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Abstract

Hierarchical Cluster Guided Labeling: Efficient Label Collection for

Visual Classification

Visual classification is a core component in many visually intelligent systems. For ex-

ample, recognition of objects and terrains provides perception during path planning and

navigation tasks performed by autonomous agents. Supervised visual classifiers are typically

trained with large sets of images to yield high classification performance. Although the col-

lection of raw training data is easy, the required human effort to assign labels to this data

is time consuming. This is particularly problematic in real-world applications with limited

labeling time and resources.

Techniques have emerged that are designed to help alleviate the labeling workload but

suffer from several shortcomings. First, they do not generalize well to domains with limited

a priori knowledge. Second, efficiency is achieved at the cost of collecting significant label

noise which inhibits classifier learning or requires additional effort to remove. Finally, they

introduce high latency between labeling queries, restricting real-world feasibility.

This thesis addresses these shortcomings with unsupervised learning that exploits the

hierarchical nature of feature patterns and semantic labels in visual data. Our hierarchi-

cal cluster guided labeling (HCGL) framework introduces a novel evaluation of hierarchical

groupings to identify the most interesting changes in feature patterns. These changes help

localize group selection in the hierarchy to discover and label a spectrum of visual semantics

found in the data. We show that employing majority group-based labeling after selection

allows HCGL to balance efficiency and label accuracy, yielding higher performing classifiers

than other techniques with respect to labeling effort. Finally, we demonstrate the real-world
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feasibility of our labeling framework by quickly training high performing visual classifiers

that aid in successful mobile robot path planning and navigation.
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CHAPTER 1

Efficient Visual Concept Labeling

1.1. Classification Tasks and Training Data Collection

Visually intelligent systems that require little to no human supervision are becoming more

commonplace. Examples include autonomous vehicles and automated video surveillance.

One core component in these technologies, and the motivating task of this thesis, is visual

concept classification. Depending on the application, visual concept classification can

include differentiating objects, scenes, terrains or activities from visual data.

In general, humans categorize concepts relatively easily even when visual properties such

as color, scale or shape vary or when concepts are viewed from different perspectives, under

different illuminations or under occluding circumstances. Visual classifiers, on the other

hand, are still progressing to handle these variations with the same ease as humans. To

learn well, most visual property variations must exist in the visual classifier’s training set.

Ultimately, this means that large sets of labeled training data are needed to produce high

performing visual classifiers.

Although collecting large sets of visual data is a trivial task, the raw data itself contains

no label information for supervised classifiers. The process of mapping visual data to a set

of semantically meaningful labels requires human intervention. Figure 1.1 illustrates the

general idea of labeling visual data. Assigning a label to a single image can be an easy task,

but datasets of thousands to millions of visual data samples requires significant labeling time

and resources.

The time consuming labeling process is a significant hindrance to supervised learning

algorithms. Thus, there is a strong need for more efficient label collection techniques that
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Figure 1.1. Illustration of label assignment to a single image.

reduce human labeling effort without significantly compromising classifier learning. In other

words, a set of labeled data needs be collected quickly and include all underlying information

available in the training set. The research in this thesis presents a framework that addresses

this need.

1.2. Problem Definition

At its most basic level the label collection problem is the process of assigning a set of

labels to a set of visual data. However, we identify several objectives that influence the design

of our labeling framework. These include learning a label set, reducing workload, labeling

a sufficient amount of data and maintaining label accuracy. Each of these objectives plays

a critical role in determining the success of classifier learning. These objectives serve as a

basis for discussion and analysis when comparing other label collection techniques with the

research in this thesis.

1.2.1. Learning a Label Set

Since the training data is initially unlabeled we assume that the set of visual concepts in

the data is also initially unknown. For example, training data may be collected by letting a

camera capture data from an environment for a specified amount of time. The training data

2



is assumed to include the typical visual concepts a classifier may eventually want to learn,

but the underlying concepts are not known in advance. This process of learning a label set

is commonly referred to as concept discovery . Discovery is an important task because

classifiers will not learn to recognize concepts when no labeled training examples exist. The

semantics of learned label sets will be discussed in greater detail in later chapters.

1.2.2. Reducing Labeling Workload

Given the motivation of this work, an obvious objective is to reduce labeling effort.

The degree to which labeling effort is reduced is referred to as labeling efficiency . This

is relative to the overall effort required to label each training sample individually, and is

discussed in greater detail in Chapter 3. Efficiency is generally a desirable property, but

this research is specifically motivated by real-world applications that have limited time and

resources to allocate to label collection. In this sense, efficiency can also be thought of as

reducing the total amount of time it takes to collect labeled training data. This will be the

main focus during real-world evaluations in Chapter 8.

1.2.3. Labeling a Sufficient Amount of Data

Trivially, reducing labeling effort could be achieved by simply labeling fewer training

samples. However, a small label set may not be sufficient to train high performing classifiers.

We may refer to this as exploitation of the training data. This objective is related to

discovery but focuses on the quantity of labels, not classes, for the classifier to learn from.

1.2.4. Maintaining Label Accuracy

There is always possibility for error when humans assign natural language concepts to

visual data. For example, a human may mistake a cheetah for a leopard or mistype cat as car.

3



? 

? 

? 
? ? 

? 
? 

? 

? 

? ? ? 

? ? 

? 

? 
? 

? 

? 

? 

? 

? 

? 

Lamb 

Pig 

Cow X

Figure 1.2. Illustration of a group-based labeling technique.

The fraction of non-erroneous labels is defined as label accuracy . Conversely, the fraction

of label errors is referred to as label noise . High label accuracy is important because it

provides the best opportunity for classifiers to learn, whereas label noise creates confusion

during learning.

Beyond human error, most of the label noise discussed in this research is introduced by

systems that employ group-based labeling to improve labeling efficiency. In this technique,

visual data believed to represent the same visual concept are grouped together, and the entire

group is assigned a single label that best describes all its data (illustrated in Figure 1.2).

Details of this process are left for discussion in later chapters, but Figure 1.3 illustrates how

group-based labeling introduces label noise when groups are formed from data representing

multiple concepts. In this case, all groups are given the label cow because it is the dominating

concept among images, but each group has a varying degree of label noise (images that do

not represent cow).

1.2.5. Balancing Objectives to Produce High Performing Classifiers

Each of the objectives contributes to the overall goal of efficient label collection for visual

classifiers. As hinted, there are trade-offs when attempting to optimize any one of these

objectives, so the challenge of this problem is designing a labeling system that best balances
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(a) Label Accuracy: 1.00 (b) Label Accuracy: 0.75 (c) Label Accuracy: 0.50

Figure 1.3. Illustration of label noise that may be introduced during group-
based labeling. All three groups would be labeled with the majority concept
cow, but have varying amounts of label noise.

all of them. Throughout this thesis, labeling techniques will primarily be evaluated by

comparing classification performance as a function of labeling effort. However, objective

criteria will be evaluated independently to show the trade-offs made by different labeling

approaches and how these objective design decisions impact the final performance of visual

classifiers.

1.3. Current Techniques and Shortcomings

Many techniques have emerged to improve the efficiency of label collection for large un-

labeled sets of visual data. However, these techniques exhibit several shortcomings. First,

techniques often assume a priori knowledge of the data is available, which is not the case

for all applications. Second, techniques tend to favor either efficiency or label accuracy.

High efficiency is often achieved at the cost of introducing significant label noise, but high

label accuracy requires more effort. Third, techniques introduce labeling latency via iter-

ative re-clustering or classifier re-training, which results in idle time for annotators during

labeling. The rest of this section highlights important existing techniques and their specific

shortcomings.
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Active learning frameworks [1, 2, 3, 4, 5] label a subset of the most informative samples

in the training data. Label collection and classifier learning are tightly coupled because

classifiers are iteratively re-trained to make query selections. Incorporating a supervised

classifier creates iterative labeling latency, and often requires knowing the visual concepts

in advance because a labeled seed set is used to initialize classifiers. These frameworks are

only efficient if a subset of the unlabeled data can sufficiently train classifiers since individual

instances are labeled at each query.

Group-based labeling techniques are potentially more efficient than instance-based label-

ing because a single label is attached to multiple images simultaneously. Clustering [6, 7, 8]

and topic modeling [9, 10, 11] have been used to partition unlabeled data into groups without

supervision to discover the underlying concepts bottom-up. However, these techniques often

assume the number of concepts is known to learn a one-to-one partition between concepts

and groups.

Group-based labeling is a noisy strategy when groups contain data from multiple visual

concepts (as in Figures 1.3(b) and (c)). Thus, some techniques introduce additional effort and

labeling latency to improve label accuracy. Active clustering iteratively collects constraints

and re-clusters data to improve clustered output [12, 13, 14]. Incremental clustering [15]

has been used to iteratively remove small subsets of labeled data to make the next iteration

of clustering easier. Some frameworks ask annotators to assign a label and then remove

instances that do not match that label [16]. These approaches introduce label latency similar

to active learning, and decrease efficiency as the focus is to assign noise-free labels.

While these techniques make an effort to reduce labeling and train high performing

classifiers, their shortcomings need to be addressed. The biggest commonality among all
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techniques is the desire to force discovery and labeling of visual concepts to occur at a specific

granularity - the granularity believed to be of importance to the end classifier. In other words,

these techniques ignore the hierarchical patterns and relationships of the data. This thesis

research is designed with the hypothesis that exploiting hierarchical information in visual

data will address the shortcomings of existing techniques, and produce high performing visual

classifiers with minimal human effort.

1.4. Summary of Research: Hierarchical Cluster Guided Labeling

The process of mapping a natural language label to visual data is more complex than

the problem statement suggests. Suggesting there is only a single correct label per data

point is very restricting, yet existing techniques assume this when designing efficient labeling

frameworks. The patterns seen in the underlying features of visual data can represent many

visual properties. These similarities may map to visual concept labels that are either coarser

or finer-grained than classifiers will eventually learn.

Group-based labeling is a productive technique to label a finite set of training data with

less effort than labeling each data sample individually. However, trying to force groups to

represent a finite set of labels usually results in significant label noise collection. We show

that removing the constraints that force grouping to occur at a particular concept granularity

provides a unique framework for an efficient labeling system. We refer to this framework

as Hierarchical Cluster Guided Labeling. Specifically, we maintain a hierarchical clustering

of visual data to create a space of groupings that can be mapped to a spectrum of visual

concepts. In other words, our approach does not create a one-to-one mapping based on a

finite set of labels. Instead, we seek to discover all underlying similarities in the groupings
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and provide an appropriate label for them even if the granularity of the label differs from

that of the end classifier.

The hierarchical clustering structure is large and redundant since each node is a subset of

its ancestors. To maintain high efficiency our framework searches the hierarchy for locations

of visual concept transitions. This is done by analyzing local structure of groups and changes

in structure with respect to a local neighborhood. The idea is that significant changes in

local structure are good indicators of visual concept transition. These transitions make up

a small subset of groups that can be labeled with minimal human effort.

Our hierarchical grouping and label set provides a way to maintain better label accuracy

without introducing latency or additional effort. While this approach may require more label-

ing queries because we label a larger set of visual concepts, the additional workload makes

up for itself with improved label accuracy. This balance between efficiency and accuracy

produces higher performing classifiers with respect to labeling effort. Finally, this technique

does not introduce any labeling latency since the hierarchical structure is constructed only

a single time, off-line, before labeling begins. This allows the labeling framework to be used

in real-world scenarios where a large amount of label collection needs to be done quickly.

1.4.1. Summary of Contributions

This thesis presents a new group-based label collection strategy to quickly and efficiently

collect labels to train visual classifiers. The contributions of this thesis include the following:

• An efficient labeling framework that can reduce labeling effort by a factor of ten

while still training high performing classifiers.

• A technique that generalizes to any unlabeled data as it requires no a priori knowl-

edge and discovers visual concepts bottom-up.
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• A novel structural change measure used to evaluate local neighborhoods in a hi-

erarchical clustering of data to identify the most interesting splits made during

grouping.

• Results that indicate trading a small amount of label accuracy for higher efficiency

does not significantly degrade classification performance.

• A real-world feasible and fast labeling framework.

• Presentation of the first navigation task-based evaluation of visual perception with

respect to labeling interaction time.

• A multi-concept image inference technique that exploits the entire hierarchical label

set to provide more information to classifiers.

1.4.2. Scope

Many factors can impact performance of a labeling framework. Unfortunately, the evalu-

ation of all factors is beyond the scope of this thesis. We choose not to focus on the evaluation

or optimization of any of the following:

• Feature representation: feature vector used to represent each image

• Hierarchical grouping construction: algorithm used to build a top-down or bottom-

up hierarchical representation of the visual data

• Segmentation of multi-label images: algorithm used to break an image into multiple

smaller samples that each represent a single concept

• Supervised classifier: the final classifier that learns from the collected labeled train-

ing data and serves as the primary form of evaluation

Instead, we use existing resources to provide what is believed to be quality, generic repre-

sentations that provide the building blocks for the main research of this thesis.
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1.4.3. Document Outline

Chapter 2 defines terminology, introduces datasets and provides a greater discussion

of related research. Deeper motivation for labeling groups of data and using hierarchical

clustering to form these groups is provided in Chapters 3 and 4. A detailed presentation and

evaluation of our Hierarchical Cluster Guided Labeling framework is provided in Chapter 5.

Variants on labeling order and hierarchical analysis are discussed and evaluated in Chapters 6

and 7, respectively. The collaborative work to integrate the current labeling framework into

real-world applications is discussed in Chapter 8, and the use of hierarchical labels is discussed

in Chapter 9. Finally, we summarize the work of this thesis and discuss future directions in

Chapter 10.
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CHAPTER 2

Background

This chapter includes a discussion of the meaning of visual concepts within different

classification tasks and the associated data labeled for these tasks. This is followed by an

overview of existing techniques that address label collection and other related problems.

This overview is intended to show that there are two general approaches to label collection:

instance-based and group-based labeling. The finer distinctions can be seen when analyzing

the trade-off that each technique makes between labeling efficiency and label accuracy, which

is discussed in greater detail in Chapter 3.

2.1. Visual Concept Labels

A visual concept in the context of object, scene, terrain or activity classification is

typically a noun or verb. Adjectives can also represent visual concepts, but the scope of

this work limits adjectives to a general concept description and not specific visual properties

such as color or orientation. The sets of visual concepts learned by supervised classifiers

are task dependent. Figure 2.1 includes examples of visual concept labels for benchmark

data from two different classification tasks: scene and object. The label in red indicates the

concept granularity the end classifier is interested in learning (based on the ground truth of

the benchmark datasets). However, note that all labels associated with an image are valid

visual concept descriptions.

We use these examples to illustrate the types of visual concept granularity we seek to

label, versus the fixed granularity (indicated in red) that other techniques restrict themselves

to. To reiterate, the labels for these examples are not an exhaustive list of descriptors of the
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inside, kitchen outside, mountain 

(a) Scene hierarchical labeling

animal, dog, dachshund vehicle, bike, mountain-bike 

(b) Object hierarchical labeling

Figure 2.1. Examples of hierarchical visual concept label sets. Labels in red
indicate the concept of interest to the classifier.

Table 2.1. Dataset overview

Dataset Num Classes (K) Num Images Classification Task
UCI-Pendigits 10 10,992 digits
UCI-Letter 26 20,000 letters
13-Scenes 13 3,859 scene
MSRC-v2 23 591 object

images. For example, the dog could also be labeled as the color black or small, but these are

not listed because of the defined scope of the problem.

Throughout this thesis, all visual concept labels will be denoted in italics, e.g., dog. The

label set of interest to a classifier is denoted as Y and |Y| = K. In the object labeling

example, dog ∈ Y . A hierarchical label set is denoted as Ŷ such that Y ⊂ Ŷ . For the same

example, animal, dog, dachshund ∈ Ŷ .

2.2. Image Datasets

Single concept and multi-concept image datasets are used throughout this thesis. Single

concept datasets match exactly one ground truth label to each image, so each sample in

the training set, xi ∈ T , is an entire image. Multi-concept datasets have a pixel-wise

ground truth label map associated with each image. Thus, concepts need to be localized and

segmented from the entire image. Each segmented region is treated as a training sample.

Table 2.1 provides an overview of the benchmark datasets.
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2.2.1. UCI-Pendigits and UCI-Letter

The Pendigits and Letter single concept datasets come from the UCI Machine Learning

Repository1. The Pendigits (often referred to in this thesis just as Digits) dataset is a set of

handwritten digits, 0 to 9, collected from 44 writers. There are 250 samples per writer giving

a total of 10,992 data instances. The Letter dataset consists of 20,000 character images, A

to Z, from 20 different fonts with random distortions. The features for each of these datasets

can be found at the referenced link.

2.2.2. 13-Scenes

The 13-Scenes dataset [17] is comprised of 3,859 single concept grayscale images that

represent 13 natural scene classes. Examples of classes can be seen in Figure 2.2. A subset

of this dataset is also used in this thesis, referred to as 5-Scenes, which includes the classes

coast, highway, living room, suburb and tall building. We use GIST descriptors [18] as features

for each image which try to capture dominant spatial structures of scenes, e.g., naturalness,

openness and ruggedness.

The label ground truth for this dataset does not include hierarchical concepts, but we

define three sets of coarse-grained labels using the spatial structures the GIST descriptors

try to capture. These are: inside and outside, artificial and natural, and open and closed.

Each scene class is placed into one of the two coarse-grained categories for the three sets

(seen in Table 2.2).

1https://archive.ics.uci.edu/ml/datasets.html
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bedroom coast forest 

highway inside city kitchen 

living room mountain office 

open country street suburb tall building 

Figure 2.2. Example images from the 13-Scenes dataset.

Table 2.2. Hierarchical label set relationships for the 13-Scenes dataset.

