
sc (ts) | µ (ts) , σ

2
µI + Σc

⌘
+ (1 − p (ts)) ⇥ N

⇣
sc (ts) | µ (ts) , σ

2
µI + eΣc

⌘⌘1−z(ts)

⇥φ (ts)
z(ts)

(1 − φ (ts))
1−z(ts)

/
⇣
φ (ts) ⇥

⇣
p (ts) ⇥ N (sc (ts) | µ (ts) ,Σc) + (1 − p (ts)) ⇥ N

⇣
sc (ts) | µ (ts) , eΣc

⌘⌘⌘z(ts)

⇥
⇣
(1 − φ (ts)) ⇥

⇣
p (ts) ⇥ N

⇣
sc (ts) | µ (ts) , σ

2
µI + Σc

⌘
+ (1 − p (ts)) ⇥ N

⇣
sc (ts) | µ (ts) , σ

2
µI + eΣc

⌘⌘⌘1−z(ts)

= Bern

⇣
φ̃ (ts)

⌘
,

where

φ̃ (ts) =
φ1 (ts)

φ1 (ts) + φ2 (ts)
,

φ1 (ts) = φ (ts)⇥
⇣
p (ts)⇥N (sc (ts) | µ (ts) ,Σc) + (1− p (ts))⇥N

⇣
sc (ts) | µ (ts) , eΣc

⌘⌘
,

φ2 (ts) = (1− φ (ts))⇥
⇣
p (ts)⇥N

(
sc (ts) | µ (ts) , σ

2
µI+Σc

)
+ (1− p (ts))⇥N

⇣
sc (ts) | µ (ts) , σ

2
µI+

eΣc

⌘⌘
,

and φ (ts) = Φ
(
x (ts)

0
β +w (ts)

0
α
)
.

Markov-chain Monte Carlo Algorithm

Revise steps in the Markov chain Monte Carlo algorithm presented in Appendix B2 as follows:

1. Update Steps 4(a), 4(b), 4(f), 4(h), 5, 6, and 8 to reflect times ts at which telemetry
locations are collected (e.g., s (ts), h (ts), µ (ts), p (ts), etc.).

2. Update Steps 7(a)-7(c) to reflect times ty at which ancillary behavioral data are col-
lected (e.g., y (ty), v (ty), x (ty), w (ty)). Note that updates for α and β (Steps
7(a) and 7(b)) are based only on v (ty) and the covariates measured at times ty (i.e.,
X ⌘ {x (ty) : ty 2 T } and W ⌘ {w (ty) : ty 2 T }.
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3. Update Steps 4(a), 4(f), 5, and 6 to reflect the latent behavioral state z (ts) (i.e., change
instances of y (t) to z (ts)).

4. Estimate the latent behavioral state z (ts) by augmenting Step 7 with:

(a) Calculate:

φ (ts)
(k) = Φ

⇣
x (ts)

0
β(k) +w (ts)

0
α(k)

⌘
,

where Φ is the standard normal cumulative distribution function.

(b) Sample z (ts)
(k), for times ts 2 T , using a Gibbs step:

⇥
z (ts)

(k) | ·
⇤

⇠ Bern

 
φ1 (ts)

(k)

φ1 (ts)
(k) + φ2 (ts)

(k)

!
,

where

φ1 (ts)
(k) = φ (ts)

(k) ⇥
⇣
p (ts)⇥N

⇣
sc (ts) | µ (ts)

(k) ,Σ
(k)
c

⌘
+ (1− p (ts))⇥N

⇣
sc (ts) | µ (ts)

(k) ,HΣ
(k)
c H0

⌘⌘

and

φ2 (ts)
(k)

=
⇣
1 − φ (ts)

(k)
⌘
⇥

⇣
p (ts) ⇥ N

⇣
sc (ts) | µ (ts)

(k)
,Q

(k)
c

⌘
+ (1 − p (ts)) ⇥ N

⇣
sc (ts) | µ (ts)

(k)
,HQ

(k)
c H

0
⌘⌘

.

Ancillary Behavioral Data is Absent

Consider the case when ancillary behavioral data (y (t)) are not available. Let z (t), for t 2 T ,
denote the latent behavioral state corresponding to the time an observed telemetry location
is recorded. The behavioral state z (t) can be predicted with the following modifications to
the model presented in Appendix B1.

Model Statement

Update the model statement in Appendix B1 to estimate the latent behavioral state by
replacing all instances of y (t) with z (t) as follows:

sc (t) ⇠

8
>>><
>>>:

N (µ (t) ,Σc), with prob. p (t) , z (t) = 1

N (µ (t) , eΣc), with prob. 1− p (t) , z (t) = 1

N (µ (t) , σ2
µI+Σc), with prob. p (t) , z (t) = 0

N (µ (t) , σ2
µI+

eΣc), with prob. 1− p (t) , z (t) = 0

z (t) =

(
0, v (t)  0

1, v (t) > 0
.
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Full-conditional Distributions

Auxiliary variable for the latent behavioral process (v (t)):

[v (t) | ·] / [z (t) | v (t)] [v (t) | α,β]

/
(
1{z(t)=0}1{v(t)0} + 1{z(t)=1}1{v(t)>0}

)
⇥N

(
v (t) | x (t)0 β +w (t)0 α,1

)

=

(
T N

(
x (t)0 β +w (t)0 α,1

)
0
−1, z (t) = 0

T N
(
x (t)0 β +w (t)0 α,1

)
1
0 , z (t) = 1

.

Prediction of the latent behavioral state (z (t)):

[z (t) | ·] /
h
sc (t) | µ (t) , z (t) ,Σc, eΣc, σµ

i
[z (t) | v (t)]

/
h
sc (t) | µ (t) ,Σc, eΣc

iz(t) h
sc (t) | µ (t) , σ2

µI+Σc, σ
2
µI+

eΣc

i1−z(t)
Bern (z (t) | v (t))

/
⇣
p (t)⇥N (sc (t) | µ (t) ,Σc) + (1− p (t))⇥N

⇣
sc (t) | µ (t) , eΣc

⌘⌘z(t)

⇥
⇣
p (t)⇥N

(
sc (t) | µ (t) , σ2

µI+Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µ (t) , σ2

µI+
eΣc

⌘⌘1−z(t)

⇥φ (t) z(t) (1− φ (t)) 1−z(t)

/
⇣
φ (t)⇥

⇣
p (t)⇥N (sc (t) | µ (t) ,Σc) + (1− p (t))⇥N

⇣
sc (t) | µ (t) , eΣc

⌘⌘⌘z(t)

⇥
⇣
(1− φ (t))⇥

⇣
p (t)⇥N

(
sc (t) | µ (t) , σ2

µI+Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µ (t) , σ2

µI+
eΣc

⌘⌘⌘1−z(t)

= Bern
⇣
φ̃ (t)

⌘
,

where

φ̃ (t) =
φ1 (t)

φ1 (t) + φ2 (t)
,

φ1 (t) = φ (t)⇥
⇣
p (t)⇥N (sc (t) | µ (t) ,Σc) + (1− p (t))⇥N

⇣
sc (t) | µ (t) , eΣc

⌘⌘
,

φ2 (t) = (1− φ (t))⇥
⇣
p (t)⇥N

(
sc (t) | µ (t) , σ2

µI+Σc

)
+ (1− p (t))⇥N

⇣
sc (t) | µ (t) , σ2

µI+
eΣc

⌘⌘
,

and φ (t) = Φ
(
x (t)0 β +w (t)0 α

)
.

Markov-chain Monte Carlo Algorithm

Revise steps in the Markov chain Monte Carlo algorithm presented in Appendix B2 as follows:

1. Update Steps 4(a), 4(f), 5, 6, and 7(c) to reflect the latent behavioral state z (t) (i.e.,
change instances of y (t) to z (t)).

2. Steps 7(a) and 7(b) remain the same as before.

3. Estimate the latent behavioral state z (t) by augmenting Step 7 with:

(a) Calculate:

φ (t)(k) = Φ
⇣
x (t)0 β(k) +w (t)0 α(k)

⌘
,

where Φ is the standard normal cumulative distribution function.
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(b) Sample z (t) (k), for t 2 T , using a Gibbs step:

⇥
z (t) (k) | ·

⇤
⇠ Bern

 
φ1 (t)

(k)

φ1 (t)
(k) + φ2 (t)

(k)

!
,

where

φ1 (t)
(k) = φ (t)(k) ⇥

⇣
p (t)⇥N

⇣
sc (t) | µ (t)(k) ,Σ

(k)
c

⌘
+ (1− p (t))⇥N

⇣
sc (t) | µ (t)(k) ,HΣ

(k)
c H0

⌘⌘

and

φ2 (t)
(k) =

⇣
1− φ (t)(k)

⌘
⇥
⇣
p (t)⇥N

⇣
sc (t) | µ (t)(k) ,Q

(k)
c

⌘
+ (1− p (t))⇥N

⇣
sc (t) | µ (t)(k) ,HQ

(k)
c H0

⌘⌘
.
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APPENDIX C

Supplementary Material for Chapter 4
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Appendix C1. Model statement, posterior distribution, full-conditional distributions, and
pseudocode detailing a Markov chain Monte Carlo algorithm to implement the model for
haul-out site location estimation. We represented S, the spatial domain of possible haul-out
sites, as a 100-m resolution raster consisting of cells along the shoreline of Kodiak Island,
and let the locations of potential haul-out sites (µij) assume values corresponding to the
centroids of cells in S.

