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ABSTRACT

COMPUTATIONAL ADVANCEMENTS IN THE D-BAR RECONSTRUCTION

METHOD FOR 2-D ELECTRICAL IMPEDANCE TOMOGRAPHY

We study the problem of reconstructing 2-D conductivities from boundary voltage and

current density measurements, also known as the electrical impedance tomography (EIT)

problem, using the D-bar inversion method, based on the 1996 global uniqueness proof by

Adrian Nachman. We focus on the computational implementation and efficiency of the D-bar

algorithm, its application to finite-precision practical data in human thoracic imaging, and

the quality and spatial resolution of the resulting reconstructions. The main contributions

of this work are (1) a parallelized computational implementation of the algorithm which has

been shown to run in real-time, thus demonstrating the feasibility of the D-bar method for

use in real-time bedside imaging, and (2) a modification of the algorithm to include a priori

data in the form of approximate organ boundaries and (optionally) conductivity estimates,

which we show to be effective in improving spatial resolution in the resulting reconstructions.

These computational advancements are tested using both numerically simulated data as well

as experimental human and tank data collected using the ACE1 EIT machine at CSU. In

this work, we provide details regarding the theoretical background and practical implemen-

tation for each advancement, we demonstrate the effectiveness of the algorithm modifications

through multiple experiments, and we provide discussion and conclusions based on the re-

sults.

ii



ACKNOWLEDGEMENTS

I would like to thank my advisor Jennifer Mueller for extensive advice and guidance over

the past few years. Additional thanks goes to the members of the Electrical Impedance

Tomography Laboratory at Colorado State University, with special thanks in particular to

Michelle Mellenthin.

This project has been supported in part by Award Numbers 1R21EB016869-01A1 and

5R21EB016869-02 from the National Institute of Biomedical Imaging and Bioengineering.

The content is solely the responsibility of the author and does not represent the official

view of the National Institute of Biomedical Imaging and Bioengineering or the National

Institutes of Health.

iii



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. WHAT IS EIT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Current patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2. Applications of EIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3. The EIT problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4. The challenges of EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1. The roots of EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2. Continuing theoretical developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3. Practical reconstruction algorithms and computation. . . . . . . . . . . . . . . . . . . . . 14

1.3. NACHMAN’S METHOD OF RECONSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2. Transformation to the Schrödinger equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3. The ∂̄ and ∂ operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.4. A Lippmann-Schwinger equation for µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.5. Linking Λσ and ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.6. The scattering transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.7. The D-bar equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



1.3.8. Summary of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 2. A REAL-TIME D-BAR ALGORITHM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1. MOTIVATION AND OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2. OUTLINE OF THE FAST IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3. A COMPARISON OF SOLVERS FOR THE D-BAR EQUATION . . . . . . . . . . . . 37

2.4. RESULTS AND DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5. JUSTIFICATION FOR A COARSE K-MESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 3. AN A PRIORI D-BAR ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1. MOTIVATION AND OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2. OUTLINE OF THE A PRIORI METHOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3. COMPUTATIONAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4. CONSTRUCTING THE PRIOR CONDUCTIVITY DISTRIBUTION. . . . . . . . . 63

3.4.1. Obtaining approximate organ boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.2. Constructing the prior: Blind Estimate Method . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3. Constructing the prior: Extraction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.4. Iterative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5. RESULTS FROM SIMULATED DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.1. Blind estimate method applied to simulated data . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.2. Extraction method applied to simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6. A DISCUSSION OF THE “EDGE-RINGING” EFFECT. . . . . . . . . . . . . . . . . . . . . . 85

3.7. RESULTS FROM EXPERIMENTAL TANK DATA. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7.1. Tank experiment: healthy human heart and lungs . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7.2. Tank experiment: conductive pathology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

v



3.7.3. Tank experiment: resistive pathology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8. DISCUSSION OF DISCONTINUITIES IN THE PIECEWISE SCATTERING

DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.9. CONCLUSIONS FROM THE A PRIORI METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 4. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vi



LIST OF TABLES

1.1 Conductivity values of various human tissues and organs at 100kHz, based on

values reported in [11]. See also [129, 17, 71]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Frame rates (in frames/s) for the pairwise current injection system at CSU for

various numbers of electrodes and measurement sample rates, as reported in [127]. 32

2.2 Comparison of the mean, maximum, and standard deviation over the 359 frames in

the relative errors in the reconstructions computed by solving the D-bar equation

on three sizes of k-mesh. The relative errors for each frame were computed by

treating the reconstruction on a k-mesh of size 64× 64 as truth. . . . . . . . . . . . . . . . . . 48

2.3 Runtimes (RT) in seconds for Algorithm 2 parallelized over 12 cores on a Mac Pro

on the coarse and medium z-meshes, for various k-mesh sizes. The loop runtimes

refer to the runtime for the parallelized loop over the frames. These results show

that we can still easily achieve real-time results on the 32 × 32 k-mesh with an

appropriately coarse z-mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Runtimes (RT) in seconds for Algorithm 1 (parallelization over mesh points) over

359 frames on a 12 core Mac Pro with two 2.66 GHz 6 core Intel Xeon processors.

Here, the loop runtimes refer to the runtime for the parallelized loop over z-values.

The fastest per-frame runtime for each mesh has been highlighted. . . . . . . . . . . . . . . . 51

2.5 Runtimes (RT) in seconds for Algorithm 1 (parallelization over mesh points) over

359 frames on a 64 core Linux system with four 2.3 GHz 16 core processors and

512 GB of RAM. Here, the loop runtimes refer to the runtime for the parallelized

loop over the frames. The fastest per-frame runtime for each mesh has been

highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



2.6 Runtimes (RT) in seconds for Algorithm 2 (parallelization over frames) over 359

frames on a 12 core Mac Pro with two 2.66 GHz 6 core Intel Xeon processors.

Here, the loop runtimes refer to the runtime for the parallelized loop over the

frames. The fastest per-frame runtime for each mesh has been highlighted. . . . . . . . 53

2.7 Runtimes (RT) in seconds for Algorithm 2 (parallelization over frames) over 359

frames on a 64 core Linux system with four 2.3 GHz 16 core processors and 512

GB of RAM. Here, the loop runtimes refer to the runtime for the parallelized loop

over the frames. The fastest per-frame runtime for each mesh has been highlighted. 54

3.1 Conductivity values in S/m for the phantom as well as the “blind estimate” σ̃pr

values assigned, along with values assigned to σ̃′
pr in the subsequent iteration step,

for each of the three noise cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Conductivity values in S/m for the phantom as well as σ̃pr values computed using

extraction method for each of the 3 noise cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Measured conductivity values (in S/m) for agar components and background

saline solution used in the described tank experiments. Conductivity values were

measured using a conductivity meter at the start of the experiment. . . . . . . . . . . . . . . 88

viii



LIST OF FIGURES

1.1 Left: typical human thoracic 2-D EIT data collection, with electrodes arranged in

a plane around the patient’s thorax. Right: EIT data collection at CSU using a

saline-filled tank containing various targets, surrounded by electrodes. . . . . . . . . . . . . 1

1.2 In skip patterns, equal and opposite current is applied to pairs of electrodes,

skipping a electrodes in between. Here is an illustration of the case where a = 2,

so that current is applied on electrodes e1 and e4, in a scenario with L = 16

electrodes. For the next current pattern, current will be applied on e2 and e5, and

so on. Voltage is measured on all L electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Runtimes (in seconds) for various matrix-free Krylov subspace solvers tested

for use in solving the linear system (39). To compare the solvers, the entire

(nonparallelized) D-bar algorithm described here (with a z-mesh with 935 mesh

points, and a 32 × 32 k-mesh) was run on 10 frames of human data, using a

Gateway E-4610 desktop PC with a 1.86 GHz dual-core processor. Each method

was tested using an error tolerance of 10−5 in the numerical solver. . . . . . . . . . . . . . . 40

2.2 Runtimes (in seconds) corresponding to various error tolerances used in GMRES.

To compare the error tolerances, the entire (nonparallelized) D-bar algorithm

described here (with a z-mesh with 5,916 mesh points, and a 32× 32 k-mesh) was

run on 10 frames of human data, using a Dell Optiplex 790 with an Intel i7 3.4

GHz processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Reconstructions of human data corresponding to GMRES error tolerances

ǫtol = 10−5, 10−8, 10−12 (left to right) used to solve the linear system (39). Note

that the images appear nearly identical, indicating that little advantage is gained

ix



by decreasing the error tolerance, which necessitates additional iterations of

GMRES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Reconstructions on the three z-meshes timed in this work of four frames in the

sequence of 360 frames showing changes due to perfusion in the chest of a healthy

human subject. The heart is at the top, and red represents high conductivity

and blue low conductivity with respect to the reference frame. The images are

displayed on the same scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Reconstructions of the rightmost frame in Figure 2.4 computed by solving the

D-bar equation on a k-grid of size 2m × 2m with m = 3, 4, 5, and 6, left to right.

The images are displayed on the same scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 A comparison of Amdahl’s law for maximum theoretical speedup (dashed lines)

when using multiple cores with actual speedup obtained on a 12 core Mac Pro with

two 2.66 GHz 6 core Intel Xeon processors (solid lines) using Algorithms 1 and 2. 49

2.6 A comparison of Amdahl’s law for maximum theoretical speedup (dashed lines)

when using multiple cores with actual speedup obtained on a 64 core Linux system

with four 2.3 GHz 16 core processors and 512 GB of RAM (solid lines) using

Algorithms 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Solid line: simulated organ boundaries representing heart, lungs, aorta, and spine

within a circular domain, used to generate simulated data. Dashed line: polygonal

approximations of organ boundaries used as geometric a priori information in our

experiments with simulated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Conductivity values for the pleural effusion phantom (left) and the initial blind

estimate prior (right). All conductivity values are in S/m. . . . . . . . . . . . . . . . . . . . . . . . . 72

x



3.3 Plots of the reconstructions σ from the simulated data experiments, computed

using the regularized D-bar method of §1.3 (see also lines 5–15 of Algorithm 4) with

truncation radius R1 = 3.8, at noise levels 0%, 0.1%, and 0.2%, with superimposed

true organ boundaries. Each noise case is plotted on its own scale; these scalings

will be used for all plots concerning the simulated data at each noise level within

this work.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Locations of dividing line between the “lung top” and “lung bottom.” The

dividing line used in the phantom is indicated by a solid line. The approximate

dividing line (dashed line) was used in the extraction method and the iteration

step for the blind estimate method, and was obtained by visually inspecting the

σR2,α reconstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Reconstructions σR2,α for the 0% noise case with simulated data, using the a priori

scheme with the blind estimate method (before iteration step), with various values

of α and R2. The reconstruction with no prior is at the top for comparison. The

strength of the prior increases moving left to right and top to bottom. The scale

bar at the bottom applies to all reconstructions at this noise level. . . . . . . . . . . . . . . . 75

3.6 Reconstructions σR2,α for the 0.1% noise case with simulated data, using the a

priori scheme with the blind estimate method (before iteration step), with various

values of α and R2. The reconstruction with no prior is at the top for comparison.

The strength of the prior increases moving left to right and top to bottom. The

scale bar at the bottom applies to all reconstructions at this noise level. . . . . . . . . . . 76

3.7 Reconstructions σR2,α for the 0.2% noise case with simulated data, using the a

priori scheme with the blind estimate method (before iteration step), with various

values of α and R2. The reconstruction with no prior is at the top for comparison.

xi



The strength of the prior increases moving left to right and top to bottom. The

scale bar at the bottom applies to all reconstructions at this noise level. . . . . . . . . . . 77

3.8 Reconstructions σ′
R2,α

for the 0% noise case with simulated data, using the a priori

scheme with the blind estimate method plus one iteration step, with various values

of α and R2. The reconstruction with no prior is at the top for comparison. The

strength of the prior increases moving left to right and top to bottom. The scale

bar at the bottom applies to all reconstructions at this noise level. . . . . . . . . . . . . . . . 78

3.9 Reconstructions σ′
R2,α

for the 0.1% noise case with simulated data, using the a

priori scheme with the blind estimate method plus one iteration step, with various

values of α and R2. The reconstruction with no prior is at the top for comparison.

The strength of the prior increases moving left to right and top to bottom. The

scale bar at the bottom applies to all reconstructions at this noise level. . . . . . . . . . . 79

3.10 Reconstructions σ′
R2,α

for the 0.2% noise case with simulated data, using the a

priori scheme with the blind estimate method plus one iteration step, with various

values of α and R2. The reconstruction with no prior is at the top for comparison.

The strength of the prior increases moving left to right and top to bottom. The

scale bar at the bottom applies to all reconstructions at this noise level. . . . . . . . . . . 80

3.11 Reconstructions σR2,α for the 0% noise case with simulated data, using the a

priori scheme with the extraction method, with various values of α and R2. The

reconstruction with no prior is at the top for comparison. The strength of the prior

increases moving left to right and top to bottom. The scale bar at the bottom

applies to all reconstructions at this noise level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



3.12 Reconstructions σR2,α for the 0.1% noise case with simulated data, using the a

priori scheme with the extraction method, with various values of α and R2. The

reconstruction with no prior is at the top for comparison. The strength of the prior

increases moving left to right and top to bottom. The scale bar at the bottom

applies to all reconstructions at this noise level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.13 Reconstructions σR2,α for the 0.2% noise case with simulated data, using the a

priori scheme with the extraction method, with various values of α and R2. The

reconstruction with no prior is at the top for comparison. The strength of the prior

increases moving left to right and top to bottom. The scale bar at the bottom

applies to all reconstructions at this noise level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.14 Plots of the real part of µint used in the simulations with various truncation radii

R2. Since µint → 1 as R2 →∞, the scale must be adjusted for each value of R2 for

best viewing results. The boundaries shown are those used to compute σpr. . . . . . . . 85

3.15 Reconstruction produced using the scattering transform (65) and α = 1, leading

to complete suppression of the µint term. Low frequency scattering values were

set to zero, and only frequencies 3 < |k| ≤ 10 are used. The result suggests that

high scattering frequencies encode mostly information corresponding to the edges

of organ boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.16 Left: experimental set-up with agar heart and lungs in a PVC tank, surrounded

by saline solution. Middle: a second experiment, in which the heart and lungs are

preserved, but a copper conductor has been inserted into the bottom of the right

lung. Left: a third experiment, in which the conductor has been removed, and a

plastic insulator has been inserted in its place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiii



3.17 Plots of the reconstructions σ from the tank experiments, computed using the

regularized D-bar method of §1.3 (see also lines 5–15 of Algorithm 4) with

truncation radius R1 = 3.8, with superimposed organ boundaries approximated

from photographs. Each reconstruction is plotted on its own scale. . . . . . . . . . . . . . . . 89

3.18 Left: experimental set-up with agar heart and lungs in tank. Right: polygonal

approximations of organ boundaries used as geometric a priori information in our

experiments with tank data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.19 Right: the experimental set-up with agar heart and lungs and an added copper

conductor representing a lung pathology. Middle: a contour plot, showing level

sets, of the EIT reconstruction σ computed with no prior. Left: the modified

organ boundaries for the prior reflecting the pathology, where the boundary for

the pathology was computed by taking a level set of the reconstruction σ. . . . . . . . . 93

3.20 Right: the experimental set-up with agar heart and lungs and an added plastic

insulator representing a lung pathology. Middle: a contour plot, showing level

sets, of the EIT reconstruction σ computed with no prior. Left: the modified

organ boundaries for the prior reflecting the pathology, where the boundary for

the pathology was computed by taking a level set of the reconstruction σ. . . . . . . . . 93

3.21 Reconstructions σR2,α for the experimental tank data representing healthy heart

and lungs, using the a priori scheme with the blind estimate method, with various

values of α and R2. The reconstruction with no prior is at the top for comparison.

The strength of the prior increases moving left to right and top to bottom. Due to

loss of true conductivity values, the reconstructions were individually scaled to the

interval [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiv



3.22 Reconstructions σR2,α for the experimental tank data with added conductive

pathology, using the a priori scheme with the blind estimate method, with various

values of α and R2. The reconstruction with no prior is at the top for comparison.

The strength of the prior increases moving left to right and top to bottom. Due to

loss of true conductivity values, the reconstructions were individually scaled to the

interval [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.23 Reconstructions σR2,α for the experimental tank data with added conductive

pathology, using the a priori scheme with modified prior, with various values of

α and R2. The reconstruction with no prior is at the top for comparison. The

strength of the prior increases moving left to right and top to bottom. Due to

loss of true conductivity values, the reconstructions were individually scaled to the

interval [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.24 Reconstructions σR2,α for the experimental tank data with added resistive

pathology, using the a priori scheme with the blind estimate method, with various

values of α and R2. The reconstruction with no prior is at the top for comparison.

The strength of the prior increases moving left to right and top to bottom. Due to

loss of true conductivity values, the reconstructions were individually scaled to the

interval [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.25 Reconstructions σR2,α for the experimental tank data with added resistive

pathology, using the a priori scheme with modified prior, with various values of

α and R2. The reconstruction with no prior is at the top for comparison. The

strength of the prior increases moving left to right and top to bottom. Due to

loss of true conductivity values, the reconstructions were individually scaled to the

interval [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xv



3.26 Real and imaginary parts of the piecewise scattering transform tR1,R2
(k), computed

on a 64× 64 k-grid with R1 = 3.8, R2 = 10, for the simulated data 0% noise case,

with the prior constructed using the blind estimate method.. . . . . . . . . . . . . . . . . . . . . . 102

3.27 Real and imaginary parts of the piecewise scattering transform tR1,R2
(k), computed

on a 64× 64 k-grid with R1 = 3.8, R2 = 10, for the case of experimental tank data

with the healthy heart and lungs phantom.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xvi



CHAPTER 1

INTRODUCTION

1.1. WHAT IS EIT?

Electrical impedance tomography, or EIT, is an imaging modality in which the internal

electrical properties (conductivity σ, permittivity ǫ, or resistivity ρ = 1/σ) of an object

are reconstructed using current and voltage data measured only on the object’s surface.

This is in practice accomplished by attaching an array of electrodes to the surface of the

object and applying currents which penetrate into the interior of the object (see Figure 1.1).

This creates a voltage distribution on the electrodes, and this resulting surface voltage is

measured. Inhomogeneities in the internal conductivity or permittivity distribution will

cause perturbations in the surface voltage measurements from the homogeneous case, which

can be exploited to reconstruct an image of the internal structures of an object. Temporal

changes in conductivity can additionally provide functional imaging of dynamic living and

nonliving systems.

Figure 1.1. Left: typical human thoracic 2-D EIT data collection, with elec-
trodes arranged in a plane around the patient’s thorax. Right: EIT data col-
lection at CSU using a saline-filled tank containing various targets, surrounded
by electrodes.
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1.1.1. Current patterns. In practical experiments, current is applied to the domain

boundary on L electrodes according to a set of current patterns. Each current pattern is

applied to the domain boundary in turn, resulting in a corresponding vector of voltage

measurements. For L electrodes, there are N linearly independent current patterns where

N ≤ L − 1; this results in at most L − 1 linearly independent voltage measurements. All

other voltage measurements will therefore be a linear combination of these N voltage mea-

surements.

The choice of current pattern used for a particular application depends on many factors,

and is a major engineering consideration in the design of EIT hardware. For an analysis of

optimal current patterns and distinguishability in EIT, see [39]. For a description of possible

current patterns for EIT, see [129]. In the Electrical Impedance Tomography Laboratory at

Colorado State University, the ACE1 EIT machine, which was used to collect the experi-

mental data presented in this dissertation, has been designed to apply bipolar skip patterns

[127, 128]. In this scenario, equal and opposite current is applied on pairs of electrodes,

skipping a electrodes in between, as shown in Figure 1.2, which depicts the case with a = 2.

