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ABSTRACT

Robots are frequently used for operations in hostile envi-
ronments. The very nature of these environments, however, in-
creases the likelihood of robot failures. Common failure toler-
ance techniques rely on effective failure detection. Since a fail-
ure may not always be successfully detected, or even if detected,
may not be detected soon enough, it becomes important to con-
sider the behavior of manipulators with undetected failures. This
work focuses on developing techniques to analyze a manipulator’s
workspace and identify regions in which tasks, characterized by
sequences of point-to-point moves, can be completed even with
such failures. Measures of fault tolerance are formulated to allow
for the evaluation of the workspace.

I. INTRODUCTION

Failures in robots occur frequently in industrial op-
erations [1}. The likelihood of failures is far greater
when robots are operated in harsh environments [2].
Since the control of the individual joints is essentially
independent in a typical robotic system, most failures
affect only a single joint. A common type of joint failure
is the “locked joint”, where the affected joint’s velocity
is identically zero. Such a failure may have catastrophic
consequences, or, at the very least, significantly degrade
the system performance.

Since immediate human attention for repair or re-
covery is often not practical in hostile environments, it
is desirable that the robot itself be able to cope with
failures. A common approach to enhancing failure tol-
erance capability in a robot is the incorporation of re-
dundancy in the design. This may be in the form of
duplicated components [3], or, through the intelligent
utilization of kinematic redundancy [4, 5, 6, 7]. Though
there has been considerable work in the area of fail-
ure tolerant systems, there remain significant questions
about the post-fault behavior of robotic systems that
do not incorporate fail-safe mechanisms. Existing fail-
ure tolerance schemes rely on effective failure detection;
only after a failure is detected, is an appropriate failure
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recovery strategy initiated {8, 9]. Since failure detec-
tion is itself a difficult process that may not always be
successful [10], it is important to address the problems
associated with undetected failures.

In this work, the analysis of the post-fault behav-
ior of manipulators with undetected locked-joint fail-
ures, presented in [11], is extended to establish a proce-
dure for workspace analysis. This analysis allows for the
identification of workspace regions for which task com-
pletion may be possible even with undetected failures.
A general class of tasks characterized by sequences of
point-to-point moves in task space is considered.

II. MATHEMATICAL FRAMEWORK

The position and/or orientation (henceforth re-
ferred to as “position”) of the end effector of a manipu-
lator can be expressed in terms of its joint variables by
the kinematic equation

X = f(q)1 (1)

where x € IR™ is the position of the end effector,
q € IR" is the vector of joint variables, and m and
n the dimensions of the task space and joint space re-
spectively. Manipulators that have more degrees of free-
dom (DOFs) than required for a task, i.e.,, n > m, are
said to be redundant. The end-effector velocity is ex-
pressed in terms of the joint rates as

%= J4, 2)

where J € IR™*" is the manipulator Jacobian, x is the
end-effector velocity, and q is the joint velocity.

If perfect servo control of the joints is assumed,
then in a healthy manipulator the actual joint velocities
4. equal the commanded velocities q.. However, in
the event of a locked-joint failure of the i-th joint, the
corresponding element of q, is identically zero. Then,
the actual end-effector velocity is given by

X, = iJ(lc 3 (3)
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where *J is the post-failure Jacobian, given by

J=[q - dim2 0 Jin - Jn]. (@)
It is assumed that the joint position sensors are still
operational.

A common method for generating q is the inverse
kinematic scheme
q = Gx, (5)

where G is a generalized inverse of J satisfying the
Penrose condition JGJ = J. A frequently encoun-
tered generalized inverse is the pseudoinverse J*, which
yields the least squares minimum norm solution. For
full rank J, the pseudoinverse can be expressed as
J+ = JragTy~.

In this work a general class of tasks characterized
by sequences of point-to-point moves is considered. The
commanded end-effector velocity is simply straight line
motion towards the desired task position x4:

X = Ke(xd - Xa)a (6)

where x, is the actual position of the end effector, and
K, is a constant position error gain that is adjusted
when necessary to limit the commanded end-effector ve-
locity to a maximum allowable value.