In the posterior and full-conditional distributions below, we use bracket notation to denote
a probability distribution. For example, [x] indicates the probability distribution of x. Sim-
ilarly, [x|y] indicates the probability distribution of x given the parameter y. The notation
“·” represents the data and other parameters in the model.

Model Statement

sic (t) ⇠

8
>>>>><
>>>>>:

N (µi (t) ,Σic) , with prob. 0.5, yi (t) = 1

N
⇣
µi (t) , eΣic

⌘
, with prob. 0.5, yi (t) = 1

N (µi (t) , τ
2
i I+Σic) , with prob. 0.5, yi (t) = 0

N
⇣
µi (t) , τ

2
i I+

eΣic

⌘
, with prob. 0.5, yi (t) = 0

Σic = σ2
ic


1 ρic

p
aic

ρic
p
aic aic

]

eΣic = σ2
ic


1 −ρic

p
aic

−ρic
p
aic aic

]

µi (t) ⇠
JX

j=1

πijδµij

πij = ηij
Y

l<j

(1− ηil)

ηij ⇠ Beta (1, θi)

µij ⇠ fS (Si)

θi ⇠ Gamma (rθ, qθ)

log (τi) ⇠ N
(
µτ , σ

2
τ

)

σic ⇠ Unif (lσ, uσ)

aic ⇠ Unif (la, ua)

ρic ⇠ Unif (lρ, uρ) ,

where J indicates the upper bound to the truncation approximation of the Dirichlet process
(Sethuraman 1994, Ishwaran and James 2001), Si = {sic (t) , 8t} is a matrix of the observed
telemetry locations for individual i, and fS (Si) is the kernel density estimate of Si truncated
and normalized over S.
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Posterior Distribution

[Mi,ηi, θi, τi,σi,ai,ρi | Si,yi] /
Y

t2T

JY

j=1

h
sic (t) | µi (t) , yi (t) , τ

2
i ,Σic, eΣic

i ⇥
µi (t) | µij , ηij

⇤
⇥

⇥
µij | fS (Si)

⇤
[ηij | θi] [θi] [τi] [σi] [ai] [ρi] ,

where Mi = {µi (t) , 8t} is a matrix of “functional” haul-out sites associated with the teleme-
try locations for individual i (Mi has the same dimensions as Si); ηi ⌘ (ηi1, . . . , ηiJ)

0 is a
vector of stick-breaking weights; yi = {yi (t) , 8t} is a vector of behavioral (wet/dry) data
for individual i; and σi ⌘ (σi3, σi2, σi1, σi0, σiA, σiB)

0, ai ⌘ (ai3, ai2, ai1, ai0, aiA, aiB)
0, and

ρ ⌘ (ρi3, ρi2, ρi1, ρi0, ρiA, ρiB)
0 are vectors of parameters that describe Argos telemetry loca-

tion error.

Full-Conditional Distributions

Location of “potential” haul-out sites
(
µij

)
:

⇥
µij | ·

⇤
/

Y

t2T

h
sic (t) | µi (t) , yi (t) ,Σic, eΣic, τ

2
i

i1{µi(t)=µij} ⇥µij | fS (Si)
⇤

/
Y

{t2T :µi(t)=µij}

⇢h
sic (t) | µij ,Σic, eΣic

iyi(t) h
sic (t) | µij , τ

2
i I+Σic, τ

2
i I+

eΣic

i1−yi(t)
}

⇥
⇥
µij | fS (Si)

⇤

/
Y

{t2T :µi(t)=µij}

⇢⇣
0.5⇥

⇣
N
(
sic (t) | µij ,Σic

)
+N

⇣
sic (t) | µij , eΣic

⌘⌘⌘yi(t)

⇥
⇣
0.5⇥

⇣
N
(
sic (t) | µij , τ

2
i I+Σic

)
+N

⇣
sic (t) | µij , τ

2
i I+

eΣic

⌘⌘⌘1−yi(t)
}

⇥
⇥
µij | fS (Si)

⇤

Note that the product is over all observed telemetry locations (sic (t)) allocated to haul-out
site µij.
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Stick-breaking weights (ηij):

[ηij | ·] /
Y

t2T

[µi (t) | πij]
1{µi(t)=µij}

JY

l=j+1

Y

t2T

[µi (t) | πil]
1{µi(t)=µil} [ηij | 1, θi]

/
Y

t2T

π
1{µi(t)=µij}
ij

JY

l=j+1

Y

t2T

π
1{µi(t)=µil}
il Beta (ηij | 1, θi)

/ π

P
t2T

 
1{µi(t)=µij}

!

ij

JY

l=j+1

π

P
t2T

⇣
1{µi(t)=µil}

⌘

il η1−1
ij (1− ηij)

θi−1

/
 
ηij
Y

l<j

(1− ηil)

!nij JY

l=j+1

 
ηil
Y

m<l

(1− ηil)

!nil

(1− ηij)
θi−1

/ ηij
nij

JY

l=j+1

 
Y

m<l

(1− ηil)

!nil

(1− ηij)
θi−1

/ ηij
nij (1− ηij)

PJ
l=j+1 nil (1− ηij)

θi−1

/ ηij
nij (1− ηij)

PJ
l=j+1 nil+θi−1

= Beta

 
nij + 1,

JX

l=j+1

nil + θi

!
,

where nij =
P

t2T

⇣
1{µi(t)=µij}

⌘
, i.e., the number of observed telemetry locations (sic (t))

allocated to haul-out site µij.
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Dirichlet process concentration parameter (θi):

[θi | ·] /
J−1Y

j=1

[ηij | 1, θi] [θi | rθ, qθ]

/
J−1Y

j=1

Beta (ηij | 1, θi)Gamma (θi | rθ, qθ)

/
J−1Y

j=1

Γ (1 + θi)

Γ (1) Γ (θi)
η1−1
ij (1− ηij)

θi−1 θrθ−1
i exp {−qθθi}

/
✓

θiΓ (θi)

Γ (1) Γ (θi)

◆J−1

θrθ−1
i exp

(
−qθθi + log

 
J−1Y

j=1

(1− ηij)
θi−1

!)

/ θJ−1+rθ−1
i exp

(
−qθθi +

J−1X

j=1

⇣
log (1− ηij)

θi log (1− ηij)
−1
⌘)

/ θJ−1+rθ−1
i exp

(
−qθθi +

J−1X

j=1

log (1− ηij)
θi

)

/ θJ−1+rθ−1
i exp

(
−qθθi + θi

J−1X

j=1

log (1− ηij)

)

/ θJ−1+rθ−1
i exp

(
−θi

 
qθ −

J−1X

j=1

log (1− ηij)

!)

= Gamma

 
rθ + J − 1, qθ −

J−1X

j=1

log (1− ηij)

!
.

Note that the product is over j = 1, . . . , J−1 because ηiJ = 1 in the truncation approximation
of a Dirichlet process (Sethuraman 1994, Ishwaran and James 2001).

Location of “functional” haul-out sites (µi (t)):

[µi (t) | ·] /
h
sic (t) | µi (t) , yi (t) ,Σic, eΣic, τ

2
i

i
[µi (t) | πi, δi]

/
JX

j=1

πijδµij

h
sic (t) | µij, yi (t) ,Σic, eΣic, τ

2
i

i
,

where πi = (πi1, . . . , πiJ) and δi = (δµi1
, . . . , δµiJ

). We introduce an indicator variable for
the latent class status, hi (t) 2 {1, . . . , J}, that assigns each telemetry location sic (t) to one
of the potential haul-out sites µij, for j = 1, . . . , J . In other words, µi (t) = µi,hi(t)

. The
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update proceeds just as in multinomial sampling:

[hi (t) | ·] ⇠ Cat

0
B@

πi1

h
sic (t) | µi1,Σic, eΣic

iyi(t) h
sic (t) | µi1, τ

2
i I+Σic, τ

2
i I+

eΣic

i1−yi(t)

PJ
j=1 πij

h
sic (t) | µij ,Σic, eΣic

iyi(t) h
sic (t) | µij , τ

2
i I+Σic, τ2i I+

eΣic

i1−yi(t)
, · · · ,

πiJ

h
sic (t) | µiJ ,Σic, eΣic

iyi(t) h
sic (t) | µiJ , τ

2
i I+Σic, τ

2
i I+

eΣic

i1−yi(t)

PJ
j=1 πij

h
sic (t) | µij ,Σic, eΣic

iyi(t) h
sic (t) | µij , τ

2
i I+Σic, τ2i I+

eΣic

i1−yi(t)

1
CA

⇠ Cat

✓
ai1
bi

, · · · , aiJ
bi

◆
,

where aij = πij ⇥
⇣
0.5⇥

⇣
N
(
sic (t) | µij,Σic

)
+N

⇣
sic (t) | µij, eΣic

⌘⌘⌘yi(t)
⇥

⇣
0.5⇥

⇣
N
(
sic (t) | µij, τ

2
i I+Σic

)
+N

⇣
sic (t) | µij, τ

2
i I+

eΣic

⌘⌘⌘1−yi(t)

and bi =
PJ

j=1

⇢
πij

⇣
0.5⇥

⇣
N
(
sic (t) | µij,Σic

)
+N

⇣
sic (t) | µij, eΣic

⌘⌘⌘yi(t)
⇥

⇣
0.5⇥

⇣
N
(
sic (t) | µij, τ

2
i I+Σic

)
+N

⇣
sic (t) | µij, τ

2
i I+

eΣic

⌘⌘⌘1−yi(t)
}

.