Application of a skip a pattern on L electrodes will result in N = L − gcd(L, a + 1) lin-

early independent voltage measurements. All experimental and numerically simulated data

presented in this dissertation was generated using skip patterns.

1.1.2. Applications of EIT. There are a variety of engineering and industrial appli-

cations of EIT (also known as electrical resistance tomography, or ERT), and new uses for

the technology continue to emerge. As will be discussed in §1.2.1, the original motivation

for EIT was the prospection of underground natural resources, and today EIT is used in a

diverse set of geophysical imaging applications. These include the assessment of contami-

nants in geological media and site remediation [46, 47, 147, 161], the study of underground
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Figure 1.2. In skip patterns, equal and opposite current is applied to pairs
of electrodes, skipping a electrodes in between. Here is an illustration of the
case where a = 2, so that current is applied on electrodes e1 and e4, in a
scenario with L = 16 electrodes. For the next current pattern, current will be
applied on e2 and e5, and so on. Voltage is measured on all L electrodes.

hydrogeological processes and subsurface flow monitoring [48, 52, 111, 145, 148, 193], moni-

toring underground solute transport [24], and archaeological investigation [143]. In chemical

and industrial applications, process tomography may be used to gain insight into complex

internal flows and multiphase mixtures occurring inside process equipment. To this end,

EIT has been applied to pharmaceutical testing [26, 151, 152], mixture and flow monitoring

[53, 81, 105, 117, 125, 126, 150, 187, 189], contaminant detection [120], and various other

process applications [96, 190]. Another area of industrial application is the nondestructive

evaluation of concrete and other structures [49, 74, 85, 87, 103, 102, 157].

In this dissertation, however, we will mostly consider EIT as it relates to medical imaging

applications. The use of EIT for medical imaging is based on the fact that various bodily

organs, tissues, fluids, and gases exhibit measurable and significant conductivity differences,

as shown in Table 1.1
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Table 1.1. Conductivity values of various human tissues and organs at
100kHz, based on values reported in [11]. See also [129, 17, 71].

Tissue or Organ Approximate Conductivity (S/m)

Blood 0.70
Bone (Cancellous) 0.084
Bone (Cortical) 0.021
Bone Marrow 0.0033
Cardiac Muscle (transversal) 0.23
Cardiac Muscle (longitudinal) 0.63
Cartilage 0.18
Fat 0.024
Kidney 0.17
Liver 0.08
Muscle 0.36
Skin (Dry) 0.00045
Skin (Wet) 0.066
Lung (Deflated) 0.27161
Lung (Inflated) 0.10735

In the field of modern medical imaging there are a wide variety of imaging modalities

in common use, each with its own benefits as well as problems and shortcomings. It is

often desirable to have several imaging options available, and to use these various modalities

in conjunction with each other to complement and extend the benefits of each. Magnetic

resonance imaging (MRI) and X-ray computed tomography (CT) scans provide images with

good spatial resolution but require large, expensive machines which cannot be readily moved

or used to provide bedside imaging. CT scanning comes with the additional drawback in that

the technique relies on the use of ionizing radiation, the effects of which may accumulate to

high levels over a lifetime [60]. The cumulative effects of low-dose ionizing radiation have been

linked to the development of cancers and leukemia [1]. Ultrasound technology is safer and

more portable than some modalities, but is quite low-contrast, and is difficult to use on obese

patients due to limitations in the depth of ultrasound penetration. Electrical impedance

tomography is a modality which promises to provide high-contrast real-time bedside imaging

with excellent temporal resolution at fairly low cost. The procedure is also painless and
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does not use ionizing radiation. EIT may additionally be used to provide complementary

information to other modalities.

There is a long, diverse, and ever-growing list of potential medical applications of EIT.

For instance, EIT has been studied for use in breast cancer detection, based on evidence that

malignant tumors have higher conductivity values than surrounding normal tissues [43, 44,

32, 75, 90, 101, 104, 160, 194]. Various thoracic imaging applications include monitoring of

cardiac activity and diagnosis of pulmonary embolism [42, 95, 121, 140, 159, 184], diagnosis

of pulmonary edema [33, 139, 142, 178], and ventilation and lung perfusion monitoring

[65, 68, 69, 118, 140, 183, 185]. Other biomedical applications include monitoring of gastric

emptying and gastric volume [33, 86], bladder volume monitoring [89, 122, 123, 156], prostate

imaging [29, 30, 97, 172, 186], assessment of stroke and other neural imaging [2, 15, 57, 73,

86, 141, 146, 153], and imaging of the larynx [158].

In the case of 2-D thoracic imaging, which is a current research focus of the EIT lab in

the Department of Mathematics at Colorado State University, it is typical to place a number

of approximately equally-spaced electrodes in a single plane around the circumference of a

human chest, apply low-frequency, low-amplitude AC current, and then measure the resulting

surface voltage. This process, which will be described in greater detail later, provides the

necessary data to reconstruct the electrical conductivity distribution within the plane of the

electrodes.

1.1.3. The EIT problem. In our mathematical description of the EIT problem, we

begin with the conductivity equation in R
2, which provides a model of the electric potential

u = u(x, y) propagating through a living tissue and the relationship of the potential to the

internal spatially varying conductivity distribution. The governing equation is a generalized
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Laplace equation derived from Maxwell’s equations:

(1) ∇ · (σ(x, y)∇u(x, y)) = 0, (x, y) in Ω,

where Ω ⊂ R
2 is a bounded, simply-connected domain with Lipschitz boundary, σ : Ω→ R

is the electrical conductivity distribution within Ω, and u : Ω→ R is the electrical potential

within Ω. See [129] for a full derivation of (1). We may further assume that the conductivity

σ is bounded away from zero so that 0 < σ(x, y) < c for all (x, y) ∈ Ω; it is straightforward

to verify that this condition ensures (1) is an elliptic equation. For our purposes, we will

also assume that the conductivity distribution σ is isotropic on Ω.

If the voltage distribution f = f(x, y) on the boundary is known, we may add to (1) the

following Dirichlet boundary condition:

(2) u
∣

∣

∂Ω
= f,

where it is assumed f ∈ H1/2(∂Ω).

The current density J within Ω is modeled by Ohm’s law:

J = σ∇u in Ω,

so that on the boundary we have

(3) J · ν = σ
∂u

∂ν

∣

∣

∣

∣

∂Ω

= j,

where we assume j ∈ H−1/2(∂Ω), and ν denotes the outward unit normal. This corresponds

to a Neumann boundary condition for (1).
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The forward conductivity problem is to determine u ∈ H1(Ω) by solving (1) subject to

the Dirichlet condition (2), which requires that we have knowledge of the function σ within

Ω. The forward problem is readily numerically solvable using a finite element scheme.

Of interest in EIT, however, is to determine the unknown conductivity σ satisfying (1).

To this end, we define the Dirichlet-to-Neumann (DN) map corresponding to σ, which maps

the boundary voltages to the boundary current densities:

(4) Λσ : H1/2(Ω)→ H−1/2(Ω), Λσ : f 7→ σ
∂u

∂ν

∣

∣

∣

∣

∂Ω

.

The DN map is often called the voltage-to-current density map. For any given conductivity

distribution σ on Ω, the DN map encodes all possible EIT boundary measurements, i.e.

pairs (f, j) of boundary voltage and current density measurements, in infinite precision. It

is well-known from standard PDE theory that Λσ is a bounded linear operator acting on f ,

and a pseudo-differential operator of order 1. The DN map may also be given by its weak

formulation, which is readily derived from (4) via integration by parts:

(5) Λσ : H1/2(Ω)→ H−1/2(Ω), 〈Λσf, g〉 =

∫

Ω

σ∇u · ∇v dxdy,

where v ∈ H1(Ω) is an arbitrary function with v
∣

∣

∂Ω
= g and u ∈ H1(Ω) is a weak solution

to the Dirichlet problem (1).

The inverse conductivity problem is then to uniquely determine σ that satisfies (1) given

knowledge of the DN map (4). The inverse conductivity problem was first posed in this

theoretical form in 1980 by Alberto Calderón [37], who formulated the problem for dimensions

2 and higher. This will be discussed in further detail in §1.2.
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1.1.4. The challenges of EIT. The EIT problem turns out to be quite mathemati-

cally challenging for a number of reasons. First, the EIT problem is nonlinear in the sense

that the forward mapping σ 7→ Λσ is nonlinear, since the potential u depends on the con-

ductivity σ.

Second, the boundary measurements depend non-locally on the internal structures of the

domain. As a comparison, in X-ray CT scanning for example, X-ray beams pass through

the domain in straight lines with minimal scattering, and the attenuation of X-ray energy

depends linearly on the density of the material in the one-dimensional path of the beam.

This is quite different from EIT, in which the path of the electrical current depends on

the conductivity distribution in the domain. The current therefore takes a complicated path

through the domain, and (in real-world practical experiments) diffuses into three dimensions,

so that a change in conductivity at any given point inside the object can cause changes in

surface measurements at a large number of domain boundary points [45, 86].

A variety of practical problems also exist, relating to the electrical properties of the

physical domain and imperfections of electronics and other hardware, as described in [3],

for example. We are often interested in conductivity changes deep inside the interior of the

domain, but only a relatively small amount of the applied current penetrates deeply. In

medical applications this shortcoming is made worse by the presence of resistive tissues such

as bone, lungs, or fat. EIT also tends to be highly sensitive to any imperfections in hardware

or difficulties with electrode contact.

Finally and most importantly, the inverse conductivity problem is severely ill-posed in

the sense of Hadamard. Hadamard gave three conditions for a problem to be well-posed:

(1) A solution must exist.

(2) The solution must be unique.
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(3) The solution must depend continuously on the input data.

The EIT problem is ill-posed in the sense that condition (3) is not satisfied: the solution

does not depend continuously on the data. More precisely, the forward map σ 7→ Λσ does

not have a continuous inverse. This means that large changes in the internal conductivity

distribution may result in negligible changes in the boundary measurements and therefore the

DN map. Therefore, for any given finite measurement precision, there will exist distinct (and

sometimes very different) conductivity distributions that lead to indistinguishable boundary

current and voltage measurements. This can be made precise (as was done by Alessandrini

in [4]) by showing that for any δ > 0, C > 0, there exist σ1, σ2 such that

‖Λσ1
− Λσ2

‖H1/2(Ω),H−1/2(Ω) < δ,

but

‖σ1 − σ2‖L∞(Ω) > C.

The severe ill-posedness of EIT leads to many challenges in both the design of EIT systems

as well as the theoretical development and application of reconstruction algorithms.

1.2. LITERATURE REVIEW

We now present the highlights of previous theoretical and computational work in electrical

impedance tomography, spanning nearly four decades from the date of this writing.

1.2.1. The roots of EIT. Alberto Calderón, whose background was in civil engi-

neering as well as mathematics, was motivated by the potential application of the inverse

conductivity problem to identify petroleum deposits in geological media. In 1980, in a short

paper that is now hailed as the work responsible for launching the mathematical study of
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EIT, Calderón asked whether the conductivity distribution σ of a domain could be uniquely

determined from knowledge of the DN map [37]. In other words, is the DN map injective:

does Λσ1
= Λσ2

imply σ1 = σ2? Furthermore, if this is true, how does one then determine σ?

This is the inverse conductivity problem, which would also come to be known as Calderón’s

problem.

Calderón was able to prove the injectivity of a linearized version of the inverse conduc-

tivity problem, in which we assume σ is a small perturbation from a constant throughout

the Lipschitz domain Ω ⊂ R
n, n ≥ 2, so that σ = 1 + η where η is small. He accomplished

this by first introducing the quadratic form of the DN map,

Qσ(φ) =

∫

Ω

σ|∇u|2 dx.

He then showed the injectivity of the Fréchet differential,

(6) dQσ(φ)
∣

∣

σ=1
=

∫

Ω

δ|∇u|2dx,

at the constant conductivity σ = 1. This is equivalent to showing the injectivity of the DN

map under the linearization assumption.

Importantly, Calderón’s proof invokes a set of complex exponential solutions to Laplace’s

equation,

u±(x) = eπi(z·x)±π(a·x),

where a and z are vectors in R
n such that |a| = |z| and a · z = 0. These solutions grow

exponentially in some directions and decay exponentially in others. Solutions of this type,

which are known as complex geometrical optics (CGO) solutions (a term which arises due
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to similarities to geometrical optics solutions arising in WKB approximations), would be

invoked in various forms in many later works on the inverse conductivity problem.

CGO solutions first appeared in [59], a 1966 paper by L.D. Faddeev, whose motivation

was quantum scattering theory. Faddeev constructed exponentially growing solutions to

a Schrödinger equation in a multidimensional generalization of the 1-D Gelfand-Levitan

method for inverse scattering. CGO solutions allow the application of a type of nonlinear

Fourier analysis, in which we may construct custom-built nonlinear Fourier transforms to

solve a wide variety of inverse problems. The methods involved have today become an

essential toolkit in the study of inverse problems (see [179] for a list of applications using

CGO solutions of the Schrödinger equation).

Calderón uses his CGO solutions to show that if (6) vanishes for all harmonic u, then

δ = 0, and so dQσ(φ)
∣

∣

σ=1
is injective. Additionally, Calderón provided an explicit method

to approximate σ under the linearization assumption, which involves finding a formula for

the approximate Fourier transform of η and then applying an inverse Fourier transform.

This seminal work did not, however, fully answer the central question of whether the DN

map is injective. Calderón humbly states, “This we are yet unable to do, and is, as far as we

know, an open problem.” He goes on to say that if the Fréchet differential about σ = 1 had

a closed range, we could conclude that the DN map itself is injective in some neighborhood

of σ = 1, but this is unfortunately not the case, and so “the desired conclusion cannot be

obtained in this fashion” [37].

1.2.2. Continuing theoretical developments. Calderón’s work opened the door

for decades of further theoretical work on the existence and uniqueness of solutions to the

inverse conductivity problem. The following is a summary of these foundational theoretical

developments which have shaped the modern study of EIT and other inverse problems.
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Boundary determination. In 1984, R. Kohn and M. Vogelius gave a proof that boundary

values of σ could be uniquely determined from knowledge of Λσ in dimensions n ≥ 2, provided

Ω ∈ C∞ is bounded, and σ ∈ L∞(Ω), σ > 0 in Ω, with σ ∈ C∞ in some neighborhood of ∂Ω

[113]. The following year, the same authors showed that the results could be extended to

piecewise real-analytic conductivities, and that interior values of σ could be determined in

the special case of a layered structure with σ ∈ C3(Ω) [114]. J. Sylvester and G. Uhlmann

would later provide an explicit reconstruction method for σ on ∂Ω under the assumption

that σ ∈ C∞(Ω) [176].

Conductivities in Dimensions n ≥ 3. The ability to obtain σ on ∂Ω was a major theoreti-

cal advancement, but this result did not fully answer Calderón’s original question. Spanning

two works published in 1986 and 1987, Sylvester and Uhlmann provided the first global

uniqueness theorems showing the injectivity of the DN map. Provided ∂Ω ∈ C∞, they

showed uniqueness for 2-D near-constant isotropic conductivities in [173], and for more

general isotropic σ ∈ C∞(Ω) in dimensions n ≥ 3 in [175]. These results relied on the

construction of CGO solutions of the conductivity equation that for large frequencies had

behavior similar to the exponential solutions used by Calderón (as explained in [179]).

In 1988, A. Nachman, J. Sylvester, and G. Uhlmann extended the results in dimensions

n ≥ 3 to σ ∈ C1,1(Ω) in [136]. The same year, Nachman used the CGO solutions provided in

[175] to give the first general reconstruction procedure in [137], and also relaxed the boundary

smoothness to ∂Ω ∈ C1,1. A similar result was provided independently by R.G. Novikov in

[144]. These results were extended by Giovanni Alessandrini in 1990 to Lipschitz domains,

in a paper which also included a treatment of anisotropic conductivities [5].

Planar conductivities. For several years a global uniqueness result for dimension n = 2

remained elusive. To see why the problem in 2 dimensions is more difficult, consider the
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following. Since the DN map is a pseudo-differential operator of order 1, it therefore has a

Schwartz kernel. In n dimensions, the Schwartz kernel of the DN map is a distribution of

2(n − 1) variables, but σ is a function of n variables. Therefore the problem in dimensions

n ≥ 3 is overdetermined while the 2-D case is not so. This is explained in detail in [177], for

example.

The first 2-D global uniqueness result was provided by Nachman in 1996. Nachman’s

reconstruction method is indeed the basis for the work presented here and will be described

in detail later; here we present a few essential details. In this seminal work, Nachman gave

a constructive proof showing the injectivity of the DN map for 2-D isotropic C2 conductiv-

ities in Lipschitz domains [138]. The proof involves the transformation of the conductivity

equation into a Schrödinger equation to which CGO solutions are constructed to perform

a nonlinear Fourier analysis, hinging on the construction of the scattering transform from

the EIT data. This integral transform can be thought of as a nonlinear Fourier transform

custom-built for the inverse conductivity problem. The scattering transform is then used as

a parameter in a PDE involving the ∂̄ (D-bar) operator. This technique is known as the

D-bar method, and a similar method was first introduced by C.S. Gardner, et al in 1967 in

[72] for use in solving the KdV equation. D-bar methods were later used as the foundation

for the inverse scattering method to solve nonlinear evolution equations by R. Beals and R.

Coifman in [20].

Further theoretical developments concerning conductivities in 2-D included the work of

R. Brown and G. Uhlmann in 1997, who showed uniqueness results for σ ∈ C1(Ω) in [35].

Brown and Uhlmann also used D-bar methods, but employed a technique which involved

rewriting the conductivity equation as a first-order system rather than using a second-order

Schrödinger equation (which was in fact based on a method used by Beals and Coifman in
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[21].) Later, results were further extended to non-smooth conductivities σ ∈ L∞(Ω) by K.

Astala and L. Päivärinta in 2006 in [13], where the authors provide a constructive uniqueness

proof based on transforming the conductivity equation to the Beltrami equation and then

constructing CGO solutions to the Beltrami equation.

Complex conductivities. There has also been theoretical work on the inverse conductivity

problem with complex conductivities, known as admittivities, of the form

(7) γ(z) = σ(z) + iωǫ(z), z ∈ Ω,

where σ is the real-valued conductivity, ω is the frequency of the applied electromagnetic

wave, and ǫ is the electric permittivity of the medium encompassed by the domain Ω. This

work was pioneered in 2000 by E. Francini in [63], who showed that admittivities γ of the form

(7), with σ ∈ W 2,∞(Ω) and small permittivity ǫ ∈ W 2,∞(Ω), where Ω ⊂ R
2 with Lipschitz

boundary, can be uniquely determined from the DN map. Francini’s proof was based on D-

bar methods, but was not completely constructive, since it lacked a connection between the

DN map and the voltage data, and so did not contain the complete set of equations necessary

to reconstruct the admittivity. In 2012, the gaps were filled in by S.J. Hamilton, et al in

[76], who provided a complete direct reconstruction method for admittivities γ ∈ W 2,∞(Ω)

in bounded, simply connected Lipschitz domains in R
2. Additionally, a non-constructive

proof that does not require small permittivity ǫ can be found in [36].

1.2.3. Practical reconstruction algorithms and computation. While an ab-

stract theoretical foundation for the inverse conductivity problem provides us with necessary

information about what is possible to achieve, the problem was originally motivated by prac-

tical applications to real-world situations. Researchers the world over continue to seek out
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the best ways to apply the theoretical knowledge developed over the past decades to pro-

duce working computational algorithms for use in engineering and biomedical applications.

