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ABSTRACT 
 
 
 

COMPUTATIONAL MODELING OF THE PHARMACOKINETICS AND 
 

PHARMACODYNAMICS OF SELECTED XENOBIOTICS 
 
 
 
 The determination of important endpoints in toxicology and pharmacology continues to 

involve the acquisition of large amounts of data through resource-intensive experimental studies 

involving a large number of resources. Because of this, only a small fraction of chemicals in the 

environment and marketplace can reasonably be evaluated for safety, and many promising drug 

candidates must be eliminated from consideration based on inadequate evaluation. Promisingly, 

advances in biologically-based computational models are beginning to allow researchers to 

estimate these endpoints and make useful extrapolations using a limited set of experimental data. 

 The work described in this dissertation examined how computational models can provide 

meaningful insight and quantitation of important pharmacological and toxicological endpoints 

related to toxicity and pharmacological efficacy. To this end, physiologically-based 

pharmacokinetic and pharmacodynamic models were developed and applied for several 

pharmaceutical agents and environmental toxicants to predict significant, and diverse, biological 

endpoints. First, physiologically-based modeling allowed for the evaluation of various dosing 

regimens of rifapentine, a drug that is showing great promise for the treatment of tuberculosis, by 

comparing lung-specific concentration predictions to experimentally-derived thresholds for 

antibacterial activity. Second, physiologically-based pharmacokinetic modeling, coupled with 

Bayesian inference, was used as part of a methodology to characterize genetic differences in 

acetaminophen pharmacokinetics and also to help clinicians predict an ingested dose of this drug 
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under overdose conditions. Third, a methodology for using physiologically-based 

pharmacokinetic modeling to predict health-based cognitive endpoints was demonstrated for 

chronic exposure to chlorpyrifos, an organophosphorus insecticide. The environmental public 

health indicators derived from this work allowed for biomarkers of exposure to be used to predict 

neurobehavioral changes following long-term exposure to this chemical. Finally, computational 

modeling was used to develop a mechanistically-plausible pharmacodynamic model for 

hepatoprotective and pro-inflammatory events to relate trichloroethylene dosing conditions to 

observed pathologies associated with auto-immune hepatitis. 
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CHAPTER 1 
 

INTRODUCTION AND BACKGROUND 
 
 
 

This dissertation details research centered on integrating knowledge of biological systems 

and mathematical and computational modeling to develop approaches useful in quantifying and 

characterizing human exposure to foreign chemicals (xenobiotics). The development and 

application of several of these computational models to describe relevant toxicological and 

pharmacological endpoints are presented in chapters 3-6. To give context to these chapters, a 

number of key concepts must first be presented, including the role of biological modeling in 

toxicology and pharmacology, how computational biologically-relevant models in these fields 

are developed and implemented, and how such models strengthen in vivo and in vitro 

experimental results and assist in building linkages between these standard experimental 

methodologies. 

1.1 EXPOSURE TO XENOBIOTICS 

Toxicology and pharmacology aim to study the effect of foreign chemicals on living 

systems. Animals, plants, and entire ecosystems are constantly exposed to xenobiotics and each 

exposure to a given chemical results in a biological or ecological consequence. Examples of 

xenobiotics include prescription drugs, environmental pollutants, food additives, and a number of 

other common household items [1]. Quantifying how these chemicals affect human health, both 

beneficially and adversely, requires a characterization of diverse biological, biochemical, and 

physiological processes and interactions. Consequences of exposure to xenobiotics can be 

beneficial (e.g., killing of harmful bacteria, the inhibition of cancer angiogenesis, pain relief) or 

harmful (organ toxicity, system disregulation, increased probability of cell mutation), depending 
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on (i) the magnitude and duration of exposure within the target tissue and (ii) the effect of the 

chemical species (and/or its metabolites) on the organism.  

More formally, these two areas of concern are known as pharmacokinetics and 

pharmacodynamics. Pharmacokinetics aims to determine ‘what the body does to the drug’ 

through the processes of absorption, distribution, metabolism, and elimination (ADME). On the 

other hand, pharmacodynamics aims to characterize ‘what the drug does to the body’. Here, the 

goal is to determine not only the biological response but also the intensity of that response once 

the drug reaches the target tissue or organ, i.e. the site of action. From a therapeutic perspective, 

ensuring that a drug enters the body and reaches a safe and effective level and the site of action is 

of the utmost importance; however from the viewpoint of safety, the paramount concern is 

assuring that the concentration of the chemical at the potential site of toxicity stays below an 

acceptable threshold. Together, pharmacokinetics and pharmacodynamics are critical fields in 

pharmacology and toxicology, allowing researchers to better understand the disposition and 

biological consequences of exposure to xenobiotics. 

1.1.1 Current Methods for Assessing Toxicity and Efficacy 

From the perspective of pharmacology or toxicology, biological responses depend on two 

conditions [2]: 

1. A molecular target exists with which the xenobiotic interacts to initiate a response. 

2. The drug reaches the site of action in a meaningful amount to induce this response. 

If either one of these criteria is not met, a chemically-induced biological response will not occur. 

For example, if a molecular target within the lung initiates a mutation that leads to cancer, but 

the concentration of toxicant does not reach the necessary threshold to produce this effect, then 

an adverse biological response will not occur. Similarly, if animal studies demonstrate an 
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adverse health outcome due to the presence of a biological receptor in the rat, and this receptor is 

not present in humans, the observed biological effect will occur in humans. By utilizing 

knowledge of the above conditions, dose-response studies, and insights about the similarities and 

differences between animals and humans, results from in vitro and/or in vivo experiments can be 

utilized to gain insights into the pharmacological and toxicological characteristics of xenobiotics 

of interest.  

1.1.1.1 In vitro methods 

In vitro methods have the unique ability to probe very specific subsystems of the body to 

determine what effect a chemical might have on a tissue or organ of interest. In particular, using 

a minimal biomatrix, these methods are meant to mimic a susceptible body tissue or organ and 

determine changes in salient characteristics following chemical exposure. In vitro experiments 

can include high-throughput screening of drug candidates on an immortalized cell line to 

investigate the presence of a molecular receptor or cellular dysfunction following exposure to a 

chemical [3,4], enzyme-substrate assays to elucidate metabolic pathways [5], and tissue 

distribution and protein binding assays to determine drug bioavailability [6]. In general, these 

studies are designed to give investigators the ability to rapidly evaluate chemicals against 

batteries of tests indicative of key events along putative toxicological or pharmacological 

pathways. Because of their high-throughput nature, numerous chemicals can be tested and 

prioritized for further testing based on the desired/undesired biological responses they elicit [7]. 

Examples of an in vitro screening for drug efficacy include Mycobacterium tuberculosis 

(MTB) [8] killing kinetics experiments, receptor binding assays for the inhibition of cholesterol 

synthesis using statins [9], and dissolution tests for drug delivery vehicles to ensure proper 

release characteristics within a biological environment [10]. With respect to MTB killing 
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kinetics, strain of MTB of interest is grown in a biologically suitable environment with varying 

levels of local drug concentrations. The drug’s potency as an anti-TB compound is determined 

through the mean inhibitory concentration (MIC) which is simply the lowest antibacterial 

concentration that prevents bacterial growth following incubation with the antibacterial drug 

[11]. In this application, in vitro methods allow for a high throughput screening of drugs against 

a target of interest to determine antimicrobial activity, rank candidates with respect to efficacy 

[8], and assess the potential for bacterial resistance [11]. 

Rather than the evaluation of therapeutic efficacy, in vitro methods for environmental 

toxicants aim to characterize the concentration-response for a chemical interacting with a 

specific receptor within the body that may result in an adverse health outcome. These in vitro 

studies have a two-fold purpose in that they elucidate the biological mechanisms that lead to the 

biological response and provide a concentration-dependent relationship between the chemical 

and the observed biological response. One example of using in vitro methods for characterizing 

toxicity was for organophosphorus (OP) insecticides. When these insecticides were first 

synthesized, researchers understood that cholinergic interactions within the central nervous 

system (CNS) played a role in the observed acute toxicity [12]. However, the mechanism of 

action to produce this toxicity within the CNS was unknown. Using in vitro experimentation, it 

was determined that the inhibition of muscarinic acetyl cholinesterase (mAChE) enzymes within 

the central nervous system resulted in acetylcholine neurotransmitter accumulating within the 

synaptic cleft [12,13]. This accumulation of parasympathetic neurotransmitter explained the 

observable OP toxicity such as lethargy, nausea, muscle twitches, respiratory paralysis, and 

possible death [14]. In addition to demonstrating the target receptor for the toxicant, these studies 

also quantified the degree of inhibition based on how much insecticide was present at the site of 
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action. One of the most comprehensive in vitro developments for high-throughput analysis is the 

U.S. Environmental Protection Agency’s ToxCast project [15]. With the thousands of chemicals 

and chemical families currently registered for use, it is not feasible to test each one of these 

chemicals individually for toxicity. This program utilizes pathway-specific assays to assess 

molecular and pathway perturbations from a given chemical concentration. Therefore, in vitro 

assay development focuses on characterizing in vivo systems to determine which chemicals 

within an extensive chemical space perturb the system of interest [16]. 

In sum, for both drugs and toxicants, in vitro experimentation can be valuable to identify 

receptor targets at the site of action, the degree of interaction between receptors and drug, and the 

rates of transport/metabolism too and from the target tissue. Moreover, the relatively low cost 

and high throughput nature of these assays often facilitates the screening of large libraries of 

chemicals in a short time. 

1.1.1.2 In vivo methods 

Because of various ethical and practical issues, testing of unknown chemicals on human 

subjects is often impractical or impossible; thus, animal models are commonly used to mimic 

human diseases and human processes and metabolic pathways [17]. At the physiological and 

anatomical level, mammals are very similar [18]. This similarity lends itself to testing 

environmental toxicants and pharmaceutical drugs on animals and extrapolating those effects to 

humans. This extrapolation is often accomplished through a variety of animal models, including 

gene knockout/knockin mice for human disease or zebrafish for vertebrate developmental 

biology [19]. For example, to investigate the autoimmune effects of trichloroethylene (TCE) on 

humans, genetically-altered mice are used as a model system of systemic lupus [20]. Upon 

exposure to TCE, these mice exemplify the autoimmune effects of TCE exposure in the liver 
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through the production of liver-specific anti-bodies, inflammatory responses, and idiopathic 

autoimmune hepatitis (AIH). This in vivo system gives insight into how a mammalian liver 

reacts to chronic TCE exposure and, provided that similar metabolic network pathways and 

receptors are present in humans, AIH progression can be extrapolated to human exposure. This 

strategy is similar for most toxicity or pharmaceutical studies that take advantage of an animal 

model to study a particular disease or chemical exposure outcome. By using an animal model 

that sufficiently represents the human disease and biological network surrounding the disease, 

insights into the potential human response to the given xenobiotic can be gained [21]. In 

addition, once it has been demonstrated that there is minimal potential for toxicity in an animal 

model, targeted studies can then be conducted in humans to investigate efficacy and safety. 

In addition to investigating the action of the drug or toxicant on the organism, in vivo 

pharmacokinetic studies have proven essential in both pharmacology and toxicology. When 

conducting such studies, investigators determine the levels of parent compound and relevant 

metabolites in blood and tissues of interest over time. These measurements are then used to 

quantify measures such as absorption rates, chemical half-life, tissue distribution, and the 

metabolic fate of the xenobiotic. As with pharmacodynamic studies, pharmacokinetic testing on 

humans is relatively limited and is generally restricted to xenobiotic measurements that are 

relatively non-invasive, such as the blood, urine, or saliva. The biomatrix measurements limit  the 

amount of internal dose information, leading researchers to extrapolate information obtained 

from studies in animals. 

Finally, by integrating results from pharmacokinetic and pharmacodynamic studies, 

observed pharmacodynamic responses can be linked to the initially administered dose. 

Ultimately, this relationship between ‘what the body does to the chemical’ and ‘what the 
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chemical does to the body’ is foundational to the field of toxicology and pharmacology. Once 

this relationship has been determined, risk assessments that protect human health from 

environmental toxicants, or clinical trials for pharmaceutical drugs can be developed and refined, 

resulting in a better understanding of these health outcomes. 

1.1.1.3 Characterizing endpoints for toxicity/efficacy testing 

Modern approaches to risk and safety assessment [22,23] integrate data from in vitro and 

in vivo studies to evaluate the toxicity or efficacy of xenobiotics. Therefore, the above in vitro 

and in vivo studies are designed to determine the effects a given chemical induces based on the 

administered dose. The effects are characterized by a measurable biological endpoint, with this 

endpoint measurement reflecting a current physiological state. This state can represent 

progression/regression of disease, injury to an organ, or a direct measure of the overall health of 

the organism. In addition, clinical endpoints for a pharmaceutical drug can include the survival 

rate of a disease, decreased rate of developing a condition, or improvement of disease symptoms. 

In many situations, useful surrogate endpoints can be used to assess the health of an individual 

from a more quantitative standpoint rather than objective or subjective clinical endpoints, i.e. 

alanine aminotransferase levels in the serum as a measure for hepatotoxicity, blood pressure and 

cholesterol as a measure for heart disease and stroke risk, and cognitive learning tests as a 

measure for CNS damage. Finally, exposure to a single drug can result in multiple observed 

biological endpoints. In protecting against toxicity, the endpoint that occurs at the lowest dose, 

i.e. the sensitive or critical endpoint, is the endpoint that must be considered.  

1.1.2 Limitations of Current Methods 

The ethical concerns and substantial resources surrounding in vivo animal testing is 

continuously scrutinized. From an economic standpoint, the sheer cost of animal experiments, 



8 
 

such as a long-term mouse study conducted over three years, can be upwards of $1-2 million 

[24]. In all of these in vivo studies, the animals must eventually be sacrificed for measurement of 

internal dose and pharmacodynamic outcomes. Compounding the issues with animal testing is 

the uncertainty surrounding the extrapolation of effects from animal to human. In 2007, then 

U.S. Secretary of Health and Human Services, Mike Leavitt stated that “nine out of ten 

experimental drugs fail in clinical studies because we cannot accurately predict how they will 

behave in people based on laboratory and animal studies” [25]. In addition, animal models of 

human disease are constantly called into question, and one animal model might produce a 

completely different biological response than another accepted animal model [26–28].   

For all of these reasons, and more, the European Union has instituted a ban on animal 

testing for cosmetics [29] and has restricted overall animal testing “as a last resort to satisfy 

registration information requirements” [30]. In the United States, agencies have made a move 

towards reduced animal testing propelled in part by the recently amended Toxic Substances 

Control Act (TSCA) which states that, “The Administrator shall reduce and replace, to the extent 

practicable, scientifically justified, and consistent with the policies of title, the use of vertebrate 

animals in the testing of chemical substances or mixtures” [31]. To account for this shift in 

policy, both the Federal Drug Administration (FDA) and Environmental Protection Agency 

(EPA) have moved towards “reduced animal testing” with significant resources dedicated to in 

vitro methods and computational models for the prediction of adverse health outcomes in 

humans [32,33]. Because of this governmental pressure and the need to create more robust and 

predictive methods for determining a chemical’s effect within a human, alternatives to animal 

testing are continuously being developed and are currently of great priority. 
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Even in vitro studies, which are of much less resource intensive and controversial than 

their in vivo counterparts have severe limitations, principally the inability to recapitulate 

processes and outcomes observed in living organisms. Any living system is a complex 

arrangement of tissues, metabolic networks, and barriers to transport, which all influence how 

the chemical reaches and influences the site of action. For example, when investigating classic 

glucuronidation of a compound through phase II metabolism, there are many discrepancies 

between results obtained through in vivo and in vitro models due to factors such as up- or down-

regulation of substrate-influencing enzymes and the transport of cofactor into the hepatocyte 

[34].  

Furthermore, in vitro cell cultures themselves often lack the ability to replicate the 

complex tissues and cell lines necessary to obtain results that are directly translatable to animals. 

Two of the more apparent issues with these cell lines are (i) the orders of magnitude decrease in 

cell density compared to their respective organ and the impact this has on cell viability [35] and 

(ii) the non-homeostatic culture conditions where the system changes rapidly upon 

administration of the chemical, rather than gradually over time as would be seen in a living 

organism. These issues have been shown to significantly impact results of toxicity and efficacy 

tests [17].  

1.2 COMPUTATIONAL MODELLING TO COMPLEMENT CURRENT METHODOLOGIES 

Owing to advances in computational technologies and the understanding of mechanisms 

governing toxicity and pharmacological efficacy, computational modeling is increasingly used to 

complement experimental studies and address some of the limitations inherent within in vitro 

and in vivo testing. In general, these computational models have been developed to derive 
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quantitative relationships between dose and endpoint over the continuum of exposure and 

extrapolate effects outside of the space in which experimentation has been conducted. 

With regard to the first point, biological modeling aims to describe the experimental 

space using biologically-plausible equations and information gleaned from in vitro and in vivo 

experiments. This third arm of chemical assessment, termed in silico, serves as the tool for 

linking in vitro systems that do not perfectly replicate cell physiology with in vivo results that 

may be limited in scope and unable to quantify levels of chemical species needed to guide 

decision making. In addition, because these models can be formulated based on rigorous 

biological and mechanistic information, they often allow for dose extrapolation outside the range 

of a particular study and between species, i.e. establishing plausible linkages between animal and 

human. Ultimately, these biological models allow for endpoint prediction and the tracking of 

chemical species from chemical exposure to the target tissue. Finally, these models allow for 

investigation concerning pathway perturbations and dose optimization to determine potential 

effects of a new chemical [32] or existing pharmaceutical drug [36,37]. 

These features make computational modeling applicable to numerous areas of 

pharmacology and toxicology. For instance, from a pharmaceutical side, these models can be 

used to predict internal concentrations required for efficacy [37,38] and/or toxicity [36,39]. Once 

constructed and validated, models can also be used to investigate differences in metabolism 

between ethnically different populations [40] and provide insight into the optimal sampling 

conditions needed to reduce uncertainty in reconstructing administered doses [39]. Similarly, 

these models have applicability to a wide variety of applications involving environmental 

toxicants. For instance, they can be used within a framework of risk assessment [41] to aid in 

regulatory decision making or may facilitate the determination of dosing scenarios which gives 
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rise to an adverse biological outcome [42]. In all of these examples, linkages are made between 

available in vitro and in vivo data to create an accurate mathematical representation of the living 

organism. 

1.3 RELEVANT MODELING APPROACHES 

In order to understand how a chemical interacts with the body, we must first describe how 

the drug reaches the site of action and how long the drug remains there. To accomplish this, 

computational pharmacokinetics applies mathematical equations to simulate the ADME of the 

drug once administered to the organism. Comparatively, computational pharmacodynamics 

applies mechanistically realistic formulas to describe the biological response based on the 

amount of drug or toxicant present at the site of action.   

In the following sections is an overview of the relevant modeling techniques used in this 

research. While the modeling of each drug or toxicant system requires a thorough understanding 

of the unique properties of the compound and the specific biological processes and interactions, 

the approach presented here gives an outline of the general procedures used to develop a given 

pharmacokinetic or pharmacodynamic model. 

1.3.1 Pharmacokinetic Model Development 

A variety of computational methods has been developed to mathematically describe the 

processes of absorption, distribution, metabolism, and excretion. These approaches generally fall 

into two categories: (i) “classical”, data-driven models and (ii) physiologically-based 

pharmacokinetic models. The former approach assumes homogeneity throughout the body to 

describe characteristics of the drug related to how long it spends in the body and how well it 

distributes to tissues [43]. While these model types are convenient for characterizing the ADME 

of a drug under the given dosing conditions, they are not based on descriptions of inherent 
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biological processes and therefore cannot be used to extrapolate to lower doses, across species, 

or to a different route of exposure [44]. 

One of the most flexible approaches for whole-body pharmacokinetic analysis is 

physiologically-based pharmacokinetic (PBPK) modeling, which is developed using quantitative 

descriptions of the anatomy, physiology, and biochemistry of the organism [45]. Here, tissues are 

described using appropriate organ volumes and weights and flow into and out of these 

compartments are governed by relevant arterial and venous blood flow. Because of its 

physiological and mechanistic foundation, PBPK models are useful in extrapolation outside of 

the measured dose range, between species, or across different routes of exposure by adjusting the 

model structure and/or parameters [44]. 

1.3.1.1 Absorption 

The absorption process begins immediately after the chemical enters the first cellular 

layer of the organism [46]. The mechanism in which the drug transports from the environment to 

the organism is called the route of exposure and each route requires a different mechanistic 

description to characterize how the drug enters the body. Primary routes of exposure examined in 

this work are oral, dermal, and inhalation, though xenobiotic exposure (or administration) may 

also occur via other routes such as intravenous, subcutaneous, and rectal. For oral administration 

of a drug, absorption occurs as the drug dissolves in the stomach, transits the gastrointestinal 

tract lumen, and is absorbed into the hepatic portal vein [46]. For a dermal route of exposure, 

absorption begins on the skin as the chemical is transferred from the epidermis, the dermis, and 

ultimately to the blood vessels [47]. Finally, for an inhaled compound, absorption occurs rapidly 

through the alveoli, into the blood stream [46,48].  
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The foundational equations in the PBPK model are species mass balances. As illustrated 

below, the exposure equations involve a forcing function, I(t), that represents the initial dosing 

rate including the dose amount, duration, and periodicity of the exposure: 

 Oral: 
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Here, AST and AGI represent the amount of drug in the stomach and gastrointestinal (GI) tract, 

respectively. Mass transport constants, ka and kp, represent the first order rate of absorption from 

the stomach into the GI and the first order perfusion rate from the GI into the hepatic portal vein. 

 Dermal: 
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Aepi and Aderm represent the amount of chemical on the epidermis and within the dermis of the 

skin respectively. Similar to oral absorption, ke and kd represent the first order mass transfer rate 

from the epidermis to the dermis and from the dermis to the venous bloodstream. disdA dt  is the 

rate of dissipation of chemical from the skin back into the environment. It should be noted that 

an underlying assumption of this dermal absorption model is that ke and kd account for the mass 

transfer through all layers of the skin. 
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 Inhalation: 

 

 ,

( ) Q

Inh ExhL
L A f VL

Inh
Alv

Exh
Alv Exh

dA dAdA
Q C C

dt dt dt
dA

I t
dt

dA
Q C

dt

   
 
 
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Inhalation requires an accurate description of the lung compartment (described below) in 

addition to rates of inhalation and exhalation. In eq. (1.3), Qalv represents the alveolar ventilation 

rate and CExh is the concentration of chemical in exhaled air. InhdA dt  and ExhdA dt  represent the 

rates of inhalation and exhalation respectively. 

The equations presented above are based on various assumptions such as rapid 

dissolution of the drug into the aqueous phase, uninterrupted exposure, and constant 

physiological properties over the duration of exposure.  

1.3.1.2 Distribution  

Once the chemical is absorbed into the body and enters the bloodstream, the distribution 

will depend on factors such as the physicochemical properties of the drug. Traditionally, 

transport of the drug from the blood into the tissue is governed by passive diffusion described 

through Fick’s first law of diffusion. Here, the diffusive flux into the tissue is proportional to the 

drug concentration gradient [45]: 

  tissue
T blood tissue

dA
k A A

dt
    (1.4) 

The mass transfer coefficient for each tissue (kT) is defined using physiological parameters where

 T T T Tk Q P V   and QT is the arterial blood flow into the tissue, VT is the physiological volume 

of the tissue, and PT is the tissue:blood partition coefficient. Modeled as a perfectly mixed 
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compartment with no generation or consumption of drug, the following equation describes the 

time-course change of chemical for a given compartment: 

  ,
T

T A f VT

dA
Q C C

dt
    (1.5) 

where CA,f is the unbound arterial blood concentration and CVT is the blood concentration leaving 

the tissue, i.e. pooling in the venous blood stream [44]. CVT is calculated using volume of the 

compartment along with the tissue:blood partition coefficient such that  VT T T TC A V P  . 

Traditionally, QT and VT are calculated using allometrically scaled cardiac outputs and volumes 

based on the species of interest. This scaling allows for differences in body weight (BW) to be 

extrapolated to differences in tissue volumes and arterial flow rates and is usually governed 

through BWα where typical values for α are 1 and 0.75 for tissue volumes and blood flow rates 

respectively [45]. 

 The physiochemical parameter unique to each compound in the distribution phase is the 

tissue:blood partition coefficient (PT). This parameter describes the equilibrium ratio of 

compound concentration between the tissue and blood stream and quantitates the chemical’s 

affinity to a given tissue. For example, a hydrophobic compound will have a high affinity to 

adipose tissue, resulting in a relatively large Fat:Blood partition coefficient. Having an accurate 

estimate for this parameter value is imperative for developing tissue-specific compartments that 

are reflective of the physiology and physicochemistry of the chemical. A number of methods 

have been developed for determining this chemical-specific parameter [49–51] two of which 

were utilized in this research. The first method utilizes quantitative structure-activity 

relationships (QSARs) to predict partition coefficients [49,50]  based on properties specific to the 

compound, such as pKa, octanol/water partition coefficient (logP), and binding affinity. While 

these models can provide reasonable estimates in many cases instances [52], they generally 
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provide poor predictions for molecules with a large molecular weight (>500 Da) or chemicals 

that exhibit uncharacteristic behavior inside the body [53]. The second method for the estimation 

of tissue:blood partition coefficients utilizes data from animal studies. Specifically, during the 

elimination phase of the concentration versus time curve, the rate of chemical diffusion into the 

tissue is equal to the rate of diffusion out of the tissue. Under these equilibrium conditions, the 

ratio of tissue concentration divided by the unbound blood concentration represents the 

tissue:blood partition coefficient. While this method provides a more accurate tissue:blood 

partition coefficient estimate, it also requires adequate experimental data on the xenobiotic of 

interest in tissues relevant to the PBPK model. 

1.3.1.3 Metabolism 

The metabolic rate equations describe the biotransformation of parent chemical into its 

metabolites. The liver is frequently the primary organ for metabolism and by incorporating 

relevant chemical kinetics with species mass balances, time-course metabolic concentrations can 

be computed. Chemical rate equations can take a variety of forms, but because metabolic 

reactions within the body are generally mediated by enzymes, a Michaelis-Menten kinetic 

description is often implemented to describe the generation/consumption of a chemical species: 
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Here, CL and AL represent the concentration and molar amount of parent compound in the liver 

respectively. metdA dt  is the metabolic rate of consumption and Vmax and KM are the Michaelis-

Menten constants for enzyme-mediated reactions. These constants can be derived from in vitro 
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enzyme-substrate reactions, or through in vivo studies where both parent and metabolite 

concentrations are measured. 

1.3.1.4 Elimination 

The kidney serves as the primary organ for the elimination of parent drug and/or 

metabolites through glomerular filtration of unbound, water-soluble compounds into the urine. 

Mathematically, using the concentration of unbound chemical in the arterial blood stream, the 

kidney compartment of the PBPK model can be modeled using the following relationship: 

  ,
K
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Here, elimination is governed through the renal mass transfer coefficient (kR) where only 

chemicals within the kidney are eliminated and subsequently accumulate in the urine. In addition 

to renal elimination, biliary elimination removes the compound through the bile. Bile reabsorbed 

into the GI tract can be reabsorbed into the body, enterohepatic recirculation, or ultimately 

removed through the feces [54]. 

1.3.1.5 Developing physiologically-based pharmacokinetic models 

The system of equations comprising the PBPK model contains many parameters: 

physiological parameters specific to the organism and physiochemical parameters specific to the 

chemical. Most of the required physiological parameters, such as cardiac output, organ weights, 

and tissue blood flow, are tabulated in Brown et al. [55] for a multitude of animal species. As 

noted earlier, physiochemical parameters, such as partition coefficients and metabolic parameters 

are specific to the chemical of interest and must be estimated using experimental data or 

theoretical approaches.  
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1.3.2 Pharmacodynamic model development 

Unlike PBPK modeling, there is no unifying framework for pharmacodynamic (PD) 

model development since each PD model is meant to describe a unique biological interaction or 

outcome. Thus, successful development of PD models requires knowledge of which biological 

receptors are influenced by the presence of the drug and how drug-induced perturbations to the 

homeostatic receptor network affect the physiology of the body. The ability to predict this effect 

hinges on developing a plausible mathematical relationship between the concentration at the site 

of action and the observed biological response. The basic requirements for a PD model include 

concentrations or concentration surrogates of chemical at the site of action, a description of how 

the chemical interacts with a receptor at the site of action, and a relationship between the change 

in receptor and the observed effect on the body. This relationship can be mechanistic where the 

mechanism of action has been determined, or semi-mechanistic to describe a higher-level 

interaction between the chemical and body. This modeling structure allows for relationships 

between in vitro experiments and in vivo results to be identified [56]. What follows is a brief 

review of some basic PD modeling structures utilized in this research and the assumptions 

surrounding them. 

Though numerous PD models have been developed to make predictions for various 

systems of interest [44,56–59], here we focus on two broad model types used in the present 

research. The first type of model is based on the Hill equation, often known as the Emax model, 

and is used to describe how a drug concentration at the site of action influences the resulting 

pharmacodynamic effect. This model assumes that drug effects (E) are directly proportional to a 

receptor’s occupancy level. When the receptor binds drug concentration at the site of action (Cs), 
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the following sigmoidal Emax model describes how the resulting health effect is directly related to 

the occupancy of the receptor [44,56]: 

 max
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where E0, Emax, and EC50 are the initial effect, maximal effect, and drug concentration when 50% 

of maximal effect is attained, respectively. The exponent, Ȗ, represents a fitting constant to 

describe the steepness in transition from no effect to full effect. The Emax model is an example of 

a “direct response” model where the concentration at the site of action is directly responsible for 

binding a receptor and causing the drug effect.  

