uo

Exploiting Concurrency Among Tasks in Partitionable Parallel Processing Systems

Wayne G. Nation’
nation@gdls4.vnet.ibm.com

IBM Corporation
Endicott Engineering Laboratory
Endicott, NY 13760 USA

Abstract - One benefit of partitionable parallel processing
systems is their ability to execute multiple, independent tasks
simultaneously. Previous work has identified conditions
suchthat, when there are k tasks to be processed, partitioning
the system such that all k tasks are processed simultaneously
results in a minimum overall execution time. An alternate
condition is developed that provides additional insight into
the effects of parallelism on execution time. This result, and
previous results, however, assume that execution times are
dataindependent. It will be shown that data-dependent tasks
do not necessarily execute faster when processed simuitane-
ously even if the condition is met. A model is developed that
providesfor the possible variability of a task’ s execution time
andis usedinanewframework to study the problem of finding
an optimal mapping for identical, independent daia-
dependent execution time tasks onto partitionable systems.
Extension of this framework to situations where the k tasks
are non-identical is discussed.

1. Introduction

Large-scale parallelism involves the use of thousands of
processors cooperating to process a task, where a task is an
instance of a problem that can be solved on one or more pro-
cessors, independent of other tasks. In many cases, one way
to efficiently utilize a large-scale parallel processing system
is to partition the system, allowing a collection of tasks to exe-
cute concurrently, each on a portion of the entire machine.
Thus, large-scale parallel processing system users may be
able to minimize the execution time of a set of multiple con-
current tasks by exploiting partitioning. This work examines
when partitioning will be beneficial.

Partitionable systems can be subdivided into smaller
independent submachines of various sizes to use the systems
more efficiently [25]. Here, the problem of determining the
““best’” number of processors to allocate to each of a given a
set of identical, independent tasks is explored, as well as the
way the tasks may be ‘‘placed’” on the system in relation to
one another to achieve a minimum overall execution time.
Such situations where multiple identical, independent tasks
are to be performed occur frequently. Examples in the signal
processing domain include the processing of satellite
imagery and the intermittent recalibration of radar,

A simulation study [15] pointed out that a set of four
identical global histogram tasks execute in the shortest time if

This work was supported by the Naval Ocean Systems Center under

the High Performance Computing Block, ONT, and by the Office
of Naval Research under grant number N0O014-90-J-1937.

0-8186-2672-0/92 $03.00 @ 1992 IEEE

Anthony A. Maciejewski*

maclejew@ecn.purdue.edu

Howard Jay Siegel?

hj@ecn.purdue.edu

*Parallel Processing Laboratory
School of Electrical Engineering
Purdue University

West Lafayette, IN 47907-1285 USA

30

all four are processed simultaneously, each on a submachine
consisting of one-fourth of the partitionable system. An
analytical study [12] showed that this result is true for all
algorithms whose execution times on various submachine
sizes matchacertain condition. That is, given an N-processor
partitionable system and & identical, data-independent tasks
matching the condition, it is always best to partition the sys-
tem into k£ submachines, each of size N/k, and process all
tasks simultaneously. An alternate condition is developed
here that provides additional insight into the effects of the use
of parallelism on the execution time. This result, and most
previous work, implicitly assumes that execution time is data
independent, i.e., the execution time of a task is independent
of the data set values. The work here extends previous results
by coupling an expression representing the execution time of
a single task with a new expression for the total execution
time of a collection of tasks where one, some, or all of the k
tasks are executed simultaneously. On this new platform the
issue of algorithms with data-dependent execution time is
addressed, where itis seen thatit may notbe bestto process all
tasks simultaneously, even if the data-independent condition
derivedin[12]ismet.

In [14], the task allocation problem for data-dependent
tasks was introduced. Execution time was modeled as a ran-
dom variable and several specific parallel algorithms were
studied in detail. It was concluded in [14] that trade-offs exist
in choosing the optimum submachine size and scheduling
strategy for data-dependent tasks, and that it ‘ ‘is of interest to
build abstract models for studying these trade-offs.”” The
development of a general framework for studying the alloca-
tion of data-dependent tasks is the focus of this work. It will
be seen that this new framework is extendible to cases where
the k tasks may not be identical, but have similar execution
time statistical characteristics.

While this work has aheavy emphasis on the mapping of
tasks onto a set of processors, it does not consider the problem
of decomposing a single task (or sets of communicating
tasks) and finding an optimal mapping of that decomposition
onto a parallel system. That is a related problem and has
received much attention in the literature, e g., [5,7,9, 11, 18,
22, 27]. Stated concisely, results from these related works
indicate that the work of a task should be distributed as evenly
as possible while minimizing inter-processor communica-
tion. This reinforces the result of [12] because communica-
tion is minimized when all tasks are executed simultane-
ously, i.e., only N/k processors are assigned to each task
(minimizing communication) and all N processors are busy.
However, these related works cannot be applied directly to
the problem of allocating identical, data-dependent tasks

onto partitionable systems. This is because the models used
do not take into account the variability of execution time,
based on the nature of the algorithm and data, and the interac-
tions of this variability on the spatial and temporal juxtaposi-
tionof other tasks.

