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Abstract

P300 WAVE DETECTION USING EMOTIV EPOC+ HEADSET: EFFECTS

OF MATRIX SIZE, FLASH DURATION, AND COLORS

Brain-computer interfaces (BCIs) allow interactions between human beings and comput-

ers without using voluntary muscle. Enormous research effort has been employed in the last

few decades to design convenient and user-friendly interfaces. The aim of this study is to

provide the people with severe neuromuscular disorders a new augmentative communication

technology so that they can express their wishes and communicate with others. The research

investigates the capability of Emotiv EPOC+ headset to capture and record one of the BCIs

signals called P300 that is used in several applications such as the P300 speller. The P300

speller is a BCI system used to enable severely disabled people to spell words and convey

their thoughts without any physical effort. In this thesis, the effects of matrix size, flash du-

ration, and colors were studied. Data are collected from five healthy subjects in their home

environments. Different programs are used in this experiment such as OpenViBE platform

and MATLAB to pre-process and classify the EEG data. Moreover, the Linear Discriminate

Analysis (LDA) classification algorithm is used to classify the data into target and non-target

samples.
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CHAPTER 1

Introduction

Technology dominates much of modern humanity’s existence, and the medical field is no

different. Decades ago, the intersection of different interdisciplinary fields, such as engineer-

ing, mathematics, psychology, and computer science, would have been a confused notion;

today, this intersection forms a partnership that saves countless lives every day. For more

than two decades, scientists and researchers have been developing methods to increase the

quality of life of paralyzed people and to provide them a more independent life. According

to the Christopher & Dana Reeve Foundation [25], 1.9% of the United States population is

suffering from motor disabilities as a result of neuromuscular disorders, such as amyotrophic

lateral sclerosis, brainstem stroke, cerebral palsy, and spinal cord injury and other diseases

of the peripheral nervous system. These types of diseases result in these individuals losing

conventional communication methods due to the disruption of their neuromuscular channels.

There are three ways to restore function of the muscular system [69]. The first option is to

use the remaining pathways instead of the damaged muscular channels. For instance, the

non vocally disabled can use hand movements to produce synthetic speech [18]. The second

method is to establish a detour around the breaks in the neural pathways that control mus-

cles. For people who are suffering from spinal cord injury, electromyographic (EMG) can

be employed to restore useful movement[24]. The last method that is used for restoring the

function of the muscles is opening a non-muscular channel between the human brain and

computers to translate the brain activities into commands that can be used for control and

communication purposes; this method is well known as a brain-computer interface (BCI).

1



Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs) or

Mind-Machine Interfaces (MMIs), are communication and control systems that are used to

provide a direct form of communication for disabled people who have lost their ability to

communicate by using peripheral nerves and muscles. A variety of methods for monitoring

and recording brain activity have been used. These include electroencephalography (EEG),

magnetoencephalography (MEG), positron emission tomography (PET), functional magnetic

resonance imaging (fMRI), and optical imaging [69]. Table 1.1 provides an overview of

current functional brain imaging technologies [50]. Among these methods, EEG is considered

as the most attractive way to record brain signals due to its simplicity and affordability. In

1929, Hans Berger, a German neurologist, discovered electroencephalography (EEG) as well

as the alpha wave [31]. Two methods are used to record the signals from the brain: invasive

technologies, in which electrodes are implanted directly into brain tissue, and non-invasive

technologies, in which electrodes are placed on the scalp and detect neuron activity. Over the

past two decades, many studies have shown that different types of signals can be recorded

from the scalp including P300 potential, mu or beta rhythms, and cortical neuronal activity

recorded by implanted electrodes. The BCIs have been employed in many applications that

are necessary for a daily usage; for instance, locomotion applications such as controlling a

wheelchair [63], and environmental control applications such as controlling an appliance [13].

One of the most popular types of BCIs that relies on event-related potentials and the P300

signal is well known as a P300-BCI.

In this study, an affordable and low-cost consumer-grade EEG device, namely Emotiv

EPOC+, is used to investigate one of the brain-computer interfaces applications called the

P300 speller. With the P300 speller, users can convey their thoughts without using any

voluntary muscles. In other words, the P300 speller is a communication tool for those who

2



cannot convey their emotions and thoughts by using the conventional methods due to the

damage to nerve fibers that are involved in control of voluntary muscles used that might be

used in communication tasks.

1.1. What is a Brain Computer Interface ?

In the 1970s, Jacques Vidal applied the term brain-computer interface to describe any

computer-based system that obtained information about brain function [68]. Over the past

two decades, many researchers have discussed different definitions for brain-computer inter-

faces. The following list provides some definitions for BCIs:

• The researchers in Wadsworth center have defined the BCI as the following [41]:

”The brain-computer interface is a system which takes a biosignal measured from

a person and predicts (in real time/on a single-trial basis) some abstract aspect of

the person’s cognitive state.”

• J. J. Vidal [64]: ”The BCI system is geared to use both the spontaneous EEG and

the specific evoked responses triggered by time-dependent stimulation under various

conditions for the purpose of controlling such external apparatus as for example

prosthetic devices.”

• A.B. Schwartz [60]: ”Microelectrodes embedded chronically in the cerebral cortex

hold promise for using neural activity to control devices with enough speed and

agility to replace natural, animate movements in paralyzed individuals. Known as

cortical neural prostheses (CNPs), devices based on this technology are a subset of

neural prosthetics, a larger category that includes stimulating, as well as recording,

electrodes.”

3



Table 1.1. Overview of current functional brain imaging technologies [50]

Technique Physical Measurement Advantages Disadvantages

Property Mechanism

Electro-
encepholograph
(EEG)

Electrical
potential

Electrodes are placed on the scalp
in order to measure the weak
electrical potentials generated by
neural activity in the brain

• Portable, wearable
• High temporal resolution

• Low spatial resolution due to
noise added when signals move
through fluid,bone, and skin
• Requires carful placement of
electrodes on scalp

Magneto-
electrograph
(MEG)

Magnetic
potential

Measures magnetic fields gener-
ated by the electrical activity of
the brain

• MEG enables much deeper
imaging and is much more sensi-
tive that EEG, since skull is al-
most completely transparent to
magnetic waves

• Bulky and expensive equipment
due to necessity for superconduc-
tivity

Positron
Emission
Tomography
(PET)

Blood flow Detects chemical activity of in-
jected radioactive tracers by mea-
suring gamma ray emission

• Bulky and expensive equipment
• Unsuitable for sustained use
due to need to inject radioactive
substances

Single Photo
Emission Com-
puted Tomogra-
phy (SPECT)

Blood flow Works like PET except that uses
photomultiplier tubes to measure
photons generated by gamma
rays

• Slightly less expensive that
PET

• Low temporal resolution and
spatial resolution than PET
• Bulky and expensive equipment
• Unsuitable for sustained use
due to need to inject radioactive
substances

Functional Mag-
netic Resonance
Imaging (fMRI)

Blood flow Measures magnetic properties of
blood to determine the decrease
in deoxyhemoglobin to active
brain region

• High spatial resolution (⇠
1mm–1cm)

• Low temporal resolution (5–8 s)
because inflow of blood is not an
immediate phenomenon
• Bulky and expensive equipment
due to need for superconducting
magnets

Functional Near
Infrared (fNIR)

Blood flow,
Changes in
cortical tissue

Measures the absorption and
scattering of near infrared light
directed into the brain to deter-
mine changes in tissue oxygena-
tion (slow response) as well as
changes in neuronal membranes
during neuron firing (fast event
related response)

• High spatial resolution (<1cm)
• Similarity to fMRI allows trans-
fer of knowledge
• Portable, wearable • Does not
require large amount of expertise
to set up
• Non-ionizing light safe for ex-
tended use

• Low temporal resolution (5-8
s) when using slow response mea-
surements

4
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• J.P. Donoghue[19]: ”A major goal of a BMI (brain-machine interface) is to provide a

command signal from the cortex. This command serves as a new functional output

to control disabled body parts or physical devices, such as computers or robotic

limbs.”