 Conversely, an indirect pharmacodynamic model describes a chain of events initiated by 

the presence of the drug. Here, the measured change in response, or effect, over time depends on 

a series of indirect mechanisms where factors controlling the effect are either inhibited or 

stimulated by the presence of the chemical [60,61]. The homeostasis rate of change for a 

response is described using the following system of coupled ordinary differential equations: 
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Here, kup,i and kdown,i represent the zeroth order production of the biological response and the first 

order loss of the biological response, respectively. In the presence of an exogenous chemical of 

interest, a change to these rate constants implies an inhibited response, f(c)kup,i, or a stimulated 

response effect f(c)kdown,i where f(c) represents the concentration-dependent effect on the rate 

constant bounded between zero and one [42,60,62]: 
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In the first line of Eq. (1.10), kup is limited due to the presence of the interacting chemical 

concentration (C) which ultimately decreases the overall rate of response. However, when kdown 

is reduced through f(c), the rate of loss of response is reduced. By limiting this pathway, the 

overall rate of response increases. 

Many drugs or environmental toxicants induce a biological response through the 

inhibition or stimulation of endogenous factors. These factors can initiate a cascade of 

downstream events to produce the observed effect. By mathematically describing the 

homeostasis of the system through a series of biologically-plausible steps, perturbations to the 

system from chemical exposure can be investigated to determine the chemical concentration 

responsible for initiating the change in response. 

1.3.3 Model parameterization 

In order for PBPK and PD models to be physiologically realizable, they must be 

parameterized using data derived from experimental studies. As previously stated, a majority of 

PBPK parameters can be estimated through in vivo and in vitro methods. However, when a 

parameter cannot be determined from such data, numerical fitting techniques must be 

implemented. There are numerous methods for this estimation; three that were used extensively 

throughout this research are outlined below. 

1.3.3.1 Linear regression 

One of the simplest forms of modeling the relationship between a dependent variable (y) 

and one or more explanatory, independent variables (x) is through linear regression [63]. In most 
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cases, because multiple independent variables are needed to describe the dependent variable, 

multi-linear regression is used to fit the observed y to a linear combination of the x’s: 
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

    , (1.11) 

where, xj and ȕj represent the independent variables and regression coefficients respectively and ε 

is an error term that accounts for any additional factors outside the original independent 

variables. 

 In order to make model predictions and investigate how covariates influence dependent 

variable predictions, regression coefficients must be determined. A straightforward method to 

determine these variables is through ordinary least squares (OLS) regression, which minimizes 

the sum of the residual errors [64]. By rearranging Eq. (1.11), the residual errors can be 

expressed as 
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Here, yi,measured and yi,predicted represent the measured dependent variable and the model prediction 

from Eq. (1.11) for each ith observation, respectively.  

Minimizing the residual errors by setting the partial derivative of each independent 

variable to zero, Eq. (1.12) can be rearranged to solve for the ̂ , the vector that minimizes Sr 

[63]: 

    1ˆ T TX X X Y    (1.13) 

 In this formulation, X is the matrix of independent variables resulting in the Y vector of 

observations. The above expression depends on the underlying model to be linear. In these cases, 

multi-linear regression is useful in determining covariate dependence and making basic 



22 
 

pharmacokinetic predictions based on given observations. Many standalone Python [65–67], and 

R [68] packages have been developed to determine coefficients for this type of multi-linear 

regression. 

1.3.3.2 Non-linear least squares 

While the method discussed above is appropriate for investigating covariate dependencies 

and performing basic predictions for linear models, the processes governing most 

pharmacokinetic and pharmacodynamic processes are best described by non-linear equations. To 

solve for parameters in this realm, non-linear regression focuses on minimizing the residual error 

between observed value and predicted value. This is accomplished by defining the nonlinear 

model as f(xi; a0, a1,…,an) where xi represents the independent variable(s) and a0 through an are 

the parameters to be fit to the data. Using this model, an objective function is defined as 

   2

0 1
1

; , ,...,
m

i i n
i

obj y f x a a a


    , (1.14) 

where yi are the observed values and the sum of the squares of the residual is calculated through 

evaluation of the proposed model for each observation’s independent variable. While the basis of 

this method is straightforward, exploring the parameter space and determining a global minimum 

for the objective function can prove difficult. Many standalone applications and python packages 

[66,69,70] use sophisticated algorithms to explore the parameter space and minimize the 

objective function. 

1.3.3.3 Bayesian Inference 

One of the most flexible methods for parameter estimation is Bayesian inference. The 

Bayesian approach relies on the relationship between probability distributions involving 

unknown parameters (θ) and data made available through observations (y) which are linked 

through Bayes’ theorem:  
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      | |p y p p y     (1.15) 

Here, the posterior distribution,  |p y , is obtained by the product of the prior distribution, 

 p  , and the likelihood,  |p y  . The parameters, θ, all have biological significance and 

knowledge of the initial parameter distribution, such as the mean, variance, and range, is used to 

determine the prior (or initial) distribution on each parameter. The data, y, corresponds to 

experimentally observed biological response profiles following a known exposure. The 

likelihood contains the underlying model equations calculated with parameters, θ where  |p y   

is determined through comparison of the predicted probability distribution for y with the 

observed probability distribution, i.e measured concentrations containing population variability 

and measurement error. Biological models can be either a PBPK model for pharmacokinetic 

predictions or a system of pharmacodynamic model equations. Bayesian inference will return the 

probability distribution of the parameter of interest from these models. 

To arrive at the posterior parameter distributions, Markov chain Monte Carlo (MCMC) 

methods generate a sequence of random draws from the prior probability distributions for the 

given parameter and accept or reject these draws based on the calculated joint posterior 

distribution [71]. The most common method for creating the Markov chain is through the 

Metropolis-Hasting (MH) algorithm [72]. Here, an initial θ0 is sampled from a proposal 

distribution. This distribution is independent of the prior, and is generally symmetric, such as a 

Gaussian or uniform distribution, and is centered about the previous draw of θ. The first 

parameter, θ0 - the initial parameter for the chain - serves as a basis for comparison for the next 

iteration. The candidate parameter, θc, is then sampled from the current proposal distribution. For 

example, if a symmetric distribution, such as a Gaussian, is used for the proposal distribution, 
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then θc = θ0 + N(0, ı). Acceptance of this candidate point follows a series of steps [71]. First, the 

acceptance ratio is determined using the calculated posterior distribution: 

 
      0 0

|

|
c cp p y

r
p p y

 
  , (1.16) 

where the numerator is the candidate posterior probability distribution and the denominator is the 

previous step’s posterior distribution. If 1r  , θc is accepted outright and becomes the next the 

new θ0 for the next iteration. If 1r  , θc is accepted only if r is greater than a random draw for a 

uniform distribution: U(0,1). Otherwise, θc is rejected and θ0 remains the current parameter for 

the Markov chain. After a sufficient number of iterations to achieve convergence in the θi chain 

[73], the final N iterations of the Markov chain represent the posterior probability distribution: 

 |p y .  

Because a central tenet of Bayesian inference involves updating prior knowledge of a 

parameter based on observed data, prior distributions can be set based on the current scientific 

literature with these prior observations serving as a reference point for calibrating the PBPK 

model [74]. Additionally, Bayesian inference can be used to determine population parameter 

distributions where the intra- and inter-individual variability is separated from model uncertainty 

[36,74].  

Though there are several software applications capable of providing a framework for 

Bayesian inference and MCMC analyses, including PyMC [75] and JAGS [76], the primary 

software package used throughout this work was MCSim [77], which contains flexible 

capabilities for standard PBPK, Monte Carlo, and MCMC modeling. 
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CHAPTER 2 
 

PROJECT OVERVIEW 
 
 
 

The research described in this dissertation builds upon previously developed 

computational methods as a basis for the design and implementation of novel in silico 

approaches to describe biological processes following administration of a pharmaceutical drug or 

exposure to an environmental toxicant. Central to all of the projects described herein is the 

application of computational models to solve real-world xenobiotic exposure problems; 

specifically optimization of tuberculosis drug therapy, determination of acetaminophen 

disposition resulting from overdose, prediction of adverse health outcomes from 

organophosphate insecticide exposure, and development of benchmark response modeling for 

trichloroethylene-mediated hypersensitivity. 

 This chapter provides an overview of each project and how tools and methods were 

developed to solve a given problem. The common themes throughout this research were (i) 

utilization of in vivo and in vitro experimental results to develop novel biological models to 

describe the pharmacokinetics and/or pharmacodynamics of a system and (ii) application of 

computational models to make biologically relevant predictions to guide future experimental 

studies. 

2.1. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL OF RIFAPENTINE AND 25-

DESACETYL-RIFAPENTINE DISPOSITION IN HUMANS 

  Tuberculosis (TB) is a common and often fatal infectious disease caused by various 

strains of mycobacteria, usually Mycobacterium tuberculosis (MTB). In 2014, 9.6 million people 

fell ill with TB and 1.1 million died from the disease [78]. Because current drug therapies for TB 
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are long, complex, burdensome for patients, and may not be effective against certain strains of 

MTB, new anti-TB drugs are needed [78,79]. Currently, anti-TB dosing regimens consist of 

three to four antibacterial drugs administered over six to nine months with each drug targeting a 

different aspect of TB replication. Traditionally, this combination of first-line agents contains a 

rifamycin derivative which serves as a potent inhibitor of prokaryotic RNA polymerase within 

MTB [80], with the current drug of choice being rifampicin (RIF) [81]. However, owing to an 

increased prevalence of multidrug-resistant (MDR) tuberculosis and the recognition that shorter 

treatment regimens are essential, there is a constant search for more effective drugs [79]. 

One such drug, as a candidate to replace RIF within the first-line combination therapy, is 

rifapentine (RPT) [79,82], whose metabolite 25-desactyl-rifapentine (dRPT), has also 

demonstrated activity against MTB in vitro [8]. Although results from a number of studies 

indicate that rifapentine has the potential to shorten treatment duration and enhance completion 

rates compared with other rifamycin agents utilized in anti-tuberculosis drug regimens [83–86], 

its tissue-level absorption, distribution, metabolism and excretion (ADME) in humans are 

unknown. This information is a critical element in creating dosing regimens and therapies that 

maximize efficacy while minimizing toxicity to the patient.  

To help inform such an optimization for this rifamycin drug candidate, the goal of the 

work detailed in Chapter 3 was to develop and utilize a physiologically-based pharmacokinetic 

(PBPK) model to predict tissue-specific concentrations of RPT and dRPT in humans [87]. 

Starting with the development and verification of a PBPK model for rats, the model was 

extrapolated and then tested using human pharmacokinetic data. Testing and verification of the 

models included comparisons of predictions to experimental data in several rat tissues and time-

course RPT and dRPT plasma concentrations in humans from several single- and repeated-
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dosing studies. Finally, the model was used to predict RPT concentrations in the lung during the 

intensive and continuation phases of the currently recommended TB treatment regimen. Overall, 

the major outcome of this work is a methodology for evaluating dosing regimens for RPT and for 

predicting tissue-level concentrations that could be predictors of problems related to efficacy or 

safety. 

2.2. CHARACTERIZATION OF THE DISPOSITION OF ACETAMINOPHEN THROUGH DEVELOPMENT 

AND APPLICATION OF A NOVEL PBPK MODEL 

Acetaminophen (N-acetyl-para-aminophenol, paracetamol, APAP) is one of the most 

widely used analgesics and antipyretics in the world. It is a well-known hepatotoxicant and, 

owing to its ubiquitous usage, is the principal cause of acute liver failure in both the United 

States [88,89] and the United Kingdom [88,90]. APAP is metabolized primarily by sulfation 

through conjugation with γ’-phosphoadenosine-5’phosphgosulfate (PAPS) cofactor and 

glucuronidation through conjugation of uridine diphosphate glucuronic acid (UDPGA). 

However, APAP can also be oxidized by CYP isozymes to form the reactive metabolite, and 

putative mediator of toxicity, N-acetyl-p-benzoquinonimine (NAPQI). Characterizing and 

quantifying the role of these pathways and the formation and clearance of key metabolites can be 

facilitated by the use of predictive models that incorporate salient biochemical and physiological 

phenomena in a tissue-specific manner. In addition, such models can include differences in 

parameters related to absorption and metabolic pathways indicative of differences between 

genetically different populations. Currently, predictions of APAP pharmacokinetics are based on 

models that were developed using limited experimental data in humans, which may be 

misleading for populations with atypical metabolic capacities for APAP. Moreover, current 

models lack predictive capabilities for overdose scenarios (> 7000 mg or > 90 mg/kg of APAP 
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over 24 hours) and have no capabilities to estimate the administered dose, important information 

in the personalized treatment and follow-up for affected patients. 

Broken into three subchapters (§3.1-3.3), the acetaminophen modeling work included the 

development and utilization of a physiologically-based pharmacokinetic model to describe 

APAP pharmacokinetics in humans using physiologically realistic descriptions of the non-ideal 

absorption and metabolism seen with this commonly used drug. This computational modeling 

work was accomplished through three main components; (i) development of a population-based 

PBPK model to describe APAP ADME under therapeutic dosing conditions [36], (ii) use of a 

hierarchical Bayesian population model to quantify ADME differences between genetically 

different sub-population [40], and (iii) development of a computational method for 

reconstructing initial APAP dose following an overdose [39]. 

2.2.1. Physiologically based modeling of the pharmacokinetics of acetaminophen and its 

major metabolites in humans using a Bayesian population approach 

The first aspect of this work focused on development and application of a PBPK model to 

predict and characterize the ADME of acetaminophen in humans under therapeutic dosing 

conditions [36]. This model incorporated pharmacologically and toxicologically-relevant tissue 

compartments along with mechanistic descriptions of the absorption and metabolism of APAP, 

such as gastric emptying time, cofactor enzyme kinetics, and transporter-mediated movement of 

conjugated metabolites in the liver. Through the use of a hierarchical Bayesian framework 

unknown model parameters were estimated using a large training set of data from human 

pharmacokinetic studies, resulting in parameter distributions that account for data uncertainty 

and inter-study variability. Predictions from the model showed good agreement with a diverse 

test set of data across several measures, including plasma concentrations over time, renal 
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clearance, APAP absorption, and pharmacokinetic and exposure metrics. The utility of the model 

was then demonstrated through predictions of cofactor depletion, dose response of several 

pharmacokinetic endpoints, and the relationship between APAP marker levels in the plasma and 

those in the liver.  

2.2.2. Characterizing the effects of race/ethnicity on acetaminophen pharmacokinetics 

using physiologically-based pharmacokinetic modeling 

Using the validated therapeutic PBPK model noted above (§2.2.1), genetic differences in 

APAP pharmacokinetics were investigated using a hierarchical Bayesian population modeling 

approach [40]. The objective of this study was to develop subpopulation-specific PBPK models 

for two genetically different groups (Western Europeans and East Asians) and then use the 

models to quantify the differences in APAP ADME between these two groups. First, a 

comprehensive data set for APAP pharmacokinetics (PK) was divided into two groups based on 

ethnicity of the subjects as an indicator of the expected abundance of their phenol-metabolizing 

alleles. Next, using these datasets and a Bayesian hierarchical framework, subpopulation-specific 

PBPK models for APAP were developed and tested for these two groups. Finally, using the 

validated models, differences in ADME were characterized between the two groups with respect 

to various PK measures, including urinary excretion and APAP area under the curve (AUC) in 

the liver. Although not dramatic at therapeutic dosing levels, these results demonstrated a 

divergence in the liver-specific APAP concentrations and AUC between the two groups and 

suggested that differences in glucuronidation capacity may play a role in this disparity and 

ultimately lead to differences in liver APAP concetrations at higher administered doses, such as 

in cases of overdose.  
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2.2.3. A novel approach for estimating ingested dose associated with acetaminophen 

overdose 

To better understand the ADME of APAP under overdose conditions, the previously 

described therapeutic APAP PBPK model was scaled up to an overdose scenario using 

mechanistically accurate drug dissolution kinetics to simulate a solid to aqueous phase change of 

drug in the stomach and the resulting absorption into the body [39]. This new model was 

developed to address three objectives: (i) prediction of tissue-level concentrations of APAP 

under overdose conditions, (ii) provide a clinically-useful methodology for estimating the 

administered APAP dose following the ingestion of a potentially harmful APAP overdose, and 

(iii) elucidating the effect of blood sampling time and additional biomarker measurements on 

reconstructing the APAP dose. The overall outcome of this work is a methodology to help 

inform individualized overdose treatment and follow-up plans for patients based on an individual 

patient’s serum sample data anthropometric and physiological information. 

2.3. DEVELOPMENT OF ENVIRONMENTAL PUBLIC HEALTH INDICATORS AND A NEW 

BENCHMARK DOSE FOR CHLORPYRIFOS USING A HEALTH-BASED ENDPOINT 

Organophosphate (OP) insecticides are among the most widely used synthetic chemicals 

for the control of agricultural and domestic insect pests. Of the 93 million pounds of insecticides 

used in the United States every year, 35% are OP insecticides, which amounts to 33 million 

pounds used each year [91]. The primary mechanism of action of OP insecticides is the 

inhibition of acetylcholinesterase (AChE) by active oxon metabolites, resulting in the 

accumulation of the acetylcholine neurotransmitter within the cholinergic synapses. Risk 

assessments aimed at protecting human health have focused primarily on point-of-departure 

(PoD) studies to determine benchmark doses (BMD) resulting in a given benchmark response 
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(BMR), i.e. target percent cholinesterase inhibition [92,93]. While AChE inhibition in the brain 

represents an actual measure for cholinergic toxicity, it may not necessarily be the most sensitive 

endpoint for overall OP toxicity. 

To investigate more sensitive measures of OP toxicity, studies in animals and humans 

have attempted to characterize various cognitive deficits associated with low-dose, chronic 

exposure to τP’s [94–96]. Within these analyses, the involvement of OP insecticide exposure is 

determined to contribute to deficits in learning and memory within exposed human cohorts, and 

studies in rats have demonstrated adverse health outcomes from OP exposure, specifically with 

respect to attention and spatial memory deficits [97–100].  

The work presented in this section of the dissertation (Chapter 5) centered on determining 

a benchmark dose associated with cognitive deficits in humans and characterizing related 

biomarkers that could be used as environmental public health indicators (EPHIs). To achieve this 

aim, a methodology was developed that made use of a well-validated PBPK/PD model and a 

novel dose-response model for one such OP, chlorpyrifos (CPF) [48]. Similar to AChE PoD 

animal studies, this work utilized cognitive deficit studies in rats and linked these deficits to a 

steady-state internal-dose-metric (CPF concentrations in the brain). Overall, the outcome of this 

work was (i) a tool for calculating benchmark doses from measurable cognitive deficits, (ii) the 

development of a new, more sensitive, benchmark dose for CPF exposure, and (iii) correlation of 

CPF biomarkers of exposure to cognitive deficit endpoints. 

2.4. MODELING TOXICODYNAMIC EFFECTS OF TRICHLOROETHYLENE ON LIVER IN MOUSE 

MODEL OF AUTOIMMUNE HEPATITIS 

Trichloroethylene (TCE) is a chlorinated hydrocarbon that has been used as a popular 

degreasing agent since the 1920s. While a carcinogen at higher doses, one of the predominant 
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non-cancer endpoints from chronic exposure to the industrial solvent is immunotoxicity, most 

notably the progression of autoimmune hepatitis (AIH) [101–104]. TCE is still widely used 

throughout the world, and due to poor disposal methods, is an abundant groundwater 

contaminant and represents the putative cause of systemic hypersensitivity diseases often 

accompanied by immune-mediated hepatitis [105]. 

To address the issues surrounding AIH progression following low-dose chronic exposure 

to TCE in drinking water, multiple in vivo studies in mice have demonstrated T-cell mediated 

liver disease similar to that found in human AIH. To help elucidate the biological basis for this 

phenomenon, Gilbert et al. [42] studied the effect of TCE macrophage cytokines and 

demonstrated that this toxicant inhibits the production of interleukin-6 (IL-6), which is necessary 

for normal hepatocyte turnover and protection of the liver against pro-inflammatory events. In 

related studies, these investigators characterized liver histopathology following chronic exposure 

to TCE in drinking water for mice, providing a time-dependent metric for liver tissue damage as 

a result of TCE exposure.  

Despite these and other experimental studies, the specific TCE-mediated mechanism of 

toxicity resulting in progression of AIH was still unknown. In addition, linkages between the 

dose-dependent decrease in both transcriptional and protein levels and the resulting observed 

liver pathology are unknown. In order to fill this gap between experimental results and the AIH 

endpoint of interest, a mechanistically-based mathematical model was developed to test a 

hypothesized mechanism of toxicity and predict doses that lead to observed hypersensitivity. 

As an initial step in understanding the effects of TCE exposure on AIH progression, a 

pharmacodynamic model, also known as a toxicodynamic model, was developed to quantify the 

relationship between immune system signaling and cellular events in the liver of TCE-treated 
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mice; more specifically, the model was aimed at quatifying the role of IL-6 as a maintenance 

mechanism and predicting downstream events such as liver pathology following disruption of 

this IL-6 repair pathway owing to TCE exposure. By incorporating results from in vivo 

experiments and in silico toxicodynamic simulations, this study supported the hypothesis that 

TCE-induced liver pathology was associated with the suppression of hepatoprotective cytokines, 

such as IL-6, and not due to an increase of pro-inflammatory events. Aside from a useful 

predictive model, a major outcome of this study was the determination of a benchmark TCE dose 

eliciting a desired benchmark response level, i.e. mild inflammation of the portal regions of the 

liver.  
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CHAPTER 3 
 

A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL OF RIFAPENTINE AND 
 

25-DESACETYL-RIFAPENTINE DISPOSITION IN HUMANS 
 
 
 

3.1 INTRODUCTION
 

Rifapentine (RPT) is a rifamycin-class antibiotic indicated for the treatment of pulmonary 

tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) and in the treatment of latent 

TB infection in patients at high risk of progression to TB disease. RPT has a longer half-life, 

increased affinity to serum protein binding [106], and lower minimum inhibitory concentration 

(MIC) against MTB than rifampin, which is currently used as part of several first-line TB 

treatment regimens [84,107]. Moreover, the primary metabolite for RPT, 25-desacetyl-

rifapentine (dRPT), has also been found to be active against MTB, although at markedly lower 

mean inhibitory concentrations [8,106,107]. Because of these characteristics, RPT has been the 

subject of a number of clinical pharmacology studies aimed at evaluating pharmacokinetics and 

developing effective therapies [83,85,108–116]. Although data from these investigations are 

valuable in their own right, mathematical modeling offers a way to complement these studies, 

synthesize their disparate data, and provide the clinician an additional tool to characterize and 

predict the absorption, distribution, metabolism, and excretion (ADME) of RPT under dosing 

conditions of interest.  

One of the very few such mathematical models was developed by Savic et al. [86] who 

used a classical compartmental modeling approach to assess human population pharmacokinetics 

of both RPT and dRPT. This model described the absorption, metabolism, and clearance of these 

                                                 
 This work was performed jointly with the full list of co-authors in [32]. 
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two species and accurately predicted their time-course plasma concentrations in healthy 

volunteers. Unfortunately, compartmental concentrations in this model were not directly 

relatable to those in actual tissues of interest (e.g., the lung and liver) because the effects of 

plasma protein binding and blood-tissue partitioning of the parent drug and metabolite were not 

included. Moreover, because the study utilized data from healthy subjects, the effects of the 

disease on pharmacokinetic outcomes could not be characterized. 

A finer-grained approach that specifically includes relevant physiological and 

biochemical effects and processes and facilitates examination of organ or tissue-level 

pharmacokinetics is physiologically-based pharmacokinetic (PBPK) modeling. Regrettably, few 

PBPK models have been developed for anti-TB drugs, let alone RPT. Using targeted 

experimental data in mice, Reisfeld et al. [117] developed a PBPK model to describe the 

biodistribution of the second-line TB agent, capreomycin, and because capreomycin is 

nephrotoxic [118], PBPK modeling allowed for tissue-specific concentration predictions at both 

the site of action for the antibiotic effect, the lung, and the site of potential toxicity, the kidney. 

Subsequently, Lyons et al. [38] used a rich set of literature data to create a PBPK model to 

describe the disposition of rifampin which, as noted earlier, is a first-line agent in current 

therapies for TB. Although the above models are useful in simulating and comparing the 

disposition of anti-TB drugs in tissues of interest, they were developed using data from rodents 

and currently have limited applicability to humans.  

To begin to address this gap, the principal aims of this study were to (i) develop a PBPK 

model to predict the ADME for rifapentine and its active metabolite in humans, (ii) test the 

model against available human study data, and (iii) make tissue-specific predictions of 

concentrations of RPT and dRPT in the lung and compare those to the MIC. This latter aim is 
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particularly relevant because current dosing recommendations for anti-TB drugs are guided by 

knowledge of the unbound concentration of the agent in the plasma and by comparing this free 

fraction to the known MIC against MTB [114]. Because this plasma concentration may not 

accurately reflect that in the lung, the recommended dose may not provide the desired level of 

antibiotic effect. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Approach 

To achieve the study aims, two PBPK models were developed, parameterized, and tested: 

one specific to the rat (R-PBPK) and another for humans (H-PBPK). The models shared the 

same compartmental structure and set of governing equations (§3.4), with differences only in the 

parameter values, principally related to physiology and metabolism. Starting with development 

of the R-PBPK, tissue specific pharmacokinetic data were used to compute key drug-tissue 

properties (e.g., partition coefficients) that were later utilized in the H-PBPK. Ultimately, both 

the R-PBPK and H-PBPK were parameterized and verified using relevant sets of training and 

test data. Further details are given below. 
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3.2.2 Experimental data 

TABLE 3.1. Studies containing pharmacokinetic data for humans following oral 
dosing of rifapentine 

References Dose 
Regimen:  

single dose (S) or repeated 
dose (R) 

TB Infected 

Number 
of 

subjects 
(sex) 

Data used for parameter estimation 

Weiner, 2004  
(14)  

1200 mg 

900 mg 

600 mg 

R: once weekly Yes 35 (M/F) 

Data used for model testing/verification 

Dooley, 2008  
(16) 

900 mg R: three times weekly No 15 (M/F) 

Dooley, 2012  
(3)  

1200 mg 

900 mg 

600 mg 

S 

R: daily dosing 
No 5 (M/F) 

Keung, 1998  
(11)  

600 mg S No 20 (M/F) 

Keung, 1998  (9)  600 mg S No 20 (M) 

Keung, 1998  (8) 600 mg S No 15 (F) 

Keung, 1999  
(10)  

600 mg 

300 mg 

150 mg 

S 

R: daily dosing 
No 23 (M) 

Langdon 2004  
(12) 

600 mg 

750 mg 

900 mg 

R: daily dosing, 4 days Yes 46 (M/F) 

Reith, 1998  (15) 600 mg S No 4 (M) 
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Pharmacokinetic data for RPT in rats were obtained from the work of Assandri et al. 

[119], which provided (i) drug concentrations in the plasma under multiple dosing conditions, 

(ii) concentrations obtained from homogenates of several relevant tissues following oral dosing, 

and (iii) the fraction of drug bound to plasma proteins over time. For development of the human 

model, a comprehensive review of the literature was conducted to identify pharmacokinetic 

studies where RPT was administered to adults as either a single dose or via repeated doses. 

Emphasis was placed on studies in which concentrations of both parent RPT and its metabolite 

dRPT were quantified because these coincident data could be used in the estimation of relevant 

metabolism and dRPT-specific parameters. As shown in Table 3.1, these data were divided into 

two parts: a ‘training’ set used to determine unknown model parameters and a ‘validation’ set, 

used to test and verify the model predictions. 

3.2.3 PBPK models 

 

FIGURE 3.1. PBPK model structure 
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The common PBPK model structure is shown in Figure 3.1. The model comprises a set of 

compartments for RPT, identical to those used previously for rifampin [38], integrated with a 

simpler structure for the metabolite, dRPT, which consisted of only the lung and a lumped 

peripheral compartment. The compartmental species mass balance equations are similar to those 

used in this prior study with the exception of the description of oral absorption fraction for the 

parent compound and the explicit quantitation of the metabolite concentration over time 

described below. 

Consistent with the experimental results from Assandri et al. [119], oral absorption was 

specified to be dose dependent. In particular, the following form was used to describe the oral 

fraction absorbed, Fa: 

  
,

,

a k

a

a k

F
F

D F
,  (3.1) 

where D is the oral dose and Fa,k represents a constant to be fit from the data. 

Because the metabolite dRPT is active against MTB and its level has been measured in 

several studies in humans, the present model included equations to explicitly track its rate of 

formation and distribution over time. The deacetylation reaction to transform RPT to dRPT in 

the liver for humans was assumed to follow Michaelis-Menten kinetics [120], 
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K

,  (3.2) 

where v is the rate of RPT deacetylation, VM, KM, and KI represent the maximum reaction rate, 

the Michaelis-Menten constant, and the substrate inhibition constant for RPT deacetylation, 

respectively. While its mechanism of action is currently unknown, in vitro studies have 

demonstrated the activity of dRPT against MTB [8], and because this species may exhibit similar 
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antibiotic effects in vivo, its disposition may be of interest when characterizing anti-TB therapies 

involving RPT. Interestingly, although the levels of dRPT are quantifiable in humans following 

RPT administration [85,108–112,114–116], similar studies in rats have shown that this chemical 

is undetectable in the plasma [119]. Consistent with this observation, the metabolic 

transformation of RPT to dRPT was not included in the R-PBPK. 