Animal movement parameter (τi):

[τi | ·] /
Y

t2T

h
sic (t) | µi (t) , yi (t) ,Σic, eΣic, τ

2
i

i ⇥
τi | µτ , σ

2
τ

⇤

/
Y

t2T

h
sic (t) | µi (t) ,Σic, eΣic, τ

2
i

i1−yi(t) ⇥
τi | µτ , σ

2
τ

⇤

/
Y

{t2T :yi(t)=0}

0.5⇥
⇣
N
(
sic (t) | µi (t) , τ

2
i I+Σic

)
+N

⇣
sic (t) | µi (t) , τ

2
i I+

eΣic

⌘⌘
⇥

N
(
log (τi) | log (µτ ) , σ

2
τ

)
.

Note that the product is over all observed telemetry locations (sic (t)) that are recorded when
the individual is at-sea (i.e., yi (t) = 0).

Longitudinal telemetry measurement error (σic):

[σic | ·] /
Y

t2T

h
sic (t) | µi (t) , yi (t) ,Σic, eΣic, τ

2
i

i1{sic(t):t2Tc} [σic | lσ , uσ ]

/
Y

t2Tc

⇢h
sic (t) | µi (t) ,Σic, eΣic

iyi(t) h
sic (t) | µi (t) , τ

2
i I+Σic, τ

2
i I+

eΣic

i1−yi(t)
}
[σic | lσ , uσ ]

/
Y

t2Tc

⇢⇣
0.5⇥

⇣
N (sic (t) | µi (t) ,Σic) +N

⇣
sic (t) | µi (t) ,

eΣic

⌘⌘⌘yi(t)
⇥

⇣
0.5⇥

⇣
N
(
sic (t) | µi (t) , τ

2
i I+Σic

)
+N

⇣
sic (t) | µi (t) , τ

2
i I+

eΣic

⌘⌘⌘1−yi(t)
}

⇥

Unif (σic | lσ , uσ) .
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Note that Tc defines the times at which telemetry locations in Argos location class c were
recorded. In other words, the product is over all observed telemetry locations (sic (t)) in
Argos location quality class c.

Adjustment for latitudinal telemetry measurement error (aic):

[aic | ·] /
Y

t2T

h
sic (t) | µi (t) , yi (t) ,Σic, eΣic, τ

2
i

i1{sic(t):t2Tc} [aic | la, ua]

/
Y

t2Tc

⇢h
sic (t) | µi (t) ,Σic, eΣic

iyi(t) h
sic (t) | µi (t) , τ

2
i I+Σic, τ

2
i I+

eΣic

i1−yi(t)
}
[aic | la, ua]

/
Y

t2Tc

⇢⇣
0.5⇥

⇣
N (sic (t) | µi (t) ,Σic) +N

⇣
sic (t) | µi (t) ,

eΣic

⌘⌘⌘yi(t)
⇥

⇣
0.5⇥

⇣
N
(
sic (t) | µi (t) , τ

2
i I+Σic

)
+N

⇣
sic (t) | µi (t) , τ

2
i I+

eΣic

⌘⌘⌘1−yi(t)
}

⇥

Unif (aic | la, ua) .

Note that Tc defines the times at which telemetry locations in Argos location class c were
recorded. In other words, the product is over all observed telemetry locations (sic (t)) in
Argos location quality class c.

Correlation between longitudinal and latitudinal telemetry measurement error
(ρic):

[ρic | ·] /
Y

t2T

h
sic (t) | µi (t) , yi (t) ,Σic, eΣic, τ

2
i

i1{sic(t):t2Tc} [ρic | lρ, uρ]

/
Y

t2Tc

⇢h
sic (t) | µi (t) ,Σic, eΣic

iyi(t) h
sic (t) | µi (t) , τ

2
i I+Σic, τ

2
i I+

eΣic

i1−yi(t)
}
[ρic | lρ, uρ]

/
Y

t2Tc

⇢⇣
0.5⇥

⇣
N (sic (t) | µi (t) ,Σic) +N

⇣
sic (t) | µi (t) ,

eΣic

⌘⌘⌘yi(t)
⇥

⇣
0.5⇥

⇣
N
(
sic (t) | µi (t) , τ

2
i I+Σic

)
+N

⇣
sic (t) | µi (t) , τ

2
i I+

eΣic

⌘⌘⌘1−yi(t)
}

⇥

Unif (ρic | lρ, uρ) .

Note that Tc defines the times at which telemetry locations in Argos location class c were
recorded. In other words, the product is over all observed telemetry locations (sic (t)) in
Argos location quality class c.

MCMC Algorithm for Parameter Estimation

One can implement a MCMC algorithm to estimate the parameters of the observation and
process models using the sequence of steps outlined below. Proposal distributions for all
parameters with non-conjugate full-conditional distributions (i.e., µij, τi, σic, aic, and ρic)
are assumed to be symmetric and updates proceed using Metropolis sampling; therefore,
the proposal distribution is not factored into the associated ratios as in Metropolis-Hastings
sampling. Also note that normalizing constants cancel in the Metropolis ratios and thus may
be omitted for clarity.
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1. Define initial values for: µ
(0)
ij and π

(0)
ij for j = 1, . . . , J ; θi

(0); τ
(0)
i ; and σ

(0)
ic , a

(0)
ic , and

ρ
(0)
ic for c = 3, 2, 1, 0, A, and B.

2. For each Argos location quality class, let

Σ
(0)
ic =

⇣
σ
(0)
ic

⌘2
2
4 1 ρ

(0)
ic

q
a
(0)
ic

ρ
(0)
ic

q
a
(0)
ic a

(0)
ic

3
5

and

eΣ(0)

ic =
⇣
σ
(0)
ic

⌘2
2
4 1 −ρ

(0)
ic

q
a
(0)
ic

−ρ
(0)
ic

q
a
(0)
ic a

(0)
ic

3
5

= HΣ
(0)
ic H

0,

where

H =


1 0
0 −1

]
.

Also let

Q
(0)
ic = Σ

(0)
ic +

⇣
τ
(0)
i

⌘2
I

and

eQ(0)
ic = eΣ(0)

ic +
⇣
τ
(0)
i

⌘2
I

= HQ
(0)
ic H

0.

3. Set k = 1.

4. Update the spatial process model parameters (i.e., hi (t), ηij, θi, and µij ).

(a) Sample hi (t)
(k):

h
hi (t)

(k) | ·
i

⇠ Cat

✓
aij
bi

, . . . ,
aiJ
bi

◆
,

where aij = π
(k−1)
ij ⇥

⇣
N
⇣
sic (t) | µ

(k−1)
ij ,Σ

(k−1)
ic

⌘
+N

⇣
sic (t) | µ

(k−1)
ij , eΣ(k−1)

ic

⌘⌘yi(t)
⇥

⇣
N
⇣
sic (t) | µ

(k−1)
ij ,Q

(k−1)
ic

⌘
+N

⇣
sic (t) | µ

(k−1)
ij ,HQ

(k−1)
ic H0

⌘⌘1−yi(t)

and bi =
PJ

j=1

⇢
π
(k−1)
ij

⇣
N
⇣
sic (t) | µ

(k−1)
ij ,Σ

(k−1)
ic

⌘
+N

⇣
sic (t) | µ

(k−1)
ij , eΣ(k−1)

ic

⌘⌘yi(t)
⇥

⇣
N
⇣
sic (t) | µ

(k−1)
ij ,Q

(k−1)
ic

⌘
+N

⇣
sic (t) | µ

(k−1)
ij ,HQ

(k−1)
ic H0

⌘⌘1−yi(t)
}

.

(b) Tabulate cluster membership for j = 1, . . . , J :

n
(k)
ij =

X

t2T

1{hi(t)(k)=j}.
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In other words, n
(k)
ij denotes the number of observed telemetry locations (sic (t))

allocated to haul-out site µ
(k−1)
ij .

(c) Update η
(k−1)
ij , for j = 1, . . . , J − 1, using a Gibbs step:

h
η
(k)
ij | ·

i
⇠ Beta

 
1 + n

(k)
ij , θ

(k−1)
i +

JX

l=j+1

n
(k)
il

!
.

Set η
(k)
iJ = 1.

(d) Update π
(k−1)
ij , for j = 1, . . . J , which is calculated as:

π
(k)
ij = η

(k)
ij

Y

l<j

⇣
1− η

(k)
il

⌘
.

Letting η
(k)
iJ = 1 ensures

PJ
j=1 π

(k)
ij = 1.

(e) Update θ
(k−1)
i using a Gibbs step:

h
θ
(k)
i | ·

i
⇠ Gamma

 
rθ + J − 1, qθ −

J−1X

j=1

log
⇣
1− η

(k)
ij

⌘!
.

(f) Update µ
(k−1)
ij , for each j such that n

(k)
ij > 0, using Metropolis sampling. Sample

µij
(⇤) from a proposal distribution

h
µ

(⇤)
ij |µ(k−1)

ij

i
. Depending on the nature of S

(e.g., linear support like a coastline), proposals generated from

N
⇣
µ

(⇤)
ij | µ(k−1)

ij , τ 2µI
⌘
, where τ 2µ is a tuning parameter, may rarely occur in S.