• J. Wolpaw et al. [70]: ”A direct brain-computer interface is a device that provides

the brain with a new, non-muscular communication and control channel.”

Figure 1.1. This figure illustrates the definition of BCI that has been given
by the researchers in Wadsworth center [41].

The BCIs can be categorized into three types. The first type is active BCIs, in which

the user can control a device by conscious voluntary thought. For example, the user can

focus on a control thought such as imagining moving limbs and directly trying to manipulate

an application. The other type is reactive BCIs, in which the user utilizes brain processes

that happen in response to external events. One application of reactive BCIs is focusing on

a flickering light and the BCI analyzes the brain responses to this input. The last type is

passive BCIs, where the BCI essentially picks up any brain processes that the brain generates

for the purpose of studying the interaction between the human brain and the environment.
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1.2. Motivation

Today, incredibly powerful EEG headsets are available on the market. Therefore, the

issue of choosing a suitable headset that can be used daily must be considered. Unfortunately,

few of them are feasible for daily usage due to the size, price, or difficulty of use. There

are many reasons behind choosing Emotiv EPOC+ to be utilized in this research. The first

reason is the commercial factor, since the price of the Emotiv EPOC+ headset is $200-400

for a consumer edition and $500 for a research edition, which is reasonable for all users if we

compare it with other EEG headsets’ prices. Another reason is that it is a wireless headset,

which makes it suitable for out-of-lab applications.

The majority of EEG headsets are not easy to be used since they require long setup times

and a specific way to place the electrodes in a specific position. However, the Emotiv EPOC+

headset does not require extensive time for setting up and can be successfully utilized by

any user after a few sessions of training. Another important aspect behind choosing Emotiv

EPOC+ as a recording device in this study is that some EEG headsets require numerous

training sessions to achieve high and sufficient accuracies; however, the Emotiv EPOC+

headset necessitates only 3 to 4 training sessions to achieve high accuracy, as it is explained

in Chapter 4. All these reasons are motivating to test the performance of P300 speller when

the Emotiv EPOC+ device used as an EEG detection headset.

Designing an optimal paradigm for P300 spelling is another objective that motivates

us in this study. The researchers have been investigating the effect of different variables

such as matrix size, inter-stimulus interval, position of the letters, etc. on the P300 speller

performance [3][61][36][38]. In this research, the effect of the matrix size, flash duration,

and changing of colors in the P300-BCI have been tested to study their impact on the P300

speller accuracy.
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1.3. Research Questions

The primary purpose of this research is to design a successful online brain-computer

interface system that can be used by paralyzed people as a communication tool instead of

using a conventional communication method. As it is explained previously in Section 1.2,

Emotiv EPOC+ headset is chosen to be utilized in this study. This study attempts to answer

the following questions:

(1) How does the brain-computer interface (BCI) work?

(2) Does Emotiv EPOC+ have the capability to record P300 waves?

(3) What is the effect of matrix size, inter-stimulus interval, and colors on P300 speller

performance?

(4) Can anyone use P300 speller correctly?

(5) How many training sessions are required to achieve the highest online accuracy?

1.4. Overview

The thesis is organized as follows. Chapter 2 presents a background on the brain structure

and its function followed by the BCI structure and related works that use the Emotiv headset

in different BCI applications. Next, Chapter 3 explains the methodology of this study and

how the data are acquired from the participants. Moreover, the design and implementation

of the research are discussed in Chapter 3. Chapter 4 discusses the results that have been

obtained from five healthy subjects. Finally, the work is concluded in Chapter 5 and the

future work is also outlined in this chapter.
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CHAPTER 2

Background and Related Work

2.1. Brain Structure and Function

The main organ of the human nervous system is the brain. The brain is divided into

three major parts, the forebrain, the midbrain and the hindbrain. The forebrain is the largest

part of the brain, most of which is made up of the cerebrum also known as telencephalon

and diencephalon. The cerebrum consists of two hemispheres: right and left hemispheres

divided by the longitudinal fissure. The left hemisphere controls the limb movements of the

right side of the body, while the right hemisphere controls the limb movements of the left

side of the body.

As Figure 2.1 illustrates, each hemisphere is composed of frontal, temporal, parietal,

and occipital lobes. The frontal lobes are located at the top part of the brain behind the

eyes and are responsible for voluntary movements and memory. The parietal lobes come

behind the frontal lobes and are responsible for many tasks such as processing the sensory

information and language processing. The temporal lobes are located on each side of the

brain. Moreover, the temporal lobes have many functions such as production of speech,

understanding language, and memory acquisition. The occipital lobes, the smallest lobes in

the brain, are located at the back of the head. In addition, the occipital lobes contain the

primary visual cortex which is responsible for processing the visual information. The central

sulcus separates the frontal lobe from the parietal lobe, and the lateral sulcus separates the

temporal lobe from the frontal and parietal lobe. The information is transferred between

the right and left hemispheres through a sheet of fibers called the corpus callosum.
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Figure 2.1. The cerebrum and its four lobes: frontal, parietal, occipital, and
temporal [28].

Figure 2.2. The main structure of a single neuron cell which involves the
cell body, dendrites, and axon [65].

The human brain consists of billions of neurons. The neuron cells of the nervous system

can transmit information in the form of electrical or chemical signals along its axon. The

neuron cells are classified into three types based on the different functions. The first category

is the sensory neuron cells, where they pick up information from the senses and send signals

to the neural system. Motor neuron cells are the second type of the neuron cells, where

they send out the signals and information from the brain and spinal cord to the rest of the
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body. The third type of the neurons is interneurons which are located in the central nervous

system (CNS). The interneurons connect the central nervous system with the sensory and

motor neurons. Figure 2.2 shows the anatomy of a single neuron.

The structure of the neuron cell involves the cell body, the axon, and the dendrites. The

cell body controls all the functions of the cell and produces the proteins to the axon and

dendrites. The dendrites are responsible for receiving information from other neurons at

synapses. The last part of the neuron cell is the axon, which transmits electrical or chemical

impulses from the cell body to other neurons.

The EEG waves are the continuous recording of the electrical signals the brain produced

by the firing of neurons [71]. When the dendrites of a neuron receive the neurotransmitters

from the axon of other neurons, it causes an electrical polarity change inside the neuron.

This polarity change is what the EEG is recording. It is the post-synaptic dendritic currents

from cortical pyramidal cells. The activity from one single neuron is not big enough to be

detected with the EEG device. However, there are so many pyramidal cells parallel to each

other. These cells are stimulated at the same time and produce large voltage changes which

can be detected outside the head.

2.2. BCI Structure

The brain-computer interface is a communication and control system. Therefore, it has

the main structure for any communication and control systems which are: input, output,

and processor. The general structure of BCIs is presented in Figure 2.3

A typical BCI system consists of several components. The first component is the signal

acquisition, which records neural activity from the brain. The signal acquisition component

consists of electrodes, which are placed on the scalp or inside the brain to record the brain
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signals. The second component of the BCI system is the signal processing, which has three

stages. The first stage is the preprocessing, which involves amplification, filtering, and analog

to digital (A/D) conversion. The human brain generates very low signals, less than 100 µV,

so they need to be amplified to increase the power of the signals. In addition, in this stage, a

specific filter can be used to remove the artifacts from the signals without losing any relevant

information. The preprocessing step plays a significant role in the BCI systems because it

improves the quality of the signals by increasing the signal-to-noise ratio (SNR) and removes

the redundancy from the EEG channels.

The second stage in the signal processing is the feature extraction. The brain patterns

can be categorized into different features such as amplitudes, frequency bands, and firing

rates. Feature extraction methods extract the information from the brain signal either

in time domain, frequency domain, or time-frequency domain. Several feature extraction

techniques such as self-organizing fuzzy neural networks (SOFNNs) [17], Fourier Transform

(FT) [1], continuous/discrete wavelet transform [1], and autoregression models [35] have been

employed to construct a reliable BCI system with high speed and accuracy.