In the event of a locked-joint failure, the actual end-
effector velocity in general will not be as commanded
by (6). In particular, if joint ¢ fails, the actual end-
effector velocity is given by

%, = (JG)Ke(xq — Xo). (7)

Although %, may not drive the end effector directly
towards the desired task position, it is of interest to
know whether the end effector eventually converges (i.e.,
all its joints come to rest) to it.

III. PosT-FAILURE REACHABILITY

The workspace of a manipulator, in general, re-
duces after it experiences a failure [4, 12, 13]. However,
under certain constraints, a task position can be guar-
anteed to be reachable by a redundant manipulator af-
ter an arbitrary joint failure along a trajectory. This is
achieved by ensuring that the ranges of the joint values
along the nominal trajectory never exceed the bounds
of the joint values given by the self-motion manifold(s)
of the desired task position [12].

The bounds of the self-motion manifolds can be di-
rectly computed by numerically tracing the manifold(s).
Another more efficient way is to use the fact that at the
extremum of a joint range, the self-motion manifold is
tangent to the hyperplane defined by the extremum.
Consequently, the contribution of that joint to the null
motion of the manipulator is identically zero. It is eas-
ily shown that a joint ¢ has a zero contribution to the

Xy = [-0.65 0.35)

.

(a)

8,=59.29

(b)

Fig. 1. (a) The self-motion curves and their bounding boxes
for a 3-DOF unit link-length planar manipulator for an end-
effector position Xge, = [—0.65 0.35]7. (b) Configurations for
which Joint 2 has extreme values over one of the two self-motion
manifolds (27 = [j1 0 j3] rank deficient).

null motion of the manipulator if and only if the Jaco-
bian Y7 = [j1 - ji—1 O Jiy1--- jn] is rank deficient 7]
(this is referred to as a semi-singularity in [14]). If the
condition for a joint to be at an extremum is not satis-
fied for any configuration corresponding to the desired
end-effector position, then the range of that joint on
the manifold is unconstrained, i.e., it spans the entire
[0° 360°] range. The limiting values of the range of
joint ¢ are thus obtained by simultaneously solving the
following equations:

f(a), and (8)
0, j=1,....n—m, (9)

Xd =

ny, (i)

where {ny,,...,n;, __ 1} represent any n — m linearly
independent null vectors of J. This idea is illustrated
in Fig. 1.

The identified extrema partition the [0° 360°]
ranges of the joints into a number of segments. The seg-
ments corresponding to the self-motion manifolds can
then be identified by testing the midpoint of each of
the obtained segments. Though this technique is a gen-
eral one, its applicability depends upon the ease with
which (8) and (9) can be solved.
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IV. ANALYSIS OF CONVERGENCE BEHAVIORS

Although the reachability of a task position may
be guaranteed after a failure along a trajectory, correct
convergence to it may or may not be. It was shown
in [11] that a manipulator may exhibit one of three be-
haviors after experiencing an undetected locked-joint
failure: convergence to a “stationary” configuration,
which may correspond to either the desired position
(correct convergence), or to a position other than that
desired (erroneous convergence), and no convergence.

A. Characterizing Erroneous Convergence

A manipulator gets “stuck” or converges to a con-
figuration other than to one corresponding to the de-
sired position, if and only if the failed joints alone are
commanded nonzero velocities. This observation is for-
malized in the following theorem from [11].

Theorem 1: Consider a manipulator at a nonsin-
gular configuration, driven by a generalized inverse con-
trol

9. = Gx, (10)

where G = W-1JT(JW-1JT)™" for some symmetric
W > 0. Let S be the set of the indices of the k locked
joints, and let j; and w; denote the i-th columns of J
and W respectively. Then:

1. Only the failed joints are commanded motion if
and only if the commanded end-effector velocity
vector X, lies in the space spanned by the columns
corresponding to the failed joints of the Jacobian,
ie.,

Ge=) aiei =k =) aiji, (1)

€S €S
for someo; € R, 1€ S

2. Moreover, the failed joints are commanded
nonzero velocities only if a post-failure weighted
Jacobian is rank deficient, i.e.,

qc = Zaiei # 0 => (JW™!) rank deficient,
€S
(12)
where (JW™1) € R™ (%) js obtained from
JW ™! by zeroing the columns with indices i € S.