Class inside outside artificial natural open closed

bedroom X X X
coast X X X
forest X X X

highway X X X
inside city X X X
kitchen X X X

living room X X X
mountain X X X
office X X X

open country X X X
street X X X
suburb X X X

tall building X X X

2.2.3. MSRC

MSRC-v2 [19] dataset includes 591 multi-concept images from a total of 23 object cat-

egories: airplane, bicycle, bird, boat, body, book, building, car, cat, chair, cow, dog, face,

flower, grass, horse, mountain, road, sheep, sign, sky, tree and water. Only 21 classes are
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Figure 2.3. Example images from the MSRC-v2 dataset.

commonly used because horse and mountain have a small number of instances. Example

images from the MSRC-v2 can be seen in Figure 2.3.

Object classification for this data is not performed on the entire image but instead on

regions from within the image. That is, potential objects are first localized and segmented.

Many segmentation [20, 21, 22] or region proposal [23, 24, 25] techniques can be used for

localization. We use publicly available code [7] based on using multiple segmentations of an

image to localize objects [26].

2.3. Instance-Based Labeling Techniques

2.3.1. Active Learning

Active learning frameworks reduce labeling by selecting a subset of training samples

to label. The idea is that many training data are highly similar and provide redundant

information to the classifier. Such redundant samples do not improve classifier performance

but still requires labeling effort. Thus, active learning is an iterative labeling process that

uses a supervised classifier to identify the most informative unlabeled samples, i.e., diverse
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relative to the currently labeled training set. A general overview of active learning is provided

by Settles [27].

The main distinctions between active learning frameworks are classifiers and selection

criteria used during the labeling process. In the vision domain, most frameworks use uncer-

tainty sampling to make selections during the labeling process. Selection techniques include

probabilistic uncertainty via margin sampling [5], entropy [4, 28] and least certainty [1, 29].

Any probabilistic classifier, e.g., support vector machine, can be used with the uncertainty

sampling strategies. New classifiers have also emerged from the active learning domain

including a k-nearest neighbor probabilistic variant [1], and a Gaussian process regression

method [3] that models uncertainty using the posterior mean and variance.

Li and Guo [2] combine uncertainty sampling with information density to improve se-

lection. They show that selecting uncertain samples in dense areas of feature space is more

likely to fit the expected distribution of testing data than using uncertainty alone. Typically,

an annotator is asked to provide a class label to each selection, but Joshi et al. use active

learning to ask an annotator if a labeled sample and an unlabeled sample are from the same

class [30]. Binary queries are used to improve the overall speed of the system while still

collecting labels after each “yes” response.

Most active learning techniques assume the label set is known a priori. Specifically, it is

assumed that at least one sample of each concept has been labeled to form a seed set that

initially trains the supervised classifier. This assumption does not address the discovery task

that may be important in domains that have little to no knowledge of the local environment.

Joshi et al. demonstrated that their active learning framework functions with an incomplete
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seed set [5], but their framework discovered visual concepts at a rate slightly worse than

random selection.

Active learning also introduces latency with the use of supervised classifiers to make

selections. At each labeling iteration, the new labeled sample(s) are added to the labeled set

and the classifier is re-trained. The human annotator must wait idle during this re-training

stage. This latency is addressed in many frameworks by selecting multiple samples at each

labeling iteration so the classifier is re-trained less often. However, if a set of unlabeled

samples make up a dense region of feature space and the classifier identifies them as being

the most uncertain, then many similar samples are selected for labeling which defies the

underlying idea behind active learning.

2.3.2. Crowdsourcing

Crowdsourcing has emerged as a way to split a problem into smaller units of labor and

distribute that task to a set of human resources. This is becoming a popular way to collect

labeled image data [31, 32]. Marketplaces such as Amazon Mechanical Turk2 are used to

pay humans to perform specific annotation tasks. Other sites seek volunteers for labeling

related tasks. Tomnod3 has projects where specific objects and places need to be labeled in

satellite imagery, and LabelMe4 [33] has a collection of images that need all visual concepts

to be outlined and labeled.

Crowdsourcing is related to the labeling workload problem, but overall does not provide

a more efficient label collection solution since all samples are labeled individually. Crowd-

sourcing has been combined with active learning [34], but Vijayanarasimhan et al. note that

2https://www.mturk.com/mturk/welcome
3http://www.tomnod.com/
4http://labelme.csail.mit.edu/Release3.0/
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crowdsourcing is not very effective with active learning since the classifier must be re-trained

after each labeling iteration [35]. The benefits of collecting data in parallel via crowdsourc-

ing is eliminated. Thus, they introduce an active learning framework that identifies a set of

annotations (labels and bounding boxes) within a budget to collect more label information

in parallel before the classifier is re-trained.

Crowdsourcing introduces new challenges when attaching labels to data. Chilton et

al. use crowd sourcing to generate taxonomies of visual data, but the study showed that

individual annotators are inconsistent in the vocabulary and relationships they identify [36].

Thus, the distributed results from each annotator need to be reconciled to form a common

vocabulary for the classifier to be trained. Further, although the total labeling time can be

reduced by distributing data and collecting labels in parallel, crowdsourcing may not be a

viable solution for all domains. For example, money may not be available to pay people to

label data. Even when money is available, the data may not be able to be released to the

public for security reasons. This is often the case for military applications.

2.4. Group-Based Labeling Techniques

The main idea behind group-based labeling is that multiple data samples can be labeled

simultaneously. Thus, the goal is to form groups that share a single common visual concept.

The labeling effort is reduced to m queries where m is the number of groups formed, and

in most cases m ≪ n, where n is the total number of training samples. This thesis also

leverages group-based labeling. This is motivated more formally in Chapters 3 and 4.
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2.4.1. Partitional Clustering

In addition to efficient labeling, the unsupervised nature of clustering works well with

unlabeled data and the task of discovery. Clustering algorithms group data by finding re-

occurring feature patterns. Most partitional clustering techniques attempt to significantly

reduce the labeling effort by finding a one-to-one mapping between groups and visual con-

cepts [6, 8, 7]. A perfect one-to-one mapping results in each group containing data from

the same concept, and no two groups representing the same concept. Ideally, these concepts

perfectly represent the concepts of interest to the end classifier.

Feature representation plays a crucial role in learning good partitions, and the primary

concern of partitional clustering approaches has been on finding the appropriate representa-

tion. Tuytelaars et al. provide an overview of common partitional clustering algorithms and

invariant feature representations, e.g., SIFT descriptors [37], used for unsupervised object

discovery [8]. They show that different normalization, interest point detectors and dimen-

sionality reduction techniques affect the output of clusters. Dai et al. use an ensemble

of weak training sets to generate an improved proximity matrix used for spectral cluster-

ing [6]. Lee and Grauman introduce context descriptors using superpixel neighborhoods [7]

in addition to appearance features.

Most partitional clustering algorithms require that m be predefined and since most ap-

proaches look for a one-to-one mapping they assume the number of visual concepts is known

in advance so m = K. Even with this assumption, perfect partitions of visual data have

proven to be difficult. Overall cluster quality is typically low, i.e., a group of images usually

represents multiple concepts, and some concepts are never discovered. This has led to many

spin-offs from traditional partitional clustering that try to improve cluster quality.
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Biswas and Jacobs present a subclustering technique that uses a subset of the total

training images to learn K groups of data [38]. Each group is relatively small, on the order

of 10 samples, but by focusing only on small dense regions of feature space the authors show

cluster quality remains high. The total labeled data remains small for this approach however,

and the authors state it should be enhanced with more data before training classifiers. Other

spin-offs take a more active approach to learn groups that can be labeled.

2.4.2. Active and Incremental Clustering

Active clustering is an adaptation of constrained clustering that assumes the training

data is completely unlabeled. Constrained clustering uses a set of labeled data to add side

constraints that define desired grouping relationships between the data to improve clustered

output [39, 40]. Active clustering techniques collect similar constraints, but in an iterative

fashion to refine the clustered output. The iterative process has strong parallels to active

learning as the constraints are not random, but meaningful based on the current state of the

clustered output.

Pairwise must-link and cannot-link constraints are a common active clustering binary

query [12, 13]. At each iteration an annotator determines if two data are from the same

class or not. This information is used to augment the feature representation so data with

cannot-link constraints are pushed further away and must-link constraints are pulled to-

gether. Gilbert and Bowden also seek constraint information but ask the annotator to

identify samples that are true or false positives relative to the majority concept of their

group [14]. Using this information the technique mines for the discriminative and relevant

features found in the true-positive samples that do not exist in the false-positives.
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Like partitional clustering, active clustering usually suffers from the assumption that the

number of visual concepts are known in advance to find a one-to-one mapping. Incremental

clustering approaches do not make this assumption so the one-to-one mapping is relaxed.

Instead, a set of unlabeled data is clustered at each iteration and a single group is selected

to be labeled. This continues until all data have been labeled.

Incremental clustering techniques use the incrementally collected labeled data to improve

clustering for the next iterations. Lee and Grauman cluster the “easiest” subset of unlabeled

data (based on an “objectness” measure and contextual information) at each iteration [15].

The labeled groups are used to enhance context descriptors for the next round of clustering.

Galleguillos et al. cluster all unlabeled data at each iteration and label the most compact

group in the output [16]. These labels are then used to adjust similarity measures of the

data.

Active and incremental clustering both learn from previous labeling iterations much like

active learning. However, just like active learning these techniques introduce latency into

the labeling process since unlabeled data needs to be re-clustered at each iteration.

2.4.3. Topic Models

Topic models are statistical models originally designed for the text domain that discover

underlying topics in a set of documents. Topics are discovered by looking at the frequency

of words in a document with the assumption that the mixture of certain words hint at the

underlying topic. These frequencies are used to establish a distribution across possible latent

topics in a document. Topic modeling has seen a progression from latent semantic analy-

sis [41] to probabilistic latent semantic analysis (pLSA) [42] and latent Dirichlet allocation
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(LDA) [43]. Blei provides a good overview of topic modeling and current variants of LDA

for the text domain [44].

In the vision domain, images take on the role of documents and visual features take on

the role of words. The “topic” or visual concept distribution found using topic modeling

provides a way to group data. The use of a bag of features representation with pLSA has

been used for unsupervised concept discovery and classification of objects [10] and scenes [9].

Supervised topic models have been used for scene classification by using existing annotations

of objects as visual features of scene images [11].

The primary emphasis of topic modeling is concept discovery, and has been used in other

vision related problems that do not focus on classification. Russell et al. group images using

LDA and use these groupings to determine the validity of image segmentation [26]. Topic

modeling has also been used to improve object localization [45]. Like clustering, topic models

usually learnK group topics by assuming the number of concepts is known in advance. Thus,

a one-to-one partitioning of the data is the goal.

2.5. Use of Hierarchical Labels and Features

The concept of hierarchical visual semantics has appeared in many related problems.

Deng et al. use pre-defined label sets to define a set of binary hierarchical queries that

determine if certain concepts exist in an image [46]. They use multi-label images and collect

binary labels that represent the existence of 200 object classes. Querying for a coarse-

grained concept can provide binary information about multiple classes at once. Discovering

taxonomies of visual data have been shown to be naturally hierarchical. As previously

mentioned, this has been shown via crowdsourcing [36]. Bart et al. organize images into a

tree structure to perform unsupervised taxonomy discovery [47]. They predefine the number
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of levels in the tree and focus on hierarchies created using color features to improve image

search and compression. Related, Li et al. construct a “semantivisual” hierarchy using visual

features and image tags [48]. This technique makes use of visual data available on the web

that has some label information associated with it.

Hierarchical feature representation also appears in the literature. Mahmood et al. use

hierarchical clustering to identify meaningful features for classification of image sets [49].

Labeled and unlabeled data are clustered together and clusters higher in the tree are used to

identify global similarities whereas clusters near the bottom of the tree are used to capture

subtle class differences. Sivic et al. use hierarchical features with topic modeling [50].

Different feature representations are used to construct a predefined number of levels in an

image hierarchy. Coarser-grained features, i.e., fewer dictionary words in a bag of features

representation, are used higher in the tree, and finer-grained features, i.e., more dictionary

words, are used in the lower levels. However, performance is still evaluated at the level of

being able to extract a perfect one-to-one mapping from the hierarchy.

While it is recognized that natural language has hierarchical semantics, current literature

does not seem to embrace discovery or labeling at varying granularities. Hierarchical feature

representations are still only used to provide labels at a granularity defined by Y . In the

next chapters we outline the potential benefits of exploiting the hierarchical nature of visual

labels during the discovery and labeling process. We show how this can be used to reduce

label noise without the addition of labeling latency or assumptions introduced by existing

techniques.
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CHAPTER 3

Labeling Techniques

At the most basic level, the goal of labeling is to create a set of (xi, yi) pairs, where yi is the

label of the concept that xi represents. For instance-based labeling techniques, the human

interaction required to achieve this is straightforward (illustrated in Figure 1.1). However,

human interactions required from group-based techniques vary greatly in the literature. This

can be attributed mostly to the threat of introducing label noise when applying a single label

to multiple data at the same time.

This chapter discusses various labeling interactions that have been used during the label

collection process. These interactions are analyzed and compared with respect to cognitive

load, inclusion of label noise and its impact on classification performance, and the reduction

of labeling effort relative to a fully supervised labeling technique. We define a fully su-

pervised labeling technique as the process of iteratively pairing a training sample with a

label until the entire available training set has been labeled. Thus, a total of n labels must

be provided by the human annotator. All experiments include the results achieved when a

fully supervised labeling technique is used. These are labeled as supervised in figure legends.

3.1. Labeling Interactions

Human labeling interactions vary among different labeling frameworks, but each interac-

tion is designed to provide necessary information to the system that ultimately leads to the

collection of labels. The following are types of interactions currently used in techniques that

address labeling workload:

(1) Providing a class label for an image [1, 2, 3, 5]
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(2) Providing a class label for a group of images [6, 9, 10, 15, 16, 7]

(3) Providing a label that indicates a group lacks a common label [51]

(4) Removing an image from a group [16]

(5) Providing binary feedback about whether or not two images represent the same

label [12, 13, 30]

(6) Selecting examples of true positives and false positives from a group of images [14]

We note that the cognitive load for these interactions is not equivalent. Providing binary

feedback about two images is the simplest task. Providing a concept label requires more

cognitive load as the human needs to map an image to a natural language concept. Further,

providing a label for a group of images requires the processing of multiple data samples

simultaneously. While cognitive load is an important factor and will be discussed throughout

parts of this thesis, it is not a primary focus of this work. Further, to quantitatively compare

different labeling frameworks, we define the effort required to label a dataset with n training

samples as:

(1) Labeling Effort =
# interactions

n

Using Equation 1, the labeling effort of a fully supervised system is equal to 1.0 since

labeling interaction 1 is performed n times, once for each training image. The values of other

systems describe their labeling effort relative to a supervised approach. Any value less than

1.0 is more efficient than a fully supervised labeling approach, which is a primary objective

in the problem defined in this thesis. An example of greater efficiency is illustrated using a

small set of 10 images seen in Figure 3.1(a). A fully supervised approach iteratively labels

all 10 images as depicted in Figure 3.1(b). Assume a grouping technique exists (details of

25



(a) Example training data

Labeling queue, interac0ons = 0 

Labeling queue, interac0ons = 1 

Labeling queue, interac0ons = 2 

Labeling interaction 1 

Labeling interaction 2 

bicycle 

bicycle 

…

(b) Fully supervised instance-based labeling interac-
tions.

Labeling interaction 1 

Labeling interaction 2 

motorcycle 

bicycle 

(c) Group-based labeling interactions.

Figure 3.1. Labeling example demonstrating the efficiency of group-based
labeling over a fully supervised instance-based labeling technique.

grouping are discussed in the next chapter) that forms two groups as seen in Figure 3.1(c),

and provides labels using labeling interaction 2. This group labeling example illustrates how

labeling effort can be optimally reduced by assuming the total number of classes is known

in advance. One-to-one partitions of data require K
n

labeling effort. In this example, only

two interactions are performed, reducing labeling effort to 0.20.

The objective of reducing labeling workload suggests that the range of labeling effort

should be [0.0, 1.0]. This is true for instance-based labeling techniques that use labeling

interaction 1, e.g., active learning. However, techniques that use other types of labeling

interactions do not necessarily conform to this range. As other techniques are discussed

throughout this thesis, their range of values for labeling effort will also be described.
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Labeling interaction 1 

Labeling interaction 2 

motorcycle 

bicycle 

Figure 3.2. Group-based labeling where majority labeling results in label
noise. Images outlined in red indicate label noise.

3.2. The Trade-Off: Label Efficiency vs Label Noise

Unfortunately, group-based techniques are not always able to partition data as cleanly as

in Figure 3.1(c). Groups formed from the 10 images could have looked more like Figure 3.2,

and assigning a single class label to these groups of images is less straightforward. Many

techniques use majority labeling in this situation, where the human annotator provides

the label that the majority of images represent. The label noise introduced by majority label

assignment is illustrated by the images outlined in red.

Limiting label noise is important because it impacts the training and performance of

supervised classifiers. This threat has led to the emergence of label interactions 3 through 6 in

the previously mentioned list of interactions. These are interactions are used in group-based

techniques to reduce or completely eliminate label noise. These interactions (3 through 6)

are performed in addition to asking for a group label (interaction 2). Thus, these techniques

trade some labeling efficiency for higher label accuracy.

For example, Galleguillos et al. introduce a largest subset labeling technique [16]. Each

labeling iteration involves providing the majority label concept to a group of images followed
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by the removal of images that do not match this label. In the previous example (Figure 3.2),

the largest subset labeling technique requires two interactions to label each group, one to

provide the label and one to remove the red outlined image that does not match that label.

This is a total of four interactions, and still yields greater efficiency, 0.40 labeling effort,

compared to a fully supervised labeling approach. The range of labeling effort for this

approach has the ability to exceed 1.0 if the largest subset makes up a plurality instead of a

majority of samples. This can happen when a group of data is composed of more than two

classes. In this case, labeling interaction 4 is performed more times than the total number

of samples that receive a label.