Once the signal features have been extracted, they are classified to find out which kind of

mental task the subject is performing. Several algorithms have been employed in the BCIs

field to classify the EEG signals. These might use linear methods, such as linear discriminant

function, or nonlinear methods, such as neural network. The last component of the BCIs is

the output device. The output device receives the commands from the previous stages to

perform a specific task, for example, controlling a wheelchair or moving a cursor.
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Figure 2.3. General structure of the brain-computer interface [32].

2.3. EEG Waves

As it is stated in Section 2.2, the information can be extracted from EEG signals in the

frequency domain. The brain waves are categorized according to their frequency bands into

five waves as Figure 2.4 shows. These waves are as follows [33]:

• Delta (δ): It lies within the frequency range of 0.5 – 4 Hz. The amplitude of delta

wave is the highest comparing with the other brain waves. However, it tends to

be the slowest wave. It is usually seen in adults (in frontal lobe) and babies (in

posterior lobe). Moreover, it is associated with fatigue, deep sleeping, deep physical

relaxation, unconsciousness.

• Theta (θ): Theta wave lies within the frequency range of 4 – 7 Hz. The amplitude

of the theta waves are usually greater than 20 µV. Theta waves are associated with

attention lapses, memory consolidation, meditation.

• Alpha (α): Alpha waves were discovered by Hans Berger, a German neurologist. It

is lies within the frequency range of 8 – 13 Hz and voltage range of 30 – 50 µV.

Alpha waves can be generated by all parts of the cortex. It is associated with closing
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the eyes and relaxation. In addition, it is recorded from sensorimotor areas in the

brain.

• Beta (β): It can be seen on both sides of the brain in a symmetrical distribution. In

addition, the frequency of the beta wave is ranged from 13 – 30 Hz and the voltage

lies between 5 – 30 µV. The beta wave is associated with active thinking, active

attention, and focus on the outside world or solving concrete problems. Moreover,

the beta waves usually are divided into β1, which is linked to increase in mental

abilities, and β2, which is linked to alertness.

• Gamma (γ): Gamma wave which lies within the frequency range of > 35 Hz and re-

flects the mechanism of consciousness. Also, it is shown during short term memory

activities. Moreover, it can be obtained by placing the electrodes on the somatosen-

sory cortex.

Figure 2.4. Five typical dominant brain normal rhythms.
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2.4. P300 and P300 Speller

The P300 wave is the most important and studied component of event-related potentials

(ERPs). The ERP is the response of the brain for an external stimulus. The P300 waves

can be acquired invasively by implanting ECoG electrodes or non-invasively by placing EEG

electrodes around the parietal, central, or occipital lobe [9][26]. Most often, P300 waves are

recorded from central or parietal lobe. However, for Emotiv headset users, the P300 waves

are recorded from the occipital lobe since Emotiv system does not provide central or parietal

electrodes [42][12]. And there are by far more P300 studies that use systems other than

Emotiv. In this research, O1 and O2 electrodes were found most useful in this study because

central and parietal electrodes are not provided by Emotiv system.

The P300 is observed in an EEG as a significant positive peak 300 ms to 500 ms after an

infrequent, but expected, stimulus has seen presented to a subject (see Figure 2.6). Figure

2.6 shows the averaged P300 response at electrode Pz , displaying a large positive peak from

about 300–500 ms. In 1988, Farwell and Donchin introduced the P300 wave and proposed the

P300 matrix speller [23]. Figure 2.5 shows the conventional P300 speller paradigm which is

represented by 6x6 matrices of alphanumeric characters (letters of the alphabet and numbers

0–9). These characters are intensified in rows and columns in a random sequence. The user

is instructed to focus his/her attention to the desired character he/she wishes to spell. To

help the user to be concentrating on the target character, the user has to count mentally each

time the row or column containing the target letter flashes. The intersection of the target

row and column that have the desired character elicits the P300 signal. The researchers have

developed P300-BCIs system other than the visual P300-BCI such as auditory and tactile

P300-BCIs [8][14].
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One drawback of the P300 waves is the low signal-to-noise ratio (SNR). The P300 wave

is influenced by many sources of noise. For instance, the electrical signals produced by the

eye movement (EOG signals) or muscle activity (EMG signals) can contribute to the EEG

recorded from the scalp [69]. Many methods have been developed to detect the noise and

enhance the SNR such as using matched filter or temporal filter. One of the methods used

in this study to maximize the SNR is by averaging the signals for many consecutive trials.

For that reason, the classification process required many trials to be able to distinguish the

target and non-target characters.

Figure 2.5. The conventional P300 speller paradigm that was first estab-
lished by Farwell and Donchin in 1988 [21].

Various signal processing techniques and machine learning algorithms were developed to

increase the reliability of the P300-BCI speller system [44][48]. To classify the target and non-

target character, different classification algorithms have been implemented successfully such

as Step Wise Linear Discriminant Analysis (SWLDA), Independent Component Analysis

(ICA), Support Vector Machine (SVM), etc. In our study, we use OpenViBE platform
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which provides two different classification algorithms: Linear Discriminant Analysis (LDA)

and Support Vector Machines (SVMs).

Figure 2.6. Average of 180 target epochs (in blue) and 900 non-target epochs
(in red) recorded at channel Pz [53].

The LDA algorithm is used in this study to distinguish between target and non-target

samples due to its simplicity of use and it requires a very low computational time.
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2.5. Emotiv EPOC+ Headset

Emotive EPOC+ is a wearable headset used to capture the electroencephalograph (EEG)

from the brain and send it wirelessly to a computer via a USB dongle. The Emotiv EPOC+

headset has become popular as a result of its low-cost price and features [5]. Figure 2.7

illustrates the Emotiv EPOC+ headset and its electrode positions. The Emotiv EPOC+

has 14 electrodes (AF3, AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, O2) plus two

standard reference electrodes (CMS, DRL) and gyroscope provides information about head

movements. The Emotiv EPOC+ connects to the computer wirelessly and has considerable

lithium-based battery autonomy of 12 hours. It has two different sampling rates,128 or 256

samples per sec per channel. Also, the Emotiv EPOC+ headset can detect different facial

expressions such as blink, wink, furrow, and laugh. Moreover, the Emotiv EPOC+ headset

has gyroscope which provides information about head movements.

The EMOTIV Inc. company has released three types of headsets: Emotiv EPOC+,

Emotiv EPOC, and Insight. The Emotiv Insight is a five channels portable device allows the

user to capture and understand the the brain activity in real-time. With the Emotiv Insight,

the user can optimize his/her cognitive performance and monitor mental health and fitness.

The Emotiv EPOC+ is the updated model of EPOC headset. Both headsets have 14 channels

around the head, plus 2 reference channels in CMS/DRL configuration. The EPOC+ headset

has more features than the EPOC headset. The EPOC+ headset has seven more axis inertial

motion sensors than EPOC headset and allows additional motion/positional tracking and

monitoring. In addition, the EPOC+ headset provides Bluetooth that allows the users to

connect the headset to their PC or mobile device in additional to the EPOC dongle. More

details can be found in Table 2.1. Comparing to other commercial EEG recording devices

available on the market such as Insight, NeuroSky, the Emotiv EPOC headset is the best
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commercial EEG device in terms of usability according to a comparative study that has been

done by Stamps and Hamam [62].

(a) Emotiv EPOC+ Headset.
(b) Electrodes position

Figure 2.7. Emotiv EPOC+ headsets and its electrodes location

Table 2.1. EPOC+, EPOC, and Insight headsets with their features [16].

Feature EPOC+ EPOC Insight

Sensor Count 14+2 references 14+2 references 5+2 references
Frequence 0.16 – 43 Hz 0.16 – 43 Hz 0.5 – 43 Hz
Response

Connectivity Proprietary 2.4GHz Proprietary 2.4GHz Proprietary 2.4GHz
wireless, Bluetooth wireless wireless, Bluetooth

Resolution 14 bit or 16 bit 14 bit 14 bit or 16 bit
per channel per channel per channel

Sensor Saline soaked Saline soaked Long life semi-dry
Technology felt pads felt pads polymer
Pricing $799 $200 - $500 $299
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2.6. OpenViBE Software

OpenViBE is an open-source software platform written in C++ for designing and testing

BCIs in real-world and in virtual environment. The first version of the OpenViBE was

released in 2009. The main purpose of the OpenViBE platform is to design different scenarios

for brain-computer interfaces applications such as P300 speller. There are many free open-

source software packages that have been utilized in BCI applications, such as BioSig [59],

BCI2000 [57], CEBL [29], etc. The OpenViBE software has several features that make it

unique among the existing softwares [55]. These features are summarized in the following

points:

• The OpenViBE software has different modules, and each module has a particular

function. For example, ”Acquisition client box” which is used to import the recorded

EEG data from the headset and then distribute it into the scenario. Other modules

can be used for signal processing and visualization. Connecting these modules in a

particular way allows the users to design and implement different scenarios to test

a specific BCI application based on their needs.