Lastly, rather than using in vitro results for RPT and dRPT protein binding, unbound 

fractions for this PBPK model were calculated using results from TB infected patients following 

RPT dosing [121]. 

3.2.4 Parameter estimation 

Parameters in the governing PBPK model equations were taken from the literature or 

were estimated using the procedures described below. 

3.2.4.1 Physiological parameters 

Physiological compartment volumes and blood flow rates for human and rat were 

obtained from Brown et al. [55]. Compartment volumes were scaled linearly with body weight, 

blood flow rates were scaled with body weight to the 0.75 power [45], and the coefficient of 

variation for each organ volume and arterial blood flow rate was set at 0.2 and 0.3, respectively 

[38,122]. The resulting physiological parameters for each compartment are summarized in Table 

3.2. 
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TABLE 3.2. Physiological and anatomical parameters 

Parameter (units) Abbreviation 
Mean Coefficient 

of Variation Rat Human 
Body Weight (kg) BW 0.23 65 0.16 

Cardiac Output 
(L/h/kg0.75) 

QCC 14.1 16.2 0.2 

Compartment  

Lung 
QLUC 14.1 16.2 0.3 

VLUC 0.005 0.0076 0.2 

Brain 
QBRC 0.02 0.12 0.3 

VBRC 0.0057 0.02 0.2 

Fat 
QFC 0.07 0.0675 0.3 

VFC 0.07 0.2142 0.2 

Heart 
QHC 0.049 0.045 0.3 

VHC 0.0033 0.0047 0.2 

Muscle 
QMC 0.278 0.145 0.3 

VMC 0.4043 0.4 0.2 

Bone 
QBC 0.122 0.05 0.3 

VBC 0.073 0.1429 0.2 

Skin 
QSKC 0.058 0.05 0.3 

VSKC 0.1903 0.0371 0.2 

Kidney 
QKC 0.141 0.18 0.3 

VKC 0.0073 0.0044 0.2 

Spleen 
QSC 0.01 0.01 0.3 

VSC 0.002 0.0026 0.2 

Gut 
QGC 0.14 0.14 0.3 

VGC 0.027 0.0171 0.2 

Liver 
QLAC 0.024 0.06 0.3 

VLC 0.0366 0.0257 0.2 

Carcass 
QCRC 0.088 0.1325 0.3 

VCRC 0.1015 0.0448 0.2 

Venous Blood VBLVC 0.0493 0.0526 0.2 

Arterial Blood VBLAC 0.0247 0.0263 0.2 

 

3.2.4.2 Partition coefficients 

With data for the free concentration of RPT in the plasma [119], mean values for the 

tissue:blood partition coefficient, PT:blood, were determined using the following equation: 
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where BP is the blood:plasma partition coefficient, and tissue
RPT

C  and ,plasma f

RPT
C  are the measured 

tissue and free plasma concentration of RPT, respectively. Tissue:plasma partition coefficients 

were computed for all model compartments based on time-course tissue concentration data [119] 

using points during the elimination phase at which equilibrium had been reached in drug 

concentration between the tissue and the venous blood. 

3.2.4.3 Other model parameters 

To include the effect of data uncertainty and inter-study variability on model outputs, 

unknown parameters were estimated within a Bayesian hierarchical context [36,39,123]. Within 

this context, parameters were estimated by first computing partition coefficients and other 

relevant parameters for the R-PBPK and then using these parameter distributions as ‘priors’ in 

the estimation of the human-specific parameters. 

3.2.5 Simulation methodology and computing platform 

Once the parameter distributions had been computed, a Monte Carlo approach was used 

to generate a large family of simulation results that would account for inter-study variability and 

data uncertainty. These results were then aggregated and processed to yield mean and 95% 

prediction intervals for pharmacokinetic outcomes of interest. 

Data from the literature were digitized using DigitizeIt v.1.5.8 [124]. Simulations of the 

PBPK governing equations, including the Bayesian Markov chain Monte Carlo and resulting 

model evaluation were conducted in MCSim v5.4 [77]. Processing, analysis, and visualization of 

data were carried out using scripts written in Python v2.7.2 [125] utilizing the numpy [126], 

scipy [66], and matplotlib [127] packages. All computations were performed on a compute 
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cluster running the 64 bit CentOS Linux operating system on six gigabit-linked Dell 2950 

servers, each containing two quad-core 2.5 GHz Xeon processors and 64 GB of RAM. 

3.3 RESULTS 

3.3.1 Model parameter values 

Using the procedures and data detailed above, distributions for unknown model 

parameters were estimated. 

The resulting parameters (posterior distributions) for both rat- and human-specific models are 

listed in Table 3.3. 

3.3.2 Testing and verification of the rat-specific model (R-PBPK) 

 

FIGURE 3.2. Simulations of rifapentine pharmacokinetics following a 10 mg/kg 
oral dose in the rat, showing concentration profiles in the plasma (A), lung (B), 
kidney (C), and spleen (D). Solid and dashed lines represent the simulated mean 
and 95% prediction intervals, respectively; while transparent circles represent the 
training set data from Assandri et al. [119] 
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TABLE 3.3. Physicochemical, biochemical, and clearance-related parameters 

Description 
Parameter 

(units) 
Rat Human 

Prior Posterior Source Prior Posterior Source 
Fraction 
bound 

   
 

  
 

RPT fb,R - 0.97 (20) - 0.994 (22)  
dRPT fb,D - - - - 0.976 (22) 

Absorption        
Fractional 
absorption 
constant 

Fa,k U(1, 1000) N(27, 0.21) - N(27, 0.21) N(21.23, 0.16) Rat 

Oral 
absorption 

rate 
kSG (1/h) N(0.31, 0.2) N(0.30, 0.06) (20) N(0.30, 0.06) N(0.33, 0.18) Rat 

Gut lumen 
reabsorption 

kGLG (1/h) N(0.17, 0.3) N(0.17, 0.06) (19) N(0.17, 0.06) N(0.17, 0.06) Rat 

Total blood 
clearance 

       

RPT 
CLC_R  
(L/h-

BW0.75) 
U(0.01, 10) N(0.74, 0.31) - N(0.74, 0.31) N(0.64, 0.18) Rat 

dRPT 
CLC_D  

(L/h-
BW0.75) 

- - - U(0.001, 100) N(0.07, 0.28) - 

Fractional 
renal 

clearance 
fR - 0.13 (20) - 0.13 Rat 

Deacetylatio
n 

       

 
VmaxC 

(μmol/h-
BW0.75) 

- - - U(0.01, 100) N(0.97, 0.22) 
(21)  

 KM
 (μmol) - - - N(37.1, 0.2) N(34.29, 0.16) 

 KI (μmol) - - - N(174, 0.2) N(168.07, 0.17) 
Partition 

Coefficients 
       

Lung PLU N(48.9, 0.2) N(48.48, 0.17) 

(20) 

- N(48.48, 0.17) 

- 

Brain PBR N(5.93, 0.2) N(5.81, 0.17) - N(5.81, 0.17) 
Fat PF N(79.8, 0.2) N(78.67, 0.17) - N(78.67, 0.17) 

Heart PH N(63.9, 0.2) N(62.02, 0.18) - N(62.02, 0.18) 
Muscle PM N(38.1, 0.2) N(37.39, 0.17) - N(37.39, 0.17) 
Bone PB N(28.3, 0.2) N(27.33, 0.18) - N(27.33, 0.18) 
Skin PSK N(43.5, 0.2) N(43.22, 0.17) - N(43.22, 0.17) 

Kidney PK N(88.7, 0.2) N(87.47, 0.17) - N(87.47, 0.17) 
Spleen PS N(49.9, 0.2) N(49.71, 0.17) - N(49.71, 0.17) 

Gut PG N(42.1, 0.2) N(38.69, 0.18) - N(38.69, 0.18) 
Liver PL N(183.3, 0.2) N(164.21, 0.18) - N(164.21, 0.18) 

Carcass PCR N(28.3, 0.2) N(29.04, 0.18) - N(29.04, 0.18) 
Peripheral PP - - - U(0.1, 200) N(5.50, 0.29) - 

N(a, b) denotes a normal distribution with a mean of a and fractional coefficient of variation, b; U(a, b) represents a 
uniform distribution bounded by the minimum (a) and maximum (b); a single number in the posterior column 
represents no distribution. When “Rat” is specified as the source, the posterior mean used in the R-PBPK (with a 
fractional CV of 0.3) was used as the prior distribution for the H-PBPK. 
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Using the computed parameters for the R-PBPK, simulations were conducted and 

compared to in vivo time-course concentration values from a literature study [119] that detailed 

plasma and tissue pharmacokinetics following a single 10 mg/kg oral dose in the rat. This 

comparison is illustrated in Figure 3.2, which shows experimental data (points) and predicted 

mean (solid line) and 95% prediction intervals (dashed lines) for the PBPK model. 

3.3.3 Testing and verification of the human-specific model (H-PBPK) 

 

FIGURE 3.3. Comparison of simulation results to human plasma concentration data 
for RPT and dRPT following oral administration of 600, 900, and 1200 mg oral 
RPT doses. Training set data are shown as transparent circles (o), while data from 
the validation set are shown as dark x’s. 

 

Throughout the studies, training set data were used for parameter estimation (model 

calibration) while verification data were used for model evaluation [36]. Using the set of 

parameters listed in Table 3.2 and Table 3.3, simulations were run for 600, 900, and 1200 mg 

single oral doses of RPT and compared to the corresponding dose training and verification data 

referenced in Table 3.1. Figure 3.3 shows the results of these comparisons for both RPT and 



46 
 

dRPT in the plasma over multiple studies. The range of the experimental doses shown in this 

figure match those in a standard treatment regimen for TB treatment [106,128]. These 

comparisons show that the experimental data fall within the 95% prediction intervals, indicating 

that the model can accurately predict the pharmacokinetics of the drug and account for the 

variance in this measure across the population sampled. 

TABLE 3.4. Computed pharmacokinetic measures for rifapentine  

Parameter Symbol (units) Model Prediction Experiment* 

maximum plasma 
concentration 

Cmax (μg/ml) 15.48 (21) 15.2 (30) 

drug half-life t1/2 10.92 (14)  12.03 (20) 

area under the curve 
from time 0 

extrapolated to infinity 
AUC0-∞ (μg-h/ml) 382.19 (25) 380.63 (31) 

apparent oral clearance CL/F (L/h) 1.69 (29) 1.92 (44) 

apparent volume of 
distribution 

V/F (L) 40.81 (29) 35.85 (47) 

*τbserved values reported from ‘occasion 2‘ of Langdon et al. [112] 

Measures were derived from pharmacokinetic data (or simulation results) for a regimen consisting of a 900-mg dose 
administered repeatedly, four days apart. Shown are median properties (% CV) 
 

As an additional verification, pharmacokinetic measures for RPT (e.g., maximum 

concentration, area under the curve, and half-life) were computed from the model and compared 

to those from the literature. In particular, Table 3.4 shows the predicted values from simulations 

of time-course plasma concentrations and those in Langdon et al. [112], which were based on 

experimental data that were not used in the model parameterization. 
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3.3.4 Testing and verification of the human-specific model (H-PBPK) for repeated dosing 

scenarios 

 

FIGURE 3.4. Model verification for repeated dosing: predictions of plasma RPT 
concentrations for the three dosing regimens described in the text. Solid and 
dashed lines represent the simulated mean and 95% prediction intervals, 
respectively, while the triangles denote experimental data from the test set. 

 

Relevant to standard treatments regimens for MTB [129,130], model simulations were 

conducted for three repeated dosing scenarios for which well-controlled experimental data were 

available: regimen A - a 600 mg dose every day starting three days after an initial 600 mg dose 

[110]; regimen B - a 900 mg dose every two days [116]; and regimen C - a 600 mg dose every 

three days [110]. Both the experimental data and corresponding simulation results are displayed 

in Figure 3.4. 

3.3.5 Prediction of lung concentrations using the human-specific model 

Along with the predicted plasma concentrations shown in Figure 3.4, simulations yielded 

the levels of RPT and dRPT in the lung over time. As an illustration of potential antibiotic effect, 
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Figure 3.5 shows the predicted levels of RPT, dRPT, and total rifamycin over time in the lung for 

the three RPT oral dosing scenarios described above.  

 

 

FIGURE 3.5. Model predictions of time-course concentrations in the lung following 
the three repeated oral regimens described in Figure 3.4, showing concentrations 
of RPT (solid line), dRPT (dashed line), and total rifamycin (dot-dashed line). 

There are a number of current and anticipated guidelines for the treatment of both active 

TB disease and latent TB infection involving rifapentine as part of a combination therapy 

[82,107,131–133]. Across these regimens, doses of RPT range from 600 to 1200 mg with 

administration frequencies extending from daily to once weekly. To determine the 

pharmacokinetics and potential antibiotic effect of RPT and dRPT across these regimens, the 

model was used to predict lung concentrations of these species in a simulated population 

resulting from various doses of RPT at three administration frequencies: once weekly, twice 

weekly, and daily. The simulated population in these cases was the group of (virtual) individuals 

whose pharmacokinetics were predicted by Monte Carlo sampling across the estimated 

physiological and biochemical parameter distributions determined using the Bayesian procedure 
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described earlier. Figure 3.6 depicts a cumulative distribution function of the dose response that 

indicates the probability that RPT or dRPT concentrations in the lung are above their respective 

MICs, which were 0.063 mg/L for RPT and 0.25 mg/L for dRPT [8]. 

 

FIGURE 3.6. Probability that the minimum steady-state concentration of RPT in 
the lung exceeds the minimum inhibitory concentration. 

 

3.4 DISCUSSION 

3.4.1 Methodology 

The PBPK models detailed herein utilized a system of biologically-based physiological 

and biochemical descriptions and species mass balance equations to make tissue-specific 

pharmacokinetic predictions for RPT and its metabolite, dRPT, in relevant tissue compartments 

for both rats and humans. The values of unknown parameters in the model system were 

estimated within a hierarchical Bayesian framework to incorporate data uncertainties and inter-

study variability, and Monte Carlo simulations were conducted using these distributions to 

quantify their effect on pharmacokinetic predictions. 
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3.4.2 Testing and verification 

Model predictions were generally in good agreement with data from the literature. As 

shown in Figure 3.2, the experimental data corresponding to plasma and tissue (lung, kidney, and 

spleen) concentrations were within the 95% prediction intervals for the rat-specific PBPK model, 

demonstrating its ability to reasonably predict tissue-level RPT pharmacokinetics in this species. 

For the human-specific PBPK model, single-dose data from multiple studies for both RPT and 

dRPT concentrations were in reasonable concordance with results from simulations (Figure 3.3). 

The relatively poorer agreement between predictions and data for dRPT is likely related to 

variability in metabolism between subjects, differences in analytical quantitation methods 

between studies, and/or an inadequate specification for RPT metabolism in the model. For 

repeated oral dosing, model predictions for RPT concentrations compare well with experimental 

data for all three dosing scenarios (Figure 3.4). Finally, as shown in Table 3.4, there was 

reasonable to very good agreement between pharmacokinetic measures, such as Cmax and AUC, 

computed from simulations and experimental data. 

3.4.3 Model predictions 

A principal benefit to the PBPK approach is the ability to estimate internal doses that are 

generally not available in human subjects or patients. Figure 3.5 shows the predicted levels of 

RPT, dRPT, and total rifamycin over time in the lung for three repeated oral dosing scenarios for 

RPT. It should be noted that dRPT does not bind to plasma protein as readily as RPT. This 

decrease in fractional protein binding increases the bioavailabilty of dRPT and results in a higher 

predicted concentration of metabolite within the lungs. It is also notable that for all three dosing 

regimens, the predicted minimum concentrations for both RPT and dRPT in the lung are 

significantly above their in vitro MICs for MTB of 0.063 μg/ml and 0.25 μg/ml, respectively [8]. 
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Finally, the total rifamycin concentration is presented in this figure as an indication that there 

may be additional bactericidal effect owing to the presence of dRPT; however, because the 

mechanism of action of dRPT is not currently known, the overall pharmacodynamic effect 

cannot be assumed to be additive. 

Finally, the model was used to assess the potential efficacy of regimens spanning current 

recommended anti-TB therapies that include RPT [82,128,131–133]. This assessment was 

conducted by computing lung-tissue concentrations and comparing those to the MIC for MTB. 

These results are depicted in Figure 3.6, which shows the probability of the minimum steady-

state drug concentration in the lungs exceeding the MIC for MTB for three distinct 

administration frequencies. For illustration, this figure also contains an example probability 

threshold of 0.98 from which a minimum protective dose (MPD) can be found. Using this 

probability threshold, the MPD was seen to be 26 mg for once daily dosing, 225 mg for the twice 

weekly regimen, and 910 mg for the once weekly administration (see Figure 3.6,). Based on 

these estimates, anti-TB regimens that include daily administration of 1200 mg RPT [82] for 

active TB disease exceed the predicted MPD, while those that reduce this dose and frequency for 

the treatment of latent TB infection to 750 mg once weekly [132], fall below the predicted MPD. 

It is important to note that these results do not include the antimicrobial effects of other anti-TB 

drugs given as part of the regimen; however, depending on the margin of safety, they could 

suggest possible adjustments to the dosing schedule. 

3.4.4 Novel features and advantages of the present model 

Unlike previous PBPK models for anti-TB drugs [38,117], the present model was 

developed to make predictions of pharmacokinetics in humans. To quantify and illustrate 

uncertainty in simulation outputs, model development and testing included a Bayesian approach 
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to parameter estimation and Monte Carlo simulations. These features allowed the verified model 

to be used to assess a current treatment regimen by comparing lung-specific predictions of 

antibiotic concentrations with the MIC for MTB. In addition, because administration of certain 

rifamycins (including rifapentine) has resulted in signs of drug induced liver injury [134], liver-

specific predictions of drug levels could help inform treatments that minimize the potential for 

hepatotoxicity. Like most PBPK models, the one described herein allowed prediction of species 

concentrations in tissues/organs of interest and provided a systematic way to extrapolate across 

doses and between species. With these features, the model has the potential to aid in dose 

optimization and in the determination of how pharmacokinetic endpoints depend on alterations to 

anatomical, physiological, and biochemical parameters. 

3.4.5 Limitations and deficiencies of the present model 

The current H-PBPK currently suffers from several limitations and deficiencies: (i) it is 

not immediately applicable to the analysis of combination drug therapies, (ii) the 

pharmacokinetic predictions, while expected to be valid and useful for a population or 

subpopulation, may contain too much uncertainty for individualized applications like 

personalized medicine, (iii) parameters for the R-PBPK were estimated using relatively few data 

points and inaccuracies in some of these parameters were propagated to the human-specific 

model, and (iv) the specification used for RPT metabolism is biologically plausible, but owing to 

a lack of data, has not been adequately verified.  

3.4.6 Future Directions  

Using the present model as a foundation, efforts are underway to add additional anti-TB 

agents (e.g., isoniazid or bedaquiline) to simulate combination therapies and quantify 

pharmacokinetic drug-drug interactions. Other enhancements include integration of 
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pharmacodynamic descriptions that include MTB growth and drug-induced killing kinetics 

[59,135], and descriptions of RPT-induced hepatotoxicity [83,134]. 

3.5 APPENDIX: DERIVATION OF GOVERNING EQUATIONS 

The following are the governing equations for the PBPK model, which mathematically 

specify the species mass balances and relevant biological phenomena in each compartment. In 

these equations, the superscript, i, corresponds to either parent RPT or the dRPT metabolite. 

While RPT disposition is described in all of the discrete tissue compartments, dRPT is modeled 

within only two compartments: lung and peripheral. Individual tissue blood flow rates, QT, were 

computed using total cardiac flow as 
T C TC
Q Q Q  and 0.75

C CC
Q Q BW . QTC values for the 

percentages of cardiac flow to each tissue are given in Table 1. Finally, the drug concentration 

entering tissues in the arterial blood is the free concentration of drug, 
,

i

A f
C , and concentrations 

leaving the tissues are calculated using the concentrations within the tissue compartment along 

with the respective partition coefficients: .
,

/i i

T ven T T
C C P .  

Lung: 

   
,

i

lung i i

C venous L ven

dA
Q C C

dt
  (3.3) 

Kidney: 

       
, ,

RPT

RPT RPT RPT RPTK

K A f K ven R Art

dA
Q C C f CL C

dt
  (3.4) 

where CL and fR are the total arterial blood stream clearance and fractional renal clearance, 

respectively. 
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Liver: 

       
      

, ,

1 /

RPT

RPT RPT RPT RPTL

LA A f S S G G L L ven

i i i

R LA Art S S G G L

dA
Q C Q C Q C Q C

dt
f CL Q C Q C Q C Q v

  (3.5) 

where QL is the total blood flow leaving the liver and is the sum of the spleen, gut, and inlet liver 

blood flow rates. Biliary clearance for RPT occurs in the liver where the fraction of total blood 

clearance is equal to 1
R
f . Finally, v represents the rate of metabolism from RPT to dRPT 

presented in Eq. (3.2). 

Gut: 

     
, ,

RPT

RPT RPT RPT stomG

G A f G ven GLG GL SG RPT

dA
Q C C k A k A

dt
  (3.6) 

Stomach: 

    RPT

RPTStom

a SG Stom

dA
F D d t k A

dt
  (3.7) 

 

where Fa is the fractional absorption presented in Eq. (3.1), D is the ingested dose, and d(t) 

describes the time dependence of the dosing schedule. 

Remaining Tissues: 

   
, ,

i

i iT

T A f T ven

dA
Q C C

dt
  (3.8) 

Arterial Blood: 

       
,v , ,

i

i i i dRPT dRPTA

C L en A f R A f

dA
Q C C f CL C

dt
  (3.9) 
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Renal clearance for dRPT occurs based on the free concentration of dRPT in the arterial blood 

and is removed from the arterial blood compartment; therefore, 0RPT   and 1dRPT  . 

Venous Blood: 

   ,

T
i N

i iV

j j ven
j

dA
QC v

dt
  (3.10) 

All concentrations exiting the tissues are pooled in the venous blood compartment. Because there 

is no liver compartment for the dRPT sub-model, any generation of dRPT is within the venous 

blood; therefore, 0RPT   and 1dRPT  . 

Peripheral Compartment: 

         
, , ,

1
dRPT

dRPT dRPT dRPT dRPTP

C A f P ven R P ven

dA
Q C C f CL C

dt
  (3.11) 

Biliary clearance occurs within the peripheral compartment where the fraction of total clearance 

is equal to 1
R
f . 
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CHAPTER 4 
 

CHARACTERIZATION OF THE DISPOSITION OF ACETAMINOPHEN THROUGH 
 

DEVELOPMENT AND APPLICATION OF A NOVEL PBPK MODEL 
 
 
 

Acetaminophen (N-acetyl-para-aminophenol, paracetamol, APAP), is one of the most 

widely used analgesic and antipyretics in the world. It is metabolized primarily through 

glucuronidation by conjugation of uridine diphosphate glucuronic acid (UDPGA), and sulfation 

through conjugation with the γ’-phosphoadenosine-5’-phosphosulfate (PAPS) cofactor; however, 

APAP can also undergo cytochrome P450-mediated bioactivation to the glutathione depleting, 

putative hepatotoxicant N-acetyl-p-benzoquinone imine (NAPQI) [136–138]. 

Owing to its ubiquitous usage, potential for hepatotoxicity, and varying pharmacological 

effects across diverse and susceptible populations, numerous human pharmacokinetic studies 

have been conducted for this drug [136–156]. To quantify the results of such studies, non-

compartmental [148,151,152,154,155] and compartmental [139,150,157,158] approaches have 

often been employed to determine the degree of exposure following administration of the drug 

(such as area under the curve, AUC) and the drug’s associated pharmacokinetic (PK) parameters, 

such as clearance, elimination half-life, and the maximum concentration (Cmax). Although useful 

and widely employed, these modeling approaches are limited in their ability to predict drug 

disposition in a tissue-specific manner, extrapolate across dosing scenarios, and account for an 

individual’s unique anatomical, physiological, and biochemical features. One approach that is 

well suited for making such predictions, and is increasingly used in the field of pharmaceutical 

sciences [159], is physiologically-based pharmacokinetic (PBPK) modeling [45,160]. 
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Using PBPK modeling coupled with hierarchical Bayesian inference methods, three 

components of APAP pharmacokinetics were investigated. First, a population PBPK model was 

developed to describe the absorption, distribution, metabolism, and elimination (ADME) of 

APAP under therapeutic dosing conditions [36]. Second, using a hierarchical Bayesian inference 

methodology, differences in APAP ADME were quantified in a sub-population specific manner 

to investigate the extent to which genetic variation and ethnicity may predispose individuals to a 

higher risk of APAP-induced hepatotoxicity [40]. Finally, the therapeutic PBPK model was 

extended to account for an APAP overdose scenario to predict the pharmacokinetics of APAP 

under clinically-realistic dosing conditions [39]. Using this model, a method for reconstructing 

administered dose was developed and optimal biomarker sampling times for dose reconstruction 

are presented. The following subchapters present the acetaminophen modeling work. 

 

4.1 PHYSIOLOGICALLY BASED MODELING OF THE PHARMACOKINETICS OF ACETAMINOPHEN 

AND ITS MAJOR METABOLITES IN HUMANS USING A BAYESIAN POPULATION APPROACH
 

There are presently several PBPK models for APAP and its metabolites, each of which 

was developed with different aims and a distinct approach. As part of a series of PBPK models 

for drug disposition in children, Edgington et al. [161] developed a PBPK model for APAP that 

utilized age-dependent anatomical and physiological parameter values. Results from this model 

showed reasonable agreement to values in the literature for several pharmacokinetic parameters, 

such as volume of distribution at steady state and drug half-life; however, there were significant 

differences between predicted and experimental values for plasma concentrations of APAP for 

many of the values compared. Although not physiologically based, Ben-Shachar et al. [162] 

                                                 
This work was performed jointly with the full list of co-authors available in [31]. 
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created a multi-compartmental mathematical model to predict time-course plasma concentrations 

of APAP, accumulation of APAP and its metabolites in the urine, and glutathione (GSH) 

depletion. The model trends were in rough agreement with experimental data, but because it was 

not physiologically based, it is anticipated that accurate model predictions beyond the conditions 

used for calibration would be unlikely. With the aim of predicting APAP toxicity in humans, 

Péry et al. [163] coupled a PBPK and a toxicodynamic model to make predictions of APAP 

toxicity in humans. By utilizing in vitro data from rats and quantitative structure activity 

relationships to estimate model parameters, this approach could potentially reduce the need for 

extensive PK data from animals when developing PBPK models. Predictions from the model 

were in reasonable agreement with plasma PK data from rats; however, the model was not 

validated using human data, and since previous studies have shown that there is significant 

differences in phase II metabolism between rats and humans [164], such an extrapolation is 

likely to be problematic. To better understand APAP-induced hepatoxicity under several 

physiological conditions, Navid et al [165] created a PBPK model that included a quantitative 

description of GSH kinetics and semi-empirical relationships for chronic APAP uptake. Model 

predictions were in good agreement with plasma PK data from both a single dose and a multiple 

dosing study. Unfortunately, model predictions of GSH levels and kinetics were not compared to 

experimental values and the model equations contained no allometric scaling in the physiological 

parameters, limiting its utility beyond the range of data used for calibration. To better understand 

the kinetics of glutathione depletion and the role of ophthalmic acid and 5-oxoproline in GSH 

metabolism, Geenen et al. [166] developed a PBPK model for APAP that consisted of a small 

number of compartments (lung, kidney, liver, and “other tissue”) and a detailed mathematical 

specification of GSH kinetics. Model predictions were in reasonable-to-good agreement with 
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various PK data from APAP dosing in both rats and humans. Assessing the accuracy and 

predictive capabilities of this model and others described previously is hampered by the lack of 

detail provided with respect to data and model uncertainty; it is also unclear if the same data used 

to illustrate the accuracy of model predictions were the same as those used for model calibration 

and parameter estimation. 

The focus of the present work was to develop and demonstrate a new PBPK model that 

addresses some of the limitations of previous approaches and provides an accurate means of 

predicting the ADME of APAP and its conjugated metabolites in humans. To this end, the model 

integrated mechanistic descriptions of the absorption and metabolism of APAP, a Bayesian 

approach to model parameterization that accounts for data uncertainty and inter-study variability, 

and utilization of a comprehensive set of human pharmacokinetic data for model calibration and 

validation. 

4.2 METHODS 

4.2.1    Compiling and classifying data from the literature 

A comprehensive review of the literature was conducted to identify adult human 

pharmacokinetic studies where APAP was administered in a single oral or intravenous dose. 

Emphasis was placed on identifying studies in which two major APAP metabolites, APAP-

glucuronide (APAP-G) and APAP-sulfate (APAP-S), were quantified in addition to parent 

APAP. Studies were divided into a training set to be used for parameters estimation (model 

calibration) and a test set for verification and evaluation (model validation). A summary of the 

studies and their characteristics and classifications is given in Table A of the appendix. 
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4.2.2    Model description and formulation 

In the following sections, we detail the model structure and the equations specifying the 

ADME within the model compartments.  