0

The conditions of Theorem 1 can be used to de-
termine configurations of erroneous convergence for a
failed manipulator. For the sake of illustration, only
single joint failures and identity weighting will be con-
sidered henceforth. Suppose the column of the Jacobian

corresponding to a failed revolute joint 7 is expressed in
standard Denavit-Hartenberg notation as

s | Zica X pi
3= [ Zi1 ] ’

(13)
where coordinate frame (i —1) is attached to link (z —1),
the motion of joint ¢ is along the 2;_; axis, and p; rep-
resents the position vector of the end effector expressed
in the coordinate frame (i — 1). Then, if x, and %,
represent the translational and rotational components
of %, the first condition is equivalent to simultaneously
satisfying the following conditions:

XxIpi = %.2.1=0, and (14)
XXy = X191 =0. (15)

With pseudoinverse control (W = I), the rank de-
ficiency condition in Theorem 1, is equivalent to the
i-th component of each of the n — m linearly indepen-
dent null vectors of J being identically zero [7]. Thus
if {ny,,...,ny,_,.} represent any n — m linearly inde-
pendent null vectors of J, then the second condition of
Theorem 1 is equivalent to

n;(#)=0, j=1,...,n—m. (16)

Equations (14)-(16) represent the conditions that
must hold for erroneous convergence. For a given fail-
ure angle of a joint, these equations can be solved for
the other joint variables to determine the problematic
configurations.

B. Analyzing Stationary Configurations

After the stationary configurations of a manipula-
tor are determined, an important question is whether
a manipulator can be drawn into any of these configu-
rations after a failure. The local behavior of the failed
manipulator about a stationary point (qg) can be deter-
mined by analyzing the stability of the linearized sys-
tem dynamics about the point. For @ = g¢g(q), where
g(a) = IGK.(x4q — X,), linearization about qo yields:

d dg s
priat b (%lqo) Aq = JAq. (17

Since the components of the vectors Aq, and ;f;Aq
corresponding to the failed joint ¢ are identically zero at
all times after the failure, the matrix J;, obtained from
J by removing the components corresponding to joint
i, is examined for stability. While an antistable equi-
librium point (where all eigenvalues of J; have positive
real parts) poses no problem as far as erroneous con-
vergence of the manipulator is concerned, a stable equi-
librium point (all eigenvalues have negative real parts)
acts as an attractor and is a potential problem. A stable
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Joint 2 Faikurs: 45.0 deg, x,,, ={1.50 1.50}

250
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)

Fig. 2. Joint-space trajectorie's of a 3-DOF unit link length,
planar manipulator, with a failure of Joint 2 at 45°. S; and
Sz represent the two stationary configurations, while g1, and
Qsol, represent the two post-failure solutions corresponding to
the desired position. The solid lines represent trajectories that
are drawn to the stationary points; they also partition the joint
space into the two basins. All trajectories (shown by dashed lines)
that originate in the gray basin converge to gqot, , While those that
originate in the unshaded basin converge to qgo1,-

stationary configuration is classified as a “sink”. For an
unstable equilibrium point (some eigenvalues have neg-
ative real parts), the stable modes can be used to trace
the failure configurations for which the manipulator gets
drawn to a stationary point. These traces, which are
in general manifolds, also partition the workspace into
distinct regions, or “basins”. Since trajectories origi-
nating off the basin boundaries can never reach these
boundaries, all trajectories are confined to the basins
where they originate (see Fig. 2).

An important point to note is that unless the sta-
tionary points are sinks, the dimension of these bound-
ary manifolds is at least two less than the dimension
of the joint space (or the number of DOFs) of the ma-
nipulator. This is because the failure itself constrains
one variable, reducing the dimension by one, while the
additional reductions in dimension, if any, result due to
the unstable modes. This implies that in the absence of
sinks, the probability of a failure resulting in a manip-
ulator configuration on a problematic manifold is zero.