The goal of any computational reconstruction algorithm is to obtain an approximation to

the conductivity σ on the interior of an object using a finite number of noisy finite-precision

boundary measurements. The primary numerical methods that have been developed to solve

the inverse conductivity problem fall into five basic categories: linearization-based methods,

nonlinear iterative algorithms, layer stripping algorithms, statistical inversion techniques,

and D-bar methods. We will next provide a brief overview of these methods along with some

commentary on each.

Linearization. Linearization methods are based on the assumption that the conductivity

is some small perturbation from a constant or other known distribution so that the bound-

ary data depends linearly on conductivity. The linearized problem is then solved using some

(typically noniterative) regularized inversion method. One obvious drawback to these linear

approximation techniques is that the approximation is only valid when the actual conduc-

tivity is a small deviation from the distribution used as reference.

As previously discussed, Calderón provided such a method in his original 1980 paper [37].

Computational work based on Calderón’s method applied to simulated practical data was

described in the late 1980s and early 1990s in [40, 91–93], and the method was applied to

experimental data in 2008 in [23] and [31] and extended to elliptical domains in [134]. In 1984,

D.C. Barber and B.H. Brown provided what would come to be known as the Barber-Brown

backprojection method in [16], with further developments based on this method described

in [22] and [155]. Various noniterative Newton methods have been developed, including the

now widely-used NOSER algorithm provided in [41], which is based on one step of a Newton-

Raphson method. Extensions of NOSER and other one-step Newton methods are described
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in [25, 130, 131]. Additionally, an integral identity first described by Calderón was used in

[6] to reduce the nonlinear inverse problem to a moment problem.

Iterative algorithms. Various Newton-type nonlinear iterative techniques have also been

widely used in EIT. One of the most popular methods involves reformulating the inverse

problem as a regularized least-squares minimization problem as in [28, 27, 54–56, 100, 192].

In these methods, a weighted least-squares error functional F (σ) is formed with the hope of

finding the conductivity σ which minimizes F and therefore fits the boundary measurements

in a least-squares sense. The problem is ill-posed and is therefore regularized, often by

adding a Tikhonov-type regularization functional as an extra term. It is then typically solved

using multiple iterations of a quasi-Newton method. As an alternative, algorithms involving

variational equation-error formulations have appeared in [112, 115, 191, 192], which are

based on the minimization of a regularized equation-error functional. While these methods

do provide accurate conductivity values in many cases, speedy convergence is not guaranteed,

and the algorithms may be prohibitively slow.

Layer-stripping. Layer-stripping methods were described by E. Somersalo et al in 1991 in

[168], and were further developed by Sylvester shortly thereafter in [174]. The basis for these

direct nonlinear techniques can be understood as follows. Boundary voltages corresponding

to the highest spatial frequency are used to find the conductivity distribution within some

thin layer of the boundary. This information is then used to synthesize the voltages on a

subsurface close to the boundary, by solving a Riccati-type nonlinear differential equation.

We then imagine that the outermost layer has been stripped off the domain, and the con-

ductivity of a second thin layer near this new boundary may then be computed. The process

repeats inductively, and the conductivity is found layer-by-layer from the outside in. While

this method is computationally fast and has been shown to provide good approximations
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for boundary conductivities, it proves to be highly unstable in the presence of noise and is

therefore unsuitable for experimental data.

Statistical inversion methods. In 1997, Somersalo et al described in [169] a nonlinear in-

version scheme for EIT based upon Bayesian statistics; extensions and applications of this

method have since appeared in [116, 98, 149, 171, 188]. These algorithms reformulate the

inverse problem into a type of statistical inference, where all known and unknown quantities

involved in the problem are modeled as random variables. The goal is to estimate the poste-

rior probability density distribution of the unknown variables, from which estimates for the

conductivity may be computed along with associated a posteriori uncertainties. Estimates

for the conductivity can be found by computing the conditional expectation, which requires

integration of the posterior probability density. This is typically accomplished via Markov

chain Monte Carlo sampling methods. While methods based on statistical inversion have

been shown to provide promising results, as with the Newton-like iterative techniques these

Bayesian algorithms tend to involve great computational expense and may be too slow to be

of clinical use.

D-bar methods. Regularized D-bar methods are both nonlinear and direct (noniterative).

As of this writing, they are in fact the only direct methods that allow for a true regulariza-

tion strategy, which makes them noise-robust and therefore suitable for use with real-world

data. Since D-bar methods are in fact the subject of this dissertation, we will explain the

mathematical foundation and computational steps in detail later; here we present only a

history of advancements.

The D-bar method is an implementation of the previously mentioned 1996 reconstruction

method of A. Nachman in [138], in which he constructively proved the injectivity of the

Dirichlet-to-Neumann map in the case of W 2,p, p > 1 conductivities in 2 dimensions. The
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first numerical implementation of Nachman’s method was provided by S. Siltanen, J.L.

Mueller, and D. Isaacson in [163], in which the authors apply the method to high- and

low-contrast C∞ radially symmetric conductivities, while noting that the implementation

would certainly apply to conductivities lacking radial symmetry. In 2002, Mueller, Siltanen,

and Isaacson successfully applied the algorithm to a noise-free numerically simulated chest

phantom with elliptical organ boundaries representing a heart and two lungs in [133], and a

regularization scheme was given by Mueller and Siltanen in [132]. Around this same time,

in [110] and [106], K. Knudsen (along with A. Tamasan in the first work) implemented the

related method of Brown and Uhlmann in [35], in which C1 conductivities are permissible.

In 2004, Knudsen, Mueller, and Siltanen also demonstrated the computational efficiency of

the D-bar algorithm applied to a more general set of problems using a 2-grid method in

[109].

Further developments in D-bar methods for EIT include a variety of computational im-

provements and extensions. The method was first applied to experimental data in the 2004

paper [94] by Isaacson et al; this data was collected on a saline-filled tank containing agar

heart and lung phantoms. In 2006, the same authors demonstrated the application of the

method to cardiac imaging in the case of actual human data in [95]. A study of the method

applied to discontinuous conductivities appeared in [107], and the same authors provided a

regularized D-bar method via low-pass filtering for EIT in 2009 in [108]. The method was

extended to non-circular chest-shaped domains in [135] (2009), and an improved numeri-

cal approximation to the scattering transform (the nonlinear Fourier transform used in the

method) was provided in [50] (2010).

More recent computational advancements in D-bar methods for EIT include the fol-

lowing. Implementations for complex admittivities appeared in [76, 78] (2012, 2013), and
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reconstructions of both conductivity and admittivity from human chest data appeared in

[84]. A method for anisotropic conductivities appeared in [77] (2014), the requirement that

the conductivities be constant near the boundary was removed in [164] (2014); and in [80]

(2014) a method to preserve edges within EIT images was introduced.

1.3. NACHMAN’S METHOD OF RECONSTRUCTION

In this section we present a discussion of the theoretical formulation in infinite precision

of the D-bar method for the inverse conductivity problem, which is due to A. Nachman’s

constructive global uniqueness proof in [138]. This method is the focus of the computational

advancements detailed in this dissertation. Other helpful resources that include additional

explanation and development of the theory include [129, 162].

1.3.1. Problem statement. We assume Ω ⊂ R
2 is a bounded and simply-connected

Lipschitz domain, we associate (x, y) ∈ R
2 with z = x+ iy ∈ C, and assume σ(z) ∈ W 2,p(Ω)

for some p > 1 is the isotropic conductivity distribution within Ω, where for arbitrary

U ⊂ R
n, ρ ∈ [1,∞], k ≥ 0 we define the Sobolev space

W k,ρ(U) := {f ∈ Lρ(U)|∂αf ∈ Lρ(U), |α| ≤ k}.

We further assume σ is constant in some neighborhood of ∂Ω, and 0 < c ≤ σ(z). The

mathematical formulation of the inverse conductivity problem was provided previously in

§1.1.3, but is repeated here for the reader’s convenience. Our goal is to recover the unknown

σ in the generalized Laplace equation

(8) ∇ · (σ∇u) = 0 in Ω,
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where u is the electrical potential. Boundary voltages and current densities are modeled by

the DN map:

(9) Λσ : f 7→ σ
∂u

∂ν

∣

∣

∣

∣

∂Ω

,

where f ∈ H1/2(∂Ω) and j ∈ H−1/2(∂Ω) are the infinite-precision boundary voltage and

current density measurements, respectively.

1.3.2. Transformation to the Schrödinger equation. We begin with a change

of variables

q(z) =
∆
√

σ(z)
√

σ(z)
, ũ(z) =

√

σ(z)u(z)

that transforms (8) into the 2-D Schrödinger equation:

(10) −∆ũ(z) + q(z)ũ(z) = 0 in Ω.

For simplicity, assume σ ≡ 1 near ∂Ω. Then the Schrödinger potential q satisfies q = 0

within this same neighborhood, so we can smoothly extend σ = 1, q = 0, and therefore (10),

to all of R2.

We next introduce a complex frequency parameter k = k1 + ik2. The D-bar method

hinges on finding complex geometrical optics (CGO) solutions ψ(z, k) to

(11) −∆ψ(z, k) + q(z)ψ(z, k) = 0 in R
2.

L.D. Faddeev first introduced these exponentially-behaving solutions to (11) in [59]. Nach-

man proved the existence of CGO solutions to (11) three decades later: by Theorem 1.1 in
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[138], for any k ∈ C\{0} there exists a unique solution ψ(z, k) satisfying

(12) e−ikzψ(z, k)− 1 ∈ W 1,p̃(R2), p̃ > 2,

so that ψ(z, k) is asymptotic to eikz as |z| → ∞. The behavior of ψ(z, k) as |z| → ∞ can be

discerned as follows:

ψ ∼ eikz = ei(k1+ik2)(x+iy)

= e−(k1y+k2x)ei(k1x−k2y),

indicating an exponential decay / growth condition in the directions ±(x, y) and periodicity

in the orthogonal directions ±(x,−y). Due to symmetry, analogous behavior results if we

hold z fixed and look at ψ(z, k) as |k| → ∞ over the k-plane.

It will be useful to define the function

(13) µ(z, k) := e−ikzψ(z, k).

Since µ satisfies µ(z, k) − 1 ∈ W 1,p̃(R2), the Sobolev embedding theorem implies that µ ∈

L∞(R2) ∩ C(R2), and clearly µ(z, k) is asymptotically close to 1 as |z| → ∞.

1.3.3. The ∂̄ and ∂ operators. We now define the D-bar (∂̄) operator for which

Nachman’s algorithm is named, as well as its cousin, the ∂ operator, which together are

sometimes called the Wirtinger derivatives. Given z = x+ iy ∈ C, we define

∂̄z =
∂

∂z̄
:=

1

2

(

∂

∂x
+ i

∂

∂y

)

,

∂z =
∂

∂z
:=

1

2

(

∂

∂x
− i ∂

∂y

)

.
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The action of the ∂̄ operator on a function gives us information about the function’s

differentiability. Recall that a complex-valued function f(x + iy) = u(x, y) + iv(x, y) is

analytic if and only if f satisfies the Cauchy-Riemann conditions:

(14)
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

If f satisfies (14), we may therefore compute

∂̄zf =
1

2

(

(

∂u

∂x
+ i

∂v

∂x

)

+

(

i
∂u

∂y
− ∂v

∂y

)

)

=
1

2

(

(

∂u

∂x
− ∂v

∂y

)

+ i

(

∂v

∂x
+
∂u

∂y

)

)

= 0.

Since the converse is also true, we have that f is analytic if and only if ∂̄zf = 0.

It is also easy to verify that the ∂ and ∂̄ operators have the expected product, quotient,

and chain rules; and the Laplacian operator ∆ can be written as

(15) ∆ =
∂2

∂x2
+

∂2

∂y2
=

(

∂

∂x
+ i

∂

∂y

)(

∂

∂x
− i ∂

∂y

)

= 4∂̄z∂z.

1.3.4. A Lippmann-Schwinger equation for µ. We next derive a Lippmann-

Schwinger type integral equation for which µ is a solution. This integral equation will later

be differentiated to obtain the D-bar equation, which is the main equation in the method.

We begin by rewriting the Schrödinger equation (11) to obtain a PDE for µ involving

the ∂ and ∂̄ operators. From (11), and using (15) and ψ(z, k) = eikzµ(z, k), we compute:

q(z)ψ(z, k) = ∆ψ(z, k)

⇐⇒ q(z)eikzµ(z, k) = 4∂∂̄(eikzµ(z, k))

= 4∂
(

µ(z, k)∂̄eikz + eikz∂̄µ(z, k)
)
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= 4∂(eikz∂̄µ(z, k))

= 4(∂eikz)(∂̄µ(z, k)) + eikz∂∂̄µ(z, k)

= 4

(

1

2

(

ikeikz − i(ikeikz)
)

(∂̄µ(z, k)) + eikz∂∂̄µ(z, k)

)

= eikz4ik∂̄µ(z, k) + eikz4∂∂̄µ(z, k).

Canceling a factor of eikz on each side of the equation and rearranging for convenience

therefore yields

(16) Lkµ(z, k) = −q(z)µ(z, k),

where Lk := −4(∂∂̄ + ik∂̄) = −(∆ + 4ik∂̄).

Next define the Faddeev Green’s function

(17) gk(z) :=
1

(2π)2

∫

R2

eiz·ξ

|ξ2|+ 2k(ξ1 + iξ2)
dξ,

where ξ = (ξ1, ξ2) ∈ R
2 and z · ξ = xξ1 + yξ2. The function gk, introduced by L.D. Faddeev

in [59], is a fundamental solution for the operator Lk, so that Lkgk(z) = δ(z). This can be

seen with a few straightforward computations, outlined as follows. We define the Fourier

transform F and its inverse F−1 by

(Ff)(ξ) = f̂(ξ) :=

∫

R2

e−iz·ξf(z)dz, (F−1f̂)(z) = f(z) :=
1

2π2

∫

R2

eiz·ξf̂(ξ)dξ.

It is clear that gk can be written as gk(z) = F−1
(

1
P (ξ)

)

, where P (ξ) = (|ξ|2 + 2k(ξ1 + iξ2)).
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Also, we can readily obtain

(18) F(Lkf)(ξ, k) = P (ξ)f̂(ξ, k),

by observing that F(−∆f(z, k))(ξ) = |ξ|2f̂(ξ, k) and F(∂̄f(z, k)) = 1
2
(iξ1 + i2ξ2)f̂(ξ, k).

In this formulation, P (ξ) is the symbol of the operator Lk, so by standard Fourier theory

we have that gk(z) = F−1
(

1
P (ξ)

)

is a fundamental solution. This can be seen explicitly by

applying inverse Fourier transforms to (18):

f(z, k) = F−1

((

1

P (ξ)

)

F(Lkf)(ξ)

)

(z)

=

(

F−1

(

1

P (ξ)

)

∗ Lkf(ξ)

)

(z)

= (gk ∗ Lkf)(z, k) = (Lkgk ∗ f)(z, k).

See also [162] for some useful properties of the Faddeev Green’s function gk.

It is now straightforward to see that a solution to the Lippmann-Schwinger type integral

equation

(19) µ− 1 = −gk ∗ (qµ)

is a solution to (16), since

Lk(µ− 1) = Lk(−gk ∗ (qµ))

=⇒ Lkµ = −(Lkgk) ∗ (qµ) = −δ ∗ (qµ) = −qµ,

and furthermore it can be verified that µ will satisfy µ(z, k)− 1 ∈ W 1,p̃(R2).
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The conductivity σ(z) can be recovered directly from the solution µ(z, k). To see this,

substitute q(z) = ∆
√
σ/
√
σ and take k → 0 in the PDE (16) to yield

(20) ∆µ(z, 0) =
∆
√

σ(z)
√

σ(z)
µ(z, 0).

Then the asymptotic condition µ(z, 0)− 1 ∈ W 1,p̃(Rn) along with σ(z) ≡ 1 on R
2\Ω implies

lim
k→0

µ(z, k) =
√

σ(z),

and in fact it can be verified directly that

(21) µ(z, 0) =
√

σ(z)

is a solution to (20) satisfying the asymptotic condition µ(z, 0) − 1 ∈ W 1,p̃(Rn) as desired.

The rigorous proof in [138] of the relationship (21) takes into account the log |k| singularity

at k = 0 of the Faddeev Green’s function gk.

Our goal will therefore be to find the solution µ satisfying (19). It is not obvious, however,

from the above derivations how the solution µ relates to the measured EIT data encoded

in Λσ. The solution method, which establishes this link, involves several other intermediate

functions and equations, as outlined over the following pages.

1.3.5. Linking Λσ and ψ. In [138], Nachman established a connection between the EIT

data Λσ and the CGO solution ψ. This will involve several steps, the first of which is to

derive a close relationship between the DN map Λσ for the conductivity problem and the

DN map for the Schrödinger equation (10), Λq : H1/2(∂Ω)→ H−1/2(∂Ω), defined informally
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by

(22) Λq : f 7→ ∂ũ

∂ν

∣

∣

∣

∣

∂Ω

,

where ũ ∈ H1(Ω) is the unique (weak) solution to (10) satisfying the Dirichlet condition

ũ|∂Ω = f . From the change of variables ũ =
√
σu where u solves (8), we can compute

∂ũ

∂ν
=

∂

∂ν
(
√
σu) =

1

2
√
σ

∂σ

∂ν
u+
√
σ
∂u

∂ν
.

The assumption σ ≡ 1 in a neighborhood of ∂Ω implies ∂σ
∂ν
|∂Ω = 0, and furthermore ∂u

∂ν
|∂Ω =

Λσf , so we conclude that

Λqf =
∂ũ

∂ν

∣

∣

∣

∣

∂Ω

=
∂u

∂ν

∣

∣

∣

∣

∂Ω

= Λσf,

so that in fact for such σ we have

(23) Λq = Λσ.

The connection between Λσ and ψ|∂Ω comes in the form of a boundary integral equation,

which we derive in the remainder of this section.

The previously defined fundamental solution gk is closely related to the Faddeev Green’s

function Gk:

(24) Gk(z) := eikzgk(z).

A straightforward computation using (15) and (24) will reveal that −∆Gk(z) = δ(z).
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A solution to the Schrödinger equation (11) can be obtained by multiplying the Lippmann-

Schwinger equation (19) through by eikz to yield a similar equation for ψ:

(25) ψ(z, k)− eikz = −Gk ∗ (qψ) = −
∫

Ω

Gk(z − ζ)q(ζ)ψ(ζ, k) dζ,

where we recall that q = 0 outside of Ω so that we may restrict the domain of integration.

We next state a crucial theorem due to G. Alessandrini:

Theorem 1. (Alessandrini’s Identity [4]) For any two solutions v1, v2 ∈ H1(Ω) (along

with corresponding Schrödinger potentials q1, q2) to (−∆ + qj)vj = 0 in Ω, we have that

∫

Ω

(q1 − q2)v1v2dz =

∫

∂Ω

v1(Λq1 − Λq2)v2ds.

The application of Theorem 1 to (25) provides us with a direct link between the CGO

solution ψ and the DN map for the Schrödinger equation. To see this, choose v1 = Gk(z −

ζ), q1 = 0 (valid since −∆Gk(z − ζ) = 0 for all z 6= ζ), and set v2 = ψ, q2 = q = ∆
√
σ/
√
σ.

These substitutions into the left-hand side of Alessandrini’s identity gives us the right-hand

side of (25), so that application of the identity yields

ψ(z, k)− eikz = −
∫

Ω

Gk(z − ζ)q(ζ)ψ(ζ, k) dζ

=

∫

∂Ω

Gk(z − ζ)(Λ0 − Λq)ψ(ζ, k)ds(ζ).(26)

By Theorem 5 in [138], we may take z → ∂Ω in (26) so that the trace on ∂Ω of the

solution ψ satisfies the boundary integral equation

(27) ψ(z, k)
∣

∣

∂Ω
= eikz

∣

∣

∂Ω
− Sk(Λq − Λ0)ψ(z, k),
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where we define the Faddeev single-layer operator Sk for k 6= 0 by

(28) Skf(z) :=

∫

∂Ω

Gk(z − ζ)f(ζ)ds(ζ).