Labeling interaction 5 collects binary constraint information and has been used with

active clustering frameworks that try to augment feature representations to find a one-to-

one partition. Figure 3.3 shows a set of binary interactions being collected, which are then

used to form groups that are labeled using majority labeling. Note, this is a toy example

that depicts only a single iteration in the active clustering process. Further, more than three

binary constraints are typically collected during each iteration. Although these interactions

are cognitively easy, we will show in our experiment comparisons that the number of binary

interactions required for the entire active clustering process typically far outweighs the total

number of training samples. In a worst case scenario, an active clustering approach could

query for all possible binary constraints, n2 labeling interactions, and then assign a label to

each group. Thus, the range of labeling effort for this approach is [0.0, n2 +K]

An intuitive way to avoid collection of label noise is to simply not label groups that

represent multiple concepts. Some of our initial work [51] tried to enforce this strict labeling

policy so labels are only assigned to groups that represent a single concept, as in Figure 1(c).
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Labeling interaction 4 

Labeling interaction 5 

motorcycle 

bicycle 

Labeling interaction 1 

Binary Response: Yes 

Labeling interaction 2 

Labeling interaction 3 

Binary Response: No 

Binary Response: No 

Figure 3.3. Binary constraint feedback followed by group-based labeling.

Otherwise, labeling interaction 3 is employed which assigns the label “mixed”, indicating

label noise is present. A “mixed” label does not collect any information for the classifier and

does not collect label noise, but still requires a labeling interaction.

This initial framework, coined Selective Guidance (SG), includes a model that predicts

how likely a group is to represent a single visual concept from Y . The details of this model

are provided in Appendix B, but the results of SG help motivate the major design in this

thesis.

3.3. Experiments to Motivate Majority Group-Based Labeling

Labeling multiple images simultaneously naturally indicates higher efficiency than label-

ing individual instances. Yet, the issue of label noise that arises from group-based techniques

has influenced many other existing systems to sacrifice efficiency for label accuracy to ensure

a high performing classifier can be trained. While label noise is a reasonable concern, we

present some results to motivate the use of majority group-based labeling without additional

labeling interactions to remove label noise.
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Table 3.1. Evaluation details for group-based versus instance-based labeling techniques.

Dataset # Training # Testing Classifier
UCI-Pendigits 5,100 2,000 SVM-linear
UCI-Letter 7,100 5,000 SVM-rbf
13-Scenes 2,500 500 SVM-linear

3.3.1. Group-Based vs Active Learning

In this experiment we show the benefits group-based labeling provides compared to active

learning (instance-based labeling), using the SG framework. Groups labeled by SG are

compared to the margin sampling active learning framework BvSB [5]. Since SG does not

collect label noise, this experiment demonstrates the benefits of labeling multiple images

simultaneously. The technique labeled Wards in these experiment figures is a baseline

majority group-based technique and does collect label noise. This method will be discussed

in context with other grouping methods in the next chapter.

Recall that SG may result in an interaction that produces no new label information,

whereas BvSB will collect a new label at each iteration. We use the UCI-Pendigits, UCI-

Letter and 13-Scenes datasets to compare classification accuracy as a function of labeling

interactions/queries achieved by these two systems. Experiments are averaged over 20 trials

of random training and testing partitions, seen in Table 3.1. The total labeling effort of the

BvSB framework is the size of the seed set plus the total number of images labeled during

active learning iterations. Classification accuracy for BvSB is only reported once active

learning iterations begin.

Figure 3.4 shows the classification accuracy per labeling query for three datasets. For all

three experiments, SG outperforms BvSB early in the labeling process, and even after many

labeling queries are answered, SG never performs any worse than BvSB. Further, SG always

approaches the classification accuracy of a completely supervised approach, and does so with

30



(a) ∼ 0.07 labeling effort (350 labeling queries) (b) ∼ 0.10 labeling effort (700 labeling queries)

(c) 0.40 labeling effort (1,000 labeling queries)

Figure 3.4. Classification accuracy per labeling query for the (a) Pendigits,
(b) Letter and (c) 13-Scenes data sets.

less labeling effort. The 13-Scenes experiment, Figure 4(c), shows that active learning is only

efficient if a subset of data is sufficient to train a classifier. BvSB fails to approach the fully

supervised classification performance like it did in the other experiments, yet 1,000 queries

for this experiment has already reached 0.40 labeling effort. Thus, for more challenging

datasets the efficiency of instance-based labeling may not be as significant.

These results indicate that group-based labeling can be more efficient than instance-based

labeling, even when some labeling queries, i.e., “mixed”, do not provide labeled data for the

classifier. This is because the remaining queries result in multiple images receiving labels
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Figure 3.5. Labeled samples as a function of labeling queries.

simultaneously. This can be seen in Figure 3.5, which shows the number of training samples

that have received labels as a function of labeling queries. Notice that as the datasets get

more challenging the gap between instance-based labeling and SG shrinks. This is partially

caused by many groups receiving “mixed” labels and the groups that represent a single

concept being much smaller than in the other datasets.

When SG collects “mixed” queries, classifier performance cannot improve but labeling

effort does increase. On average, the fraction of non-mixed labels assigned during the ex-

periments was 0.64 for Pendigits, 0.71 for Letter and 0.60 for 13-Scenes. Even though SG

outperformed instance-based labeling, 30-40% of labeling effort was essentially wasted with

respect to the end classifier. This leads us to question whether SG’s labeling is too restrictive,

and we next analyze the impact of label noise on classification accuracy.

3.3.2. Impact of Label Noise on Classifier Performance

Labeling noise undoubtedly impacts classifier learning [52], but group-based labeling

noise is different than other types of noise explored in the current research. Research on the

design of classifiers robust to label noise simulate random noise [53, 54], where a percentage of

samples are chosen to receive a random incorrect label, or instance-based human error [55,
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56] for evaluation. Noise introduced by majority group-based labeling has an underlying

structure because the grouping algorithm partitions by a pattern found in feature similarity.

Thus, random and structured noise likely impact classifiers differently.

We test this theory using the Digits dataset with a nearest neighbor (NN) classifier and a

support vector machine (SVM). To model group-based structured noise we run k-means on

the training set for increasing values of K. After each clustering, the K groups are assigned

their dominating class label and the data is used to train the classifiers. Using the same

percentage of noise introduced by k-means at each iteration, a classifier is also trained with

random noise assigned to the training data. Increasing values of K show the performance of

classifiers as label noise decreases.

Classification results are shown in Figure 3.6 as a function of label accuracy. The struc-

tured k-means output performs worse than random noise when label accuracy is low because

the value of K has not yet reached the number of total classes in the dataset. This means

labels for all classes cannot be collected which significantly impacts classifier learning. This

is discussed further in the next chapter as well. The two classifiers are affected by the noise in

different ways, but overall, structured noise appears to negatively impact classifier learning

less than random noise after label accuracy improves to around 70%.

Unfortunately, the threat of label noise collection has resulted in many group-based

labeling techniques to emphasize label accuracy by introducing more labeling interactions.

In the case of SG, those extra labeling interactions are in the form of “mixed” labels when a

group of images represents multiple concepts. Interestingly, had SG taken a majority labeling

approach, classification with respect to labeling interactions would have improved. This can

be seen in Figure 3.7. In this experiment SG-majority ends up with an average label accuracy
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(a) NN Classification - Digits (b) SVM Classification - Digits

Figure 3.6. Comparison of classifier performance given structured and ran-
dom label noise.

Figure 3.7. Classification accuracy for the SG labeling framework when us-
ing strict perfect label accuracy labeling and majority labeling.

of ∼ 0.67. However, with this noise came an increase in correctly labeled training samples

for the classifier to learn from. This balance of efficiency and label accuracy outperforms a

strict emphasis on label accuracy.

Other group-based labeling experiments also show that emphasizing only efficiency (us-

ing small values of K) does not always produce enough accurate label information for clas-

sifiers to learn well. The experiments from Figure 3.4 included the results from a one-to-one
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partitional clustering baseline denoted as “Wards”. This technique required exactly K inter-

actions, significantly less than SG, but yielded significantly lower classification performance.

The average label accuracy across trials for Wards in the three experiments was 0.81± 0.20

for Pendigits, 0.41± 0.27 for Letter and 0.50± 0.18 for 13-Scenes. Although extremely effi-

cient, this noisy data trains classifiers with anywhere from 25-50% performance degradation

relative to a supervised classifier. Lee and Grauman [15] test their noisy label collection using

the MSRC-v0 object dataset. They favor efficiency by collecting labels with ∼ 0.015 labeling

effort, resulting in label accuracy of 0.60. The classifier trained with the data yielded 0.49

classification performance compared to 0.64 for a fully supervised approach. With slightly

less efficiency the label accuracy may improve and produce classifiers that approach perfor-

mance of a fully supervised labeling technique.

3.4. Summary

Existing labeling techniques tend to focus on either labeling efficiency or label accuracy.

Group-based labeling has traditionally favored the efficiency side of the problem. However,

the threat of collecting label noise has shifted many group-based labeling techniques to

emphasize label accuracy by introducing more labeling interactions. We have shown that

group-based labeling noise and random noise impact classifiers differently, and that when

structured noise is limited, classifier learning does not significantly suffer. In the next chapter

we discuss why low label accuracy is so common in group-based techniques. We provide a

remedy for this with the use of hierarchical clustering and an associated hierarchical label

set. This allows us to adopt majority group-based labeling that is efficient but also limits

the collection of label noise.
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CHAPTER 4

Visual Concept Grouping

We begin by briefly recapping the benefits of group-based labeling. Labeling groups

allows multiple images to receive a label simultaneously, thereby increasing efficiency. Un-

supervised grouping is more amenable to applications where little to no a priori knowledge

is available and bottom-up discovery of concepts must be performed. In the vision domain,

clustering is by far the most common grouping technique used to address the label collection

problem. Since this thesis also uses clustering to form groups, this chapter focuses only on

clustering algorithms to form groups. However, similar trends can be seen for other grouping

techniques such as topic modeling. Note that throughout this thesis the terms cluster and

group may be used interchangeably to represent a set of data.

The previous chapter discussed the emphasis that existing group-based labeling frame-

works place on label accuracy, thereby reducing efficiency. We discuss why the current

group-based techniques are forced to do this. We provide examples and demonstrate the

shortcomings of the narrow view that existing techniques take when labeling groups. We use

this as motivating evidence to move to hierarchical clustering and hierarchical label sets.

4.1. Visual Data Properties, Feature Similarities and Label Mapping

Unsupervised clustering forms groups based on patterns and similarities found in the

underlying feature representation of data. Group-based labeling assumes feature similarities

encode visual concepts, so a single label can be applied to the entire group. The problem

with existing techniques, however, is they force this encoding to occur at a particular label

granularity. This is seen in the literature at two different levels. First, the global parameter
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that defines the number of groups to learn (m) is typically set to a value equal to or very

near the number of ground truth classes K. Second, all labeling, evaluation and analysis of

the groupings is performed at the level of a benchmark ground truth label set.

Given that the long term goal of label collection is to train classifiers, the hope that visual

properties can be perfectly partitioned at the level of the classifier label set is understandable.

One problem however, is that the relevancy and consistency of visual properties are class

dependent, yet these properties are encoded in a global feature representation. For example,

color and shape features are commonly used to represent visual data. Color is fairly irrelevant

for cars, but a distinguishing feature of ferns. The shape of certain objects like balls are

consistent, whereas the shape of non-rigid objects like dogs often changes. This impacts

intra-class and inter-class similarity, which determines the success of one-to-one mappings

between groups and classifier labels.

4.1.1. Performance of One-to-One Grouping and Labeling

Previous chapters have hinted at the performance of grouping techniques whose only

labeling interaction is providing labels for groups. Results found in the literature are quickly

summarized, and further analysis is provided to motivate the new perspective on grouping

and labeling performed in this thesis. A description of the datasets for these experiments

is provided in Appendix A. There are two important things to note about the techniques

that we summarize. First, these techniques focus on improving feature representation to

create a quality partition of the data. Second, they set m using a priori knowledge of K.

Specifically, two techniques [6, 8] learn exactly K groups, while the incremental clustering

technique [15] learns closer to a two-to-one mapping between groups and labels. Table 4.1
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Table 4.1. Label accuracy of existing one-to-one group labeling techniques.

Author Dataset K n # Interactions Label Accuracy
Sivic et al. [10] Caltech-4 4 3,190 4 0.9800

Caltech-4 + background 5 4,090 5 0.7800
Wards-baseline 13-Scenes 13 2,500 13 0.5000
Dai et al. [6] 15-Scenes 15 ≈ 4, 500 15 0.6149

35-Compound 35 ≈ 8, 200 35 0.5834
Caltech-101 101 8,677 101 0.4231

Lee & Grauman [15] MSRC-v0 21 60,000 40 0.6000
Tuytelaars et al. [8] MSRC-v2 23 591 23 0.8530

shows the average label accuracy achieved by these methods when assigning the majority

label to groups.

Varying degrees of label accuracy can be seen in the table. The Caltech-4 dataset is a

simple subset of the larger Caltech-101 object dataset [57] and exhibits relatively low inter-

class similarity. It is not surprising that Sivic et al. perform well on this data. However,

notice that as soon as the background class is introduced, performance drops. For more chal-

lenging datasets, label accuracy in the table is low, indicating that the underlying similarity

of a group is only weakly categorized as a visual concept from the ground truth set. Label

accuracy tends to decrease as the number of visual concepts increases. This may indicate

that more visual concepts cause inter-class similarity to increase, making the problem more

difficult. It may also indicate that there is more intra-class dissimilarity within the prob-

lem. Even when Lee and Grauman relax the one-to-one mapping constraint and learn more

groups than concepts, label accuracy remains low.

Tuytelaars et al. [8] present a relatively high label accuracy for a 23 class dataset, but this

performance value is somewhat misleading. Of the 23 labels provided in this experiment,

only 11 of the ground truth concepts were discovered. For example, 5 different groups were

assigned the label grass because that was the dominating concept within the group. When
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the same visual concept dominates multiple groups in what is supposed to be a one-to-one

partition, the possibility of collecting labels for all visual concepts is eliminated. So although

the labels collected for the classifier are reasonably accurate, classification performance will

suffer because fewer than half of the visual concepts are represented in the labeled training

data. While discovery performance cannot be confirmed for the other techniques, we hy-

pothesize that similar results follow because visual property variances cause a decrease in

intra-class similarity.

Using observations about visual property variations and the existing experimental evi-

dence, we proceed with the assumption that global input parameters do not exist as a viable

solution to learn accurate one-to-one partitions at the granularity of the classifier label set.

We instead present experiments to show that groups that appear to lack coherency relative

to the classifier label set actually may share a more general visual concept label.

4.1.2. Hierarchical Label Set Demonstration

Current techniques have focused on the accuracy or coherency of a group given a specific

predefined label set. The following experiments are designed to analyze group similarities

in a more general sense. We show that groups with low label accuracy given a label in Y

actually have a coarser-grained concept that they more accurately represent. We use these

observations to motivate our use of hierarchical label sets during the label collection process.

For demonstration purposes we create a 5 class subset of the 13-Scenes [17] dataset that

we call 5-Scenes. The five scene classes are coast, highway, living room, suburb and tall

building. We perform k-means on 5-Scenes and set k = 5 to imitate a one-to-one partition

approach. Table 4.2 summarizes the five groups and their label accuracy given majority

labeling. The first four groups have high label accuracy, but discovery is limited to three
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Table 4.2. Results of k-means clustering where k = 5 for 5-Scenes.

Group id Dominating label Label accuracy
1 living room 1.000
2 living room 0.992
3 suburb 0.906
4 tall building 0.868
5 coast 0.561

classes since two groups are labeled living room. Group 5 has a dominating class label of

coast but low label accuracy. We evaluate the similarities and feature patterns of this group

in more detail to discover a new visual label that more accurately represents the group of

images.

Figure 4.1 displays 20 randomly sampled images from group 5. Relative to Y , this group

of images mostly represents coast and highway scenes. If we look at the similarities found

within these concepts, one reoccurring concept is the openness of the scenes. An open scene

is one with a visible horizon, i.e., no large objects such as trees or buildings occlude the

horizon. It is not surprising this concept is discovered by the clustering algorithm since

GIST [18] features are designed to represent this spatial structure. If the label open were

applied to this group of images, label accuracy would increase significantly. As the size of

Y increases it is likely that more coarser-grained concepts can be extracted as well. Other

coarse-grained examples found in the 13-Scenes dataset were discussed in Chapter 2.

If the end goal is to train classifiers using labels defined in Y , we might simply consider

relaxing the one-to-one partition and setting m to be larger than K. In the previous 5-Scenes

experiment, it appears that group 5 is composed of two concepts so the number of groups is

increased to 6, to allow those two labels to split from one another. Setting k = 6 essentially

splits group 5 in the original experiment to a group labeled coast with label accuracy 0.82
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Figure 4.1. Randomly sampled images from group 5 of the 5-Scenes dataset
k-means clustering.

and a cluster labeled highway with label accuracy 0.542, which suggests the label open is

still more representative of the data.

Again, we see that pre-defining the global parameter m is not a well defined problem.

The number of groups needed to perfectly partition the concepts in Y depends on the intra-

class and inter-class similarities. We can also look at a real-world dataset collected for robot

navigation (discussed in Chapter 8). The data was collected with the intention of training a

classifier to learn eight different terrain and object classes: asphalt, building, concrete-floor,

gravel, object, sky and tree.

We run k-means on this dataset with k = 20 and observe that most of groups do not ac-

curately represent one of the eight classifier concepts. Figure 4.2 shows the label distribution

of three groups that came from this clustering. Analyzing the distribution of labels in Y re-

veals that coarser-grained concepts exist in the data that these groups may more accurately

represent. Figure 4.2(a) shows that grass and trees group well together. The similar color
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(a) Visual Concept: vegetation
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(b) Visual Concept: ground
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(c) Visual Concept: concrete

Figure 4.2. Y label distribution of groups after k-means where k = 20 for
real-world robot data.

and texture can be represented as vegetation. The concept ground, seen in Figure 4.2(b), is

the pooling of asphalt, gravel, concrete-floor and grass. We also see that terrains and objects

made of concrete material, concrete-floor and building group together (Figure 4.2(c)).