C. Tracing and Classifying Stationary Manifolds

For an analysis of correct convergence, all poten-
tially problematic stationary configurations in the ma-
nipulator’s joint space must be identified. The loci of
these stationary configurations (referred to as “station-
ary manifolds”) must be generated for every possible
joint failure. The first step in tracing a stationary man-
ifold for a particular joint is to identify one stationary
configuration for each distinct singularity of the failed
arm. These stationary configurations represent the set
of seed configurations that are grown to trace out the
entire stationary manifold. Since (14)—(16) must hold at

Joint 1, x,,_ ={1.50 1.50]

(®)

Fig. 3. Stationary curves for Joint 1 failures of a 3-DOF unit
link length planar manipulator are shown in (a). S; and S3 de-
note the two seed configurations used to trace these curves. The
sink segments are shown with thin lines, while the non-sink seg-
ments are shown with thick lines. The segments are partitioned
based on the behavior of the determinant and the real part of the

eigenvalues of J; as shown, for Sz, in (b). The shaded area in (b)
defines a “zero band” that is used to check for the zero crossings
of the determinant curve.

all stationary configurations, the loci of stationary con-
figurations can be traced by simply starting at a seed
that satisfies these conditions, and moving in a direc-
tion orthogonal to the gradients of the right hand side
components of these equations. Doing this for each seed
allows all the loci to be traced. In summary, a matrix
M is formed by collecting the gradients, and joint mo-
tion in the null space of M traces the manifolds (see
Fig. 3(a)). Methods such as those established for trac-
ing self-motion manifolds [12] may be used to trace these
stationary manifolds. The rank of M may drop along a
trace, signifying the increase in the dimension of the null
space, and hence a branching in the manifold. This is
an issue that must be addressed in the implementation
of this technique.

Sinks, being the real hindrance to correct conver-
gence, must be identified on the stationary manifolds.
Though this may be done by checking the eigenvalues
of J; at each point on the discretized manifolds, a more
efficient way is to evaluate the determinant of J;, and
check the eigenvalues only at the zero crossings of the
determinant. This is because only at these zero cross-
ings can the eigenvalues change sign. The stationary
manifolds can thus be partitioned into “sink” and “non-
sink” segments (see Fig. 3(b)).
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V. WORKSPACE ANALYSIS

The post-failure convergence behavior of maripu-
lators, in addition to being a function of other variables,
is seen to be dependent on task placement. If failure de-
tection is not available, or otherwise, not reliable, this
knowledge can be exploited to better cope with fail-
ures. Through the characterization and classification of
workspace regions, critical tasks can be placed in loca-
tions to which the manipulator can correctly converge
even after an arbitrary joint failure.

Analyzing the workspace of a manipulator for fail-
ure tolerance involves checking for reachability and cor-
rect convergence. Based on the ideas presented in the
foregoing sections, a systematic procedure can be de-
veloped to analyze a manipulator’s workspace. For the
given task model of point-to-point motion, a specified
control scheme, and a desired task position, it is of in-
terest to evaluate the entire workspace to determine the
effect of the initial task position on the convergence be-
havior of a manipulator when anticipating undetected
locked-joint failures. Some concerns when evaluating a
candidate initial task position are: For what percentage
of the trajectories originating on the self-motion man-
ifolds of the initial position can reachability of the de-
sired position be guaranteed? If reachability cannot be
guaranteed for a failure along the entire trajectory, then
for what percentage of the trajectory can reachability be
guaranteed? How much does the percentage reachabil-
ity change with the initial configuration? That is, how
sensitive is reachability to a choice of the initial config-
uration? Similarly, questions about correct convergence
to the desired position can be posed for trajectory por-
tions guaranteeing reachability.

For a given desired task position, the following pro-
cedure allows the workspace to be evaluated for identi-
fying the suitability of different initial positions for the
task. (An analogous procedure can be performed when
an initial position is specified instead.) The first step of
the procedure is to discretize the entire workspace. The
discretized positions in the workspace represent the set
of initial positions to be evaluated. Since, in general,
a redundant manipulator can reach each of these po-
sitions with an infinite number of configurations, a set
of initial configurations must be considered. This set
of configurations is obtained from the discretized self-
motion manifold(s) corresponding to the initial config-
uration. The procedure for the analysis is summarized
in the following pseudocode.

e Generate By
(the union of the bounding boxes of all the self-motion
manifolds of x4, the desired task position)

e Discretize the workspace to get a set of initial positions
xi{i), i=1: Tix;

for i = 1: nj, (for each joint)