Therefore, sample all possible locations M 2 S with probability proportional to

N
⇣
M | µ(k−1)

ij , τ 2µI
⌘
, thus guaranteeing µ

(⇤)
ij 2 S. Calculate the Metropolis ratio

as

rµ =

0
BB@

Q
{t2T :hi(t)

(k)=j}

⇢⇣
N
⇣
sic (t) | µ

(⇤)
ij ,Σ

(k−1)
ic

⌘
+N

⇣
sic (t) | µ

(⇤)
ij ,HΣ

(k−1)
ic H0

⌘⌘yi(t)

Q
{t2T :hi(t)

(k)=j}

⇢⇣
N
⇣
sic (t) | µ

(k−1)
ij ,Σ

(k−1)
ic

⌘
+N

⇣
sic (t) | µ

(k−1)
ij ,HΣ

(k−1)
ic H0

⌘⌘yi(t)

⇥

⇣
N
⇣
sic (t) | µ

(⇤)
ij ,Q

(k−1)
ic

⌘
+N

⇣
sic (t) | µ

(⇤)
ij ,HQ

(k−1)
ic H0

⌘⌘1−yi(t)
}

⇣
N
⇣
sic (t) | µ

(k−1)
ij ,Q

(k−1)
ic

⌘
+N

⇣
sic (t) | µ

(k−1)
ij ,HQ

(k−1)
ic H0

⌘⌘1−yi(t)
}

1
CCA

⇥

0
@

h
µ

(⇤)
ij |fS (Si)

i

h
µ

(k−1)
ij |fS (Si)

i

1
A .

Note that the product is over all observed telemetry locations (sic (t)) that are

allocated to haul-out site µij (i.e., t 2 T such that hi (t)
(k) = j). If rµ > u, where

u ⇠ Uniform(0,1), let µ
(k)
ij = µ

(⇤)
ij . Otherwise, let µ

(k)
ij = µ

(k−1)
ij if rµ < u, or if

µ
(⇤)
ij /2 S.
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(g) For each j such that n
(k)
ij = 0 (i.e., potential haul-out sites µ

(k−1)
ij with zero

membership), sample µij
(k) from the prior

h
µ

(k)
ij |fS (Si)

i
. As in Step 4(f), sample

all possible locations M 2 S with probability proportional to fS (Si) to ensure

µ
(k)
ij 2 S.

(h) Use hi (t)
(k) to map the location of haul-out sites µ

(k)
ij , for j = 1, . . . , J , to teleme-

try locations sic (t), for times t 2 T :

µi (t)
(k) = µ

(k)

i,hi(t)
(k) .

5. Update τ
(k−1)
i using Metropolis sampling. Sample τ

(⇤)
i from a proposal distributionh

τ
(⇤)
i |τ (k−1)

i

i
(e.g., N

⇣
τ
(⇤)
i |τ (k−1)

i , τ 2τ I
⌘
, where τ 2τ is a tuning parameter). If τ

(⇤)
i ≥ 0,

let

Q
(⇤)
ic = Σ

(k−1)
ic +

⇣
τ
(⇤)
i

⌘2
I

for c = 3, 2, 1, 0, A, and B. Calculate the Metropolis ratio as

rτ =

0
@

Q
{t2T :yi(t)=0}

n
N
⇣
sic (t) | µi (t)

(k)
,Q

(⇤)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HQ

(⇤)
ic H0

⌘o

Q
{t2T :yi(t)=0}

n
N
⇣
sic (t) | µi (t)

(k)
,Q

(k−1)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HQ

(k−1)
ic H

⌘o

1
A

⇥

0
@

N
⇣
log
⇣
τ
(⇤)
i

⌘
| log (µτ ) , σ

2
τ

⌘

N
⇣
log
⇣
τ
(k−1)
i

⌘
| log (µτ ) , σ2

τ

⌘

1
A .

Note that the product is over all t 2 T such that yi (t) = 0. If rτ > u, where

u ⇠ Uniform(0,1), let τ
(k)
i = τ

(⇤)
i and Q

(k)
ic = Q

(⇤)
ic . Otherwise, let τ

(k)
i = τ

(k−1)
i and

Q
(k)
ic = Q

(k−1)
ic if rτ < u, or if τ

(⇤)
i < 0.

6. For each Argos location quality class c = 3, 2, 1, 0, A, and B, update the observation
model parameters related to telemetry measurement error (i.e., σi, ai, and ρi).

(a) Let Tc define the times at which telemetry locations in Argos location class c were
recorded.

(b) Update σ
(k−1)
ic using Metropolis sampling. Sample σ

(⇤)
ic from a proposal distribu-

tion
h
σ
(⇤)
ic |σ(k−1)

ic

i
(e.g., N

⇣
σ
(⇤)
ic |σ(k−1)

ic , τ 2σ

⌘
, where τ 2σ is a tuning parameter). If

σ
(⇤)
ic 2 [lσ, uσ], let

Σ
(⇤)
ic =

⇣
σ
(⇤)
ic

⌘2
2
4 1 ρ

(k−1)
ic

q
a
(k−1)
ic

ρ
(k−1)
ic

q
a
(k−1)
ic a

(k−1)
ic

3
5

and

Q
(⇤)
ic = Σ

(⇤)
ic +

⇣
τ
(k)
i

⌘2
I.

161



Calculate the Metropolis ratio as

rσ =

0
BB@

Q
t2Tc

⇢⇣
N
⇣
sic (t) | µi (t)

(k)
,Σ

(⇤)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HΣ

(⇤)
ic H0

⌘⌘yi(t)

Q
t2Tc

⇢⇣
N
⇣
sic (t) | µi (t)

(k)
,Σ

(k−1)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HΣ

(k−1)
ic H0

⌘⌘yi(t)

⇥

⇣
N
⇣
sic (t) | µi (t)

(k)
,Q

(⇤)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HQ

(⇤)
ic H0

⌘⌘1−yi(t)
}

⇣
N
⇣
sic (t) | µi (t)

(k)
,Q

(k)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HQ

(k)
ic H0

⌘⌘1−yi(t)
}

1
CCA .

If rσ > u, where u ⇠ Uniform(0,1), let σ
(k)
ic = σ

(⇤)
ic , Σ

(k)
ic = Σ

(⇤)
ic , and Q

(k)
ic = Q

(⇤)
ic .

Otherwise, let σ
(k)
ic = σ

(k−1)
ic , Σ

(k)
ic = Σ

(k−1)
ic , and Q

(k)
ic = Q

(k)
ic = Σ

(k−1)
ic +

⇣
τ
(k)
i

⌘2
I

if rσ < u, or if σ
(⇤)
ic /2 [lσ, uσ].

(c) Update a
(k−1)
ic using Metropolis sampling. Sample a

(⇤)
ic from a proposal distributionh

a
(⇤)
ic |a(k−1)

ic

i
(e.g., N

⇣
a
(⇤)
ic |a(k−1)

ic , τ 2a

⌘
, where τ 2a is a tuning parameter). If a

(⇤)
ic 2

[la, ua], let

Σ
(⇤)
ic =

⇣
σ
(k)
ic

⌘2
2
4 1 ρ

(k−1)
ic

q
a
(⇤)
ic

ρ
(k−1)
ic

q
a
(⇤)
ic a

(⇤)
ic

3
5

and

Q
(⇤)
ic = Σ

(⇤)
ic +

⇣
τ
(k)
i

⌘2
I.

Calculate the Metropolis ratio as

ra =

0
BB@

Q
t2Tc

⇢⇣
N
⇣
sic (t) | µi (t)

(k)
,Σ

(⇤)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HΣ

(⇤)
ic H0

⌘⌘yi(t)

Q
t2Tc

⇢⇣
N
⇣
sic (t) | µi (t)

(k)
,Σ

(k)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HΣ

(k)
ic H0

⌘⌘yi(t)

⇥

⇣
N
⇣
sic (t) | µi (t)

(k)
,Q

(⇤)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HQ

(⇤)
ic H0

⌘⌘1−yi(t)
}

⇣
N
⇣
sic (t) | µi (t)

(k)
,Q

(k)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HQ

(k)
ic H0

⌘⌘1−yi(t)
}

1
CCA .

If ra > u, where u ⇠ Uniform(0,1), let a
(k)
ic = a

(⇤)
ic , Σ

(k)
ic = Σ

(⇤)
ic , and Q

(k)
ic = Q

(⇤)
ic .

Otherwise, let a
(k)
ic = a

(k−1)
ic , Σ

(k)
ic = Σ

(k)
ic , and Q

(k)
ic = Q

(k)
ic if ra < u, or if

a
(⇤)
ic /2 [la, ua].

(d) Update ρ
(k−1)
ic using Metropolis sampling. Sample ρ

(⇤)
ic from a proposal distributionh

ρ
(⇤)
ic |ρ(k−1)

ic

i
(e.g., N

⇣
ρ
(⇤)
ic |ρ(k−1)

ic , τ 2ρ

⌘
, where τ 2ρ is a tuning parameter). If ρ

(⇤)
ic 2

[lρ, uρ], let

Σ
(⇤)
ic =

⇣
σ
(k)
ic

⌘2
2
4 1 ρ

(⇤)
ic

q
a
(k)
ic

ρ
(⇤)
ic

q
a
(k)
ic a

(k)
ic

3
5
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and

Q
(⇤)
ic = Σ

(⇤)
ic +

⇣
τ
(k)
i

⌘2
I.