The architectural model assumed is a partitionable sys-
tem with N processors, N memory modules, and an intercon-
nection network. The ifiterconnection network provides for
communications among processors and memory modules of
the system. The network topology must ensure that the com-
putations and communications in one submachine do not
interfere with other submachines [20]. Examples of inter-
connection networks suitable for large-scale parallel pro-
cessing systems that support partitionability are the single-
stage cube (hypercube) [20], multistage cube [21, 23, 28],
ADM/IADM [21], and gamma [19]. The processors may be
paired with local memory modules to form processing
elements (PEs) communicating via message passing. This is
the PE-to-PE configuration. With the Processor-to-memory
configuration, processors are placed on one side of the inter-
connection network, memory modules on the other side, and
communication among processors is through shared
memory. The results here apply to both the PE-to-PE and
processor-to-memory configurations. Some partitionable
systems that have been constructed include: MIMD systems
(BBN Butterfly [3] and NCube [10]), SIMD systems with
multiple control units (CM-2 [26]), and reconfigurable
SIMD/MIMD systems (PASM [24] and TRAC [16]). The
resulis are also applicable to non-partitionable systems:
SIMD system users can benefit when processing identical
tasks (where execution times are independent of the data
values) on disjoint subsets of processors, all following a sin-
gleinstruction stream [21].

Section 2 presents a general expression that will be used
to represent the execution time of £ tasks on N processors
where either N or N /k processors are used to process each
data-independent task. Basic properties of this expression,
and thus the algorithm it represents, are derived. Assigning
arbitrary numbers of processors to data-independent tasks is
considered in Section 3. In Section 4, calculating partition
sizes to minimize the execution time of sets of identical,
data-dependeni tasksisexamined.

2. General Model of Execution Time

Thissection introduces a general expression for the time
required to execute a single task in parallel and explores pro-
perties of the expression. A task will require £, seconds to ex-
ecute on a serial machine. This represents the minimum
amount of work needed to process the task and assumes an
optimal coding of the “‘best’” serial algorithm. Because this
discussion is based on execution time and not work, it is
necessary to assume that the serial machine is based on a sin-
gle processor of the same computational power that is used in
each of the N processors of the parallel machine. It is as-
sumed that any parallel program for the task would distribute
this minimum amount of work among N processors such that
at least #,/N seconds are required to execute the task. While
this may not always be true (due to, for example, elimination
of aloop index when N processors are used), itis a reasonable

31

approximation.

Ofien, a different algorithm is chosen for the parallel
program because the ‘best’” parallel algorithm is not neces-
sarily a parallel version of the “‘best’” serial algorithm. The
added instructions in the paraliel program related to the
change in basic computation method is algorithmic overhead
[17]. Also, the parallel program may incorporate some
additional instructions to handle communication and/or
synchronization. The time spent by a parallel machine on
communication, synchronization, and algorithmic overhead
is the overhead for parallelism (V (V). Included in the over-
head for parallelism is the time spenton intra-task idle time.

Thus, the time to execute a task on N processors, £,(N) is
5,(N)=t/N +V(N), which isa general expression that paral-
lel execution time is the sum of the time spent on the
minimum amount of work that is necessary and on overhead
for parallelism. The expression ¢,(N) specifies total execu-
tion time for N processors, and does not indicate anything
about the time spent by an individual processor on either the
required minimum amount of work (its part of ¢,) or overhead
for parallelism. It will be a useful representation for parallel
execution time in the remaining sections. Previous studies of
the decomposition of a problem onto N processors use similar
general expressions, e.g.,{7,17,27].

As stated in Section 1, this work focuses on task alloca-
tion strategies for mapping & identical tasks onto a partition-
abie system such that total execution time is minimized. The
problem of deciding whether to partition a parallel machine
and execute all k tasks simultaneously, each on an N /k-
processor submachine, or to process the £ tasks scquentially,
each on an N-processor machine (in effect, by not partition-
ing), reduces to determining the validity of the expression
(N k)<k t,(N). Theorem 1 shows when this expression is
true for data-independent tasks.

Theorem 1: If the overhead function foreach of the k identical
data-independent tasks satisfies the condition
dV(N)
dN
Proof: If the condition V'(N) 2 -V (N)/N is true, then it can be
shown that g (N) =NV (N) is monotonically incrcasing. This
resultisimmediate.

=V'(N) 2~ —V% , then 1, (N k) < k ,(N).

V/(N) 2 —V(N)IN
NV'(N)+ V(N) 20
g’ (N)=NV'(N) + V(N) 20

§'W)=0

Because g’(V)=20, g (V) is monotonically increasing [6]. In-
tuitively, this means that the total time spent by a task on over-
head by all processors of a submachine increases as the sub-
machine size increases. The following concludes the proof of
Theorem 1. Because NV (N) ismonotonically increasing:

NIKYV(NIkYysNV(N)

LI

VN k) SkVN)

(N /&) — k t,/N <k (1,(N) — t,/N)

LN k) <k 1,(N)
and the proof is complete. |
A discrete version of Theorem 1 can be derived butis omitted
here for the sake of brevity.

The condition of Theorem 1 implies that N V(N) is
monotonically increasing which, as stated above, means that
when increasing the submachine size, the overhead for paral-
lelism (V (V) may decrease but only by a factor less than the
increase in submachine size. This property is analogous to
the condition given in [12]. Here, the condition
V/(N)2—V(N)/N will be used to provide additional insight.

Solving V'(N)=-V(N)/N gives the overhead function
with the minimum allowed rate of change such that
t,(N /k)<k t,(N)is true. This ‘‘minimal’’ overhead function
has the form V/(N)=A /N, where A is a positive constant (i.e.,
for V(N)=AIN,V'(N)=d (AIN)d N=-AN? =V (N)/N).
Intuitively, an algorithm with this ‘‘minimal’’ overhead
function consists of a constant amount of overhead for paral-
lelism that is evenly distributed over all processors. Thus, the
condition V'(N)2—V(N)/N implies that all algorithms have
overhead functions satisfying V(N)2A/N. Not only can
V (N) be any increasing function of N, but it can be a decreas-
ing function as well.

In the next section, Theorem 1 is built upon to consider
arbitrary submachine sizes. This requires extending the exe-
cution time equation to be able to represent a sequence of
tasks being executed on a submachine. Both data-
independent and data-dependent tasks are considered.