Then substituting Λq = Λσ and observing that q = 0 is consistent with σ ≡ 1 gives

(29) ψ(z, k)
∣

∣

∂Ω
= eikz

∣

∣

∂Ω
− Sk(Λσ − Λ1)ψ(z, k),

where Λ1 is the DN map corresponding to homogeneous conductivity σ ≡ 1 in Ω. We have

therefore established a direct link between the EIT data Λσ and the CGO solution ψ.

1.3.6. The scattering transform. Here we define the scattering transform t, which

is the very important nonlinear Fourier transform mentioned previously in §1.2.3, in its two

equivalent forms:

t(k) :=

∫

R2

eik̄z̄q(z)ψ(z, k) dz(30)

t(k) :=

∫

R2

ei(kz+k̄z̄)q(z)µ(z, k) dz(31)

One can readily see from (31) that due to the asymptotic behavior µ ∼ 1, we have that

t(k) ≈ q̂(k)
∣

∣

k=(−2k1,2k2)

for large |k|. Also observe that the scattering transform is nonphysical in the sense that it

has no real-world physical representation and cannot be measured directly in experiments.

We will see that the scattering transform contains the necessary information to recover the

conductivity σ(z).
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When written in the forms given in (30) and (31), there is no direct connection between

the EIT data Λσ and the scattering transform t. The connection is easy to see, however,

through another application of Alessandrini’s identity. This time let q1 = 0, v1 = eik̄z̄ (valid

since eik̄z̄ is harmonic), and keep v2 = ψ(z, k), q2 = q as in the derivation of (26). Then,

observing that q is compactly supported and using Λσ = Λq, Theorem 1 applied to (30)

yields

(32) t(k) =

∫

∂Ω

eik̄z̄(Λσ − Λ1)ψ(z, k) ds(z).

As written in (32), the scattering transform contains an instance of ψ(z, k)|∂Ω, which itself

may be written in terms of Λσ as in (29), so that the EIT data appears twice in this boundary

integral formulation of t.

1.3.7. The D-bar equation. We now use t as a parameter in a special PDE, the

solution to which yields the intermediate function µ(z, k) which will then give us σ directly

through (21). The derivation is fully explained by Nachman in the proof for Theorem 2.1

of [138], and requires careful differentiation of the Lippmann-Schwinger equation (19) with

respect to k̄ to obtain the D-bar equation:

(33) ∂̄kµ(z, k) =
t(k)

4πk̄
e−i(kz+k̄z̄)µ(z, k).

Theorem 4.1 of [138] guarantees that (33) has a unique solution with µ(z, k)−1 ∈ Lρ∩L∞(C),

where ρ > 2. Let βk = (πk̄)−1, and observe that ∂̄kβk = δ(k), making βk a fundamental

solution for the ∂̄k operator. Consider the generalized Lippmann-Schwinger equation

(34) µ− 1 = −βk ∗ (rµ̄),
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where

rk(z) :=
t(k)

4πk̄
e−i(kz+k̄z̄).

Application of ∂̄k to both sides of (34) reveals that any solution to (33) satisfying µ(z, k)−1 ∈

Lρ ∩ L∞(C) will also satisfy (34). We may also write (34) in the following form, which is a

Fredholm integral equation of the second kind:

(35) µ(z, k) = 1 +
1

4π2

∫

R2

t(k′)

(k − k′)k̄′ e
−i(kz+k̄z̄)µ(z, k′)dk′.

As shown in [138], (35) is uniquely solvable at every fixed z ∈ R
2, and in practical compu-

tations it is an approximation of (35) which we solve to obtain an approximation of µ(z, k).

Once (35) is solved for µ(z, k), we obtain the desired conductivity distribution σ(z) via

the algebraic relationship (21).

1.3.8. Summary of the method. In summary, the method of A. Nachman is as fol-

lows. Given infinite-precision boundary voltage and current density data Λσ,

(1) Solve the boundary integral equation (29) to obtain the CGO solution ψ|∂Ω.

(2) Use ψ|∂Ω to compute the nonphysical scattering transform t(k) via the boundary-

integral formulation (32).

(3) Use the scattering transform t as a parameter in the D-bar integral equation (35).

(4) Solve the D-bar integral equation (35) to obtain the CGO solution µ(z, k).

(5) Obtain σ(z) from µ(z, k) using the algebraic relationship (21).
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CHAPTER 2

A REAL-TIME D-BAR ALGORITHM

This chapter contains a detailed overview of our fast computational implementation of the

D-bar algorithm for 2-D EIT, which represents the first D-bar algorithm to run in real time.

The work contained in this chapter was published as “A Real-Time D-bar Algorithm for 2-D

Electrical Impedance Tomography Data” in Inverse Problems and Imaging (IPI) in 2014, by

the American Institute of Mathematical Sciences (AIMS). See [9] for the original published

version. The author has obtained proper approval from AIMS (granted via email) to include

in this dissertation a modified version of this previously published work. Additionally, some of

the results included here were presented at the 15th International Conference on Biomedical

Applications of Electrical Impedance Tomography and were published in the conference

proceedings from this event (see [8]).

The reconstruction algorithm is based on Nachman’s constructive global uniqueness proof

[138] along with subsequent theory and implementations in [163, 107, 132, 94, 95, 135, 50,

108]. We give results based on experimental human data collected under proper approvals

from the International Research Board at CSU.

2.1. MOTIVATION AND OVERVIEW

EIT holds great promise as a bedside imaging tool for patients in intensive care. Ac-

quisition and computation of time-dependent image sequences is known as functional Elec-

trical Impedance Tomography (f-EIT). Functional conductivity images have been used for

monitoring pulmonary perfusion [34, 67, 166], determining regional ventilation in the lungs

[69, 66, 183], detecting extravascular lung water [119], and evaluating shifts in lung fluid in

congestive heart failure patients [64]. Regional results have been validated with CT images
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[67, 69, 45, 166] and radionuclide scanning [118] in the presence of pathologies such as atelec-

tasis, pleural effusion, and pneumothorax. However, the solution of the inverse problem in

real-time poses a significant challenge. D-bar methods have been generally regarded as com-

putationally intensive, but in this chapter, we show that through parallelization and careful

optimization of the computational routines, a fast implementation is capable of providing

real-time images from the pairwise current injection system at CSU. For details regarding

technical specifications and performance of the ACE1 EIT system at CSU, see [128].

For the ACE1 system, the frame rate of data collection is dependent on the number of

electrodes used and the sample rate, which is the number of samples collected to obtain each

demodulated voltage measurement (the demodulation routine uses a least mean-squares filter

to obtain voltage measurements from the raw data). The frame rates for various numbers of

electrodes and sample rates are shown in Table 2.1, as reported in [127]. For the purposes

Table 2.1. Frame rates (in frames/s) for the pairwise current injection sys-
tem at CSU for various numbers of electrodes and measurement sample rates,
as reported in [127].

Number of Electrodes 256 Samples 512 Samples 1024 Samples

16 66.4 52.6 31.8
17 62.1 46.8 29.7
18 59.0 44.3 28.3
19 56.0 41.8 26.8
20 53.2 39.8 25.6
21 50.9 37.8 24.3
22 48.3 36.2 22.8
23 45.8 34.5 22.1
24 44.3 33.3 21.1
25 42.8 31.7 20.4
26 40.9 30.7 19.6
27 39.2 29.5 18.9
28 37.9 28.5 18.0
29 36.7 27.3 17.4
30 35.5 26.5 16.7
31 33.9 25.6 16.2
32 33.2 24.9 16.0
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of this dissertation, we define real-time to mean that the algorithm runtime is less than the

data acquisition obtained with 32 electrodes at a sample rate of 1024 samples per voltage

measurement. A fast implementation in MATLAB on a 12 core Mac Pro with two 2.66

GHz 6 core Intel Xeon processors and MATLAB’s Parallel Computing Toolbox is capable of

computing reconstructions at less than this data acquisition rate of 16 frames/s, or 0.0625

s/frame. This demonstrates the feasibility of CGO methods for real-time reconstructions.

In fact, we consider two options for the parallel computations. Ideally, in real-time recon-

structions, data is collected, demodulated, and fed directly to the reconstruction algorithm,

one frame at a time. In this configuration, only the loop over the z-values in the solution of

the D-bar equation is trivially parallelizable. This accounts for over 95% of the computation

time and can be used to obtain real-time reconstructions at a rate of 0.0621 s/frame on 7

cores on a coarse mesh of 562 elements, as reported in §2.4. This approach is structured as

shown in Algorithm 1.

If a time delay of approximately one second is acceptable to the user, the algorithm can

be parallelized over the frames. In this configuration, the data is collected and sent to a

buffer from which multiple frames are sent to the reconstruction algorithm in batch. This

approach results in an algorithm that is over 99% parallelizable, and the frame rate is even

faster. As shown in §2.4, reconstructions were computed at a rate of 0.0215 s/frame on 64

cores or 0.0578 s/frame on 12 cores on a mesh of 1931 elements. The computational method

for this approach is shown in Algorithm 2.

2.2. OUTLINE OF THE FAST IMPLEMENTATION

We now discuss the computational steps for the fast implementation in detail, including

numerical approximations of various functions and operations, and numerical solution of
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the D-bar equation. As described in [129], a finite-dimensional matrix approximation Lσ to

the DN map Λσ is formed by first computing the discrete ND map Rσ and then forming

its inverse. Denote by N the number of linearly independent current patterns and by L

the number of electrodes. For bipolar current patterns that skip a electrodes as applied by

ACE1, N = L − gcd(L, a + 1). To compute Rσ, first orthonormalize the matrix of bipolar

current patterns to obtain the set {Jm
l }, m = 1, . . . , N and l = 1, . . . , L, and then use the

proper change-of-basis to the voltage matrix to arrive at the set {V m
l }. Then the ND matrix

can be approximated by

Rσ(m,n) ≈
L
∑

l=1

∆θ

A
Jm
l V

n
l =

∆θ

A
V⊤J,

where A is the area of an electrode and ∆θ is the angular distance between electrodes. Since

the voltages sum to zero, we can then compute Lσ = R−1
σ .

The scattering transform is computed for |k| ≤ R, where R is chosen empirically, which

constitutes a regularization strategy as shown in [108]. For the fast implementation, we

utilize a linearized approximation to the scattering transform, denoted by texp, which is

defined by replacing ψ|∂Ω by its asymptotic behavior:

(36) texp(k) :=

∫

∂Ω

eikz̄(Λσ − Λ1)e
ikzds.

This approximation was first introduced in [163] and was later studied in [107] where it

was shown that the D-bar equation (33) with t(k) replaced by texp truncated to a disk of

radius R in the k-plane has a unique solution which is smooth with respect to z, and the

reconstruction is smooth and stable. Further, it was shown that no systematic artifacts

are introduced when the method with texp is applied to piecewise continuous conductivities.
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Since difference images from a reference frame are being reconstructed here, we implement

the scattering transform texpdif :

(37) texpdif (k) :=

∫

∂Ω

eikz̄(Λσ − Λσref
)eikzds,

introduced in [95], in which the DN map for the conductivity σ = 1 is replaced by that of a

reference frame Λσref
.

The functions eikz and eik̄z̄ are expanded in the orthonormalized current pattern basis.

The coefficients of the expansions of the functions eikz|∂Ω and eik̄z̄|∂Ω in the orthonormalized

current pattern basis vectors are computed in the setup phase of the algorithm, and are

denoted by ck = [c1(k), . . . , cN(k)]⊤ and dk, respectively, where

ck = J⊤ ∗ exp(ik~z)⊤ and dk = J⊤ ∗ exp(ik̄~̄z)⊤.

Then, denoting the discrete inner product over two vectors u and v of length L by (u, v)L,

texpdif (k) ≈
N
∑

j=1

N
∑

m=1

cm(k)dj(k)(J j, (Λσ − Λσref
)Jm)L

≈
N
∑

j=1

N
∑

m=1

cm(k)dj(k)(Lσ(j,m)− Lσref
(j,m)).

The fast evaluation of this formula is accomplished using inner products and vector opera-

tions.

A single grid and multigrid (2-grid) method were introduced in [109] for the fast compu-

tation of Lippmann-Schwinger type equations that arise in D-bar methods for EIT, closely

based on the method of Vainikko [180]. The convolutions are computed as FFTs, and the

solution of the resulting linear system by a matrix-free method, such as GMRES [154]. For
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difference images, and in particular the data sets considered here, the frame-to-frame change

in the data is sufficiently small that the method nearly always converges in one inner and

one outer iteration of GMRES. In such cases, the 1-grid method is significantly faster than

the 2-grid method described in [109].

To apply this method, we seek the solution µexp
R to (35) with t = texp:

(38) µexp
R (z, k) = 1 +

1

(2π)2

∫

|k|≤R

texp(k′)

(k − k′)k̄′ e
−i(zk′+z̄k̄′)µexp

R (z, k′)dk′.

To construct the computational k-grid, we define the square [−D,D]2 where D ≥ R, and

we choose M = 2m for some positive integer m. The step-size for the k-grid is defined to

be h = 2D/(M − 1), and the final size of the grid is then M ×M . We further choose a

computational z-grid of domain points, which need not be equally spaced. Equation (38)

can be written compactly as the linear system

(39) [I −A T ( · )]µexp
R = 1,

where T is the pointwise multiplication operator defined by

(40) Tw(k) =
texpR (k)

4πk̄
e−i(zk′+z̄k̄′) w(k),

and the action of the operator A is given by

(41) Aw(k) =
1

π

∫

|k|≤R

w(k)

k − k′dk
′.

In our fast implementation, we compute T simultaneously for all z-values in the computa-

tional grid using vector operations, which in MATLAB is more efficient than computing each
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T separately inside the z-loop shown in step 7 of Algorithm 1 and step 9 of Algorithm 2.

The action of the operator A can be approximated by

(42) Aw(k) ≈ h2IFFT(FFT(β(k)) · FFT(w(k))),

where β(k) = (πk)−1 is the Green’s function for the ∂̄ operator, and · denotes element-wise

multiplication. In MATLAB, this operation can be performed efficiently using IFFTN and

FFTN. These are MATLAB’s general n-dimensional FFT and IFFT, which generate less

computational overhead than MATLAB’s 2-D versions FFT2 and IFFT2.

Once the solution µexp
R (z, k) to the D-bar equation has been found, the conductivity is

given by σ(z) = (µexp
R )2(z, 0). Note that the D-bar equation requires the solution of the linear

system (39) for all k-values in the computational grid, even though we are ultimately only

interested in k = 0. It is also to be noted that this method allows for the reconstruction of σ

pointwise in Ω, independent from any other z-value, and so it is trivially parallelizable over

the values in the computational z-grid.

For maximum computational speed, we invoked MATLAB with the flag -singleCompThread,

which limits MATLAB to a single computational thread. This choice is compatible with the

Parallel Computing Toolbox, and will restrict each parallel computation to a single core,

which proved to be advantageous in the runtimes.

2.3. A COMPARISON OF SOLVERS FOR THE D-BAR EQUATION

It should be noted that the system (39) is real-linear but (due to the presence of the

complex conjugate) is not complex-linear, so one way to handle this is to separate real and

imaginary parts and solve a real-linear system of size 2M2 × 2M2. The linear operator

[I−AR TR( · )] is non-sparse and nonsymmetric, and is therefore computationally expensive
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Algorithm 1 Fast Parallelized D-bar Implementation for MATLAB:
Parallelization Over Mesh Points

1: Setup Phase. Define parameters and compute functions independent of the dynamic DN
data, including:

- Physical parameters
- Boundary parameterization and arclength function
- Current pattern matrix J
- Computational grids in k-plane and z-plane
- Coefficients ck,dk for expansions of eikz|∂Ω, eik̄z̄|∂Ω used in texp

2: Demodulate the reference data set and form the DN matrix for the reference data set
Lσref

3: Load a single frame of the measured data and demodulate
4: Compute matrix approximation to DN map, Lσ

5: Compute texp simultaneously for all k using vector operations
6: Compute the operator T simultaneously for all z using vector operations
7: parfor all z in domain do
8: Solve D-bar equation for µexp

R (z, k)

9: σ(z)← (µexp
R )2(z, 0)

10: end parfor

Algorithm 2 Fast Parallelized D-bar Implementation for MATLAB:
Parallelization Over Frames

1: Setup Phase. Define parameters and compute functions independent of the dynamic DN
data, including:

- Physical parameters
- Boundary parameterization and arclength function
- Current pattern matrix J
- Computational grids in k-plane and z-plane
- Coefficients ck,dk for expansions of eikz|∂Ω, eik̄z̄|∂Ω used in texp

2: Load a batch of frames of the measured data and domain boundary points
3: Demodulate the reference data set and form the DN matrix for the reference data set

Lσref

4: parfor all frames do
5: Demodulate the voltage data
6: Compute matrix approximation to DN map, Lσ

7: Compute texp simultaneously for all k using vector operations
8: Compute the operator T simultaneously for all z using vector operations
9: for all z in domain do

10: Solve D-bar equation for µexp
R (z, k)

11: σ(z)← (µexp
R )2(z, 0)

12: end for
13: end parfor
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to compute explicitly, an effect which is exacerbated by the necessary separation of real and

imaginary parts. The use of a direct solver such as LU factorization is therefore inefficient.

Several choices of matrix-free Krylov subspace method solvers suitable for nonsymmet-

ric operators were therefore compared for the fast implementation. We tested MATLAB’s

built-in solvers BiCGSTAB, BiCGSTABl, CGS, GMRES, and TFQMR, as well as custom

optimized versions of BiCGSTAB, GMRES, and TFQMR. For detailed information concern-

ing these linear solvers, see [70, 154, 165, 170, 181].

To compare the solvers, the entire (nonparallelized) D-bar algorithm described here (with

a z-mesh with 935 mesh points and a 32× 32 k-mesh) was run on 10 frames of human data,

using a very basic desktop PC (Gateway E-4610 desktop PC with a 1.86 GHz dual-core

processor). Each linear solver was tested and timed using an error tolerance of 10−5. The

resulting runtimes are shown in Figure 2.1. Clearly, our custom algorithms performed better

than the built-in MATLAB versions, and our custom GMRES was by far the fastest algorithm

tested. Each of the algorithms tested gave extremely similar final reconstruction results.

GMRES implements the Generalized Minimal Residual method for solving a linear sys-

tem. The basic idea in all Krylov subspace methods is to iteratively approximate a solution

to the system Ax = b by a vector xn in the Krylov subspace Kn:

Kn = span{b, Ab, A2b, . . . , An−1b}.

The vector xn ∈ Kn is chosen so as to minimize the Euclidean norm of the residual rn :=

Axn − b. The iteration over n is stopped when

(43)
||rn||2
||b||2

< ǫtol,
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where ǫtol is a user-defined error tolerance. The GMRES method in particular utilizes an

Arnoldi iteration to obtain the approximation xn, and one feature of the GMRES algorithm

is that (to minimize computational overhead and roundoff errors) the iteration is typically

restarted after r steps, where the choice of r can be tricky to optimize. The restarts are

called the “outer iterations,” while the Arnoldi iterations themselves are called the “inner

iterations.”