® Generate S; (the union of all the stationary
manifolds) and classify S; into sinks/non-sinks

end
for i = 1 : ny; (for each initial end-effector position)
e Generate the self-motion manifold(s) for x;()
for j = 1: nq; (for each discretized configuration
on the manifold(s))
o Compute the forward trajectory 7; to x4 for
the healthy manipulator
e Compute 7}, , the portion of 7; inside Bx,
fOI‘ 7}'-:1
for i = 1 : nj, (for each joint)

e Compute the intersection of the range
of motion of joint i over 7}, , with the
corresponding range over sink(S;)

for 7;, NS;

o For each discretized point on the
overlap, assume a failure of joint i
and check whether or not the
manipulator converges to x4

in?

end
(Tj;a N Si empty => The task is tolerant
to joint 4 failures over 7j;, )

end

(T, NS; empty for i =1:nj =

The task is tolerant to an arbitrary joint

failure over T, )

end
end
end

The data obtained from the implementation of this
procedure can be interpreted in a variety of ways; how-
ever, the questions posed earlier in this section are best
addressed by the following measures:

Rioo : The percentage of configurations considered
for x;, for which reachability of x4 can be guaranteed
for the failure of a joint along the entire length of the
nominal trajectory.

Ravg : The percentage length of the nominal tra-
jectory for which reachability to x4 can be guaranteed
for the failure of a joint, averaged over all considered
configurations.

Rsens : The difference between the maximum and
minimum, over all considered configurations, of the per-
centage of the trajectory for which reachability to x4
can be guaranteed for a joint failure. This measure re-
flects the sensitivity of reachability to a choice of the
initial configuration corresponding to x;.

Analogous measures for complete fault tolerance
(correct convergence), over trajectory segments guaran-
teeing reachability, are given by Fio0, Favg, and Feens
respectively. All measures are computed for the possi-
bility of a failure of a specific (known) joint, as well as
that of an arbitrary (unknown) joint.

An Ilustration

The application of the workspace analysis proce-
dure proposed above is illustrated for the example of a
3-DOF planar manipulator with unit link lengths. The
desired position considered in this example of a point-
to-point motion task is x4 = [1.5 1.5]7. The workspace
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of the manipulator is sampled on an equally spaced
square grid, using 2032 samples. Each of these samples
is evaluated as a candidate initial position for the task.
The stationary manifolds for this example are generated
and partitioned into sink and non-sink segments as dis-
cussed in Section IV-C. The bounding box By, for the
single self-motion manifold corresponding to x4 is com-
puted using the technique outlined in Section III. The
bounds are: [—24.30° 114.30°], [-111.80° 111.80°], and
[-111.80° 111.80°], for Joints 1, 2, and 3 respectively.
In Fig. 4 the workspace is shaded as a function of four of
the six proposed measures: R100, Ravg, Rsens, and Fioo,
considering arbitrary failures. These plots demonstrate
how the failure tolerance properties of the manipulator
change over the workspace. Since the measures change
in a continuous manner over the workspace, these plots
can be used to identify regions that guarantee a cer-
tain level of failure tolerance. It is noted that in gen-
eral all regions with nonzero reachability measures Rigo
and Rayvg exhibit high values of the corresponding com-
prehensive fault tolerance measures Fyg9 and Fyyg (not
shown). In other words, most trajectory segments that
guarantee the reachability of the task position also guar-
antee correct convergence. Though this is true for x4 in
this example, it may not be guaranteed for an arbitrary
choice of task position. It was also seen that the com-
prehensive sensitivity measure Fyens (not shown) is very
low over the workspace, implying that if reachability is
guaranteed, correct convergence has little dependence
on the initial configuration of the manipulator.

VI. CONCLUSION

In this work a general procedure for evaluating the
failure tolerance properties of manipulators performing
point-to-point motion tasks was presented. This pro-
cedure allows regions of the workspace to be classified
based on their influence on the failure tolerance prop-
erties of a manipulator with respect to a task. Since
no closed form expressions to guarantee correct conver-
gence exist, brute force evaluations to check for the ef-
fect of certain failures become necessary over some por-
tions of the workspace. However, the procedure based
on the developed analysis tools allows for an intelli-
gent evaluation of the workspace, thereby minimizing
the number of brute force checks. Using workspace in-
formation for task placement is an effective approach to
coping with failures, with or without failure detection.
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