3. Data-Independent Execution Time Tasks

Thissection studies the benefits of partitioning a parallel
system to minimize the total execution time of collections of
tasks having data-independent execution time. First, a gen-
eral expression to represent the execution time of & tasks will
be derived that incorporates other strategies (e.g., allocating
more than N /k processors to tasks such that submachines pro-
cess some number of tasks sequentially). This expression
forms the basis of the framework for studying data-
dependent tasks in alater section. Next, the result of Section 2
is generalized to state that, where all tasks are identical, data-
independent and satisfy the condition V’(N)=—V (N)/N, it is
always best to partition a machine and execute all tasks simul-
taneously.

The total execution time of k tasks, T}, is the time
elapsed from the time the first task begins €Xecution to the
time the last task has concluded. The total time that processor
¢,0s¢ <N, is busy working on any one or more of the k tasks
is B. Recall from Section 2 that B, includes intra-task idle
time. For the model used here, inter-task idle time is denoted
as I 4, which is defined to be the total time that processor ¢,
0<¢ <N, is not working on any of the & tasks. That is,/yisthe
total time that processor ¢ is not a member of some sub-
machine working on a task. I, also includes time spent by

32

processors waiting for the last task to complete. Therefore,
the value of B;+1; = B; +1;=T,,0<i,j <N, and T can be ex-
pressedas
1 N-1
T, = N Eo (Bo+14)=B4+1, foranyd

If n; is the number of processors assigned to task j, 0<j <k,
and,;(n;) isthe time to process task jon »; processors, then

N-

1 1 1 N-1
Te=xy Z| X tilm) + 5 Xl
[vj where 0=0
S,
Gl
Stated equivalently, e
1 *1 1 N1
=g X| X)+ 5 Tl
j=0 | vo where =0
processor ¢
allocated
to task j

Let,; and V;(n;) be the serial execution time of task j and the
overhead for parallelism whentask jis executed on n; proces-
sors, respectively. Then, t,;(n;)=t,;/n; +V;(n;) and
2 (n)) = mity(n)) = n; Chyying) +n; V().
v$ where
processor ¢
1s allocated
10 task
Then,
k-1

2 I+
Jj=0

The ¢,; component of T is independent of the task allocation
strategy and, thus, can be ignored when comparing the rela-
tive merits of any two strategies. Overhead of parallelism is
represented by the second term and is an explicit function of
the number of processors assigned to each task and the over-
head function for that task (i.e., the penalty for using parallel-
ism for the single task, which includes the intra-task idle
time). The idle time given by the third term of T will depend
on the relative placement of the tasks in time and space on the
partitionable system and is a measure of the penalty paid for
inter-task idle time.

With this framework, the general result can be proven.
This is analogous to a result reported in [12]. However, here
the result is based on an alternative view of execution time
(i.e., the V/(N)2—V (N)/N condition) and on the new general
framework developed here that can also accommodate data-
dependent tasks, as seen in the next section.

1 1 k-1 1 N-1
Tk=— - vaj(nj) + — ZI¢
N N & N &

Theorem 2. The total execution time, T}, for k identical tasks
with data-independent execution times satisfying the condi-
tion V’(N)2—V (N)/N on an N-processor partitionable system
is minimized when each task is allocated N /k processors and
alltasks are processed simultaneously.

Proof: When all tasks are identical and are processed simul-
taneously, each on N 7k processors, no processor experiences
inter-task idle time (i.e., /,=0, 0s¢ <N). It is claimed that
this results in the minimum execution time (7)),) and that

all other task-to-submachine assignments will not result in a
T} lessthan (T)in , Where

-1
% Y. (NI)VN k)

1 k-1
(Tk)min = ﬁ Z tsj +
j=0 j=0

= t;/(N 1) + V(N k) = 1,,(N k).

All other possible assignments of tasks to submachines fall
into two cases: (A) one or more tasks are assigned to less
than N /k processors, and (B) one or more tasks are assigned to
more than N /k processors while the rest (if any) are assigned
to N /k processors. The remainder of the proof shows that no
assignment in either Case A or Case B results in an execution
time less than (T}) i -

Case A: Choose one of the tasks assigned to less than N /k pro-
cessors, j’. The execution time of task j” is t,7(n;) and is no
less than t,;(N/k) = (T)min- If such a case arises, where a
smaller submachine size yieldsa smaller execution time, then
itcan be shown that the algorithm for the larger submachine is
sub-optimal. The larger submachine algorithm can be im-
proved to match the performance of the smaller submachine
algorithm by using the smaller submachine algorithm on the
larger submachine and forcing some of the processors to be
idle. Thus, there is at least one task with execution time no
less than ¢,,(N/k) seconds and no assignment in Case A
results inanexecution time less than (7)., .

Case B:Becausen ;V;(n;) isamonotonically increasing func-

tionof n; (from Theorem 1 proof):
k-1 k-1
j=0 j=0

because 3jsuchthatn; > N /k. It follows that

LY 4+ LT o
=3 4+ = Y NV (N/K)
NSY NS /

1 lzz-l 1 k-1 1 N-1
£ — i+ = X nViim) + =X I,
N i Nz N
and thus,
1 k-1

1 k-1 1 N-1
Tdmins 5 X i+ = X Vi) + = 3 1,
N2 N TN

wheredjsuchthatn; > N /k. The proofiscomplete. |

The remainder of this section explores an algorithm ex-
ample to determine its overhead function and to demonstrate
that it meets the V'(N)2-V (N)/N condition. A PE-to-PE
configuration isassumed.