Figure 2.1. Runtimes (in seconds) for various matrix-free Krylov subspace
solvers tested for use in solving the linear system (39). To compare the solvers,
the entire (nonparallelized) D-bar algorithm described here (with a z-mesh
with 935 mesh points, and a 32× 32 k-mesh) was run on 10 frames of human
data, using a Gateway E-4610 desktop PC with a 1.86 GHz dual-core processor.
Each method was tested using an error tolerance of 10−5 in the numerical
solver.
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In our custom GMRES routine, which was roughly based on the template found in [18],

we eliminated significant overhead due to repeated function calls and unnecessary option-

checking and error-checking. Every time MATLAB’s built-in GMRES (or any of MATLAB’s

built-in solvers, for that matter) is invoked, a call is made to an external .m file. Then, a

series of subroutines is used within MATLAB’s GMRES to determine which options the user

has selected and to check for user errors. Moreover, each iteration of MATLAB’s GMRES

requires multiple function calls to the user-specified subroutine which computes the action of

the linear operator, which in our case is the operator [I −AR TR( · )]. In MATLAB, calls to

external functions involve some computational overhead which can become unwieldy when

the operation must be performed thousands of times. We were therefore able to improve

efficiency by embedding our code for GMRES and its necessary subroutines directly within

the D-bar code. We also completely eliminated all unnecessary option- and error-checking,

which greatly contribute to computational overhead when performed repeatedly. Finally,

we took care to apply the operator [I − AR TR( · )] to vectors within the algorithm as few

times as possible, using the assumptions that the initial guess x0 will in general not satisfy

(43), and that the algorithm usually converges after one outer and one inner iteration. This

allows us to enter the algorithm assuming that we are going to perform exactly one iteration,

so we may optimize the algorithm for this scenario, and we special-case the situation where

additional iterations are required. This also gives us the luxury of not needing to optimize

the restart value r. Similar customizations were applied to the BiCGSTAB and TFQMR

algorithms tested. With these modifications, our custom algorithms greatly outperformed

the built-in MATLAB versions.

One factor that greatly affects the runtime of any linear solver is the chosen value for

the error tolerance ǫtol. We found that for the human dataset examined in this chapter,
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for ǫtol = 10−4, the algorithm almost always converges in one inner and one outer iteration

of GMRES. For ǫtol = 10−5, one outer iteration is still usually sufficient, but on very rare

occasions two inner iterations will be required. For smaller error tolerances, the number of

necessary iterations will increase. It is worth asking, therefore, whether ǫtol = 10−5, which

will usually ensure only one total Arnoldi iteration and therefore a fast runtime, is sufficient

to achieve desirable results, or if a smaller error tolerance will give visibly improved images.

Based on our experiments, we determined that increased accuracy in the numerical solver

leads to nearly identical images as those obtained with ǫtol = 10−5, but at a much greater

computational cost.

To illustrate this point, we ran reconstructions using our custom GMRES with various

error tolerances, recorded runtime information, and examined the resulting reconstructions.

The entire (nonparallelized) D-bar algorithm described here (with a z-mesh of 5,916 mesh

points and a 32 × 32 k-mesh) was run on 10 frames of human data, using a Dell Optiplex

790 with an Intel i7 3.4 GHz processor, for error tolerances 10−j, j = 4, 5, . . . , 12. The

resulting runtimes are shown in Figure 2.2. It is clear from this graph that runtimes increase

sharply when ǫtol ≤ 10−6, and again when ǫtol ≤ 10−9, which indicates that these are

the “break points” where additional iterations become necessary. To illustrate how little

difference is apparent in the resulting reconstructions with additional iterations, Figure 2.3

shows one frame of human data reconstructed using GMRES with error tolerances ǫtol =

10−5, 10−8, 10−12. Our tests have yielded similar results with various other human datasets.

We therefore are able to conclude that an error tolerance of ǫtol = 10−5 in the linear solver

is sufficient to obtain high-quality reconstructions.
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Figure 2.2. Runtimes (in seconds) corresponding to various error tolerances
used in GMRES. To compare the error tolerances, the entire (nonparallelized)
D-bar algorithm described here (with a z-mesh with 5,916 mesh points, and a
32 × 32 k-mesh) was run on 10 frames of human data, using a Dell Optiplex
790 with an Intel i7 3.4 GHz processor.

Figure 2.3. Reconstructions of human data corresponding to GMRES er-
ror tolerances ǫtol = 10−5, 10−8, 10−12 (left to right) used to solve the linear
system (39). Note that the images appear nearly identical, indicating that
little advantage is gained by decreasing the error tolerance, which necessitates
additional iterations of GMRES.
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2.4. RESULTS AND DISCUSSION

To demonstrate the feasibility of clinically useful real-time reconstructions using the D-

bar method, we present reconstructions from data collected on the ACE 1 (Active Complex

Electrode) EIT system at CSU. The ACE 1 system is a bipolar current injection system with

32 active electrodes operating at a user-specified frequency up to 200 kHz. For the results

presented here, difference images of perfusion in a cross-section of the chest of a healthy

male subject sitting upright and holding his breath are presented. 360 frames of data were

collected at 16 frames/s at 125 kHz and current amplitude 0.823 mA, using the skip 0

current pattern. One frame was chosen as a reference data set and 359 difference images

were computed using the fast implementation in §2.2 on a uniform k-mesh of size 16 by 16

(256 elements) and a truncation radius of R = 3.8. Numerical experiments indicate that

this size of k-mesh is sufficient, and also the minimal acceptable k-mesh of size 2m × 2m for

these data sets. See §2.5 for a comparison of reconstructions on k-meshes with m = 3, 4, 5,

and 6, as well as error tables in the L2 and L∞ norms. All programming was in MATLAB

and utilized the Parallel Computing Toolbox for the parallel solution of the D-bar equation.

In Tables 2.4 and 2.6 we compare the performance for each version of the algorithm

with various numbers of cores in parallel on a 12 core Mac Pro with two 2.66 GHz 6 core

Intel Xeon processors using three different spatial grids consisting of a coarse mesh with 562

elements, a medium mesh with 1,931 elements, and a fine mesh with 5,916 elements. In

Tables 2.5 and 2.7 we compare the performance on a 64 core Linux system with four 2.3

GHz 16 core processors and 512 GB of RAM on the same three spatial grids.

Comparing all four tables, it is immediately clear that all runtimes utilizing the same

number of cores were faster on the Mac Pro than on the Linux system, which is likely due

in part to the difference in processor speed. It is also evident that while adding increasing
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numbers of parallel cores continues to improve runtimes for Algorithm 2 in Tables 2.6 and 2.7,

the runtimes for Algorithm 1 in Tables 2.4 and 2.5 reach maximum efficiency with a smaller

number of cores, after which adding additional parallel cores actually slows the computation.

This optimum number of cores increases as the z-mesh size increases.

It is well-known in parallel computing that the efficiency gained by adding additional

parallel processors follows a “law of diminishing returns,” embodied by Amdahl’s law [10],

which states that the maximum theoretical speedup s obtainable when using n processors

in parallel is given by

(44) s(n) =
1

(1− p) + p
n

,

where p is the proportion of the program that is parallelizable. One can see that as we

increase n to∞, the maximum theoretical speedup goes to 1/(1−p). To compute the actual

speedup obtained using n processors, we use sactual(n) = t(1)/t(n), where t(n) is the runtime

with n cores in parallel.

In Figure 2.5, the actual speedups obtained on the Mac Pro using both versions of the

parallel algorithm are shown along with the theoretical maximum speedups predicted by

(44). One can see that the results obtained using Algorithm 2 are much closer to Amdahl’s

ideal values than the results obtained using Algorithm 1. We can also see that the larger the

size of the z-mesh, the more efficient the parallelization becomes; this is predicted by (44)

since increasing the number of elements in the z-mesh also increases p, the parallelizable

portion of the program. In Figure 2.6 the same plots are included for the 64 core Linux

system. It is evident that the additional cores do not provide speedup for Algorithm 1, and

the divergence from the theoretically predicted speedup by Amdahl’s Law increases with the

number of cores, but Amdahl’s Law also predicts the leveling off of speedup at around 20 to
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25 cores; in fact, this happens at around 10 to 12 cores for parallelization over mesh values

(Algorithm 1). However, for Algorithm 2, the speedup continues for all 64 cores, although

it is clearly starting to level out at around 60 cores.

From the clinical perspective, difference images are sufficient for some applications, such

as real-time detection of a pneumothorax or atelectasis. For other applications, such as

distinguishing between blood, water, and mucus in the lung, absolute images may be re-

quired, which may require longer computation times. Some applications may also require

finer spatial resolution than that presented here. However, the data is preserved for off-line

or delayed reconstruction, and improvements such as the use of additional cores in parallel,

faster FFTs, and faster processors are likely to yield improved runtimes in the future.

Figure 2.4 contains four frames in the reconstruction of the human chest data displayed

in the three z-meshes to illustrate the resolution provided by these mesh choices. The figure

depicts changes due to perfusion. The heart is at the top, and red represents high conduc-

tivity and blue low conductivity. The images are displayed on the same scale. While the

topmost mesh is quite coarse, the lungs and heart are clearly visible, and changes are evi-

dent. The medium mesh is significantly better, and probably provides the best compromise

for real-time imaging, but this implementation comes with the price of an approximately 1

second delay. The very fine mesh is included to illustrate highly desirable spatial resolution

and the associated runtimes, given in Tables 2.4-2.7.

2.5. JUSTIFICATION FOR A COARSE K-MESH

Numerical computations were performed to study the effect of the choice of m when

solving the D-bar equation on a k-mesh of size 2m×2m. Computations were performed with

m = 3, 4, 5, and 6. Very little change is evident in the reconstruction between reconstructions
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Coarse Mesh

Medium Mesh

Fine Mesh

Figure 2.4. Reconstructions on the three z-meshes timed in this work of
four frames in the sequence of 360 frames showing changes due to perfusion
in the chest of a healthy human subject. The heart is at the top, and red
represents high conductivity and blue low conductivity with respect to the
reference frame. The images are displayed on the same scale.

from k-meshes of sizes m = 4, 5, and 6; see Figure 2.7. Choosing the image with m = 6,

that is a 64× 64 k-mesh as “truth,” relative errors were computed in the L2 and L∞ norms

for each frame. This choice of k-mesh is justifiable as a reference in the relative error

computations because no further improvement is visibly seen by choosing a still finer mesh,

and the lengths of computation time then become quite long for m = 7 and larger. In Table

2.2 the mean relative error, the maximum relative error, and the standard deviation over

the 359 frames is reported. In Table 2.3 the effect of the size of the k-mesh on the runtime
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for Algorithm 2 is provided. From the table of relative errors and reconstructions in Figure

2.7, it is evident that at least for this data set, the 16× 16 k-mesh is sufficient. For general

difference image reconstructions, we would also expect this to be sufficient, but recommend

testing this parameter first.

Figure 2.7. Reconstructions of the rightmost frame in Figure 2.4 computed
by solving the D-bar equation on a k-grid of size 2m × 2m with m = 3, 4, 5,
and 6, left to right. The images are displayed on the same scale.

Table 2.2. Comparison of the mean, maximum, and standard deviation over
the 359 frames in the relative errors in the reconstructions computed by solving
the D-bar equation on three sizes of k-mesh. The relative errors for each frame
were computed by treating the reconstruction on a k-mesh of size 64 × 64 as
truth.

Relative Errors in L∞ norm Relative Errors in L2 norm
k-Mesh Size Mean Err Std Dev Max Err Mean Err Std Dev Max Err

8× 8 2.29E-03 5.27E-04 4.13E-03 8.93E-04 1.76E-04 1.48E-03
16× 16 7.24E-04 1.36E-04 1.20E-03 3.08E-04 6.12E-05 5.16E-04
32× 32 2.43E-04 5.65E-05 4.21E-04 1.01E-04 2.15E-05 1.74E-04

Table 2.3. Runtimes (RT) in seconds for Algorithm 2 parallelized over 12
cores on a Mac Pro on the coarse and medium z-meshes, for various k-mesh
sizes. The loop runtimes refer to the runtime for the parallelized loop over the
frames. These results show that we can still easily achieve real-time results on
the 32× 32 k-mesh with an appropriately coarse z-mesh.

Coarse grid (562 z-values) Medium grid (1931 z-values)
k-Mesh Size Total RT Loop RT s/frame Total RT Loop RT s/frame

8× 8 4.7477 4.6552 0.0132 14.1798 14.0664 0.0395
16× 16 6.7303 6.6036 0.0187 20.7440 20.5766 0.0578
32× 32 16.1720 15.9394 0.0450 51.3855 51.0080 0.1431
64× 64 68.8607 68.1446 0.1918 253.6598 252.1337 0.7066
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(a) Results with Algorithm 1 (parallelization over mesh points).
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(b) Results with Algorithm 2 (parallelization over frames).

Figure 2.5. A comparison of Amdahl’s law for maximum theoretical speedup
(dashed lines) when using multiple cores with actual speedup obtained on a
12 core Mac Pro with two 2.66 GHz 6 core Intel Xeon processors (solid lines)
using Algorithms 1 and 2.
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(b) Results with Algorithm 2 (parallelization over frames).

Figure 2.6. A comparison of Amdahl’s law for maximum theoretical speedup
(dashed lines) when using multiple cores with actual speedup obtained on a 64
core Linux system with four 2.3 GHz 16 core processors and 512 GB of RAM
(solid lines) using Algorithms 1 and 2.
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Table 2.4. Runtimes (RT) in seconds for Algorithm 1 (parallelization over mesh points) over 359
frames on a 12 core Mac Pro with two 2.66 GHz 6 core Intel Xeon processors. Here, the loop runtimes
refer to the runtime for the parallelized loop over z-values. The fastest per-frame runtime for each mesh
has been highlighted.

Coarse grid (562 z-values) Medium grid (1931 z-values) Fine grid (5,916 z-values)

Cores Total RT Loop RT s/frame Total RT Loop RT s/frame Total RT Loop RT s/frame

1 60.1527 57.1906 0.1676 200.1049 193.7054 0.5574 615.3041 600.6027 1.7139
2 49.0169 45.0331 0.1365 119.8318 113.8120 0.3338 358.5238 343.1751 0.9987
4 26.2268 23.1675 0.0731 69.2834 62.6818 0.1930 203.8658 183.3158 0.5679
6 23.3147 20.3212 0.0649 55.8466 47.2439 0.1556 150.5782 130.0955 0.4194
7 22.2798 19.2730 0.0621 49.0180 41.6290 0.1365 133.5245 112.9986 0.3719
8 23.2349 20.2471 0.0647 46.8985 38.7851 0.1306 122.1320 101.3596 0.3402
9 25.0864 22.0817 0.0699 45.4834 37.2894 0.1267 112.5900 91.7865 0.3136
10 26.6466 23.6232 0.0742 44.8317 36.8733 0.1249 106.3704 85.4906 0.2963
11 26.3834 23.3987 0.0735 44.8993 36.9119 0.1251 100.9252 79.9427 0.2811
12 28.2897 25.3129 0.0788 46.2567 38.1605 0.1288 97.9265 77.0440 0.2728
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Table 2.5. Runtimes (RT) in seconds for Algorithm 1 (parallelization over mesh points) over 359
frames on a 64 core Linux system with four 2.3 GHz 16 core processors and 512 GB of RAM. Here,
the loop runtimes refer to the runtime for the parallelized loop over the frames. The fastest per-frame
runtime for each mesh has been highlighted.

Coarse grid (562 z-values) Medium grid (1931 z-values) Fine grid (5,916 z-values)

Cores Total RT Loop RT s/frame Total RT Loop RT s/frame Total RT Loop RT s/frame

1 70.6320 66.6039 0.1967 239.3496 231.0972 0.6667 767.5243 742.7878 2.1380
2 41.4227 38.4427 0.1154 146.6424 137.5511 0.4085 460.4769 435.7931 1.2827
4 33.5734 28.9639 0.0935 85.1865 75.0827 0.2373 248.8144 229.7575 0.6931
6 29.3667 24.9876 0.0818 62.8336 55.3416 0.1750 184.0372 164.8297 0.5126
7 28.1477 24.1555 0.0784 60.9286 51.3155 0.1697 159.8174 142.7302 0.4452
8 28.0048 24.1189 0.0780 56.1551 46.3121 0.1564 150.0559 127.9969 0.4180
11 31.5985 26.9765 0.0880 50.0699 42.1989 0.1395 121.6363 99.6636 0.3388
12 34.3986 30.1875 0.0958 53.0852 40.8174 0.1479 109.3473 91.8146 0.3046
16 47.7978 43.7131 0.1331 59.5714 50.6782 0.1659 111.0096 83.2492 0.3092
24 77.3859 72.0929 0.2156 89.5173 80.3598 0.2494 129.2778 104.2357 0.3601
32 120.9989 116.1762 0.3370 125.9324 115.8191 0.3508 156.2232 131.1057 0.4352
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Table 2.6. Runtimes (RT) in seconds for Algorithm 2 (parallelization over frames) over 359 frames
on a 12 core Mac Pro with two 2.66 GHz 6 core Intel Xeon processors. Here, the loop runtimes refer to
the runtime for the parallelized loop over the frames. The fastest per-frame runtime for each mesh has
been highlighted.

Coarse grid (562 z-values) Medium grid (1931 z-values) Fine grid (5,916 z-values)

Cores Total RT Loop RT s/frame Total RT Loop RT s/frame Total RT Loop RT s/frame

1 63.5468 63.4370 0.1770 206.1180 205.9474 0.5741 623.0107 622.7078 1.7354
2 33.5405 33.4232 0.0934 106.1961 106.0467 0.2958 326.5889 326.2849 0.9097
4 17.5768 17.4568 0.0490 55.9864 55.8287 0.1560 173.0110 172.6940 0.4819
8 9.5713 9.4459 0.0267 29.8543 29.7101 0.0832 89.9303 89.6408 0.2505
11 7.0793 6.9545 0.0197 21.2018 21.0424 0.0591 63.5926 63.2956 0.1771
12 6.7303 6.6036 0.0187 20.7440 20.5766 0.0578 61.7965 61.4933 0.1721
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Table 2.7. Runtimes (RT) in seconds for Algorithm 2 (parallelization over frames) over 359 frames
on a 64 core Linux system with four 2.3 GHz 16 core processors and 512 GB of RAM. Here, the loop
runtimes refer to the runtime for the parallelized loop over the frames. The fastest per-frame runtime
for each mesh has been highlighted.

Coarse grid (562 z-values) Medium grid (1931 z-values) Fine grid (5,916 z-values)

Cores Total RT Loop RT s/frame Total RT Loop RT s/frame Total RT Loop RT s/frame

1 83.0041 82.8420 0.2312 261.7762 261.5257 0.7292 837.1351 836.5582 2.3319
2 49.8535 49.5505 0.1389 145.1565 145.9066 0.4043 510.6861 510.2197 1.4225
4 25.3656 25.1796 0.0707 80.8684 80.6215 0.2253 262.7161 262.2612 0.7318
8 13.8435 13.6768 0.0386 42.7368 42.4592 0.1190 106.2459 105.8588 0.2959
12 9.3821 9.1925 0.0261 29.1641 28.8975 0.0812 70.7996 70.4057 0.1972
16 7.6005 7.3360 0.0212 26.5531 26.3019 0.0740 54.4559 54.0610 0.1517
24 5.4611 5.2730 0.0152 16.4534 16.1881 0.0458 38.2854 37.8909 0.1066
32 4.3561 4.1731 0.0121 13.9393 13.6828 0.0388 30.0064 29.5878 0.0836
48 2.9294 2.7678 0.0082 8.5636 8.3324 0.0239 24.9113 24.4925 0.0694
60 2.7924 2.6435 0.0078 7.7249 7.4911 0.0215 22.1673 21.7229 0.0617
64 2.7781 2.6219 0.0077 7.7157 7.4769 0.0215 21.9644 21.5439 0.0612
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CHAPTER 3

AN A PRIORI D-BAR ALGORITHM

3.1. MOTIVATION AND OVERVIEW

In this chapter we now describe the second main project that is part of this dissertation.