• Most of the BCI platforms are required to be run by specialists since it requires

more knowledge of the brain process or programming skills. On the contrary, the

OpenViBE platform is appropriate to be used by different types of users.

• The OpenViBE platform can be run independently from other software and hard-

ware.

• Connection with virtual reality (VR) environment.

• Several predefined scenarios for common BCI applications have been designed in the

OpenViBE software such as BCI based on P300, BCI based on SSVEP, and BCI

based on motor activity which are ready to be used.
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• The OpenViBE software is a free and open-source software and can be operated on

Windows and Linux.

2.7. Related Work

The Emotiv headset is designed mainly to allow the user to play video games by merely

thinking. Today, much reaserch has utilized the Emotiv headset in different BCI applications

[10][49][43]. In addition, much research has been focused on providing the disabled people

alternative ways of communication and control just by their thoughts. However, there is

limited amount of studies that used Emotiv EPOC headset to record the P300 waves from

the brain. In this section, a critical review of the research is presented that has used Emotiv

EPOC headset or recorded P300 waves by using other headsets.

Campbell et al., [10] discovered a new way to control a mobile phone without using

voluntary muscles. They used Emotiv EPOC headset to acquire P300 waves from the brain.

Nine photos of contacts from the address book are displayed on an iPhone and flashed

randomly, and the user has to focus his/her attention on the photo of the person to be

contacted. After 300 ms, a P300 wave is generated and transmitted wirelessly to the iPhone

then the phone number is automatically dialed. To evaluate the system, they tested the

wink and think modes in a variety of scenarios (e.g., sitting, walking). In the winking mode,

the user generates EEG signals different than P300 signals. The classifier performed well

on data collected for sitting-relaxed scenarios (95.58%). While the users achieved accuracy

of 92.58% when they were walking. The subjects used the same application when they are

in different situations: sitting, sitting with loud background music, and standing up. The

data were averaged over a set time interval (20 s, 50 s, 100 s). The results showd that the

accuracy increased as the time interval increased.
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Similarly, English et al., [22] proposed a new framework named ”EyePhone” which can

help paralyzed people to control a cell-phone by their eyes. They used the Emotiv headset

to detect EOG signals so that the user can control the mobile phone. The researchers con-

ducted experiments in various settings to evaluate the efficacy and efficiency of the developed

prototype. The users were able to control mobile phone through eye or facial movements

with accuracy between 100% and 93%.

The P300 waves have been used to control an internet browser [47]. Three individuals

with ALS and 10 healthy volunteers participated in the study. The user executed different

browser functions: navigation (forward, back, reload, and home), data form entry, address

bar entry, and scroll up and scroll down. These functional options are presented in a 8x8

matrix in BCI2000. The P300 waves were averaged across 270 trials. In this study, step-

wise linear discriminant analysis (SWLDA) was performed to classify the target and non-

target samples. The ALS patients achieved an average accuracy of 73% and a subsequent

information transfer rate (ITR) of 8.6 bits/minute. The healthy participants achieved over

90% accuracy and an ITR of 14.4 bits/minute.

Münßinger et al. [49], created a new BCI application, P300-Brain Painting, that allows

paralyzed people to create expressions which is another way of communication. The signals

were acquired from Cz channel and band-pass filtered between 0.1 to 30 Hz. A 6 x 8 matrix

contains letters of the German alphabet, numerals 0–9 and some additional punctuation

marks was used. In this study, 380 trials were averaged across all subjects for targets and

4560 trials for non-targets. The patients with amyotrophic lateral sclerosis (ALS) achieved

accuracy above 89%.

Some comparative studies have been done between Emotiv headset and other EEG head-

set devices. Duvinage et al., [20] compared the performance of Emotiv headset in a P300 BCI
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with the performance of a medical device, the ANT system. A 2 x 2 matrix was presented

to the user. Each row/column is flashed 12 times per trial. The results showed that the

performance of ANT system is better than the performance of Emotiv headset. Nevertheless,

the study suggested that the Emotiv headset can be used just for non-critical applications

such as communication systems and games due to its lacking of reliability.

Another study [45] compared the performance of extraction event related potentials

(ERPs) between Emotiv headset and six traditional EEG disc electrodes. The performance

of Emotiv headset is worse than the performance of the six traditional EEG disc electrodes

as the study showed. Badcock A. et al., [4] used the Emotiv headset to record auditory ERPs

from 21 adults and compared it with Neuroscan EEG system. The P300 response averaged

over around 600 stimuli. The results suggested that the Emotiv headset can be utliized as

an alternative system to record auditory ERPs.

Zach Cashero [11] did a comparison of three blind source separation (BSS) algorithms:

independent component analysis (ICA), maximum noise fraction (MNF), and principal com-

ponent analysis (PCA). These techniques are useful in extracting the P300 source information

from the background noise. The main goal of Zach’s work was to compare ICA with MNF

and PCA and study the effect of adding temporal information to the original data. Two

different datasets were used in the study. Dataset A was recorded using a 64-electrode cap

and contains 2550 target trials. Dataset B was recorded using the Biosemi active electrode

system and contains 540 target trials. The results showed that using BSS techniques im-

proved the classification accuracy. However, the results showed no difference between the

three BSS methods. The results also suggested that adding temporal information to the

original data reduces the classification accuracy.
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CHAPTER 3

Methodology

3.1. Data Acquisition

The EEG signals were acquired using Emotiv EPOC+ headset from all 14 channels (AF3,

AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, O2). The EEG signals were recorded

and sent to the OpenViBE software wirelessly via a USB dongle. The EEG signals were

sampled at 128 Hz, therefore a sample is taken approximately every 8 ms. Sampling the

data at 128 Hz provides enough samples for the frequency ranges of the four frequency bands,

which contain the valuable ERPs information, (Nyquist rate = 128/2 = 64 Hz) [40][51][39].

The user was seated in front of a computer screen. A 6x6 or 3x3 matrix size was presented

to the user during the experiment. The user was instructed to focus his/her attention to the

letter they wished to spell. In addition, the user was asked to relax and avoid unnecessary

movements.

The Emotiv EPOC+ headset was prepared before placing the electrodes on the user’s

head. One of the advantages of the Emotiv EPOC+ headset is that the preparation time

is much less than other EEG headsets. It takes about 2 – 3 minutes comparing with other

EEG headsets which required more than 10 minutes for preparation step. A few drops of

saline liquid were applied to wet the sensors and reduce the electrodes impedance. It is

important to check the contact quality before starting the acquisition step. To check the

quality of the sensors connection, we run a software called the Emotiv Xavier SDK. The

Emotiv Xavier SDK panel has many functions one of which is to provide feedback to the

user about the contact quality for each sensor on the Emotiv headset. The Emotiv Inc.

company suggests some steps to improve the contact quality when problems are detected.
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To improve the contact quality, the headset should be fully charged. The Lithium battery

can be fully recharged in approximately 4 hours. In addition, more drops of saline solution

should be added on each felt. Moreover, we have to make sure that the sensors are fitted

properly and they are in contact with the head.

3.2. Participants

Five healthy subjects, four males and one female, aged 25–32, participated in the study.

All subjects’ native language was Arabic, and they were familiar with the alphanumerical

displayed during the experiment. None of the subjects had previous BCI experience before

or had a history of neurological diseases such as ALS or spinal cord injury. All participants

gave informed consent prior the experiment (see Appendix).