Calculate the Metropolis ratio as

rρ =

0
BB@

Q
t2Tc

⇢⇣
N
⇣
sic (t) | µi (t)

(k)
,Σ

(⇤)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HΣ

(⇤)
ic H0

⌘⌘yi(t)

Q
t2Tc

⇢⇣
N
⇣
sic (t) | µi (t)

(k)
,Σ

(k)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HΣ

(k)
ic H0

⌘⌘yi(t)

⇥

⇣
N
⇣
sic (t) | µi (t)

(k)
,Q

(⇤)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HQ

(⇤)
ic H0

⌘⌘1−yi(t)
}

⇣
N
⇣
sic (t) | µi (t)

(k)
,Q

(k)
ic

⌘
+N

⇣
sic (t) | µi (t)

(k)
,HQ

(k)
ic H0

⌘⌘1−yi(t)
}

1
CCA .

If rρ > u, where u ⇠ Uniform(0,1), let ρ
(k)
ic = ρ

(⇤)
ic , Σ

(k)
ic = Σ

(⇤)
ic , and Q

(k)
ic = Q

(⇤)
ic .

Otherwise, let ρ
(k)
ic = ρ

(k−1)
ic , Σ

(k)
ic = Σ

(k)
ic , and Q

(k)
ic = Q

(k)
ic if rρ < u, or if

ρ
(⇤)
ic /2 [lρ, uρ].

(e) Repeat Steps 6(a) through 6(d) for each error class c.

7. Save µi (t)
(k) for t 2 T ; θ

(k)
i ; τ

(k)
i ; πij for j = 1, . . . , J ; and σ

(k)
ic , a

(0)
ic , and ρ

(0)
ic for

c = 3, 2, 1, 0, A, and B.

8. Set k = k + 1 and return to Step 4. The algorithm is iterated by repeating Steps 4
through 7 until a sufficiently large sample has been obtained from which to approximate
the posterior distribution.
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Appendix C2. Model statement, posterior distribution, full-conditional distributions, and
pseudocode detailing a Markov chain Monte Carlo algorithm for estimating the parameters
in the model for examining haul-out site selection.

In the posterior and full-conditional distributions below, we use bracket notation to denote
a probability distribution. For example, [x] indicates the probability distribution of x. Sim-
ilarly, [x|y] indicates the probability distribution of x given the parameter y. The notation
“·” represents the data and other parameters in the model.

Model Statement

wij ⇠
(

Pois (λij) , zij = 1

0, zij = 0

zij ⇠ Bern (pi)

log (λij) = x0
ijβi

βi ⇠ N
(
µβ,Σβ

)

µβ ⇠ N
⇣
0, σ2

µβ
I
⌘

pi ⇠ Beta (α1,α2)

Σ−1
β ⇠ Wish

(
S−1
0 , ν

)

Posterior Distribution

⇥
B,µβ,p,Σβ | W,Z

⇤
/

NY

i=1

JiY

j=1

[wij | λik,βi]
⇥
βi | µβ,Σβ

⇤

⇥ [pi | α1,α2]
h
µβ | 0, σ2

µβ
I
i
[Σβ | S0, ν] ,

where B = {βi, 8i} is a matrix of regression coefficients for each individual i; p = (p1, . . . , pN)
is vector of probabilities; W = {wij, 8i, 8j} is a matrix containing the counts of telemetry
locations for each individual i allocated to each raster cell j in S; and Z = {zij, 8i, 8j} is a
matrix of indicator variables of the same dimension as W.
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Full-Conditional Distributions

Latent mixture component indicator variable (zij):

[zij | ·] / [wij | λij, zij] [zij | pi]
/ Pois (wij | λij)

zij 1
1−zij
{wij=0} (pi)

zij (1− pi)
1−zij

/
✓
(λij)

wij exp (−λij)

wij!

◆zij

(pi)
zij (1− pi)

1−zij

/ (exp (−λij))
zij (pi)

zij (1− pi)
1−zij

/ (pi ⇥ exp (−λij))
zij (1− pi)

1−zij

= Bern (p̃) ,

where

p̃ =
pi ⇥ exp (−λij)

pi ⇥ exp (−λij) + 1− pi
.

Note that zij is only estimated for instances where wij = 0 (zij = 1 when wij > 0).

Individual-level regression coefficients (βi):

[βi | ·] /
JiY

j=1

[wij | λij, zij]
⇥
βi | µβ,Σβ

⇤

/
JiY

j=1

Pois (wij | λij)
zij N

(
βi | µβ,Σβ

)
.

The update for βi proceeds using Metropolis-Hastings.
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Population-level regression coefficients
(
µβ

)
:

⇥
µβ | ·

⇤
/

NY

i=1

⇥
βi | µβ,Σβ

⇤ h
µβ | 0, σ2

µβ
I
i

/
NY

i=1

N
(
βi | µβ,Σβ

)
N
⇣
µβ | 0, σ2

µβ
I
⌘

/ exp

(
NX

i=1

✓
−1

2

(
βi − µβ

)0
Σ−1

β

(
βi − µβ

)◆
)

⇥ exp

⇢
−1

2

(
µβ − 0

)0 ⇣
σ2
µβ
I
⌘−1 (

µβ − 0
)}

/ exp

(
−1

2

 
−2

 
NX

i=1

β0
iΣ

−1
β

!
µβ + µ0

β

(
NΣ−1

β

)
µβ

!)

⇥ exp

⇢
−1

2

✓
µ0

β

⇣
σ2
µβ
I
⌘−1

µβ

◆}

/ exp

(
−1

2

 
−2

 
NX

i=1

β0
iΣ

−1
β

!
µβ + µ0

β

✓
NΣ−1

β +
⇣
σ2
µβ
I
⌘−1
◆
µβ

!)

= N (A−1b,A−1),

where A = NΣ−1
β +

⇣
σ2
µβ
I
⌘−1

and b0 = β0Σ−1
β , where β is the vector sum

PN
i=1 βi.

Probability associated with the mixture component indicator variables (p
(k)
i ):

[pi | ·] /
JiY

j=1

[zij | pi] [pi | α1,α2]

/
JiY

j=1

(pi)
zij (1− pi)

1−zij (pi)
α1−1 (1− pi)

α2−1

/ (pi)
PJi

j=1 zij (1− pi)
Ji−

PJi
j=1 zij (pi)

α1−1 (1− pi)
α2−1

= Beta

 
JiX

j=1

zij + α1, Ji −
JiX

j=1

zij + α2

!
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Precision matrix of the individual-level regression coefficients
(
Σ−1

β

)
:

⇥
Σ−1

β | ·
⇤

/
NY

i=1

⇥
βi | µβ,Σβ

⇤ ⇥
Σ−1

β | S−1
0 , ν

⇤

/
NY

i=1

N
(
βi | µβ,Σβ

)
Wish

(
Σ−1

β | S−1
0 , ν

)

/ |Σβ|−
N
2 exp

(
−1

2

NX

i=1

(
βi − µβ

)0
Σ−1

β

(
βi − µβ

)
)

⇥ |S0|−
ν
2

∣∣Σ−1
β

∣∣ ν−p−1
2 exp

⇢
−1

2
tr
(
S0Σ

−1
β

)}

/ |Σβ|−
N+ν−p−1

2 exp

(
−1

2

"
NX

i=1

tr
⇣(

βi − µβ

)0
Σ−1

β

(
βi − µβ

)⌘
+ tr

(
S0Σ

−1
β

)
#)

/ |Σβ|−
N+ν−p−1

2 exp

(
−1

2

"
NX

i=1

tr
⇣(

βi − µβ

) (
βi − µβ

)0
Σ−1

β

⌘
+ tr

(
S0Σ

−1
β

)
#)

/ |Σβ|−
N+ν−p−1

2 exp

(
−1

2

"
tr

 
NX

i=1

⇣(
βi − µβ

) (
βi − µβ

)0⌘
Σ−1

β + S0Σ
−1
β

!#)

/ |Σβ|−
N+ν−p−1

2 exp

(
−1

2

"
tr

 
NX

i=1

⇣(
βi − µβ

) (
βi − µβ

)0⌘
+ S0

!
Σ−1

β

#)

= Wish

0
@
 

NX

i=1

⇣(
βi − µβ

) (
βi − µβ

)0⌘
+ S0

!−1

, N + ν

1
A .

MCMC Algorithm for Parameter Estimation

One can implement a MCMC algorithm to estimate the parameters of the observation and
process models using the sequence of steps outlined below. Proposal distributions for all
parameters with non-conjugate full-conditional distributions (i.e., βi) are assumed to be
symmetric and updates proceed using Metropolis sampling; therefore, the proposal distri-
bution is not factored into the associated ratios as in Metropolis-Hastings sampling. Also
note that normalizing constants cancel in the Metropolis ratios and thus may be omitted for
clarity.

1. Define initial values for: β
(0)
i and p

(0)
i for i = 1, . . . , N ; µ

(0)
β ; and Σ

(0)
β .

2. Calculate λ
(0)
ij = exp

⇣
x0
ijβ

(0)
i

⌘
for i = 1, . . . , N and j = 1, . . . , Ji.