A portion of the work described here has been published in a pre-print version available on

ArXiv [7]. Further publications are expected to be forthcoming in the near future.

A significant challenge in EIT imaging is the computation of static images with high-

quality spatial resolution. Due to the ill-posedness of the inverse problem, finer details in the

image are often lost in the presence of noisy measurements. Including prior information in the

reconstruction algorithm has been shown to be one way to improve spatial resolution [14, 19,

38, 51, 55, 61, 62, 82, 83, 99, 124, 167, 172, 182]. This prior knowledge corresponds to a clinical

situation in which we have a CT scan (or other similar data) for a human subject from which

we may extract information regarding spatial locations of organ boundaries or conductivity

estimates. When diagnosing and treating certain lung conditions, it is sometimes necessary

to obtain repeated thoracic CT scans, each of which imparts a dose of ionizing radiation.

EIT scans, on the other hand, have no ill effects. It is therefore highly desirable to use a

priori information obtained from a CT or other scan to provide an improved EIT image,

and then perform repeated harmless and comparatively inexpensive EIT scans in place of

follow-up CT scans.

Reconstruction algorithms that involve the minimization of a cost functional, such as a

Gauss-Newton algorithm, include the a priori information in the penalty term, penalizing

reconstructions that deviate too greatly from the prior in a given norm. This technique
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does not generalize to noniterative algorithms, and until now there has been no direct re-

construction method to utilize a priori information. The algorithm presented here therefore

represents the first direct reconstruction method for EIT to incorporate a priori data.

3.2. OUTLINE OF THE A PRIORI METHOD

To motivate the a priori scheme, we first note that the scattering transform (30) can

be written in terms of a scattering transform computed from a prior known conductivity

distribution σpr in the form t(k) = tpr(k) + perturbation(k). To this end, given σpr, let Λpr

denote the DN map corresponding to σpr, let ψpr denote the CGO solution satisfying

(45) ψpr(z, k)|∂Ω = eikz|∂Ω −
∫

∂Ω

Gk(z − ζ)(Λpr − Λ1)ψpr(·, k)ds(ζ),

let tpr denote the scattering transform satisfying

(46) tpr(k) =

∫

∂Ω

eik̄z̄(Λpr − Λ1)ψpr(z, k)ds(z),

and let µpr denote the CGO solution satisfying

(47) µpr(z, k) = 1 +
1

(2π)2

∫

R2

tpr(k
′)

k̄′(k − k′)e
−i(zk′+z̄k̄′)µpr(z, k′)dk

′.

These equations are valid for σpr ∈ L∞(Ω) by [13]. Subtracting (46) from the formula (32)

for t(k), we see

t(k)− tpr(k) =

∫

∂Ω

eik̄z̄(Λσψ − Λ1ψ − Λprψpr + Λ1ψpr)ds

=

∫

∂Ω

eik̄z̄(Λσ(ψ − ψpr)− Λ1(ψ − ψpr) + (Λσ − Λpr)ψpr)ds.
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Thus,

(48) t(k) = tpr(k) +

∫

∂Ω

eik̄z̄[(Λσ − Λ1)(ψ − ψpr) + (Λσ − Λpr)ψpr]ds.

Formula (48) suggests the following scheme. Given σpr, compute Λpr from a numerical

forward solver, such as FEM, compute ψpr and tpr from (45) and (46), respectively, compute

t(k) from (48), and use this t(k) in the D-bar method. However, this natural approach

has several drawbacks when applied to noisy data. First of all, since the measured data

Λσ has noise, it is necessary to compute t(k) on a truncated domain |k| ≤ R. This means

finer details encoded in large |k| values of the prior will be lost. Second, the numerical

computation of Λpr itself introduces error that is not necessarily a good match to the noise

in Λσ. Thus, the term
∫

∂Ω

eik̄z̄(Λσ − Λpr)ψprds

is not an accurate perturbation, and errors in Λσ−Λpr will be amplified by the exponentially

growing functions eik̄z̄ and ψpr.

An alternative approach motivated by (48) is to define an approximation to the scattering

transform piecewise by

(49) tR1,R2
(k) :=



































t(k), |k| ≤ R1

tpr(k), R1 < |k| ≤ R2

0, |k| > R2

.

In this approximation, the perturbation term in (48) is neglected for |k| > R1, and the entire

scattering transform is truncated for some R2 ≥ R1. Neglecting this term for |k| > R1 is

motivated by the fact that the size of R1 is limited since t(k) will inevitably blow up for
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larger values of |k| in the presence of noisy data. Since the computation of tpr is noise-free

and in general much more numerically robust than the computation of t, we may select R2

to be significantly larger than R1. The larger the value of R2, the stronger the influence of

the a priori information. The next question is then how to compute tR1,R2
. For |k| ≤ R1,

t(k) can be computed using (32), which is the same as computing tBIE
R , using the notation

in [108]. To avoid the problems that arise from computing Λpr, the scattering transform tpr

can be computed directly from the definition of the scattering transform, provided σpr ∈ C2.

Then, defining

qpr :=
∆
√
σpr√
σpr

,

the scattering transform tpr is defined to be the nonlinear Fourier transform of qpr [138]

(50) tpr(k) :=

∫

R2

eik̄z̄qpr(z)ψpr(z, k)dz,

where ψpr is the solution of the Schrödinger equation (11), with q = qpr. Once the scattering

transform has been computed, the CGO solution µ can be solved from (35). We define µ̃R2

as the solution to

(51) µ̃R2
(z, k) = 1 +

1

(2π)2

∫

|k|≤R2

tR1,R2
(k′)

k̄′(k − k′)e
−i(zk′+z̄k̄′)µ̃R2

(z, k′)dk′.

However, there is one more thing to note. The Green’s function for the D-bar operator ∂̄k is

1
πk

, and so the solution (35) to (33) is obtained from

(52) µ(z, k) = lim
R→∞

{

1

πR2

∫

|k|≤R

µ(z, k)dk +
1

(2π)2

∫

|k|≤R

t(k′)

k̄′(k − k′)e
−i(zk′+z̄k̄′)µ(z, k′)dk′

}

,
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where the first term tends to 1 as R→∞. Thus,

(53) µ̃R2
(z, k) ≈ 1

πR2
2

∫

|k|≤R2

µ(z, k)dk +
1

(2π)2

∫

|k|≤R2

tR1,R2
(k′)

k̄′(k − k′)e
−i(zk′+z̄k̄′)µ̃R2

(z, k′)dk′.

In practical computations, since µ̃R2
(z, k) is unknown, the first integral is replaced by 1, that

is, its limit as R2 →∞. Approximating µ̃R2
in this term by µpr, we have derived an equation

for the approximation

(54) µR2
(z, k) =

1

πR2
2

∫

|k|≤R2

µpr(z, k)dk +
1

(2π)2

∫

|k|≤R2

tR1,R2
(k′)

k̄′(k − k′)e
−i(zk′+z̄k̄′)µR2

(z, k′)dk′.

If the prior coincides with the correct conductivity distribution, this method converges and

introduces no artifacts as R1, R2 → ∞ by the convergence proof for the regularized D-bar

method [108].

The strength of the prior, or its influence on the reconstruction, depends on R2. If

R2 = R1, then tR1,R2
(k) = tBIE

R1
(k), and the only influence of the prior on the reconstruction

is in the term

(55) µint(z) :=
1

πR2
2

∫

|k|≤R2

µpr(z, k)dk.

We can exert control over the amount of influence this term has by introducing a weighting

parameter α ∈ [0, 1] and writing

(56) µR2,α(z, k) = α + (1− α)µint(z) +
1

(2π)2

∫

|k|≤R2

tR1,R2
(k′)

k̄′(k − k′)e
−i(zk′+z̄k̄′)µR2,α(z, k′)dk′,

which is equivalent to (51) if α = 1 and (54) if α = 0.
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3.3. COMPUTATIONAL CONSIDERATIONS

We now describe the numerical details for the computation of the conductivity distribu-

tion σR2,α corresponding to the CGO solution µR2,α to (56), including numerical approxima-

tions for necessary intermediate operators and functions.

As described in §2.2, we compute a finite-dimensional matrix approximation Lσ to the

DN map Λσ. Since we are not in this case constructing difference images, we must also

compute the discrete matrix approximation L1 of the DN map Λ1 corresponding to homoge-

neous conductivity, by first numerically solving the forward conductivity problem to create

simulated voltage data for the case where σ ≡ 1 ∈ Ω. The method described previously for

the computation of Lσ may then be used to compute L1 from this simulated data. In the fast

implementation described in §2.2, we replaced the CGO solution ψ|∂Ω with its asymptotic

behavior eikz. Here we invoke a fully nonlinear approximation to ψ|∂Ω, found by numerically

solving the boundary integral equation (29) at the center zl of each electrode, as described

in [84]. As in [12], we express the Faddeev Green’s function Gk as

Gk(z) =
1

4π
Re(EI(ikz)),

where EI(z) is the exponential integral function, which in MATLAB can be computed easily

using the built-in function: EI(z) ≈ 2∗EXPINT(z). To form a matrix approximation Γk for

Gk(zl − ζl′), we must be careful of the logarithmic singularity that occurs when l′ = l. We

therefore discretize the surface of each electrode into S points zls , s = 1, . . . , S, and compute

Γk(l, l′) =



















A
2π

Re(EXPINT(ik(zl − ζl′))), l′ 6= l

1
2π(S−1)

∑S
s=1 Re(EXPINT(ik(zl − ζls))) l′ = l

.
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Denote by bk = (b1(k), . . . , bN(k))⊤ and ck the vectors of coefficients for the functions

ψ(z, k)|∂Ω and eikz|∂Ω, respectively, expanded in the basis of orthonormalized current pat-

terns, so that ψ(z, k)|∂Ω ≈ Jbk, e
ikz|∂Ω ≈ Jck. We may then approximate the convolution of

Gk with (Λσ − Λ1)ψ for each z = zl as a finite-dimensional vector:

∫

∂Ω

Gk(z − ζ)(Λσ − Λ1)ψ(·, k)ds(ζ) ≈ ΓkJ(Lσ − L1)bk,

and the discrete version of (29) is

Jbk = Jck − ΓkJ(Lσ − L1)bk.

Multiplying through by the transpose of the orthonormal matrix J yields the linear system

(57) [I + J⊤ΓkJ(Lσ − L1)]bk = ck,

where I is the N × N identity matrix. In our implementation, this system was solved in

MATLAB using the MLDIVIDE function.

The computation of the CGO solution ψpr corresponding to the prior is handled quite

differently. From [138], we know µpr satisfies the Lippmann-Schwinger type equation (19)

with µ = µpr:

(58) µpr = 1− gk ∗ (qprµpr).

The numerical solution of (58) uses the method in [109], which is based on ideas presented

in [180], and a complete description of the computational steps can be found in [129]. In
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short, we may write (58) as the linear system

(59) [I + gk ∗ qpr(·)]µpr = 1,

which is solved for µpr using a matrix-free method such as GMRES [154] or BiCGSTAB [181],

which was used in our implementation, separating real and imaginary parts as required for

the linear solver. The action of the linear operator on the left-hand side of (59) may be

approximated efficiently using FFT and IFFT operations.

Once we obtain ψpr, the computation of tpr from its definition (50) is accomplished using

simple numerical quadrature over the mesh of z-values. The integral µint is likewise found

by applying numerical quadrature to the integrand µpr.

To obtain µR2,α(z), we must solve the equation (56) for each z, which involves modification

of the computational methods described in [129]. We write (56) as the linear system

(60) [I −AT (̄·)]µR2,α(z) = α + (1− α)µint(z)

where the actions of the operators T and A are, analogously to (40) and (41), defined by

(61) Tw(k) =
tR1,R2

(k)

4πk̄
e−i(zk′+z̄k̄′)w(k)

and

(62) Aw(k) =
1

π

∫

|k|≤R2

w(k)

k − k′dk
′.

Note that (60) is not complex-linear due to the presence of the conjugate operator, so

it is necessary to solve real and imaginary parts separately. This system is solved by again
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using a matrix-free solver such as BiCGSTAB, where the action of A can be approximated

by FFT and IFFT operations.

From µR2,α we obtain the resulting conductivity distribution σR2,α = µ2
R2,α

(z, 0), which

is a result of both the EIT data Λσ and the a priori data encoded into tR1,R2
and µint.

3.4. CONSTRUCTING THE PRIOR CONDUCTIVITY DISTRIBUTION

The preceding method leaves one very obvious question: how do we obtain a reasonable

estimate for the a priori conductivity distribution σpr? Any method employed will involve

three distinct steps:

(1) Determine polygonal approximations to boundaries of regions of interest within the

domain.

(2) Assign estimated conductivity values to each of these regions to obtain a discontin-

uous a priori distribution σ̃pr. The values assigned to each region may be constant

within the region, or may vary spatially within regions if desired.

(3) To satisfy the requirement that σpr ∈ C2(Ω), mollify or otherwise smooth σ̃pr to

obtain σpr.

Over the following pages, we will describe methodology for obtaining the approximate

organ boundaries, as well two distinct methods for assigning constant conductivity estimates

to regions of interest to obtain σ̃pr. We acknowledge that many variations on these methods

are possible, and these methods may be adapted accordingly to suit various applications. Ad-

ditionally, we will describe iterative approaches that may improve upon the results obtained

using one of these methods.

3.4.1. Obtaining approximate organ boundaries. Initially, knowledge is assumed

of the spatial locations of boundaries for various domain inclusions (such as heart, lungs,
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etc. for thoracic imaging) in the plane of the electrodes. In a clinical setting, this could be

obtained by extracting the organ boundaries from a CT scan to obtain polygonal approxi-

mations to the actual organ boundaries.

In our experiments with simulated data, which will be described in section §3.5, we

created polygonal boundaries representing heart, lungs, aorta, and spine within a circular

domain to use as the organ boundaries for the simulation, and then created slightly different

boundaries for the prior, as shown in Figure 3.1. This is representative of a realistic sce-

nario where the true organ boundaries in the plane of the electrodes are unknown, and we

approximate the boundaries from CT scan data.

In our tests with experimental tank data, which will be described in §3.7, we created an

agar phantom representing a human heart and lungs. This phantom was photographed, and

a priori organ boundaries were generated by clicking around the boundaries of the organs in

the digital photograph, recording this geometric information, and then scaling the resulting

polygonal boundaries to the correct dimensions. The experimental set-up and resulting a

priori organ boundaries are shown in Figure 3.18 in §3.7. This process mimics a method that

could be employed in a clinical setting, with a CT scan in place of the digital photograph.

Organ boundary extraction (from a CT or other scan) could also likely be automated using

image processing techniques based on Sobel or Canny edge detection (see [58] or [88], for

example).

We next describe two possible methods for assigning conductivity values to the a priori

conductivity distribution σpr. Each of these two methods describes the construction of a

discontinuous a priori distribution σ̃pr.

3.4.2. Constructing the prior: Blind Estimate Method. In the blind estimate

method for assigning conductivity values to the prior, we simply make educated guesses for
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the conductivity values within each approximate organ boundary. In a clinical setting these

values can, for example, be estimated from literature sources wherein conductivity values for

human tissue have been reported. Let P ⊂ Ω denote the polygonal region inside a particular

approximate organ boundary and let {zr} be the finite set of points in the z-mesh used to

construct σpr. An approximate constant conductivity value σP is selected for P , and we

assign σ̃pr(zn) = σP for all zn ∈ {zr} ∩ P . We repeat this process for all organ boundaries

used in the prior, obtaining the conductivity distribution σ̃pr. Refinements to this process

could be made by specifying regions of differing conductivities within individual organs if

known inhomogeneities exist.

The blind estimate method is much computationally simpler and faster than the alter-

native extraction method which will be described next. However, if any pathologies have

developed between the time of the initial CT scan and the time of the EIT scan, these

pathologies will not be reflected in the prior, and their expression in the final reconstruction

is therefore entirely dependent on the EIT data. The full a priori scheme with the blind

estimate method for constructing the prior is outlined in Algorithm 3.

3.4.3. Constructing the prior: Extraction Method. In the extraction method,

we first compute a reconstruction σ from the EIT data alone using the D-bar method de-

scribed in §1.3. Note that the first-order approximation texp to the scattering transform as

given in [94] could be used here as well to obtain an initial reconstruction. We then extract

conductivity values from this reconstruction to obtain estimated values for the prior. This

method has advantages over the blind estimate method in that pathologies not present in

the CT scan data but that are apparent in the reconstruction σ may be included in the prior.

Also, this method makes only geometric a priori assumptions, and makes no initial assump-

tions regarding conductivity values, and so relies less on estimates not associated with the
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ALGORITHM 3 A priori scheme, Blind Estimate Method

1: Obtain a priori information and EIT data:
2: - Form polygonal approximations to organ boundaries.
3: - Collect EIT data and compute Lσ.
4: - Use FEM to simulate homogeneous data and compute L1.

5: Form computational grids for the k and z planes.
6: Make blind estimates for conductivity values to form σpr(z).
7: Compute σR2,α(z):
8: - Compute qpr = ∆

√
σpr/
√
σpr.

9: - Select R1, R2 with R1 ≤ R2.
10: for |k| ≤ R2 do
11: - Solve (59) for µpr = e−ikzψpr.
12: end for
13: for |k| ≤ R1 do
14: - Solve (57) for bk to get ψ|∂Ω ≈ Jbk

15: - Compute t(k) from (32).
16: end for
17: for R1 < |k| ≤ R2 do
18: - Compute tpr(k) from (50).
19: end for
20: - Form tR1,R2

.
21: - Select α.
22: for z ∈ Ω do
23: - Compute µint(z) from (55).
24: - Solve (60) for µR2,α(z, ·).
25: - Compute σR2,α(z) from (21).
26: end for

measured EIT data. The full a priori scheme with the extraction method for constructing

the prior is outlined in Algorithm 4.

In our experiments with simulated data, we developed and used the following techniques

for extracting approximate conductivity values from the reconstruction σ to be assigned to

the lungs, heart, aorta, spine, and background in the prior. In what follows, we denote by

{z′s} the finite set of points in the z-mesh used to construct σ, and the closed polygonal

regions defined by specific organ boundaries by Pheart, Pspine, etc.

Lungs. We examine each lung in the σ reconstruction and compare the appearance of

the lungs to the a priori approximate lung boundaries. If, based on the reconstruction
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σ, the lungs appear to be free of pathology (i.e. there are no suspicious inhomogeneities

within the regions Pl lung and Pr lung), then the following method may be used. Find the set

P̃l lung := {z′s} ∩ Pl lung, and compute the average value

(63) σl lung :=
1

M

M
∑

m=1

σ(z′m), z′m ∈ P̃l lung,

where M denotes the number of points z′m in P̃l lung, and then assign σpr(zn) = σl lung for all

zn ∈ {zr} ∩ Pl lung. This process is then repeated for the right lung. On the other hand, if

the reconstruction σ reveals possible lung pathologies in the form of inhomogeneities within

a lung region, then the method can be revised in the following way. Assuming (without loss

of generality) that one or more inhomogeneities appear in the left lung, divide the region

Pl lung into a finite number of connected subsets Sj ⊂ Pl lung, where each subset represents an

area of fairly homogeneous conductivity in the reconstruction σ. Then for each Sj, compute

the average conductivity over the points z′m ∈ {z′s} ∩ Sj and assign this value to σ̃pr(zn) for

zn ∈ {zr} ∩ Sj.