4.2.2.1 Model structure and physiological parameters 

As depicted in Figure 4.1.1, the PBPK model structure developed for APAP, APAP-G, 

and APAP-S consisted of compartments representing fat, muscle, liver, gastrointestinal (GI), and 

kidney, with remaining tissues lumped [45] into either rapidly perfused or slowly perfused 

compartments. All compartments were assumed to be perfusion limited [167].  

 

 

FIGURE 4.1.1. PBPK model structure 
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Compartmental volumes and blood flow rates (Table 4.1.1) were taken from Brown et al. 

[55], and volumes and flow rates for the rapidly- and slowly-perfused compartments were 

calculated as the mean values for the lumped tissues from Brown et al. [55]. 

TABLE 4.1.1. Physiological parameters. Cardiac output is expressed in units of 
L/(hr-BW0.75), while remaining tissue blood flow rates are expressed as fractions 
of cardiac output. Tissue volumes are expressed as L/BW0.75 

Compartment  Value 

Cardiac Output   

 QCC 16.2 

Fat   

 QFC 0.052 

 VFC 0.21 

Muscle   

 QMC 0.19 

 VMC 0.4 

Liver   

 QLC 0.28 

 VLC 0.026 

Kidney   

 QKC 0.18 

 VKC 0.0044 

Slowly Perfused   

 QSC 0.14 

 VSC 0.19 

Rapidly Perfused   

 QRC 0.22 

 VRC 0.077 

Arterial Blood   

 VBLAC 0.024 

Venous Blood   

 VBLVC 0.056 

Rapidly perfused tissue comprised 
brain, lung, and spleen tissues, 
while slowly perfused consisted of 
bone, heart and skin [55]. 
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4.2.2.2 Absorption 

Several processes contribute to the absorption kinetics of APAP administered orally, 

including dissolution of the dose in the stomach, gastric emptying, and absorption down the 

length of the small intestine. To quantify these effects, the “averaged model” from Levitt [168] 

was used. This relationship, representing an approximate spatially-averaged solution of the 

diffusion-convection equation takes the following form: 

 

 
exp exp

APAP
GI abs

G Pabs

G P

A oral

dA dA
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dt dt

t t
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             

 
  (4A.1) 

Consistent with a previous convention [160], symbols indicating amounts and concentrations are 

given with a subscript indicating the tissue or compartment involved and a superscript indicating 

the chemical species. Here, 
APAP
GIA  is the amount of APAP in the GI compartment. Additionally, 

Aabs is the amount of APAP absorbed into the bloodstream, t is time, I(t) is the initial rate of 

dosing to the stomach, M is the total amount of drug available for absorption, Doral is the initial 

APAP dose, and TG and TP represent time constants for gastric emptying and intestinal 

permeability, respectively. The fraction of APAP absorbed, FA, has been shown to be dose 

dependent at doses less than 1000 mg [150]. To account for this effect in the model, the 

following equation was developed: 

 
0.0005 0.37 , if D 1000mg

0.88 , if D 1000mg
oral oral

A
oral

D
F

       (4A.2) 

Predictions from Eq. (4A.1), are in good agreement with bioavailability data from the literature 

[139,150,154]. For example, for a 350 mg dose, the measured and predicted values of the 
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fraction absorbed are 0.57 [154] and 0.55, respectively, while for a 650 mg dose the values are 

0.75 [139] and 0.7, respectively. 

4.2.2.3 Tissue distribution 

Assuming passive diffusion into and out of the tissue, the rate of change of concentration 

within a compartment is given by the species mass balance equation 
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  (4A.3) 

where 
j

TA  is the amount of species j within the tissue compartment T, TV  is the volume of 

compartment T, 
j

AC  is the concentration of the chemical in the arterial blood flowing into the 

tissue, 
j

V TC   is the concentration of drug flowing out of the compartment into the venous blood, 

and PT:blood is the tissue:blood partition coefficient.  

TABLE 4.1.2. Drug specific physiochemical properties and resulting tissue:blood 
partition coefficients 

Physicochemical properties [169,170] 
 APA

P 
APAP-
G 

APAP
-S 

pKa1 9.96 3.17 -2.2 

pKa2 -4.4 -3.7 -4.4 
logP 0.91 -0.68 -1 
Fraction unbound  0.82 0.92 0.46 

Calculated partition coefficients 
Pfat 0.447 0.128 0.088 

Pmuscle 0.687 0.336 0.199 
Pkidney 0.711 0.392 0.261 

Pliver 0.687 0.321 0.203 
Prapid 0.676 0.364 0.207 

Pslow 0.606 0.351 0.254 
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Values for the tissue:blood partition coefficients were determined using the method from 

Rodgers et al. [49], which requires specification of several physicochemical properties of the 

molecule of interest. Table 4.1.2 lists the values of these parameters for APAP, APAP-G, and 

APAP-S, along with the calculated partition coefficients for each model compartment. Finally, 

because there is negligible protein binding of APAP in the blood [171,172], a blood-to-plasma 

concentration ratio of one was used for each species. 

4.2.2.4 Metabolism and clearance 

 

FIGURE 4.1.2. Principal pathways for APAP metabolism in humans 

 

As depicted in Figure 4.1.2, major routes of metabolism of APAP in the liver include 

glucoronidation to form APAP-G, sulfation to APAP-S, and cytochrome P450-mediated 

bioactivation to the glutathione-depleting species N-acetyl-p-benzoquinone imine (NAPQI) [4–

6]. As shown, the phase II pathways require a cofactor for conjugation: uridine diphosphate 

glucuronic acid (UDPGA) for glucuronidation and γ’-phosphoadenosine-5’-phosphosulfate 

(PAPS) for sulfation. In humans, the percentage of APAP metabolized is roughly 54-58% to 
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APAP-G through UDP-glucuronosyltransferase (UGT) [138,148,173], 29-32% to APAP-S 

through sulfotransferases (SULT) [138,148,173], and 4-8% to NAPQI through cytochrome P450 

isozymes [173,174].  

These processes of APAP metabolism were specified mathematically as follows. For 

phase I metabolism, standard Michaelis-Menten saturation kinetics were used to describe the 

APAP oxidation, 

 
APAP

M cyp liver
cyp APAP APAP

M cyp liver

V C
v

K C



    (4A.4) 

where cypv is the rate of APAP conversion, and M cypV   and APAP
M cypK   represent the Michaelis-

Menten constants for APAP biotransformation through cytochrome p450 isozymes. Because the 

phase II conjugation pathways involve both co-substrate and substrate inhibition [173,175,176], 

bi-bi enzyme kinetics [177] with APAP substrate inhibition was used to specify the rates of 

conjugation formation: 
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  (4A.5) 

Here, vconjugate is the rate of APAP conversion to conjugate; M enzV   is the enzyme-specific 

maximum rate of conversion; 
APAP
M enzK   and 

APAP
I enzK   represents the Michaelis-Menten constants 

and inhibition constants for APAP, respectively; and 
cf
liver  is the fraction of cofactor available for 

reaction within the liver. As the abundance of enzyme depends on liver mass, values of the 

maximum rates of conversion in Eqns. (4A.4) and (4A.5) were computed through allometric 
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scaling of corresponding values from the literature, MC enzV  , by the equation 

0.75
M enz MC enzV V BW   , where BW  is body weight. 

The rates of formation and depletion of the cofactors UDPGA and PAPS influence the 

levels of APAP conjugates [178,179] and mediate the flux of APAP through the phase I 

metabolic pathway to NAPQI [180]. To quantify this effect, it was assumed that the rate of 

cofactor depletion is equal to the rate of APAP consumption for the associated enzyme and that 

cofactor is regenerated once APAP concentrations in the liver are reduced. The resulting 

relationship for cofactor kinetics then takes the form 

  1
cf

cfliver
conjugate syn cf liver

dA
v k

dt
      (4A.6) 

where 
cf
liverA  is the amount of cofactor in the liver, vconjugate is the rate of conjugate formation, and 

ksyn-cf represents the rate of synthesis of the cofactor. 

In addition to cofactor kinetics, active transport of the conjugates from hepatocytes into 

the extracellular environment has a significant influence on APAP metabolism and clearance. 

Iida and coworkers [181] demonstrated that APAP freely diffuses into hepatocytes, but once it is 

metabolized to either APAP-G or APAP-S, membrane transporters facilitate movement of these 

conjugated molecules into the greater liver parenchyma. Following their mathematical 

description, the rate of transport of a given conjugate, mem conjv  , was assumed to follow saturation 

kinetics, 
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


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where 
conj

M memV  and 
conj
M memK   are the kinetic parameters for membrane transport, and conj

hepC  is the 

concentration of conjugate within the hepatocyte.  

The final factor considered with regard to clearance of APAP and its metabolites was 

renal excretion to the urine, which was modeled though an allometrically-scaled clearance 

constant, 

 

0
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j jKE

R A

j j
R R

dA
k C
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k k BW

 
 

  (4A.8) 

Here, 
j

Rk  is the rate of renal elimination of the chemical; j represents APAP, APAP-G, or APAP-

S; and 0
j

Rk  are baseline values that are scaled allometrically by body weight. Biliary clearance 

was neglected because APAP and APAP-S are not excreted into the bile, and APAP-G is only 

excreted in trace amounts [182]. 

4.2.2.5 PBPK model equations 

Combining the above species mass balance equations and mechanistic relationships 

results in the governing equations comprising the mathematical expression of the PBPK model. 

This system of differential and algebraic equations is summarized in Table B of the appendix. 

4.2.3    Parameter estimation and model simulations 

Unknown model parameters in the governing equations were estimated within the context 

of a Bayesian hierarchical framework [123,183]. The hierarchy consisted of two levels: a 

population level, comprising an aggregation of all of the training set data across all of the studies, 

and a study level, consisting of all of the separate training set studies. Using this methodology, 

inter-study variability could be accounted for and pharmacokinetic predictions and parameter 

distributions could be found and compared at both levels within the hierarchy.  
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Within the framework, the parameter space was sampled using a Markov chain Monte 

Carlo (MCMC) method [73] using three independent Markov chains per simulation. 

Distributions for parameter priors were based on values from the literature when available, and 

were assumed to be uniform distributions over biologically-plausible ranges otherwise. Markov 

chains were run for 100,000 iterations per chain, and convergence was assessed using a Gelman-

Rubin reduction factor [73] with a maximum threshold of R = 1.05. Posterior parameter 

distributions were computed from the final 30,000 iterations of each chain. For each of these 

final iterations, the complete set of parameter values was recorded as an individual “setpoint” 

[77].  

Following parameterization, the governing equation system was solved at dosing 

scenarios of interest using all of the 30,000 setpoints, leading to a family of simulation results 

that was used subsequently to illustrate predictions for a variety of pharmacokinetics measures of 

interest and quantify the uncertainty associated with these values. 

4.2.4    Software and computing platform 

Data available from the literature in graphical form were digitized using DigitizeIt v.1.5.8 

[124]. Simulations of the governing equation system, including the MCMC and setpoint 

analyses, were conducted using MCSim v5.4 [77]. Processing, analysis, and visualization of data 

and simulation results was carried out using scripts written in Python v.2.7.2 [125], utilizing the 

numpy [126], scipy [66], and matplotlib [127] packages. All calculations were performed on a 

computer cluster running the 64 bit CentOS Linux operating system on six gigabit linked Dell 

2950 servers, each containing two quad-core 2.5 GHz Xeon processors and 64 GB of RAM. 
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4.3 RESULTS AND DISCUSSION 

4.3.1    Model parameter values 

TABLE 4.1.3. Parameter descriptions and prior distributions.  

 Description Parameter 
(units) 

Distribution Reference 

Acetaminophen Absorption    

 gastric emptying time constant TG (hr) N (0.23, 0.5) [168] 

 GI perfusion time constant TP (hr) N (0.033, 0.5) [168] 

Phase I metabolism    

 cytochrome P450 KM 
APAP
M cypK   (μM) N (130, 1) [184] 

 cytochrome P450 Vmax MC cypV   (μmol/hr-BW0.75) U (0.14, 2900) - 

Phase II metabolism: sulfation    

 sulfation pathway acetaminophen KM 
APAP
M sultK   (μM) N (300, 1) [185] 

 sulfation pathway substrate inhibition Ki 
APAP
I sultK   (μM) N (526, 1) [176] 

 sulfation pathway PAPS KM 
PAPS
M sultK   (unitless) N (0.5, 0.5) - 

 sulfation pathway acetaminophen Vmax MC sultV   (μmol/hr-BW0.75) U (1, 3.26E6) - 

Phase I metabolism: glucuronidation    

 glucuronidation pathway acetaminophen KM 
APAP
M ugtK   (μM) N (6.0E4, 1) [185] 

 glucuronidation pathway substrate inhibition Ki 
APAP
I ugtK   (μM) N (5.8E4, 0.25) [175] 

 glucuronidation pathway GA KM 
UDPGA
M sultK   (unitless) N (0.5, 0.5) - 

 glucuronidation pathway acetaminophen Vmax MC ugtV   (μmol/hr-BW0.75) U (1, 3.26E6) - 

Active hepatic transporters    

 APAP-G hepatic transporter KM 
APAP G
M memK   (μM) N (1.99E4, 0.3) [181] 

 APAP-G hepatic transporter VM 
APAP G

M memV   (μmol/hr) U (1.09E3, 3.26E6) - 

 APAP-S hepatic transporter KM 
APAP S
M memK   (μM) N (2.29E4, 0.22) [181] 

 APAP-S hepatic transporter VM 
APAP S

M memV   (μmol/hr) U (1.09E3, 3.26E6) - 

Cofactor synthesis    

 UDPGA synthesis syn UDPGAk   (1/hr) U (1, 4.43E5) - 

 PAPS synthesis syn PAPSk   (1/hr) U (1, 4.43E5) - 

Clearance    

 acetaminophen clearance 0
APAP
Rk  (L/hr-BW0.75) U (2.48E-3, 2.718) - 

 acetaminophen-glucuronide clearance 0
APAP G
Rk   (L/hr-BW0.75) U (2.48E-3, 2.718) - 

 acetaminophen-sulfate clearance 0
APAP S
Rk   (L/hr-BW0.75) U (2.48E-3, 2.718) - 

N(a, b) denotes a normal distribution with mean, a, and coefficient of variation, b; U(a, b) denotes a uniform 

distribution with minimum and maximum values a and b, respectively. 
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Using time-course plasma and urinary data from the designated training set of studies 

(Table A), and the priors listed in Table 4.1.3, distributions for the unknown parameters in the 

governing equations were computed through the Bayesian framework described earlier.  

TABLE 4.1.4. Posterior distributions for parameters 

 Parameter (units) Value 

Acetaminophen absorption  

 TG (hr) 0.332 (0.36) 

 TP (hr) 0.0476 (0.30) 

Phase I metabolism  

 
APAP
M cypK   (μM) 123 (0.29) 

 MC cypV   (μmol/hr-BW0.75) 2.57 (0.87) 

Phase II metabolism: sulfation  

 
APAP
M sultK   (μM) 1.2E3 (0.39) 

 
APAP
I sultK   (μM) 478 (0.25) 

 
PAPS
M sultK   (unitless) 0.345 (0.40) 

 MC sultV   (μmol/hr-BW0.75) 467 (0.38) 

Phase II metabolism: glucuronidation  

 
APAP
M ugtK   (μM) 6.14E3 (0.33) 

 
APAP
I ugtK   (μM) 4.99E4 (0.26) 

 
UDPGA
M sultK   (unitless) 0.343 (0.38) 

 MC ugtV   (μmol/hr-BW0.75) 5.21E3 (0.31) 

Active hepatic transporters  

 
APAP G
M memK   (μM) 1.75E4 (0.27) 

 
APAP G

M memV   (μmol/hr) 3.54E4 (0.45) 

 
APAP S
M memK   (μM) 2.23E4 (0.20) 

 
APAP S

M memV   (μmol/hr) 1.4E7 (1.65) 

Cofactor synthesis  

 syn UDPGAk   (1/hr) 3.6E4 (0.87) 

 syn PAPSk   (1/hr) 3.66E3 (0.69) 

Clearance   

 0
APAP
Rk  (L/hr-BW0.75) 0.0123 (0.35) 

 0
APAP G
Rk   (L/hr-BW0.75) 0.155 (0.22) 

 0
APAP S
Rk   (L/hr-BW0.75) 0.138 (0.28) 

Values are reported as the mean (coefficient of 
variation) of the distribution 
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The resulting posterior distributions for each parameter are summarized in Table 4.1.4. 

As described, setpoint analyses were then conducted to accumulate a large family of simulation 

results indicative of the data uncertainty and inter-study variability realized in these parameter 

distributions. These results were subsequently used in the various comparisons and predictions 

shown below. 

4.3.2    Model validation and testing 

To validate the PBPK model, several comparisons and assessments were made. For 

convenience in evaluating these comparisons, both the appropriate training set data (used in the 

model calibration) and test set data (reserved for validation) from Table A of the appendix are 

shown in subsequent plots. The former points are presented so that the accuracy of the parameter 

estimation can be assessed, while the latter can be used to evaluate the predictive nature of the 

model. 

 

FIGURE 4.1.3. Comparison of model simulations results to human plasma 
concentration data following oral dosing of APAP. Simulation results are shown 
with a solid line for mean values and dashed lines representing 95% confidence 
intervals. Data from the training set are represented by circles (o), while those 
from the test are represented by the plus sign (+). 
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First, model predictions for time-course plasma concentrations of APAP, APAP-G, and 

APAP-S were compared to experimental values obtained from the literature. As shown in Figure 

4.1.3, there is generally good agreement between predicted and measured values of the time-

course concentrations for both the parent chemical and its metabolites over a wide range of data 

obtained from numerous studies. These simulations also illustrate the degree of uncertainty in the 

model predictions based on parameterization to data from a diverse set of studies. 

 

FIGURE 4.1.4. Comparison of model simulation results to experimental data for the 
accumulated amount of APAP in the urine following a 20 mg/kg oral dose 

 

The ability of the model to accurately simulate renal clearance was then evaluated. There 

are relatively few studies in humans detailing the amount of APAP and its metabolites in the 

urine over time. Here, available time-course data [138,147,148,152] were used as the training set 

for model calibration, while data at the terminal time point of 24 hours [137,142,145] were 

applied as the test set. As shown in Figure 4.1.4, model and experimental results at 24 hours are 

in satisfactory to good agreement for the accumulated amounts of all three chemical species. 

Future studies quantifying the time course amounts of APAP and its metabolites in the urine 

would further reduce the uncertainty in these predictions. 
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FIGURE 4.1.5. Cumulative fraction absorbed (CFA) of APAP into the blood 
stream. Simulation results are shown with a solid line for mean values and dashed 
lines representing 95% confidence intervals. Plus signs (+) represent data from the 
literature and were not part of the training set. 

 

Next, model predictions of APAP absorption into the blood stream were assessed. Figure 

4.1.5 shows simulated values of cumulative fraction absorbed (CFA), along with corresponding 

in vivo data from Souliman et al. [186] for a 500 mg oral dose of APAP administered to humans 

in a fasted state. The good agreement between model predictions and experimental data lends 

support to the quantitative description of absorption used in the PBPK model. However, although 

not explicitly tested in this study, if simulations for dosages outside of the clinical range (e.g., 

overdose) are to be conducted, it is anticipated that the time constants in the model for gastric 

emptying and gut perfusion may need to be adjusted or made dose dependent. 

Finally, comparisons were made with respect to several common pharmacokinetic 

parameters: AUC, Cmax, mean residence time (MRT), and fraction excreted. Table 4.1.5 lists 

mean values and uncertainties of these measures for a single oral dose of 20 mg/kg of APAP. 

Because the data values [137] were part of the test set enumerated in Table A and were not used 

in model calibration, the good agreement between simulation-based and experimentally-derived  
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TABLE 4.1.5. Comparison of pharmacokinetic parameters from experiments and 
model simulations 

  Experiments Model simulations 

 Cmax (μg/ml) 21.51 (14.4 - 32.3) 20.50 (16.45 - 28.93) 

 AUC (μg/m/hr) 83.16 (50.8 - 117.1) 83.09 (49.56 - 128.62) 

APAP MRT (hr) 3.21 (3.01 - 3.51) 3.45 (2.41 - 4.69) 

 CLR (mL/min) 11.52 (4.5 - 18.1) 13.27 (6.75 - 26.09) 

 % Recovery 5.03 (2.4 - 9.0) 5.06 (1.51 - 10.27) 

    

 Cmax (μg/ml) 10.27 (5.8 - 15.1) 11.43 (6.82 - 17.04) 

 AUC (μg/m/hr) 82.68 (50.9 - 119.5) 87.65 (55.33 - 135.66) 

APAP-G MRT (hr) 6.18 (5.18 - 6.77) 5.76 (4.40 - 7.58) 

 CLR (mL/min) 133.95 (82 - 187) 169.51 (107.46 - 267.41) 

 % Recovery 57.21 (40.7 - 68.6) 68.77 (51.66 - 85.94) 

    

 Cmax (μg/ml) 5.18 (3.15 - 7.41) 5.64 (2.79 - 10.32) 

 AUC (μg/m/hr) 38.74 (24.2 - 62) 38.28 (16.61 - 79.78) 

APAP-S MRT (hr) 5.91 (5.35 - 6.49) 4.91 (3.55 - 6.42) 

 CLR (mL/min) 153.4 (85 - 217) 158.35 (94.18 - 266.24) 

 % Recovery 31.28 (19.8 - 46.4) 27.73 (11.51 - 45.61) 

 Tabulated values presented in the “Experiments” columns were taken 
directly from Critchley et al. [137], except for MRT, which was 
computed from digitized data extracted from the same reference. 

 

values for all measures and chemical species provides evidence of the accuracy of the PBPK 

model in predicting these summary parameters within the uncertainties of the system. 

4.3.3    Model predictions 

To demonstrate its utility for elucidating and quantifying the ADME of APAP, several 

predicted outputs and endpoints of interest are illustrated in the following sections: cofactor 

depletion, dose-dependence of pharmacokinetic parameters, and the relationship between APAP 

levels in the plasma to those in the liver. 
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4.3.3.1 Cofactor depletion 

 

FIGURE 4.1.6. Model prediction of depletion of the cofactors UDPGA and PAPS. 
Insets depict the predicted dose-response for the minimum available cofactor 
following APAP administration. 

 

Because acetaminophen is rapidly metabolized to APAP-G and APAP-S, associated 

cofactors may be quickly depleted, thus reducing the rate of acetaminophen conjugation. For 

example, the PAPS cofactor has been reported to deplete under therapeutic dosing conditions, 

reducing the rate of acetaminophen clearance [6]. In addition, since sulfation and glucuronidation 

are common during phase II metabolism of many xenobiotics [154], cofactor depletion may be 

an important consideration for the co-administration of other drugs with APAP. Figure 4.1.6 
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depicts model simulations for cofactor depletion following APAP administration. The predicted 

time-frame for PAPS and UDPGA depletion in the liver agree with that from Hjelle et al. [187], 

where the majority of cofactor is depleted 30 to 60 minutes post-acetaminophen dosing. The 

insets in Figure 4.1.6 show the predicted values of the minimum fraction of cofactor available, 

PAPS  and 
UDPGA , at various clinically-relevant doses. Data quantifying the dose-dependency of 

cofactor depletion in humans could not be found in the literature; however, the trends seen in 

these insets are similar to those for reduction in PAPS and UDPGA observed in an experimental 

study in rats [187]. 

4.3.3.2 Dose-dependent pharmacokinetic parameters 

 

FIGURE 4.1.7. Model prediction of the dose-dependence of pharmacokinetic 
measures for APAP in the plasma and the liver compartment: AUC and mean 
residence time (MRT). Dashed lines represent a linear response with respect to 
dose. 

 

Understanding the variation in a drug’s pharmacokinetic parameters with respect to dose 

can help to inform its safe and effective administration. Figure 4.1.7 shows model predictions of 



77 
 

the dose dependence of two important pharmacokinetic metrics for APAP: AUC and mean 

residence time (MRT) in both the plasma and liver. Consistent with results from the literature 

[188], predictions from the PBPK model indicate a linear dose-dependence for these metrics over 

a range of common therapeutic oral doses, but show deviations from this linear trend at doses 

above about 60 mg/kg. These latter simulation results are indicative of saturation of the sulfation 

and glucoronidation pathways through depletion of the metabolic cofactors (see §4.3.3.1) and are 

in accord with results from previous experimental studies [189–191]. 

4.3.3.3 Relating APAP levels in the plasma to those in the liver 

 

FIGURE 4.1.8. Model prediction of the relationship between plasma levels of 
parent compound and conjugates and parent APAP in the liver for a 20 mg/kg 
dose. Time increases in the clockwise direction around the trajectory loops and 
numbers shown correspond to the number of hours post dosing. Line styles are 
described in the text. 

 

Although the putative species responsible for hepatotoxicity is NAPQI and not APAP, 

assessment of potential acetaminophen toxicity is currently based on knowledge of the 

administered dose or the APAP level measured in the plasma [174]. Even when using the level 

of APAP as a measure of potential hepatotoxicity, the concentration in the liver is expected to be 

a more representative dose metric than that present elsewhere in the body. To estimate this 

concentration, however, requires a method to associate it with a more readily measurable 

quantity, such as the amount of APAP or its metabolite in the plasma. This predictive 
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relationship could be deduced by comparing and connecting concentration-time profiles for these 

species. Figure 4.1.8 depicts an alternative approach, in which each trace or trajectory provides a 

direct means of estimating 
APAP
liverC  given a value of plasmaC  for one (or more) of APAP, APAP-G, 

or APAP-S, and some knowledge of the time after dosing. Additionally, from a qualitative 

perspective, these plots characterize the relationship between the pharmacokinetics of the two 

chemicals. For instance, each trajectory in this figure is visually segmented to give a rough 

indication of regions of shared pharmacokinetic processes: 

 plasma liver 
 APAP APAP-G , APAP-S APAP 

solid line: absorption formation absorption 
dotted line: absorption formation elimination 
dashed line: elimination elimination elimination 

 

Furthermore, the trajectory’s deviation from the diagonal and degree of diagonal indicate the 

gross differences in the magnitude and time scale for the ADME of the plasma and liver species, 

and the length of the dotted portion of a curve expresses the difference in the time at which Cmax 

occurs (tmax). 

4.4 CONCLUSIONS 

The primary objective of this study was to create a physiologically-based 

pharmacokinetic model for acetaminophen ADME in humans, supported by a broad set of 

experimental data from the literature. Once developed and validated, this model enabled the 

simulation of the disposition of APAP and two of its key metabolites, APAP-G and APAP-S, in 

plasma, urine, and several pharmacologically- and toxicologically-relevant tissues, and included 

information to compute the uncertainty in these predictions. Although not commonly measured 

clinically, the metabolites examined here have markedly different pharmacokinetic profiles than 

that of the parent drug, and their levels provide additional and complementary information useful 
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in estimating APAP dose and internal tissue concentrations. Because the model is based on 

physiological and biochemical relationships, we anticipate that it will be useful in a number of 

applications, such as dose extrapolation studies, determining the tissue-specific pharmacokinetics 

of APAP in susceptible, vulnerable, or health-compromised populations, assessing the 

pharmacokinetic impact of co-administration of another drug, relating measured biomarker 

levels to internal concentrations, and estimating administered dose using concentrations 

measured in plasma and urine. Finally, if integrated with appropriate pharmacodynamic 

equations and relationships, the present model could be used to help predict and characterize 

APAP toxicity. 

 

4.5 CHARACTERIZING THE EFFECTS OF RACE/ETHNICITY OF ACETAMINOPHEN 

PHARMACOKINETICS USING PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING
 

While APAP is a well-known hepatotoxicant in both the United States and United 

Kingdom, relatively little is known about the influence of genes and race/ethnicity on the 

disposition of APAP and the extent to which genetic variation and ethnicity may predispose 

individuals to a higher risk of APAP-induced hepatotoxicity. Although numerous 

pharmacokinetic studies [136–139,141–144,146–155] and compartmental and non-

compartmental analyses [139,148,150,162] have been conducted to estimate important 

pharmacokinetic parameters for this drug, only a few studies [137,138,192,193] have clarified 

the pharmacokinetics of APAP with a focus on the influence of intersubject and genetic 

variations. And, to our knowledge, models that are capable of making tissue specific predictions 

[36,163,166,194,195], important in evaluating the risk of hepatotoxicity, are generally based on 

                                                 
This work was performed jointly with the full list of co-authors available in [35]. 
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pooled data sets and cannot be expected to provide accurate predictions for APAP ADME for 

individual subgroups or subpopulations. 

To begin to fill this gap, the objective of this research was to extend an extensively-validated 

PBPK model for APAP [36] and utilize a hierarchical parameterization approach to develop and 

validate subpopulation-specific PBPK models for two genetically-different groups. The model 

was then used to quantify the difference in ADME between these groups and demonstrate and 

predict tissue-specific measures not available from experimental studies.  

4.6 METHODS 

4.6.1    Compiling and classifying experimental data from the literature 

A comprehensive set of human pharmacokinetic data mined from the literature [36] was 

divided into two groups based on ethnicity as an indicator of the expected abundance of phenol-

metabolizing alleles. Group ‘A’ comprised studies whose subjects were from ethnic groups that 

exhibit a higher proportion of the sulfotransferase (SULT1A1*2) [176,196] allele and the UDP-

glucuonosyltransferase (UGT1A6*2/UGT1A9*1) [197–199], such as those found in Western 

Europeans. Group ‘B’ comprised studies where the SULT and UGT enzymes reflected those in 

Eastern Asian populations. These two enzyme polymorphisms were chosen as they are important 

in phase II metabolism of APAP in the liver [192,196,197]. When the ethnicity of the subjects 

was not noted in the source paper, the group designation was inferred from the study location. 