These experiments show that even when m > k, groups do not accurately represent a

single concept in Y . We know that natural language has hierarchical taxonomies. While this

research makes no attempt to study the construction of taxonomies in any scope, we use

these experiments and examples to demonstrate that patterns found by clustering algorithms

are better mapped to a spectrum of visual concept granularities. This includes concepts that

are more general or more specific than labels in Y

4.2. Hierarchical Clustering to Facilitate Hierarchical Labeling

Through experiments and analysis we have shown that existing group-based labeling

techniques produce significant amounts of label noise because clustering algorithms find

feature patterns that do not match the granularity of the classifier label set. Specifically,

when a one-to-one partition is used, groups tend to represent a broader concept than the

end classifier may want to classify. Increasing the number of groups will naturally break
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down the pattern similarities to finer-grained levels, but trying to define a global parameter

for data whose similarities are class dependent is an ill-defined problem.

Thus, this thesis moves to a hierarchical clustering approach. Hierarchical clustering

produces a tree structure of nested groups where the root contains all data, leaf nodes contain

a single data point and internal nodes are non-disjoint subsets of T . We use agglomerative

clustering to build the hierarchy bottom-up. Two criteria are needed to build the structure: a

distance measure and a linkage criterion. The linkage criterion defines which two groups will

be merged at each iteration. We use Ward’s linkage [58] which minimizes the resulting intra-

cluster variance and Euclidean distance. However, any hierarchical structure formulation

could be used in its place.

Maintaining the hierarchical clustering structure introduces some unique properties not

seen in most partitional clustering algorithms. First, the number of groups to form does not

need to be defined in advance. Second, groups in the hierarchy are non-disjoint since each

data sample belongs to a set of clusters along a path from the root to a leaf node. Third,

the hierarchical structure maintains multiple levels of similarity between data which likely

maps to various granularities of concepts.

The hierarchical structure allows data to break down and group naturally without regard

to a specific set of visual labels. By maintaining the hierarchy, we have a spectrum of

potential visual concepts represented within the groups. Figure 4.3 illustrates this with a

hierarchical clustering of the 5-Scenes dataset used earlier in this chapter. Nodes colored

black correspond to groups that contain images from multiple scene classes. The remaining

colors indicate groups of images from a single scene class. There is a natural division of the

hierarchy into four groups: tall building (green), living room (blue), suburb (yellow) and the
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Figure 4.3. Hierarchical clustering of five classes from the 13-Scenes dataset.
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coarse-grained concept of open (dotted outline). The many smaller, inter-weaved partitions

of the coast (red) and highway (orange) classes is evidence of high intra-class similarity.

Although hierarchical clustering does not require the global parameters that many par-

titional algorithms need, the output is a large structure that contains more groups than

data samples. Formally, the hierarchy H = {c1, c2, . . . , cm} represents a set of m ≈ 2n − 1

groups. Labeling each group is time consuming and redundant since we know groups are

non-disjoint, i.e., children cl, cr contain subsets of data from its parent cluster c, c = cl ∪ cr.

This redundancy means that not every group in the tree needs to be labeled.

Instead, we select groups from H that represent possible candidate concepts. In Fig-

ure 4.3, this includes groups that represent the five ground truth scene categories, and

groups that represent coarser-grained concepts such as open or outside. Groups are iter-

atively selected and displayed to a human annotator who assigns the most representative

label, coarse or fine-grained, to each group. The label assignment and recognition of the

underlying similarity within the group falls on the human annotator since our approach as-

sumes no a priori knowledge or predefined label set. However, we assume that labeling is

being performed with a specific application in mind, and that the annotator has a general

idea of what labels are necessary for the task. For example, the annotator may know that

the data will be used to train classifiers for autonomous navigation. The types of terrain

and objects in the training set may not be known in advance, but the annotator knows that

labeling specific types of terrain is important because traversable terrain may be platform

specific. The next chapter presents the details of our framework, specifically how groups are

selected and ordered for iterative labeling by a human annotator.
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CHAPTER 5

Hierarchical Cluster Guided Labeling

Our labeling framework is motivated by the findings discussed in previous chapters.

First, labeling groups can be more efficient than labeling individual instances. Second, even

though group labeling can introduce label noise, the overall impact on classifier performance

is small if the amount of noise is minimal. Finally, most group labeling frameworks introduce

a significant amount of label noise because they try to force a particular mapping between

groups and labels.

This thesis addresses these shortcomings by using hierarchical clustering and assigning

labels of the granularity appropriate for the learned groups. We hypothesize that this labeling

framework will better balance efficiency and label noise, resulting in fast label collection

capable of training high performing visual classifiers.

These design decisions produce a large structure that represents many possible groups

to label. The details of our hierarchical cluster guided labeling5 (HCGL) methodology are

discussed in this chapter. We discuss how a meaningful subset of groups can be selected

from the hierarchy using the encoded relationships and evaluating structural change.

5.1. Structural Change to Model Concept Transition

Naturally, groups closer to the root of H represent concepts that are more coarse-grained

than their descendants lower in the hierarchy. However, with unlabeled data the level in

the hierarchy where groups begin to match the concept granularity found in Y is unknown.

Further, not all concepts follow the same granularity breakdown, as this is dependent on

the particular concepts that exist in the dataset and their intra and inter-class similarities.

5Material previously published by author in CVPR 2015 [59].
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Thus, the goal of HCGL is not to find exactly K groups that represent the set of concepts

to be used in the recognition task, but instead to find groups that represent all possible

hierarchical visual concepts, Ŷ , in the data. This selection technique results in a many-to-

one mapping between groups and concepts. Consequently, labeling effort (Equation 1) for

HCGL will be greater than one-to-one partitions of data. However, this additional effort is

traded for better concept discovery and higher label accuracy, which plays a significant role

in classifier learning.

Figure 5.1 is the subtree enclosed in the dotted outline from the hierarchical clustering

example in Figure 4.3. Nodes that were previously black now resemble a pie chart that

depicts the percentage of images that represent the dominating class label from Y (red/orange

wedge) and all remaining “noisy” images (black wedge). Labeling all three consecutive open

groups (indicated by the near 50/50 wedge split) down the left most path in the subtree

is redundant since descendants of a labeled group naturally inherit the assigned concept.

Locating transitions from coarse to fine-grained labels establishes a management subset of

groups, S ⊂ H, that can be labeled efficiently.

To find S, HCGL searches for interesting locations in H to label, where interesting-

ness is defined as the degree of change at a split in H. Specially, we model structural

change between feature patterns of two groups to measure interestingness. The idea is that

feature similarities encoded in H map to coarse and fine-grained visual concepts. When the

underlying pattern of similarity changes, it is more likely that a visual concept transition

has also occurred.

HCGL compares the structural change between a cluster, c, and its parent, p. The

internal structure of a cluster c is derived from its data matrix, Xc, where each column is an
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Figure 5.1. Subtree that represents the concept open and then transitions to coast and highway.
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image represented by a d-dimensional feature vector:

Xc =























x1,1 x2,1 · · · xs,1

x1,2 x2,2 · · · xs,2

...
...

. . .
...

x1,d x2,d · · · xs,d























The data is mean centered, X̂c = Xc−X̄c, and the covariance matrix of X̂c is decomposed

and represented by its eigenvectors Vc using singular value decomposition:

Vc Λc V
−1
c = SV D(Cov(X̂c))

= SV D

(

X̂cX̂c
T

s− 1

)

This representation of internal structure focuses on the direction of variance in the data.

Given that the diagonal entries of Λc are sorted in descending order, the first eigenvector,vc1,

in Vc provides the axes of maximum variance for c.

Local structural change is found by comparing the internal structure of c to its parent

p (this relationship can be seen in Figure 5.2). Specifically, the comparison is made by

calculating the angle between the first eigenvectors, vc1 and vp1, of c and p respectively.

Larger angles indicate greater differences in directions of variance, and are used to represent

the interestingness of each split in H. Formally, interestingness derived from structural

change for group c is defined as the cosine distance,

(2) ∆(c) = 1.0− 〈vc1, vp1〉,
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cl  cr 

Figure 5.2. Illustration that depicts the relationships for group c in a local
neighborhood of H, including its parent p and left and right children, cl and
cr.

which yields values on the interval of [0.0, 1.0] with large ∆ values representing large angles.

Most groups in H have at least some structural difference from their parent, but notice

in Figure 5.1 that it often takes several splits before a change in concept occurs. To better

detect these transitions, HCGL looks for large changes in structure followed by a lack of

structural change in local neighborhoods of H. In other words, if the structural change of c

is a local maximum with respect to p and its children, cr and cl (relationship illustrated in

Figure 5.2), it is added to S. Formally, local maxima selection is defined as

(3) S = {c |∆(c) > ∆(p) , ∆(c) > ∆(cr,l)}.

S has two important properties. First, groups in S are not necessarily disjoint because

every image belongs to many related groups in the hierarchical structure. Second, selecting

peaks in structural change does not guarantee that every image will be represented in S. We

will discuss the first property in context with the group labeling order. The second property

may result in only a fraction of the training data being assigned labels, which is analyzed in

the experimentation.

50



5.2. Group Labeling Order

Partitional grouping approaches form a set of disjoint groups, label each group, and then

train a classifier with the collected data. HCGL is different because groups in S are not

necessarily disjoint. The ordering of groups in S is meaningful because if a group is given

a class label from Y , all descendants of this group (according to the structure in H) inherit

that label, and thus no longer need to be labeled by an annotator.

There are many ways S can be ordered. Since groups have already been selected as

meaningful based on their interestingness score (Equation 2), by default HCGL ranks groups

in descending order by their ∆ value. The idea is to order groups by strength of their

potential for concept transition. During labeling, when a group is given a class label from Y ,

any descendants that inherit the label and exist in S are removed. Thus, the total labeling

effort of HCGL is not equal to |S|, but depends on the labeling order and the number of

inherited labels. We will discuss variants of this labeling order in our experiments.

The algorithm outline of HCGL can be found in Algorithm 1. We now present a set of

experiments to demonstrate the potential of this thesis research. Later we discuss future

work that expands upon the currently described model.

Algorithm 1 Hierarchical Cluster Guided Labeling

Require: H
1: S = {}
2: for all c ∈ H do

3: relatives = {p, cl, cr}
4: if ∆(c) > ∆(r) , ∀ r ∈ relatives then

5: S = S ∪ {ci}

6: S = sort(S,∆)
7: while S 6= ∅ do

8: label query → S[0]
9: update(S)
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5.3. Evaluation

5.3.1. Experiment Setup

We compare HCGL to several state of the art group-based labeling techniques on two

benchmark datasets, 13-Scenes and MSRC. In these experiments we test our hypothesis that

moving to hierarchical clustering, evaluating hierarchical relationships and assigning labels

from a hierarchical label set allows HCGL to discovery underlying concepts and balance

labeling efficiency and label noise to collect labeled data that trains higher performing visual

classifiers than existing techniques. These experiments are performed to show the effect

of labeling effort, our independent variable, on multiple dependent variables: classification

accuracy, discovery rate, labeling rate and label accuracy.

Each experiment is averaged over 10 trials of random training/testing partitions. The

specific partitions for each dataset are discussed in later sections. Error bars in figures show

the standard deviation of the results across the 10 experiment trials. Any significance testing

is performed using the Wilcoxon signed-rank test.

Comparisons to HCGL are made using a set of diverse labeling frameworks that require

different types of labeling interactions. These methods include:

• SAC (Spectral Active Clustering [12]) - active clustering approach that queries for

20 binary constraints per iteration to improve one-to-one clustered output, followed

by majority labeling

• SG (Selective Guidance) - our initial hierarchical clustering approach that models

group coherency for selection and only labels groups of images that represent a

single class
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• MKML (Multiple Kernel Metric Learning [16]) - iterative clustering approach that

labels the largest subset of samples with the dominating class and removes images

that do not match this label

We note that SG was previously shown to outperform partitional clustering and active

learning techniques [51], so any performance improvements that HCGL displays over SG

can also be inferred as performance improvements to these other techniques.

The label assignment for HCGL is automated in these experiments by simulating human

labeling responses using the ground truth associated with each dataset. However, these

datasets do not have hierarchical ground truth associated with them. We derive a small

set of hierarchical labels for the 13-Scenes dataset, but only evaluate classification accuracy

relative to the classifier label set Y . We simulate label assignment in the following way. If

more than 50% of a group’s images represent a visual concept in Y , it is given the majority

class label. When a group does not have a majority of images that map to a label in Y it

assigned the most relevant coarser hierarchical concept when this information is available. If

a hierarchical concept does not make up the majority of images or no hierarchical label set

is available the group is assigned the label irrelevant. As with SG, this query counts towards

the total level of effort, but provides no new label information to the system. We discuss

how hierarchical labels are used in a later chapter.

Since it is easy to simulate human interactions automatically with benchmark datasets,

labeling systems can be run to completion even if the total effort cannot be supplied during

real-wold applications. For this reason, we focus our evaluation on the performance achieved

in the earlier stages of labeling effort. This allows us to evaluate how well systems perform

when labeling resources are scarce and fully labeling the data may not be feasible.
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5.3.2. Scene Labeling and Classification

The first experiment is performed using the 13-Scenes dataset [17]. Each experiment trial

is derived by a random partition of the training data where 80% is used as training and the

remaining 20% is used for testing the trained classifier. For classification, we train an SVM

classifier using the same parameters found in the existing efficient labeling literature [5].

Using publicly available code, we directly compare HCGL to SAC and SG using the same

10 trial splits.

Classification accuracy with respect to labeling effort for the 13-Scenes dataset can be

seen in Figure 5.3. The most glaring distinction is the high labeling effort required by

SAC before a large improvement in classification accuracy is seen. In fact, SAC exceeds

the effort required of a fully supervised instance-based labeling approach, indicated by the

vertical dashed line at labeling effort equal to 1.0. Recall, however, that SAC queries for

binary constraints which provide a single bit of information. Thus, it is not surprising that

many binary interactions are required to collect sufficient information to drastically refine

the partitioned output.

The classification performance of HCGL and SG with respect to labeling effort is a much

closer comparison. HCGL appears to outperform SG when averaging all experiment trials,

but the high standard deviation in performance seen in the far left of the plot suggests that

the two techniques are not significantly different during the initial queries. Table 5.1 includes

the p-values from the Wilcoxon signed-rank test performed on the classification results of

HCGL and SG at various labeling efforts. We display the results for the first 25 labeling

interactions and every 25th interaction following. The level of significance is evaluated at

α = 0.01, and the p-values confirm that results are not significantly different early in the
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Figure 5.3. Comparison of classification accuracy versus labeling effort on
the 13-Scenes dataset.

labeling process. However, classification results achieved after labeling effort equal to 0.0068

are significantly different between HCGL and SG. This significance shows the performance

improvements that HCGL provides over these existing techniques.

Overall, Figure 5.3 shows that with only one-tenth of the fully supervised labeling effort,

HCGL trains classifiers that approach supervised performance (indicated by the dashed

horizontal line). SG also approaches supervised performance and eventually exceeds the

classification performance of HCGL, but does so with up to three times more labeling effort.

The MKML code was not made available by the authors, but we simulate their largest

subset labeling on this dataset with the HCGL framework. For every group selected by

HCGL, a dominating class label was provided followed by the removal of label noise. Fig-

ure 5.4 shows the additional effort required by largest subset labeling, denoted as HCGL-

largest subet, and the classification gap between it and our majority labeling approach,

HCGL-majority.

As was seen in Chapter 3, the addition of label noise has very little impact on the overall

classification accuracy. We see minimal improvement in overall classification accuracy using
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Table 5.1. P-values after running Wilcoxon signed-rank test to compare the
significance between classification results achieved by HCGL and SG at various
levels of labeling effort.

Labeling Effort p-value
0.0003 0.0098
0.0006 0.0499
0.0010 0.0926
0.0013 0.0593
0.0016 0.0926
0.0019 0.0166
0.0023 0.0367
0.0026 0.0469
0.0029 0.3329
0.0032 0.1688
0.0036 0.1688
0.0039 0.2845
0.0042 0.3329
0.0045 0.2845
0.0049 0.1688
0.0052 0.1141
0.0055 0.1141
0.0058 0.0469
0.0062 0.0093
0.0065 0.0125
0.0068 0.0069
0.0071 0.0051
0.0075 0.0069
0.0078 0.0051
0.0081 0.0051
...

0.0162 0.0051
0.0243 0.0051
0.0324 0.0051
0.0405 0.0051
0.0486 0.0051
0.0567 0.0051
0.0648 0.0051
0.0729 0.0051
0.0810 0.0051
0.0891 0.0051
0.0972 0.0051
0.1053 0.0051
0.1134 0.0069
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Figure 5.4. Largest subset versus majority labeling on 13-Scenes dataset.

noise-less labels for more labeling effort. This continues to support the fact that the addition

of minimal (to be seen in Figure 5.6(b)) label noise does not negatively impact the end

classifier in a severe manner.

5.3.3. Object Labeling and Classification

Our second experiment replicates the experimental protocol used in the MKML paper [16]

on the MSRC-v2 dataset. In the original experiment, the authors use a 40/60 data partition.

The 40% split was used to extract regions and features representing 5 classes that were

presumed known to act as a seed to their system. HCGL assumes no known knowledge

while collecting labels and therefore does not use this data for seeding. The other 60% is

used to perform the grouping and label collection for 16 unknown classes. Using the collected

labels, classification is performed only on the 16 classes that were presumed unknown, which

means the 40% split can also be used at the testing set.