Heart and aorta. To compute σ̃pr values for the heart region, one could potentially employ

a similar method to that described for the lung regions. However, the position and shape of

the reconstructed heart is more sensitive to noise level and truncation radius than the lung,

and therefore using the anatomical position in the prior may include extraneous pixels. See

Figure 3.3 as an example of how the size and shape of the reconstructed heart can vary. The

aorta, on the other hand, is typically invisible in the reconstruction σ, so such a method

could not be used to assign σ̃pr values within the aorta. The following method is therefore

given as an alternative to the method used for the lungs. First, define the quantities

(64) σmax := max
z′m∈{z′s}∩Ω

{σ(z′m)}, σmin := min
z′m∈{z′s}∩Ω

{σ(z′m)},
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and compute the value τ = σmin + c(σmax − σmin) where c ∈ (0.5, 1) is selected empirically.

A good choice for c should optimally result in the set H := {z′m ∈ {z′s} ∩ Ω : σ(z′m) ≥ τ}

being selected so as to be a connected subset of Ω and roughly the same size as the region

Pheart, and such a c may vary depending on noise levels and choice of truncation radius in

the computation of σ. We find the set H and compute

σheart :=
1

M

M
∑

m=1

σ(z′m), z′m ∈ H,

where M denotes the number of points in H. Finally, assign σ̃pr(zn) = σheart for all zn ∈

{zr} ∩ Pheart, and, since the aorta likely has conductivity values very similar to those of the

heart, further assign these same values to σ̃pr in the region Paorta.

Spine. Due to its small size, the reconstruction of the spine typically has very poor

spatial resolution and its appearance and associated conductivity values can vary widely in

the reconstruction σ in the presence of noise. Since we can usually assume that the spine is

one of the most resistive objects in a thoracic EIT scan, we simply assign σpr(zn) = σmin for

all zn ∈ {zr} ∩ Pspine.

Background. We define the background to be the set Pbg := Ω − ∪jPj where each Pj

corresponds to an organ boundary included in the prior, and assign values to Pbg according

to the following method. Compute the quantities τ1 = σmin +c1(σmax−σmin) and τ2 = σmin +

c2(σmax−σmin) where c1, c2 ∈ (0, 1), c1 < c2. Find the set B := {z′m ∈ {z′s} : σ(z′m) ∈ [τ1, τ2]},

and compute

σbg :=
1

M

M
∑

m=1

σ(z′m), z′m ∈ B,

where M denotes the number of points in B. Assign σpr(zn) = σbg for all zr ∈ {zn}∩Pbg. As

with the value c used for the heart, the values c1 and c2 must be selected empirically, and may
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once again vary depending on noise levels and choice of truncation radius in the computation

of σ. Since the lungs, which have low conductivity compared to the background, tend to

dominate the reconstruction, it is usually advantageous to choose c1, c2 to be skewed to the

upper end of the scale (0, 1). Well-chosen c1 and c2 should result in the set B excluding most

of the region corresponding to the lungs and spine, as well as the high conductivity region

inside the heart.

ALGORITHM 4 A priori scheme with Extraction Method

1: Obtain a priori spatial information and EIT data:
2: - Form polygonal approximations to organ boundaries.
3: - Collect EIT data and compute Lσ.
4: - Use FEM to simulate homogeneous data and compute L1.

5: Compute conductivity σ(z) using standard D-bar methods:
6: - Form computational grids for the k and z planes for both σ and σpr.
7: - Select a truncation radius R1.
8: for |k| < R1 do
9: - Solve (57) for bk to get ψ|∂Ω ≈ Jbk

10: - Compute t(k) from (32).
11: end for
12: for z ∈ Ω do
13: - Solve the (R1-truncated) equation (35) for µ(z, ·).
14: - Compute σ(z) from (21).
15: end for
16: Extract conductivity values from σ(z) to form σpr.
17: Compute σR2,α(z):
18: - Compute qpr = ∆

√
σpr/
√
σpr.

19: - Select R2 ≥ R1.
20: for |k| ≤ R2 do
21: - Solve (59) for µpr = e−ikzψpr.
22: end for
23: for R1 < |k| ≤ R2 do
24: - Compute tpr(k) from (50).
25: end for
26: - Form tR1,R2

.
27: - Select α.
28: for z ∈ Ω do
29: - Compute µint(z) from (55).
30: - Solve (60) for µR2,α(z, ·).
31: - Compute σR2,α(z) from (21).
32: end for
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3.4.4. Iterative approaches. The a priori schemes described in the previous pages

may be used alone to obtain a reconstruction σR2,α, but there is potential for further refine-

ment of spatial resolution through the use of iterative approaches. The motivation is to take

advantage of the enhanced spatial resolution in σR2,α to construct a new prior that is more

accurate than the original in terms of conductivity values and possible pathologies. We may

include in this updated prior any new information that appears in the reconstruction σR2,α.

This may be especially advantageous if the blind estimate method was used to construct the

original prior, but the patient has since developed some pathology that is visible in the EIT

data. Another situation where iteration may provide enhanced results is if we desire to use

the extraction method, but the reconstruction σ has very poor spatial resolution. In §3.5 we

provide an example of the first of these scenarios, using simulated data.

The computational steps in these iterative approaches are the following: (1) obtain the

reconstruction σR2,α, using either the blind estimate or extraction method to assign con-

ductivity values to the prior, (2) use the extraction method described in §3.4.3 to extract

conductivity values from σR2,α (rather than from σ), (3) use these extracted conductivity

values to form an updated prior σ′
pr, (4) repeat the a priori scheme using the original EIT

data with the updated prior σ′
pr to obtain an updated reconstruction σ′

R2,α
. This entire

process could potentially be repeated again if desired to obtain a second iterate σ′′
R2,α

.

3.5. RESULTS FROM SIMULATED DATA

We now present the results of our test problem using simulated data. In this test problem,

we simulate a situation in which a priori information is available from a previous CT scan,

but the patient has since developed a pleural effusion in one lung. We tested the previously

described a priori scheme using both the blind estimate and extraction methods for assigning
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conductivity values, and an iteration step as described above was performed on the results

from the reconstructions using the blind estimate method.

We assumed that the organ boundaries (without pleural effusion) were given by the organ

boundaries indicated by the solid line in Figure 3.1, and we assumed a circular domain of

radius 143.2 mm. We therefore created a phantom with these organ boundaries, domain

shape, and dimensions. Conductivity values were assigned to the phantom heart, lungs,

aorta, and spine, and the FEM method with the complete electrode model including contact

impedance described in [135] was used to generate voltage data. To simulate a pleural

effusion, conductivity was increased in the phantom in the bottom of the left lung. We will

use the convention that the left lung appears on the left-hand side of the image. The phantom

with assigned conductivity values is shown in Figure 3.2. Random zero-mean Gaussian noise

was added to the simulated voltages at 0%, 0.1%, and 0.2% of the maximum voltage values;

the D-bar reconstructions σ using the method of §1.3 for each of the three noise cases are

shown in Figure 3.3. All reconstructions in this section, including the reconstructions σ and

the results of the a priori schemes, were computed using a z-mesh with 101× 101 elements,

R1 = 3.8, and we tested values R2 ∈ {3.8, 5.0, 7.5, 10}, and α ∈ {0, 0.5, 0.75, 0.9}.

3.5.1. Blind estimate method applied to simulated data. We assigned “blind

estimate” a priori conductivity values representing a phantom with two homogeneous lungs

with conductivity 0.200 S/m, as shown on the right in Figure 3.2, in contrast to the actual

values displayed on the left in Figure 3.2. The values for the background, heart, aorta, and

spine differed slightly from the actual values. These “blind estimates” were used for all three

noise cases, and are given in Table 3.1. Reconstructions using the blind estimate method

can be seen in Figures 3.5, 3.6, 3.7.
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Figure 3.1. Solid line: simulated organ boundaries representing heart, lungs,
aorta, and spine within a circular domain, used to generate simulated data.
Dashed line: polygonal approximations of organ boundaries used as geometric
a priori information in our experiments with simulated data.

Figure 3.2. Conductivity values for the pleural effusion phantom (left) and
the initial blind estimate prior (right). All conductivity values are in S/m.

Given the obvious lung pathology apparent in the reconstructions, we then performed an

iteration step wherein the left lung was divided into two regions, which we shall refer to as

the “lung top” and “lung bottom,” separated by a horizontal line segment. We computed

conductivity values for the iterate σ′
pr separately in each of these two regions, using the
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(a) Noise level = 0%. (b) Noise level = 0.1%. (c) Noise level = 0.2%.

Figure 3.3. Plots of the reconstructions σ from the simulated data exper-
iments, computed using the regularized D-bar method of §1.3 (see also lines
5–15 of Algorithm 4) with truncation radius R1 = 3.8, at noise levels 0%,
0.1%, and 0.2%, with superimposed true organ boundaries. Each noise case
is plotted on its own scale; these scalings will be used for all plots concerning
the simulated data at each noise level within this work.

methods described in §3.4.3 to extract conductivity values from the σR2,α reconstruction

with R2 = 5.0 and α = 0.75. In the computation of the values for the heart, aorta, and

background, we selected values c = 0.85, c1 = 0.25, and c2 = 0.95; for simplicity, we used

these same values in all noise cases. The resulting conductivity values used in σ′
pr are also

given in Table 3.1.

The location of the dividing line between lung top and lung bottom was chosen by

visually inspecting the σR2,α reconstructions and selecting a horizontal line at which to form

the division. For simplicity, we used the same approximate dividing line in all three noise

cases. This approximate dividing line is compared to the actual lung division used to create

the phantom in Figure 3.4. The reconstructions resulting from the iteration step can be seen

in Figures 3.8, 3.9, and 3.10.

It is evident from the reconstructions in Figures 3.5, 3.6, 3.7 that with or without noise

the blind estimate method without iteration detects the pleural effusion provided a very

small value of α is not combined with a small value of R2. The case α = 0 and R2 = 3.8

corresponds to using only µint as in equation (54) and the scattering transform from the
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Figure 3.4. Locations of dividing line between the “lung top” and “lung
bottom.” The dividing line used in the phantom is indicated by a solid line.
The approximate dividing line (dashed line) was used in the extraction method
and the iteration step for the blind estimate method, and was obtained by
visually inspecting the σR2,α reconstructions.

regularized D-bar method without a prior. Increasing α and decreasing R2 weakens the

influence of the prior. In the case of a strong prior, the prior dominates the reconstruction in

the blind estimate method, resulting in good spatial resolution of organ boundaries, but poor

detection of the effusion. Adding the iteration step described in §3.4.4 results in excellent

detection of the effusion in every case, and the aorta and spine can be clearly seen with

excellent spatial accuracy even with a prior of medium weight, such as α = 0.5, R2 = 7.5.

Table 3.1. Conductivity values in S/m for the phantom as well as the “blind
estimate” σ̃pr values assigned, along with values assigned to σ̃′

pr in the subse-
quent iteration step, for each of the three noise cases.

Back-
ground

Heart Left
Lung
top

Left
Lung
bottom

Right
Lung

Aorta Spine

Used in phantom 0.424 0.750 0.240 0.600 0.240 0.750 0.150
“Blind estimates” used in σ̃pr 0.500 0.800 0.200 0.200 0.200 0.800 0.100
Used in σ̃′

pr, 0% noise 0.431 0.798 0.261 0.364 0.233 0.798 0.187
Used in σ̃′

pr, 0.1% noise 0.427 0.767 0.274 0.333 0.233 0.767 0.178
Used in σ̃′

pr, 0.2% noise 0.450 0.858 0.247 0.428 0.247 0.858 0.163
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Simulated Data Results

Blind Estimate Method

0% Noise

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.5. Reconstructions σR2,α for the 0% noise case with simulated data,
using the a priori scheme with the blind estimate method (before iteration
step), with various values of α and R2. The reconstruction with no prior is at
the top for comparison. The strength of the prior increases moving left to right
and top to bottom. The scale bar at the bottom applies to all reconstructions
at this noise level.
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Simulated Data Results

Blind Estimate Method

0.1% Noise

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.6. Reconstructions σR2,α for the 0.1% noise case with simulated
data, using the a priori scheme with the blind estimate method (before it-
eration step), with various values of α and R2. The reconstruction with no
prior is at the top for comparison. The strength of the prior increases moving
left to right and top to bottom. The scale bar at the bottom applies to all
reconstructions at this noise level.
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Simulated Data Results

Blind Estimate Method

0.2% Noise

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.7. Reconstructions σR2,α for the 0.2% noise case with simulated
data, using the a priori scheme with the blind estimate method (before it-
eration step), with various values of α and R2. The reconstruction with no
prior is at the top for comparison. The strength of the prior increases moving
left to right and top to bottom. The scale bar at the bottom applies to all
reconstructions at this noise level.
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Simulated Data Results

Blind Estimate Method

Plus Iteration Step

0% Noise
No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.8. Reconstructions σ′
R2,α

for the 0% noise case with simulated data,
using the a priori scheme with the blind estimate method plus one iteration
step, with various values of α and R2. The reconstruction with no prior is at
the top for comparison. The strength of the prior increases moving left to right
and top to bottom. The scale bar at the bottom applies to all reconstructions
at this noise level.
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Simulated Data Results

Blind Estimate Method

Plus Iteration Step

0.1% Noise
No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.9. Reconstructions σ′
R2,α

for the 0.1% noise case with simulated
data, using the a priori scheme with the blind estimate method plus one
iteration step, with various values of α and R2. The reconstruction with no
prior is at the top for comparison. The strength of the prior increases moving
left to right and top to bottom. The scale bar at the bottom applies to all
reconstructions at this noise level.
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Simulated Data Results

Blind Estimate Method

Plus Iteration Step

0.2% Noise
No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.10. Reconstructions σ′
R2,α

for the 0.2% noise case with simulated
data, using the a priori scheme with the blind estimate method plus one
iteration step, with various values of α and R2. The reconstruction with no
prior is at the top for comparison. The strength of the prior increases moving
left to right and top to bottom. The scale bar at the bottom applies to all
reconstructions at this noise level.
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3.5.2. Extraction method applied to simulated data. In assigning approximate

conductivity values, for each noise level we first reconstructed σ with R1 = 3.8 using the

D-bar method with no a priori information. The reconstruction of σ is plotted along with

the true organ boundaries in Figure 3.3.

For the extraction of conductivity values, from the σ reconstructions with the superim-

posed a priori organ boundaries, it was clear that the left lung has increased conductivity

toward the bottom, so we again divided the lung into top and bottom to construct the prior.

For simplicity, we used the same dividing line as was used in §3.5.1, and we selected the same

values for c, c1, and c2 for all noise cases. Using the methods outlined in §3.4.3, we extracted

conductivity values from the reconstruction σ to create σpr; these assigned values are given

in Table 3.2, along with the conductivity values used in the phantom for comparison. We

then proceeded with the rest of the a priori scheme outlined in §3.2, using R1 = 3.8, and

testing various values for R2 and α. The resulting reconstructions are given in Figures 3.11,

3.12, and 3.13.

In this method, with or without noise, the effusion is clearly visible for all weights of the

prior, with improvement in the organ shapes as the weight of the prior increases. Excellent

reconstructions are found even in the presence of noise. An iteration step is not included for

this method since the first step produces very high quality reconstructions.

Table 3.2. Conductivity values in S/m for the phantom as well as σ̃pr values
computed using extraction method for each of the 3 noise cases.

Back-
ground

Heart Left
Lung
top

Left
Lung
bottom

Right
Lung

Aorta Spine

Used in phantom 0.424 0.750 0.240 0.600 0.240 0.750 0.150
Extracted from σ, 0% noise 0.401 0.681 0.283 0.398 0.251 0.681 0.186
Extracted from σ, 0.1% noise 0.393 0.648 0.292 0.373 0.252 0.648 0.178
Extracted from σ, 0.2% noise 0.423 0.742 0.272 0.460 0.260 0.742 0.177
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Simulated Data Results

Extraction Method

0% Noise

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.11. Reconstructions σR2,α for the 0% noise case with simulated
data, using the a priori scheme with the extraction method, with various values
of α and R2. The reconstruction with no prior is at the top for comparison.
The strength of the prior increases moving left to right and top to bottom.
The scale bar at the bottom applies to all reconstructions at this noise level.
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Simulated Data Results

Extraction Method

0.1% Noise

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.12. Reconstructions σR2,α for the 0.1% noise case with simulated
data, using the a priori scheme with the extraction method, with various values
of α and R2. The reconstruction with no prior is at the top for comparison.
The strength of the prior increases moving left to right and top to bottom.
The scale bar at the bottom applies to all reconstructions at this noise level.
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Simulated Data Results

Extraction Method

0.2% Noise

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

α = 0.9, R2 = 10 α = 0.75, R2 = 10 α = 0.5, R2 = 10 α = 0, R2 = 10

Figure 3.13. Reconstructions σR2,α for the 0.2% noise case with simulated
data, using the a priori scheme with the extraction method, with various values
of α and R2. The reconstruction with no prior is at the top for comparison.
The strength of the prior increases moving left to right and top to bottom.
The scale bar at the bottom applies to all reconstructions at this noise level.
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3.6. A DISCUSSION OF THE “EDGE-RINGING” EFFECT

The “edge-ringing” effect seen in the reconstructed spine and lungs for small α or large

R2 in the reconstructions from simulated data (see Figure 3.6, especially) is likely due in

part to the influence of the term µint on the reconstruction (in the case of small α) and the

effects of the high-frequency scattering data from the prior (in the case of large R2). The µint

term provides excellent spatial resolution of the prior, detecting edges extremely well, but

introducing ringing since it becomes increasingly uniform, tending to 1 as R2 → ∞. This

effect can be seen in Figure 3.14.

(a) R2 = 3.8 (b) R2 = 5.0 (c) R2 = 7.5 (d) R2 = 10

Figure 3.14. Plots of the real part of µint used in the simulations with various
truncation radii R2. Since µint → 1 as R2 → ∞, the scale must be adjusted
for each value of R2 for best viewing results. The boundaries shown are those
used to compute σpr.

As was pointed out in [80], the high-frequency values of the scattering transform encode

the sharper features of EIT images. In particular, the high-gradient areas of a conductivity

distribution correspond to high scattering frequencies. In D-bar reconstructions regularized

by low-pass filtering as described [108], the high-frequency scattering values are set to zero,

which results in a smoothing or blurring effect. This is analogous to noise reduction via

linear frequency filtering (with a standard Fourier transform) of digital images or signals.

In our method, we include higher scattering frequencies from the prior using the piecewise
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scattering transform (49). When R2 is large, these values tend to dominate in the recon-

struction, probably due to the high quality of the a priori scattering data as compared to

data produced via simulation. To illustrate this effect, consider the reconstruction shown

in Figure 3.15, which was produced using the following scattering transform, in which low

scattering frequencies are set to zero, and only frequencies 3 < |k| ≤ 10 are preserved:

(65) thf(k) =



































0, |k| ≤ 3

tpr(k), 3 < |k| ≤ 10

0, |k| > 10

.

Furthermore, the reconstruction shown in Figure 3.15 was produced using weighting param-

eter α = 1, leading to complete suppression of the µint term. The result demonstrates that

high scattering frequencies encode mostly information corresponding to the edges of organ

boundaries. This experiment is analogous to high-pass frequency filtering of digital images,

which results in detection of high-gradient areas in the digital image corresponding to edges.

Figure 3.15. Reconstruction produced using the scattering transform (65)
and α = 1, leading to complete suppression of the µint term. Low frequency
scattering values were set to zero, and only frequencies 3 < |k| ≤ 10 are used.
The result suggests that high scattering frequencies encode mostly information
corresponding to the edges of organ boundaries.
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3.7. RESULTS FROM EXPERIMENTAL TANK DATA

In this section, we apply the a priori methods to experimental tank data, with EIT

measurements taken using the ACE1 EIT system at CSU. We describe three separate ex-

periments designed to simulate human thoracic data.