Consider smoothing an M *M image (see [21], page
111-112). One way to smooth an image is toreplace each pix-
el with the average value of that pixel and its eight nearest
neighbors. When the time to ‘‘smooth’ a single pixel is
denoted Tgsoory, then the serial execution time is
t;=M?*Tgyoory (ignoring incorrect values computed for
boundary pixels). Il} 4] pzﬁa_llel implementation, if the PEs are
treated as alogical VN x VN grid, M?/N pixels are assigned to

33

each PE as an (M/VN)x(M/VN) subimage. To smooth the
pixels at the edge of a subimage, pixels from adjacent subim-
agesmust be transferred. Therefore, each PE requires at most
M /NN pixels from each of its four adjacent neighbors and one
pixel from each of the four PEs diagonally adjacent to the PE.
Thus, assuming that the time to transfer a pixel is T7g s and
thatcomputation cannot be overlapped with data transfers,

1, (N) = (M2IN)*Tspgoom + GMINN +4) < Trgans

where VV)=@MNN +4)* Trpans

and V/(N)==2MNN> <Typans.

The condition V/(N)2—V (N)/N reduces to M 2—-2VN , which
isalways true.

At this point, the expression for T, has been developed
and used to show known results for data-independent tasks.
T, was developed to serve as a framework to study data-
dependent tasks in the next section.

4. Data-Dependent Execution Time Tasks

The basic result of Section 3 is that tasks meeting the
condition V'(N)2-V (N)/N with data-independent execution
time always achieve minimal execution time when all of the
tasks are processed simultancously. If the same strategy (of
allocating N /k processors per task and executing tasks simul-
taneously) is taken when execution times are data dependent:
(1) the tasks will not all conclude at the same time, (2) the total
execution time will be determined by the processing time of
the longest task, and (3) the processors rot allocated to the
longesttask willexperience some idle time.

Consider the simplistic case of a data-dependent algo-
rithm with V(N)=0 for all data sets, i.e., there is no penalty
for allocating more processors per task. For this case, total
execution time is minimized when no submachine is idle at
any time during the tasks’ execution, i.c., inter-task idle time
1,=0. The only way to guarantee this is to process the tasks
sequentially, each on N processors. This contradicts previous
results due to the following. With data-dependent tasks and
any other allocation, one submachine may finish before
another, implying that there may 3¢ such that/, > 0. Howev-
er, by Theorem 2, with data-independent tasks, an allocation
of N /k processors per task yields /, =0 ¥¢. Thus, where the
results of Section 3 indicated that maximal partitioning
minimizes execution time, there will be some trade-offs with
regard to partitioning when considering tasks with data-
dependent execution times.

Because the model of [12] has no provision for idled
submachines, it is not directly applicable to this problem.
Also, the scheduling algorithm of [12] does not permit any
processor to execute more than one task, i.e., it forces simul-
taneous execution of tasks.

Another scheduling algorithm [4] allows sequential ex-
ecution of some or all tasks. However, itassumes that the ex-
ecution time of a given task with a given number of proces-
sorsis fixed, i.e., the model used does not include tasks whose
execution times are functions of the data set as well as the
number of processors used.

The following analyses model the execution time of
tasks as functions of random variables and at several points
the following question will be raised: what is the expected

(mean) execution time of the last task to finish processing?
Order statistics will be used to answer this question.

Order statistics is the study of the statistics of grdered se-
quences of random variables [8]. The notation X indicates
that X is a random variable. If the execution times of the &
tasks are represented by the & random variables 7y, 7,,7,, ...,
11 and are ordered such that ;, represents the random vari-
g.blc Ain t{ne sequence with the j-th least value, then
LoStay St <... 5?(;_1) . (The parentheses in the subscripts
denote order.) Thus, the expected value of the largest random
variable is equal to the E[7 , _;,]. If all that isknown about the
probability distribution of Z; is its mean value p and standard
deviation o then the following upper bound [8] is known for
the E[;)] where 7, }, are independently and identically
distributed.

k-1
(2 k — 1)1/2 .
Ifitis known that the distribution of 7; is symmetrical, then
abetter upper bound can be expressed, see [8].

Anexact solution for E[f ;_;,] can be found if the proba-
bility distribution function fix)of i, isknown. The probabili-
ty distribution function fitx) andJ cumulative distribution
functionAF i(x)of ?j are, by definition, f;(x)=probability of the
event { t;=x }xand Fj(x)= probability of the event {?,- <x}

Elfg-1)] Sp+ox

where F;(x)= [f;(z)dt. The conditionthat;, v}, be identically
0

distributed can be relaxed for the exact solution. The proba-
bility distribution function of 7 ;_;,, the task with the longest
execution limi, is fa-(x) and is given [8] by
Fae-y(®)=F;(x)*"' k f;(x). Thus,
Eff ey 1= [x F;0 ke fi(x) dix..
0

When execution time is modeled as a function of ran-
dom variables the expression for T}, the total execution time
for k tasks, isa function of random variables. Thus,

A 1 k-1 R 1 N~-1 .
=y T T)+~ 3,
j=0 vo where =0
K ehocmed
to task j

Because the total execution time T}, is a random variable, it
would be insightful to know E[T,], the expected value of 7.
The E[T}] is the quantity which will be minimized and can be
expressed as

A 1 k-1 . 1 N-1 ~
E[Tk]Z ﬁ E E E[fpj(’lj)] + F E E[I¢]
j=0 v¢ where =0
processor ¢
is allocated
1o task j

Task j has an expected (or average) execution time of L (n;)
when assigned to n; processors (i.e., E[?p i(n;)1=p;(n;))anda
standard deviation of 5;(n,).

One way todetermine approximate values for y;(n;) and
0j(n;) in a production environment is to require users to pro-
vide collections of typical data sets along with their pro-

34

grams. An automated system could then execute the task on
different submachine sizes with the various data sets and col-
lect statistics about the execution time to select appropriate
scheduling strategies. More sophisticated users could ob-
serve execution times during the coding and debugging phase
of development and estimate the execution time statistics that
are needed. Algorithmic complexity analyses are yet another
method todetermine execution time statistics.