3. Set k = 1.

4. For each harbor seal, i = 1, . . . , N , update the individual-level parameters (i.e., zij, pi,
and βi):
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(a) Sample M
(k)
i ⇠ [Mi | Si], where [Mi | Si] is the posterior distribution of “func-

tional” haul-out sites obtained from the model implemented in Appendix A (i.e.,

[{µi (t) , 8t} | {sic (t) , 8t}]), and M
(k)
i represents the estimated location of “func-

tional” haul-out sites from one iteration of the corresponding MCMC algorithm.

Calculate the derived quantity wi = g
⇣
M

(k)
i

⌘
. Recall the function g aggregates

Mi to obtain the count of telemetry locations for individual i allocated to raster
cells in S; thus, wi = (wi1, . . . wiJi) is a vector with each element representing the
count of telemetry locations for individual i allocated to raster cell j.

(b) Update z(k−1)
ij

using a Gibbs step:

h
z
(k)
ij | ·

i
⇠ Bern (p̃) ,

where

p̃ =
p
(k−1)
i ⇥ exp

⇣
−λ

(k)
ij

⌘

p
(k−1)
i ⇥ exp

⇣
−λ

(k)
ij

⌘
+ 1− p

(k−1)
i

.

(c) Update p
(k−1)
i using a Gibbs step:

h
p
(k)
i | ·

i
⇠ Beta

 
JiX

j=1

z
(k)
ij + α1, Ji −

JiX

j=1

z
(k)
ij + α2

!
.

(d) Update β
(k−1)
i using Metropolis sampling. Sample β

(⇤)
i from a proposal distribu-

tion
h
β

(⇤)
i |β(k−1)

i

i
(e.g., N

⇣
β

(⇤)
i |β(k−1)

i , τ 2βI
⌘
, where τ 2β is a tuning parameter) and

calculate λ
(⇤)
ij = exp

⇣
x0
ijβ

(⇤)
i

⌘
. Calculate the Metropolis ratio as

rβ =

QJi
j=1 Pois

⇣
w

(k)
ij | λ(⇤)

ij

⌘z(k)ij N
⇣
β

(⇤)
i | µ(k−1)

β ,Σ
(k−1)
β

⌘

QJi
j=1 Pois

⇣
w

(k)
ij | λ(k−1)

ij

⌘z(k)ij N
⇣
β

(k−1)
i | µ(k−1)

β ,Σ
(k−1)
β

⌘ .

If rβ > u, where u ⇠ Uniform(0,1), let β
(k)
i = β

(⇤)
i and λ

(k)
ij = λ

(⇤)
ij . Otherwise, let

β
(k)
i = β

(k−1)
i and λ

(k)
ij = λ

(k−1)
ij .

(e) Repeat Steps 4(a) through 4(d) for each individual i = 1, . . . , N .

5. Update
(
Σ−1

β

)(k−1)
using a Gibbs step:

⇣
Σ−1

β

⌘(k)
| ·
]

⇠ Wish

0
@
 

NX

i=1

✓⇣
β
(k)
i − µ

(k−1)
β

⌘⇣
β
(k)
i − µ

(k−1)
β

⌘0◆
+ S0

!−1

, N + ν

1
A .
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6. Update µ
(k−1)
β using a Gibbs step:

h
µ

(k)
β | ·

i
⇠ N (A−1b,A−1),

where A = N
(
Σ−1

β

)(k)
+
⇣
σ2
µβ
I
⌘−1

, b0 =
⇣
β(k)

⌘0 (
Σ−1

β

)(k)
, and β(k) is the vector sum

PN
i=1 β

(k)
i .

7. Save z
(k)
ij for i = 1, . . . N and j = 1, . . . Ji; β

(k)
i and p

(k)
i for i = 1, . . . , N ; Σ

(k)
β ; and µ

(k)
β .

8. Set k = k + 1 and return to Step 4. The algorithm is iterated by repeating Steps 4
through 7 until a sufficiently large sample has been obtained from which to approximate
the posterior distribution.
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Appendix C3. Model statement, posterior distribution, full-conditional distributions, and
pseudocode detailing a Markov chain Monte Carlo algorithm for estimating the parameters
in the model for examining temporal patterns in haul-out use.

In the posterior and full-conditional distributions below, we use bracket notation to denote
a probability distribution. For example, [x] indicates the probability distribution of x. Sim-
ilarly, [x|y] indicates the probability distribution of x given the parameter y. The notation
“·” represents the data and other parameters in the model.

Model Statement

We formulated the binary probit regression under a data augmentation approach (Al-
bert and Chib 1993, Johnson et al. 2012, Dorazio and Rodriguez 2012). In particular, we
introduce the parameter vi (t) as a continuous, latent version of the binary process yi (t).
Assuming yi (t) = 1 if vi (t) > 0 and yi (t) = 0 if vi (t)  0, the following model specification
is equivalent to Eqs. 17 and 18 in the main text.

yi (t) ⇠
(
0, vi (t)  0

1, vi (t) > 1

vi (t) ⇠ N
(
ui (t)

0
γi,1

)

γi (t) ⇠ N
(
µγ,Σγ

)

µγ ⇠ N
⇣
0, σ2

µγ
I
⌘

Σ−1
γ ⇠ Wish

(
S−1
0 , ν

)

Posterior Distribution

⇥
V,Γ,µγ ,Σγ | Y

⇤
/

NY

i=1

Y

t2T

[yi (t) | vi (t)] [vi (t) | γi]
⇥
γi | µγ ,Σγ

⇤ h
µγ | 0, σ2

µγ
I
i
[Σγ | S0, ν] ,

where V = {vi (t) , 8i, 8t} is a matrix of auxiliary variables for i = 1, . . . , N and t 2 T ;
Γ = {γi, 8i} is a matrix of regression coefficients for i = 1, . . . , N ; and Y = {yi (t) , 8i, 8t}
is a matrix of behavioral data (wet/dry status) for i = 1, . . . , N and t 2 T .
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Full-Conditional Distributions

Observation model auxiliary variable (vi (t)):

[vi (t) | ·] / [yi (t) | vi (t)] [vi (t) | u0
i (t)γi,1]

/
(
1{yi(t)=0}1{vi(t)0} + 1{yi(t)=1}1{vi(t)>0}

)
⇥N (vi (t) | u0

i (t)γi,1)

=

(
T N (u0

i (t)γi,1)
0
−1 , yi (t) = 0

T N (u0
i (t)γi,1)

1
0 , yi (t) = 1

Individual-level regression coefficients (γi):

[γi | ·] / [vi | Uiγi,1]
⇥
γi | µγ,Σγ

⇤

/ N (vi | Uiγi,1)N
(
γi | µγ,Σγ

)

/ exp

⇢
−1

2
(vi −Uiγi)

0 (vi −Uiγi)

}

⇥ exp

⇢
−1

2

(
γi − µγ

)0
Σ−1

γ

(
γi − µγ

)}

/ exp

⇢
−1

2
(−2 (v0

iUi)γi + γ 0
iU

0
iUiγi)

}

⇥ exp

⇢
−1

2

(
−2
(
µ0

γΣ
−1
γ

)
γi + γ 0

iΣ
−1
γ γi

)}

/ exp

⇢
−1

2

(
−2
(
v0
iUi + µ0

γΣ
−1
γ

)
γi + γ 0

i

(
U0

iUi +Σ−1
γ

)
γi

)}

= N (A−1b,A−1),

where Ui = {ui (t) , 8t} is a matrix of covariates for individual i and times t 2 T ; vi =
{vi (t) , 8t} is a vector of auxiliary variables for individual i and times t 2 T ; A = Ui

0Ui +
Σ−1

γ ; and b0 = v0
iUi + µ0

γΣ
−1
γ .

171



Population-level regression coefficients
(
µγ

)
:

⇥
µγ | ·

⇤
/

NY

i=1

⇥
γi | µγ,Σγ

⇤ h
µγ | 0, σ2

µγ
I
i

/
NY

i=1

N
(
γi | µγ,Σγ

)
N
⇣
µγ | 0, σ2

µγ
I
⌘

/ exp

(
NX

i=1

✓
−1

2

(
γi − µγ

)0
Σ−1

γ

(
γi − µγ

)◆
)

⇥ exp

⇢
−1

2

(
µγ − 0

)0 (
σ2
γI
)−1 (

µγ − 0
)}

/ exp

(
−1

2

 
−2

 
NX

i=1

γ 0
iΣ

−1
γ

!
µγ + µ0

γ

(
NΣ−1

γ

)
µγ

!)

⇥ exp

⇢
−1

2

⇣
µ0

γ

(
σ2
γI
)−1

µγ

⌘}

/ exp

(
−1

2

 
−2

 
JX

j=1

γ 0
iΣ

−1
γ

!
µγ + µ0

γ

⇣
NΣ−1

γ +
(
σ2
γI
)−1
⌘
µγ

!)