In all three experiments, the lab set-up consisted of a circular PVC tank of inner diameter

303.215 mm, surrounded by 32 equally-spaced stainless steel electrodes, each 25.4 mm in

width. In the first experiment agar shapes representing a healthy human heart and lungs

were placed into the tank, and the tank was filled with saline solution up to the top of the

agar targets, resulting in a saline depth of 1 cm. This experimental set-up is shown on the left

in Figure 3.16. We measured the conductivities of the saline and the agar components using

a conductivity meter; the resulting measured conductivity values are shown in Table 3.3. We

then applied electrical current at skip 0, frequency 125 kHz, current amplitude approximately

3.3 mA, and recorded the resulting EIT data.

Figure 3.16. Left: experimental set-up with agar heart and lungs in a PVC
tank, surrounded by saline solution. Middle: a second experiment, in which
the heart and lungs are preserved, but a copper conductor has been inserted
into the bottom of the right lung. Left: a third experiment, in which the
conductor has been removed, and a plastic insulator has been inserted in its
place.

In a second experiment, we left the agar targets in the tank, and a circular copper

conductor of diameter 24 mm was inserted into the bottom of the right lung (using the
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Table 3.3. Measured conductivity values (in S/m) for agar components and
background saline solution used in the described tank experiments. Conduc-
tivity values were measured using a conductivity meter at the start of the
experiment.

Component Measured Conductivity (S/m)

Background Saline 0.185
Heart 0.238
Lungs (right and left) 0.136

convention that the right lung is on the right-hand side of the image). EIT measurements

were repeated at skip 0, frequency 125 kHz, current amplitude approximately 3.3 mA. This

conductor could represent the presence of conductive pathology such as a cancerous tumor,

contusion, or a blood clot in the lung. This experimental set-up is depicted in the middle in

Figure 3.16.

In a third experiment, the conductor was removed, and a circular plastic insulator of

diameter 28 mm was inserted in its place. While this scenario is not necessarily representative

of a real-world physical pathology, we felt this was a natural experiment to try, and the

resulting data provides a nice contrast with the case of the conductive pathology. EIT

measurements were once more repeated at skip 0, frequency 125 kHz, current amplitude

approximately 3.3 mA. This experimental set-up is depicted on the right in Figure 3.16.

Finally, the agar targets were removed, and additional saline was added to the tank

to preserve the water level of 1 cm. EIT measurements were taken on the homogeneous

tank, and this data were used in place of the measurements corresponding to Λ1 in the

reconstruction algorithm. This method (which is a form of difference imaging) results in a

loss of the true conductivity values in the reconstructions.

The D-bar reconstructions σ for these two experimental test cases, using the method of

§1.3, are shown in Figure 3.17. Reconstructions in this section, including the reconstructions

σ and the results of the a priori schemes, were again computed using a z-mesh with 101×101
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elements and inner truncation radius R1 = 3.8. We show test results for parameter values

α ∈ {0, 0.5, 0.75, 0.9}, R2 ∈ {3.8, 4.5, 5.0, 7.5}.

Figure 3.17. Plots of the reconstructions σ from the tank experiments, com-
puted using the regularized D-bar method of §1.3 (see also lines 5–15 of Al-
gorithm 4) with truncation radius R1 = 3.8, with superimposed organ bound-
aries approximated from photographs. Each reconstruction is plotted on its
own scale.

In the remainder of this section, we describe the methodology used to apply the a priori

methods to these two experimental test cases, and we discuss the results and insights gained

from these experiments.

3.7.1. Tank experiment: healthy human heart and lungs. In our tank experi-

ments, boundaries used to construct σ̃pr were formed by clicking around the organ boundaries

in the photograph of the experimental setup, saving this geometric data, and then scaling to

the proper dimensions. The photograph of the experimental setup and the extracted organ

boundaries are shown in Figure 3.18. Due to the previously mentioned loss of true conduc-

tivity values in the reconstructions, the extraction method (at least in its unmodified form)

would not be useful to obtain conductivity estimates for the prior. Instead, we used the

blind estimate method, with conductivity values selected based on the measurements shown

in Table 3.3, so that σheart = 0.238 S/m, σr lung = σl lung = 0.136 S/m, and σbg = 0.185 S/m.
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Due to noise and physical limitations of the measuring process, these values are themselves

approximations of the true conductivity values, so this is representative of clinical situation

in which we use published values for the conductivities of various human tissues.

Figure 3.18. Left: experimental set-up with agar heart and lungs in tank.
Right: polygonal approximations of organ boundaries used as geometric a
priori information in our experiments with tank data.

Reconstructions σR2,α for this tank experiment with a healthy heart and lungs phantom

are shown in Figure 3.21. Due to loss of true conductivity values, for optimum plotting results

the reconstructions were individually scaled to the interval [0, 1]. Observe the pronounced

edge-ringing effect present for larger R2 values. For the reconstructions displayed here, we

selected slightly different values for R2 than those used in the experiments with simulated

data. This selection was made due to the apparent increased sensitivity to the prior and to

the increased edge-ringing effect. For smaller values of R2, however, the spatial resolution,

organ shapes, and overall image quality is excellent.

3.7.2. Tank experiment: conductive pathology. For our experiment with the

added conductive pathology, we ran initial reconstructions using the same prior σpr as was

used in the case with the healthy heart and lungs. This represents a situation where a

pathology has developed that was not present at the time of the original CT scan, and we
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use the unmodified CT scan data to construct the prior. The results of this experiment are

shown in Figure 3.22. As one can see, when the prior is fairly weak, the pathology in the right

lung is still evident. But for larger R2 and smaller α, the pathology becomes less obvious as

the influence of the healthy prior increases. Compared to the reconstructions of the healthy

phantom in Figure 3.21, however, the pathology leaves traces on all the reconstructions even

when the influence of the prior is very strong.

Due to the very obvious, roughly circular area of high-conductivity present in the right

lung in the reconstruction σ, which can best be seen in the contour plot of σ depicted in

Figure 3.19, we then modified the prior to reflect this obvious pathology. This represents a

situation where, although a pathology has appeared since the CT scan was taken, the initial

EIT scan indicates a possible pathology, and we are able to modify the prior accordingly.

Since the pathology appears as a fairly round, globular high-conductivity region in the EIT

reconstruction σpr, we used level sets combined with visual intuition to extract a simply-

connected high-conductivity region, and then took the convex hull of this region as the

polygonal boundary for the pathology. This procedure resulted in the prior depicted in

Figure 3.19. Observe that the spatial location of the pathology is close to, but does not

coincide perfectly with, the actual location of the copper conductor in the photograph.

The conductor in the experiment was made out of copper, and so has extremely high

conductivity. However, in the reconstruction σ, the conductivity of the pathology appears

to be less than that of the heart, probably due to the surrounding resistive lung phantom.

Since in practice the conductivity of the pathology would be unknown, we therefore based the

approximate conductivity value for the prior on the reconstruction σ. To obtain the value

σpath to use in region corresponding to the pathology in the prior, we used the following

computation, which may be thought of as the extraction method modified for use with
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difference images. Again denote by {z′s} the finite set of points in the z-mesh used to

construct σ. Denote by Ppath the closed polygonal region defined by the extracted boundary

for the pathology, let P̃path := {z′s} ∩ Ppath, and compute the average value

σpath∗ :=
1

M

M
∑

m=1

σ(z′m), z′m ∈ P̃path,

where M denotes the number of points z′m in P̃path. Then compute the value σpath to use in

σ̃pr by the following scaling procedure:

σpath = σmin pr +
σpath∗ − σmin

σmax − σmin

(σmax pr − σmin pr),

where σmin, σmax are as in (64), and σmin pr = σr lung, σmax pr = σheart are the min and max

values used in the healthy prior, which may be thought of as approximations for the min

and max values in the true conductivity distribution. Furthermore, assign the value σr lung

to the region Pr lung − Ppath.

For our test case with the copper conductor, the preceding computation resulted in

σpath = 0.181 S/m. The results of the a priori procedure with this modified prior are shown

in Figure 3.23. Observe that although the pathology is quite small (both in the prior and in

reality), its presence is apparent in all of the reconstructions, at least until the “edge ringing”

effect begins to dominate for larger values of R2.

3.7.3. Tank experiment: resistive pathology. For our experiment with the added

resistive pathology, we again ran initial reconstructions using the same prior σpr as was used

in the case with the healthy heart and lungs. The results of this experiment are shown in

Figure 3.24. Once again, when the prior is fairly weak, the pathology in the right lung is
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Figure 3.19. Right: the experimental set-up with agar heart and lungs and
an added copper conductor representing a lung pathology. Middle: a contour
plot, showing level sets, of the EIT reconstruction σ computed with no prior.
Left: the modified organ boundaries for the prior reflecting the pathology,
where the boundary for the pathology was computed by taking a level set of
the reconstruction σ.

Figure 3.20. Right: the experimental set-up with agar heart and lungs and
an added plastic insulator representing a lung pathology. Middle: a contour
plot, showing level sets, of the EIT reconstruction σ computed with no prior.
Left: the modified organ boundaries for the prior reflecting the pathology,
where the boundary for the pathology was computed by taking a level set of
the reconstruction σ.

still evident, but its presence in the reconstructions becomes less obvious as the influence of

the prior increases.

We then modified the prior to reflect the pathology, once again using level sets, in a

method analogous to that used for the conductive pathology. This procedure resulted in the

prior depicted in Figure 3.20. To obtain the value σpath to use in the region corresponding
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to the resistive pathology in the prior, we used the following computation, which is slightly

different than the method used to compute the value for the conductive pathology, due to the

fact that the insulator shows up as more resistive than the lungs in the initial reconstruction

σ. Denote again by Ppath the closed polygonal region defined by the extracted boundary for

the pathology, let P̃path := {z′s} ∩ Ppath and again compute the average value

σpath∗ :=
1

M

M
∑

m=1

σ(z′m), z′m ∈ P̃path,

where M denotes the number of points z′m in P̃path. Furthermore, compute the average value

of the reconstruction in the left lung:

σl lung∗ :=
1

M

M
∑

m=1

σ(z′m), z′m ∈ P̃l lung,

where M denotes the number of points z′m in P̃l lung. Then compute the value σpath to use in

σ̃pr by the following scaling procedure:

σpath = σmin pr −
σl lung∗ − σmin

σmax − σ l lung∗

(σmax pr − σmin pr),

where once again σmin, σmax are as in (64), and σmin pr = σr lung, σmax pr = σheart are the

min and max values used in the healthy prior. Finally, assign the value σr lung to the region

Pr lung − Ppath.

For our test case with the plastic insulator, the preceding computation resulted in σpath =

0.104 S/m. The results of the a priori procedure with this modified prior are shown in

Figure 3.25. Once again, the resistive pathology is now evident in all the reconstructions, at

least until the “edge-ringing” effect dominates for large R2.
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Tank Data Results:

Healthy Heart and Lungs

Blind Estimate Method
No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 4.5 α = 0.75, R2 = 4.5 α = 0.5, R2 = 4.5 α = 0, R2 = 4.5

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

Figure 3.21. Reconstructions σR2,α for the experimental tank data repre-
senting healthy heart and lungs, using the a priori scheme with the blind
estimate method, with various values of α and R2. The reconstruction with
no prior is at the top for comparison. The strength of the prior increases mov-
ing left to right and top to bottom. Due to loss of true conductivity values,
the reconstructions were individually scaled to the interval [0, 1].
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Tank Data Results:

Conductive Pathology

Blind Estimate Method

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 4.5 α = 0.75, R2 = 4.5 α = 0.5, R2 = 4.5 α = 0, R2 = 4.5

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

Figure 3.22. Reconstructions σR2,α for the experimental tank data with
added conductive pathology, using the a priori scheme with the blind esti-
mate method, with various values of α and R2. The reconstruction with no
prior is at the top for comparison. The strength of the prior increases moving
left to right and top to bottom. Due to loss of true conductivity values, the
reconstructions were individually scaled to the interval [0, 1].
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Tank Data Results:

Conductive Pathology

Modified Prior

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 4.5 α = 0.75, R2 = 4.5 α = 0.5, R2 = 4.5 α = 0, R2 = 4.5

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

Figure 3.23. Reconstructions σR2,α for the experimental tank data with
added conductive pathology, using the a priori scheme with modified prior,
with various values of α and R2. The reconstruction with no prior is at the top
for comparison. The strength of the prior increases moving left to right and
top to bottom. Due to loss of true conductivity values, the reconstructions
were individually scaled to the interval [0, 1].
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3.8. DISCUSSION OF DISCONTINUITIES IN THE PIECEWISE SCATTERING DATA

One question that is worth asking is the following: what does the scattering transform

tR1,R2
(k) given in (49) look like for k close to |k| = R1? Specifically, in the case of practical

data, are there large discontinuities in the scattering data at the boundary R1 due to large

discrepancies between t and tpr?

We have found that in the cases we have examined, the scattering transform t tends

to be of similar magnitude as tpr, and the match-up of the scattering data is reasonably

good. To demonstrate this, consider the plots of the piecewise scattering transform tR1,R2
(k),

computed on a 64× 64 k-grid with R1 = 3.8, R2 = 10, for both the simulated data 0% noise

case with the prior constructed using the blind estimate method (Figure 3.26); and the tank

data case of the healthy heart and lungs phantom (Figure 3.27). As one can see, there

are some discontinuities in both the real and imaginary parts of the scattering transforms,

but overall the scattering data for |k| ≤ 3.8 is of similar magnitude as the scattering data

for 3.8 < |k| ≤ 10. A poorly-constructed prior (that is not a good match for the true

conductivity distribution) will result in greater mismatch of scattering data, and this likely

leads to artifacts in the resulting reconstructions. However, this phenomenon requires further

study.

3.9. CONCLUSIONS FROM THE A PRIORI METHOD

We have demonstrated the effectiveness of the a priori algorithm described in this chapter

using both numerically simulated data with added noise as well as experimental tank data

collected using the ACE1 EIT system at CSU. These experiments indicate that the method

produces images with enhanced spatial resolution and improved organ shapes in both these

scenarios, even in the presence of noise.
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Based on the results presented here, it is recommended that the reconstructions be mon-

itored for the“edge-ringing” effect, and this effect can be mitigated by decreasing the value

of R2. The appropriate choices for the parameters R2 and α may vary depending on the

application, and it is recommended that several values be tested to observe their effects on

the reconstructions. Overall, the method shows promise for clinical use in lung imaging when

a priori information about organ boundaries can be obtained from a CT or MRI scan, for

example. Future work is needed to evaluate its clinical effectiveness.
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Tank Data Results:

Resistive Pathology

Blind Estimate Method

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 4.5 α = 0.75, R2 = 4.5 α = 0.5, R2 = 4.5 α = 0, R2 = 4.5

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

Figure 3.24. Reconstructions σR2,α for the experimental tank data with
added resistive pathology, using the a priori scheme with the blind estimate
method, with various values of α and R2. The reconstruction with no prior is
at the top for comparison. The strength of the prior increases moving left to
right and top to bottom. Due to loss of true conductivity values, the recon-
structions were individually scaled to the interval [0, 1].
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Tank Data Results:

Resistive Pathology

Modified Prior

No Prior, R1 = 3.8

α = 0.9, R2 = 3.8 α = 0.75, R2 = 3.8 α = 0.5, R2 = 3.8 α = 0, R2 = 3.8

α = 0.9, R2 = 4.5 α = 0.75, R2 = 4.5 α = 0.5, R2 = 4.5 α = 0, R2 = 4.5

α = 0.9, R2 = 5.0 α = 0.75, R2 = 5.0 α = 0.5, R2 = 5.0 α = 0, R2 = 5.0

α = 0.9, R2 = 7.5 α = 0.75, R2 = 7.5 α = 0.5, R2 = 7.5 α = 0, R2 = 7.5

Figure 3.25. Reconstructions σR2,α for the experimental tank data with
added resistive pathology, using the a priori scheme with modified prior, with
various values of α and R2. The reconstruction with no prior is at the top for
comparison. The strength of the prior increases moving left to right and top
to bottom. Due to loss of true conductivity values, the reconstructions were
individually scaled to the interval [0, 1].
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(a) Real part of tR1,R2
(k)

(b) Imaginary part of tR1,R2
(k)

(c) Real (left) and imaginary (right) parts of tR1,R2
(k)

Figure 3.26. Real and imaginary parts of the piecewise scattering transform
tR1,R2

(k), computed on a 64× 64 k-grid with R1 = 3.8, R2 = 10, for the simu-
lated data 0% noise case, with the prior constructed using the blind estimate
method.
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(a) Real part of tR1,R2
(k)

(b) Imaginary part of tR1,R2
(k)

(c) Real (left) and imaginary (right) parts of tR1,R2
(k)

Figure 3.27. Real and imaginary parts of the piecewise scattering transform
tR1,R2

(k), computed on a 64 × 64 k-grid with R1 = 3.8, R2 = 10, for the case
of experimental tank data with the healthy heart and lungs phantom.
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CHAPTER 4

CONCLUSIONS

In this dissertation, we have described two successful computational improvements to the

2-D D-bar method of A. Nachman for electrical impedance imaging of conductivities. While

these contributions have been developed mainly for use in medical imaging applications,

and specifically human thoracic imaging, we believe the methods described here could be

modified and developed for other applications of EIT, including other medical applications

and possibly industrial and engineering applications as well.

The real-time D-bar algorithm described in Chapter 2 effectively shows that CGO meth-

ods can be made to be computationally efficient—and can in fact be made to run in real-

time—thus demonstrating their feasibility for their use in functional bedside EIT imaging.

This could prove to be greatly beneficial in clinical settings where functional real-time infor-

mation is necessary, such as in ventilation monitoring and other bedside monitoring scenarios.

The methods described here could also potentially be modified for use in applications other

than medical imaging, such as process monitoring. We described two different ways to paral-

lelize the 2-D D-bar algorithm, and we compared and contrasted the merits of each. Future

work in this area could include the implementation of the algorithm in other programming

languages such as C or FORTRAN, possibly combined with GPU parallelization, which may

improve computational efficiency. Algorithm efficiency for absolute images (as opposed to

difference images, which were presented in this dissertation) could also be examined. At

the time of the writing of this writing, the work on the real-time D-bar algorithm described

here has resulted in one manuscript published in a peer-reviewed journal [9]. This work

was also presented in the 15th Annual Conference on Biomedical Applications of Electrical
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Impedance Tomography, [8], where the author received the 2nd-place award for best student

paper.

The a priori D-bar methods described in Chapter 3 demonstrate that spatial resolution

in EIT imaging may be improved by incorporating prior information regarding spatial ge-

ometry, or a combination of geometry and estimated conductivity values, into the D-bar

method. The a priori information was incorporated in two distinct ways: (1) we added an

annulus containing high-frequency a priori scattering data to the nonlinear Fourier transform

involved in the D-bar method, effectively stabilizing the method and allowing the expression

of edges and other sharp details in the reconstructions, and (2) we incorporated a weighted

integral term containing a priori CGO data into the D-bar equation, which resulted in differ-

ent but similar effects. For each method, we provide a means to control the influence of the

prior on the resulting reconstruction. We further described possible iterative methods that

may produce improved results. These methods can be used separately or in combination.

We have successfully applied the described methods to simulated data and experimental

tank data. Further work must be done to apply these methods to the case of experimental

human data, and evaluate their usefulness in clinical settings. The work regarding the a

priori D-bar methods has resulted in a preliminary version of a manuscript published on

ArXiv.org [7]. This work is currently being refined and we hope to have the result published

in a peer-reviewed journal in the near future. This work has also spawned a collaborative

work with S. Hamilton [79], wherein the a priori methods are applied to 2-D EIT imaging

for complex admittivities on simulated chest-shaped domains.
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