The multi-concept MSRC images are segmented into regions using the publicly available

segmentation and appearance feature extraction code used by Lee and Grauman [7]. While
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Figure 5.5. Comparison of classification accuracy for three degrees of mini-
mal labeling effort on the MSRC dataset.

the image region set is not identical to the set used by MKML, we achieve the same supervised

nearest neighbor classification performance as MKML, indicating that the sets of training

data are effectively equivalent.

A comparison between HCGL and MKML can be seen in Figure 5.5. The MKML results,

Figure 5.5(a), are an alternative view of the authors’ original presentation (Figure 10 [16]).

The three bars correspond to their proposed largest subset labeling technique, a majority

labeling technique intended to emulate an incremental labeling system [15] and an unsuper-

vised baseline. Further, as mentioned earlier the focus of comparison is on the classification

results achieved during the earliest stages of labeling effort.

The results are separated in side by side plots because the definition of labeling effort

used by MKML is slightly different than what is defined in Section 3.1. In particular, MKML

defines effort as the fraction of images that are removed from a group because they do not

match the largest subset label. It does not include the effort required to provide the label of

the largest subset.
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When focusing on results achieved with minimal labeling effort, the majority labeling

technique in Figure 5.5(a) outperforms MKML with largest subset labeling, which is noted

by the authors. However, the majority labeling technique still performs significantly worse

than the fully supervised approach. Our approach uses a similar majority labeling scheme,

but outperforms all techniques from the MKML paper. The performance gap suggests that

groups in S are more coherent than those selected in the MKML approach. More label noise

requires more effort by MKML before it can achieve reasonable classification performance.

5.3.4. Evaluation of Problem Objectives

Performance on the objectives defined at the beginning of this thesis ultimately influences

classifier learning. To break down the overall performance we perform a secondary evaluation

that looks at the discovery rate, labeling rate and label accuracy with respect to labeling

effort. Figure 5.6 compares results of HCGL, SAC and SG on these three objectives using

the 13-Scenes dataset.

Concept discovery is important since classifiers can only recognize concepts that exist

in the labeled training data. Techniques that collect labels for all K classes the fastest will

likely see the fastest classification performance boost. Figure 5.6(a) shows that HCGL has

the best rate of discovery with SG performing competitively in the first several iterations

of effort until the discovery gap widens. The poor performance of SAC can be attributed

to two things: 1) groups may be too incoherent to label or 2) the same scene class may be

dominating multiple groups. Each time this occurs in a one-to-one mapping, one class goes

undiscovered. Notice that the rate of discovery and classification performance (Figure 5.3)

have similar trends, reinforcing the claim that discovery is of significant importance for

bottom-up grouping techniques.
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(a) Rate of discovery (b) Label accuracy

(c) Percentage of samples labeled

Figure 5.6. Comparison of label collection objective performance for HCGL,
SG and SAC on the 13-scenes dataset.

The label accuracy maintained by all the labeling techniques can be seen in Figure 5.6(b).

As mentioned previously, many labeling techniques have emerged that focus on how to collect

accurate labels even at the cost of more effort. SG enforces this constraint by only assigning

labels to groups that consist of images from exactly one class, and although SAC never

reaches perfectly accurate labels, the addition of binary constraints is intended to allow a

clustering algorithm to eventually perfectly partition the data by class. On average, HCGL
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maintains accurate labels for about 70-80% of all labeled samples which does not appear to

negatively impact classification performance significantly.

HCGL takes the middle ground between perfect label accuracy, like SG, and poor label

accuracy seen in one-to-one mapping, like SAC. Also notice that HCGL has a faster labeling

rate than SG, but slower than SAC in Figure 5.6(c). This shows the balance of label accuracy

and labeling efficiency that HCGL was designed on. Most importantly, this balance allows

HCGL to train higher performing classifiers than the other techniques that focus only on

either label accuracy or labeling efficiency.

Finally, Figure 5.6(c) also reinforces that labeling all of S does not guarantee that HCGL

assigns a label to all training samples. This is a similar feature of SG as it also does not

label all training samples even though it is designed to run until all data are labeled. This

indicates that many SG queries result in a “mixed” label where no labeled samples are

collected. Overall, these experiments illustrate the importance of discovery, and how the

balance of label accuracy and labeling efficiency may be more important than emphasizing

any single criterion.

61



CHAPTER 6

Selection Ordering

The initial HCGL implementation of cluster selection emphasized interestingness (de-

fined in Chapter 5. This was done by identifying groups in H whose structural change

value was a local maximum, and labeling these groups in order of this change, largest first.

This was shown to perform well against other state-of-the-art labeling techniques, but does

not explicitly address the label collection objectives defined at the beginning of this thesis.

Further, while using local maxima helps narrow down the number of groups to label, its

selections do not necessarily select groups with the highest interestingness scores. In this

chapter we present and compare new selection and ordering criteria for HCGL that more

explicitly addresses the problem objectives.

6.1. Local Maxima Inconsistencies

In the previous chapter, Equation 3 constructs S by identifying the subset of clusters

whose interestingness scores are local maxima in the hierarchy. However, recall that the

interestingness score was designed to locate large changes in pattern structure to indicate

concept transitions. Unfortunately, selecting only local maxima has two inconsistencies with

this original design goal. These inconsistencies are illustrated in Figure 6.1, which shows

two subtrees from a hierarchy constructed from the Digits dataset. Node colors map to

the dominating digit class of the group’s data, and black wedges indicate the percentage of

samples that do not represent the dominating digit class. The interestingness score of each

group is labeled in the node.
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First, not all groups with high interestingness scores are local maxima, meaning some

locations with potential for concept transition may never be displayed and labeled by a

human annotator. Cluster ci (denoted with an arrow) in Figure 6.1(a) is an example of a

group with a high interestingness score that is not a local maximum. This group consists

mostly of images of the digit 1, and has high structural change from its parent which consists

mostly of images of the digits 1 and 8. However, it is the parent of ci that is the local

maximum in this neighborhood. In this case, the local maximum is seen after a split from a

group of three classes (the root of the subtree) to a group of two classes (the parent of ci).

Consequently, this means that even though ci also undergoes high structural change from

its parent, HCGL will never select this group to be labeled by the human annotator.

Second, local maxima are not guaranteed to have high interestingness scores compared

to other groups in the hierarchy. This is inconsistent with the underlying goal of HCGL

since it allows clusters that have low likelihood of providing new label information to be

selected and labeled by an annotator. Cluster ci in Figure 6.1(b) is a local maximum and an

example of this type of inconsistency. Relative to other interestingness scores in H, ci does

not indicate that a large structural change has occurred.

Finally, as mentioned in the previous chapter, labeling only local maxima does not guar-

antee that the entire training set will be labeled. In some cases the entire dataset may not

need to be labeled or may not be feasible to label it in its entirety for certain applications.

However, if not enough local maxima exist in the hierarchy then classification performance

could be significantly compromised because of insufficient label collection.

To address these inconsistencies, selection of local maxima (defined in Equation 3) is

dropped and S is constructed to contain clusters with the highest structural change values as
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(a) Example of a cluster with high struc-
tural change, i.e., interestingness, that is
not a local maximum.
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(b) Example of a cluster with low structural
change that is a local maximum.

Figure 6.1. Illustrations of inconsistencies in local maxima selection. The
examples show that not all clusters with high interestingness values are in fact
local maxima, whereas some clusters with low interestingness scores are local
maxima.

defined in Equation 2. If S is sorted and labeled in order of these interestingness scores, then

all clusters can be added to S. However, later in this chapter we discuss and compare different

ordering criteria that should operate only on a subset of the most interesting unlabeled

clusters from H.

To identify a subset of clusters, the mean and standard deviation of structural change

values of all unlabeled clusters in H are found:

∆̄ =
1

|U|

∑

∀ci∈U

∆(ci)(4)

σ∆ =

√

1

|U|

∑

∀ci∈U

(∆(ci)− ∆̄)2(5)

We refer to clusters with structural change values at least one standard deviation beyond

the mean as outliers and they are added to S:

(6) S = {ci |∆(ci) > ∆̄ + σ∆}.

64



The contents of S are iteratively updated after each labeling query. Labeled groups are

removed, ∆̄ and σ∆ are recomputed, and any new clusters that fall beyond this threshold

are added to S.

We do not make any direct comparisons between local maxima and outlier selection

because ultimately their constructions of S capture similar information and achieve similar

performance with minimal human effort. However, the two criteria are used in the next two

sections, and it is clear that outlier selection allows for a larger percentage of T to be labeled

given no labeling time constraints.

6.2. Other Group Labeling Order Criteria

This thesis identified four relevant objectives for the label collection problem: concept

discovery, labeling efficiency, sufficient label collection and label accuracy. Evaluation of the

problem objectives performed in the previous chapter showed that HCGL balanced efficiency

and accuracy better than existing methods, but the initial selection and ordering criteria do

not explicitly emphasize all objectives. Additional ordering techniques are introduced to

evaluate the importance of each individual objective. Ordering is based on the following

three heuristic criteria:

(1) Interestingness - the degree of structural change seen after a split

(2) Exploitation - the number of samples that would receive labels

(3) Exploration - the likelihood a group is different from those previously labeled

Interestingness is the original ordering from Equation 2 that ranks groups by their likelihood

of visual concept transition.

Exploitation ordering is based on the number of unlabeled samples in a cluster. This cri-

terion is designed to label larger clusters first to emphasize the efficiency objective and collect
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a large set of labels very quickly. Note that this value is not the size of a cluster because any

descendants that belong to the set of previously labeled clusters, L = {(c1, y1), (c2, y2), . . . },

have already assigned some samples a label. Formally, the exploitation score for ci is:

(7) exploitation(ci) = |ci| − |{xi | xi ∈ cj , cj ∈ L , cj ⊂ ci}|

Exploration ordering spreads group labeling throughout H to better explore the feature

space as a way to discover groups that represent concepts yet to be labeled. Exploration

values iteratively change throughout the labeling process as they are computed with respect

to L. Specifically, the exploration score for cluster ci is the shortest path in the hierarchy

between it and all labeled clusters,

(8) exploration(ci) = min
cj∈L

path-length(ci, cj),

where path length between ci and cj is the combined number of direct connections up the

tree until their first common ancestor is reached. For example, cl and cr in Figure 5.2 have

a path length of two where their first common ancestor is c. Exploration ordering labels

clusters with the longest path length first, i.e., groups that are least similar to what has

already been discovered and labeled.

6.2.1. Experiment Setup

To compare the three heuristic criteria we run HCGL as defined in Algorithm 1 from

Chapter 5, with interestingness, exploitation and exploration ordering of S (line six of the

algorithm). We use the same experimental protocol from Chapter 5 with the 13-Scenes and

MSRC dataset. The comparison results display the average performance after running 10
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trials of random training/testing partitions. Error bars denote the standard deviation of

the results across the 10 trials. Again, we use the Wilcoxon signed-rank test to determine

significance at the level of α = 0.01. Since we are comparing multiple different techniques

and the Wilcoxon test compares pairs of techniques, we run significance testing for pair of

label orderings used in HCGL.

We look at three dependent variables, discovery rate, labeling rate and label accuracy

with our independent variable labeling effort. These dependent variables are the motivation

of our additional objective ordering criteria. Thus, we hypothesize that our evaluation will

show that each objective ordering criterion will excel, with respect to the other criteria, in

one but not all of the dependent variables being measured.

6.2.2. Comparison of Ordering Criteria

Rate of discovery, labeling rate and label accuracy are evaluated on the 13-Scenes and

MSRC datasets as a function of labeling effort. This comparison illustrates the emphasis of

each of the ordering techniques. As designed, Figures 6.2(a) and (b) show that exploration

ordering provides the best rate of discovery, followed by the interestingness ordering. Fig-

ures 6.2(c) and (d)) show that exploitation ordering produces more labeled samples faster

than other orderings after it gets past its initial selections. These first several selections

produce no labeled training data because the groups represent concepts coarser than those

labels in Y . However, exploitation ordering does result in lower label accuracy than the other

techniques throughout much of the labeling process to achieve its labeling rate dominance

seen in Figures 6.2(e) and (f).

These orderings emphasize different objectives of the label collection process, and Fig-

ure 6.3 shows the impact of this emphasis in terms of classifier learning on two datasets.
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Figure 6.2. Comparison of discovery rate, labeling rate and label accuracy
for three labeling objective orderings.
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(a) Classification Accuracy: 13-Scenes (b) Classification Accuracy: MSRC

Figure 6.3. Comparison of classification accuracy as a function of labeling
effort for three labeling objective orderings of S.

There is no single labeling order that significantly outperforms the other two orderings

throughout the entire labeling process. However, Table 6.1 shows the significant differences

in classification on the 13-Scenes dataset (Figure 6.3(a)) between each pair of labeling orders

based on the p-values computed after running the Wilcoxon signed-rank test. Significant

differences in classification occur at four different times during the labeling process. The

most obvious significant difference seen in Figure 6.3 for both datasets occurs in the earli-

est stages of labeling. Interestingness and exploration significantly outperform exploitation,

which initially is unable to classify any of the testing set because it selects large groups

representing concepts too coarse to be assigned a label from Y . P-values less than 0.01 are

also seen on the MSRC dataset through the first 30 labeling interactions (∼ 0.003 labeling

effort). Thus, quickly labeling all visual concepts is extremely important even if this results

in a much slower labeling rate, as in the exploration and interestingness orderings.

After around 1% labeling effort, exploitation ordering discovers nearly all concepts in the

dataset, and starts to classify more similarly to the other techniques. This is around the same
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time that there is a significant performance gap between the interestingness and exploration

ordering. Eventually, the large number of samples labeled by the exploitation ordering

criterion enhances classifier learning and displays significant improvements over exploration

ordering around 2% labeling effort. Overall, these significant differences are short lived

during the labeling process. These results suggest that initially focusing on discovery of all

visual concepts is particularly important, but that a small set of accurately labeled data and

a larger set of less accurately labeled data train similar performing classifiers.

6.2.3. Combined Ranking Comparison

Each ordering criteria excelled at different problem objectives which benefited overall

classification performance at various times throughout the labeling process. To balance the

benefits of all ordering criteria, a multi-objective rank combination ordering is defined.

Clusters in S are ranked according to each criteria individually, and linearly combined

to produce the multi-objective ordering score,

rank-score(ci) = β1 ranking(exploitation(ci), {exploitation(cj) | cj ∈ S})

+ β2 ranking(exploration(ci), {exploration(cj) | cj ∈ S})

+ β3 ranking(∆(ci), {∆(cj) | cj ∈ S}),

(9)

where each βi is a weight for its ordering objective such that β1 + β2 + β3 = 1.0. For all

experiments in this section, the objectives are weighted evenly, β1 = β2 = β3 = 1
3
. The

ranking function is passed the cluster’s score and the set of scores from clusters in S eligible

to be labeled, and returns the cluster’s rank with respect to the set. The cluster with the

highest rank score is selected as the next labeling query.
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We compare this ranked-based combination ordering with the three criteria used indi-

vidually. Comparisons are made using the new outlier selection criterion instead of local

maxima. As mentioned earlier, classification results are not noticeably different after this

change, but the percentage of labeled samples increases because more labeling queries can

be issued to the annotator. Algorithm 2 outlines the procedure of HCGL when using the

outlier selection criterion with any labeling order criteria.

Algorithm 2 Hierarchical Cluster Guided Labeling-v2

Require: H
1: U = {ci | ci ∈ H}
2: while U 6= ∅ do

3: threshold = ∆̄ + σ∆

4: S = {ci |∆(ci) > threshold, ci ∈ U}
5: update(ordering-scores)
6: S = sort(S, ordering-scores)
7: label query → S[0]
8: update(U)

Figure 6.4 shows classification results for the individual objective criteria and the multi-

objective combination criteria for several datasets. Error bars are omitted from these figures

for easier viewing, but a discussion on significant differences is provided in their place. Over-

all, the multi-objective combination typically performs as well or better than the individual

orderings with the exception of the 13-Scenes experiment (seen in Figure 6.4(c)). Early in

the labeling process the combined rank ordering tends to favor the exploitation objective

which has the worst performance of all the techniques for this dataset.

The most interesting and important result can be seen on the MSRC dataset in Fig-

ure 6.4(d). In this case, the multi-objective combination ordering criterion improves classi-

fication and outperforms the criteria individually during most of the labeling process. The

significance of these results are show in Figure 6.5, which shows the p-values when com-

paring the classification accuracy of the multi-objective labeling combination with the three
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(a) Classification accuracy on 5-Scenes: uniform
distribution of 5 scene classes

(b) Classification accuracy on Digits: uniform dis-
tribution of 10 digit classes

(c) Classification accuracy on 13-Scenes: uniform
distribution of 13 scene classes

(d) Classification accuracy on MSRC: non uniform
distribution of 16 object classes

Figure 6.4. Comparison of classification accuracy for the individual objec-
tive ordering criteria and the multi-objective combination of these criteria.
Experiments are performed on three datasets with a uniform distribution of
classes and one dataset with a non uniform distribution of classes.

objective criteria used individually. For most of the analysis multi-objective combination

ordering significantly outperforms both interestingness and exploitation ordering. There are

fewer ranges of labeling effort where difference in classification is significant compared to the

exploration ordering, but it is never outperformed significantly by the exploration objective

ordering criterion.
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(a) P-values when comparing multi-objective com-
bination ordering with interestingness ordering.

(b) P-values when comparing multi-objective com-
bination ordering with exploitation ordering.

(c) P-values when comparing multi-objective com-
bination ordering with exploration ordering.

Figure 6.5. P-values when comparing classification accuracy of multi-
objective combination ordering with individual objective ordering criteria as
a function of labeling effort. Results are for the MSRC dataset, which is the
only dataset where multi-objective combination displays an improvement in
classification accuracy over the individual criteria.

This change in trend from the MSRC dataset and the other three datasets in Figure 6.4

is best explained by one major difference. The datasets differ in their number of classes and

degree of difficulty, but the MSRC dataset is particularly different because it is the only

set of data that has a non uniform distribution of classes. This suggests that balancing the

ordering criteria is particularly important when some classes appear less often than others.
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(a) Discovery rate for the 10 class Digits dataset (b) Discovery rate for the 16 class MSRC dataset

Figure 6.6. Comparison of the number of novel discoveries with respect to
labeling effort for the individual objective ordering criteria and the multi-
objective combination of these criteria.