3.3. Linear Discriminant Analysis (LDA) Algorithm

Classification is a kind of supervised learning, using training data with known input

vectors as well as corresponding target vectors. The goal in classification is to take an input

vector x and assign it to one of K discrete classes, Ck, where k = 1, 2, ..., K [6]. In our case,

we have two classes (k=2): target and non-target. In 1936, R. A. Fisher developed the linear

discriminant analysis (LDA). The LDA is a classification method used in machine learning

to find a linear combination of features that separate two or more classes of objects [66]. In

addition, the LDA has been widely applied in different BCI applications and achieved high

classification performance [7][58][27].

Assume we have the following linear discriminant function:

(1) y(x) = wTx+ w0
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where w is called a weight vector, x is an input vector, and w0 is a bias. If y(x) ≥ 0, the input

vector x is assigned to class C1 and to C2 otherwise. Figure 3.1 illustrates the geometry of

a linear discriminant function in two dimensions.

Figure 3.1. Illustration of the geometry of a linear discriminant function in
2-D [6].

The decision boundary is defined by the relation y(x) = 0. If x is a point on the decision

surface, the normal distance from the origin to the decision surface is given by:

(2)
wTx

kwk
= −

w0

kwk

We can see from the previous equation that w0 determines the location of the decision surface.
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3.4. OpenViBE Scenarios

Three different OpenVibe scenarios are used in this study. Each scenario contains differ-

ent modules with unique functionality for each module. These scenarios are as follow:

• P300 speller acquisition scenario.

• Training LDA classifier scenario.

• Online scenario.

Before running the scenarios, we first connect the Emotiv EPOC+ with OpenViBE plat-

form through the acquisition server which forwards the recorded EEG signals to OpenViBE

scenarios. Once the Emotiv EPOC+ connected with OpenViBE platform, the first scenario

can be implemented. The first scenario ”P300 speller acquisition” is used as a first step to

collect some training data. These data will later be used to train a spatial filter and LDA

classifier for the online scenario. Figure 3.2 shows the ”P300 speller acquisition” scenario

and its modules. At the beginning of this scenario, the ”a” key on the keyboard has to be

pressed to start the data collection and to generate and send a specific stimulation to the

P300 speller stimulator module telling it to start the flash sequence. The recorded EEG sig-

nals are received by the acquisition client module from the Emotiv EPOC+ headset. Then,

the acquisition client module forwards the EEG signals to the other modules in the scenario.

A 6x6 matrix or 3x3 matrix (depending on the condition) is presented to the user and

the target character is highlighted by a blue color so the user knows which character he/she

should focus on. Once the ”a” key has been pressed, a specific stream of stimulation is sent

to the P300 speller stimulator module to start the generation process. Through this module,

we can adjust the intensification configurations used for the P300 speller. For example, the

number of rows, columns, repetitions, and trials can be set up using P300 speller module. In

our study, the number of trials and repetitions are fixed at 12 and 10, respectively. However,

26



the number of rows and columns are changed to create different matrix size in order to

investigate the impact of different matrix sizes on the P300 speller performance.

The flash duration is another factor that has been studied in many research. In our

study, the flash duration is selected to be 100 ms and 175 ms. The ’Target Letter Generation’

module receives stimulations from the P300 speller stimulator module and generates random

target letters according to a Lua script file. The ’Identity’ module is used for connection

purposes. The P300 speller visualization module receives sequence stimulations from the

Figure 3.2. P300 speller acquisition scenario.

P300 speller stimulator module and target stimulations from Lua stimulator module. Also,

it visualizes the P300 matrix which has letters (A-Z) and numbers (0-9). The rows and
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columns are intensified sequentially based on the sequence and target stimulations received

by the module. All the EEG data then are saved in .ov file by ”Generic stream writer” so

they can be used in the next scenarios.

Once the EEG signals have been received by the ’Acquisition client’ module, they are

passed to ’Temporal filter’ box for filtering. The EEG signals passed to a Butterworth

bandpass filter of fourth order and the low cut frequency equal to 0.1 Hz and the high cut

frequency equal to 30 Hz because it content EEG data as Section 2.3 describes . After that,

the filtered signals are sent to two different ’Stimulation based epoching’ modules, one is for

the target characters and the other one is for the non-target characters. This module selects

part of the EEG signal at a certain event. Here, there are two events: target and non-target.

When the row or column that contains target character is intensified, this box starts to save

the signal for 600 ms since the P300 wave occurs about 300 ms after the flashing of the

desired character, and the same procedure is done for the non-target characters. To increase

the SNR, the EEG signals are averaged over time. The ’Epoch average’ module is used to

average the target and non-target signals and then send it to the ’CSV file writer’ module

to save the averaged signals. Then, we use MATLAB to read the signals from the ’CSV file

writer’ module and visualize the target and non-targets waves, as in Section 4.1.

In this research, the linear discriminant analysis (LDA) classifier is employed to classify

the target samples from the non-target samples. Figure 3.3 shows the LDA classifier training

scenario. The same steps are followed at the beginning of this scenario. The EEG data are

read by the ’Generic stream reader’ module the sent to the ’Temporal filter’ module. Next,

the ’P300 Speller Visualization’ box sends target/non-target flagging to the ’Stimulation

based epoching’ modules for target and non-target selection. Each time the row or column

that contains the target character is intensified, the target selection box stores 600 ms of
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Figure 3.3. Training the LDA classifier scenario.

the EEG signals at this event. On the other hand, the non-target selection box stores the

signals all the time except when the row or column that has the desired letter is flashed.

The averaging step comes next to increase the signal-to-noise ratio. The averaging type

used here is epoch block average which receives streamed matrix and averages across time.

In this study, we used 10 trials for both 6 x 6 and 3 x 3 matrix. In the 6 x 6 matrix,

each row and column is flashed 12 times per trial. Therefore, this box receives 240 target

epochs and 1200 non-target epochs. In the 3 x 3 matrix, epoch block average box receives

240 target epochs and 480 non-target epochs. The averaged signals then are sent to the

’Feature aggregator’ module. This module recieves a stream of matrices containing features
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and aggregates them to feature vectors to be used for classification. In other words, it takes

a signal in the form of a matrix, then produces corresponding vectors that can be utilized

by the Classifier/Trainer boxes.

After that, the feature vectors are sent to the ’Classifier trainer’ module which is used

to train the LDA classifier. In this step, the module performs classifier training with k-fold

cross validation which gives an estimation of the classifier accuracy. The idea of the k-fold

test is to split the data into training and testing sets then the classification algorithm is

trained on the training sets and then we evaluate the algorithm on the testing sets. The

testing is repeated k times ( we selected k=20 in this study), and then the accuracies are

averaged over the different partitions. The accuracy here gives a good prediction of how the

classification algorithm will work on the online performance.

Figure 3.4 shows the last scenario implemented is the online scenario. There are 12 paths

for the 6x6 matrix (9 paths for the 3x3 matrix) in this scenario. Each path is responsible for

a row or a column processing. Each column/row has its specific P300 detection pipeline. The

pipeline consists of several boxes. First, the ’Simulation based epoching’ box receives the

filtered EEG signals and selects a segment of a signal start when for a specific row or column

contains desired character is flashed. Then each ’Stimulation based epoching’ box sends

epoched signals to the ’Epoch average’ box to average them to enhance the P300 signals.

After that, the averaged signals are converted to feature vectors and sent to the ’Classifier

processor’ box. The ’Classifier processor’ box chooses whether the selected signal is a target

or non-target signal. Finally, the ’Voting Classifier’ box chooses which of the candidate

column or row has the P300 signal and sends the result to the ’P300 speller visualization’

module to display the result for the user. If the results are not good enough, the EEG data

recorded in this scenario are sent to the second scenario to train the LDA classifier again.
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Figure 3.4. Online scenario .
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CHAPTER 4

Results and Discussion

4.1. The Capability of Emotiv EPOC+ headset for Detecting P300 Wave

The first goal of this research is to evaluate the capability of Emotiv EPOC+ headset

to detect P300 waves. Figures 4.1 and 4.2 show the recorded responses of the subjects (S1,

S2, S3, S4, S5) to the visual stimulation during the experiment. Four different experimental

conditions are tested in this study as follow:

• 6x6 matrix size with flash duration 100ms

• 6x6 matrix size with flash duration 175ms

• 3x3 matrix size with flash duration 100ms

• 3x3 matrix size with flash duration 175ms

Figures 4.1 and 4.2 illustrate the participants’ responses from all 14 channels when a 6x6

matrix size is presented with flash duration 100 ms. The other conditions above were applied,

and participants’ responses were recorded and showed approximately the same results.