Consider the case where all k tasks are identical and each
task is assigned to IN /k processors, for some fixed I, 1 </ <k.
No fewer than N /k processors are assigned to each task be-
cause this forces some processors to remain idle for the dura-
tion of 7. Not all values of I may be feasible due to the parti-
tioning rules of the system under consideration. Thus, for
n = IN Ik N v j N

1y €L, D] | =~ b €L, n))
N ,Eo w‘vzhm iR =N X i\t >
e

o task j "
and the equation for E[T} Jreduces to

~

a N-1
E(T 1= 1 p,(IN/k) + —}1\7 T El,].
=0

The E[/,] term is dependent on the task allocation strategy
and the values of W;(n;) and 6;(n;). For this work what
matters is the execution time as a function of the input data
and the numbers of PEs allocated. Thus, this work would also
be useful in exploiting concurrency among non-identical
tasks in ‘‘computing centers,”” where tasks are diverse but
may be well understood.

4.1 Strategies To Reduce Execution Time

Consider the following five straight-forward task allo-
cation strategies for the situation where all £ tasks are identi-
cal. Although the implications of the following strategics
may be intuitive, it will be seen that each can be analyzed
under a common framework. Users can utilize the actual
statistics gathered from their applications in this framework
to determine the ‘‘best’’ task allocation. Furthermore, this
framework can be applied to other strategies, such as combi-
nations of Strategies A-E. An example of the practical appli-
cation of this method to compare strategies is given in Sub-
section4.2.

Strategy A: All tasks are processed concurrently (N /k pro-
cessors per task).

Strategy B: All tasks are processed sequentially (N proces-
sors per task).

Strategy C: Tasks are assigned to submachines of /N /k pro-
cessors and batches of k /1 tasks are processed simultaneous-
ly. All £/l tasks in a batch must conclude before the next batch
can begin processing, i.e., all k //submachines wait for the last
task of the current batch to finish (and synchronize) before
continuing.

Strategy D: Tasks are assigned to submachines of IN /k pro-
cessors and each submachine processes !/ tasks sequentially,
without the synchronization of Strategy C.

Strategy E: Tasks are dynamically assigned to submachines
of IN/k processors as the submachines become available
(each submachine processes an average of ! tasks sequential-
ly).

Strategies A and B are special cases of Strategies C, D, and E
when /=1 and /=£k, respectively, but are examined here
separately for the intuitive insight they provide.

Strategy A: All tasks are processed concurrently (N /k pro-
cessorspertask,/=1).

submachines
— 012

time

_

Figure 1: Time/space map of k = 16 data-dependent tasks
executing on k£ = 16 submachines simultaneously (Strategy
A). Each submachine consists of N/k processors. The
shaded areas indicate time where submachines are idle.

Figure 1illustrates this strategy. The expected value of

A

T,is
E[T, 1=,V /&)
1 N-1
+ — ¥ (E[time of longest task] — LN k)).
N

Intuitively and algebraically, thisreduces to
E[fk 1= E[time of longest task].

The E[time of longest task] can be found by studying the ord-
er statistics of the execution time of the tasks. If all that is
known about the probability distribution of 7,/(N/k) is
W;(N /k)and o,(N /k) then the following upper bound for Stra-
tegy Aisknown:

E[T}] = Eltime of longest task]

*k-1
(2k - 1)1/2

If the distribution of ,;(N /k) is symmetrical, then a better
upper bound can be expressed (as described earlier). An ap-
proximate solution for E[T}] can be found by following the
method described above. This approximate solution can be
computed efficiently.

In general, many execution trials must be performed to
collect astatistically significant probability distribution func-
tion for #,,;(N /k). However, it may be possible to obtain fairly
accurate estimates for ;(IN /k) and & {IN /k) withonly arela-

SUANTE) +o;(N Tk)

35

tively smaller number of trials if the input data sets are gen-
erally “‘similar’” in nature. Thus, the upper bound equations
are useful with limited knowledge of task execution time.

Strategy B: All tasks are processed sequentially (N proces-
sorspertask,/=k).

Because all processors are busy all of the time, / 6=0,
0<¢ <N.Thus,E[T,] =k W;(N).

Strategy C: Tasks are assigned to submachines of [N /k pro-
cessors and batches of k// tasks are processed simultaneous-
ly. Allk /ltasks in a batch mustconclude before the next batch
canbegin processing.

submachines
—_ 0 1 2

(kiy-1

27, / / 77, Tk

]
Y 7 l

Figure 2: Time/space map of £ = 16 data-dependent tasks
executing in / =2 synchronized batches tasks on k/l = 8
submachines (Strategy C). Each submachine consists of
IN/k = N/8 processors. The shaded areas indicate time
where submachines are idle.

T 1
|

time

2 .

Figure 2 illustrates this strategy. Although tasks are
independent of each other and there is litle intuitive
reason to force submachines to synchronize, this may be
the only option for some systems. For example, an SIMD
system with a partitionable interconnection network but
only one control unit could use this strategy on iterative al-
gorithms, for example; disabling submachines one by one
until the last submachine concludes execution.

The total execution time is determined by the sum of
the longest gxecution time in each batch. Thus, the expect-
ed value of T}, will be / times the expected value of the time to
execute one batch of k //tasks.

E[T} 1=/~ [uj(zN/k)

N-1
+% Y (E[time of longest task in batch] ~ W (IN /k))]
0=0

Intuitively and algebraically, thisreduces to
E[f;c 1 =1<E[time of longest task in batch],

and, as with Strategy A, an upper bound is known:

(k/l-1)
k- 1)1?
Once again, if it is known that the distribution of 7,,(IN /k) is
symmetric, then a better upper bound exists. Also, an more
accurate solution for the optimal value of / can be found by
collecting execution time statistics or modeling execution
time stochastically.