= N (A−1b,A−1),

where A = NΣ−1
γ +

(
σ2
γI
)−1

and b0 = γ 0Σ−1
γ , where γ is the vector sum

PJ
j=1 γi.
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Precision matrix of individual-level regression coefficients
(
Σ−1

γ

)
:

⇥
Σ−1

γ | ·
⇤

/
NY

i=1

⇥
γi | µγ,Σγ

⇤ ⇥
Σ−1

γ | S−1
0 , ν

⇤

/
NY

i=1

N
(
γi | µγ,Σγ

)
Wish

(
Σ−1

γ | S−1
0 , ν

)

/ |Σγ|−
N
2 exp

(
−1

2

NX

N=1

(
γi − µγ

)0
Σ−1

γ

(
γi − µγ

)
)

⇥ |S0|−
ν
2

∣∣Σ−1
γ

∣∣ ν−p−1
2 exp

⇢
−1

2
tr
(
S0Σ

−1
γ

)}

/ |Σγ|−
N+ν−p−1

2 exp

(
−1

2

"
NX

i=1

tr
⇣(

γi − µγ

)0
Σ−1

γ

(
γi − µγ

)⌘
+ tr

(
S0Σ

−1
γ

)
#)

/ |Σγ|−
N+ν−p−1

2 exp

(
−1

2

"
NX

i=1

tr
⇣(

γi − µγ

) (
γi − µγ

)0
Σ−1

γ

⌘
+ tr

(
S0Σ

−1
γ

)
#)

/ |Σγ|−
N+ν−p−1

2 exp

(
−1

2

"
tr

 
NX

i=1

⇣(
γi − µγ

) (
γi − µγ

)0⌘
Σ−1

γ + S0Σ
−1
γ

!#)

/ |Σγ|−
N+ν−p−1

2 exp

(
−1

2

"
tr

 
NX

i=1

⇣(
γi − µγ

) (
γi − µγ

)0⌘
+ S0

!
Σ−1

γ

#)

= Wish

0
@
 

NX

i=1

⇣(
γi − µγ

) (
γi − µγ

)0⌘
+ S0

!−1

, N + ν

1
A .

MCMC Algorithm for Parameter Estimation

One can implement a MCMC algorithm to estimate the parameters of the observation and
process models using the sequence of steps outlined below.

1. Define initial values for: γ
(0)
i for i = 1, . . . , N ; µβ

(0); and Σ(0)
γ .

2. Set k = 1.

3. For each harbor seal, i = 1, . . . , N , update the temporal process model parameters
(i.e., γi and vi).

(a) Update vi (t)
(k−1) using a Gibbs step:

h
vi (t)

(k) | ·
i

⇠

8
<
:
T N

⇣
u0
i (t)γ

(k−1)
i ,1

⌘0
−1

, yi (t) = 0

T N
⇣
u0
i (t)γ

(k−1)
i ,1

⌘1
0
, yi (t) = 1
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(b) Update γ
(k−1)
i using a Gibbs step:

h
γ
(k)
i | ·

i
⇠ N (A−1b,A−1),

where A = Ui
0Ui +

(
Σ−1

γ

)(k−1)
and b0 =

⇣
v
(k)
i

⌘0
Ui +

⇣
µ

(k−1)
γ

⌘0 (
Σ−1

γ

)(k−1)
.

(c) Repeat Steps 3(a) and 3(b) for each individual i = 1, . . . , N .

4. Update µ
(k−1)
γ using a Gibbs step:

⇥
µ(k)

γ | ·
⇤

⇠ N (A−1b,A−1),

where A = N
(
Σ−1

γ

)(k−1)
+
(
σ2
γI
)−1

and b0 =
(
γ(k)

)0 (
Σ−1

γ

)(k−1)
, where γ(k) is the vector

sum
PN

i=1 γ
(k)
i .

5. Update
(
Σ−1

γ

)(k−1)
using a Gibbs step:

h(
Σ−1

γ

)(k) | ·
i

⇠ Wish

0
@
 

NX

i=1

✓⇣
γ
(k)
i − µ(k)

γ

⌘⇣
γ
(k)
i − µ(k)

γ

⌘0◆
+ S0

!−1

, N + ν

1
A

6. Save vi
(k) and γ

(k)
i for i = 1, . . . , N ; µ

(k)
β ; and Σ(k)

γ .

7. Set k = k + 1 and return to Step 3. The algorithm is iterated by repeating Steps 3
through 6 until a sufficiently large sample has been obtained from which to approximate
the posterior distribution.
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Appendix C4. The posterior distribution of µi (t) for each individual harbor seal (red
gradient); brighter reds indicate higher posterior probability. Black points symbolize teleme-
try locations recorded while the individual was hauled-out of the water (dry), whereas blue
crosses symbolize telemetry locations recorded while the individual was at sea (wet). Note
that many telemetry locations occur beyond the extent of the maps.

Figure C4.1. The posterior distribution of µi (t) for individual PV94KOD01, an adult male
that was monitored from 10/06/94 to 03/31/95. Of the 427 recorded telemetry locations,
260 were obtained while the individual was hauled-out of the water.
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Figure C4.2. The posterior distribution of µi (t) for individual PV94KOD02, an adult male
that was monitored from 10/06/94 to 03/31/95. Of the 682 recorded telemetry locations,
194 were obtained while the individual was hauled-out of the water.
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Figure C4.3. The posterior distribution of µi (t) for individual PV94KOD08, an adult male
that was monitored from 10/09/94 to 03/31/95. Of the 693 recorded telemetry locations,
220 were obtained while the individual was hauled-out of the water.
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Figure C4.4. The posterior distribution of µi (t) for individual PV94KOD09, a subadult
female that was monitored from 10/09/94 to 03/31/95 . Of the 315 recorded telemetry
locations, 166 were obtained while the individual was hauled-out of the water.
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Figure C4.5. The posterior distribution of µi (t) for individual PV95KOD01, an adult male
that was monitored from 03/29/95 to 07/29/95. Of the 1036 recorded telemetry locations,
418 were obtained while the individual was hauled-out of the water.
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Figure C4.6. The posterior distribution of µi (t) for individual PV95KOD03, an adult female
that was monitored from 03/30/95 to 06/14/95. Of the 512 recorded telemetry locations,
284 were obtained while the individual was hauled-out of the water.

180



Figure C4.7. The posterior distribution of µi (t) for individual PV95KOD05, a subadult
female that was monitored from 03/30/95 to 07/13/95. Of the 1000 recorded telemetry
locations, 369 were obtained while the individual was hauled-out of the water.
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Figure C4.8. The posterior distribution of µi (t) for individual PV95KOD09, a subadult
female that was monitored from 10/09/95 to 06/04/96. Of the 1009 recorded telemetry
locations, 438 were obtained while the individual was hauled-out of the water.
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Figure C4.9. The posterior distribution of µi (t) for individual PV95KOD10, a male pup
that was monitored from 10/12/95 to 05/27/96. Of the 301 recorded telemetry locations, 77
were obtained while the individual was hauled-out of the water.
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Figure C4.10. The posterior distribution of µi (t) for individual PV95KOD12, an adult
female that was monitored from 10/10/95 to 06/27/96. Of the 1460 recorded telemetry
locations, 340 were obtained while the individual was hauled-out of the water.
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Figure C4.11. The posterior distribution of µi (t) for individual PV95KOD13, an adult male
that was monitored from 10/10/95 to 06/16/96. Of the 1301 recorded telemetry locations,
435 were obtained while the individual was hauled-out of the water.
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Figure C4.12. The posterior distribution of µi (t) for individual PV95KOD15, a female pup
that was monitored from 10/10/95 to 05/13/96. Of the 379 recorded telemetry locations, 64
were obtained while the individual was hauled-out of the water.
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Appendix C5. Summary of observation model parameter estimates. Reported quantities
are based on 100,000 MCMC samples after convergence.

Table C5.1. Posterior mean and 95% credible intervals for the animal movement parameter
(τi) in the observation model.

Individual Sex Age class Posterior
mean

Lower 95%
credible
bound

Upper 95%
credible
bound

PV94KOD01 Male Adult 26488 21603 32157
PV94KOD02 Male Adult 4710 3215 6669
PV94KOD08 Male Adult 5917 3801 8407
PV94KOD09 Female Subadult 3964 2774 5422
PV95KOD01 Male Adult 5521 4543 6515
PV95KOD03 Female Adult 15735 12831 18838
PV95KOD05 Female Subadult 8081 6108 10107
PV95KOD09 Female Subadult 3286 2637 4024
PV95KOD10 Male Pup 2085 1529 2766
PV95KOD12 Female Adult 7819 6808 8814
PV95KOD13 Male Adult 2548 1821 3429
PV95KOD15 Female Pup 1972 1543 2460
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Table C5.2. Posterior mean and 95% credible intervals (in parentheses) for σic (km).