Before explaining Figures 4.1 and 4.2, it is important to understand the difference between

the two subcomponents of P300 which are P3a and P3b. These ERPs can be distinguished

according to the task that elicits them, the amplitude size (P3b is greater that P3a), and the

lobe location that generates the signal [54]. The P3a is generated from the frontal-central

areas of the brain with latency between 150 ms to 300 ms. While the P3b wave is generated

from the parietal-occipital areas with latency between 250 ms to 600 ms. Accordingly,

four channels out of 14 channels of the Emotiv EPOC+ headset are believed to be the

best channels to use of those that are available on the Emotiv system : P7, P8, O1, and

O2. Further analysis has been done in this research to investigate the most active channels
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during acquiring P300 signal to reduce the number of channels used to capture P300 signal.

The results in Section 4.2 show that O1 and O2 are the most active channels. Hence, our

focus in this research is on these two channels.

Figures 4.1 and 4.2 below are clear evidence that prove the capability of Emotiv EPOC+

headset to detect the P300 signal. Figures 4.1 and 4.2 show two different waves: target (in

blue) and non-target (in red). The target waves are the averaged signals elicited by visual

target stimulus, while the non-target waves represent the averaged signals that elicited by

the other visual stimulus during the experiment. It can be seen from Figures 4.1 and 4.2

that the target waves (in blue) are remarkably distinguishable from the non-target wave (in

red) for most subjects. Moreover, because each human has a unique brain structure, the

response of the subject to the visual stimuli is different from one to another.

It can be noticed from Figures 4.1 and 4.2 that the response of each participant is different

from channel to another. Clearly, participant #2 respond weakly to the visual stimulus,

where the amplitude signal generated from O1 channel is 1.76 µV and the latency is 390

ms. However, the amplitude signal generated from O2 channel is 1 µV and the latency

is 429.7 ms. In contrast, the response of participant #5 to the visual stimulus was the

strongest respond compared to other participants from both channels (O1 and O2), where

the amplitude signals are 4.01 µV and 4.91 µV,for O1 and O2 channels respectively. The

amplitude of the P300 signal (especially the amplitude of the target wave) reflects how the

participant responds to the target and non-target visual stimulation and determines whether

the participant can use a P300-based BCI or not. In other words, if the user produces a

higher amplitude of the target signals, then the classifier can detect the target character

which the user is intended to spell. According to [2], 10% of the users do not produce a

distinguishable amplitude peak between target and non-target waves; therefore, they are not
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able to use the P300-based BCI even if they increase the number of training sessions or use

more advanced signal processing methods.

Several studies have investigated the effect of the subject factors (age, gender, etc.)

as well as different stimulus characteristics on the P300 amplitude. For instance, it has

been reported that longer inter-stimulus interval (ISIs) decreases the P300 amplitude and

classification accuracy for disabled users [34]. The same study showed that healthy subjects

produced higher amplitude at the P300 peak than disabled subjects (around 2 µV for the

healthy subjects and 1.5 µV for the disabled subjects). The current study examines the

effect of matrix size, flash duration, and colors on the P300 speller performance.
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Figure 4.1. EEG amplitude versus time at AF3, F7, F3, FC5, T7, FC6,
and F4 average over 240 trials for target letters and 1200 trials for nontarget
letters. Each plot is for 6 x 6 matrix and 100 ms flash duration. For each plot,
x-axis represents time (ms) and y-axis represents amplitude (µV). The time
length in each plot is 600 ms. The vertical line represents the time at 300 ms
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Figure 4.2. EEG amplitude versus time at F8, AF4, T8, P7, O1, O2, and P8
average over 240 trials for target letters and 1200 trials for nontarget letters.
Each plot is for 6 x 6 matrix and 100 ms flash duration. For each plot, x-axis
represents time (ms) and y-axis represents amplitude (µV). The time length
in each plot is 600 ms. The vertical line represents the time at 300 ms

36



4.2. The Most Active Channels for P300 Wave Detection

As illustrated in Figure 2.11, the Emotiv headset has 14 channels distributed over the

scalp. One of the aims of this research is to reduce the number of channels employed in the

study and use only the most effective channels. Some studies have been shown that using a

large number of channels to acquire the brain signals is a way to increase the P300 speller

accuracy [15]. However, utilizing a large number of channels increases the system cost and

setup time. Further analysis has been done by using EEGLab toolbox, which is an open

source Matlab toolbox for processing EEG signals and other biosignals such as MEG and

ECG, and the result is shown in Figure 4.3.

Figure 4.3. The distribution of the event-related potentials (ERPs) over the
scalp of participant #1 at different time after a target visual stimulation.

Figure 4.3 shows the topographic distribution of average potential at the specified laten-

cies (300 ms, 328 ms, 430 ms, 500 ms, 560 ms, 600 ms). As it can be seen in Figure 4.3,

the most active channels (in red) are located on the back of the brain, which are O1 and

O2 channels. In other words, O1 and O2 channels contain the strongest amplitude EEG of

those provided by Emotiv, even though central and parietal are usually found to have the

strongest P300s. This result was expected before analyzing the distribution of ERPs over
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the scalp since these two channels are located on the visual cortex, which its function is to

receive visual information from retina and process them.

Tong J. et al. [37], designed a portable dialing system and they used Emotiv headset

to record P300 signals. In their study, they computed the averaged r-squared (coefficient

of determination) values for all participants, which gives the proportion of the variance in

the dependent variable that is predictable from the independent variable. The results then

were plotted as in Figure 4.4. The red area in Figure 4.4 represents the activated area of the

brain after a P300 visual stimulation, which are O1 and O2 channels.

Figure 4.4. The averaged r-squared values plot for all participates [37]

4.3. The effects of matrix size on the P300 speller performance

There are many variables and parameters that have to be considered when designing an

effective and accurate P300-BCI system, one of them is the matrix size. As it is stated in

Section 2.4, the P300-BCI system presents the user a matrix containing characters (letters

and symbols) and the user has to pay attention to the character he/she wants to spell.

Each row and column is flashed in a random sequence. The intersection of the row and
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column containing the desired character (the target) is elicited P300 wave. Many studies

have investigated the effect of the matrix size on the P300 performance and improved the

matrix size to get an optimal size that makes the user communicate more effectively. Our

goal in this research is to study the impact of using different matrix size (6x6 and 3x3) on

the P300 amplitude and the online and offline accuracies.

Previous studies have shown that there is a proportionality relationship between the

matrix size and the P300 amplitude. In other words, when the probability of the occurrence

of the desired character (the target) decreases, the P300 amplitude increases, and vice versa.

In a 6x6 matrix, the probability of the occurrence of the target character is 5.56% in each

trial (we have 36 characters and each character is flashed 2 times/trial, one for row and one

for column. The target character is flashed 2 times/trial, so the probability of the occurrence

of the target character is 2/36 = 5.56%). In 3x3 matrix, the probability of the occurrence

of the target character is greater. There are 9 characters, and each character is flashed 2

times/trial, so the probability of the occurrence of the target character is 2/9 = 22.22%.

Table 4.1 and Figure 4.5 present the P300 amplitude obtained from O1 and O2 channels

for all the participants where the flash duration is 100 ms. The EEG amplitudes at O1 and

O2 averaged over 240 target letter trials and 1200 non-target trials for 6x6 matrix size, and

averaged over 240 target letter trials and 480 non-target trials for 3x3 matrix size. It can

be seen that the P300 amplitudes are larger for 6x6 matrix for all the participants. These

findings are similar to other results from different studies. Brendan Z. et al. [3], did an

experiment to assess the effect of three different matrix size ( 4x4, 8x8, and 12x12) on the

P300 speller performance. The results showed that larger matrix size produced larger P300

amplitude. In another study [61], the researchers tested two different matrix size (3x3 and
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6x6). They found that the P300 amplitude was greater for the 6x6 matrix and the accuracy

increased when the matrix size increased.