E[T, 1 <1 p,(IN7k) + 1 o;(IN 1K) =

Strategy D: All tasks are assigned to submachines of IN /k
processors and each submachine processes /tasks sequential-
ly.

submachines
e 0 1 2

ki) -1

\ J
7 T
7 //// 4 o

Figure 3: Time/space map of k = 16 data-dependent tasks
executing on k/I =8 submachines, for / =2 (Strategy D).
Each submachine consists of IN/k =N /8 processors and
executes /=2 tasks in sequence. The shaded areas
indicate time where submachines are idle.

time

ZLL.

. Figure 3 illustrates this strategy. The random variable
51(IN /k) denotes the execution time of a sequence of / tasks on
IN tkprocessors. Thus,

E[T,]=11;AN k)

N-1
+ % 3 (E[time of longest sequence] — E[5;(IN /k) 1)
4=0
Because E[5,(IN/k)]=! W;(IN /k), intuitively and algebrai-
cally, thisreduces to

}5.[’.;]t 1= E[time of longest sequence].

The standard deviation of §,(IN /k) is VIG;(IN /k), and, as with
Strategy A, anupper bound isknown:

k-1
(k11 -1)"2

Also, if it is known that the distribution of 5,(IN /k) is sym-
metric, then abetter upper bound exists.

There are several ways an approximate solution may be
found. One method involves the observation of the execution
times for sequences of / tasks to form an approximate proba-
bility distribution for 5;(IN /k). Once this probability distribu-
tion function is known, the expected value of the longest time
of k /1 sequences can be calculated numerically by the same
technique shown for Strategy A. Because

-1

SUNIK) = 3 1,,(IN k)
i=0

E(7,] <1, (N/K) + VT 5,(IN k)=

the probability distribution of 5,(IN /k) is the result of I time
convolutions of 2,;(IN /k). Thus, the statistics of a task se-
quence can be found by observing the execution times of indi-
vidual tasks, obviating the need to observe execution times of
task sequences. R

The question is, what value of / will minimize E[T}]? If
W;(IN /k) and 6,(IN /k) are known, then the equation(s) above
for the upper bound can be tabulated easily and the value of /
that yields the smallest value for E[T}] indicates that IN 7k
processors should be allocated to each task for this strategy.
This assumes that the ?pj (IN /k) has the extremal distribution

36

thatequals the upperbound.

~ When finding an approximate solution for the optimal
value of /, it is noted that the collection of run-time data re-
quires the observation of only a single submachine.

Strategy E: Tasks are dynamically assigned to submachines
of IN /k processors as the submachines become available
{each submachine processes an average of / tasks sequential-
ly).

The dynamic assignment of tasks can lead potentially to
lower totalexecution times because there is the assurance that
agiven task will notbe forced to wait for another task to finish
if there is an idle submachine in the system. However, the par-
ticular submachine that a given task will execute on is not
known a priori and cannot be preloaded. This introduces
some additional overhead because processors may be idled
while the next task is being loaded [13]. This is true for both
the PE-to-PE and processor-to-memory configurations (this
occurs in the processor-to-memory case due to network
conflicts that will occur, in general, if data is preloaded arbi-
trarily). With Strategies Cand D, systems thatallow the over-
lap of 1/O and computation, ¢.g., MPP [2], PASM [24], can
preload tasks so submachines are not idled waiting for the
next task to be loaded into memory. Using Strategy E, these
systems cannot fully utilize overlapped I/O capabilities.

With Strategy D, each submachine executes a sequence
of I tasks. An ideal schedule may require some submachines
to0 process more than ! tasks while others process less,
depending on the relative execution time of their tasks. Un-
fortunately, exactexecution timesare notknown in advance.

For data-independent tasks (i.e., 5;(IN /k)=0), the ideal
schedule isknown; each submachine should execute one task
(Theorem 2). For this case, dynamic scheduling (Strategy E)
and the overhead it incurs is not necessary. In fact, there may
be some cases where, for o;(IN /k) > 0, a static schedule of /
tasks per submachine (Strategy D) outperforms the dynamic
schedule (Strategy E) due to the reduction in overhead. Such
acase isillustrated in the following. Recall that for Strategy D
an upper bound for the E[time of longest sequence] was
shown. Likewise, a lower bound [8] for the E[time of shortest
sequence] is
E[time of shortestsequence] 2
k-1
Qkil -1
If the expected difference in time between the shortest se-
quence and the longest sequence is less than the average
execution time of a single task, then, on average, Strategy
D offers the ideal schedule. That is, because moving the
last task from the longest sequence to the shortest

sequence will not reduce total execution time, on average.
Restated, if the following condition s true,

k/1-1)
kil -1)2°
then, on average, it is ‘‘likely’” that Strategy D offers the

ideal schedule. The word ‘‘likely’’ can be removed by
providing an exact solution for the average time difference

1IN 7k) = VT G;(IN 1K)

W (IN 7k) < 2VT o;(IN 1K) *

between the shortest and longest sequence. This is possible if
the probability distribution function of s,(IN/k) is known,
where f,(x) and F,(x) are the probability distribution and cu-
mulative distribution functions of s;(IN /k), respectively. The
probability distribution function f,(x) is the /-fold convolu-
tion of the probability distribution function of Lp;i(IN [k) with
itself. Thus([8],

E[time of shortest sequencel= ¥ x (k /1)f,(x}(1 — F,(x))F" "1
x=0

and

E[time of longestsequence]=Y x (k /1)f,(x)F,(x)*"~1 .
=

If the following condition is true, then it is better, on average,
touse Strategy D rather than Strategy E:

IALj(UV/k)-S i x eI FG0) F ey 1 (1-Fy(x))e-1
x=0

4.2 Applying the Task Allocation Strategies

This subsection explores the use of Strategies A-C in a
more concrete example. Consider the class of parallel syn-
chronized iterative algorithms, e.g., those that can be used to
solve differential equations, find solutions to systems of
equations, and search for extrema in functions, e.g., [1]. Syn-
chronized iterative algorithms are characterized by the re-
peated execution of a code kernel that consists of a computa-
tion phase followed by a communication phase where inter-
mediate data are transferred among processors. Typically,
the number of iterations required is data-dependent.