This is an important result because the real-world application we address in Chapter 8 also

exhibits a non uniform distribution of classes.

Even though multi-objective combination ordering did not outperform all individual cri-

teria on the three datasets with evenly distributed classes, it did balance the ordering criteria

well. This can be seen by comparing the labeling rate and discovery rate of all ordering tech-

niques. Figures 6.6 and 6.7 show that multi-objective combination has the second fastest

discovery and labeling rate. Of course it falls second to the individual ordering criteria de-

signed to emphasize these objectives. We show this balance for a few example datasets, but

the trend follows for all datasets seen in the classification results.

6.3. Discussion

We have yet to thoroughly investigate different βi weights for the multi-objective combi-

nation technique. However, the comparisons in this chapter lead us to believe that dynam-

ically adjusted weights throughout the labeling process may create a better combination of
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(a) Labeling rate for the 10 class Digits dataset (b) Labeling rate for the 16 class MSRC dataset

Figure 6.7. Comparison of the labeling rate for the individual objective or-
dering criteria and the multi-objective combination of these criteria.

objectives. For example, the exploration objective may be weighted more heavily at the be-

ginning of the labeling process to quickly discovery all classes, whereas exploitation may be

weighted more heavily later in the process to collect more labeled instances of these classes.

The new outlier selection and ordering criteria introduce iterative updates to the HCGL

framework during labeling. Although these updates require processing time, it is minimal

compared to re-training classifiers or re-clustering data. Exploitation and exploration up-

dates are only required for a subset of clusters in H that are in the neighborhood of the

previously labeled cluster. S can be updated in O log(n) time complexity by maintaining a

sorted list of structural change values and searching the list using the outlier threshold.

Use of HCGL in real-world applications with a human annotator is discussed and eval-

uated in Chapter 8. This evaluation demonstrates the real-world feasibility of the system

by presenting labeling interaction timings. The speed of updates when using outlier selec-

tion and multi-objective combination ordering was fast enough that there was no observable

latency between labeling queries.
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Table 6.1. P-values for ranges of labeling effort where significant classifica-
tion performance differences are found on the 13-Scenes dataset after running
the Wilcoxon signed-rank test. Tests are run for each combination pair of label
orderings. The pair of orderings that display significantly different results are
marked in bold.

Labeling Effort
Interestingness

&
Exploitation

Interestingness
&

Exploration

Exploitation
&

Exploration
0.000324 0.002700 0.338724 0.004376

0.000648 0.004509 0.514670 0.005034

0.000972 0.005034 0.959354 0.005062

0.001296 0.005062 0.798859 0.005062

0.001620 0.007686 0.721277 0.005062

0.001944 0.006910 0.386271 0.005062

0.002268 0.006910 0.507624 0.005062

0.002592 0.012515 0.114128 0.005062

0.002915 0.046853 0.021824 0.006910

0.003239 0.046853 0.028417 0.009344

· · ·
0.011662 0.074462 0.006910 0.575062
0.011986 0.074462 0.009344 0.575062
0.012310 0.092601 0.006910 0.575062
0.012634 0.059336 0.006910 0.959354
0.012958 0.092601 0.005062 0.959354
0.013282 0.046853 0.005062 0.959354
0.013929 0.028417 0.005062 0.959354
0.014253 0.036658 0.006910 0.721277

· · ·
0.028183 0.059336 0.798859 0.006910

0.028507 0.074462 0.878482 0.006910

0.028831 0.114128 0.646462 0.009344

0.029155 0.092601 0.798859 0.005062

0.029478 0.139414 0.959354 0.005062

0.030126 0.046853 0.798859 0.009344

0.030450 0.036658 0.721277 0.009344

0.030774 0.028417 0.575062 0.009344

· · ·
0.034661 0.139414 0.878482 0.009344

0.035309 0.139414 0.959354 0.009344

0.036929 0.114128 0.721277 0.005062

0.037577 0.139414 0.878482 0.005062

0.038873 0.092601 0.721277 0.005062

0.039845 0.168807 0.959354 0.006910

0.040492 0.139414 0.959354 0.009344

0.041464 0.114128 0.878482 0.006910

0.042760 0.202622 0.959354 0.009344
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CHAPTER 7

Group Stability

Interestingness in the hierarchy was previously modeled using the primary direction of

variance in the features of each group. Although good performance was seen during eval-

uation, this model does not generalize to all data representations. For example, kernels

for unordered feature sets [60, 61] produce a similarity matrix, not a d-dimensional feature

vector, by comparing sets of local features with different cardinalities.

To generalize to a larger set of data representations, we evaluate the use of stability

measures to identify interesting splits in the hierarchy. We use stability to describe the

consistency of data grouping under slight problem variations. The idea is that samples

representing the same class will more consistently group together under problem variations

producing different data partitions than those representing different classes. Different par-

titions can be achieved by grouping with random forests, data subsets or different feature

representations. Like many cluster validation measures [62, 63, 64], stability has been used

on flat data partitions to identify the “best” number of groups to represent the unlabeled

samples [65]. We use stability in the hierarchical structure as a replacement for structural

modeling in HCGL.

7.1. Proximity Forest

In this thesis, stability is derived from the Proximity Forest data structure [66]. This

structure is a set of T randomized metric trees designed for fast Approximate Nearest Neigh-

bor (ANN) search in general metric spaces. All that is required to build a Proximity Forest
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is a distance function. This allows our approach to generalize to data represented by features

in vector space and similarity matrices.

Each tree in the forest is constructed by incrementally adding training samples in random

order. A splitting threshold size, τ , determines when nodes in the tree have reached their

maximum size and should split into two children. To split, a random sample from a node

is selected as the pivot element. Distances between the pivot and all other samples in the

node are computed. The left child receives samples with a distance less than or equal to

the median, and the right child receives those with distance greater than the median. Once

the root splits, added samples traverse down to a leaf node using the splitting distance of

internal nodes. Construction is complete when all samples have been added to a leaf node

in the tree. Each tree in the forest represents a different randomized partitioning of the

training data, and leaf nodes encode approximate nearest neighborhoods.

7.2. Measuring Stability

We present and discuss two variants of stability using the Proximity Forest. Just as

with the original structural modeling, each ci ∈ H receives a stability score. These scores

are computed independent of H but are later compared within local neighborhoods of the

hierarchy to represent the change in stability that occurs from each split.

7.2.1. Leaf Node Stability

The Proximity Forest was designed to do fast ANN search by retrieving samples from

leaf nodes in O(log n) time complexity. Using leaf node neighborhoods to evaluate pairwise

stability is a natural extension, where the number of trees in which two samples share the

same leaf node determines stability. Using leaf nodes, the stability between any two samples
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xi and xj is

(10) pairwise-stability(xi, xj) =
1

T

T
∑

t=1

γt(xi, xj),

where the function γt returns 1 if xi and xj exist in the same leaf node of tree t, and 0

otherwise. Pairwise stability is normalized by the number of trees in the forest to produce a

stability score on the range of [0.0, 1.0]. Higher scores indicate greater stability.

We define the stability for a cluster in H as the average pairwise stability of its samples.

Stability of a sample with respect to its cluster, xi ∈ ci is

(11) sample-stability(xi, ci) =
1

|ci|

∑

∀xj∈ci

pairwise-stability(xi, xj),

and the overall stability using leaf node neighborhoods in the forest is:

(12) leafnode-stability(ci) =
1

|ci|

∑

∀xi∈ci

sample-stability(xi, ci).

One disadvantage of this measure is that sample stability as defined in Equation 11 suffers

from mismatched cardinalities between leaf nodes in the forest and ci ∈ H. Leaf nodes in the

forest have a size on the range of [τ/2, τ − 1]. This means xi can maximally be stable with

τ − 1 other data points. However, sample stability for xi is averaged across all other xj ∈ ci.

This creates a bias so clusters lower in the hierarchy (i.e., those more closely matching the

cardinality of leaf nodes in the forest) appear to be more stable than groups near the top.

7.2.2. kNN Stability

To reconcile the cardinality mismatch from leaf node stability, we define a variant that

retrieves the k approximate nearest neighbors from a tree in the forest, where k = |ci|. When
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|ci| > [τ/2, τ − 1], the internal ancestor nodes in a tree serve as larger approximate nearest

neighborhoods from which stability is computed. The pairwise stability function for this

variant is now defined as

(13) pairwise-stability(xi, xj, k) =
1

T

T
∑

t=1

ζt(xi, xj, k),

where ζt returns 1 if xj is one of the k nearest neighbors of xi found in tree t. Recall that

since we are using the Proximity Forest, the set of k samples is actually the approximate

nearest neighbors. This variant is also different because pairwise stability between xi and xj

is no longer symmetric as was the case in pairwise stability computed from leaf nodes in the

forest.

With this change, sample stability with respect to its cluster is

(14) sample-stability(xi, ci) =
1

|ci|

∑

∀xj∈ci

pairwise-stability(xi, xj, |ci|),

and every xi is capable of achieving a maximum sample stability score of 1.0. Finally, the

k-NN stability of ci is also the average stability of its samples,

(15) knn-stability(ci) =
1

|ci|

∑

∀xi∈ci

sample-stability(xi, ci).

Unfortunately, this variant causes an inverse stability bias to that of leaf node stability.

That is, k-NN stability measures tend to decrease down the tree. The pairwise redundancy
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in H creates a ranking order bias. We use three example clusters from H to discuss this bias,

ci = {xi, xj}

cj = {xi, xj, xk, xl}

ck = {xi, xj, xk, xl, xm, xn, xo, xp},

where ci ⊂ cj ⊂ ck. The pairwise stability between xi and xj for the three clusters is based

on values of k = 2, 4 and 8 used in Equation 13. If we ignore that xi will always be returned

in its k-nearest neighbors, we see that xj has the greatest likelihood of being stable with

xi when evaluating k-nn stability with respect to ck. That is, xj must be in a set of seven

non-trivial ANNs with respect to ck, whereas ci and cj only create sets of one and three non-

trivial ANNs, respectively. The orderless sets used for k-nn stability causes larger clusters

in the hierarchy to appear to be more stable than their descendants.

7.2.3. Change in Stability

To evaluate interestingness at all splits in the hierarchy, stability values (just like the

structural representation) are compared for every cluster and its parent. Since both stability

measures exhibit biases based on cluster size, we normalize the change in stability by the

average stability score in the local neighborhood N , where N is the set of all clusters in

the hierarchy one path length away from either ci or p. Formally, change in stability (either

leaf node stability or kNN stability) is the normalized absolute difference between stability

scores of ci and p:

(16) ∆S =
|stability(ci)− stability(p)|

1
|N |

∑

∀cj∈N
stability(cj)
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Larger changes in stability indicate greater interestingness in the hierarchy.

7.3. Evaluation

7.3.1. Experiment Setup

In these experiments, we hope to determine if change in stability provides a better model

of interestingness than modeling changes in primary direction of variance. We use HCGL as

defined in Algorithm 2 with the multi-objective linear combination of ranks from Equation 9.

Both stability measures defined in this chapter and structural change from Equation 2 are

used to model interestingness, and these three versions of HCGL are compared. Stability

measures in these experiments are derived from a Proximity Forest constructed with 21 trees

and τ = 25. These parameter values were defined in previous work [67], and shown to work

well for encoding approximate nearest neighborhoods for action recognition.

As in previous experiments in this thesis, evaluation are performed with the independent

variable of labeling effort. We look at the effect of labeling effort on three dependent variables:

classification accuracy, labeling rate and label accuracy.

7.3.2. Experiments

Figure 7.1 compares the classification performance achieved by the stability and struc-

tural change measurements on two datasets. Results on both datasets indicate no significant

differences in classification performance after running ANOVA and evaluating at a signifi-

cance level of α = 0.01. However, the most distinguishing factor of the iterative classification

results is that the stability measures complete the label collection task faster than the struc-

tural change measure. This can be seen by the shorter green and blue lines. So while
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(a) 5-Scenes (b) Digits

Figure 7.1. Comparison of classification accuracy between stability and
structural change measures.

all techniques train similar performing classifiers, the stability measurements require less

labeling effort.

This difference can be seen more directly by evaluating labeling rate as a function of

labeling effort, seen in Figure 7.2. It is easy to see that each interestingness measure produces

a unique construction of S based on the differing labeling rates and label accuracies (seen in

Figure 7.3). The stability measures tend to incorporate groups from H with slightly more

label noise which often maps to larger groups being labeled at any given iteration.

7.4. Discussion

One major disadvantage of the stability measure is the pairwise computational cost,

resulting in k2 comparisons to measure the stability of ci. This pre-processing computation

does not introduce latency during labeling, but does require more initial overhead startup

compared to extracting the primary direction of variance for ci. Randomly sampling elements

from ci can reduce the number of pairwise comparisons, but if the iterative classification
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HCGL - structural change 

(a) 5-Scenes

HCGL - structural change 

(b) Digits

Figure 7.2. Comparison of labeling rate between stability and structural
change measures.

HCGL - structural change 

(a) 5-Scenes

HCGL - structural change 

(b) Digits

Figure 7.3. Comparison of label accuracy between stability and structural
change measures.

trend carries over to other vector datasets it is much faster overall to use structural change

measurements in HCGL.

In this thesis we emphasize the evaluation of classification accuracy in the early stages of

the labeling process because it is not always feasible to label the entire training set. However,

if the end goal was to label the entirety of T the fastest with minimal label noise collection,
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the leaf node stability measure showed the greatest success and consistency at this task.

This measure was able to reduce labeling effort by over a factor of ten for both datasets.
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CHAPTER 8

Applications in Mobile Robotics

We have demonstrated the efficiency of HCGL using single concept image benchmark

datasets. In this chapter, we integrate HCGL into mobile robot applications to show the

real-world feasibility of our labeling framework. We discuss the relevance of HCGL for per-

ception systems in dynamic environments, and in collaboration with U.S. Army Research

Laboratory, we evaluate trained visual classifiers used for environment perception and au-

tonomous navigation tasks.

Accurate environment perception is critical for autonomous robots to plan paths on

traversable terrain and avoid object collision during navigation. While many sensors have

been used for environment perception (e.g., laser range finders [68], radar [69], and contact

sensors [70, 71]), the speedup seen in image processing has allowed vision-based perception

to emerge in mobile robots [72, 73, 74]. This is beneficial for path planning because visual

data allows robots to perceive a large area of the environment at once.

To ensure the highest quality visual perception, training data is collected from the envi-

ronment where the robot will be performing its navigation task. Thus, each domain change

requires new collection and labeling of training data. We define the time required for the im-

age annotation process of a new set of training data as adaptation latency. This represents

the time a robot is unable to perform navigation tasks autonomously in a new domain.

Adaptation latency has yet to be discussed in existing multi-concept visual perception

systems used in robotics applications [72, 73, 74, 75]. Hand annotation of region boundaries

followed by label assignment is simply performed as a necessary, but time consuming step to

train supervised classifiers. However, beyond being an undesirable task, it may be infeasible
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in some scenarios that have limited labeling time and resources. This evaluation is motivated

by these scenarios that seek minimal adaptation latency without significantly compromising

the ability to visually perceive the environment.

8.1. Related Work in Robotics

Vision is an emerging technique for environment perception [76] with applications in

mobile robots such as gait and speed adjustments and path planning. Terrain classification

in particular has received serious attention because of its importance in robot traversabil-

ity. Offline pixel-wise evaluation of supervised terrain classifiers has been performed for

images captured by aerial robots [72], and techniques that combine vision with other sensor

modalities [69, 75]. Although ground truth datasets allow for quantitative evaluations, they

provide less insight about visual perception in dynamic real-world environments than online

task-based evaluation.

Online evaluation of visual terrain classification is commonly performed for gait change

tasks [73, 74]. For this task, visual perception is often scoped down to a small local area in

front of the robot (not the entire environment), and classification is performed on homoge-

nous terrain regions. In path planning tasks, visual perception of environments requires both

localization and classification of objects and terrains. Most real-time path planning experi-

ments have been performed using non-visual sensors [68] or perform visual labeling and plan-

ning at a binary level, e.g., path and non-path [77]. Self-supervised techniques [69, 78, 79, 80]

also have been used to learn binary concepts like traversability. These frameworks adapt

online through multiple, complimentary sensor modalities without the time consuming la-

beling process. However, these do not extend to providing training data for more complex

multi-class tasks such as verbal navigation commands between a human and robot [81, 82].
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Amajor hardship of running multi-concept supervised visual perception for path planning

tasks is the time commitment required to collect labeled training data to adapt to new

environments. Haselich et al. [75] speak directly to this issue when discussing their laser-

vision fusion approach, and its limited ability to adapt quickly because it requires the re-

annotation of imagery for new environments.

8.2. Experiment Setup

In this chapter we compare HCGL to the supervised labeling baseline, LabelMe, where

training images are labeled in random order. We do not make any direct comparisons to other

existing efficient labeling frameworks because the previous chapter already demonstrated the

superior performance of HCGL with respect to labeling effort. We use the version of HCGL

defined in Algorithm 2 with rank-based combination scores (from Equation 9) to sort S as

defined on line 6.

All evaluation metrics are presented as a function of labeling interaction time (adaptation

latency) to show the speed at which techniques can train visual classifiers for environment

perception6. We begin by comparing labeling speed and pixel-wise classification accuracy.

However, our main focus is on task-based evaluation. As shown earlier, HCGL achieves

greater efficiency in exchange for a slight degradation in label accuracy. This trade-off is

beneficial for navigation tasks because although label noise may impact classifier learning,

perfect pixel-wise classification is often not necessary to plan paths for successful navigation.

6Material submitted by author to ICRA 2016 [83].
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Table 8.1. Details of environment datasets.