Figure 4.6 and Figure 4.7 show the averaged offline and online accuracies for all partic-

ipants across six sessions when 6x6 and 3x3 matrix size presented and the flash duration is

100 ms. The offline accuracy is an offline testing to predict the performance of the LDA

classifier (k-fold). The online accuracy is the number of correctly spelled characters divided

by the total number of characters spelled (10 letters in our study). We can see that the

matrix size has no significant effect on the offline accuracy. In contrast, the effect of the

matrix size on the online accuracy is very clear. The performance of all participants is

increased when a 6x6 matrix is presented to them except for participant #2. Participant

#2 reached an averaged online accuracy of 45% when using a 6x6 matrix and 50% when

using 3x3 matrix and this result was not surprising since participant #2 was suffering from

extreme fatigue during using 3x3 matrix size, as he reported. For the 6x6 matrix version,

participants #1,#2, and #5 were able to control the speller with 90% accuracy after four

training sessions. Participant #4 was able to spell 6 letters correctly out of 10 after three

training sessions. The lowest performance was obtained by participant #3 where he could

spell 5 letters after five training sessions.
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(a) Participant 1, 6x6 (b) Participant 1, 3x3

(c) Participant 2, 6x6 (d) Participant 2, 3x3

(e) Participant 3, 6x6 (f) Participant 3, 3x3

(g) Participant 4, 6x6 (h) Participant 4, 3x3

(i) Participant 5, 6x6 (j) Participant 5, 3x3

Figure 4.5. EEG amplitudes at O1 and O2 averaged over 240 target letter
trials (in blue) and 1200 non-target trials (in red) for 6x6 and averaged over
240 target letter trials and 480 non-target trials for 3x3 matrix sizes. The flash
duration is 100 ms.
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Table 4.1. EEG amplitudes at O1 and O2 averaged over 240 target letter
trials and 1200 non-target trials for 6x6 and averaged over 240 target letter
trials and 480 non-target trials for 3x3 matrix sizes. The flash duration is 100
ms.

Participants O1 channel amplitude(µV) O2 channel amplitude (µV)
6 x 6 3 x3 6 x 6 3 x 3

1 2.28 1.96 3.25 3.23
2 1.76 0.35 1.0 0.35
3 2.54 1.60 1.85 1.31
4 2.60 1.54 3.74 1.63
5 4.01 2.13 4.91 1.72

The performance of the participants was lower for 3x3 matrix size. Participants #1 and

#2 reached an accuracy of 70% and 80%, respectively, after 4 training sessions. Participant

#4 could not spell any letter in session #5 and the highest accuracy was 20% after 3 training

sessions. Participant #1 reached 50% after just one training session.

Figure 4.6. The average online accuracy for all participants for matrix sizes
6x6 and 3x3 with flash duration of 100 ms.
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Figure 4.7. The average offline accuracy for all participants for matrix sizes
6x6 and 3x3 with flash duration of 100 ms.

4.4. The effect of flash duration on the P300 speller performance

The effect of the flash duration was studied in this research. One of the factors that

have been investigated and tested its affect on P300 speller performance is the inter-stimulus

interval (ISI). The inter-stimulus interval (ISI) starts from the onset of the flash of one row

or column to the onset of the flash of the next row or column [23].

The ISI has two parts: flash duration and no flash duration of the row and column. The

flash duration was manipulated in this study (either 100 ms or 175 ms) while the no flash

duration was fixed at 175 ms. This manipulation was done through P300 speller stimulator

box in OpenViBE. Participants #3 and #4 were invited to undertake more training sessions

(six sessions where the matrix size is 6x6 and flash duration is 175 ms and six sessions where

the matrix size is 3x3 and flash duration is 175). Tables 4.2 and 4.3 and Figures 4.8 and 4.9

show the results.

Tables 4.2 and 4.3 present the amplitudes of the averaged EEG amplitudes at O1 and

O2 for participants #3 and #4 at different flash duration (100 ms and 175 ms). As it can

be seen, the P300 amplitudes are increased with longer ISI for both versions of the matrix
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size (except the amplitude obtained from O1 channel for participant #4 in 6x6 matrix).

Lawrence et al. [23] reported that longer ISI produces larger P300 amplitude. Moreover,

six adults participated in a study examining the effect of the stimulus rate (target to target

interval) [46]. Four different ISI were tested (31.25 ms, 62.5 ms, 125 ms, and 250 ms). The

results showed that the P300 amplitude is increased with larger ISI.

Table 4.2. A comparison of using different flash duration (100 ms, 175 ms)
on the EEG amplitudes for participants #3 and #4. The EEG amplitudes at
O1 and O2 averaged over 240 target letter trials and 1200 non-target trials.
The matrix size is 6x6.

Participants O1 channel amplitude(µV) O2 channel amplitude (µV)
100 ms 175 ms 100 ms 175 ms

3 2.54 2.93 1.85 3.41
4 2.60 1.94 3.74 4.16

Table 4.3. A comparison of using different flash duration (100 ms, 175 ms)
on the EEG amplitudes for participants #3 and #4. The EEG amplitudes
at O1 and O2 averaged over 240 target letter trials and 480 non-target trials.
The matrix size is 3x3.

Participants O1 channel amplitude(µV) O2 channel amplitude (µV)
100 ms 175 ms 100 ms 175 ms

3 1.60 2.48 1.31 3.33
4 1.54 1.56 1.63 3.62
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(a) Participant #3, 100 ms

duration

(b) Participant #3, 175 ms

duration

(c) Participant #4, 100 ms

duration

(d) Participant #4, 175 ms

duration

Figure 4.8. EEG amplitudes at O1 and O2 averaged over 240 target letter
trials and 1200 non-target letter trials for 6x6 matrix size and different flash
durations (100 ms and 175 ms).

(a) Participant #3, 100 ms

duration

(b) Participant #3, 175 ms

duration

(c) Participant #4, 100 ms

duration

(d) Participant #4, 175 ms

duration

Figure 4.9. EEG amplitudes at O1 and O2 averaged over 240 target letter
trials and 1200 non-target letter trials for 3x3 matrix size and different flash
durations (100 ms and 175 ms).
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Figure 4.10 shows the average offline and online accuracies for both participants #3 and

#4. The results show that the ISI does impact the performance of the participants. In

both participants, the online performance was better for shorter ISI (A,C). In other words,

the online accuracy increased as ISI decreased. For 100 ms flash duration, participant#3

reached an average accuracy of 23.33 %, but this accuracy dropped to 16.67 % with 175 ms

flash duration. Participant #4 as well has better performance with 100 ms flash duration

(accuracy of 25%) than 175 ms flash duration (accuracy of 23.33 %). These results are similar

to the results in [46][61]. Figure 4.10 shows that the ISI has no significant impact on the

(a) (b)

(c) (d)

Figure 4.10. This figure illustrates the average online and offline accuracies
for participants #3 and #4.

offline accuracy (B,D). In contrast, there are other studies have found that higher accuracy

rate can be achieve with longer ISI as in [23]. As reported in [46], the reasons behind this

difference in findings between studies are unclear.
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4.5. The effect of using colored matrix on the P300 amplitude

When the user uses the P300 speller system, it is instructed to relax and avoid unneces-

sary movements to reduce the noise and so increase the SNR. However, this is considered as

a difficult task since the user can not stay in a comfortable situation for a long time. Hence,

providing a suitable and quiet environment helps the user using the P300 speller more effec-

tively. One of the factors that makes the user feel relaxed during using P300 speller system

is the color of the matrix. The colors have different wavelengths which affect our brain,

especially the visual cortex. Researchers have found that the colors that have cool shades

such as green and blue can make us feel relaxed and aid our concentration [67].