If the time toexecute the code kernel on IN /k processors,
1 (IN k), is represented by ¢, (IN /k) = kt,/IN+V (IN /k) and
the number of iterations is modeled as i, a random variable,
then the total time to execute a single synchronized iterative
task is t,(IN /k)=i (kt/IN+V (IN /k)). Where the mean and
standard deviation of i are W, and o;, then u(IN/k)=
W; (ki/IN+V (IN ik) yand O(IN /k)=0; (kt,/IN +V (IN 1k)).

As an example, recall the image smoothing algorithm
from Section 3 and consider an application which calls for the
repeated smoothing of an input image until a certain conver-
gence (or ‘‘smoothness’’) criterion is met. In image process-
ing applications one way toremove the effects of aliasing is to
smooth an image multiple times. The number of times that an
image may have to be smoothed israndom. To simplify some
of the notation, a change of variables x =IN /k will be used (x
is the number of processors in each submachine). Thus,
L(x) =%1,- (ts/x+V(x)) 3]1(1 o(x)=0; (t/x+V(x)), where
t;=M*andV (x)=(4M /Nx +4)x Trpans. Further assume that
the number of iterations required is a uniformly distributed
random variable (with mean i, and standard deviation o;). It
is well known that the expected value of the largest of P in-
dependently, identically distributed random variables with a
uniform distribution having mean y and standard deviation &
is u+V3o(P - 1)/(P+1) [8). Given k/I tasks are executed
simultaneously, the expected value of the maximum value of
iis:
3 kil-1)

: =L NY Ao 7
Elimax 1= +0; GnE1)

Thus, the expected time for the longest task in each batch

37

of k/ltasksis:
E[longest task in batch | =(kt,/IN + V (IN /k)) E[i .0y 1.

and E[ﬁ]:l E[longest task in batch]. By substituting in
known quantities for the image smoothing algorithm with
x=IN/k,

- KN | M? aM T N—x
E[7}] ol Tsyoorn+(N) TR,WS} {lll o3 N

For N=1024 PEs, k=256 images, where each image is
M xM=1024x 1024, and TTRANS:4 TSMO()TH’ E[Tk] reduces

to
+ 16]

Because the relative and not absolute values of E{T},] are of
interest, it is possible to normalize the solution for
W:=Tsmoorn=1.

10242 16(1024)
+ =
X \/_x

o — _
N Sy (1024 — x)
{” L (04|

A 256)(1024
E[Tk]=uzT5Moom()i) {

o;/p; = 1.0

oi/p; = 0.8

o;/y; = 0.6

oilp; = 0.4

A

o/l =0.2 rall

o,/p; =0.0

i T

1

464 256 1024

submachine size

Figure 4: Plot of submachine size versus normalized
expected execution time for the data-dependent image
smoothing example under Strategy C. The normalized
expected execution time is plotted for various values of
o;/l;. Due to the structure of the algorithm, only the
points where | =4, 0 < <4 are of interest (denoted by A).

Figure 4 is a graph of submachine size versus expect-
ed normalized execution time for the image smoothing ex-
ample under Strategy C. The curve for o;/i; = 0.0
corresponds to the data-independent case where itis seen that
itis best to allocate each task to the smallest submachine size
(N /k) and execule all tasks simultaneously. From the graph,
thisis true for o;/u, ratios up to~0.3. The graph in Figure 4 for
©;/1; ratios above ~0.3 indicates that the optimal submachine
size is 1024 PEs, i.e., execution time isminimized if tasks are
processed sequentially. Because the family of curves for this
particular example are concave, the optimal submachinc size
will be either N /k =4 or N = 1024, depending on the 6,/ ra-

tio. The family of curves for algorithms with different over-
head functions yields curves of different shapes. The salient
point of this example is that there exists a large class of algo-
rithms with data-dependent execution time whose total exe-
cution time can be minimized by applying the techniques of
this work.

5. Conclusion

Previous work indicates that, when there are k tasks to be
processed and the execution times of the tasks on various sub-
machines meet a certain condition, partitioning the system
such that all & tasks are processed simultaneously results in a
minimum overall execution time. An analogous condition
was developed that provides additional insight into previous
results because the new condition is based on the time spent
on overhead for parallelism, not just the execution time of the
task. This, and previous results, however, assume that execu-
tion times are data independent. A new framework that
represents the total execution time of a collection of & tasks
was developed that provides for the possible variability of a
tasks’ execution time and was used to study the problem of
finding an optimal mapping for identical independent data-
dependent execution time tasks onto partitionable systems.
Tasks whose execution times are data-dependent do not
necessarily execute faster when processed simultaneously.

Using this model and given execution statistics of a task,
the choice of partitioning or not can be made based on expect-
ed execution times. Because the new framework is general, it
also serves as anew method for the study of data-independent
tasks. It can also be used for non-identical tasks having simi-
lar execution time statistical characteristics. This extension
could be useful in exploiting concurrency among tasks in
‘“‘computing centers’’ where tasks, while possibly diverse,
may be well understood.

Acknowledgement: The authors are grateful for useful dis-
cussions with J. Armstrong, N. Giolmas, M. Supple, and D.
Watson.

References
[1] V.D.Agrawal and S.T. Chakradhar, * ‘Performance estimation
in a massively parallel system,’’ Supercomputing *90, Nov.
1990, pp. 306-313.