Studies were further subdivided into a training set to be used for parameter estimation (model 

calibration) and a test set for verification and evaluation (model validation). The studies and their 

classifications (Group A vs. Group B and training vs test) are listed in Table A of the appendix. 
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4.6.2    PBPK model description 

The PBPK model structure consisted of compartments representing fat, muscle, liver, and 

kidney, with remaining tissues lumped [45] into either rapidly perfused or slowly perfused 

compartments. The PBPK model structure for this study was the same as the one in §4.2.2 and 

the graphical representation of the model structure is shown in Figure 4.1.1. Compartmental 

volumes and blood flow rates were taken from Brown et al. [55].  Compartmental volumes and 

blood flow rates were taken from Brown et al. 1997. Detailed descriptions of the governing 

equations describing each aspect of the ADME are found in Zurlinden and Reisfeld [36] and the 

equations themselves are listed in appendix Table B. 

4.6.3    Parameter estimation 

Using time-course plasma and urinary data from the designated training data set (Table 

A), unknown model parameters from Table 4.2.1 were estimated within the context of a 

Bayesian hierarchical framework [36,123]. This approach was used because it facilitated the 

calculation of uncertainty in both parameter values and endpoints of interest and allowed for the 

simultaneous estimation of parameter values that were shared between the groups and levels 

(e.g., physiological parameters) and those that were expected to differ (e.g., parameters related to 

metabolism and clearance). The hierarchy consisted of three levels (i) a population level, 

comprising all of the training set data from all of the studies; (ii) a group level, with the training 

data divided according the ‘Group A’ and ‘Group B’ designations described earlier; and (iii) a 

study level, consisting of all of the separate training set studies. Using this methodology, 

pharmacokinetics predictions and parameter estimates could be made and compared at each level 

in the hierarchy. Here, our primary concern was with examining this behavior at the group levels 

to develop subpopulation-specific parameter distributions.  
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Within the Bayesian framework, sampling was performed using a Markov chain Monte 

Carlo (MCMC) approach and distributions for all parameter priors were log-transformed and 

sampled as either normal or uniform distributions. When available, these distributions were 

based on values reported in the literature. For instance, the Michaelis-Menten constants (KM, 

Vmax) for the CYP, UGT, SULT pathways, and conjugate active transporters were taken from in 

vitro studies conducted in human liver microsomes [185], recombinant enzymes [184], or 

isolated rat hepatocytes [181]. When no such data were available, uninformed, uniform priors 

were used. 

4.6.4    Comparing parameter and endpoint values between the groups 

To determine which of the parameters and pharmacokinetic measures were significantly 

different between Group A and Group B, a Mann-Whitney U test was used. The simulated 

population size (N=100) approximated that from the experimental studies utilized in model 

development and verification (Table A). For the statistical tests, the null hypothesis was that 

there was no difference in the distribution for a parameter, measure, or endpoint of interest 

between Group A and Group B. 

4.6.5    Software and computing platform 

Data available from the literature in graphical form were digitized using DigitizeIt v.1.5.8 

[124]. Simulations of the PBPK model equation system, including MCMC and MC analyses, 

were conducted using MCSim v5.4 [77]. Processing and analysis of data and simulation results 

was carried out using custom scripts written in Python v.2.7.2 [125], utilizing the numpy [126], 

scipy [66], and matplotlib [127] packages. All calculations were performed on a computational 

cluster running the 64-bit CentOS Linux operating system on six-gigabit linked Dell 2950 serves, 

each containing two quad-core 2.5-GHz Xeon processors and 64 GB of RAM. 
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TABLE 4.2.1. Summary of population and group parameter distributions 

 Description Parameter 
(units) 

Population Group A Group B 

Acetaminophen Absorption     

 gastric emptying time constant TG (hr) N(0.33, 0.36) N(0.385, 0.29) N(0.401, 0.33) 

 G.I. perfusion time constant TP (hr) N(0.0474, 0.32) N(0.053, 0.28) N(0.051, 0.33) 

Phase I metabolism     

 cytochrome P450 KM KM-cyp (μM) N(123, 0.29) N(124, 0.27) N(121, 0.27) 

 cytochrome P450 Vmax 
VM-cyp (μmol/hr-

BW0.75) 
N(2.69, 0.74) N(2.54, 0.69) N(2.84, 0.78) 

Phase II metabolism: sulfation     

 
sulfation pathway acetaminophen 

KM 
KM-sult (μM) N(1.14E3, 0.40) N(1.19E3, 0.43) 

N(1.23E3, 
0.40) 

 
sulfation pathway substrate 

inhibition Ki 
KI-sult (μM) N(475, 0.24) N(465, 0.29) N(465, 0.29) 

 sulfation pathway PAPS KM 
KM-PAPS 

(unitless) 
N(0.348, 0.38) N(0.284, 0.43) N(0.316, 0.46) 

 
sulfation pathway acetaminophen 

Vmax 

VM-sult (μmol/hr-
BW0.75) 

N(443, 0.39) N(492, 0.35) N(386, 0.35) 

Phase I metabolism: glucuronidation     

 
glucuronidation pathway 

acetaminophen KM 
KM-ugt (μM) N(6.07E3, 0.35) N(5.72E3, 0.32) 

N(6.18E3, 
0.34) 

 
glucuronidation pathway substrate 

inhibition Ki 
KI-ugt (μM) N(4.95E4, 0.25) N(4.89E4, 0.33) 

N(4.88E4, 
0.33) 

 
glucuronidation pathway UDPGA 

KM 

KM-UDPGA 
(unitless) 

N(0.335, 0.36) N(0.275, 0.39) N(0.299, 0.45) 

 
glucuronidation pathway 

acetaminophen Vmax 

 VM-ugt (μmol/hr-
BW0.75) 

N(5.08E3, 0.32) N(5.23E3, 0.27) 
N(4.83E3, 

0.29) 

Active hepatic transporters     

 APAP-G hepatic transporter KM KM-APAP-G (μM) N(1.73E4, 0.27) N(1.43E4, 0.35) 
N(1.55E4, 

0.36) 

 APAP-G hepatic transporter VM 
VM-APAP-G 
(μmol/hr) N(3.50E4, 0.43) N(3.63E, 0.35) 

N(3.31E4, 
0.37) 

 APAP-S hepatic transporter KM KM-APAP-S (μM) N(2.21E4, 0.20) N(1.94E4, 0.30) N(2.1E4, 0.3) 

 APAP-S hepatic transporter VM 
VM-APAP-S 
(μmol/hr) N(2.32E7, 0.75) N(2.23E7, 0.73) 

N(2.48E7, 
0.68) 

Cofactor synthesis     

 UDPGA synthesis ksyn-UDPGA (1/hr) N(3.63E4, 0.67) N(3.55E4, 0.61) 
N(3.62E4, 

0.71) 

 PAPS synthesis ksyn-PAPS (1/hr) N(3.71E3, 0.59) N(3.7E3, 0.50) N(3.6E3, 0.58) 

Clearance     

 acetaminophen clearance 
kCLC-APAP (L/hr-

BW0.75) 
N(0.0125, 0.34) N(0.012, 0.23) N(0.13, 0.26) 

 
acetaminophen-glucuronide 

clearance 
kCLC-APAP-G 

(L/hr-BW0.75) 
N(0.155, 0.21) N(0.137, 0.12) N(0.169, 0.13) 

 acetaminophen-sulfate clearance 
kCLC-APAP-S 

(L/hr-BW0.75) 
N(0.138, 0.27) N(0.13, 0.16) N(0.14, 0.18) 

N(a,b) denotes a normal distribution with a mean, a, and a coefficient of variation, b. 
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4.7 RESULTS 

4.7.1    Model parameter values and testing 

Figure 4.2.1 illustrates simulations of Group A and Group B pharmacokinetics of APAP 

and two of its key metabolites, acetaminophen-glucuronide (APAP-G) and acetaminophen-

sulfate (APAP-S), versus data from the literature for a 20 mg/kg dose. This dose was chosen 

because of the relatively large amount of pharmacokinetic data available for both Group ‘A’ and 

Group ‘B’ populations. These plots demonstrate the good agreement between model predictions 

and data for all three species and also show the envelopes of model predictions that account for 

interstudy and interindividual variability in the data. 

 

FIGURE 4.2.1. Time-course pharmacokinetics of APAP in the serum at a 20 mg/kg 
oral dose, where solid lines represent mean model predictions, dashed lines 
represent 95% confidence intervals of the predictions, circles (o) represent data 
used in model calibration, and the plus sign (+) represents data used for 
validation/testing. 

 Model parameter distributions leading to these predictions are listed in their respective 

group columns of Table 4.2.1. Using the statistical test described in §4.6.4, the null hypothesis 

was rejected (p < 0.01) for many of the model parameters associated with APAP metabolism and 
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clearance. In particular, there was a statistically-significant difference between the Group ‘A’ 

and Group ‘B’ distributions for the maximum reaction velocity, Vmax, for sulfation and 

glucuronidation and the renal clearance rates for APAP-S and APAP-G. 

4.7.2    Pharmacokinetic parameter comparison 

To further validate the models, families of concentration-time curves were generated and 

analyzed numerically [38] to yield relevant pharmacokinetic measures, which were then 

compared to values from the literature. 

Table 4.2.2 shows a comparison of several pharmacokinetic measures, including 

maximum concentration (Cmax), area under the curve (AUC0-∞), mean residence time (MRT), 

clearance rate (CLR), and percent recovery in the urine. It is important to note that the 

experimental results [137] were not part of the training set for the model and all parameters, with 

the exception of the mean residence time, were taken directly from Critchley et al. 2005. In 

general, there was very good agreement between the pharmacokinetic measures derived from 

simulations and those from experimental data for both groups. 
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TABLE 4.2.2. Comparison of experiment- and simulation-derived pharmacokinetic 
measures. 

  Group A Group B 
APAP Experiments [137] Simulations Experiments [137] Simulations 

 Cmax (µg/ml) 18.7 (14.4 – 22.9) 
18.99 (12.18 – 

28.32) 
23.8 (17.9 – 32.3) 

20.56 (13.72 – 
31.29) 

 
AUC (µg-

h/ml) 
83.0 (56.7 – 117.1) 

84.71 (42.04 – 
124.97) 

83.3 (50.8 – 112.6) 
91.13 (49.33 – 

160.67) 

 MRT* (hr) 3.28 (3.05 – 3.51) 3.25 (2.11 – 4.61) 3.15 (3.01 – 3.29) 
3.71 (2.40 – 

5.49) 

 CLR (ml/min) 11.9 (4.5 – 16.4) 
12.68 (7.57 – 

21.24) 
11.2 (5.6 – 18.1) 

11.45 (6.52 – 
20.10) 

 Recovery (%) 4.7 (2.4 – 7.6) 3.98 (1.31 – 10.26) 5.3 (3.1 – 9.0) 
5.27 (1.58 – 

12.33) 
APAP-G     

 Cmax (µg/ml) 11.2 (7.7 – 15.1) 
12.41 (6.38 – 

18.62) 
9.5 (5.8 – 14.8) 

10.33 (5.42 – 
17.20) 

 
AUC (µg-

h/ml) 
90.6 (60.9 – 119.5) 

94.87 (55.57 – 
156.43) 

76.2 (50.9 – 110.5) 
79.89 (38.30 – 

141.36) 

 MRT* (hr) 6.19 (5.69 – 6.68) 5.77 (4.38 – 7.44) 6.16 (5.18 – 6.77) 
5.90 (4.29 – 

7.82) 

 CLR (ml/min) 140 (87 – 185) 
155.8 (117.1 – 

207.4) 
129 (82 – 187) 

142.09 (90.07 – 
207.4) 

 Recovery (%) 59.9 (47.3 – 68.3) 
57.62 (39.62 – 

72.26) 
55 (40.7 – 68.6) 

57.61 (39.05 – 
76.60) 

APAP-S     

 Cmax (µg/ml) 4.43 (3.18 – 6.02) 6.24 (3.10 – 11.85) 5.8 (3.15 – 7.41) 
4.90 (2.39 – 

9.07) 

 
AUC (µg-

h/ml) 
36.7 (24.2 – 50.0) 

41.81 (16.18 – 
97.13) 

40.4 (25.2 – 62.0) 
34.55 (11.30 – 

72.36) 

 MRT* (hr) 5.92 (5.35 – 6.49) 4.85 (3.49 – 6.32) 5.90 (5.38 – 6.33) 
5.12 (3.25 – 

7.09) 

 CLR (ml/min) 160 (85 – 217) 
150.4 (110.6 – 

204.4) 
148 (117 – 196) 

140.2 (98.2 – 
200.1) 

 Recovery (%) 27.7 (19.8 – 41.9) 
24.78 (12.82 – 

43.29) 
34.2 (22.3 – 46.4) 

22.98 (8.61 – 
39.46) 

 *Calculated from in vivo data 
Results are presented as mean (95% confidence interval range). 
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4.7.3    Model predictions 

 

FIGURE 4.2.2 Simulation results: a fraction excreted for the acetaminophen 
(APAP) and its two conjugates: acetaminophen-glucuronide (APAP-G) and 
acetaminophen-sulfate (APAP-S), with APAP-G and APAP-S presented as 
acetaminophen equivalents, and b the area under the concentration–time curve 
extrapolated to infinity (AUC) of APAP in the liver. For both panels, solid and 
dashed lines represent population means for Group A and Group B, respectively. 

 

Beyond recapitulating results from existing studies, a key feature of the models is that 

they can be used to estimate pharmacokinetic quantities beyond those available experimentally. 

One key indicator of APAP metabolism is fraction excreted. Figure 4.2.2A shows this measure 

as a function of dose for APAP and two of its metabolites. Because of hepatic elimination of 

APAP through phase I metabolism, these fractions do not sum to one.  

It is known that APAP can undergo cytochrome P450-mediated bioactivation to the 

glutathione depleting, putative toxicant N-acetyl-p-benzoquinone imine (NAPQI). Because this 
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metabolic process occurs in the liver, quantifying concentrations of species in this organ are 

important in understanding toxicity. Thus, the PBPK models were employed to make liver-

specific pharmacokinetic predictions, where parent APAP was used as a surrogate for the toxic 

species NAPQI. Figure 4.2.2B shows the AUC of APAP in the liver (AUCliver) as a function of 

dose for the two groups. With increasing dose, there is a increase in the divergence between 

AUCliver for the two groups, and at a dose of 120 mg/kg, this difference is statistically significant 

(p < 0.01).  

To ascertain which of the model parameters were most influential in this difference in AUCliver 

between the groups, a sensitivity analysis was carried out and a Pearson correlation coefficient, r, 

computed for each model parameter. Results from this analysis indicated that parameters most 

influencing this endpoint (|r| > 0.2) were all related to APAP metabolism, including the 

Michaelis-Menten parameters associated with the glucuronidation and sulfation pathways and 

the rate parameter for UDPGA synthesis. 

4.8 DISCUSSION 

As illustrated in Figure 4.2.1 and Table 4.2.1, the PBPK models developed in this study 

produce predictions for time-course concentrations and summary parameters that are in good 

agreement with experimental measurements for both ethnic groups across numerous 

pharmacokinetic studies in humans.  

Using the validated PBPK models, predictions were made for two pharmacokinetic 

quantities useful in characterizing APAP ADME. First, as shown in Figure 4.2.1A, the urinary 

excretion of APAP and two key metabolites was simulated as a function of dose. The 

convergence of the Group A and B curves for excretion of the APAP-G conjugate at higher 

doses is indicative of the saturation of the glucuronidation pathway. Comparable lines for parent 
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APAP and APAP-S do not converge at higher doses, indicating differences in metabolism 

between the groups, even at higher doses. 

Second, the AUC of APAP in the liver was estimated as an indicator of toxicity potential. 

As seen in Figure 4.2.1B, the AUC for the groups increasingly diverges as the dose increases. 

This difference in AUC is in agreement with results found experimentally [137].  These 

predicted differences in both urinary fate and APAP AUC could be due to a number of factors, 

including disparities in diet, nutritional status, alcohol consumption, and gender. However, such 

a disparity could be attributable to the diminished glucoronidation capacity of Group B subjects 

relative to those in Group A owing to differences in allele abundance for the UGT enzyme 

between the two groups. Specifically, for APAP glucuronidation, UGT1A6 is a high-affinity, 

low capacity isozyme [200] and consists of three alleles, with the wild-type UGT1A6*1 allele 

having the highest affinity towards phenols [197], like APAP. On the other hand, UGT1A9 is a 

low-affinity, high-capacity isozyme [200] for APAP glucuronidation, with UGT1A9*1 

representing the wild-type allele. The difference in abundances of these allozyme between 

ethnically diverse groups can contribute to the divergence in the resulting APAP 

pharmacokinetics between these groups. It has been found that Group B subjects are more likely 

to contain the wild-type allele compared to their Group A counterparts [197]. This suggests that, 

at lower APAP doses, Group B subjects may metabolize a larger percentage of APAP to APAP-

G compared to those in Group A, while at higher doses, glucuronidation may be diminished 

owing to saturation of the UGT1A6 isozyme [200]. Conversely, Group A subjects have a higher 

percentage of the wild-type UGT1A9 allele [199], allowing for greater glucuronidation at high 

doses, resulting in lower APAP liver concentrations compared to those in the Group B 

subpopulation. 



90 
 

Knowledge of group-specific APAP AUC in the liver has implications for targeted 

treatment of susceptible populations. In this study, the Group B subjects generally showed lower 

metabolizing capacity compared to those in Group A due to the differences in the 

glucuronidation pathway, suggesting that the former group may be more susceptible to APAP-

induced toxicity. While these differences in glucuronidation are subtle, the use of a hierarchical 

Bayesian methodology allowed quantitation of these effects on the tissue-specific 

pharmacokinetics. These methods could be extended to patients with an even greater reduction in 

UGT activity, such as those with Gilbert’s Syndrome [192,193,197]. Using available 

pharmacokinetic data, additional populations can be introduced to the hierarchical framework to 

determine APAP toxicity risks and recommended dosing regimens for a given population. 

Lastly, predictions of the concentrations of the two APAP conjugates, APAP-G and 

APAP-S, can be useful clinically because these compounds have longer half-lives in the serum 

than the parent drug. In particular, monitoring of potential acetaminophen toxicities are based on 

a determination of APAP concentration in the serum [174]. However, due to the relatively short 

mean residence time of APAP in the blood, this indicator can become uninformative at longer 

times post dosing, whereas the half-lives of APAP-G and APAP-S are almost twice as long, 

providing potentially more informative measures related to possible adverse health effects [39].  

Though the study detailed here provided evidence that a hierarchical PBPK modeling approach 

could be used to characterize subtle changes in pharmacokinetics between ethnic groups, the 

results should be interpreted in light of several limitations in the data and methodology. First, 

actual allele frequencies and abundances for individuals in each group were not available. While 

members of Group A were more likely to express the wild-type UGT1A9 allele, genetic testing 

information was not available to test this assumption. Second, in many cases, the ethnicities of 



91 
 

study participants were assumed based solely on study location. Lastly, it was assumed that 

disparities in measured pharmacokinetic characteristics between the groups was due to 

differences in metabolism, as opposed to factors such as lifestyle, diet, and nutritional status. 

4.9 CONCLUSION 

The objective of this research was to develop subpopulation-specific PBPK models to 

help clarify the ADME of APAP for two groups expected to differ in alleles relevant to the 

metabolism of this drug. To our knowledge, this is one of the first usages of PBPK modeling to 

quantify the pharmacokinetic implications of these types of differences. This modeling approach 

was used to estimate distinct metabolism and clearance parameter sets for each of the groups and 

predict pharmacokinetics and pharmacokinetic measures that were in good agreement with those 

from the literature. 

Although experiments are vital in elucidating pharmacokinetics, the use of validated 

PBPK models can aid in predicting the tissue-specific disposition of drugs and their metabolites 

and rigorously interpolating and extrapolating between and across doses and dosing regimens. 

The use of subpopulation-specific models can further enhance this understanding by providing 

results with less uncertainty than generalized models through the use of data and model 

parameters particular for the group(s) of interest. Additionally, by utilizing a hierarchical 

Bayesian approach, interindividual, interstudy, and intergroup variability can be quantified and 

used to direct the design of additional experiments and inform a more rational interpretation of 

model results. 

Ultimately, although the models described here do not directly compute measures or 

biomarker concentrations indicative of APAP-induced liver injury (e.g., levels of alanine 

aminotransferase, glutathione S-transferase alpha, or arginase 1), they could be linked with 
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appropriate pharmacodynamic models [163,165,194] to make toxicity predictions in a manner 

that rationally incorporates differences in APAP ADME between individuals and susceptible 

subpopulations of interest and predicts population-specific pharmacodynamic outcomes. 

 

4.10 A NOVEL APPROACH FOR ESTIMATING INGESTED DOSE ASSOCIATED WITH ACETAMINOPHEN 

OVERDOSE 

As described earlier, acetaminophen (paracetamol, N-acetyl-para-aminophenol, APAP) is 

one of the most widely used analgesic and antipyretics in the world. Owing to its abundant 

usage, APAP is the principle cause of acute liver failure in both the United Kingdom [88,90] and 

United States [88,89]; moreover, ingestion of this drug is the most common, non-opioid 

poisoning that results in admission to the hospital in the US, with the majority of these ingestions 

involving self-harm attempts [90,201]. 

The current standard for evaluating acute APAP overdose begins with risk stratification 

using the Rumack-Matthew nomogram [174]. To use the nomogram, parent APAP is measured 

in the serum, plotted against the time of ingestion, and compared to the “150 μg/ml” line; if the 

concentration falls above the line, the patient is considered at risk for liver injury and treatment 

with N-acetylcysteine (NAC) is indicated [202]. There are several commonly used NAC 

treatment protocols, including the 21 hour intravenous protocol, the 72 hour oral protocol, and 

“patient tailored” protocols where treatment is continued until laboratory and clinical endpoints 

are met. 

While treatment for APAP overdose in an emergency setting does not absolutely require 

knowledge of the ingested dose, this information can be important for long-term, individualized 

 

 

This work was performed jointly with the full list of co-authors available in [39] 
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management of patients. Occasionally, a patient may claim to have ingested a therapeutic dose, 

while the serum concentration suggests overdose [203,204]; however, the pharmacokinetic 

parameters that have been used to calculate the dose were derived from studies of therapeutic 

dosing, which may not accurately portray APAP pharmacokinetics in an overdose scenario. 

Similarly, there are currently no methods for validation of history for case reports claiming 

APAP toxicity following therapeutic dosing. Recent studies [204,205] noted that, while there is 

an overall correlation between reported dose and serum concentration, some patients reported 

ingesting doses that are not consistent with the measured concentrations based the standard 

pharmacokinetic parameters for APAP. Moreover, a retrospective study of over 1200 APAP 

overdose patients [206] concluded that self-reported dose alone is a poor assessment tool in 

determining the need for overdose treatment. In sum, knowledge of the ingested APAP dose 

following self-harm poisoning could help inform treatment plans, aid in validating the history in 

reports of toxicity, and identify patients who have overdosed, but have provided inaccurate 

dosing histories.  

Here we propose a method for estimating administered dose using APAP serum 

concentration and a computational method based on physiologically-based pharmacokinetic 

(PBPK) modeling. PBPK modeling is commonly used to predict time-course tissue-specific 

concentrations of species based on a specified input dose or exposure [160,207]. This mode of 

utilizing the model is often called concentration prediction (or forward dosimetry). In contrast, 

for dose estimation (also known as dose reconstruction or reverse dosimetry), measured levels of 

the biomarker of interest (e.g., concentration of the parent drug in the blood) are specified as the 

known quantities and the ingested dose is treated as the unknown. By using Bayesian inference 

to compute model parameters, inter-study and inter-subject variability can be included in the 
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specified data, and uncertainties in model outputs can be quantified [77,208]. Bayesian 

approaches have been used previously in a few similar contexts: with PBPK models to calculate 

exposures to environmental toxicants [183,209,210] and with compartmental models to 

incorporate estimates of the veracity of the patients’ dosing history to estimate the dose of a drug 

[211]. 

 

FIGURE 4.3.1. Overview of the analysis framework. The horizontal rows represent 
the two different modes of analysis, with the input data, analysis tools, and 
simulation output portrayed in the left-hand, center, and right-hand panels, 
respectively. In particular, the upper row represents the methodology for the 
concentration prediction studies. Here, pharmacokinetic data from multiple 
studies are used to determine relevant parameter distributions in the PBPK model. 
Using the model, internal concentrations in the tissue of interest can be estimated 
and population variability characterized. The lower row illustrates the approach 
used for the dose estimation studies. Here, a blood sample from an individual 
patient is obtained. Using the calibrated PBPK model and Bayesian inference, the 
administered dose, along with optimal sampling times and measurable 
biomarkers, can be determined. 
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In this study, we extended our PBPK model created previously for therapeutic doses of 

APAP [36] to overdoses and developed a Bayesian inferential framework for the two distinct 

modes of analyses described above (Figure 4.3.1). Specifically, we first used the framework in 

concentration prediction mode to (i) predict parent APAP and metabolite concentrations in 

plasma and compare these predictions to data from clinical measurements over a range of dosing 

conditions and (ii) relate predicted APAP concentrations in the plasma and liver over time. We 

then employed the computational tool in dose estimation mode to (i) determine the optimal time 

for blood sampling to minimize the error in a dose estimate, (ii) quantify the potential role of 

inclusion of metabolite concentration on dose estimates, and (iii) predict APAP doses and 

compare them to patient data collected in an emergency setting [39]. 

4.11 METHODS 

4.11.1    Physiologically-based pharmacokinetic modeling 

4.11.1.1 Acetaminophen overdose data 

We utilized human pharmacokinetic data from a number of high-dose (23 to 41 g) studies 

[141,212–214] and a comprehensive set of therapeutic-level (250 mg to 5.5 g) studies [36] to re-

parameterize the model from Zurlinden and Reisfeld [36], allowing the resulting model to have 

applicability over a wide range of doses. The data were divided into two distinct sets: (i) a 

training set, used for model parameter estimation, and (ii) a test set, reserved for evaluation and 

comparison to model predictions. A summary of the data sets used in the analyses is contained in 

Table A of the appendix. 

Additionally, APAP overdose data from the Rocky Mountain Poison and Drug Center 

[215] were used for model verification and comparison to predicted dose estimates. These data 

were collected from patients admitted to the hospital for overdose treatment following an acute 
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ingestion of APAP. Because the doses were self-reported and the time of ingestion was not 

precisely known, these data were held out of the training set. These self-reported doses ranged 

from 9-100 grams of orally administered APAP and served as realistic case studies for model 

testing.  

4.11.1.2 Model Formulation 

 

FIGURE 4.3.2. APAP Overdose PBPK model structure 

 

The PBPK model structure used in this study (Figure 4.3.2) and most of the model 

equations were the same as those developed previously for therapeutic dosing [36]. The full set 

of governing equations is available in Table B of the appendix. 
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TABLE 4.3.1. Model parameters. N(a,b) denotes a normal distribution with a mean, 
a, and a coefficient of variation, b; U(a, b) denotes a uniform distribution with 
minimum and maximum values a and b, respectively. When a prior was not 
available in the literature (indicated by a dash in the reference column), a broad 
distribution was used to bound the likely parameter value. 