Environment # Training Images Label Set (Y)

A 274
asphalt,building,concrete-floor

grass,gravel,object,sky,tree

B 1,982
building,car,grass,object

road,sidewalk,sky,tree

C 268
building,car,curb,grass,object

road,sidewalk,sky,tree

8.2.1. Environment Datasets

We use three real-world environments to demonstrate the speed and performance of

HCGL when collecting labels for multi-concept imagery for visual perception. The environ-

ments are outdoor urban training facilities that include multiple types of terrain, buildings,

cars and other objects. Training data for environment A was collected with a high dynamic

range camera at a previous experiment performed in October 2012. Images were taken at

5 different time blocks over two days from 53 locations in the environment [82]. Training

data for environment B and C is captured via teleoperation using the robot described in

Section 8.2.4. This data was collected several days before live navigation experiments were

performed in environment B and several weeks before experiments in environment C. The

training set from Environment B is much larger than the other environments because it is

the combination of data collected on three consecutive days. Performance on this dataset

shows how HCGL is able to scale with increasing training set sizes. An overview of the

datasets is provided in Table 8.1, and example images are seen in Figure 8.1.

Since HCGL assumes that each training sample represents a single concept, environment

data must be segmented into multiple regions. We over-segment images into approximately

150 regions using SLIC [21]. Over-segmentation is performed to better ensure that true region

boundaries are observed in the training samples. Each segment represents an individual
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Figure 8.1. Example images from the three environment training sets.

Training Data Label: gravel 

Label: tree 

Hierarchically cluster 

Figure 8.2. Visualization of HCGL process on multi-concept environment
data. Training data is over-segmented, segments are hierarchically clustered,
and clusters from the hierarchy are selected, displayed to the user and assigned
the majority concept label.

training sample that is clustered and represented using LAB color histograms, local binary

patterns [84], a 200-dimensional SIFT [37] codebook and normalized region coordinates. The

HCGL framework with over-segmentation of environment data is depicted in Figure 8.2.

Node colors map to a class in the label set, Y , and black wedges represent the percentage of

noise in each cluster (images not representing the dominating class).

90



Figure 8.3. Supervised labeling input, required outlining and label output.

8.2.2. Supervised Labeling

Labeling single-concept images in a supervised manner can be time consuming when

training sets are large. Multi-concept images are even more demanding for human annotators

because regions of interest must be hand outlined before being assigned a label. Publicly

available multi-concept image annotation tools such as LabelMe [33] have emerged in the

research community to facilitate supervised labeling. LabelMe allows annotators to precisely

outline, via mouse clicks, and assign a label to each distinct region in an image. Figure 8.3

shows the supervised labeling input (left), the required outlining (middle) and labeled output

(right - see class/color legend in Figure 8.13) for a single image.

Although this technique produces high quality labeled data, supervised annotation re-

quires significant human effort. A fully annotated training set of 250 images requires well

over 20 hours of labeling effort (discussed further in Section 8.3). This labeling latency

is introduced during domain changes and inhibits fast adaptation. We use LabelMe as a

baseline labeling technique for experiments in this chapter, and precisely record interaction

time when using the framework for environments B and C. Interaction time for environment

A is empirically estimated because the dataset comes fully annotated without any timing

information available. This was done by having two human annotators label a set of 34
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images independently. Timing results suggest that on average a single image is labeled in

about six minutes.

8.2.3. Visual Classifier

To test environment perception using labels from HCGL and LabelMe, we train a Hierar-

chical Inference Machine (HIM) [85], an approach for scene parsing and region classification.

HIMs incorporate both feature descriptors and contextual cues computed at multiple scales

within the scene. Images are decomposed into a hierarchy of nested superpixel regions [20],

where regions at the bottom provide localized discriminative information and those at the

top provide global context. The predictor is a decision forest regressor with 10 trees, where

the label distribution of superpixel regions at a coarse level of segmentation are used to

refine predictions at a finer level of segmentation with greater spatial locality. Features ex-

tracted from superpixels include SIFT [37], LAB colorspace statistics, texture information

and statistics on the size and shape of superpixel regions.

The HIM processes a 640× 384 image in approximately 2 seconds on a dedicated quad-

core i7-3615QM at 2.3 GHz, with feature extraction being the dominant cost, which allows

us to run navigation experiments in real-time. This algorithm has been rigorously tested

during other field experiments; for a detailed description please refer to [82].

8.2.4. Hardware

The trained HIM is run on a Clearpath Husky seen in Figure 8.4. This robot is a wheeled

platform that is limited to a maximum velocity of 1 m/s. The Husky collects images using a

Prosilica GT2750C, a 6 megapixel CCD color camera. Further information about the Husky

used in these experiment can be found in [83].
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Figure 8.4. The hardware configuration of the Clearpath Husky robot.

8.3. Labeling Speed Evaluation

Our first evaluation looks at how fast HCGL and LabelMe assign labels to pixels of the

training images. Figure 8.5 shows the percentage of labeled pixels as labeling interaction time

increases. There is a large performance gap seen across all datasets. Given limited labeling

time, HCGL is able to collect around six to seven times the amount of label information as

LabelMe. Labeling interaction time for environment B is on the order of hours because each

of the three days of training data were labeled separately and then combined.

Assigning labels quickly is important, but recall that to achieve this speed, HCGL trades

some label accuracy via majority labeling. The dashed blue lines in the plots show the

percentage of pixels that received accurate labels from HCGL (determined using the labels

collected by LabelMe). This line represents ∼ 5− 10% pixel label noise: a small fraction for

a large gain in performance.

8.4. Pixel-Wise Classification Evaluation

Just as in previous chapters, labels collected from HCGL and LabelMe are compared by

training visual classifiers and evaluating pixel-wise classification accuracy of the classifiers

on a disjoint testing set. Pixel-wise classification accuracy is compared on a testing set from
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Figure 8.5. Rate of label assignment to pixels in the training sets, and ac-
curate label assignment of HCGL (dashed lines).

Environment B which consists of 265 images. This is the only environment dataset with a

large, labeled testing set [82]. Classification evaluation is performed incrementally after every

15 minutes in which a user assigns labels to the training set. Figure 8.6 shows the overall pixel

accuracy for environment A. Even though HCGL introduces small amounts of label noise,

the larger volume of labeled training data allows HCGL to train higher performing classifiers

than LabelMe up to 210 minutes of labeling interaction. HCGL labeling is terminated at this

point to depict scenarios that have limited time to devote to label collection. So although

LabelMe eventually reaches and surpasses the classification performance of HCGL, it may

require time that is not feasible in all scenarios.

Overall pixel classification accuracy can be skewed by classes that have a higher distri-

bution of pixels in the images. Thus, we run per-class classification accuracy and find that

HCGL performs similarly or better than LabelMe for all classes but one, seen in Figure 8.7.
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Figure 8.6. Overall pixel classification accuracy for environment A.

The object class is the least represented in the data and composed of many diverse things,

e.g., light poles, traffic cones and cargo boxes. The low intra-class similarity made it difficult

for all object samples to group together in HCGL. These factors caused few labels to be

collected and achieved lower accuracy than LabelMe. However, this was a difficult class for

LabelMe as well. With a fully labeled training set (1,602 minutes), LabelMe achieves only

∼ 18% classification accuracy for the object class.

8.4.1. Exploitation Versus Rank-Based Ordering

In applications with limited time for label collection, it can be tempting to run HCGL

with exploitation ordering to collect as many labels as possible in the allotted time. However,

the environment data used in this chapter displays a large skew in classes distribution.

Figure 8.8 shows the class distribution breakdown across all pixels in the training set for

Environment A data. We compare HCGL with exploitation ordering and rank-based ordering

to show the importance of balancing all ordering criteria during the labeling process.

As designed, HCGL with exploitation based ordering focuses on labeling large groups of

data quickly. This results in a small number of classes actually receiving labels early in the

labeling process because most of the training samples represent either sky, grass or building.
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Figure 8.7. Class specific classification accuracy for environment A.
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Figure 8.8. Breakdown of class distribution across all pixels in the training
set of Environment A.

This ultimately produces far worse classifiers through the first 90 minutes of labeling than

rank-based ordering and LabelMe. These results are shown in Figure 8.9. We only compare

rank-based ordering to exploitation ordering on the real-world data to show the significance

of class distributions on label collection.

8.4.2. Qualitative Evaluation

A large labeled test set from environment B is not available, so instead we provide a

qualitative comparison of HCGL and LabelMe. Figure 8.10 shows classified images from the

two classifiers. There are two types of terrain in this environment, road and grass. Even

though the LabelMe classifier is trained with more human interaction time, HCGL collects

significantly more label information and trains higher performing classifiers.

The testing examples show instances where both classifiers perform similarly, an exam-

ple where HCGL performs slightly worse than LabelMe (column three), and the last three

columns are examples of common mistakes made by the classifier trained using the LabelMe

data. In particular, the LabelMe classifier has a hard time correctly identifying terrain that

is not directly in front of the robot. While this may allow a robot to make immediate de-

cisions it would negatively impact long term path planning tasks that we will discuss next.
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(b) Class with small distribution of pixels.

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1
5
"

3
0
"

4
5
"

6
0
"

7
5
"

9
0
"

1
0
5
"

1
2
0
"

1
3
5
"

1
5
0
"

1
6
5
"

1
8
0
"

1
9
5
"

2
1
0
"

…
"

4
0
0
"

…
"

8
0
1
"

…
"

1
2
0
1
"

…
"

1
6
0
2
"

C
la
ss
ifi
ca
(
o
n
+A
cc
u
ra
cy
+

Labeling+Interac(on+(Minutes)+

Sky+

LabelMe"

HCGL7Rank7Based"Order"

HCGL7ExploitaFon"Order"

(c) Class with large distribution of pixels.

Figure 8.9. Classification accuracy for environment A using different HCGL
selection ordering.

Qualitatively it can also be seen that HCGL commonly misclassifies trees and certain objects

as sky.
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Figure 8.10. Classified test images from environment B.

8.5. Real-Time Autonomous Navigation Experiments

While standard evaluation protocols provide an easy way to compare performance on

static data, task-based evaluation judges the quality of perception relative to our end goal of

successful navigation in dynamic environments. In many cases, perfect pixel-wise accuracy

is not required to accomplish navigation tasks. This section compares several visual classi-

fiers, trained using labels collected from HCGL and LabelMe, and their ability to provide

perception information to the mapping and navigation framework for real-time autonomous

navigation tasks.

8.5.1. Task Description

Our live navigation task requires the robot to use visual perception to plan paths and

traverse between waypoints using road terrain only. We restrict the robot to road traversal

because roads are designed to provide navigation guidance to vehicles. For example, roads

direct vehicles around difficult terrains like sand, hazards like bodies of water and non-public

areas like front yards. Our experiments emulate these scenarios by defining waypoints as
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Figure 8.11. Navigation waypoint maps for environments.

GPS coordinates (seen in Figure 8.11) such that the most direct path to the goal is not along

a road.

Labeling models and the associated trained classifiers are compared using the successes

and failures seen throughout multiple trials of a waypoint navigation task, where outcomes

are defined as follows:

• Success - the robot autonomously traverses between waypoints using only road

terrain without hitting objects

• Success with Minor Errors - the robot traverses between waypoints but either, 1)

traverses on non-road terrain for a short duration before re-planning a road terrain

route or 2) requires operator intervention at least once but no more than twice for

small adjustments in location or direction due to potential object collision or planner

failure

• Failure - the robot cannot plan and execute a road traversal even with minimal

operator intervention; visual perception has major false-positive errors indicating no

path of road terrain or planner constantly updates without making progress towards

the goal
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(a) Environment (b) LiDAR map (c) Vision map

Figure 8.12. Example obstacle maps for location two in environment A.
Darker regions indicate obstacles and non-traversable terrain.

Visual perception via HIM is run online during the navigation tasks. To plan paths the

robot maintains an obstacle map that depicts objects and terrains that should be avoided

during path planning. This is updated after every image processed by HIM. An example ob-

stacle map without visual perception of traversable terrain is seen in Figure 8.12(b), whereas

Figure 8.12(c) shows the obstacle map using visual perception. Details pertaining to the

mapping and navigation software on the robot are beyond the scope of this thesis, but can

be found in the collaborative research with U.S. Army Research Laboratory [83].

8.5.2. Navigation Results - Environment A

Environment A is the primary location used for comparative evaluation since LabelMe

was used to label the entire training set [82]. Four classifiers are trained and compared. We

compare the labeling techniques given the same amount of labeling interaction time. HCGL-

150 and LabelMe-150 represent classifiers trained after 150 minutes of labeling, which reflects

scenarios where limited time is available for label collection. This is just under one-tenth

of the estimated total time, 1,602 minutes, required to label the entire training set with
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Table 8.2. Summary of navigation results for location one (red waypoints)
in environment A.

# Successes
Label Model No Errors Minor Errors # Failures
HCGL-150 3 0 3
LabelMe-150 2 1 3
LabelMe-1602 1 1 2
HCGL-150+30 7 1 0

LabelMe. To demonstrate results given no time restrictions, we also train a classifier using

the entire training set, denoted as LabelMe-1602.

The final classifier is meant to show that adaptation is not only relevant to domain

changes, but also locally within an environment as it undergoes changes over time. We

supplement the existing training data (collected several years ago), with an additional 231

images collected from environment A during these experiments (but not at the specific testing

locations). We spend 30 minutes using HCGL on this new set of images and assign labels to

∼ 27% of the pixels. This set of labeled training data is combined with the labeled training

data from HCGL-150 to train the final classifier, denoted as HCGL-150+30.

The navigation task is performed at two locations in the environment. The first loca-

tion is illustrated by the red waypoints in Figure 8.11(a). Path planning must avoid grass

terrain (the shortest path between waypoints) and several objects near where the grass and

road meet. Road terrain is defined as gravel, concrete and asphalt. Each trial represents

a traversal from one waypoint to the other, and are performed in both directions. Trials

were run across multiple days, at different times of the day to capture performance under

varying environment conditions. Table 8.2 compares the performance of each classifier at

this location.

HCGL-150 and LabelMe-150 perform similarly with a lot of inconsistency. LabelMe-

1602 has a similar failure rate as the 150 minute labeling models, which suggests that the
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environment has changed since the collection of the training data. For example, we notice

that the length of the grass is significantly longer than it was in the training data. HCGL-

150+30 on the other hand, performs the navigation task very reliably across both days of

testing. The single trial marked as success with minor errors involved the robot trying to

plan a shortest path through the grass, entering the grass for a brief moment before backing

out and successfully planning a road traversal route. We perform more trials for this method

to show its consistency. These results demonstrate the impact of rapid label collection when

new training data needs to be collected to adapt and improve visual perception.

Qualitative evaluation of visual perception (examples shown in Figure 8.13) shows that

the labeling models produce classifiers that make different mistakes. HCGL-150 tended to

confuse road terrains, whereas LabelMe-150 often misclassified road terrain as building and

object (seen in columns three and five). LabelMe-1602 has cleaner results than the 150

minutes models, but often still misclassified gravel as object, seen in column three. Although

still not perfect pixel-wise classification, HCGL-150+30 displays the most accurate results

compared to the ground truth, which is expected given its superior navigation success.

The second location is shown in Figure 8.11(b) as the blue waypoints. At this location,

road terrain is defined only as concrete and asphalt, whereas gravel terrain (shortest path

between waypoints) is defined as non-road. Along the shortest road path are two objects

(traffic cones) that the robot must also avoid. This location was chosen to test terrain

classification for classes with much higher inter-class similarity.

Experimental trials are limited for this location due to time constraints and were per-

formed in a single afternoon. Further, more trials are performed using HCGL during this

limited testing time to better evaluate HCGL in real-world applications. Comparisons are
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Figure 8.13. Visual perception examples for each of the labeling models.
The first three columns are images taken are from the first location (red way-
points), and the last three columns are images taken from the second location
(blue waypoints).

provided for LabelMe-1602 and HCGL-150+30: the most successful models at the first loca-

tion in terms of successes and qualitative evaluation. Results are summarized in Table 8.3,

and indicate that this navigation task is much more challenging. However, HCGL-150+30 is

still able to successfully navigate the majority of the time with minimal errors. Most failures

and errors at this location were caused by misclassifying asphalt as gravel. This can be seen

in the last three columns of Figure 8.13.
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Table 8.3. Summary of navigation results for location two (blue waypoints)
in environment A.

# Successes
Label Model No Errors Minor Errors # Failures
LabelMe-1602 0 0 3
HCGL-150+30 3 2 3

8.5.3. Navigation Results - Environment B

We use environment B to further test the label collection of HCGL in new domains.

Since terrain classes in this environment are limited to road and grass we define grass as

non-traversable. We chose to focus our navigation trial experiments on labels collected using

HCGL to show the consistency of the system across multiple environments.

We ran over 15 navigation trials between both sets of waypoints without any failure cases.

Only minor path planning errors in a few trials caused the robot to traverse on the edge of

the grass where it meets the road. These successes are used to confirm that the small amount

of label noise collected by HCGL, in exchange for fast label collection, does not negatively

impact road navigation and path planning. Figure 8.14 shows visual perception from three

different trials (one per row) during 20, 40, 60 and 80 percent through the trial traversal

(columns). The class-color key is the same as that seen in Figure 8.10.

Overall perception is very strong, hence the successful navigation. Live navigation ex-

periments also show that trees are commonly misclassified as sky, but have little impact

on the navigation task. It can also be seen that some buildings further in the distance are

misclassified as sky, e.g., column one of trial one. While these errors are likely due to label

noise introduced by HCGL we see that the robot is still able to accomplish the defined task.

105



Tr
ia

l 1
 

Tr
ia

l 2
 

Tr
ia

l 3
 

Figure 8.14. Visual perception examples from live navigation trials in envi-
ronment B.

8.6. Summary

Real-time visual perception for mobile robots is only as useful as its ability to quickly

adapt to changing environments. These experiments demonstrated the speed of label collec-

tion that HCGL can bring to real-world applications and multi-concept environment data.