K E. Batcher, ‘‘Bit serial parallel processing systems,’’ JEEE
Trans.Comp., Vol.C-31,May 1982, pp.377-384.

BBN Advanced Computers, Inc., Inside the Busterfly Plus,
1139%1:’1 Advanced Computers, Inc., Cambridge, MA 02238,
K.P. Belkhale and P. Banerjee, ‘‘Approximate algorithms for
the partitionable independent task scheduling problem,”” 1990
Int'1Conf.Par.Proc., Aug.1990,pp.72-75.

S.H. Bokhari, ‘‘A shortest tree algorithm for optimal assign-
ments across space and time in a distributed processor sys-
tseé);," IEEE Trans. Soft. Eng., Vol. SE-7, Nov. 1981, pp. 583-
T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Imtroduction to
Algorithms, MIT Press, Cambridge, MA, 1990.

Z. Cvetanovic, “‘The effects of problem partitioning, alloca-
tion, and granularity on the performance of multiple-processor
%slirr;sz," IEEE Trans. Comp., Vol. C-36, April 1987, pp.

2]
13]

[4]

[5]

(6]
{7

38

[8] H.A.David, Order Statistics, John Wiley & Sons, New York,
NY,1970.

[9] R.F. Freund, ‘‘Optimal selection theory for superconcurren-
cy,”’ Supercomputing '89, Nov.1989, pp. 699-703.

[10] J.P. Hayes and T.N. Mudge, ‘‘Hypercube supercomputers,’’
Proc.IEEE, Vol.77,Dec.1989, pp. 1829-1841.

[11] L. H. Jamieson, ‘‘Characterizing parallel algorithms,”” in The
Characteristics of Parallel Algorithms, L. H. Jamieson, D. B.
Gannon, and R. J. Douglass, eds., MIT Press, Cambridge, MA,
1987, pp. 65-100.

[12] R. Krishnamurti and E. Ma, *‘The processor partitioning prob-
lem in special-purpose partitionable systems,’’ 1988 Int'l
Conf.Par.Proc., Aug.1988,pp.434-443.

[13] C.P. Kruskal and A. Weiss, ‘‘Allocating independent subtasks
on parallel processors,”” 1984 Int'l Conf. Par. Proc., Aug.
1984, pp. 236-443.

[14] H.T. Kung, “*Synchronized and asynchronous parallel algo-
rithms for multiprocessors,’” in Algorithms and Complexity:
New Directions and Recent Results, J.F. Traub, ed., Academic
Press, New York, NY, 1976, pp. 153-200.

[15] J.T. Kuehn and H.J. Siegel, *‘Simulation studies of a parallel
histogramming algorithm for PASM,”’ 7th Int’l Conf. Pattern
Recognition, July 1984, pp. 646-649.

{16] G.J. Lipovski and M. Malek, Parallel Computing : Theory and
Comparisons, John Wiley & Sons, New York,NY, 1987.

[17] D.C. Marinescu, J.R. Rice, and E.A. Vavalis, Comununication
and Control in SPMD Parallel Numerical Computations, Re-
port CSD-TR-981, Computer Sciences Dept., Purdue Univer-
sity, 1990.

[18] D.M.Nicol, *‘Optimal partitioning of random programs across
two processors,”’ IEEE Trans. Soft. Eng., Vol. SE-15, Feb.
1989, pp. 134-141.

[19] D.S. Parker and C.S. Raghavendra, *‘The gamma network,’
IEEETrans.Comp., Vol.C-33, Apr. 1984, pp.367-373.

[20] H.J. Siegel, ‘“The theory underlying the partitioning of permu-
tation networks,”” JEEE Trans. Comp., Vol. C-29, Sept. 1980,
pp-791-801.

[21] H.J. Siegel, Interconnection Networks for Large-Scale Paral-
lel Processing: Theory and Case Studies, Second Edition,
McGraw-Hill, New York, NY, 1990.

[22] H.J. Siegel, J.B. Armstrong, and D.W. Watson, ‘‘Mapping
computer-vision-related tasks onto reconfigurable parallel
processing systems,”’ Computer Vol.25,Feb.1992.

[23] H.]. Siegel, W.G. Nation, C.P. Kruskal, and L.M. Napolitano,
Jr., “‘Using the multistage cube network topology in parallel
supercomputers,”” Proc. IEEE, Vol. 77, Dec. 1989, pp. 1932-
1953.

[24] H.J. Siegel, T. Schwederski, J.T. Kuehn, and N.J. Davis IV,
‘‘An overview of the PASM parallel processing system,”” in
Computer Architecture, D. D. Gajski, V. M. Milutinovic, H. J.
Siegel, and B. P. Furht, eds., IEEE Computer Society Press,
Washington, DC, 1987, pp. 387-407.

[25] H.J. Siegel, L.J. Siegel, F.C. Kemmerer, P.T. Mueller, Jr., H.E.
Smalley, Jr, and S.D. Smith, ‘““PASM: a partitionable
SIMD/MIMD system for image processin%and pattern recog-
nition,”’ JEEE Trans. Comp., Vol. C-30, Dec. 1981, pp. 934-
947,

[26] L.W. Tucker and G.G. Robertson, *‘Architecture and applica-
tions of the Connection Machine,”’ Computer, Vol. 21, Aug.
1988, pp.26-38.

[27] D. Vrsalovic, E.F. Gehringer, Z.Z. Segall, and D.P. Siewiorek,
*“The influence of parallel decomposition strategies on the per-
formance of multiprocessor systems,’” 12th Ann. Symp. Comp.
Arch., 1985, pp.396-405.

[28] C.-L. Wu and T.Y. Feng, ‘‘On a class of multistage intercon-
nection networks,”’ IEEE Trans. Comp., Vol. C-29, Aug.
1980, pp. 694-702.