 

 Description Parameter(units) Prior Posterior Reference 

Absorption     

 drug dissolution rate ao (1//hr) U(1, 10) N(4.82, 0.26) [216] 

 body weight absorption scaling factor α (unitless) U(1E-3, 1) N(0.16, 0.71) [168] 

 gastric emptying time constant(fasted state) TG-fast (hr) N(0.23, 0.5) N(0.15, 0.20) [168] 

 gastric emptying time constant(fed state) TG-fed (hr) - 1 [217] 

Phase I metabolism     

 cytochrome P450 KM (μM) N(130, 1) N(125,0.21) [184] 

 cytochrome P450 Vmax (μmol/hr-BW0.75) U(0.14, 2900) N(3.68,0.76) – 

Phase II metabolism: sulfation     

 sulfation pathway KM (μM) N(300, 1) N(460,0.22) [185] 

 sulfation pathway substrate inhibition Ki (μM) N(526, 1) N(498,0.21) [176] 

 sulfation pathway PAPS KM (unitless) N(0.5, 0.5) N(0.37,0.25) – 

 sulfation pathway Vmax (μmol/hr-BW0.75) U(1, 3.26E6) N(224,0.25) – 

Phase I metabolism: glucuronidation     

 glucuronidation pathway KM (μM) N(6.0E4, 1) N(6.57E3,0.19) [185] 

 glucuronidation pathway substrate inhibition Ki (μM) N(5.8E4, 0.25) N(5.25E4,0.22) [175] 

 glucuronidation pathway GA KM (unitless) N(0.5, 0.5) N(0.36,0.24) – 

 glucuronidation pathway Vmax (μmol/hr-BW0.75) U(1, 3.26E6) N(5.21E3,0.17) – 

Active hepatic transporters     

 APAP-G hepatic transporter KM (μM) N(1.99E4, 0.3) N(1.57E4,0.23) [181] 

 APAP-G hepatic transporter VM (μmol/hr) U(1.09E3, 
3.26E6) 

N(1.02E5,0.51) – 

 APAP-S hepatic transporter KM (μM) N(2.29E4, 0.22) N(2.01E4,0.22) [181] 

 APAP-S hepatic transporter VM (μmol/hr) U(1.09E3, 
3.26E6) 

N(1.03E7,1.23) – 

Cofactor synthesis     

 UDPGA synthesis (1/hr) U(1, 4.43E5) N(5.32E4,0.55) – 

 PAPS synthesis (1/hr) U(1, 4.43E5) N(3.14E3,0.45) – 

Renal elimination     

 clearance (L/hr-BW0.75) 
U(2.48E-3, 

2.718) 
N(0.012,0.27) – 

 glucuronide clearance (L/hr-BW0.75) 
U(2.48E-3, 

2.718) 
N(0.13,0.17) – 

 sulfate clearance (L/hr-BW0.75) 
U(2.48E-3, 

2.718) 
N(0.16,0.19) – 
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The differences are related to the mechanistic and mathematical description of APAP 

absorption and the estimated parameters associated with the model equations (Table 4.3.1). As 

confirmed previously [36], under therapeutic conditions, absorption following oral 

administration of APAP is well described using the “averaged model” (i.e., a well-stirred 

compartmental model) from Levitt [168]; however, under overdose conditions, there is a 

significant delay in Tmax [150] that cannot be accounted for with this model. A biologically-

plausible mathematical description for APAP absorption that accounts for this lag consists of 

terms accounting for drug dissolution in the stomach, first order gastric emptying to the GI tract, 

and passive diffusion over the gut lumen [218]: 
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Here, ,
APAP
ST SA   and ,

APAP
ST AqA  represents the amount of APAP in the stomach in solid and aqueous 

phases, respectively, I(t) is the initial rate of dosing to the stomach and TG is the gastric emptying 

time. The function k(t) is the time-dependent rate of APAP dissolution, which was extensively 

studied in vitro by Özkan et al [216] who found that dissolution rates were best described using 

the Hixson-Crowell (HC) model [219,220]: 
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with 3
0

D
a a

BW 
     , where D is the ingested APAP dose, BW is the body weight of the 

subject, and a0 and α are constants that were fit in this study to available data [141,212,214]. This 

specification for drug dissolution describes the release rate of a drug with a constantly changing 

surface area. For a large amount of drug in the stomach, this dissolution rate will be governed by 

the surface area exposed to the aqueous solution and will be proportional to the cubed-root of the 

initial mass. In addition, drug formulation will impact the rate of dissolution, and in this study, 

only immediate release (IR) APAP formulations were considered. The amount of APAP in the 

gut compartment, APAP
GA , is described through a simple gut-to-blood perfusion description using 

a blood flow rate, QG, arterial blood concentration, 
APAP
AC , and venous gut concentration, 

APAP
V GC  . 

The venous gut concentration is determined using the gut:blood partition coefficient, where 

:
APAP APAP

V G G gut bloodC C P  . This tissue:blood partitioning ratio assumes that equilibrium has been 

reached between the venous blood and tissue. Equipartitioning of species between the serum and 

red blood cells was assumed and the effect of clotting factors and protein binding in the blood 

were neglected. Finally, by adjusting the gastric emptying time, TG, simulations for fasted and 

fed states could be conducted. Because APAP pharmacokinetic studies generally occur when the 

patient is in a fasted state, TG under those conditions was determined through the Bayesian 

calibration methodology, while that for the fed state was assumed to be one hour [217]. 

4.11.1.3 Parameter estimation 

Parameters for the PBPK model were determined using a hierarchical Bayesian model 

utilizing a Markov chain Monte Carlo sampling procedure [36,123,183,221], which facilitates 

quantitation of inter-study and inter-subject variability. The specific prior and posterior 

parameter distributions are presented in (Table 4.3.). Five Markov-chains were run for 100,000 
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iterations per chain. Posterior parameter distributions were determined by combining the final 

30,000 iterations of each chain. Convergence was assessed using a Gelman-Rubin reduction 

factor [73] with a maximum threshold of R = 1.05. 

4.11.1.4 Dose estimation studies 

Similar to previous exposure estimation studies [183,209,210], APAP dose reconstruction 

was cast into the form of a parameter estimation problem. In this scenario, rather than 

determining population distributions for PBPK model parameters such as enzyme Vmax or drug 

clearance rate constants, the Bayesian methodology was used to determine a posterior 

distribution for the ingested APAP dose, given a biomarker concentration, such as APAP 

concentration measured in the serum. APAP dose reconstruction was investigated for two 

applications: (i) determining the optimal sampling time for dose reconstruction with and without 

APAP conjugate measurements, and (ii) reconstructing APAP doses based on measured serum 

concentrations and comparing them to known or self-reported dose values from patients. 

4.11.2    Optimal sampling time 

As represented in Figure 4.3.3, the procedure for determining optimal sampling time for 

dose reconstruction was as follows. Following verification and evaluation, the PBPK model was 

used to simulate time-course serum concentrations for the parent drug and two metabolites, N-

acetyl-para-aminophenol glucuronide (APAP-G) and N-acetyl-para-aminophenol sulfate (APAP-

S), following a single oral 400 mg/kg dose in a 70 kg person. serum concentrations were 

numerically sampled from these synthetic data and used to reconstruct a probability distribution 

for the initial dose. 
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FIGURE 4.3.3. Overview of the dose reconstruction methodology 

 

These simulation results were aggregated to create a set of well-characterized “synthetic 

data” to be used subsequently. σext, For a given time point, serum APAP was either sampled 

alone or in combination with APAP-G and/or APAP-S. This represents a scenario in which a 

single blood sample is taken and analyzed for parent APAP alone or with either or both of the 

conjugates. Lastly, the reconstructed probability distribution for APAP dose was compared to the 

known initial dose to generate a measure of reconstruction accuracy. This method is similar to 

studies in which results from a population PBPK model are sampled numerous times to 

determine an optimal blood sampling time for PBPK model parameter estimation [222–224]; 

however, rather than comparing a predicted pharmacokinetic endpoint, such as area under the 

curve or Cmax, the resulting dose prediction was compared to a known ingested dose. 
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In addition to blood sampling at a single time point, this methodology was also used to 

investigate how utilizing multiple blood samples would impact the error in the APAP dose 

prediction. In this scenario, two time points comprised the data for the Bayesian inference. In this 

series of simulations, a serum sample taken at four hours served as the initial point, and a second 

sample was taken at a variable time interval after that. As in the previous study, the effect of 

sampling metabolites in addition to the parent APAP was systematically investigated. 

4.11.3    Determining the administered dose 

The final aspect of this study involved estimating the ingested APAP dose based on 

measurements from therapeutic/supratherapeutic trials [36], well-controlled clinical overdose 

studies [214], and an emergency setting [215]. The dataset from the emergency setting included 

many cases where the patient did not know the quantity of APAP ingested. However, in a 

substantial number of the cases (N=61), the patient could approximate the amount of APAP 

ingested and these values could be compared to those from the computational dose 

reconstruction. 

4.11.4    Statistical analysis 

The Bayesian inference method results in a posterior probability distribution for the 

administered dose prediction. However, the true initial dose is a single point parameter. We used 

the mean square error (MSE), Δ, as a measure of the difference between the predicted probability 

distribution and the “true dose”,  

  2

1

1 ˆ
N

i
i

D D
N 

     (4C.3) 

where ˆ
iD  represents the distribution of predicted doses, i represents an iteration of the posterior 

chain, N is the number of values comprising the distribution, and D is the actual dose taken by 
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the patient. Based on the MSE, Δ quantifies the uncertainty in the dose prediction by accounting 

for the variance in the resulting dose distribution [224]. In this study, the MSE was used 

principally to help identify optimal blood sampling times. For this optimization application, the 

MSE was preferable to measures such as the mean absolute error because of its favorable 

mathematical and computational properties, such as its continuity and differentiability. 

4.11.5    Software and computing platform 

Concentration prediction and dose estimation simulations were conducted using MCSim 

v5.4 [77], an open source package for the solution of statistical and dynamic models, Monte 

Carlo stochastic simulations, and Bayesian inference simulations. Processing, analysis, and 

visualization of data and simulations results were carried out using scripts written in Python 

v.2.7.2 [125], utilizing the numpy [126], scipy [66], and matplotlib [127] packages. All 

calculations were performed on a compute cluster running the 64 bit CentOS Linux operating 

system on six gigabit-linked Dell 2950 servers, each containing two quad-core 2.5 GHz Xeon 

processors and 64 GB of RAM. 

4.12 RESULTS 

4.12.1    Concentration prediction studies 

To assess the accuracy of the PBPK model, predictions of plasma concentrations, CPL, of 

parent APAP and two major metabolites, APAP-G and APAP-S, were compared to serum 

concentration data acquired in clinical studies. Figure 4.3.4 displays the comparison at 20 mg/kg 

(therapeutic), 80 mg/kg (supratherapeutic), and 400 mg/kg (overdose) for a 70 kg adult human, 

including the uncertainty in the model predictions. Within the PBPK model, serum and plasma 

concentrations were assumed to be identical (see Methods, §4.11). 
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FIGURE 4.3.4. Comparison of model simulations to serum concentration data 
following a single oral dose of APAP administered to an adult patient weighing 
70 kg. The solid and dashed lines represent mean and 95% prediction interval 
simulation results, respectively. Data from the training set are represented by 
filled circles (o), while data from the test set are denoted by the plus sign (+). 
Metabolite data were not available for doses greater than 80 mg/kg. 
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FIGURE 4.3.5. Comparison of model predictions and experimental data for APAP 
serum concentrations at four hours post dosing, where APAP overdose is 
demarcated with the dashed lines at 150 μg/ml, with concentrations in the shaded 
area representing potential overdoses. Data from the training and test set are 
represented as filled circles (o) and plus signs (+), respectively. τpen squares (□) 
represent data from the self-reported overdose data set. 

 

FIGURE 4.3.6. Model simulation results quantifying the ratio of liver-to-plasma 
APAP concentrations as a function of the APAP dose 
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Because a four-hour APAP serum sample is the most widely used for assessing potential 

APAP overdose [174], simulations were conducted and results compared to clinical and 

emergency setting data available across three orders of magnitude of doses at this time point 

(Figure 4.3.5).  

Finally, one of the primary attributes of the PBPK methodology is the ability to predict 

and characterize tissue-specific concentrations of species of interest. Using the PBPK model, 

time-course simulations for APAP concentrations in both the liver and serum were conducted 

over the range of doses presented in Figure 4.3.6.  Figure 4.3.6 depicts the dose-response curve 

for the ratio of liver-to-plasma APAP concentrations, /liver plasmaC C  , at several times 

following APAP administration. 

4.12.2    Dose estimation studies 

4.12.2.1 Optimal sampling time 

The first dose estimation study concentrated on quantifying the effect of sampling time 

and choice of analytes on the accuracy of the APAP dose estimation. To estimate the optimal 

time at which to draw a blood sample, doses were reconstructed by computationally sampling 

APAP and/or APAP-G and APAP-S at a single time point or at two time points. When two time 

points were used, the first was fixed at four hours and the second was sampled at a specified time 

point after that, with a range for the second time point of 4.5 to 11 hours post-dosing. Results 

from these reconstructions are shown in Figure 4.3.7. Here, 400 mg/kg served as the known 

dose, and a smaller mean squared error, Δ, represents less error in the reconstructed dose. APAP-

S results were not included, as they did not alter the error for the reconstructions. Through a 

large set of additional simulation studies, it was found that the overall pattern for these results 

did not change at when the initial dose was varied. 
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FIGURE 4.3.7. Accuracy of dose reconstruction as a function of time at which the 
blood is sampled. Light grey lines represent samples where only parent 
acetaminophen is measured, while black lines represent both APAP and APAP-G 
being used for dose reconstruction. Solid lines represent the dose reconstruction 
for a single time point and dashed lines represent reconstructions where two 
serum time points are used, one at four hours and one at some time later time. The 
dot-dashed line represents the estimated mean squared error for the standard 
sample protocol (acetaminophen alone measured at four hours post dosing). 

 

4.12.2.2 Determining the administered dose 

The second dose estimation study focused on dose estimation using data from both a 

well-controlled clinical environment and an emergency setting. As discussed previously, the 

current protocol for treating APAP overdose involves measuring APAP concentrations in the 

serum at four hours post dosing. Figure 4.3.8 shows the comparison between the reported APAP 

dose and the mean predicted dose using the computational model. These comparisons include 

data from well-controlled clinical studies and self-reported doses from an emergency room 

setting. 



108 
 

 

FIGURE 4.3.8. Predicted ingested dose and self-reported patient dose at four hours 
post dosing. Data from the training set are represented by filled circles (o), data 
from the test set are denoted by the plus sign (+), and values from self-reported 
acetaminophen overdose cases are represented by open squares (฀) 

 

4.13 DISCUSSION 

Two significant objectives were achieved in this study that have potential applications to 

clinical pharmacology and therapeutics: first, a PBPK model was developed and evaluated to 

predict APAP pharmacokinetics in humans under overdose conditions; and second, this model 

was utilized as part of a methodology to estimate ingested dose and its uncertainty based on the 

measured concentration of APAP and/or its metabolites in a serum sample. 

4.13.1    Concentration prediction studies 

Because the PBPK model was calibrated using an extensive set of human 

pharmacokinetic data and incorporated mechanistically-based descriptions of physiological 

processes, it was capable of providing accurate simulations of APAP pharmacokinetics over a 

large range of ingested doses. This is demonstrated in Figure 4.3.4, in which model predictions 
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for APAP pharmacokinetics show good agreement with data from not only the training 

(calibration) data set, but also a large independent test set.  

In addition to parent APAP, the model was used to make time-course predictions for two 

significant metabolites, APAP-G and APAP-S. At the 20 mg/kg and 80 mg/kg APAP dosing 

levels, model predictions agreed well with measured values for the metabolite concentrations. At 

400 mg/kg, no metabolite data were available; however, owing to the metabolism mechanism 

implemented in the model [36], which included bi-substrate enzyme kinetics coupled with 

cofactor depletion and synthesis, model predictions show that APAP-S concentrations do not 

decrease at later times. This reduction in the rate of APAP-S formation is in accord with results 

from experimental studies[185,189] and is consistent with the depletion of the PAPS cofactor 

seen in APAP dosing studies in rodents[187,225]. 

As noted above, when assessing potential APAP toxicity, a four-hour serum APAP 

concentration conventionally serves as the biomarker for hepatotoxicity risk. Thus, verification 

of model predictions at this time point is critical for establishing the clinical utility of the model. 

Figure 4.3.7 illustrates the accuracy of the model in predicting parent APAP concentrations for a 

wide range of doses at this time point, demonstrating reasonable-to-very good agreement over 

three orders of magnitude of APAP doses. 

Although APAP serum concentration is useful as an indicator of hepatotoxicity risk, a 

more appropriate measure would be the concentration at the site of action. Thus, the PBPK 

model was employed to make liver-specific pharmacokinetic predictions, where parent APAP 

was used as a surrogate for the putative toxicant NAPQI. Figure 4.3.6 shows the ratio of liver-to-

plasma APAP concentration, , as a function of administered dose. Unlike a first-order kinetic 

model where  would remain constant at each time point, nonlinearities in the metabolism and 
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absorption mechanisms, coupled with non-equilibrium conditions embodied in the PBPK model 

led to a consistent increase in  as a function of dose, especially during the absorption phase. At 

relatively long times, absorption is no longer significant and dose-dependence is seen only at 

overdose conditions. Importantly, these results indicate that predictions of hepatotoxicity risk 

based on pharmacokinetic parameters derived under therapeutic dosing conditions can be 

misleading and may grossly underestimate the relative liver-to-plasma concentration ratio of 

APAP, especially at early time points. 

4.13.2    Dose estimation studies 

4.13.2.1 Optimal sampling time 

The first dose estimation study concentrated on quantifying the effect of sampling time 

and choice of analytes on the accuracy of the APAP dose estimation. Figure 4.3.7 depicts results 

from this study and illustrates several significant findings. First, measuring both the parent 

APAP and APAP-G conjugate concentrations in a sample can significantly reduce the error for 

dose reconstruction compared to that for APAP concentration alone. One of the principal reasons 

for this is that following high, acute APAP doses, the APAP-S pathway becomes saturated and 

APAP metabolism shifts toward APAP-G production[141,148]. By including the APAP-G 

conjugate in the measurement, the total amount of the APAP dose accounted for increases from 

7% (APAP alone) to 77% (APAP and APAP-G). Second, for the purposes of dose estimation, 

blood should be sampled at about four-and-a-half hours (APAP only) or five hours (APAP & 

APAP-G), which is somewhat later than that specified in the standard overdose assessment 

protocol. Third, if a second blood sample is taken after the initial sample at four hours, error is 

reduced, but this error does not depend on when the second measurement occurs. In addition, as 

in the single-sample case, measuring both APAP and APAP-G substantially decreases the error 
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in the reconstructed dose relative to that when only parent APAP is measured. Finally, 

knowledge of APAP-S concentration does not help inform dose reconstruction for overdose 

cases because, as noted earlier, the APAP-S metabolism pathway becomes saturated at large 

APAP doses, reducing the sensitivity of APAP-S concentration to administered dose. 

4.13.2.2 Determining the administered dose 

The second dose estimation study focused on dose estimation using data from both a 

well-controlled clinical environment and an emergency setting. As seen in Figure 4.3.8, the dose 

reconstruction method accurately predicted the administered APAP dose for the test and training 

set data from the clinical studies. However, for the data acquired in the emergency setting, the 

agreement between model predictions and self-reported dose range was not as consistent and was 

much poorer in several cases. This inconsistency in these instances is likely attributable to 

uncertainty in the patient’s self-reported dose and the difficulty in establishing a reliable estimate 

of the time of APAP ingestion. In some instances, such a discrepancy could indicate a case 

where the patient intentionally reported an inaccurate dose or dosing time. 

4.13.2.3 Implications for acetaminophen overdose treatment 

As noted earlier, knowledge of the ingested APAP dose can have significant implications 

for managing a patient following an overdose. In this study, we demonstrated that an APAP dose 

can be estimated using the computational framework and a single serum APAP measurement. 

We also found that incorporating knowledge of the APAP-G concentration in that same blood 

sample would reduce the error in that prediction. 

Current assessment and treatment plans for APAP overdose cases generally rely on a 

generic methodology involving the use of a clinical nomogram. By using the computational 

framework developed in this study, serum sample data, and the individual patient’s 
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anthropometric and physiological information, it would be possible to quickly generate 

personalized serum and liver pharmacokinetic profiles and a dose estimate that should prove 

useful in developing an individualized overdose treatment and follow-up plan.  

Finally, the PBPK model from this study is expected to provide a more accurate 

description of internal concentrations in the liver compared to previous models derived using 

therapeutic dosing data [162,163,194]. This information is essential in estimating further 

predictors of toxicity, such as levels of NAPQI and rates of glutathione depletion in the liver. 

Thus, if properly integrated, the present model has the potential to enhance the predictive 

capability of existing pharmacodynamic models used to predict and assess APAP toxicity 

[163,165,166,194]. 

It is worth noting that although the focus of this work has been on APAP overdoses, we 

expect that the general methodology and framework could be applied to overdoses for a broad 

range of drugs and toxicants, provided that relevant biomarkers of exposure can be measured and 

an appropriate PBPK model developed and evaluated. 
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CHAPTER 5 
 

DEVELOPMENT OF ENVIRONMENTAL PUBLIC HEALTH INDICATORS FOR 
 

MONITORING CHLORPYRIFOS EXPOSURE 
 
 
 

5.1 INTRODUCTION
 

Organophosphorus (OP) insecticides are among the most widely used synthetic chemicals 

used to control agriculture and domestic insect pests. About 70% of the insecticides in current 

use in the United States are OP insecticides, which amounts to a total of about 33 million 

kilograms of these chemicals applied each year [91]. OP insecticides phosphorylate numerous 

enzymes including a large number B-esterases whose primary function is to hydrolyze choline-

based esters such as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) [226]. 

These esterases are present throughout the body, with high abundances in the plasma, hematocrit, 

and brain. The primary mechanism of action of OP insecticide-induced toxicity is the inhibition 

of AChE by active oxon metabolites, resulting in the accumulation of acetylcholine 

neurotransmitter within the cholinergic synapses [227]. This accumulation of acetylcholine 

results in cholinergic toxicity due to continuous stimulation of cholinergic receptors throughout 

the central and peripheral nervous system. Symptoms of acute exposure to organophosphates or 

similar cholinesterase-inhibiting compounds may include headache, dizziness, numbness, tremor, 

nausea, sweating, blurred vision, respiratory depression, and slow heartbeat [228,229]. Very high 

doses may result in unconsciousness, incontinence, and convulsions or fatality [229]. 

Currently, the most sensitive effect observed in both animal and human studies from 

exposure to a variety of OP insecticides is the inhibition of cholinesterases [93,230,231]. With 
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cholinergic biochemical changes as the primary endpoint of toxicity, point of departure (PoD) 

risk assessments have been conducted to determine benchmark doses corresponding to a given 

percentage of cholinesterase inhibition. For their most recent update, the 2006 OP insecticide 

cumulative risk assessment, The United States Environmental Protection Agency (USEPA) 

elected to use 10% AChE inhibition in the brain (BMD10AChE) as the PoD response level, stating 

that “The 10% response level is health protective in that no functional or behavioral effects have 

been noted below this level in adult of juvenile animals” [92]. In addition to the formal 10% 

brain inhibition guideline set by USEPA, 20% red blood cell (RBC) AChE inhibition has also be 

considered as a reasonable effect level for protection against OP insecticide toxicity [93]. 

However, this same study concluded that RBC AChE inhibition is inherently variable, especially 

in larger doses, which requires a higher cutoff threshold for percent inhibition [93].  

The conventional method for determining PoD benchmark doses involves developing the 

cholinesterase inhibition dose-response curve following OP exposure in rats. Specifically, using 

an appropriate pharmacodynamic relationship between known external dose and resulting 

cholinesterase inhibition, a benchmark dose, usually oral mg/kg/day, is estimated based on the 

designated biomarker of effect level, e.g., 10% AChE inhibition in the brain. While these 

estimates are extrapolated to humans to derive acceptable exposure thresholds, this PoD method 

ultimately relies on a benchmark doses corresponding to the dose-response in rodents. 

Though 10% inhibition of brain AChE, a surrogate for cholinergic toxicity, serves as the 

current endpoint for protection against adverse health effects, there is mounting evidence that 

there may exist more sensitive adverse health endpoints. Multiple, meta-analyses concluded that 

low-dose, chronic exposure to OP insecticides in occupational settings adversely affects 

neurobehavioral performance in the vast majority of human subjects exposed [94,232]. In these 



115 
 

studies, neuropsychological testing uncovered impairments to a variety of neurobehavioral 

functions, such as memory (visual, working, and auditory), perception, and information 

processing [96,233–236]. Furthermore, these performance deficits occurred at OP insecticide 

exposure levels that did not produce overt signs of cholinergic toxicity, and biomonitoring 

indicated that cohort exposure fell below the BMD10AChE. While these studies have developed a 

weight of evidence for cognitive deficits associated with long-term exposure to OP insecticides, 

there is significant uncertainty in the dose, frequency, and duration of exposure that give rise to 

the observed deficits [94]. This lack of exposure characterization has prohibited the creation of a 

source-to-outcome model that would link OP exposure to observed changes in cognition, 

ultimately allowing the development of a BMD based on this potentially more sensitive 

endpoint. 

Despite a lack of detailed dosimetry data in humans, several studies have been conducted 

in the rat to investigate neurobehavioral dose-responses following known low-dose, chronic 

exposure to OP insecticides. These studies have employed a variety of neurobehavioral 

assessments during the course of the OP exposure, including the Morris water maze, which 

utilizes the delay-to-platform measurement to assess spatial memory deficits [97,100,237–241], 

the 5-choice serial reaction time test (5C-SRTT) to determine sustained attention deficits 

[98,99,242], and repeated acquisition tasks for assessing the ability to learn and maintain new 

information [243]. In all of these studies, dose-dependent neurobehavioral deficits were observed 

during or following low-dose, chronic exposure to OPs, with the majority of doses administered 

at levels below the PoD threshold for 10% AChE inhibition in the brain; moreover, in none of 

these cases were overt signs of cholinergic toxicity observed. The results from these studies 
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suggest that changes in cognition related to memory, attention, and learning, may serve as a more 

sensitive adverse health effect endpoint than that based on AChE inhibition. 

To quantify the implications of this hypothesis and to better understand how a health-

based endpoint can be used to estimate a benchmark dose, a methodology was developed, and 

computational framework implemented, that integrated a validated PBPK model, a new 

pharmacodynamic dose response model, and both pharmacokinetic and pharmacodynamic data 

in rats and humans. As illustrated in Figure 5.1, the workflow behind this framework is in 

contrast to the current PoD benchmark dose modeling procedures, which utilizes animal studies 

to make benchmark dose predictions based on a biochemical effect rather than an observable 

health outcome. In addition to the benchmark dose estimate, outputs from the analysis included 

the specification of threshold environmental public health indicators and benchmark external 

exposure conditions.  
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FIGURE 5.1. Overview of the procedure used to develop dose-response 
relationship for cognitive. The top row shows the current methodology for 
determining point-of-departure estimates of AChE inhibition while the bottom 
row illustrates the proposed methodology for using internal dose metrics to 
predict cognitive health endpoints. 

 

5.2 MATERIALS AND METHODS 

As shown in Figure 5.2, there were four fundamental analysis steps used in achieving the 

above outputs. In Step 1, dosing parameters corresponding to a large exposure space were used 

as input to a PBPK model for CPF. The term exposure space means exposures resulting from 
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variations in dose magnitude, duration, and frequency, as well as route of exposure, that could 

occur over a broad range of low-dose chronic exposure scenarios. This large series of model 

simulations produced a database of pharmacokinetic and pharmacodynamic results for each 

exposure condition. These results included measures such as CPF concentrations in the brain and 

plasma and various biomarkers of exposure, such as percent inhibition of RBC AChE and 

plasma BuChE. The PBPK/PD model used in this analysis was that developed by Poet and 

coworkers [48] and has been extensively verified and tested using both human and rat data over a 

broad dosing range. In Step 2, results from this exposure space database (ESD) corresponding to 

dosing conditions reported in a neurobehavioral study in rats [100] were used to develop a dose 

response model relating peak CPF concentrations in the brain to cognitive deficits in rats. In Step 

3, data from the ESD were input to the dose response model to create a mathematical correlation 

between measurable biomarkers of exposure and cognitive effects. These biomarkers could serve 

as environmental public health indicators [244–246] (EPHIs) to relate readily measurable 

chemical species to the health status of a population with respect to CPF exposure. Finally, in 

Step 4 the exposure space was subdivided into risk categories based on the predicted resulting 

level of cognitive deficit.  

The following sections give a more extensive description of each stage of the analysis. 

However, a more comprehensive description of model development is provided in the appendix 

of this chapter (§5.5). 
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FIGURE 5.2. Methodology for determining EPHI and Exposure Space Thresholds. 
Rounded rectangles represent data measurable through biomonitoring or 
neurobehavioral studies while square rectangle represent values predicted from 
the proposed methodology. 

 

5.2.1 Exposure space sampling 

Four independent variables defined the exposure space: route of exposure, dose amount 

(D), exposure frequency (Ĳ), duration of exposure (Δ). Exposure frequency represents the hours 
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between an exposure event, while the duration of exposure represents the amount of time over 

which the exposure event occurred. With the exception of the route of exposure, uniform 

parameter distributions were used for the parameters (Table 5.1), which were sampled using a 

Monte-Carlo (MC) algorithm and then input to the PBPK/PD model for a total of 10,000 sample 

draws. One month of exposure was simulated for each MC simulation with the final simulated 

day representing the steady-state window over which PK/PD endpoints were calculated.  

TABLE 5.1. Sampled exposure space parameters. D is the administered dose, τ 
represents the time between dosing events, and Δ represents the duration of 
exposure. 

Route of Exposure D (units) τ (hrs) Δ (hrs) 
Oral 1x10-5 – 10 (mg/kg) 4 – 24 0.001 – Ĳ 

Dermal 1x10-4 – 100 (mg/kg) 4 – 24 0.1 – Ĳ 

Inhalation 1x10-5 – 10 (mg/m3) 4 – 24 0.05 – Ĳ 

 

5.2.2 Cognitive health dose-response development 

Though the exact source of the observed neurobehavioral deficits is currently under 

investigation, a consensus of the literature points to OP-induced changes in cognitive pathways 

resulting from localized oxidative stress and inflammation in the brain [229,232,247–250]. 

Because of this, peak CPF concentrations in the rat brain served as the internal-dose metric. 

Using this metric, a cognitive dose-response relationship was developed through an Emax 

model  [44,56] to describe the relationship between these predicted peak CPF concentrations, CB, 

and the observed fractional cognitive deficit, E: 
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       (5.1) 

Here, the maximum effect level represents a 100% deficit in cognitive ability. Here, Ȗ and 

E50 represent the Hill coefficient and peak CPF concentration to produce half of the effect, 

respectively. Parameters in this dose response model were estimated using data obtained using 
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the Morris water maze latency to platform tests [100], in which a delay in platform discovery 

relative to control indicates a cognitive deficit in spatial learning [251,252].  

While additional forms for the above relationship were tested, as specified by benchmark 

dose methods outlined by the U.S. Environmental Protection Agency [253], the current 

formulation of the Emax model was deemed most appropriate due to the goodness of fit and 

relative model simplicity (two parameters). In addition, as a direct effect model, the current 

formulation best exemplified the currently hypothesized biological mechanism for OP 

insecticide-induced changes in neurobehavioral deficits. 