Argos location quality class

Individual 3 2 1 0 A B

PV94KOD01 3.64 (1.04, 10.17) 2.70 (1.48, 4.60) 3.15 (2.37, 4.09) 45.03 (38.66, 52.18) 11.34 (9.06, 14.18) 95.69 (82.99, 110.73)

PV94KOD02 5.50 (2.86, 10.69) 4.27 (2.47, 6.74) 2.30 (1.62, 3.26) 10.40 (9.21, 11.67) 16.39 (12.98, 20.74) 61.74 (55.99, 68.30)

PV94KOD08 3.91 (2.13, 7.05) 3.13 (1.77, 5.35) 75.02 (56.00, 98.94) 35.91 (31.65, 40.55) 14.88 (12.48, 17.34) 109.37 (98.89, 121.26)

PV94KOD09 2.75 (0.59, 8.73) 3.71 (2.16, 6.49) 3.10 (2.34, 4.13) 68.13 (58.46, 79.18) 71.88 (56.56, 91.25) 102.23 (85.96, 121.68)

PV95KOD01 1.26 (0.77, 2.12) 1.19 (0.85, 1.67) 1.64 (1.28, 2.12) 9.79 (8.72, 10.94) 5.22 (4.43, 6.14) 50.19 (46.46, 54.30)

PV95KOD03 2.31 (0.93, 4.58) 3.08 (1.80, 4.83) 2.57 (2.00, 3.35) 13.51 (11.78, 15.46) 10.11 (8.18, 12.55) 57.72 (50.74, 65.55)

PV95KOD05 1.39 (0.74, 2.46) 1.17 (0.82, 1.83) 2.37 (2.01, 2.79) 13.33 (11.73, 15.08) 9.72 (7.51, 11.95) 75.35 (69.41, 81.92)

PV95KOD09 1.51 (0.86, 2.50) 1.71 (1.33, 2.18) 2.11 (1.81, 2.45) 8.85 (7.64, 10.19) 8.02 (7.02, 9.19) 29.79 (26.91, 32.98)

PV95KOD10 1.09 (0.44, 2.56) 1.53 (0.74, 2.56) 1.49 (1.05, 2.10) 3.64 (2.75, 4.82) 4.02 (2.94, 5.36) 32.31 (27.58, 37.87)

PV95KOD12 2.39 (1.46, 3.95) 2.50 (1.75, 3.58) 2.81 (2.34, 3.36) 7.53 (6.60, 8.55) 6.75 (5.54, 8.07) 68.65 (63.99, 73.64)

PV95KOD13 1.47 (0.74, 2.78) 2.32 (1.78, 3.00) 5.35 (4.53, 6.28) 10.04 (9.01, 11.10) 15.03 (13.44, 16.78) 39.74 (36.95, 42.83)

PV95KOD15 1.63 (0.49, 4.09) 1.14 (0.58, 1.96) 1.66 (1.11, 2.36) 9.57 (6.88, 12.83) 4.33 (3.52, 5.26) 16.43 (14.52, 18.59)
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Table C5.3. Posterior mean and 95% credible intervals (in parentheses) for aic.

Argos location quality class

Individual 3 2 1 0 A B

PV94KOD01 0.58 (0.10, 0.98) 0.36 (0.12, 0.86) 0.33 (0.17, 0.60) 0.19 (0.16, 0.22) 0.33 (0.20, 0.52) 0.66 (0.46, 0.91)

PV94KOD02 0.38 (0.09, 0.90) 0.28 (0.09, 0.76) 0.36 (0.16, 0.72) 0.38 (0.30, 0.47) 0.69 (0.48, 0.95) 0.79 (0.65, 0.95)

PV94KOD08 0.21 (0.04, 0.66) 0.45 (0.10, 0.96) 0.07 (0.06, 0.08) 0.11 (0.09, 0.12) 0.32 (0.23, 0.44) 0.48 (0.37, 0.60)

PV94KOD09 0.52 (0.07, 0.97) 0.14 (0.05, 0.31) 0.68 (0.42, 0.96) 0.12 (0.12, 0.13) 0.14 (0.10, 0.18) 0.49 (0.31, 0.76)

PV95KOD01 0.75 (0.35, 0.99) 0.79 (0.41, 0.99) 0.60 (0.30, 0.91) 0.19 (0.15, 0.23) 0.73 (0.56, 0.93) 0.43 (0.36, 0.52)

PV95KOD03 0.36 (0.05, 0.93) 0.64 (0.19, 0.98) 0.77 (0.45, 0.99) 0.37 (0.28, 0.48) 0.70 (0.50, 0.94) 0.48 (0.38, 0.61)

PV95KOD05 0.14 (0.03, 0.41) 0.73 (0.37, 0.99) 0.30 (0.18, 0.51) 0.28 (0.23, 0.34) 0.28 (0.20, 0.39) 0.64 (0.53, 0.76)

PV95KOD09 0.33 (0.07, 0.84) 0.37 (0.19, 0.64) 0.31 (0.20, 0.45) 0.34 (0.27, 0.43) 0.84 (0.66, 0.99) 0.33 (0.27, 0.40)

PV95KOD10 0.29 (0.03, 0.83) 0.41 (0.13, 0.92) 0.22 (0.11, 0.37) 0.68 (0.34, 0.98) 0.19 (0.10, 0.35) 0.15 (0.09, 0.22)

PV95KOD12 0.27 (0.16, 0.48) 0.14 (0.07, 0.23) 0.43 (0.33, 0.55) 0.26 (0.21, 0.30) 0.70 (0.57, 0.86) 0.39 (0.33, 0.45)

PV95KOD13 0.58 (0.11, 0.98) 0.16 (0.10, 0.23) 0.17 (0.14, 0.21) 0.26 (0.21, 0.33) 0.52 (0.42, 0.66) 0.39 (0.32, 0.46)

PV95KOD15 0.11 (0.01, 0.57) 0.13 (0.04, 0.31) 0.26 (0.12, 0.47) 0.29 (0.14, 0.62) 0.26 (0.16, 0.41) 0.18 (0.13, 0.23)
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Table C5.4. Posterior mean and 95% credible intervals (in parentheses) for ρic.

Argos location quality class

Individual 3 2 1 0 A B

PV94KOD01 0.52 (0.03, 0.98) 0.52 (0.20, 0.80) 0.70 (0.20, 0.95) 0.85 (0.80, 0.90) 0.42 (0.06, 0.68) 0.39 (0.11, 0.59)

PV94KOD02 0.41 (0.02, 0.87) 0.61 (0.08, 0.91) 0.67 (0.20, 0.89) 0.58 (0.47, 0.67) 0.63 (0.50, 0.74) 0.69 (0.60, 0.76)

PV94KOD08 0.43 (0.02, 0.92) 0.29 (0.01, 0.70) 0.99 (0.98, 1.00) 0.90 (0.86, 0.93) 0.70 (0.57, 0.79) 0.48 (0.34, 0.60)

PV94KOD09 0.51 (0.03, 0.98) 0.87 (0.26, 0.99) 0.70 (0.43, 0.87) 0.99 (0.99, 1.00) 0.91 (0.83, 0.96) 0.32 (0.03, 0.56)

PV95KOD01 0.34 (0.02, 0.79) 0.27 (0.01, 0.66) 0.69 (0.41, 0.85) 0.78 (0.69, 0.84) 0.57 (0.45, 0.67) 0.50 (0.40, 0.58)

PV95KOD03 0.38 (0.02, 0.90) 0.68 (0.12, 0.95) 0.34 (0.02, 0.72) 0.66 (0.55, 0.74) 0.69 (0.56, 0.79) 0.69 (0.58, 0.77)

PV95KOD05 0.39 (0.02, 0.83) 0.48 (0.03, 0.87) 0.68 (0.22, 0.86) 0.75 (0.68, 0.82) 0.63 (0.50, 0.73) 0.62 (0.54, 0.69)

PV95KOD09 0.34 (0.01, 0.82) 0.30 (0.02, 0.61) 0.40 (0.06, 0.63) 0.77 (0.70, 0.83) 0.66 (0.53, 0.76) 0.67 (0.59, 0.75)

PV95KOD10 0.57 (0.04, 0.96) 0.44 (0.02, 0.89) 0.69 (0.17, 0.91) 0.42 (0.03, 0.78) 0.62 (0.32, 0.82) 0.36 (0.14, 0.54)

PV95KOD12 0.95 (0.82, 0.99) 0.87 (0.65, 0.96) 0.69 (0.58, 0.78) 0.71 (0.63, 0.78) 0.54 (0.44, 0.63) 0.57 (0.49, 0.63)

PV95KOD13 0.41 (0.02, 0.83) 0.90 (0.80, 0.95) 0.87 (0.80, 0.92) 0.60 (0.50, 0.69) 0.61 (0.52, 0.69) 0.49 (0.40, 0.57)

PV95KOD15 0.50 (0.03, 0.96) 0.38 (0.02, 0.88) 0.46 (0.03, 0.81) 0.72 (0.43, 0.94) 0.51 (0.17, 0.73) 0.64 (0.52, 0.74)
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Figure C5.1. Posterior distributions of σic.
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Figure C5.2. Posterior distributions of aic.
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Figure C5.3. Posterior distributions of ρic.
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Appendix C6. Inference concerning haul-out site selection for the subset of harbor seals
that did not exhibit complete separation between the counts wij and the two wave exposure
categories.

Posterior distribution

♀ - subadult

♀ - adult

♂ - pup

♂ - adult

♂ - adult

µβ

-10 -8 -6 -4 -2 0 2

Exposed

-2 -1 0 1 2

Distance to 20-m depth

-3 -2 -1 0 1

Shoreline complexity

Figure C6.1. Individual- and population-level inference concerning parameters examined
in the haul-out site selection model for the subset of 5 harbor seals for which complete
separation between wij and wave exposure did not occur. The top row (blue box) represents
inference concerning the population-level parameter (µβ) that represents an average affect
across the 5 harbor seals analyzed. The remaining rows show individual-level parameters
(βi), and individual seals are labeled according their sex and age class. The points indicate
the posterior mean, the thick lines represent the 50% credible interval, and the thin lines
represent the 95% credible interval.
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