The current study investigated the impact of using colored matrix on the amplitude of

the P300 wave. We did not investigate the effect of using colored matrix on the accuracy

because it requires using the previous OpenViBE scenarios again. No one of the participants

was able to participate in more training sessions. However, participants #1,#2 and #3

were invited to use P300 speller system with colored matrix instead of a conventional P300

speller system which presents white/black matrix to the user. This experiment takes about 5

minutes. Figure 4.11 shows the P300 amplitudes for participants #1,#2, and #3 when using

a conventional (white/gray) and colored (green/blue) P300-BCI speller paradigm. According

to the results in Section 4.2, the most effective channels in the P300-BCI system are located

on the occipital lobe of the brain which are O1 and O2 channels, so we tested the effect of

the colored (green/blue) matrix on the P300 signals obtained from these two channels.

In Figure 4.11, participants #2 and #3 produced higher P300 amplitudes from O1 chan-

nel when a white/gray matrix was presented to them during the experiment. In contrast,

the P300 amplitude for participant #1 from O1 channel was higher under the green/blue

condition (colored matrix). This fluctuation in the results suggests that the effect of using

47



a colored matrix is unclear and can be different from one person to another. The results

are surprising since the O1 channel is located on the left hemisphere of the brain as Figure

2.11 (B) shows. In addition, various studies have investigated which part of the brain has

the function of colors recognition. The results show that the colors processing is associated

with the right hemisphere [56][5]. Our results in Figure 4.11 suggest that O2 channel, which

is located on the right hemisphere, involved in color processing. For all the participants,

the P300 amplitudes obtained from O2 channel are higher under the green/blue condition

than under the white/gray condition. At the end of the experiments, all the participants

reported that using a colored matrix (green/blue) was more comfortable for their eyes and

made them focus and concentrate on the desired characters more than using a conventional

matrix (white/gray).

(a) Participant 1 (b) Participant 2

(c) Participant 3

Figure 4.11. P300 amplitudes for participants #1,#2, and #3 when us-
ing a conventional (White/Gray) and colored (Green/Blue) P300-BCI speller
paradigm.
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4.6. Exploring the significance of the Number of Training Sessions

The number of training sessions required to allow the user to use the P300-BCI system

daily with an effective and accurate performance is explored in this study. It is a difficult

task for a user to use the P300-BCI system as a communication tool with just one training

session especially if the user has not had BCI experience before. However, 100 subjects

participated in a study to test a P300-based BCI system to spell a 5-character word with

only 5 min of training. The results showed that 72% of the subjects achieved 100% accuracy

after only 5 minutes of training [30].

Figure 4.12 depicts the online accuracy for the participants during six training sessions

under four different conditions. In the 6x6 matrix and 100 ms flash duration (A), participants

#1,#2, and #5 reached 90% accuracy after four training sessions. The best performance

for participant #4 was after three training sessions (60%). The same amount of training

sessions was done by participant #3 who reached 50% accuracy. In the second condition, 3x3

matrix and 100 ms flash duration, all the participants did six consecutive training sessions.

The results of the online accuracy are shown in (B). We can see that participants #2,#4,

and #5 achieved the best performance after three training sessions (80%, 20%, 40%). For

participant #3, he reached 50% accuracy after 5 sessions of training but then the accuracy

dropped sharply to 10% in the next session. Lastly, for this condition, four training sessions

were enough for participant #1 to acheive accuracy of 70%.

To investigate the effects of the variation of the flash duration on the online accuracy,

participants #3 and #4 were invited to participate in two different conditions (6x6 matrix

and 175 ms, 3x3 matrix and 175 ms). It can be seen from (C) and (D) that each participant

reached the best performance after doing different number of training sessions. In (C),

participants #3 and #4 achieved the highest online accuracy (30% and 50%, respectively)
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after 3–4 training sessions. Similarly in (D), participant #3 reached 20% accuracy after 4

training sessions while participant #4 needed just three training sessions to achieved 50%

accuracy.

To conclude, we can see from the results in Figure 4.10 that three to four training sessions

are sufficient to get high online accuracy depends on the user’s performance. It is the fact

that in this study none of the participants reached 100% accuracy and this might be due

to many factors such as the limitation of the number of the training sessions (six training

sessions), signal quality, or electrodes placement. Some users may need more training sessions

to adapt with P300-BCI speller system and consequently they can not use it accurately and

effectively when they do few training sessions. One of our goals in the future is to minimize

the required number of training sessions by using more advanced signal processing techniques

and more advanced classification algorithms.
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(a) 6x6 100 ms (b) 3x3 100 ms

(c) 6x6 175 ms (d) 3x3 175 ms

Figure 4.12. This figure illustrates the online accuracy for all participants
in each training session
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CHAPTER 5

Conclusion and Future Work

The aim of the BCI field is to provide the people with severe neuromuscular disorders

a new augmentative communication technology so that they can express their wishes and

communicate with others. That can be done by recording the EEG activities from the scalp

and then translate them into commands that operate a certain device allows a person to

communicate with the external world. Different EEG signals can be recorded from the scalp

include P300 signal, mu rhythm, etc. In this study, we are interested in capturing the P300

signal and use it in one of the P300-BCI application called P300 speller. In this thesis, the

P300 signals were recorded from five subjects using non-invasive commercial and affordable

EEG headset namely Emotiv EPOC+. The capability of the Emotiv EPOC+ of detecting

the P300 signals was studied in this research.

Five research questions were addressed in this research mentioned in Section 1.3. The first

point is about the structure of the brain and how it works. Section 2.1 covered information

about the brain structure and the electrical signals in nervous system. The second question

was about the feasibility of the Emotiv EPOC+ to capture the P300 waves. The results in

Section 4.1 provide evidence of capability of the Emotiv EPOC+ to detect the P300 signals

from two channels, O1 and O2. Investigating the effect of different factors (matrix size, flash

duration, colors) on the P300 amplitude and accuracy is another important point that was

addressed in question #3. The results show that when the matrix size or flash duration

increases, the P300 amplitude increases. The effect of using the colored matrix was very

clear on the O2 channel since it is located on the right hemisphere which is responsible for

color processing. The next question was about the capability of the user to use the P300

52



speller correctly. The results show that some users reached accuracy above 70% after a

certain number of training sessions. The last question in this research was about the number

of training sessions required to use the P300 speller with a high accuracy. To answer this

question, each participant did six consecutive training sessions for each condition. The results

suggest that three to four of training sessions are enough to reach highest online accuracy.

The results in this research show that when the ISI increases, the P300 classification accuracy

decreases. However, when the ISI increases, the P300 amplitude increases.

The future works are summarized in the following points:

• The performance of the P300 speller can be evaluated by measuring the accuracy or

the information transfer rate (ITR). In our thesis, we measured the accuracy of the

participants for different conditions. However, the ITR have not been calculated in

this study. One of our goal in the future is to calculate the ITR and to find a way

to increase it so we can get better performance. In 1980, Pierce defined a formula

to calculate the ITR as follows [52]:

(3) B = log2N + Plog2P + (1− P )log2(
1− P

N − 1
)

where B id the ITR in bit rate, N is the number of possible targets, and P is the

probability that the target character will be selected.

• The BCIs applications mainly targeted paralyzed people to help them in their daily

life. One of the limitations of this study was to find disabled people to participate

in the experiment. In our research, all the participants are healthy and no one has

any neuromuscular disorders. In the future, we are looking to involve participants

with neuromuscular disorders in the study to get more reliable results.
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• Another limitation of this study was to find a large number of subjects to participate

in the research. In this study, the EEG data were collected from five participants.

Increasing the number of participants is one of our goals in the future to get more

accurate and reliable results.

• In this thesis, the linear discriminant analysis (LDA) classifier was used to classify

the target and non-target samples. There are many other powerful machine learning

algorithms available and they can be used for the classification purpose. However,

the OpenViBE software provides just two classification algorithms which are LDA

and support vector machines (SVMs). Therefore, we can use the SVMs classifier

and compare the results with the LDA classifier. Furthermore, we can use software

other than OpenViBE such as Biosig or CEBL.
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