Once the parameters for Eq. (5.1) were computed, the peak CPF concentration in the 

brain giving rise to a 15% cognitive deficit in spatial memory performance served as the PoD 

benchmark dose or BMD15CD. The 15% threshold was chosen as it represented the smallest 

statistically significant departure in cognitive deficit from control. The lower limit benchmark 

dose (BMDL15CD) was also computed using the lower 95% confidence interval from the peak 

CPF brain concentration. 

Using the above dose-response model and results from the ESD, two outputs relevant to 

CPF biomonitoring were developed. The first involved predictions for the cognitive health 

endpoint using measurable biomarkers of exposure. As noted earlier, such biomarkers could be 

used as EPHIs in tracking the health status of a target population. In this study, three EPHIs were 

characterized for humans (peak CPF concentrations in the plasma, minimum red blood cell 

AChE inhibition, and minimum plasma BuChE inhibition), and one was analyzed for rats (peak 

CPF plasma concentration). Using the dose-response equation above, a predicted cognitive 

deficit was be determined from the peak brain CPF concentration predicted from the biomarkers 
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of effect. This approach led to the derivation of analytical relationships to predict the cognitive 

deficit from the specific EPHI.  

The second output relevant for biomonitoring was a characterization of the external 

exposure conditions based on the resulting predicted peak CPF concentration and 

BMD15CD/BMDL15CD. Exposures giving rise to a predicted peak brain concentration below the 

BMD15CD were deemed safe while exposures resulting in peak brain CPF concentrations above 

the BMDL15CD were characterized as hazardous. In addition, temporal parameters such as dosing 

frequency and fraction of day exposed for a chronic dose were utilized in deriving this 

benchmark exposure assessment. 

Further details related to the governing equations and model development can be found in 

the appendix. 

5.2.3 Software and computing platform 

The CPF PBPK/PD model simulations and Monte-Carlo sampling were conducted using 

MCSim (v.5.6) [77]. Parameter estimation of the Emax model was performed using lsqfit (v.7.1) 

[254]. Determining the model structure for correlating biomarkers of exposure to peak CPF 

concentrations in the brain was carried out in Eureqa [255]. 

5.3 RESULTS 

5.3.1 Internal-dose prediction from known exposure 

Using the methodology described in §5.2.1, peak CPF concentrations in the brain were 

estimated (Table 5.2) and were subsequently used in the determination of the dose-response 

model with reported cognitive deficit as the endpoint. 
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TABLE 5.2. Predicted peak brain CPF concentrations 

Dose (mg/kg) Peak brain CPF (μM) 
0 0 
1 9.13x10-4 
5 4.62x10-3 
10 1.02x10-2 

 

5.3.2 Dose-response modeling 

5.3.2.1 Dose-response curve 

Using the results in Table 5.2, a non-linear least squares approach was utilized to 

determine the unknown parameters in Eq. (5.1), resulting in mean (CV) values of EC50= 0.035 

(0.47) and Ȗ=0.31 (0.18).  Using these parameters, the fit of data to the model equation, and 

resulting uncertainty envelope, is shown in Figure 5.3.  

 

 

FIGURE 5.3. Dose-response curve for spatial memory fractional deficit. Solid and 
dashed lines represent the mean and 95% prediction intervals respectively. Circles 
represent reported fractional cognitive deficit [100]. Peak CPF concentrations for 
these data are the values predicted from the PBPK/PD model based on the 
reported exposure. 
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5.3.2.2 Benchmark dose calculation 

Using the calibrated Emax model, benchmark internal doses were determined for a 15% 

deficit in spatial memory function. Table 5.3 lists these BMD15CD and BMDL15CD for a spatial 

memory deficit using peak CPF concentrations in the brain as the internal dose metric. Also in 

this table are the current BMD/BMDL for 10% brain AChE inhibition and 20% RBC AChE 

Inhibition [93]. 

TABLE 5.3. Comparison of benchmark doses for various endpoints. 

Endpoint 
Peak Brain CPF Concentration 
BMD (μM) BMDL (μM) 

15% Cognitive Deficit 1.23x10-4 8.82 x10-6 
20% RBC AChE Inhibition 1.91 x10-4 1.73 x10-4 
10% Brain AChE Inhibition 6.11 x10-4 4.83 x10-4 

 

5.3.3 Biomarkers of exposure as EPHIs 

Environmental public health indicators were derived by correlating measurable 

biomarkers of exposure to predicted cognitive deficits. This correlation took the form of a 

polynomial describing fractional cognitive deficit as a function of peak CPF plasma 

concentrations in the rat. Coefficients [mean (CV] of this correlation were as follows α1 = 0.55 

(0.β4), α2 = 0.087 (0.γ4), α3 = 4.12E-γ (0.45), α4 = 5.91E-6 (0.36). A full description of the 

polynomial can be found in the appendix of this chapter (§5.5). The resulting curves are 

presented in Figure 5.4 where mean and 95% prediction intervals are presented, along with 

reported spatial memory deficits and measured peak CPF plasma concentrations from an in vivo 

experiment [97].  

 



125 
 

 

FIGURE 5.4. Predictions of cognitive deficit for the rat. Dashed lines represent  
95% prediction intervals, solid circles (●) represent data from Terry et al. [97]. 
Horizontal and vertical dashed lines demonstrate the threshold biomarker of 
exposure for a 15% cognitive deficit. 

This same correlation method was then applied to humans using three different 

biomarkers of exposure. Parameter values for the governing correlations in this case are 

presented in Table 5.4 and resulting predictions based on levels of biomarkers of exposure are 

presented in Figure 5.5. Using each BMi curve developed in Figure 5.5, threshold biomarker of 

exposure levels were determined using the upper 95% confidence interval ensuring that health 

indicators provided the maximum protection for a given population. After transforming each BM-

AChE and BMBuChE back to percent enzyme available, the following exposure thresholds were 

determined: 1.03E-4 μM for peak CPF plasma concentrations, 99% available RBC AChE, and 

90% available plasma BuChE.  
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TABLE 5.4. Model parameter values for each biomarker of exposure. Values for 
each α are presented as mean (CV). 

Biomarker α1 α2 α3 α4 
BMCPF 0.68 (0.28) 0.12 (0.32) 5.8x10-3 (0.4) -4.81x10-6 (0.33) 
BMAChE 0.3 (0.26) 0.031 (0.15) 4.41x10-4 (0.57) 1.52 x10-6 (0.32) 
BMBuChE 0.14 (0.31) 0.022 (0.15) 2.61 x10-4  (0.41) 1.01 x10-5 (0.35) 

 

Results from Farahat et al. [235] were utilized to test the prediction of cognitive deficits 

from measurable biomarkers of exposure. This study involved long-term occupational exposure 

in humans and measured a multitude of neurobehavioral performance deficits. One of these tests 

was the Benton visual retention test (BVRT) which is a human-equivalent test for assessing 

spatial memory deficits [256]. While this neurophysiological test is not identical to the Morris 

water maze test in rats, it tests the same parts of the brain, specifically hippocampal sub-regions, 

which are responsible for processing information related to spatial memory [257].  In this study, 

the biomarker of exposure used to assess CPF exposure was red blood cell AChE inhibiton and 

investigators reported an approximate 17% deficit in the BVRT for exposed groups compared to 

control. Corresponding RBC AChE was determined to be about 80% of activity compared to 

control. Using the measured RBC AChE activity as the biomarker of exposure, reported 

cognitive deficits are compared to predictions in Figure 5.5. Because 80% activity of RBC AChE 

was reported, the biomarker of exposure used for cognitive prediction was 0.25 (see §5.5). 
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FIGURE 5.5. Predictions of cognitive deficit for humans using peak CPF 
concentrations in the plasma, minimum red blood cell AChE inhibition, and 
minimum plasma BuChE inhibition as the biomarkers of exposure. Dahsed lines 
represent 95% prediction intervals and the solid circle (●) represents measured 
data from Farahat et al. [235]. 
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5.3.4 Exposure space 

Using the effective internal dose metric calculated from the dose-response modeling in 

the rat, the exposure space resulting in concentrations below the BMD15CD and BMDL15CD was 

determined. Figure 5.6 depicts this space for oral, dermal, and inhalation routes of exposure for 

the rat where “total absorbed dose” represents the total amount of CPF administered over the 

duration of exposure.  

 

 

FIGURE 5.6. External exposure space for rats. Red, yellow, and green shading 
indicate exposure scenarios that fall above the BMD15CD, between the BMD15CD 
and BMDL15CD, and below the BMDL15CD respectively. 

 



129 
 

From these results, the rat-equivalent oral exposure resulting in peak brain CPF 

concentrations equal to the BMD15CD and BMDL15CD was determined and fit using a second 

order polynomial (see §5.5), where relevant model parameters for the rat are presented in Table 

5.5.  

As an example of the application of this methodology, for a once daily, oral gavage 

exposure, 0.083   (five-minute exposure) and 24  (once daily exposure). Therefore, the 

fraction of day exposed for this exposure scenario is 0.0035FOD  hrs and the threshold 

repeated oral exposure based on the BMD15CD is 0.148 mg/kg/day with a BMDL15CD of 0.0024 

mg/kg/day.  

 

TABLE 5.5. External exposure space parameters for model fit for the simulated 
exposure space 

Derived BMD 
Route of 
Exposure 

Species ȕ1 ȕ2 ȕ3 

BMD15CD 

Oral 
Rat 0.148 0.253 0.227 

Human 0.00848 0.0106 0.00787 

Inhalation 
Rat 0.779 6.052 -0.423 

Human 1.334 3.386 -2.151 

Dermal 
Rat 68.564 372.216 -47.535 

Human 0.288 1.619 -0.249 

BMDL15CD 

Oral 
Rat 0.00241 0.0148 0.0262 

Human 5.807x10-4 3.325x10-5 1.105x10-3 

Inhalation 
Rat 0.022 0.334 -0.232 

Human 0.0694 0.133 -0.059 

Dermal 
Rat 4.299 18.99 2.718 

Human 0.069 0.133 -0.059 
 

The analogous analysis was then conducted using results for humans, and in this case, 

exposures resulting in the BMD15CD and BMDL15CD are displayed in Figure 5.7.  
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FIGURE 5.7. External exposure space for humans. Red, yellow, and green shading 
indicate exposure scenarios that fall above the BMD15CD, between the BMD15CD 
and BMDL15CD and below the BMDL15CD respectively. 

 

As with the analysis for the rodent data, the human equivalent oral exposure resulting in 

peak brain CPF concentrations equal to the BMD15CD and BMDL15CD was determined and fit 

using a second order polynomial with respect to the fraction of day exposed (see §5.5) and the 

best-fit model parameters presented in Table 5.5. In this case of human exposure, assuming a 

once daily, oral exposure, 0.0035FOD  , the benchmark exposure for this scenario is 0.0085 

mg/kg/day. 
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5.4 DISCUSSION 

5.4.1 Methodology 

The current study provided a method for not only determining a point-of-departure for 

cognitive deficits through benchmark dose modeling, but also utilization of measurable 

biomarkers of exposure to develop public health indicators for monitoring this cognitive health 

outcome. The use of a neurobehavioral endpoint offer several advantages to that based on 

cholinesterase inhibition. First, the neurobehavioral endpoint represents an overt change in health 

of the individual, whereas the inhibition of cholinesterase merely represents a biochemical 

change that may or may not represent an adverse health effect. Second, a variety of 

neurobehavioral endpoints can be used, depending on the application and availability of data. For 

example, coordination and motor deficits could be the metric of interest instead of spatial 

memory as was illustrated here. 

Utilizing the dose-response for a given cognitive deficit allowed for the construction of 

environmental public health indicators from measurable biomarkers of exposure, which serve as 

a tool for determining a source-to-outcome continuum for monitoring health outcomes from 

exposure to CPF to neurobehavioral changes for a given cohort. In specifying a threshold for the 

given cognitive deficit, e.g. 15% deficit in spatial memory, biomonitoring data from a population 

can be used to determine in the given cohort is protected. 

Finally, external exposure benchmarks were derived based on the internal dose BMD15CD 

and BMDL15CD. Specifically, the predicted BMD15CD for repeated oral exposure was determined 

to be 0.0085 mg/kg/day: similar in magnitude to the exposure estimated in the farm family 

exposure study [258], which estimated a CPF dose of 0.0021 mg/kg/day for applicators. Thus, 
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the new BMDs, which are significantly lower than those recommended by the USEPA, are 

highly relevant, and would be more protective, under many realistic exposure conditions.  

5.4.2 Novel features and advantages of the present methodology 

By utilizing a well-validated PBPK/PD model coupled with appropriate 

pharmacodynamic data, exposures resulting in neurobehavioral changes were linked using 

internal concentrations at the proposed site of action, rather than using external exposure metrics. 

This is meaningful because the amount of organophosphate that reaches the brain will differ 

based on the route, frequency, and duration of exposure. In addition, the methodology developed 

for determining EPHIs is not specific to the endpoint illustrated here; it is easily applied to a 

variety of studies where a dose-response neurobehavioral change is observed. For example, 

although not detailed in this work, this method was applied to the CPF dose-response data 

reported in Cohn et al. [243].  

In addition, the current methodology allows for the determination of a meaningful 

exposure space to quantify how exposure to CPF compares to the target endpoint. Many of the 

current point-of-departure benchmark doses are determined for a single route of exposure and 

assume the same dosing frequencies, i.e. an oral dose administered repeatedly once per day. 

Figure 5.6 and Figure 5.7 illustrate how exposure parameters are collapsed into a two-

dimensional space for each route of exposure. Therefore, exposure thresholds for oral, dermal, 

and inhalation routes of exposure can be determined based on the fraction of day exposed. 

5.4.3 Limitations and deficiencies of the present EPHI approach 

The current method for developing EPHIs and determining a safe exposure space suffers 

from several limitations. First, behavioral endpoints in the rats, such as spatial memory deficits 

from the Morris water maze and repeated acquisition results, are not adequately correlated to 
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cognitive deficits in humans. Results from the Morris water maze and the corresponding changes 

due to exposure are indicative of a hippocampal synaptic plasticity and receptor function [252]. 

Though the Benton visual retention test in humans is also correlated strongly with changes in the 

denate gyrus hippocampal subregion [257], results from the Morris water maze in the rat have 

not been correlated to those from this related test. Second, the mechanism of action of CPF on 

cognitive deficits is unknown. Hypotheses from studies reviewed in §5.1 suggest a non-

cholinergic affinity for the OP insecticide in various parts of the brain. Differences in OP-

induced effects between cognitive tests demonstrate the τP’s affinity to different regions of the 

brain. However, further in vivo and in vitro tests will further elucidate this mechanism of action 

and be used to update the current dose-response model. 

5.4.4 Future directions 

Using the present method detailed herein as a foundation, testing of additional sensitive 

neurobehavioral endpoints can be undertaken. Because CPF concentrations in the brain will have 

localized effects in different regions, the degree of damage to one cognitive pathway may be 

different from that to a different pathway. Therefore, establishing EPHI thresholds for different 

types of learning and memory will allow for a better protection of exposed populations. In 

addition, mechanistically-based pharmacodynamic models for CPF induced receptor inhibition 

will enable pathway-specific predictions to be made.  

In order to characterize CPF effect on additional cognitive pathways, animal studies must 

be completed using explicit exposure conditions with doses much lower than those current used 

to elicit cholinergic responses. In addition, the route of exposure chosen for these studies must be 

incorporated into the PBPK/PD model for the determination of internal dose metrics, such as 

peak CPF concentrations in the brain. Using the PBPK/PD model, internal pharmacokinetic 
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endpoints, such as peak CPF brain concentrations, can be determined simultaneously with 

predicted biomarkers of exposure, and the dose-response curve for the desired cognitive deficit 

can be determined. Finally, the measurement of relevant biomarkers of exposure and 

corresponding neuropsychological endpoints in the cohort of interest is critical. This work 

demonstrates that by measuring peak CPF concentrations in the plasma, minimum RBC AChE 

inhibition, or minimum plasma BuChE inhibition, predictions related to relevant cognitive 

deficits can be made under a variety of exposure conditions.  

5.5 APPENDIX: MODEL DEVELOPMENT  

5.5.1 Environmental public health indicators 

Using the dose-response curve derived for a spatial memory deficit, possible biomarkers 

of exposure from the sampled exposure space were correlated to peak CPF concentrations in the 

brain. This correlation allowed for the determination of the cognitive deficit metric as a function 

of a measurable biomarker, as opposed to unmeasurable brain concentrations. Predicted peak 

CPF brain concentrations for each sampled exposure scenario were inputs in predicting a 

corresponding cognitive deficit using Eq. (5.1). Biomarkers of exposure in each case were fit to 

the following equation for the selected cognitive endpoint, CM: 

      2 4

1 2 3 4log log logi i iCM BM BM BM                  , (5.2) 

where BMi represents the measured biomarker of exposure, and αi are the parameters to be fit. 

Biomarkers of exposure can be both measurable concentrations and percent enzyme inhibitions. 

If  red blood cell AChE or plasma BuChE served as the biomarker of exposure, BMi was 

transformed according to:  100iBM     where ψ is the percent of enzyme available for 

reaction; however, if peak plasma CPF was chosen, BMi was simply the measured CPF 

concentration. In terms of nomenclature, predicted biomarkers of exposure were denoted by 



135 
 

BMCPF for peak plasma CPF concentrations, BMAChE for transformed RBC AChE inhibition, and 

BMBuChE for transformed plasma BuChE inhibition. The functional form for Eq. (5.2) was chosen 

as it adequately predicted the fractional cognitive deficit using all three biomarkers of exposure 

and minimal degrees of freedom. Using Eq. (5.2), EPHI thresholds were determined for each 

biomarker of exposure based on the BMD15CD. With the parameterization of Eq. (5.2), cognitive 

deficit predictions were made in both the rat and human using studies where both reported 

biomarkers of exposure and neurobehavioral deficits were reported [97,235]. In these studies, the 

route of exposure was either unknown or utilized a route of exposure not parametrized in the 

original PBPK/PD model. 

5.5.2 Benchmark exposure 

5.5.2.1 Exposure space mapping 

To calculate the rat-equivalent and human-equivalent external exposure threshold dosing 

scenarios, the exposure space from the initial Monte Carlo draw on the PBPK/PD model was 

used to map external exposure to the CPF brain concentrations for the two species. This mapping 

allowed for a given external dosing scenario to be compared directly to the BMD15 and BMDL15 

derived earlier. The independent exposure parameters (duration, periodicity, and dose) were 

transformed to allow for a two-dimensional representation of Total Absorbed Dose (TAD) vs. 

Fraction of Day (FOD) exposed, with FOD defined as 

 FOD 
 , (5.3) 

where Δ is the duration of exposure, Ĳ is the time between exposure events. Therefore, FOD 

ranged from 0 to 1 and represented the fraction of the day over which the total absorbed dose 

was administered. TAD denoted the cummulative amount of CPF administered to the organism 

over the duration period. The TDA metric (mg/kg) is characteristic of the total amount of external 
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exposure applied to the organism over the course of a single day. Based on these two exposure 

parameters, predicted peak CPF brain concentrations from the PBPK/PD model were used to 

classify the total dose and fraction of day exposed. 

5.5.2.2 Benchmark CPF exposure 

Peak CPF concentrations were determined for these two independent exposure 

parameters. Exposure cutoffs, based on the BMD15 and BMDL15, were determined as a function 

of FOD using a second order polynomial: 

    2

1 2 3rTAD FOD FOD       (5.4) 

where TADr is the calculated total absorbed dose for a given route of exposure, FOD is the 

fraction of day exposed, and ȕi are the parameters for fitting. Therefore, for a given FOD and 

route of exposure, the total external dose can be determined based on either the BMD15 or 

BMDL15. A second order polynomial was chosen for the interpolation as it was the polynomial 

with the fewest degrees of freedom allowing for the entire space of FOD to be predicted.
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CHAPTER 6 
 

MODELING TOXICODYNAMIC EFFECTS OF TRICHLOROETHYLENE ON LIVER IN 
 

THE MOUSE MODEL OF AUTOIMMUNE HEPATITIS 
 
 
 

6.1 INTRODUCTION
 

Trichloroethylene (TCE) is a chlorinated hydrocarbon that has been used as a degreasing 

agent since the 1920s. Because of inappropriate disposal over the years TCE is now a common 

pollutant at Superfund toxic waste sites and at many industry and government facilities. It is 

found in soil and surface water as a result of direct discharges and in groundwater due to 

leaching from disposal operations. As noted by a recent National Research Council report, 

evidence on human health hazards from TCE exposure, either occupational or environmental, 

has strengthened in recent years [259]. One of the predominant non-cancer outcomes associated 

with TCE exposure in humans is immunotoxicity, most notably the development of 

hypersensitivity responses including autoimmune scleroderma and autoimmune liver diseases 

[101–104,260–264]. TCE is still widely used in Asia, where it has become a serious work-related 

health concern due to the induction of dermal and systemic hypersensitivity diseases often 

accompanied by non-viral, immune-mediated hepatitis [105]. 

Using a mouse model, Gilbert and coworkers in this study [42], along with others, have 

found that long-term exposure to TCE in drinking water at concentrations lower than sanctioned 

occupational exposure levels generated a T cell-mediated liver disease commensurate with 

human idiopathic autoimmune hepatitis (AIH) [20,265,266]. This TCE-induced liver 

inflammation was not usually accompanied by markers of acute liver injury such as increased 

                                                 
This work was performed jointly with Dr. Kathleen Gilbert’s lab in the Department of Microbiology and 
Immunology at the University of Arkansas for Medical Sciences where the in vivo mouse experiments were 
undertaken. The full list of co-authors is available at [37]. 
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blood levels of alanine transaminase or liver fibrosis, but was associated with the development of 

antibodies specific for liver microsomal proteins similar to those in patients with type 2 AIH.  

The development of toxicant-induced immune pathology such as the autoimmune 

hepatitis caused by TCE exposure is almost certainly a complex multifactorial process. 

Developing conceptual models can be a way to delineate and quantify the contribution of 

different toxicant-induced alterations to the actual pathology. As a first step in this direction a 

model was developed here to describe a specific part of the process, namely IL-6-mediated liver 

events. IL-6 is one of the most important regulators of hepatic inflammation.  The pathogenesis 

of AIH requires circumvention of the well-known propensity of the liver to induce T cell 

tolerance [267]. Pre-existing inflammation in the liver may subvert its tolerogenicity and help 

sustain an immune response by entering T cells [268]. The ability of toxicant exposure to 

generate such inflammation depends on opposing forces of tissue injury and tissue repair. 

Distress signals triggered during initiation of toxicant-induced liver injury (e.g. lipid 

peroxidation, reactive intermediate formation) can promote inflammation. However, they also 

stimulate protective (anti-apoptotic) and regenerative (cell division) mechanisms in the liver. 

One of the mechanisms that determine whether toxicant exposure ultimately leads to tissue repair 

or to injury-induced inflammation is regulated by IL-6. 

Treatments to prevent or reverse immunological liver injury in mouse models have been 

associated with an increase in liver expression of IL-6 [269]. Disruption of IL-6, or its receptors 

IL-6R or Gp130,  has been shown to promote liver inflammation and/or mortality following 

partial hepatectomy [270], ethanol-induced hepatic steatosis [271], carbon tetrachloride-induced 

liver necrosis [272] and obesity-associated insulin resistance [273]. Thus, IL-6 appears to prevent 

immunological liver injury.  In addition to its documented ability to promote liver regeneration 
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and/or protection in the face of damage or trauma IL-6 also appears to be required for normal 

liver maintenance. Liver weight and total DNA and protein contents were decreased 26-28% in 

older (5-10month-old) female IL-6-deficient mice as compared to age-matched wild-type 

controls [274]. This suggests that IL-6 is needed for normal hepatocyte turnover, and that over 

time a loss of this cytokine is detrimental to liver function. 

In an attempt to define why TCE-induced autoimmunity targets the liver, Gilbert and 

coworkers exposed mice to a single dose of TCE for 4, 10, 16, 22, 28, 34 or 40 weeks in the 

current study to determine time-dependent alterations in IL-6 as well as other pro-inflammatory 

mediators. This was complemented by a second study that examined the dose-dependent effects 

of TCE on these mediators at a single time point [42]. The development of autoimmune hepatitis 

in this mouse model of TCE exposure involved alterations in both the liver and the immune 

system. This multi-factorial process mimicked the complicated etiologies of human autoimmune 

diseases. 

Developing conceptual models can be a way to delineate and quantify the contribution of 

different disease-induced alterations to actual pathology. As a first step in this direction, the 

results obtained through experimental TCE exposure in mouse drinking water were used to 

develop a computational toxicodynamic model to describe the element of the TCE-induced 

disease process revealed in the in vivo experiments, namely the effect of TCE on IL-6-mediated 

liver events. Taken together, the results suggest that later-occurring TCE-induced liver damage 

was due to an early decrease in IL-6-mediated hepatoprotection rather than an increase in pro-

inflammatory events. 
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6.2 METHODS 

6.2.1 Experimental mouse treatment 

Dr. Gilbert’s lab at the University of Arkansas for Medical Sciences completed the in 

vivo mouse treatment studies. In their study, eight week-old female MRL +/+ mice were exposed 

to TCE through drinking water. In one experiment, the mice (12 mice/group) received either 0, 

0.02, 0.1, or 0.5 mg/ml TCE in their drinking water for 12 weeks. In a second experiment, the 

mice (8-9 mice/group) received 0 or 0.5 mg/ml TCE in their drinking water for 4, 10, 16, 22, 28, 

34, or 40 weeks. The mice were studied weekly and water consumption was monitored. When 

the mice were euthanized at the different time points, adherent macrophages, isolated from 

pooled peritoneal exudates from 2 to 3 mice (n = 3-4/treatment group), were incubated for 20 h 

in the presence or absence of  lipopolysaccharide (LPS) to stimulate cytokine production from 

the macrophage. Liver tissue harvested at the time of euthanasian was stained with H&E and 

examined for liver pathology. Liver and sections were examined microscopically and scored in a 

blinded manner by a veterinary pathologist for the severity of inflammation and fibrosis based on 

a four point scale (1-4), ranging from no change to severe, respectively as described in Gilbert et 

al. [20]. Finally, the macrophage culture supernatants were examined to quantitate expression of 

IL-1ȕ, IL-6, and TNF-α.  

6.2.2 Mechanistic toxicodynamic model 

The effects of IL-6 signaling on liver events in TCE-treated mice were modeled to link 

changes in TCE mediated IL-6 signaling outcomes to the observed pathology following low-dose 

chronic exposure to TCE. The objective in developing a mathematical model for chronic, low 

dose exposure to TCE was to provide a means to quantitatively describe the role of IL-6 as a 

maintenance mechanism and predict downstream effects, such as changes in pathology, due to 
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modifications of this IL-6 repair pathway. To this end, a time-dependent mathematical 

description of the health state of discrete volumes of liver (“liver units”) and the IL-6 and TCE-

dependent transition between these health states was developed. Using in vivo results reported in 

this study, this toxicodynamic model will create a link between TCE exposure and the resulting 

histopathology. While not measurable in vivo, the state and number density of individual liver 

units serve as an intermediate measure to quantify the relationship between impaired cytokine 

signaling and the resulting autoimmune hepatitis. 

6.2.2.1 Liver unit health model 

TABLE 6.1. Description of LU states 

LU State Distinguishing Characteristics 
Relevant Pathology 

Score (PS) 

Healthy (H) 
Normal liver function, homeostatic levels of IL-6 and 
IL-6r 

1 

Compromised (C) 
Intermediate state, events initiate inflammatory 
pathways which are normally countered by IL-6 
signaling. 

2 

Inflamed (I) 
Contains markers for the early stages of auto-immune 
hepatitis, including inflammation and 
lymphoplasmacytic portal infiltration  

4 

 

For the purposes of mathematical modeling, the characteristics of the liver units ( LUs) 

were as follows: the entire liver comprises LUs, each of which is of equal volume; an LU is 

relatively small in volume compared to that of the entire liver, but consists of a large enough 

number of cells to be represented as a continuum; each LU exists in one of three health states: 

healthy (H), compromised (C), and inflamed (I), and is homogeneous with respect to its 

properties and health state; and the health state of the entire liver may be estimated through a 

number-weighted average of the health states of the constituent LUs. Table 6.1 lists the 

characteristics and assumptions for each mathematical state. 
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The resulting transition between health states is described by 

 
, ,
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  (6.5) 

where the k’s represent transition rates, the subscripts DAM and REP refer to damage- and 

repair-associated phenomena, respectively, and the subscripts H-C and C-I refer to their 

respective transition pathways.  

The corresponding system of differential equations governing the time-dependent 

fraction of LUs in each state may be written as 
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  (6.6) 

Here, t is time and [H], [C], and [I] are the fractions of LUs in the healthy, compromised, and 

inflamed states, respectively. It is assumed that initially (t=0), [H]=1 and [C]=[  I]=0. 

 To complete the mathematical description of this system, four major assumptions were 

made: 

1. LUs normally exist in a state of IL-6-mediated hepatocyte turnover and protection.  

2. Events such as TCE exposure can initiate inflammatory processes and move the LUs into 

the “C” state. However, protective mechanisms mediated by IL-6 normally restore the 

LUs from the “C” to the “H” state.  The rates of repair, kREP,H-C and kREP,C-I, are dependent 

on the fraction of IL-6 produced from the macrophage and the IL-6r expressed by the 

hepatocyte. If homeostasis levels of IL-6 and IL-6r are present, these pathways operate at 

the optimal repair rates. 
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3. TCE initiates inflammatory processes (e.g. redox disequilibrium) that move the LUs from 

the “H” to “C” state. It also decreases the protective effects of IL-6-signaling that would 

normally restore the LUs to the “H” state. These dual effects of TCE allow the 

inflammatory processes to progress and to move the LUs from the “C” to the “I” state. 