New training data can be collected, labeled and used to train a classifier in a single day.

HCGL is a good candidate for task-based visual classification because while HCGL trades

some label accuracy for reduced adaptation latency, perfect pixel-wise classification is not

necessary to achieve quality visual perception for navigation.
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CHAPTER 9

Exploiting Hierarchical Label Sets

When labeling with HCGL the user is permitted and encouraged to assign labels that

best match the concept discovered by the clustering algorithm, even if these labels are more

general than the final classifier label set. In Chapter 2, this was defined as the label set Ŷ ,

a superset of labels from those in Y . The hierarchical label set was primarily motivated by

coarse-grained concepts found in the 13-Scenes dataset, and was designed to help reduce the

amount of label noise introduced by majority group labeling. In this chapter we discuss Ŷ

with respect to the real-world environment datasets used in the previous chapter. We discuss

how much additional information is available about an environment when also considering

coarse label assignment from the hierarchical label set, and how this information can be

exploited to provide additional labeled training data to visual classifiers.

9.1. Coarse-Grained Label Assignment

Since all three environments were used for the same navigation task, the classifier label

set, Y , is similar for all environments with the exception that environment A has more

specific terrain types. Four coarse-grained labels were commonly given by the user when

labeling the environment datasets: ground, vegetation, concrete and hard ground. Figure 9.1

depicts the hierarchical relationships between these coarse-grained concepts and labels in Y .

During the labeling process coarse-grained labels are collected and maintained but not

used to train classifiers. Thus, the information available about the environment is actually

denser than the labeled training set the classifier learns from. Figure 9.2 shows the additional

label information collected by HCGL on the three environment datasets when crediting all
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Figure 9.1. Relationship of coarse grained labels and classifier labels for
environment data. Coarse-grained labels are in bold.
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(c) Environment C

Figure 9.2. Rate of hierarchical label assignment to pixels in the training sets.

label assignments using Ŷ (green line). In environments A and C there is about a 10%

increase in pixel information. Environment B has fewer hierarchical labels to contribute to

the overall labeling of the training data, but the high overall percentage of labeled pixels

indicates that HCGL simply made more group selections that best represented labels in Y

for this environment.

Since the relationships between coarse-grained and classifier labels are known, this knowl-

edge can be paired with contextual information about a segment from a multi-concept image
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to infer its label from Y . If hierarchical labels can be inferred to more specific concepts, clas-

sifiers gain additional information to learn form. This inference can be performed without

any additional human labeling effort. In the rest of this chapter we discuss a basic inference

model used to establish a larger labeled training set for classifiers.

9.2. Hierarchical Label Inference

Row two in Figure 9.3 shows example training images from the labeling model HCGL-150

used for navigation experiments in environment A. Segments labeled during the 150 minutes

of interaction time are colored according to their label assignment. Any part of the image

shown as grayscale is still unlabeled. The class-color label key at the bottom of the figure

now includes four additional colors to represent the coarse-grained label assignment. Since

HCGL uses over-segmentation to create training samples from multi-concept images, true

region boundaries (as would be defined using LabelMe) are likely split into multiple smaller

segments, meaning neighboring segments often share the same label. Notice that nearly all

segments assigned coarse-grained labels in row two have neighboring segments assigned a

label from Y . These neighboring segment labels serve as contextual information and provide

evidence for possible classifier label inference.

The r segments produced after over-segmenting an image are represented as a symmetric

adjacency matrix,

A =























a11 a12 · · · a1r

a21 a22 · · · a2r

...
...

. . .
...

ar1 ar2 · · · arr






















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Figure 9.3. Five example training images and label assignment after human
interaction and hierarchical label inference.

such that aij = 1 if segment i and segment j share at least one boundary pixel, and aij =

0 otherwise. After human labeling interaction, any segment i assigned the label ground,

vegetation, concrete or hard ground, undergoes hierarchical label inference through a voting

process. Every segment j where aij = 1 and yj ∈ Y votes for the inferred label of i using its

assigned label yj. Segment i is assigned the inferred label if at least one neighboring segment

voted, the set of votes represents only a single label from Y and the inferred label does not

conflict with the hierarchical label of i, i.e., it is part of the same tree in Figure 9.1.

Row three in Figure 9.3 shows the re-labeling of images when label inference is performed

on segments with coarse-grained labels. The percentage of pixels assigned a label from Y
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Table 9.1. Hierarchical label inference results.

Label Model % Labeled Label Accuracy Classification Accuracy
HCGL-150 0.547 0.949 0.869

Hierarchical Inference 0.601 0.939 0.862
Bootstrap Hierarchical Inference 0.623 0.930 0.867

increases from ∼ 55% to 60% (detailed in Table 9.1). This percentage increase does not come

without error. Segments representing the 5% noise caused by majority labeling still vote and

can propagate their incorrect label. This can be seen in column four where the concrete-

floor noise is propagated to adjacent segments because there are no other correctly labeled

segments to counteract this evidence. Inference noise is also introduced when a segment

that lies on a true region boundary only has labeled neighbors representing a class on the

other side of the boundary. This is seen in the last column when a correctly labeled grass

segment is propagated to concrete-floor segments because these two terrains are adjacent.

These errors cause overall label accuracy to drop by 1%.

Notice there are still segments with hierarchical labels because their classifier label could

not be inferred. However, many of these segments now have new neighboring evidence

because of the first inference iteration. Thus, hierarchical label inference can be bootstrapped

to iteratively use the previously inferred segments as label votes for the next iteration.

Labeling examples from the bootstrapped hierarchical inference can be seen in the fourth

row. An additional 2% of the total pixels are assigned labels from Y at the cost of another

small decrease in overall label accuracy.

We train new classifiers with the additional inferred label information. Classification

accuracy on the test set from the previous chapter can be seen in the last column of Table 9.1.

Unfortunately, the 5 − 9% increase in labeled pixels after inference does not impact the

overall classification accuracy. However, in the remainder of this chapter we discuss inference
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extensions and why this initial label inference success is still important even though this

experiment does not show improved classification performance.

9.3. Discussion

Although classification accuracy did not increase, the hierarchical label inference exper-

iment demonstrated the information available in surrounding context in environment data.

This is important for two reasons. First, there is still a classification performance gap when

using HCGL-150, which is roughly a half labeled training set, and using a fully annotated

training set. Second, since label inference was performed reliably there is potential to in-

troduce this inference earlier in the labeling process and further reduce human interaction

time.

9.3.1. Inference Extensions

This thesis mentioned earlier that more labeled training data is better than less. This is

specifically true for the HIM used with the environment data since it also uses surrounding

context to learn terrains and objects. Thus, the sparsely labeled training images produced

by HCGL are not ideal for the HIM learning process. Most of the coarsely labeled segments

were assigned a classifier label through the hierarchical inference model, but this inference

technique can easily be extended to remaining unlabeled segments in images. The only

difference is that there is no hierarchical label to reconcile with neighbor votes.

The five examples show that after hierarchical inference there are many unlabeled regions

that are almost completely surrounded by label evidence. Label inference is run for unlabeled

segments in a bootstrap fashion, and with no additional human effort the percentage of

labeled pixels increases by over 20% to 0.83. As seen with hierarchical inference, this inference
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Figure 9.4. Five example training images and label inference on unlabeled segments.

comes at a cost and drops overall label accuracy to 0.89. Even with the much larger training

set the overall classification accuracy drops slightly to 0.84, suggesting that label noise has

reached a point where it outweighs the success seen from simply having a large training set.

Figure 9.4 shows the unlabeled inference results for the five example images. The first

three columns show nearly fully labeled images from quality inference results with minimal

error, whereas the last two columns look very dissimilar to the ground truth. These examples

show that poor inference stems from areas that have little evidence (large areas of unlabeled

or coarsely labeled segments) to guide inference logic. Whereas in the correctly inferred situ-

ations, segments had multiple adjacent segments with classifier labels. This suggests that if

labels are distributed more evenly across images, providing more evidence for each unlabeled

or coarsely labeled segment, a large percentage of segments could be labeled automatically

with less label noise introduced.
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9.3.2. Modifying Selections for Multi-Concept Images

HCGL was not specifically designed to work with multi-concept images and use surround-

ing context during the labeling process. The only modification required to allow HCGL to

generalize to multi-concept images is performed as a pre-processing step: images are over-

segmented to create a set of training samples. However, given that the preliminary label

inference experiments produced high quality results when segments had multiple neighboring

segments to use as evidence, the next logical step is to think about adapting the selection

criteria for HCGL when working with multi-concept images.

The three current selection criteria are still relevant, but a fourth criteria, inference

evidence, could help distribute labeled segments within an image allowing human labeling

interaction to terminate earlier and labeling to be finished via inference. For this selection

criteria, groups would be ordered by the number of classifier labeled neighboring segments,

where those with no surrounding evidence are ranked higher for selection. An in depth

analysis of label inference for multi-concept images is beyond the scope of this thesis, but

future work will look at taking advantage of contextual information during the selection and

labeling process.
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CHAPTER 10

Conclusion

10.1. Summary of Research

Research in this thesis is motivated by the time consuming workload allocated to humans

to collect large sets of labeled training data for visual classifiers. We presented an efficient

label collection framework, Hierarchical Cluster Guided Labeling (HCGL), that reduces la-

beling workload through group-based labeling. The novelty of HCGL is seen through our

hierarchical approach to grouping and label assignment, and our analysis of hierarchical

structural change to identify interesting labeling queries.

We motivated the hierarchical framework by demonstrating the difficulty of creating an

unsupervised partition of visual data, such that each group contains images representing

the same concept. This difficulty arises from low intra-class similarity, high inter-class sim-

ilarity and the challenge of defining global parameters. Instead, maintaining a hierarchical

clustering of data encodes the spectrum of feature similarities found in and between classes

in the data, and does not require any global parameters. Our novel hierarchical evaluation

of parent to child relationships localizes interesting changes in the underlying feature pat-

terns/structure encoded in the hierarchy. These changes were used to efficiently label a small

subset of groups representing the hierarchical spectrum of visual concepts in the data.

Using our hierarchical evaluation for group selection, hierarchical label set assignment

and majority group-based labeling allows HCGL to achieve high efficiency at the cost of a

small percentage of label noise. We showed that this noise does not significantly compromise

classifier learning. Overall, this leads to HCGL producing higher performing classifiers than

other labeling techniques, with respect to labeling effort.
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Finally, the speed of HCGL was demonstrated by integrating it into a real-world mobile

robot application. We showed that HCGL could quickly collect label data for multi-concept

images depicting a local environment used for path planning and navigation tasks. Classifiers

trained with labels collected by HCGL produced quality visual perception cues for the mobile

robot, resulting in successful execution of path planning and navigation along road terrain.

10.2. Future Directions

Although this thesis must come to an end, there are plenty of future directions in which

this work can be taken. This section highlights extensions of the research we have presented.

10.2.1. Multi-Concept Images

Classifiers learning from multi-concept images are likely extracting and using the con-

textual information that surrounds objects in the scene. Thus, fully labeled multi-concept

training images are important. In Chapter 9, we discussed ways to extend the label collection

of HCGL to produce more densely labeled training data. Specifically, we discussed adding

an additional ordering criteria that emphasizes a more evenly distributed labeling of super-

pixels in a multi-concept image. This extension is motivated by the redundancy captured in

image over-segmentation, and seeks to infer the labels of many regions automatically after

an initial set of label evidence is provided by a human.

10.2.2. Scaling to Larger Data Volumes

HCGL has been used on a variety of benchmark and real-world datasets of different sizes,

but all on the order of thousands of images. With the success of deep learning algorithms [86,

87, 88] that use millions of images to differentiate thousands of object classes, it becomes

116



apparent that state-of-the-art classifiers used in other applications may require significantly

more labeled data than that collected in our thesis experiments.

Unfortunately, in its current state HCGL would struggle with this volume of images.

Maintaining a fully constructed hierarchical clustering would require significant memory,

and iterative labeling updates (introduced in Chapter 6) with a structure that large would

likely display noticeable labeling latency. Future work will look at modifications that can be

made to HCGL to handle significantly larger datasets. Two modifications to consider include

hierarchical pruning or online hierarchical construction. Both modifications limit the size of

the hierarchical structure by either completely removing nodes or only constructing certain

subtrees at any given time.

10.2.3. Online Discovery and Labeling

We integrated HCGL into a real-world mobile robot application to reduce labeling latency

when visual classifiers must be re-trained to adapt to new environments. However, HCGL is

still an offline process performed disjointly from the navigation task. HCGL can only provide

labels for the classifier given the set of training data collected prior to robot deployment. In

some cases training data may not capture everything in the environment which can cause

uncertainty during the navigation task.

In these scenarios it would be ideal to have an online discovery and labeling version of

HCGL that could query a human annotator sporadically during the navigation task when

visual perception displayed high uncertainty about parts of the environment. This requires

HCGL to be more tightly coupled with the visual classifier, but this information can be

used to focus labeling attention at locations of the hierarchy were uncertain areas have been

grouped together. An online labeling process allows visual classifiers to recognize new objects
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or adapt to factors, e.g., occlusion, that were not fully captured in the training set without

having the robot abort its task.
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APPENDIX A

Variable Reference

This appendix serves as a reference to variables used throughout this thesis which are

summarized in Table A.1.

Table A.1. Terminology and variable key

Variable Description
Y Label set to be learned by a classifier
K Assumed number of concepts a classifier will learn

Ŷ Hierarchical label set
xi Training sample
T Set of training data
n Number of samples in T
m Number of groups learned by a technique
yi Label given to training sample xi

H Hierarchical grouping of data
S Subset of groups from H to label
L Set of groups from H that have been labeled
U Set of groups from H that have not been labeled
c Group in H
p Parent group of c according to H

cl, cr Left and right children of c according to H
T number of trees in a Proximity Forest
τ Splitting threshold for a Proximity Tree
t Tree in the Proximity Forest
s Size of a cluster
r Number of segments in a multi-concept image
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APPENDIX B

Selective Guidance: Modeling Coherency Using

Classifier Label Set

This appendix includes the details of a group-based labeling technique called Selective

Guidance (SG) [51]. Results of SG were used to motivate the work in this thesis, but the

overall view of the labeling process is quite different. First, SG uses hierarchical clustering

only as a way to establish a set of groups to label, and the relationships encoded in H are

largely ignored. Second, SG seeks to collect noise-less data by modeling features of perfectly

coherent groups, i.e., groups of images from exactly one visual concept. Third, labeling is

restricted to the end classifier label set, Y . This model uses the stability score PFC described

in Chapter 7.

B.1. Coherency Model

The coherency model in SG is used to select groups in H to label based on a group’s pre-

dicted likelihood of containing images from a single visual concept. The model is iteratively

updated on-line during the labeling process using the PFC scores and sizes of groups that

were labeled in previous iterations. As groups are iteratively labeled, the label information

is used to help determine the ranges of PFC scores and sizes that are most likely to exhibit

coherency. In this model, coherency is modeled in a binary fashion. A group with images

from exactly one visual concept is considered coherent, and all other groups are not.

This information is modeled using a 10x10 uniform grid of Gaussian radial basis functions

(RBF). One axis of the grid represents the range of PFC scores and the other represents the

range of cluster sizes. Each axis is normalized to [0.0, 1.0] with an even distribution of grid
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point centers along these axes. Each grid point is modeled as the average weighted coherency

of the set of labeled groups. That is, after t labeling queries, grid point gi has a modeled

coherency value of

(17) p(gi) =
1

t

t
∑

i=0

φ(ri) ∗ vi,

where ri is the distance between the grid point center and the group queried at iteration i. vi

is 0 if the cluster was not coherent and labeled “mixed” or 1 if it was given a non-mixed label.

φ(ri) is the Gaussian RBF formally defined as exp−(ri/σ)
2

, which weights clusters closer to

the center of gi more heavily than clusters further the center of gi. The σ model parameter

is set to 0.1 for experiments.

The coherency likelihood for group c, is calculated from the RBF grid as

(18) pc = φ(rc) ∗ p(gi),

where gi is selected as the grid point that minimizes rc.

B.2. Group Selection

Group selection is based on information gain, where information gain is represented by

two factors. The exploitation factor seeks to label large numbers of samples quickly, making

group coherency and group size important factors when calculating information gain. The

exploitation score for cluster c is defined as

(19) exploit(c) = pc ∗ lc,
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where pc is the likelihood that c is coherent and lc is the number of unlabeled samples in c.

Note that lc is not the size of c since some samples may already be labeled if a descendant

of c was selected for labeling in a previous iteration.

The exploitation score describes the expected number of samples that will receive labels

if a cluster is given a non-mixed label, and emphasizes labeling as many samples in as few

queries as possible. Focusing solely on exploitation, however, favors the discovery of visual

concepts that are easy to group and that dominate the data set, possibly disregarding less

common concepts.

The exploration factor seeks to discover different visual concepts. Exploration is modeled

with the assumption that different visual concepts are located in different areas of feature

space. Thus, when selecting the next group to label, it should be far away from coherent

groups that have already been labeled, denoted as the set L, to try and identify a new visual

concept.

The exploration selectivity score is based on a distance value and defined as

(20) explore(c) = min
∀ci∈L

d(ci, c),

where d is the Euclidean distance between two group centroids. After two non-mixed labeling

queries, unlabeled groups will have multiple distances between labeled groups. The minimum

distance from c to any cluster in L is used since it represents the difference between c and

its most similar labeled neighbor. The unlabeled cluster with maximum exploration score

represents the cluster that is most dissimilar to its nearest neighbor and expected to be most

likely to represent a visual concept that has not been discovered yet.
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These selection factors are combined to provide an overall selection criteria score. The

two terms are combined using a weight α that has a range [0, 1]. Formally, the combination

is defined as

(21) SG(c) = α ∗ exploit(c) + (1− α) ∗ explore(c),

and the group with the highest selection score is selected to be labeled. For all experiments,

the exploitation and exploration terms are weighted evenly by setting α = 0.5.
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