4. Autoimmune hepatitis pathology does not occur without TCE, even if the IL-6 pathway is 

impaired in some other way.  

Consistent with these assumptions, the rate terms above can be further specified as follows: 

 , 1 6 , 2 6 , 3 , 4; ; ;REP H C IL REP C I IL DAM H C DAM C I TCEk k f k k f k k k k f            (6.7) 

where k1, k2, k3, and k4 are constants to be estimated using experimental data, fTCE represents the 

administered TCE dose normalized by the upper dose used in this study (0.5 mg/ml or a time-

weighted average of approximately 54 mg/kg/day), and fIL6 is the fraction of IL-6 expressed by 

the macrophage compared to control levels. To express the dependence of fIL6 on TCE dose, a 

sub-model based on a saturation mechanism was used: 

 6 1 TCE
IL

TCE

f
f

f



     (6.8) 

where   and  are constants to be derived from experimental data. 

6.2.2.2 Predicting liver pathology scores 

To compute overall liver pathology scores, the [H], [C], and [I] calculated from equations (2), 

(3), and (4) at the desired time point were used as weighting factors for the individual PS values 

corresponding to each of the model states. Mathematically, this can be expressed as 

 
, ,

[ ]s
s H C I

PS PS s


    (6.9) 

where PSs is the pathology score of a LU in states (see Table 6.1). 
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6.2.2.3 Software and modeling tools 

The system of differential equations were solved using a fourth-order Runge-Kutta 

method implemented in the Python programming language (v2.7.6) [https://www.python.org/]. 

Parameter estimation was conducted using lsqfit (v4.6.1) [https://github.com/gplepage/lsqfit], a 

software package for non-linear least-squares fitting of noisy data. 

6.3 RESULTS 

6.3.1 In vivo mouse experiments 

In this study, Gilbert and coworkers determined a multitude of in vivo results that were 

utilized for the toxicodynamic model. The following sections summarize these experimental 

findings, which were used in the development of the toxicodynamic model. 

6.3.1.1 Dose-dependent effects of TCE on peritoneal macrophage activity 

  
FIGURE 6.1. TCE inhibits macrophage IL-6 production in dose-dependent manner. 
Peritoneal macrophages were incubated with (open bars) or without LPS (shaded 
bars) following isolation from untreated control mice or from mice exposed to 
TCE at different concentrations for 12 weeks. Culture supernatants were 
examined for cytokines (mean ± SD). *Significantly different (α<0.05) compared 
to control values. 

 

Peritoneal macrophages from the mice exposed to different concentrations of TCE for 12 

weeks were examined in Dr. Gilbert’s lab for the production of macrophage-derived cytokines 
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IL-6 and IL-1Figure 6.1. Macrophage secretion of IL-1 is linked to a number of 

autoinflammatory diseases and an increase in this cytokine production following TCE exposure 

would indicate a possible mechanism for the observed AIH progression. However, secretion of 

IL-1 was unchanged by exposure to TCE. Comparatively, Figure 6.1 demonstrates that 

peritoneal macrophages collected from control mice secreted low but measurable levels of IL-6. 

Stimulation with LPS increased IL-6 production in all groups. However, both LPS-dependent 

and LPS-independent IL-6 production was suppressed in a dose-dependent manner in peritoneal 

macrophages from mice treated for 12 weeks with TCE. For example, LPS-induced IL-6 

production in mice exposed to 0.5 mg/ml TCE was 70% lower than that of controls.      

6.3.1.2 Time-dependent effects of TCE on peritoneal macrophage 

 

FIGURE 6.2. TCE inhibition IL-6 production is maintained over time. Peritoneal 
macrophages were incubated with LPS following isolation from untreated control 
mice or from mice exposed to TCE (0.5 mg/ml) for up to 40 weeks. Culture 
supernatants were examined for cytokines (mean ± SD). *Significantly different 
(α<0.05) compared to control values. 

 

In a second study designed to examine time-dependency of TCE-induced effects, mice 

were given drinking water alone or with 0.5 mg/ml TCE for 4, 10, 16, 22, 28, 34 or 40 weeks. 

Once again, TCE suppressed production of IL-6 (Figure 6.2). Also evident, but as yet 
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unexplained, was the general time-dependent decrease in IL-6 production in both treatment and 

control groups. A longitudinal evaluation of cytokine gene expression showed that the TCE-

induced decrease in IL-6 expression by peritoneal macrophages was evident by 16 weeks of 

exposure. The time-dependent expression of several other genes for macrophage-derived 

cytokines, IL-1, IL-12, IL-10, and Mmp12, were for the most part unaltered by exposure to 

TCE Thus, the primary effects of exposure to TCE on peritoneal macrophages was a decrease in 

IL-6 that was maintained for the duration of the study.  

6.3.1.3 Time-dependent effects of TCE on liver events 

Most of the protective and/or regenerative events in T cell-mediated liver injury are 

triggered by IL-6 signaling that is initiated when IL-6 binds to a complex comprised of the 

transmembrane protein gp130 and the IL-6R on hepatocytes [275]. In addition, experiments 

investigated hepatoprotection transcription factors such as EGR-1 [276] and demonstrated that 

the expression of EGR-1 in the liver was suppressed midway through the TCE exposure. In 

addition, increased expression of pro-inflammatory cytokines/chemokines such as TNF- 
osteopontin, serum amyloid A (SAA) and CXCL1, which have been implicated in the induction 

or progression of chronic liver inflammation [277–279]. Hepatic expression of these proteins 

remained unchanged throughout the exposure for TCE until the last 40-week time point in the 

TCE-exposed mice. At this last time point, hepatic expression of osteopoeitin increased 

dramatically. Using the dose-dependent and time-course results involving IL-6 secretion and 

gene expression alteration due to TCE exposure, Gilbert and coworkers determined that during 

most of the exposure, TCE appeared to negatively influence liver repair rather than directly 

promote inflammation. Only at the last time point was this reversed when several pro-
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inflammatory cytokines/chemokines increased expression while the negative effect on 

hepatoprotective genes was overturned. 

 

FIGURE 6.3. Liver pathology based on immune cell infiltration and inflammation 
was assessed in mice exposed to TCE (0.5mg/ml) for 28, 34 or40 weeks. 

 

Finally, histopathology in the form of lymphoplasmacytic portal infiltrate and lobular 

inflammation in the liver was not noted until week 28 of TCE exposure, and became more robust 

during the course of the 40-week experiment (Figure 6.3). This pathology was characteristic of 

the early stages of autoimmune hepatitis; hepatocellular necrosis was only noted in a couple of 

instances. The mice were also examined for the generation of anti-liver antibodies as another 

readout of immune-mediated liver disease. MRL+/+ mice are noted for their age-dependent 

increase in the production of autoantibodies such as anti-nuclear antibodies, even in the absence 

of toxicant exposure [280]. In accord with this predisposition, the baseline production of anti-

liver antibodies became more abundant in control mice at the 40 week time point. However, 

exposure to TCE further increased the levels and diversity of the anti-liver antibodies. Thus, the 

MRL+/+ mice treated with TCE for 40 weeks demonstrated liver inflammation and anti-liver 

autoantibody production consistent with AIH. 
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6.3.2 Toxicodynamic model for liver response to TCE exposure 

Using the results from our collators, the computational aspect of this study aimed to 

develop a model to describe the effect of TCE on IL-6-mediated liver events. In order to develop 

this model, certain required parameters were estimated based on the results described above. 

6.3.2.1 Parameter estimation 

  
FIGURE 6.4. Submodel for parameter estimation. A) An IL-6 submodel was 
developed for estimating dose-dependent reduction in the fraction of IL-6 
expressed by the macrophage. Points and error bars represent data and 
uncertainty, while solid and dashed lines are the mean and 95% confidence 
intervals from model predictions. B) Time-course pathology scores were used to 
extrapolate liver pathology based on time of TCE exposure. Points and error bars 
represent data and uncertainty, while solid and dashed lines are the mean and 95% 
confidence intervals from model predictions. 

 

In order to fit a curve that could be used to extrapolate IL-6 effects across a range of TCE 

doses, values of α and ȕ in the IL-6 submodel, Eq. (6.8), were estimated using a nonlinear least-

squares approach with the non-LPS induced IL-6. The resulting parameter values, mean 

(variance), were found to be α = 1.01 (0.01) and ȕ = 0.071 (0.003). Figure 6.4A illustrates the 

resulting fit of the experimental data to the IL-6 submodel. 

It was similarly necessary to fit a curve to extrapolate liver pathology based on time of 

TCE exposure. The rate constants, ki, defined in Eq. (6.7), were estimated based on experimental 



149 
 

time-course pathology scores to be k1 = 101.5 (98.0), k2 = 0.39 (0.18), k3 = 1.02 (0.08), and k4 = 

0.21 (0.16). The resulting fit of the data to the mathematical model is depicted in Figure 6.4B. 

The uncertainty shown in model simulations results from both the uncertainty in the parameters 

associated with the IL-6 submodel and that from in vivo pathology scores. 

6.3.2.2 Simulations of liver unit health states and the dose response 

  
 

FIGURE 6.5. Liver unit state predictions based on the model. Fraction of liver units 
in each state for the 0.1 (A) and 0.5 (B) mg/ml experimental doses. Solid lines 
represent the H state, while vertical (||) and dashed (--) lines correspond to the C 
and I states, respectively. 

 

Following parameter estimation, simulations of time-course LU health were conducted. 

Figure 6.5 illustrates results from several such studies, where the fraction of LUs in a particular 

health state are shown as a function of time at the two highest doses used in the experimental 

study. For the 0.1 mg/ml dose (Figure 6.5A), almost all of the LUs are in a healthy state. 

However, as the external TCE dose is increased to 0.5 mg/ml (Figure 6.5B), the abundance of 

healthy LUs decreases while those in the compromised/inflamed state increase in a non-linear 

manner. At doses less than 0.1 mg/ml, simulations indicated that virtually all of the LUs were in 

the healthy (H) state over time. 



150 
 

 

FIGURE 6.6. Dose response curve for current study. Predicted dose response 
curves for pathology scores (PS) 40 weeks post TCE exposure. The mean values 
and 95% confidence intervals are shown as solid and dashed lines, respectively. 
The point represents the value of the benchmark dose (BMD) corresponding to 
the benchmark response level (BMR) described in the text. 

 

One of the benefits of the mathematical model is the prediction of system variables and 

endpoints not directly measured during the course of the studies. For instance, using 40-week 

pathology scores as an endpoint, the model was used to generate a dose-response curve (Figure 

6.6). This curve can be used to relate this endpoint to any dose within the predicted range. As an 

example, for a benchmark response level (BML) corresponding to mild inflammation of 25% or 

less of the portal regions of the liver (PS=2), the benchmark dose (BMD) was estimated to be 

fTCE = 0.55, corresponding to a 0.27 mg/ml dose, or approximately 37 mg/kg/day, of continuous 

TCE exposure.  
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6.3.2.3 Examining the impact of varying relative rates of damage and repair 

  
FIGURE 6.7. Simulations illustrate the effects of relative rates of repair and damage 
on liver damage. Model predictions for varying relative levels of repair in (A) the 
H-C pathway (  1,10,100,1000H C   , 1C I   ) and (B) the C-I pathway (

100H C   ,  0.1,1,10,100C I   ). 100H C    and 1C I    are the values that 

that relate to the pathology scores from the current study. 

 

Another important benefit to the mathematical modeling is the ability to vary system 

parameters and observe the effects on system states of interest. Here, the effects of varying the 

relative rates of damage and repair in the H-C and C-I state transitions were investigated through 

a parametric study. Since each damage and repair pathway is first order with respect to the 

abundance of LUs, ratios of rate constants were defined: 
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By conducting simulations with varying values for κ (Figure 6.7), the effects of relative 

rates of repair and damage in the system could be examined. If κ >> 1, the repair mechanism 

dominates and the LUs tend toward a relatively low value of PS, even at higher TCE dose; 

conversely, if κ << 1, the damage mechanism dominates for the given pathway and LUs may 

acquire high values of PS values, even at relatively low doses. As can be seen, the shape and 
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nonlinearity of the dose-response curve is highly dependent on the relative rates of repair and 

damage in both of the health state transitions. Overall, such predictions can help in the 

understanding of the interactions in this system and lend insight into the effects of non-TCE 

mediated events, such as additional oxidative stress from hepatotoxicants or impaired IL-6 repair 

mechanisms. 

6.4 DISCUSSION 

MRL+/+mice can spontaneously develop autoimmune diseases such as lupus nephritis, 

pancreatitis, and Sjogren's syndrome late in life (after 1-year of age) [281,282]. However, before 

they reach one year of age most female MRL+/+mice do not exhibit autoimmune tissue 

pathology, and are often used to examine the autoimmune-promoting capacity of a toxicant such 

as TCE. Based on water consumption and TCE degradation in the water bottles, the mice given 

water containing TCE at 0.02, 0.1 or 0.5 mg/ml for 12 weeks were exposed to TCE at time-

weighted levels of approximately 3, 14 or 64 mg/kg/day, respectively. Even the highest exposure 

is lower than the current 8-hour Permissible Exposure Limit [established by the Occupational 

Safety and Health Administration (OSHA)] for TCE of 100 ppm or approximately 76 mg/kg/day. 

The results of the current study showed that oral exposure to TCE suppressed IL-6 at the level of 

protein production and gene expression in macrophages. 

IL-6 is a pleiotropic cytokine, which can make it difficult to predict the cumulative 

impact of its altered production. Elevated levels of IL-6 in the blood have been observed in a 

number of pathological conditions associated with chronic inflammation including rheumatoid 

arthritis [283], systemic lupus erythematosus [284], and active disease in Guillain-Barre 

syndrome [285]. While local levels of IL-6 increased from peritoneal macrophages, circulating 

levels of IL-6 did not reach detectable levels in the blood of control or TCE-treated mice in the 
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current experimental study conducted by Gilbert and coworkers. However, some studies of 

idiopathic autoimmune disease in humans have found increased levels of IL-6 in liver biopsies 

[278], while other studies of AIH have demonstrated decreased expression of hepatic IL-6 in the 

liver [286]. On the other hand, treatments to prevent or reverse immunological liver injury in 

mouse models have been associated with an increase in liver expression of IL-6 [269]. Thus, the 

majority of studies suggest that in the liver, IL-6 is a primary protective cytokine. The in vivo 

experiments completed in this study demonstrated a decrease in macrophage-derived IL-6 

following chronic exposure to TCE.  

The complexity of chronic inflammatory diseases, whether idiopathic or chemically-

induced, can make it difficult to identify lynchpin events best targeted for prevention or reversal. 

Toxicodynamic modeling can be a way to describe and quantify the contribution of these 

different disease-induced alterations to actual pathology. The contribution of TCE to AIH in the 

present model is multidimensional; the healthy-to-inflamed state model described here can be 

amended to include more immune parameters such as the contribution of CD4+ T cells as they 

are characterized. However, even in its present state, the model facilitated point-of-departure 

predictions based on dose-dependent changes in liver pathology. The model stemmed from the 

linear regression analyses showing that liver pathology in TCE-treated mice was best correlated 

with the decreased liver expression of macrophage Il-6r. We now have the tools to predict liver 

pathology based on relative rates of liver repair and damage.  

In addition to its predicted effect on IL-6 signaling the model also infers that TCE 

initiates inflammatory processes that transition LUs from “H” to “C”. These processes were not 

investigated in this study, but probably include, but are not restricted to, alterations in redox 

equilibrium. In a previous study conducted by Dr. Gilbert’s lab, a metabolomics analysis 
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following chronic 32 week exposure to 0.5 mg/ml in MRL+/+mice revealed significant 

alterations in several metabolites (e.g., cystathionine) involved in the generation of glutathione, 

which functions as the major intracellular antioxidant against oxidative stress and plays an 

important role in the detoxification of reactive oxygen species and subsequent oxidative damage 

from pro-oxidant environmental exposures. Others have shown the functional significance of 

oxidative stress in TCE-induced liver pathology [287,288]. IL-6 has been shown to inhibit 

oxidative stress and steatosis in the liver [271]. Consequently, a TCE-induced loss of IL-6 

signaling in the liver would be expected to exacerbate associated oxidative-stress and resulting 

inflammation. The first stage model development described here (i.e. generation of equations and 

description of parameters) was based on data from two different experiments, albeit with some 

differences in experimental design. Obtaining new data to validate and extend this model will be 

included in the design of future chronic TCE exposure studies. 
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CHAPTER 7 
 

CONCLUSIONS AND PERSPECTIVES 
 
 
 

The research presented throughout this dissertation centered on the development, 

validation, and application of novel computational tools for determining biological endpoints for 

real-world problems pertaining to toxicology and pharmacology. While each chapter contained 

its own set of conclusions specific to the xenobiotic of interest, ultimately, this research 

demonstrated how in silico modeling can serve as a third pillar in solving biological problems by 

complementing in vivo and in vitro experimentation. The following summarizes each project and 

suggests how these results could be applied to future endeavors in computational pharmacology 

and toxicology. 

The first two chapters of this research presented physiologically-based pharmacokinetic 

models to predict the absorption, distribution, metabolism, and elimination of two important 

pharmaceutical agents: rifapentine and acetaminophen. In contrast to traditional PBPK models, 

these analyses were conducted using a Bayesian population methodology for parameter 

estimation. In addition to the determination of concentration distributions in various parts of the 

body, the Bayesian hierarchical framework allowed for the characterization of population 

variability and model uncertainty for each drug. In this context, chapters three and four 

illustrated the ability of such models to (i) predict numerous biological endpoints, such as tissue-

specific drug concentrations to evaluate drug safety or efficacy, (ii) quantify changes in 

pharmacokinetics arising from genetic differences in various subpopulations, (iii) estimate 

ingested dose from measurable biomarkers, and (iv) the optimize biomarker sampling times to 

increase certainty in predictions of ingested dose.  
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In addition to the above, this dissertation highlighted the utility of biologically-based 

modeling to develop environmental public health indicators that can be used to protect against 

adverse health outcomes following exposure to the environmental toxicant chlorpyrifos. In this 

case, the modeling approach opened up multiple possibilities for predicting neurobehavioral 

deficits using internal-dose concentration predictions in the brain as well as the correlation of 

measurable biomarkers of exposure to these neurobehavioral deficits. For example, this research 

led to an innovative methodology for establishing a source-to-outcome pathway model for 

predicting cognitive deficits following exposure to an organophosphate insecticide.  

The final aspect of this dissertation was a demonstration of how a validated 

pharmacodynamic model can be used to predict biological responses following exposure to the 

toxicant, trichloroethylene. The approach used facilitated hypothesis testing and allowed for 

different mechanisms of toxicity to be compared and quantified to arrive at a plausible 

mechanism for TCE-induce autoimmune hepatitis. It is anticipated that this general approach 

will be useful to a variety of researchers interested in predicting pathology endpoints following 

low-dose, chronic exposure to trichloroethylene. 

The current literature indicates a shift in the landscape for determining biological 

outcomes following xenobiotic exposure. As stated in the introduction, there is mounting 

pressure from many regulatory agencies, non-governmental agencies, and private companies to 

move toxicity and efficacy studies away from animal testing to more resource efficient, and 

humane, approaches. Fortunately, this shift is being facilitated by significant advances in in vitro 

and in silico technologies. The advances in in vitro technologies include stem-cell derived human 

cells, three-dimensional tissue scaffolds, and high-throughput cellular assays, while those in the 

in silico domain include significant computational efficiency improvements and cost reductions 
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in hardware coupled with advances in areas such as bioinformatics, machine learning, network 

and pathway analysis, and whole-cell and tissue-scale modeling. Through this shift, resources 

and costs associated with toxicological and pharmacological research can be significantly 

reduced and the space of chemicals being studied dramatically expanded.  

Overall, this dissertation highlighted research focused on the development and 

application of in silico methods underpinned by results from in vitro and in vivo systems. These 

methods ultimately improved predictions of xenobiotic fate and effect and specifically addressed 

needs in the fields of toxicology and pharmacology related to pharmacokinetics across 

populations, susceptible populations, dose reconstruction, environmental public health indicators 

for risk estimation, and complex toxicant-mediated adverse health effects. Ultimately, the 

development and use of such mathematical and computational models is expected to 

dramatically increase over time, resulting in more cost-effective approaches in fields ranging 

from environmental health to pharmaceutical research. 
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 APPENDIX A
 

SUMMARY TABLE FOR ACETMINOPHEN LITERATURE REVIEW 
 
 
 

The acetaminophen PBPK models described throughout Chapter 4 required an extensive set of 

pharmacokinetic data from the literature for model calibration and testing. Table  presents a 

summary of these sources and notes how each data set was used. 
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TABLE A. Pharmacokinetic data utilized in development of acetaminophen models 

Reference 
Route of 

administration Dose Measured biomarkers 
Number of 

subjects (sex) 

Use in model 
development: 
training (T) or 

test/validation (V) 

Group Designation 

Ameer et al. 1981 [139] 
Oral 650 mg Plasma: APAP 1 (M) V A 

IV  650 mg Plasma: APAP 1 (M) V A 

Chen et al. 1996 [140] Oral 1000 mg Plasma & Urine: APAP, APAP-G, APAP-S 10 (M/F) * A 

Chiew et al., 2010 [141] Oral 80 mg/kg Plasma: APAP, APAP-G, APAP-S 9 (M/F) T A 

Chan et al. 1997 [136] Oral 20 mg/kg Plasma: APAP, APAP-G, APAP-S 6 (M/F) T B 

Critchley et al. 2005 [137] 
Oral 20 mg/kg Plasma & Urine: APAP, APAP-G, APAP-S 11 (M/F) V A 

Oral 20 mg/kg Plasma & Urine: APAP, APAP-G, APAP-S 9 (M/F) V B 

Critchley et al. 1986 [138] Oral 1500 mg Urine: APAP, APAP-G, APAP-S 111 (M/F) T A 

Esteban et al. 1996 [142] Oral 1500 mg Urine: APAP, APAP-G, APAP-S 71 (M/F) V A 

Halcomb et al. 2005 [212]
 

†
 

Oral 5000 mg Plasma: APAP 10 (M/F) V - 

Jensen et al. 2004 [143] Oral 1000 mg Plasma: APAP, APAP-G, APAP-S 6 (M/F) V A 

Itoh et al. 2001 [144] Oral 1000 mg Plasma: APAP, APAP-G, APAP-S 5 (M) V B 

Kamali 1993 [145] Oral 1500 mg Plasma: APAP, Urine: APAP, APAP-G, APAP-S 10 (M/F) V A 

Kim et al. 2010 [146] Oral 1000 mg Plasma: APAP, APAP-G, APAP-S 12 (M/F) V B 

Lau et al. 1994 [147] Oral 20 mg/kg Plasma & Urine: APAP, APAP-G, APAP-S 6 (M/F) T B 

Prescott 1980 [148] 

Oral 20 mg/kg Plasma & Urine: APAP, APAP-G, APAP-S 8 (M/F) T A 

Oral 12 mg/kg Plasma: APAP 4 (M/F) T A 

IV  12 mg/kg Plasma: APAP 4 (M/F) T A 

Prescott 1989 [149] Oral 1000 mg Plasma: APAP, APAP-G, APAP-S 10 V A 

Rawlins et al. 1977 [150] 
Oral 500 mg Plasma: APAP 6 (M) V A 

Oral 1000 mg Plasma: APAP 6 (M) V A 
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Reference Route of 
administration 

Dose Measured biomarkers Number of 
subjects (sex) 

Use in model 
development: 
training (T) or 

test/validation (V) 

Group Designation 

Oral 2000 mg Plasma: APAP 6 (M) V A 

IV  1000 mg Plasma: APAP 6 (M) T A 

Shinoda et al. 2007 [151] Oral 1000 mg Plasma: APAP, APAP-G, APAP-S 5 (M/F) T B 

Tan et al. 2012 [152] Oral 500 mg Plasma & Urine: APAP, APAP-G 12 (***) T B 

Tonoli et al. 2012 [153] IV  1000 mg Plasma: APAP, APAP-G 2 (***) V A 

Volak et al. 2012 [154] Oral 325 mg Plasma: APAP, APAP-G, APAP-S 8 (M/F) T A 

Wolchok et al. [214]
 †

 Oral 10 g – 40 g Plasma: APAP 36 (M/F) T/V - 

Yin et al. 2001 [155] Oral 500 Plasma: APAP 12 (M) V B 

Zhu et al. 2007 [156] Oral 650mg Plasma: APAP 10 (M) **  B 

 

* Data were not used. APAP-G measurement methodology was different from that used in other studies. 

** Data were not used. APAP was administered in combination with Tramadol. 

*** Not specified 
†Used only in APAP overdose dataset 
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 APPENDIX B
 

GOVERNING EQUATIONS FOR ACETAMINOPHEN PBPK MODEL 
 
 
 

Chapter 4 describes the use of governing equations to describe the absorption, distribution, 

metabolism, and elimination of acetaminophen. The following table summarizes the equations 

used throughout this chapter and notes which equations were used for the overdose 

acetaminophen model. 
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TABLE B. System of governing equations for acetaminophen PBPK modeling 

 APAP APAP-G APAP-S 

fat 
 APAP APAPAPAP

fat A V fatfat

fat

Q C CdC

dt V

  
 APAP G APAP GAPAP G

fat A V fatfat

fat

Q C CdC

dt V

    
 APAP S APAP SAPAP G

fat A V fatfat

fat

Q C CdC

dt V

    

muscle 
 APAP APAPAPAP

muscle A V musclemuscle

muscle

Q C CdC

dt V

  
 APAP G APAP GAPAP G

muscle A V musclemuscle

muscle

Q C CdC

dt V

    
 APAP S APAP SAPAP S

muscle A V musclemuscle

muscle

Q C CdC

dt V

    

liver  
APAP

liver

APAP APAP
liver A V liver cyp APAP G APAP S

liver

dC

dt

Q C C v v v

V

  


   

 

 
APAP G

liver

APAP G APAP G
liver A V liver mem APAP G

liver

dC

dt

Q C C v

V



   


    

APAP S
liver

APAP S APAP S
liver A V liver mem APAP S

liver

dC

dt

Q C C v

V



   


   

hepatocyte – 
APAP G
hep APAP G

APAP G mem

dA
v v

dt


   

APAP S
hep APAP S

APAP S mem

dA
v v

dt


   

kidney  
APAP
kidney

APAP APAP APAP APAPabs
kidney A V kidney R A

kidney

dC

dt
dA

Q C C k C
dt

V




      

APAP G
kidney

APAP G APAP G APAP G APAP G
kidney A V kidney R A

kidney

dC

dt

Q C C k C

V



   


     

APAP G
kidney

APAP S APAP S APAP S APAP S
kidney A V kidney R A

kidney

dC

dt

Q C C k C

V



   


    

GI: 
Therapeutic  

exp exp
APAP

G PGI

G P

t t
M

T TdA
I t

dt T T

                
– – 

GI:  
Overdose 

 ,
,( )

APAP
ST S APAP

ST S

dA
I t k t A

dt
    

,Aq
, ,

1
( )

APAP
ST APAP APAP

ST S ST Aq
G

dA
k t A A

dt T

        

 ,GI
,

1
APAP
ST APAP APAP APAP

ST Aq G A V G
G

dA
A Q C C

dt T 
       

– – 

slowly 
perfused 

 APAP APAPAPAP
sp A V spsp

sp

Q C CdC

dt V

  
 APAP G APAP GAPAP G

sp A V spsp

sp

Q C CdC

dt V

    
 APAP S APAP SAPAP S

sp A V spsp

sp

Q C CdC

dt V

    



205 
 

rapidly 
perfused 

 APAP APAPAPAP
rp A V rprp

rp

Q C CdC

dt V

  
 APAP G APAP GAPAP G

rp A V rprp

rp

Q C CdC

dt V

    
 APAP S APAP SAPAP S

rp A V rprp

rp

Q C CdC

dt V

    

urine 
APAP

APAP APAPe
R A

dA
k C

dt
   

APAP G
APAP G APAP Ge
R A

dA
k C

dt

     
APAP S

APAP S APAP Se
R A

dA
k C

dt

     

arterial blood 
concentration 

 APAP APAPAPAP
C V ABLA

BLA

APAP
APAP A
A

BLA

Q C CdC

dt V

A
C

V




 

 APAP G APAP GAPAP G
C V ABLA

BLA

APAP G
APAP G A
A

BLA

Q C CdC

dt V

A
C

V

 






 

 APAP S APAP SAPAP S
C V ABLA

BLA

APAP S
APAP S A
A

BLA

Q C CdC

dt V

A
C

V

 






 

venous blood 
concentration 

(pooled) 

( )APAP APAP
APAP T V T C V IV
BLV T

BLA

APAP
APAP V

V
BLV

Q C Q C D t
dC

dt V

A
C

V

  





, 

where ( )IVD t  is the rate of 
intravenous APAP dosing  

APAP G APAP G
APAP G T V T C V
BLV T

BLA

APAP G
APAP G V

V
BLV

Q C Q C
dC

dt V

A
C

V

  









 

APAP S APAP S
APAP S T V T C V
BLV T

BLA

APAP S
APAP S V

V
BLV

Q C Q C
dC

dt V

A
C

V

  









 


